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Abstract Developing vehicular distributed applications faces many challenges
because most of them apply their specialized communication protocols and
technical standards. We propose Context-Aware Middleware for Vehicular
Applications (CAMVA), which can react to around environments adaptively and
timely. CAMVA uses components based design pattern, and is optimized a lot in
terms of vehicular complexity and special requirements of vehicular applications
on security and immediacy, by which software programmers can develop and
deploy vehicular applications quickly and reliably through assembling, plugging
and articulating the existing components even though they are not familiar with the
bottom details. CAMVA is located between application level and operation system
level, and is composed of collection layer, core layer, running layer, component
container, and component library. CAMVA realizes context-aware ability and
supports complex vehicular environments. CAMVA behaves better in immediacy,
expansibility, static configurability, and dynamic adaptability aspects, so it can
achieve strict requirements of intelligent vehicles on middleware.
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1 Introduction

With the quick development of vehicular electronic and vehicular communications,
the approach to efficiently develop and deploy the distributed applications in vehicle-
to-vehicle situation attracts more and more attention [1]. Middleware can realize the
interoperation between heterogeneous systems [2], abstract and encapsulate the
universal processes into a uniform supportive layer, such as network communication,
security and transaction services [3–5]. Vehicular networks have many different
characteristics from the wired works, such as limited bandwidth, frequently changed
topology and high requirements on security. Herein the middleware applied in
vehicular networks has to meet the following requirements: 1. Instantaneity. Most
the safety applications exert rigorous requirements on time delay. 2. Stability. The
quick moved and changed vehicular driving environment demands that middleware
should behave better stably and invulnerably. 3. Adaptivity. The frequently changed
driving situation also requires that middleware should dynamically change config-
urations in order to be adaptive to surround changes.

We design and implement a vehicular-network-oriented middleware CARMVE
(Context-Aware Reflective Middleware in Vehicular Environment). CARMVE
uses multi-component structure and markup language based synchronization
protocol, in order to improve real-time and stability, and then to achieve the
requirements of intelligent vehicles on middleware system.

2 System Architecture

Figure 1 gives the system architecture of CARMVE which locates between
application layer and operation system layer. It is composed of collection layer,
core layer, running layer, component container, and component library.

Collection layer is to collect and measure the current states and parameters,
such as network state, device running state, users’ profile, software state, and
surround environment state. It is composed of many separated collection
components.

Core layer is the key part of CARMVE. It is composed of script parser, adaptivity
management and context-aware management. Script parser initializes the applica-
tion configuration by parsing and analysing application configuration script defined
by XML language. The application configuration script is exampled in Fig. 2. The
label component lists all components used in applications, and the label rule gives all
the rules. Context-aware management is responsible for organizing and computing
the context information collected by collection layer, and then decide whether a
adaptivity action is launched or not. After a adaptivity action is launched, adaptivity
management searches the corresponding component instance or application in
running layer according to user-defined adaptivity rules, and attempts to finish
adaptivity process by modifying attribute values and changing behavioral structures.
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Running layer provides a reconfiguration to every application. The reconfigu-
ration encapsulates the necessary component instances and some component
chains which correspond to adaptivity rules. Only one component chain stays in
active state at the same time. The reconfiguration realizes the adaptivity process by
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changing the attribute value of component instance or activating the proper
component chain.

Component container is a special part in CARMVE. All the applications based
on CARMVE are running as a component chain in the component container.
Component container provides running environment to other CARMVE compo-
nent, receives the registration and cancelation of components, publishes the
component services, and so on.

Component library records every registered component. The developers could
resemble the existing components and then generate a highly efficient and high-
quality vehicular distributed software system.

In practical, the subscribed adaptivity actions are always not provided only by a
single context-aware component, but by more than one context information.
For example, in automatic tracing system, when the velocity and distance meet a
certain relation, the system needs to adapt acceleration, deceleration, stop, launch,
and others. Herein, script parser generates a transaction tree for every application
configuration script. Figure 3 shows the example of transaction tree. Context-
aware management executes the realized subscribe and publish according to the
transaction tree.

3 System Instance

We explore the role of CARMVE in vehicular communications by using the case
showed in Fig. 4.

Vehicle A and vehicle B are driven in the same direction, vehicle A is in ahead,
and vehicle B is in behind. At one time, vehicle A finds some dangerous areas in
ahead, but because of blocked sight, vehicle B can’t detect the danger. So at this
time, vehicle B may discover the potential danger by using the image data
transmitted from vehicle A. However, the network environment between two
vehicles is dynamically changed, such as bandwidth, so the transmission process
needs to be changed in real time according to network situation, such as com-
pressing ratio for real-time and clarity during image transmission. The applications
based on CARMVE could solve this problem well.

Suppose the bandwidth between vehicles A and B is less than 2M, the image
compress is launched, and the compressing ratio is 50 %. The configuration script
of the application is as follows:

\Components[
\component[
\name[ GRAB \/name[
…
\/component[
\component[
\name [ COMPRESS \/name[ component[
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…

Fig. 3 CARMVE context-aware model
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Fig. 4 An example for
vehicular applications based
on CARMVE

Context-Aware Middleware for Vehicular Applications 431



\/component[
\component[
\name[ DECOMPRESS \/name[
…
\/component[
\component[
\name[ DISPLAY \/name[
…
\/component[
\/Components[
\Rules[
\rule[
\Trigger[
\event[
\Operator[ LT \/Operator[
\LC[
\Output[ networkawareness.bw \/Output[
\/LC[
\RC[
\const[ 2 \/const[
\/RC[
\/event[
\/Trigger[
\Componentchain type=‘‘Send_Chain’’[
\SetParam[
COMPRESS.CompressQuality=50
\/SetParam[
\SetChain[
GRAB.PtrOutput -[ COMPRESS.PtrInput;
COMPRESS.StreamOutput -[ SEND;
Grab.Start
\/SetChain[
\/Componentchain[
\Componentchain type=‘‘Re_Chain’’[
\SetChain[
RECEIVE -[ DECOMPRESS.StreamInput;
DECOMPRESS.StreamOutput -[ DISPLAY.Input;
\/SetChain[
\/Componentchain[
\/rule[
…
\/Rules[
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We declare four components in the script: WebCam video collector, JPEG-
Compress compress component, JPEGDeCompress decompress component, and
display component.

4 Conclusion

CARMVE decreases developing cost and complexity of vehicular applications,
and improves flexibility, adaptability, and portability. It brings theory and practical
effects on vehicular applications.
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