
Automated Code Generation
for Development of Electric Vehicle
Controller

Peng Geng, Minggao Ouyang, Jianqiu Li and Liangfei Xu

Abstract Code generation for Simulink model is widely used in the development
of vehicle controller. In traditional way, only the code of vehicle control model can
be generated automatically by Real-Time Workshop. So programmers have to
handwrite code for peripheral device drivers. The objective of this study was to
develop a custom driver blocksets to support I/O devices on high performance
32-bit MPC5644A microcontroller. Furthermore, to fulfill modeling, code gener-
ation, compilation and downloading all accomplished ‘‘at the touch of a button’’.
This method is used and tested in the development of electric vehicle controller,
which saves time and money greatly.

Keywords Automated code generation � Embedded target � Matlab/Simulink �
MPC5644A � Electric vehicle controller

1 Introduction

In order to save time and cost, software engineers always focus on the length of
code but do not pay attention to the correctness, which makes code difficult to
maintain and transplant. Moreover, most software projects are completed in
collaboration. If programmers handwrite code separately and combine them
together at last, it is almost impossible to put into application directly because of

F2012-D03-019

P. Geng (&) � M. Ouyang � J. Li � L. Xu
State Key Laboratory of Automotive Safety and Energy, Tsinghua University,
Beijing, China
e-mail: gengp10@mails.tsinghua.edu.cn

SAE-China and FISITA (eds.), Proceedings of the FISITA 2012 World
Automotive Congress, Lecture Notes in Electrical Engineering 194,
DOI: 10.1007/978-3-642-33829-8_43, � Springer-Verlag Berlin Heidelberg 2013

459



all kinds of handwritten errors. Matlab/Simulink is a powerful tool which is widely
used in the ‘‘V-Model’’ development of Vehicle Control Unit (VCU). ‘‘V-Model’’
includes function design, Rapid Control Prototyping (RCP), code generation for
embedded target, Hardware-In-the-Loop Simulation (HILS) and test/calibration.
Thanks to the powerful functions in modelling, simulating and analyzing, Matlab/
Simulink becomes a basic tool in modelling the VCU algorithm as well as in code
generation. Although this ‘‘half’’ automated code generation method unifies code
style and increases efficiency, it still has weaknesses. In the development of VCU,
code generation includes model algorithm code and microchip driver code. The
later needs to be done through handwriting for the reason that Matlab/Simulink
provides very limited toolboxes which only include Motorola MPC555, Infineon
C166, TI’s C2000, C5000 and C6000 [1]. To solve the problem, Microchip
develops RCP toolbox, which supports dsPIC33 Controller [2]. D.Hercog develops
a self-made, DSP-based RCP system, which is used for motor control [3].
S.Rebeschiess launches an embedded toolbox, named ‘‘MIRCOS’’, for graphical
programming of 16-bit processor 80C166 [4]. R.Duma presents a RCP toolbox for
Renesas M32C87 microcontroller [5], and C.RUSU invented a toolbox for F24X
DSK Digital system in the purpose of education and industrial application [6].
R.Bartosinski gives a method of integrating Processor Expert Tool to Matlab
environment [7]. Luo devotes himself to the method of Real Time Workshop
(RTW) and developing a custom embedded target—MC9S08DZ60 [8].

This paper firstly introduces a method of developing device drivers for
embedded target—32-bit MPC5644A, using Matlab Real-Time Workshop
Embedded Coder (RTWEC). Then it applies this method to the development of
electric vehicle controller, focus on vehicle control algorithm, real-time scheduler
and generated code analysis. Verification and conclusion is given at last.

2 Developing Embedded Targets

2.1 Real-Time Workshop Embedded Coder

As a powerful tool of Matlab/Simulink, RTWEC is able to convert graphic model
into high level language code, which frees software engineers from all kinds of
datasheets and redundant handwriting code. Besides, this compact and fast code is
very important for MCU used in production and real-time embedded systems.
With RTWEC, Simulink model is translated into an intermediate RTW file first,
which contains all the model-specific information used in code generation. Target
Language Compiler (TLC) generates code according to this file using system
control files, block target files and so on. Though RTWEC increases efficiency
greatly, limitations exist. First, Matlab only supports several embedded target
platforms such as MPC5xx series. In addition, these toolboxs can only realize
simple hardware functions which hardly satisfy users’ need. So, it is necessary to
develop custom embedded target.

460 P. Geng et al.



Figure 1 introduces how to develop an embedded target MPC5644A used in
next-generation fuel cell vehicle control. Building a custom MPC5644A driver
library is the first step, using the method mentioned later. This library provides an
easy-to-use graphical user interface for device driver in the Simulink environment.
Then, RTWEC can generate high quality code according to vehicle control model
automatically. This method also integrates RTWEC with cross-development
environments—CodeWarrior IDE which makes code generation, compilation and
downloading all seamlessly accomplished ‘‘at the touch of a button’’.

2.2 Developing Target Directory Structure

Baseline target files include system target files, template make files, target block
library files, target block files and so on. These target files are readable and easy to
understand so the developer can customize the target for application needs. Initial
tasks in developing an embedded target are creating a series of organized directories
in Matlab path, and locating required target files in specific directories, see Fig. 2.

2.3 Modifying System Control Files

System control files includes system target files (STF), template make files (TMF),
hook files and so on. STF controls the presentation of target to end user. Developer

Fig. 1 Automated C code
generation platform for
MPC5644A

Automated Code Generation 461



can modify this file to display custom target information in the STF browser.
Moreover, STF also provides the main entry point to the top-level TLC, the definition
of target-specific code generation, inheriting options from another target, and so on.
‘‘mpc5644a.tlc’’ is an ERT-based STF created for processor MPC5644A, see Fig. 3.

Hook file can customize building process and invoke target-specific actions at
specified points. In order to compile, link, download the generated code automati-
cally, hook file needs to interface with development tool. Take MPC5644A for
example, solutions are given to support the complete build process which interfaces
with the Freescale CodeWarrior IDE. To implement this function, developer should
create an eXtensible Markup Language (XML) file, which indicates CodeWarrior
project to add the generated source/header files. Build process automation depends

Fig. 2 MPC5644A directory structure

Fig. 3 STF mpc5644a.tlc in system target file browser

462 P. Geng et al.



on Matlab COM automation functions. A series of CodeWarrior API functions such
as ‘‘CreateCWComObject’’, ‘‘OpenCW’’, ‘‘OpenMCP’’, and ‘‘BuildCW’’ are
invoked in hook file, after the code generation process is completed. Then Code-
warrior starts automatically, compiles and downloads the code into controller
through BDM. This example helps developers to deal with similar interfacing
problems with particular integrated development environment.

2.4 Developing Device Drivers for Embedded Target

To create device drivers for MPC5644A, a C MEX S-function is built primarily for
use in simulation, and a driver TLC is created for use in code generation. C MEX S-
Function is a C code file that implements specific functions, such as ‘‘mdlInitializ-
eSizes’’, ‘‘mdlOutputs’’, ‘‘mdlRTW’’, to initialize driver block structure, validate
block parameter data input by end users and pass these data to rtw file. Command
‘‘mex’’ is used to build a MEX-file from custom driver source code and designer can
add icons, dialog boxes, initialization commands to an S-Function block by masking
it, see Fig. 4.

Driver TLC is used to create hardware support files including header files,
macro definitions and driver code libraries. For example, the purpose of the ‘‘start’’
function in eQADC driver TLC ‘‘eqadc.tlc’’ is to generate code that initializes 32-
bit control registers of MPC5644A Analog-to-Digital driver; while the ‘‘output’’

Fig. 4 Dialog box for eQADC driver block

Automated Code Generation 463



function generates code that repeats the ‘‘convert’’ operations for all selected AD
channels. Code related to hardware drivers are all generated to a source file named
‘‘MPC5644A_drivers.c’’

3 Simulink Fixed Point and Custom Storage Classes

3.1 Writing Fixed-Point S-Functions

Within microprocessor like MPC5644A, numbers are represented as either floating-
point or fixed-point data types. Floating-point data types contain three parts: sign bit,
fraction field, and exponent field; while fixed-point numbers are characterized by
word size in bits and binary point, whether signed or unsigned. If a MCU support
fixed-point, it always means the chip size can be smaller with less power con-
sumption. Furthermore, fixed-point calculation needs less time, memory and cost
compared with floating-point. So, when write C S-functions, how to support fixed-
point data types is an inevitable question.

User-written S-functions supports many kinds of fixed-point data types, such as
‘‘sfix16_En13’’, ‘‘ufix32_En11’’, and ‘‘sfix35_S3_B4’’, provided that ‘‘fixed-
point.h’’ and ‘‘fixedpoint.c’’ have been included at appropriate places in the S-
function. Each data type used in S-function has a unique data type ID, which pro-
grammers use to get and set information about data types. The assignment of data
type IDs follow ‘‘first come first served’’ rules. To set fixed-point data types,
developer should register a data type first using data type registration functions. And
then use the returned data type ID for input and output ports, run-time parameters.

3.2 Creating and Using Custom Storage Classes

Storage classes are widely used in the code generation process. They decide how
signals, parameters are declared and stored in generated files. There are four built-
in types that can satisfy users demand most of the time. For example, storage class
‘‘Auto’’ put all data into one single structure while ‘‘ExportedGlobal’’ variables are
declared and stored in unstructured way.

In the development of embedded system, programmers often need flexible
control over the representation of data. Thus, custom storage classes (CSC) are
provided as complement of built-in storage class to control the structure of gen-
erated data. Another advantage is that developer can create and edit memory
section definition using CSC.

Before creating CSC, a data object package should be built to support CSC
definition using data class designer, see Fig. 5. CSC designer is a tool for creating
and managing custom storage classes and memory sections. Developer can choose

464 P. Geng et al.



either inheriting properties from existing CSC or creating a new CSC. The former
choice configure CSC designer step by step, while the later choice requires
knowledge of TLC programming. To make it east, template TLC files are provided
to help developer writing custom TLC file for CSC. After having created the TLC
file, register this file CSC designer and apply CSCs to parameters and signals, so it
can generate data structures as the TLC file describes.

4 Code Analysis and Verification

4.1 Designing Real-Time Scheduler

Matlab code generation structure can be divided into three main parts—core
algorithm, hardware support and real-time scheduler. The core algorithm is
composed of self-carried Simulink blocks and TLC controls how to translate user’s
configuration into core algorithm code. Hardware support works in the similar way
but using custom GUI blocks and TLC files. Having developed driver blocks in
Simulink library, designer can build vehicle control algorithm and configure
peripheral device drivers all in one model without any handwritten work. The
middle block in Fig. 6 is a subsystem describing electric vehicle controller core
algorithm and the sideward blocks consist of MPC5644A CAN, AD, I/O blocks.
The eQADC blocks are used to collect analog signals, such as accelerator pedal
position, brake pedal position. I/O blocks gather digital signals like gear state,
warning level and so on. The CAN Receive block receives can messages from
Auxiliary Power Unit (APU) controller, battery controller, motor controller. These
data are calculated in vehicle control algorithm and new control commands are
sent back to each controller through CAN Transmit block. Time Trigger Controller
Area Network (TTCAN) protocol plays an important role in this distributed

Fig. 5 Data class designer

Automated Code Generation 465



communication network. TTCAN improves real-time and accuracy, but the design
of the network are always complicated projects, let alone automated code gener-
ation process.

In the application of electric vehicle controller, in order to guarantee TTCAN
transmission delay less than 100 ls, two Periodic Interrupt Timer (PIT) channels
are used in this model to fulfil this scheduling mechanism. The PIT with lower
priority is attached to model’s base sample time step function ‘‘rt_OneStep’’. ADs
or other drivers’ sample times are integral multiple of base sample time so they run
at each sub-rate. To do this, a function called ‘‘rate_scheduler’’ is created to
compute which sub-rates should run during the next base time step. Sub-rates are
an integer multiple of the base rate counter. Therefore, the subtask counter is reset
when it reaches its limit and subtask starts running. Sample time offsets are
handled by priming the counter with the appropriate non-zero value in the model’s
initialization function. For example, the electric vehicle algorithm here is executed
every 0.01 s, eQADC channel one samples every 0.04 s, and eQADC channel two
samples every 0.08 s after 0.3 s time delay. The PIT with higher is assigned to
CAN transmission blocks. It can interrupt model algorithm to transmit CAN
messages at once which guarantee network real-time. In this model, three mes-
sages ‘‘VCU_C_1’’, ‘‘VCU_D_1’’, ‘‘VCU_S_1’’ are transmitted at different rates
following TTCAN protocol, with transmission delay less than 10 ls.

Fig. 6 Model of electric vehicle control unit

466 P. Geng et al.



4.2 Analyzing Generated Code

Click ‘‘generate code’’ button, RTWEC transforms electric vehicle model into
intermediate rtw file first and then generates several source files. [Model].c file is
closely related to the control algorithm and hardware drivers. Every segment code
is related to a block and controlled by block TLC. This modularity characteristic
makes the code easy to read and modify. In Simulink model, blocks are connected
through signal lines. Each block has input and output ports, so there are corre-
sponding block I/O variables’ definitions in the generated code. A local block I/O
variable can be an input to one block but an output to next block following the
signal line. Initialization function in this file initializes what the model needs at the
beginning and hardware registers as well. Step functions describe electric vehicle
control algorithm block by block and are generated according to block sample
times. Besides, there are special functions such as interpolation function because
this model supports fixed-point operation. [Model]_main.c file contains model
main function called ‘‘rt_OneStep’’. This key function runs base rate task and then
call ‘‘rate scheduler’’ function to judge which step function should be executed.
Generally, step zero function is attached to base rate sample time, while block
TLCs generate code into other step functions if their sample times are integral
multiple of base rate. Rate scheduler function is called by PIT interrupt every base
sample time to decide which sub-rate task should run. [Model]_data.c file is used
to store all blocks signals and parameters. How these data declared and stored are
controlled by custom storage classes mentioned above. MPC5644A_drivers.c file
includes hardware related functions such as ‘‘AD_convert’’, ‘‘CAN_transmit’’,
‘‘CAN_receive’’.

Fig. 7 Model of electric vehicle control unit

Automated Code Generation 467



5 Conclusion

This paper presents a technical route to develop an embedded target—MPC5644A
and use it in the development of electric vehicle controller, see Fig. 7. Automated
code generation frees programmers from handwriting driver code and lets them
focus on the design of vehicle control algorithm. Experimental results show that
the R&D time and cost can be drastically reduced. Besides, automated generated
codes are easy to maintain and transplant, but the memory space it takes is a little
bit bigger. The fuel economy and the vehicle dynamic performance of electric
vehicle are kept in the similar level compared to traditional methods because the
control algorithm does not change.

Acknowledgments Supported by the NSFC (National Natural Science Foundation) of China
under the contract of No. 61004075, the MOST (Ministry of Science and Technology) of China
under the contract of No. 2010DFA72760 and No. 2011AA11A269, and the Tsinghua University
Initiative Scientific Research Program (Grand No. 2010THZ08) is greatly acknowledged.

References

1. The Mathworks, Inc., Supported hardware, http://www.mathworks.org
2. Microchip Technology, Inc., MATLAB device blocks for MATLAB IDE, http://

www.microchip.com
3. Hercog D, Curkovic M, Jezernik K (2006) DSP based rapid control prototyping systems for

engineering education and research. In: Proceedings of IEEE international symposium on
computer aided control systems design, Munich, Germany

4. Rebeschiess S (1999) MIRCOS—microcontroller-based real time control system toolbox for
use with Matlab/Simulink. In: Proceedings of IEEE international symposium on computer
aided control system design, pp 267–272

5. Duma R, Petreus D, Sita VI, Dobra P, Rusu A (2010) Rapid control prototyping toolbox for
Renesas M32C87 microcontroller. In: Proceedings of IEEE international symposium on
automation quality and testing robotics (AQTR), pp 1–6

6. Rusu C, Radulesvu M, Balan H (2007) Embedded toolbox for F24X DSK. International
Aegean conference on electrical machines and power electronics, Aegean, Greek, pp 556–559

7. Bartosinski R, Hanzalek Z, Struzka P, Waszniowski L (2007) Integrated environment for
embedded control systems design. In: Proceedings of IEEE international symposium on
parallel and distributed processing (IPDPS), pp 1–8

8. Feng L, Zhihui H (2010) Embedded C code generation and embedded target development
based on RTW-EC. In: Proceedings of IEEE international symposium on computer science
and information technology (ICCSIT), vol 5, pp 532–536

468 P. Geng et al.

http://www.mathworks.org
http://www.microchip.com
http://www.microchip.com

	43 Automated Code Generation for Development of Electric Vehicle Controller
	Abstract
	1…Introduction
	2…Developing Embedded Targets
	2.1 Real-Time Workshop Embedded Coder
	2.2 Developing Target Directory Structure
	2.3 Modifying System Control Files
	2.4 Developing Device Drivers for Embedded Target

	3…Simulink Fixed Point and Custom Storage Classes
	3.1 Writing Fixed-Point S-Functions
	3.2 Creating and Using Custom Storage Classes

	4…Code Analysis and Verification
	4.1 Designing Real-Time Scheduler
	4.2 Analyzing Generated Code

	5…Conclusion
	Acknowledgments
	References


