
Virtual Development of Engine ECU
by Modeling Technology

Haifeng Xu, Yukihide Niimi and Takayuki Ono

Abstract Along with the evolution of vehicle electronic systems from domain-
specific control to the integrated control of the entire vehicle system, ECU systems
have become increasingly complicated and large-scale. This has made it difficult to
set out an optimal architecture of the ECU system efficiently at the early planning
stages. As well, the conventional ECU development methodology is also
becoming difficult to achieve the increasingly strict requirements for safety design
based on multi-ECU systems. Conventionally, optimizing electronic systems
requires fabricating many prototypes and evaluating them repeatedly, but with
their increasing scale, this method has become impractical. We therefore believe
virtual development is a required step. Although functional-level simulators and
implementation-level simulators are being used currently, these are both separate
and independent. Because of this, it is necessary to introduce virtual development
as a new physical-level development environment to connect functional-level and
implementation-level. In terms of not only function but also safety design, virtual
development has the ability to inject failures that are difficult to recreate in an
actual device. Therefore we have started introducing the virtual development of
ECU systems by using system level modeling and simulation technology with
SystemC language which provides the concept of time. In the phase of physical-
level design, because a virtual ECU system is developed by designing each
functional model of system such as ADC and drive circuit and connecting these
models as a system, the behavior of the whole ECU system can be verified easily
without having actual devices. Therefore the optimized structure of ECU, such as
microcomputer, software and peripheral LSI, can be determined efficiently at the

F2012-D02-004

H. Xu (&) � Y. Niimi � T. Ono
DENSO Corporation, Kariya, Japan
e-mail: haifeng@eeda.denso.co.jp

SAE-China and FISITA (eds.), Proceedings of the FISITA 2012 World
Automotive Congress, Lecture Notes in Electrical Engineering 194,
DOI: 10.1007/978-3-642-33829-8_19, � Springer-Verlag Berlin Heidelberg 2013

189



early stages of ECU development. Safety design can also be achieved efficiently
because the data transferred in the system can be changed to failure data forcibly
by covering functional models with failure models. We believe that maximizing
the performance of ECUs in electronic systems, and ensuring that these systems
meet safety design requirements will require methods to visualize things that are
difficult to visualize, and that this visualization is needed both before and after
manufacturing. Virtual development of ECU systems by using system level
modeling and simulation technology with SystemC language provides a useful
method to achieve these requirements.

Keywords Modeling � Simulation � SystemC � ECU � Safety

1 Introduction

As part of the push towards a lower-carbon society, electronic control systems for
automobiles are developing and evolving from domain-specific control in the vehicle
(power train, body, safety, etc.) to the integrated control of the entire vehicle. The
ECU, which forms the backbone of such control systems are thus growing in scale
and complexity. The development of ECUs in this changing environment requires
having an overview of the entire electronic system at the planning stages; this
overview would set out an optimized ECU structure in which even the structure of the
chipsets are defined; without such an overview, it will be difficult to keep up with
vehicle requirements and specifications. As well, the more stringent design
requirements for safety that straddle multiple systems are becoming difficult to
achieve using the conventional ECU development approach [1].

In response to these issues, DENSO has started introducing the virtual
development of electronic systems in order to further leverage our experience
developing the logical architecture and physical architecture that support our
vehicle product planning, as well as our experience implementing this architecture
over the entire vehicle. This paper discusses the virtual development of engine
ECUs based on the perspectives described above.

2 Issues in ECU Development

Currently, when developing automotive electronic systems, an overview of the
entire vehicle is created, and the architecture is developed using logical models
with a high level of abstraction to make the structure of the entire vehicle easy to
understand, and the functions to distribute to each ECU are decided.

In the next stage, the ECU development phase, the software and hardware
allocation is reviewed along with the microcomputer and ASIC configuration, and

190 H. Xu et al.



the ECU implementation specifications are decided. The phase after that is the
actual implementation design phase, where implementation-level simulators are
used to perform detailed design. However, at this detailed design stage, the various
constraints interact in complex ways, and specifications must be repeatedly veri-
fied with the constraints in the ECU system specifications and the constraints in the
implementation. This is because as the development process moves downstream,
the amount of information required increases; however large amounts of infor-
mation becomes apparent for the first time downstream. In order to keep such
coordination to the minimum, it is necessary to determine as much information at
the upstream stages and to create a large-scale, detailed verification environment.

3 Aims of Virtual Development

Conventionally, implementing the processes mentioned above requires fabricating
large numbers of prototypes and evaluating them repeatedly, but with their
increasing scale, this method of optimization has become impractical. Because of
this, we have introduced virtual development as a new physical-level development
environment to connect the logical and implementation domains. In terms of not
only function but also safety design, in which failsafe specifications are considered
to ensure the completeness of failsafes for different malfunctions, one of the ele-
ments that is required of virtual development is the ability to inject failures that are
difficult to recreate in an actual device. Thus, it was decided to use modeling
technology based on SystemC, a language that can be used to rapidly run system
level simulations while having the notion of time, in order to create the virtual
development environment. This ECU modeling technology is described in more
detail below.

4 ECU Modeling Technology

4.1 ECU Modeling Concepts

Based on the issues described above, the virtual development should be applied to
meet the following requirements.

(1) Optimizing the allocation of hardware and software.
(2) Reviewing the configuration of microcomputers and ASICs.
(3) Performing failure simulations.

Though the models that would be used to meet requirements 1–3 may need
different levels of abstraction [2], we believe that it is possible to come close to
connecting these models with differing levels of abstraction in what is practically a

Virtual Development of Engine ECU by Modeling Technology 191



single virtual environment. As shown in Fig. 1, building a virtual ECU environment
by creating and connecting all the necessary models of LAN, various sensors,
functional blocks in control units (ECUs), and actuators being controlled will allow
us to verify the feasibility of the operation of the entire system and to review the
suitability of software and hardware structure and microcomputer performance.

4.2 Component Modeling

Based on the existing system structure, we modeled each functional block including
the AD converters in the ICs as well as the microcomputer peripherals such as the
drive circuits and digital filters. This allows not only the overall activity to be
observed but also the detailed behavior of each block. The microcomputer manu-
facturer provided the model of the microcomputer core which is a cycle-accurate ISS
model, and this model was connected to the other models. By doing so, Requirement
1 (layout and review of hardware and software) and Requirement 2 (verifying
microcomputer performance by calculating the CPU processing load and RAM/
ROM usage) are satisfied. However, because having everything at a detailed level of
abstraction results in the disadvantage of increased simulation time, the behavior in
the models is investigated making strategic use of transaction level and pin level
interfaces between models to adjust the abstraction based on whether or not a block is
under detailed review [3]. This allows the total number of runtime events in the

Inpu Outpu

Microcomputer

CPU
Peripheral

IC

ConnectorFeedback

(Igniter etc)

LAN

ECU B

ECU A

Communication

ADC
Driver

Digital filterSensor
(Knock sensor etc)

Actuator

C code software

Fig. 1 Schematics of system model

192 H. Xu et al.



simulation to be decreased in order to create an environment in which large-scale
systems can be run at high speeds. Figure 2 shows two kinds of model interfaces.

Figure 3 shows use of transaction level interface and pin level interface.
When it considers how to model 32-bit communication line, transaction level

interface is for verifying overall operation, and pin level interface is for verifying
communication method. These are different abstractions. The degree of abstraction
is frame-based for the first type and bit-based for the second type, and the simu-
lation process has a single event for the first type and 64 events for the second type.
The disadvantage for the first type is that bit errors during transmission cannot be
simulated, and for the second is that the simulation takes too long. It was for these
reasons that we developed a modeling method that maintained the advantages of
both and resolved their disadvantages. The method is to add a switching event
between transaction level and pin level modeling so as to enable dynamic
switching. This can reduce the overall simulation time while still allowing per-
forming detailed verifications.

4.3 Failure Modeling

To inject failures, the failure modes were first analyzed. The results of this analysis
reveals that failures can occur in various locations including physical connections
and gates inside ICs, but all of these failures can be classified into a few modes
such as disconnection, locking, corruption, drift, and oscillation.

Another issue is where and how to inject these failures. Because the locations
where failures can be observed in an actual device are at its various terminals, a
failure model is laid over the functional model as shown in Fig. 4, and the failures are
defined in the output (a GND short failure is shown), which forces the system to treat
the data transferred as abnormal values; this simplifies the failure model and makes
failure injection easier, all without making any changes to the functional model.

The final issue is the timing of the failure. The failure model added above is
given a failure changeover signal as an input with the value and time of occurrence

Transaction level 

ChannelInitiator Target

Socket Socket
Initiator Target

Pin level 

Fig. 2 Model interface

Virtual Development of Engine ECU by Modeling Technology 193



set in the initial settings; because such failures can be analyzed in the same way as
a regular simulation, it is easy to express not only steady-state failures but also
transient failures, and we are able to use this method to verify safety design.

However, when performing a bit corruption failure in the communication data
during transmission between models, in order for the failure model to inject a
malfunction with respect to particular bits, the functional model transmits data one
bit at a time and this results in the disadvantage of increased simulation time [1].
Therefore, an effective modeling method that can be used to freely inject bit
corruption malfunctions during transmission even with frame-based communica-
tions is explained below.

Specifically, the framed-based data that the functional model tries to transmit is
outputted at the transmission start time, and the failure model saves the outputted
data until the transmission end time. If a bit corruption failure occurs at the given
time during saving, the abnormal data is calculated based on the time that the
failure occurs, and the saved transmission data is substituted with the abnormal
data, and at the transmission end time, the saved abnormal data is transmitted. In
this way, it is now possible to shorten the simulation time and perform detailed
verifications at the bit level.

Fig. 3 Use of different interface

Failure model

Functional 
model

Switchover signal

Fig. 4 Failure model

194 H. Xu et al.



5 Application Examples

Two examples are shown below to explain the application of virtual development.
Example 1 covers Requirement 1 (optimizing the allocation of hardware and
software) and Requirement 3 (failure simulations). Example 2 covers Requirement
2 (reviewing the configuration of microcomputers and ASICs).

5.1 Example 1

During the early stages of ECU development with conventional development
methods, which have no actual devices, CPU processing loads cannot be verified,
so it is difficult to verify the suitability of allocation of hardware and software. The
introduction of virtual development technology is an efficient way to solve this
problem.

This example is the development of the ECU for a 4-cylinder engine. At the
ECU implementation specification review stage, the virtual ECU is built based on
the CPU model. At this point, the allocation of hardware and software has not been
decided, so a temporary allocation based on design experience may be devised. If
an allocation cannot be devised, a software implementation may be used.

Next, the operation of the virtual ECU system is verified. In terms of the control
software, the statistical data for each task and function call can be obtained, which
allows the CPU processing load across the range of engine speeds to be analyzed as
shown in Fig. 5. If there is some extra CPU processing capacity, some of the hard-
ware-based processing can be transferred to the software, and if there are any high-
load tasks, the corresponding processing can be transferred from the software to the
hardware; all of this information is useful when reviewing the system. When doing
so, as shown in Fig. 6, the feasibility of the operation of the entire system across the
range of engine speeds and the timing of operations can be observed, and the per-
formance of the portions that have been made hardware can be verified as well.

Next, Fig. 7 shows the injection of a failure into the actuator drive circuit as
well as the results of the system failsafe analysis.

Here, after an over current failure was injected into the drive circuit, the power to
the actuator was cut off. The specification called for 600 ms max., and the power was
cut in 500 ms, so the effectiveness of the system failsafe was confirmed.

5.2 Example 2

At the early stages of ECU development, all of the possible ECU implementation
possibilities need to be laid out, so that they can be optimized and to review their
suitability in terms of mass production and cost. Because of this, the different

Virtual Development of Engine ECU by Modeling Technology 195



configurations of microcomputers and ASICs need to be reviewed. For example,
when reviewing the configuration of microcomputers and ASICs, one option is to
use a custom microcomputer with a wide range of functions and to use a general-
purpose IC. Another option is to use a general-purpose microcomputer and build
custom functions into an IC. By using virtual development technology, it is pos-
sible to verify whether each configuration option satisfies the performance
requirements.

Fig. 5 CPU processing load

Fig. 6 Analysis of engine ECU

Over current

Max delay: 600ms

500ms

Power supply cut off

Fig. 7 Analysis of failure
model

196 H. Xu et al.



Explained below is an example of using a general-purpose microcomputer with
few compare channels to build into the ASIC the custom microcomputer’s com-
pare function for driving the injectors.

When a compare function is built into the ASIC, as shown in Fig. 8, specifi-
cations for communication between the CPU and compare function, implemen-
tation specifications for the timer required for the compare function to operate, and
software specifications required for communication must be considered. Also, the
communication performance and CPU processing load must be verified to satisfy
the ECU performance requirements. The review procedure with virtual develop-
ment technology is outlined below.

In Step 1, the implementation specification options are reviewed and the models
are built. A specific example of a specification is this: The CPU uses the existing
CSI communication channel in a general-purpose microcomputer to read the timer
value stored in the ASIC, calculates the expected injector operation time and
injector number, and sends the result to the ASIC; the compare function deter-
mines the injector operation timing based on the received data. Such detailed
specification options are reviewed in this step to build the required models and
create the virtual ECU.

In Step 2, the operation is verified. Examples of what is verified are the
feasibility of the operation, accuracy of the operation (injection start timing and
duration), CPU processing load, and RAM/ROM usage. In terms of methods to
verify operation, the operating frequency for CSI communication is adjusted to
verify operation across the range of engine speeds. For example, Fig. 9 shows the
delay in injection start time when the CSI communication operation frequency is
varied from 4, 2, to 1 MHz in accordance with the specifications of the general-
purpose microcomputer. At frequencies of 2 MHz and higher, the delay time is
within the allowable range defined in the ECU performance requirements. At
1 MHz, the communication delay is too long, and the injection operations at high
engine speeds are abnormal. The injection duration and the CPU processing load
and RAM/ROM usage can be verified in the same way, so the suitability of
microcomputer performance can be evaluated.

In Step 3, the results are fed back into the implementation specification options.
Based on the results of the operation verification, it is judged if the ECU perfor-
mance requirements are satisfied. If necessary, the implementation specification
options are improved through feedback, and the operation is verified again.

CPU

Microcomputer

Timer

(for INJ)

Compare

RegisterBus

Communication

Compare
(for INJ)

Driver
Injector
(INJ)

Timer ASIC

ECU

Fig. 8 Possible
configuration of
microcomputer and ASIC

Virtual Development of Engine ECU by Modeling Technology 197



In the ways described above, the introduction of virtual development technol-
ogy allows verifying various implementation specification options that are difficult
to verify in actual devices and deriving the optimal solution efficiently.

6 Outlook

The role of electronic systems in the move toward a lower-carbon society is
expected to grow increasingly important. We believe that maximizing the per-
formance of ECUs in electronic systems, which continue to grow in scale and
complexity, and ensuring that these systems meet safety design requirements will
require methods to visualize things that are difficult to visualize, and that this
visualization is needed both before and after manufacturing. We would like to use
the modeling technology described in this paper as a base for creating a virtual
development environment and to carry out the development of vehicle electronic
systems and products that contribute to society.

References

1. Niimi Y, Ono T, Tsuchiya N (2012) Virtual development of engine ECU by modeling
technology. [J] SAE technical paper, 2012-01-0007:1–5

2. Bailey B, Martin G, Piziali A (2007) ESL design and verification [M]. Morgan Kaufmann,
USA

3. STARC (2008) TL modeling guide, 2nd edn [M] Semiconductor technology academic
research center, Japan

D
el

ay
 (

us
)

Engine Speed

Normal 
range

CSI operation frequency (MHz)

Fig. 9 Analysis of injection delay

198 H. Xu et al.


	19 Virtual Development of Engine ECU by Modeling Technology
	Abstract
	1…Introduction
	2…Issues in ECU Development
	3…Aims of Virtual Development
	4…ECU Modeling Technology
	4.1 ECU Modeling Concepts
	4.2 Component Modeling
	4.3 Failure Modeling

	5…Application Examples
	5.1 Example 1
	5.2 Example 2

	6…Outlook
	References


