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Abstract Based on the nonlinear model of vehicle planetary transmission, the
dynamic optimization model is established. This work use a combined objective
function, internal and external load sharing coefficients and peak-to-peak mesh
forces of second stage planetary are taken as objectives. The structure parameters
of transmission shafts are considered as design variables. Finite Element Analysis
(FEA) is carried out to obtain the bending and torsional stiffness, and the maximal
Von-Mises stress constraint. Innovatively, we propose and introduce the nonlinear
characteristic constraint aim at increasing the reliability of optimization. The
Isight-Matlab-Ansys co-simulation method is applied to build the optimization
platform. Finally, the optimization moel of vehicle planetary transmission is
solved by Genetic Algorithm (GA).
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1 Introduction

With the rapid development of high-speed and heavy-load vehicle transmission,
the traditional static design method could not meet the design requirements of
transmission, therefore, dynamic optimal design methodology is more and more
prevalence.

1986, Houser [1] stated that the next step for the optimization design of gear
should introduce the dynamic characteristics. In 1988, Japanese scholar Umezawa
[2] provided a curve of helical gear vibration characteristics in order to design low
vibration and low noise gears. In 1992, Cai [3] analyzed the static optimization of
nonlinear dynamic model. The same year, Wang [4] took the dynamic perfor-
mance of gear pair as objective, after optimization the dynamic load and the
vibration was much smaller than the initial design in a wide range of speeds.
Fonseca [5] used genetic algorithms to optimize the static transmission error,
which is one of the earliest literatures that introduced genetic algorithm into the
gear optimization. LUO [6] used the method of gray relation to change multi-
objective optimization to a single objective optimization. Li [7] considered the
bearing capacity, volume and stability of operation as objectives, then optimized
the gear transmission with self adaptive genetic algorithm. Padmanabhan [8]
considered the power, efficiency, volume, center distance as objectives, and then
he used genetic algorithms to optimize the gear pair. Finally, the finite element
analysis (FEA) was used to carry on further study of tooth bending stress.
Recently, Faggioni [9] presented a global optimization method focused on gear
vibration reduction by means of profile modifications. The optimization method
considered different regimes and torque levels. He also pointed out that the static
optimal design of the gear transmission system probability made the dynamic
performance of gear transmission even worse. But the nonlinear dynamic char-
acteristic and the bending-torsional coupled stress of shaft was not considered in
previous studies.

This paper proposed a nonlinear model of vehicle planetary transmission. Based on
the dynamic performance of transmission, the dynamic optimization model was built.
This paper introduced the nonlinear characteristic constraint and the bending-torsional
coupled Von-mises stress as constraint, innovatively. Then, the co-simulation method
is used to build optimization platform. Finally, the dynamic optimization model is
solved by genetic algorithm.

2 Nonlinear Model of Vehicle Planetary Transmission

Physical model of vehicle planetary transmission (Fig. 1).
There are two forward gears and one reverse gear in this vehicle transmission.

The two forward gears correspond to the first and third clutch engagement, while
the reverse gear corresponding to the second clutch engagement. In this paper,
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we only consider the dynamic performance of first gear. As the engagement of the
third clutch, the second planetary is under load while the other with no-load.

Nonlinear dynamic behavior of planetary transmission takes the backlash, time-
varying mesh stiffness, installation error and tooth error into consideration
[10–12]. The time-varying mesh stiffness is periodic and is expanded in Fourier
series form with the gear meshing frequency x, in order to assure the accuracy,
M = 9 (Eq. (1).

kðtÞ ¼ kðt þ 2p=xÞ ¼ k0 þ
XM

r¼1

kr cosðrxt þ /rÞ ð1Þ

Equations (2)–(5) are the nonlinear equations of planetary, where, i = 1, 2,
N = 4, j = 1, 2, 3, 4. In the equations, J are moment of inertias, R are pitch
diameters, eM are eccentric distances, x are rotational speeds, m are masses, x and
y are bending displacements, h are torsional displacements, c and w are initial
phase angles. a is pressure angle. The index s, r, c represent the sun, ring, carrier,
planet. The index i and j represent the stage of planetary, the number of planet
gear. The index x, y represent the direction of bending displacement.

The equations of motion for the sun gears are

1st sun gear

1st planet carrier

1st clutch

planet gear of 
1st planetary

1st ring gear

2nd  sun gear

2nd  planet carrier

2nd  clutch

OUTPUT

planet gear of 
2nd   planetary

2nd   ring gear

Connecting shaft

Bearing3 Bearing2

Bevel gear

Bevel gear

INPUT

Bearing1

3rd clutch

Fig. 1 Physical model of vehicle transmission
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msi€xsi � msieMsix
2
si cos xsit þ csið Þ þ

XN

j¼1

sin wpij þ a
� �

Fsipij þ Fc
xsi þ Fk

xsi ¼ 0

msi€ysi � msieMsix
2
si sin xsit þ csið Þ �

XN

j¼1

cos wpij þ a
� �

Fsipij þ Fc
ysi þ Fk

ysi ¼ 0

Jsi
€hsi þ

XN

j¼1

RsiFsipij þ Tc
si þ Tk

si ¼ 0 ð2Þ

where, Fc and Fk are damping force and bending forces of sun gear, Tc and Tk are
relative torques and damping forces between nearby lumped masses. Fsipij is
external mesh forces, Fripij is internal mesh forces.

The equations of motion for the carrier are

mci€xci � mcieMcix
2
ci cos xcit þ ccið Þ �

X4

j¼1

sin wpij þ a
� �

Fxpij þ
X4

j¼1

sin wpij � a
� �

Fypij

þ Fxci þ Fxcir1 ¼ 0

mci€yci � mcieMcix
2
ci sin xcit þ ccið Þ þ

XN

j¼1

cos wpij þ a
� �

Fxpij �
XN

j¼1

cos wpij � a
� �

Fypij

þ Fyci þ Fyc2r1 ¼ 0

Jci
€hci � Rci

XN

j¼1

Fypij þ Tc2rj þ To ¼ 0

ð3Þ

where, Fxcirj, Fycirj and Tcirj are interaction forces of 2nd carrier and 1st ring. Fxci

and Fyci are bearing forces, To is block torque. Fxpij and Fypij are bearing forces of
planet.

The equations of motion for the ring gears are

mri€xri � mrieMrix
2
ri cos xrit þ crið Þ �

XN

j¼1

sin wpij � a
� �

Fripij þ Fxri ¼ 0

mri€yri � mrieMrix
2
ri sin xrit þ crið Þ þ

XN

j¼1

cos wpij � a
� �

Fripij þ Fyri ¼ 0

Jri
€hri � Rri

XN

j¼1

Fripij þ Tb ¼ 0

ð4Þ

where, Fxri and Fyri are bearing forces of x, y direction, Tb is brake torque.
The equations of motion for the planet gear j are

130 C. Xiang et al.



mpij€xci cos wpij þ mpij€yci sin wpij þ mpij€xpij þ mpij �2xci _ypij � x2
cixpij

� �

� mpijeMpijx
2
pij cos wpij � xpijt � cpij

� �
� sin aFsipij � sin aFripij þ Fxpij ¼ 0

� mpij€xci sin wpij þ mpij€yci cos wpij þ mpij€ypij þ mpij 2xci _xpij � x2
ciypij

� �

þ mpijeMpijx
2
pij sin wpij � xpijt � cpij

� �
þ cos aFsipij � cos aFripij þ Fypij ¼ 0

� Jpij
€hci þ Jpij þ e2

Mpijmpij

� �
€hpij � RpijFsipij þ RpijFripij ¼ 0

ð5Þ

For these planet gears, the inertia forces are much more complicated than the
other parts due to the planet gears are attached to the carrier. The equations of
other lumped mass model are not present here.

3 Optimization Model

This section describes about the objective functions, design variables and
constraints of dynamic optimization model.

3.1 Objective Functions

The effect of dynamic performance caused by first stage planetary not play a crucial role
for the second gear, so we take the internal and external load sharing coefficients and the
peak-to-peak meshing forces of second stage planetary as objectives. The objectives are
as follows.

f1¼
max((Fm

r2p21
Þ; ðFm

r2p22
Þ; ðFm

r2p23
Þ; ðFm

r2p24
ÞÞ

ð
P4

j¼1
ðFm

r2p2j
ÞÞ=4

f2¼
max((Fm

s2p21
Þ; ðFm

s2p22
Þ; ðFm

s2p23
Þ; ðFm

s2p24
ÞÞ

ð
P4

j¼1
ðFm

s2p2j
ÞÞ=4

where, Fm
r2p2j are the mean internal mesh forces of second stage planetary,

respectively. Fm
r2p2j are the mean external mesh forces of second stage planetary,

respectively.

fjþ2¼ Fp�p
r2p2j

: fjþ6¼ Fp�p
s2p2j

where, j = 1, 2, 3, 4, represent the external peak-to-peak mesh forces of second
stage planetary.
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f ¼ f1; f2; f3; f4; f5; f6; f7; f8; f9; f10½ �T

There are ten different objectives considered in this work. These objectives can
be classified into two groups, f1 and f2 are load sharing coefficients, f3 to f10 are
peak-to-peak mesh forces. Since the parameters of each group are on different
scales, these factors are to be normalized to the same scale [13]. The normalized
objective function is obtained as follows:

COF ¼
X10

k¼1

Wk � NðfkÞ � NðfkÞ ¼
fk

Sk

where, COF is combined objective function. N(fk) represent normalized objective.
Wk represent weight factor, all equal to 0.1. Sk represent normalization factor, for
load sharing coefficient Sk = 1, for peak-to-peak mesh forces Sk = 10,000.

3.2 Design Variables

According to the engineering design requirements, the inner diameters of shaft, the
gear parameters and layout of planetary are determined. So there are nine
parameters can be taken as design variables, the five outer diameters of shaft, Ri,
i = 1, 2, 3, 4, 5, and the layout of bearing 1, 3 and bevel gear Lj, j = 1, 2, 3.
The optimization model contains eight independent design variables.

X ¼ x1; x2; x3; x4; x5; x6; x7; x8½ �T¼ R1; R2; R3; R4; R5; L1; L2; L3½ �T:

3.3 Design Constraints

Basically, there are three types of constraints: the boundary constraints, the static
performance constraints and the dynamic performance constraints. In order to
increase the reliability of optimization result, the nonlinear characteristic con-
straint is proposed in this work.

3.3.1 Boundary Constraints

Boundary constraints, mainly refer to the lower bound (LB) and the upper bound
(UB) of the design variables.

According to the actual parameters variation ranges, the boundary constraints
are show in Table 1.
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3.3.2 Static Constraints

The tooth breakage and surface failures are the most likely failures of transmission
gears. To safeguard the tooth against the breakage and surface failure, the gear
should have adequate bending strength and contact strength. The bending fatigue
stresses and crushing fatigue stresses of external meshing are considered.

rF � rF½ � rH � ½rH �

The bending stress (rF) and contact stress (rH) are adopted from [14]

rF¼
Ft

bmn

YFaYSaYeYbKAKvKFbKFa

rH¼ZEZHZbZa

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KAKmKHbKHaFt

1
d1b

u + 1
u

r

where, Ft is transmitted tangential load at operating pitch diameter, b is contacting
face width, d1 is pinion pitch diameter, u is gear teeth/pinion teeth, mn is normal
module. The other parameters are mostly correction factors.

The allowable value of bending stress [rF] and contact stress [rH] are 525 and
1650 MPa, respectively.

3.3.3 Dynamic Constraints

Bearing is one of the most important parts in vehicle transmission. In order to
avoid the fatigue failure of the bearing, the bearing forces should be lesser then the
allowable value.

FiMax� Fi½ �

where, Fi is maximal bearing force, [Fi] is allowable value of bearing. The
allowable value of three bearings are 59500, 82500 and 58500 N, respectively.

For bending-torsional coupled transmission shaft, the maximum Von-Mises
stress should be considered. FEA method is used to model the shaft at different
parameters and calculate the dynamic Von-Mises stress at different time steps.
Because of the difficulty to determine all the forces acting on the shaft, the dis-
placements of every lumped mass on shaft are extracted as boundary conditions of
FEA.

Table 1 Boundary constraints (unit mm)

R1 R2 R3 R4 R5 L1 L2 L3

LB 22 22 22 17 17 100 44.5 148
Initial 27.5 31.5 31.5 22.6 22.6 211.5 44.5 148
UB 35 35 35 22.6 22.6 211.5 156 259.5
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rMax� ½r�

where, rmax is maximal dynamic stress, [r] is allowable value equal to 350 MPa.

3.3.4 Nonlinear Characteristic Constraint

The nonlinear dynamic model take time-varying mesh stiffness, backlash and tooth
errors into consideration, so it’s inevitable to appear chaotic motion for some
design variables. In order to avoid chaotic motion, we introduce the nonlinear
characteristic constraints. Lyapunov exponent provides one of the most useful test
for the presence of chaos [15]. As long as the largest lyapunov exponent (LEmax) is
greater than 0, the system appears chaotic motion. It is reasonable that the largest
lyapunov exponent is taken as nonlinear characteristic constraint. Here, the method
of computing the LEmax proposed by Benettin is used [16].

LEMax� 0:

4 Results and Discussion

The nonlinear dynamic equations of vehicle transmission was solved using the
fourth order Runge–Kutta method with input torque and speed of vehicle trans-
mission are 2,000 Nm and 7,000 r/min, respectively. The time series data corre-
sponding to the first 5,000 revolutions of the two gears were deliberately excluded
from the dynamic analysis to ensure that the analyzed data related to steady-state
conditions [17]. Isight-Matlab-Ansys co-simulation is used to build optimization
platform. The optimization flow shows in Fig. 2.

Due to non-analytic of objective functions, the traditional gradient-based
optimization method is no longer applicable. So we use modern optimization
methods—Binary Coded based Genetic Algorithm (GA) with one-point crossover
to optimize the system [18]. The values of Genetic Algorithm operators are shown
in Table 2. There are 200 individuals participate in iteration. The Isight automatic
determines the parameters of design variables. In order to reduced the mapping
error of binary encoding and decoding, the size of gene is set as 20.

The optimal result occurs at step 140. The optimum values of objective function
and design variables corresponding to the minimum COF value are shown in
Tables 3 and 4. From Table 3, we can conclude that the optimal parameter of L2,
L3, R1, R2, R5 are remain the same, while the L1, R3, R4 are reduced. Figure 3
shows the finite element model of shaft with initial parameters and optimal
parameters.

From Fig. 4, we can obtain that all the objectives of optimal design are lesser
then the initial design more or less exceptt the external peak-to-peak meshing
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Fig. 2 Optimization flow of co-simulation method

Table 2 Values of genetic
operators

Operators Values

Gene size 20
Population size 10
Number of generations 20
Crossover rate 1.0
Mutation rate 0.01

Table 3 Parameters of initial
and optimal design Unit(mm)

Initial design Optimal design

L1 211.5 210.74
L2 44.5 44.5
L3 148 148
R1 27.5 27.5
R2 31.5 31.5
R3 31.5 28.86
R4 22.6 22.51
R5 22.6 22.6
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forces f3, for the sake of naturally conflicting of multi-objective optimization
problems (MOP). The reduction rates of peak-to-peak mesh forces shows in the
forth column of Table 4. It can be seen that the objective f5 reduces about 10 %,
while f3 increases about 2 %. The two load sharing coefficients objectives are both
less than the initial values about 0.0004, which means that the dynamic charac-
teristic of sharing caused by dynamic load appears to be easing.

Figure 5 shows that as the iteration step goes the design parameters generate by
GA seems more and more suitable to satisfy the Von-Mises stress constraint.
Dynamic stress analysis was conducted for the transmission shaft before and after
design through FEA. Through Fig. 6 we can reach that the Von-mises stress of
shaft clearly reduced lower than 300 Mpa at some peaks after optimization. The

Table 4 Objectives of initial and optimal design

Initial objectives Optimal objectives Reduce rates (%)

f1 1.1398 1.1394 0.03
f2 1.1399 1.1395 0.03
f3 24424.695 N 25007.938 N -2.3879
f4 25544.321 N 24899.610 N 2.5239
f5 25256.015 N 22579.027 N 10.5994
f6 25841.594 N 25097.327 N 2.8801
f7 23842.044 N 23319.950 N 2.1898
f8 25034.291 N 24230.382 N 3.2112
f9 22851.970 N 22145.995 N 3.0893
f10 25850.720 N 24472.345 N 5.3321

Fig. 3 Finite element model of transmission shaft, a Initial design. b Optimal design
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Fig. 4 Histogram of peak-to-peak mesh forces before and after optimization

136 C. Xiang et al.



maximal Von-mises stress of shaft before and after optimizations are 335 and
333 MPa, which are both less than the allowable value 350 MPa. From Fig. 7, we
can realize that the maximal Von-mises stress on the shaft appears between the
two sun gears.

Fig. 5 Maxmal Von-mises stress of shaft
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Fig. 6 Dynamic stress of initial and optimal design within the last 2,000 steps

Fig. 7 Von-mises stress of shaft at last calculation step, a Initial design. b Optimal design
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Figure 8 shows there are only 21 group of parameters lead to the chaotic motion
of transmission, while the others including the optimal design appear non-chaotic
motion. With the nonlinear characteristic constraint, the chaotic solutions have
been effectively removed. The largest Lyapunov exponent of transmission under
initial design and optimal design are -8.1E-5 and -9.0e-5 respectively, which
means dynamic motion of initial and optimal design are both non-chaotic.

5 Conclusion

A dynamic optimization model, based on the nonlinear dynamic of vehicle
planetary transmission, has been built in order to improve the dynamic perfor-
mance. Parameters of shaft were considered as design variables. In order to
improve the reliability of transmission shaft, the finite element method (FEA) is
used calculated the maximal dynamic stress constraint. The bending and torsional
displacements of lumped masses on shaft were extracted as boundary conditions of
FEA. Innovatively, by introducing the nonlinear characteristic constraint, chaos
solutions has been effectively removed.

Isight-Matlab-Ansys co-simulation method was used to build the optimization
platform. Binary coding Genetic Algorithm was utilized in this work. The opti-
mization model and method proposed in this work are both suitable for the other
vehicle transmission.

After optimization, most of the objectives of optimal design were lesser then
the initial design more or less. The largest Lyapunov exponent of optimal design
transmission was less than zero, which means the dynamic performance of vehicle
transmission can predict. The dynamic stress of shaft clearly reduced at some
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Fig. 8 Largest Lyapunov exponent during optimization
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peaks before and after optimization, but the maximal stress was not significantly
reduces. Finally, the optimization results not only avoid the chaotic behaviour, but
also improve the dynamic performance of vehicle transmission and extending the
system life.
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