
Study on the Performance Modeling
Approach for Automotive Embedded
Control Software

Xiaofeng Yin, Jingxing Tan, Xiuting Wu and Qichang Yang

Abstract With the ever increasing complexity of automotive E/E (Electrical and
Electronic) systems, model-based development techniques have been more and more
widely used in the current development process of automotive embedded control
software. Regarding the safety–critical automotive control systems with hard real-
time characteristics, modeling timing and resource related performance and carrying
out timing analysis for the control software at an early design stage play a crucial role
to guarantee the quality of software as well as improve the cost-efficiency.

Keywords Meta-model � Performance � Modeling language � Embedded real-
time system � Automotive control software

The motivation of this study is to investigate an appropriate performance modeling
and timing analysis approach that can be integrated into the currently used model-
based development tool chain. A performance modeling language for automotive
embedded control systems (PMOLACS) at high level of abstraction was put forward
using meta-modeling technique, which consists of three different meta-models
corresponding to software structure (SWS), target platform system (TPS), and run
time system (RTS), respectively. The SWS meta-model defines the modeling par-
adigm of the constituent, interactive behaviors, timing characteristics and resource
requirements of software components, the TPS meta-model defines the modeling

F2012-D03-004

X. Yin (&) � X. Wu � Q. Yang
Institute of Automotive Engineering, Xihua University, Chengdu, China
e-mail: xiaofengyin@vip.sina.com

J. Tan
Department of Science and Technology, Xihua University, Chengdu, China

SAE-China and FISITA (eds.), Proceedings of the FISITA 2012 World
Automotive Congress, Lecture Notes in Electrical Engineering 194,
DOI: 10.1007/978-3-642-33829-8_36, � Springer-Verlag Berlin Heidelberg 2013

385



paradigm of the constituent, timing characteristics and resource constraint of the
hardware and real-time operating system (RTOS) of the target platform, and the RTS
meta-model defines the modeling paradigm of executable software system. The
algorithms regarding translating existing functional model with timing and resource
requirements together into the SWS model, building TPS model, mapping the
components of the SWS model to the processors of the TPS model to form the tasks of
the RTS model, and timing analysis, will also be discussed.

1 Introduction

To meet the increasing demands on vehicle performance, such as drivability, safety,
power, fuel economy, emission, as well as comfort, etc., a large number of embedded
control units have been applied to the vehicle and the architecture of automotive E/E
(Electrical and Electronic) systems has being become more and more complex. How
to manage these complex E/E systems and ensure their performance requirements
such as timing and resource constraints while their functional requirements are
implemented and verified is a big issue in the current model-based development
process, since the current automotive embedded software development process pays
little attention to the non-functional requirements, especially the timing constraints,
until the end of the development process—testing code on the target platform,
although the algorithms related to the function of the system under development can
be tested early through rapid control prototyping (RCP). If the system’s ability to
meet timing constraints could be analyzed formally in the early design process, it is
possible to avoid the hidden errors to be left in the final product software due to
lacking of direct timing analysis that may hurt the driver and passengers and/or
destroy the vehicle, and to avoid costly late-stage redesign of the software that may
postpone the delivery of the product software.

With respect to the complexity management of automotive E/E systems,
AUTOSAR (AUTomotive Open System ARchitecture) provides a set of software
infrastructure to enable the reuse and exchangeability of software modules
between OEMs and suppliers through standardization of the software architecture
of ECUs (electronic control unit) [1]. However, the main attention of AUTOSAR
at present is focused on the implementation of software function.

Some other model-based design tools are also widely used in the development
of automotive embedded control software. For instance, MATLAB Simulink/
Stateflow [2] is used to design the control algorithms and then corresponding
source codes are generated by a specific code generator such as Real-Time
Workshop (RTW). As mentioned above, since the control algorithms can be
optimized using RCP technique, the functionality of the controller can be tested at
an early design stage. However, the direct formal verification of timing-related
performance for embedded control software still can not be conducted in the
current model-based development tool chain.

386 X. Yin et al.



In this investigation, the meta-modeling technique was used to construct a
performance modeling language for automotive embedded control systems
(PMOLACS) that could model the timing constraints and resource requirements of
software components, the resource constraints of the hardware that will be the
target platform for the product software, as well as the virtual runtime system that
could be used as a basis to analyze the schedulability of each task. In addition, a
number of software modules (also called interpreters) implementing the algorithms
of functional model reuse, component assignment, task forming, priority assign-
ment and timing analysis were integrated into the modeling environment config-
ured by the PMOLACS paradigm.

2 Modeling Requirements Related to Timing and Resource

In order to model the performance of automotive embedded control software, two
main factors must be taken into consideration, i.e., timing and resource. Since most
automotive embedded control systems (especially safety–critical system) are hard
real-time systems, which means the completion of each task must meet its dead-
line, otherwise disastrous accident may occurs. On the other hand, the hardware
resource of embedded controller is usually limited for the purpose of cost
reduction. Therefore, the timing properties, resource requirements, and resource
constraints must be described by the PMOLACS paradigm.

3 Performance Modeling for Automotive Embedded
Control System

3.1 Modeling Approach

In this study, the automotive embedded control domain specific performance
modeling language PMOLACS has been defined by a UML-based meta meta-
model which defines a set of generic meta-modeling concepts including Folders,
Models, Atoms, References, Connections, Sets, etc. [3]. These generic modeling
concepts have been used to define the PMOLACS paradigm which is specified by
a set of meta-models that can be further used to configure the modeling envi-
ronment for automotive embedded control systems. In other words, we use the
UML-based generic meta meta-model to define the meta-models of PMOLACS
language, and the latter is then used to configure the generic modeling environ-
ment, and finally the configured modeling environment can be used to construct
the models of automotive embedded control systems.

Study on the Performance Modeling Approach 387



3.2 Performance Modeling for Automotive Embedded
Control System

PMOLACS paradigm defines three meta-models for automotive embedded control
system, i.e., (1) the software structure (SWS) meta-model that defines the mod-
eling paradigm for software components, interaction between software compo-
nents, timing properties and resource requirements of software components, (2) the
target platform (TP) meta-model that defines the modeling paradigm for the
constituent of hardware environment and real-time operating system (RTOS),
timing features, and resource constraints of the target system, and (3) the runtime
system (RTS) meta-model.

As specified in the SWS meta-model, the software system consists of a number of
sub-systems that further consist of a number of software components. The execution
time, priority, and required memory are captured by the attributes of the modeling
element of software component. While the system deadline and execution period are
captured by the attributes of the modeling element of sub-system. And the connection
between sub-systems, between software components, or between subsystem and
software component are described by association classes that can be divided into data
connection and event connection, which have attributes describing the size of data
passed and the size of data communicated, respectively.

As specified in the TP meta-model, the target platform system consists of a
number of real-time operating systems (RTOS), central processing units (CPU)
and networks which are further classified into CAN, LIN and FlexRay. Each CPU
only has a unique RTOS associated with it. The hardware resource constraints such
as the maximum memory, the minimum size of assignable memory, and the upper
bound of utilization are captured by the attributes of the modeling element of CPU,
which the speed (baud rate) and utilization bound of network are captured by the
attributes of the modeling element of CAN, LIN and FlexRay. And the timing
features such as the context switching overhead, scheduling overhead, timer
overhead, timer resolution, etc., are described by the attributes of the modeling
element of RTOS.

As specified in the RTS meta-model, the runtime system consists of a number
of logical tasks that are used to group a number of tasks together, and the task
further consists of a number of actions which are corresponding to the software
components defined in the SWS meta-model. The execution time and required
memory of software component are captured by the attributes of the modeling
element of action. And the scheduling policy that may be preemptive, non-pre-
emptive, or mix-preemptive (a policy defined by OSEK specification [4]), the
response delay, the deadline, and priority of each task are described by the attri-
butes of the modeling element of task. In addition, the logical task may have one or
more triggers (corresponding to timer) which are used to periodically invocating
tasks. The timing properties such as deadline and minimum period are captured by
the attributes of the modeling element of timer.

388 X. Yin et al.



4 Integration Algorithms with PMOLACS Towards
Timing Analysis

4.1 Functional Model Importation

After the PMOLACS paradigm is defined, it is used to configure the generic
modeling environment to build automotive domain specific performance modeling
environment (PMOLACS modeling environment). The modeler can either build
the SWS model for a specific automotive embedded control application and input
performance parameters manually or reuse the existing functional model built by
Simulink and add performance parameters automatically.

To reuse the existing Simulink model, a software module has been devel-
oped, which translates the atomic level functions of Simulink model into an
equivalent model by replacing the mutex, busses, and goto blocks in Simulink
with their equivalent connections in PMOLACS. The timing constraints and
resource requirements such as required memory, execution time, and execution
rate for each function is also input simultaneously. And the models with a
number of hierarchical levels in Simulink are translated into a flatten model in
PMOLACS.

4.2 Component Assignment

Once the SWS model is built either manually or automatically, the modeler could
construct the TP model using TP meta-model to define the architecture of the
target platform, such as how many processors will be used for the specific
application, what kinds of networks will be used for each processor, and what kind
of RTOS will be worked on each processor. During the process of target platform
modeling, the modeler also needs to define the parameters of resource constraints
and timing features manually in the PMOLACS modeling environment.

A software module has been developed to implement software component
assignment based on the built the SWS model and the TP model, which maps each
software component in the SWS model to one of the processors defined in the TP
model on condition that the resource constraints can all be satisfied. Two different
algorithms have been implemented in the component assignment module: one is
load balancing that tries to balance the loads of different processors, the other is
communication minimizing that tries to minimize the amount of communication
across different processors.

Study on the Performance Modeling Approach 389



4.3 Task Forming

Regarding grouping the software components together to form RTOS tasks, there
exist conflicting strategies. If the task contains many components, the overhead of
context switches will be reduced. If the task contains few components, the overall
response time may be reduced. In the implementation of task forming in this
investigation, the components having same execution rate, being assigned on a
same processor, and not forming dependency loop are grouped together to form a
task, for the purpose of reducing the overhead of context switches.

4.4 Priority Assignment

Three different algorithms have been implemented to assign the priorities for each
task including: (1) the deadline-monotonic (DM) policy that assigns the task with
the shortest deadline the highest priority [5], (2) the rate-monotonic (RM) policy
that the task with the shortest cycle duration the highest priority, and (3) a com-
bined policy that first assigns priorities according to the RM policy and then the
DM policy is used to assign priorities to the tasks that have the same priority
assigned by the RM policy. In addition, the modeler still can define the priority for
each task in the PMOLACS modeling environment manually. Once all tasks have
priorities assigned, the process of transforming the SWS model into the RTS
model is completed and then the timing analysis can be performed based on the
resulting RTS model to determine if each task meets its timing constraint.

4.5 Timing Analysis

The timing analysis algorithm consists of the following three main steps:
(1) constructing task timing graph according to the priority, scheduling policy, and
interactive relation of the task; (2) calculating the response time for each task, with
regard to a specific task, this is done by summing up the response time of the direct
predecessor of that task, the execution time of all tasks that preempt that task, the
execution time of that task, the overhead used by task scheduling and context
switching from the commencement to the completion of that task, via traversing all
of the input concurrent links of that task on the task timing graph; (3) evaluating
the schedulability for each task, if the response time of each task is not greater than
the deadline of that task, the RTS is schedulable, otherwise, the design of the
specific automotive control software needs to be refined such as re-assigning
priority, modifying the architecture of target platform, or adjusting component
mapping algorithms.

390 X. Yin et al.



4.6 Algorithms Integration

The algorithms of functional model importation, component assignment, task
forming, priority assignment, and timing analysis have been developed and
implemented using Visual C++. The software modules corresponding to these
algorithms have been built as dynamic link library and then registered as com-
ponents in the PMOLACS modeling environment to work together with the
PMOLACS paradigm.

5 Conclusions and Future Work

Aiming at performance modeling and timing analysis for automotive embedded
control software at an early design stage, a performance modeling language
PMOLACS is constructed using meta-modeling technique via the generic mod-
eling environment, which is further used to configure an automotive embedded
control domain specific modeling environment. With the implementation of a
number of algorithms related to model reuse, model transformation, and timing
analysis, the resulting PMOLACS modeling environment can be integrated into
the current mainstream development tool chain for automotive embedded control
system as an performance modeling, timing analysis as well as design automation
or recommendation tool.

As part of our future work, integration of the output of RTS model with the
source code generated from Simulink model in compliance with the state-of-the-
art standards such as AUTOSAR still needs to be further investigated.

Acknowledgments The work reported in this paper was supported in part by the National
Natural Science Foundation of China (Grant No. 60970072), the Scientific Research Fund of
Sichuan Provincial Education Department (Grant No. 10ZA100, KYTD201003), and the
Research Fund of Key Laboratory of Automotive Engineering of Sichuan Province (Grant No.
SGXZD9902-10-1).

References

1. Bunzel S (2010) Overview on AUTOSAR cooperation. In: 2nd AUTOSAR open conference,
Tokyo, Japan, May 13

2. Mathworks Website: http://www.mathworks.com
3. Ledeczi A, Maroti M, Bakay A, Karsai G, Garrett J, Thomason C, Nordstrom G, Sprinkle J,

Volgyesi P (2001) The generic modeling environment. In: IEEE international workshop on
intelligent signal processing (WISP’2001)

4. OSEK/VDX. OS 2.2.3. 2005. http://www.osek-vdx.org
5. Burns A, Wellings A (2001) Real-time systems and programming languages, 3rd edn. Addison

Wesley, New Jersey

Study on the Performance Modeling Approach 391

http://www.mathworks.com
http://www.osek-vdx.org

	36 Study on the Performance Modeling Approach for Automotive Embedded Control Software
	Abstract
	1…Introduction
	2…Modeling Requirements Related to Timing and Resource
	3…Performance Modeling for Automotive Embedded Control System
	3.1 Modeling Approach
	3.2 Performance Modeling for Automotive Embedded Control System

	4…Integration Algorithms with PMOLACS Towards Timing Analysis
	4.1 Functional Model Importation
	4.2 Component Assignment
	4.3 Task Forming
	4.4 Priority Assignment
	4.5 Timing Analysis
	4.6 Algorithms Integration

	5…Conclusions and Future Work
	Acknowledgments
	References


