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Abstract. SysML activity diagrams are OMG/INCOSE standard models for
specifying and analyzing systems’ behaviors. In this paper, we propose an ab-
straction approach for this type of diagrams that helps to mitigate the state-
explosion problem in probabilistic model checking. To this end, we present two
algorithms to reduce the size of a given SysML activity diagram. The first elimi-
nates the irrelevant behaviors regarding the property under check, while the sec-
ond merges control nodes into equivalent ones. The resulting abstracted model
can answer safely the Probabilistic Computation Tree Logic (PCTL) property.
Moreover, we present a novel calculus for activity diagrams (NuAC) that captures
their underlying semantics. In addition, we prove the soundness of our approach
by defining a probabilistic weak simulation relation between the semantics of the
abstract and the concrete models. This relation is shown to preserve the satis-
faction of the PCTL properties. Finally, we demonstrate the effectiveness of our
approach on an online shopping system case study.

Keywords: Abstraction, SysML Activity Diagram, Probabilistic Automata,
PCTL.

1 Introduction

Various techniques have been proposed for the verification of software and systems in-
cluding model checking, type checking, equivalence checking, theorem proving, and
dynamic analysis. Particularly, the most popular one used for the assessment of UML
and SysML behavioral diagrams is model checking [1,2]. The latter is a formal au-
tomatic verification technique for finite state concurrent systems that checks temporal
logic specifications on a given model. In addition to qualitative model checking, quan-
titative verification techniques based on probabilistic model checkers [3] have recently
gained popularity. Probabilistic verification offers the capability of interpreting proba-
bilistically the satisfiability of a given property on systems that inherently exhibit proba-
bilistic behavior. Despite its wide use, model checking is generally a resource-intensive
process that requires large amount of memory and time processing. This is due to the
fact that the systems’ state space may grow exponentially with the number of variables
combined with the presence of concurrent behaviors and clocks. Moreover, several

� Corresponding author.

G. Eleftherakis, M. Hinchey, and M. Holcombe (Eds.): SEFM 2012, LNCS 7504, pp. 263–277, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



264 S. Ouchani, O.A. Mohamed, and M. Debbabi

available model checkers cannot support all systems’ features such as buffers, channels,
and/or real variables. To overcome these issues, various techniques have been explored
[4] for qualitative model checking and then leveraged to the probabilistic case. Among
these techniques, several solutions aim at optimizing the employed model checking al-
gorithms by introducing symbolic data structures based on binary decision diagrams,
while others target the reduction of the input model. As we are interested in reusing ex-
isting model checkers, we concentrate on the second category that includes abstraction
approaches.

Abstraction is one of the most relevant technique for addressing the state explosion
problem [3,5]. It can be defined as a mapping from a concrete model into a more ab-
stract one that encapsulates the systems’ behavior while being of a reduced size. The
intuition behind this transformation is to be able to check a property against an abstract
model and then to infer safely the same result on the concrete model. Abstraction tech-
niques can be classified in four categories [6]: 1) Abstraction by state merging aims at
merging states of systems that have similar features. 2) Abstraction on variables targets
the data in the model and aims at representing a set of values as one symbolic variable.
3) Abstraction by restriction operates by forbidding some behavior of the system. 4)
Abstraction by observer automata restricts system’s behaviors to those acceptable by
an automaton that observes the system from outside. Our proposed framework takes
advantage of the first and the third category.

In this paper, we are interested in the efficient verification of systems’ design models
expressed as SysML activity diagrams [7]. These diagrams are behavioral and allow
for probabilistic behavior specification. Our approach combines two mechanisms of
abstraction, the first is based on ignoring the irrelevant action nodes with respect to a
given property and the second applies reduction rules that collapse control nodes in the
SysML activity diagram. Our approach is depicted in Figure 1. In order to prove the
soundness of our algorithm and the preservation of PCTL [3,8] properties satisfaction,
we present a new calculus, namely NuAC, that captures the semantics foundation of
SysML activity diagrams and we express its operational semantics as probabilistic au-
tomata. Furthermore, we demonstrate the practical application of our technique using
a case study that would be otherwise difficult to verify. Thus, we use the probabilis-
tic model checker PRISM [9] and we rely on our translation algorithm [2] that maps
SysML activity diagrams into PRISM model. Besides, we show significant reduction in
the state space and verification time, which makes probabilistic model checking helpful.

The remainder of this paper is organized as follows. Section 2 presents the related
work. Section 3 explains the formal representation of SysML activity diagrams. The
proposed abstraction approach is detailed in Section 4. Section 5 defines and proves
the soundness of our algorithm and the preservation of PCTL satisfaction. Section 6
describes the experimental results. Finally, Section 7 concludes this paper and provides
hints on the possible future works.

2 Related Work

In the literature, few works examine the abstraction of UML and SysML diagrams
before verification and the majority rely on the implemented abstraction algorithms
within the model checker.
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Fig. 1. A Novel Abstraction Approach Overview

Ober et al. [10,11] propose a set of UML model reduction techniques including static
analysis, partial order reduction, and model minimization. The abstraction is performed
on the semantic model instead of UML diagrams. Westphal [12] exploits the symmetry
of UML models in the type of object references to do verification. Shet [13] determines
the set of relevant events with respect to the safety property. Daoxi et al. [14] propose
an abstraction driven by LTL properties on Promela code of UML behavioral diagrams.
Xie and Browne [15,16] propose a verification framework for executable UML (xUML)
models. It is based on a user-driven state space reduction procedure. Beek et al. present
in [17] a framework called (UMC) for the formal analysis of concurrent systems spec-
ified by a collection of UML state machines. It is an on-the-fly based analysis with a
user-guided abstraction of the transition system. Gallardo et al. [18] abstract data and
events in hierarchical state chart diagrams. They minimize the original access defini-
tions of variables and use a single event name to represent a set of real ones. R. Eshuis
[19,20] apply data abstraction on guards and events. In addition, some probabilistic
model checker support abstraction, for example PRISM builds the symmetry reduction
and LiQuor1 includes bi-simulation.

In Table 1, we compare our approach to the existing ones. We observe that few of
them formalize SysML activity diagrams and prove the soundness of their proposed
abstraction approaches. Moreover, our abstraction approach is efficient as it reduces the
size of the model by a considerable rate. Furthermore, our mechanism allows to gain
advantage from algorithms built within the tool in use.

3 SysML Activity Diagrams

In this section, we describe the SysML activity diagram notation, and we present an
optimized and a modified version of the Activity Calculus (AC) [1], to provide a formal
syntax and operational semantics for SysML activity diagrams. This formal semantics
is useful to prove the soundness of our abstraction.

SysML reuses a subset of UML packages and extends others with specific systems’
engineering features, and it covers four main perspectives of systems modeling: struc-
ture, behavior, requirements, and parametric. Particularly, SysML activity diagrams are

1 http://www.i1.informatik.uni-bonn.de/baier/projectpages/LIQUOR/LiQuor

http://www.i1.informatik.uni-bonn.de/baier/projectpages/LIQUOR/LiQuor
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Table 1. Comparison with the Related Work

Approach Design Probabilistic Property Formalization Soundness
[10,11]

[12] �
[13] � �
[14] �

[15,16] �
[17] �
[18] �

[19,20] �
Our � � � � �

behavioral diagrams used to model system’s behavior at various level of abstractions
[21]. The main notation of SysML activity diagram can be decomposed into two cate-
gories of constructs: activity nodes and activity edges. The former contains three types:
activity invocation, object and control nodes. Activity invocation includes receive and
send signals, action, and call behavior. Activity control nodes are initial, flow final,
activity final, decision, merge, fork, and join nodes. Activity edges are of two types:
control flow and object flow. Control flow edges are used to show the execution path
through the activity diagram and connects activity nodes. Object flow edges are used
to show the flow of data between activity nodes. Concurrency and synchronization are
modeled using forks and joins, whereas, branching is modeled using decision and merge
nodes. While a decision node specifies a choice between different possible paths based
on the evaluation of a guard condition (and/or a probability distribution), a fork node
indicates the beginning of multiple parallel control threads. Moreover, a merge node
specifies a point from where different incoming control paths follow the same path,
whereas a join node allows multiple parallel control threads to synchronize and rejoin.

3.1 Syntax of SysML Activity Diagrams

The UML superstructure specifies basic rules for the execution of the various nodes
by explaining textually how tokens (i.e. locus of control.) are passed from one node
to another [22]. At the beginning, a first token starts flowing from the initial node and
moves downstream from one node to another with respect to the foregoing set of con-
trol routing rules defined by the control nodes until reaching either an activity final
or a flow final node. However, activity diagram semantics as specified in the standard
stay informal since it is described informally using textual explanations. Inspired by
this concept, we express the Backus-Naur-Form (BNF) of the new version of Activity
Calculus (NuAC) that captures the syntax and the execution of activity diagrams. This
new version optimizes the syntax presented in [1] and allows multiplicity for fork and
decision constructs. Before presenting the NuAC syntax, firstly, we rewrite the SysML
activity diagram constructs in the formal way as described in Table 2. The BNF of
NuAC is illustrated in Figure 2.

During the execution, the structure of the activity diagram is kept unmodified but the
location of the tokens changes. The NuAC syntax was inspired by this idea so that an
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Table 2. Mapping Activity Diagram Artifacts into NuAC Syntax

AD Constructs NuAC Syntax Description

ι �N Initial node
l : � Activity final node

l : � Flow final node

l : a�N Action node

l : Decision( a Decision node with
(p1,g1,N1), a convex distribusion

· · · , {p1, · · · , pn} with guarded
(pn,gn,Nn)) transitions {g1, · · · ,gn}

l : Merge(N ) or l Merge node specifies the continuation.

l : Fork(N1, · · · ,Nn) Fork node models the concurrency
between n control threads.

Join node models synchronization.
l : x.Join(N ) It rejoins a set of input pins.

or l Each pin is specified by an index x.

A ::= ε | ιk �N
N ::= N

n | l : Merge(N ) | l : x.Join(N )

| l : Fork(N , · · · ,N ) | l : a
n �N

| l : Decision((p1,g1,N ), · · · ,(pn ,gn,N ))
| l : � | l : � | l

Fig. 2. Syntax of New Activity Calculus (NuAC)

NuAC term presents a static structure while tokens are the only dynamic elements. We
can distinguish two main syntactic concepts: marked and unmarked terms. A marked
NuAC term corresponds to an activity diagram with tokens. An unmarked NuAC term
corresponds to the static structure of the diagram. A marked term is typically used to
denote a reachable configuration. A configuration is characterized by the set of tokens
locations in a given term.

To support multiple tokens, we augment the “overbar” operator with an integer n

such that N
n

denotes a term marked with n tokens such that N
1
= N and N

0
= N .

For the term ιk, k can be either 1 or 0. Multiple tokens are needed when there are loops
that encompass in their body a fork node. Furthermore, we use a prefix label for each
node (except initial) to uniquely reference it in the case of a backward flow connection.
Particularly, labels are useful for connecting multiple incoming flows towards merge
and join nodes. Let L be a collection of labels ranged over by l, l0, l1, · · · and N be
any node (except initial) in the activity diagram. We write l : N to denote an l-labeled
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activity node N . The NuAC term A is built using a depth-first traversal of the activity
diagram directed by its activity edges. It is important to note that nodes with multiple
incoming edges (e.g. join and merge) are visited as many times as they have incoming
edges. Thus, as a syntactic convention, the algorithm uses either the definition term
(i.e. l : Merge(N ) for merge and l : x.Join(N ) for join) if the current node is visited
for the first time or the corresponding label (i.e. l) if the same node is encountered
later during the traversal process. We denote by Decision(−,g,N ) to express the non-
probabilistic decision while p has no value. Also, we denote by A [N ] to specify N
as a sub term of A .

3.2 Semantics of SysML Activity Diagrams

The execution of SysML activity diagrams is based on token’s flow [22]. To give a
meaning to this execution, we use structural operational semantics to formally describe
how the computation steps of NuAC atomic terms take place. The NuAC semantics
rules shown by Figure 3 is based on the informally specified tokens-passing rules de-
fined in [22].

INIT-1 ι�N
ι−→1 ι�N

ACT-1 l : a
m �N

l−→1 l : a
m−1 �N ∀m > 0

ACT-2 l : a
m �N

n −→1 l : a
m+n �N ∀m > 0

FORK-1 l : Fork(N1, · · · ,Nn)
m l−→1 l : Fork(N1, · · · ,Nn)

m−1 ∀m > 0
PDEC-1

l : Decision((p1,g1 ,N1), · · · ,(pi,gi,Ni), · · · ,(pn ,gn,Nn))
m l−→pi

l : Decision((p1,g1 ,N1), · · · ,(pi,gi,Ni), · · · ,(pn ,gn,Nn))
m−1 ∀m > 0

MERG-1 l : Merge(N )
m l−→1 l : Merge(N )

m−1 ∀m > 0
MERG-2 A [l : Merge(N )

m
, l

k
]−→1 A [l : Merge(N )

m+k
, l] m,k ≥ 1

JOIN-1

A [l : x.Join(N )
m
, l

k
x]

l−→1 A [l : x.Join(N )
m+k−1

, lx ] ;x > 1 ∀m,k ≥ 1
FLOWFINALA [l :

⊗
]

l−→1 A
FINAL A [l : �]

l−→1 |A |
PROG

N
α−→q N ′

A [N ]
α−→q A [N ′]

Fig. 3. NuAC Operational Semantic Rules

We define Σ as the set of non-empty actions labeling the transitions (i.e. the alphabet
of NuAC, to be distinguished from action nodes in activity diagrams). An element α ∈Σ
is the label of the executing active node. Let Σo be Σ ∪{o} where o denotes the empty
action. Let p be probability values such that p ∈ {−}∪]0,1]. The general form of
a transition is A

α−→p A ′. The probability value specifies the likelihood of a given
transition to occur and it is denoted by P(A ,α,A ′). The semantics of SysML activity
diagrams is expressed using A as a result of the defined inference rules that can be
described in terms of Probabilistic Automata (PA) [23].
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4 The Abstraction Approach

This section describes our approach to abstract a design model expressed as SysML
activity diagrams. To do so, we propose essentially two abstraction algorithms.

The first one hides the action nodes of the SysML activity diagram that are not part of
the atomic propositions of the PCTL property to be verified à la [5]2. Initially, SysML
activity diagram is an action-based diagram, where actions are the executed entities and
guards denote the branching choices between alternative actions. The control nodes are
essentially used to coordinate the execution of these actions. Thus, PCTL properties
essentially comprise propositions on actions and guards. The atomic propositions of
a PCTL property φ are formed with a set of independent variables var(φ) such that
var(φ)⊆ {ai : i ≤ n}∪{gi : i ≤ m} where ai is a variable corresponding to an action,
gi is a guard variable, and respectively, n and m are the number of actions and guards.

Abs : NuAC×Var(Φ)→ NuAC
Abs (N ,var(φ) ) = Case (N ) of

l : a�N ′ ⇒ i f a ∈ var(Φ) then
l : a�Abs(N ′,var(φ))

e l s e
ε �Abs(N ′,var(φ))

end
O t h e r w i s e Abs (N ,var(φ) )

Listing 1.1. Action Nodes Abstraction Algorithm

The procedure Abs presented in Listing 1.1 abstracts a given SysML activity dia-
gram with respect to the action variables that are not part of the set var(φ). It takes
as input a NuAC term N along with var(φ) and generates an abstract term such that
Abs(N ,var(φ)) = N̂ and var(N̂ ) = var(φ).

The second algorithm minimizes an activity diagram by merging specific control
nodes while preserving the number of tokens and their control paths. This is achieved
by preventing the modification of guarded and probabilistic choices. The procedure
Minim presented in Listing 1.2 aims at merging consecutive control nodes of the same
type. For that, we propose an equivalence relation inspired by the structural congruence
relation defined by Milner [24]. This equivalence relation satisfies the following rules:

1. l : Fork(. . . ,Ni, . . .)≡ l : Fork(. . . ,Nk, . . . ,Nm, . . .) if Ni ≡ l′ : Fork(Nk, . . . ,Nm).
2. l : x.Join(N ′)≡ l : z.Join(N ) if N ′ ≡ l′ : y.Join(N ) and z = x+y.
3. l : Merge(N )≡ l : Merge(N ′) and l = l′ if N ≡ l′ : Merge(N ′).
4. l : Decision(. . . ,(p,g,N ), . . .)≡ l : Decision(. . . ,(p× pk,g∧gk,Nk), . . . ,(p× pm,

g∧gm,Nm), . . .) if N ≡ l′ : Decision((pk,gk,Nk), . . . ,(pm,gm,Nm)).

Basically, Abs produces a new model that includes mainly the specified actions in the
property φ where other actions are considered as silent action (Milner [24]). Thus, the

2 Close to the cone of influence of [5].
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Minim : NuAC → NuAC
Minim (N ) = Case (N ) of

l : Merge(N ′) ⇒ Case (N ′ ) of
l′ : Merge(N ′′) ⇒ l : Merge(Minim(N ′′)) and Rewrite(N ′′, l′, l)

O t h e r w i s e ⇒ l : Merge(Minim(N ′))
l : x.Join(N ′) ⇒ Case (N ′ ) of

l′ : y.Join(N ′′) ⇒ l e t
z = x+y

in
l : z.Join(Minim(N ′′)) and Rewrite(N ′′, l′, lx+ j)

O t h e r w i s e ⇒ l : Join(Minim(N ′))
l : Fork(N1, · · · ,Ni, · · · , Nn) ⇒ Case (Ni ) of

l′ : Fork(N ′
k , · · · , N ′

m) ⇒
l : Fork(Minim(N ′

1 ), · · · , Minim(N ′
k ), · · · ,

Minim(N ′
m), · · · , Minim(Nn))

O t h e r w i s e ⇒ l : Fork(Minim(N1), · · · ,Minim(Ni), · · · , Minim(Nn))
l : Decision((p1,g1,N1), · · · ,(pi,gi,Ni), · · · ,(pn,gn,Nn)) ⇒ Case (Ni ) of

l : Decision((p′1,g
′
1,N

′
1 ), · · · ,(p′j,g′j,N ′

j ), · · · ,(p′m,g′m,N ′
m)) ⇒

l : Decision((p1,g1,N1), · · · ,(pi × p′1,gi ∧g′1,N ′
1 ), · · · ,

(pi × p′j,gi ∧g′j,N ′
j ), · · · ,(pi × p′m,gi ∧g′m,N ′

m),

· · · ,(pn,gn,Nn))
O t h e r w i s e ⇒ l : Decision((p1,g1,Minim(N1)), · · · ,(pn,gn,Minim(Nn)))

O t h e r w i s e Minim (N )

Listing 1.2. Control Nodes Abstraction Algorithm

resulting activity diagram has a reduced number of actions, which increases the occur-
rence of consecutive control nodes. Consequently, applying Abs first is more efficient3

as showed by the following proposition.

Proposition 1 (Application Order). For a SysML activity diagram “A ” and a prop-
erty “φ”, we have: Minim(Abs(Minim(A ),φ))≡Minim(Abs(A ,φ)).

Proof. Let M1 ≡Minim(A ),M2 ≡Abs(M1,φ) and M3 ≡Minim(M2), we have:

1. M1 ≡Minim(A )⇔ if ∃l : Nk�Nm ∈A , then l : Nk�Nm is replaced by l : Nkm

if one of control merging rules is satisfied.
2. M2 ≡Abs(M1,φ))⇔∀a /∈var(φ) : Abs(l : a

n�N ,var(φ)) = l : εn�N . In fact,
Abs produces new consecutive control nodes and preserve the diagram structure.

It is clear that the second step has no effect on the first one and vice versa. In addition,
applying Minim two times successively is equivalent to apply it once. Thus, the propo-
sition holds. ��

5 Abstraction Soundness and Property Preservation

In this section, we first prove the soundness of our proposed abstraction algorithms.
Next, we prove that our algorithms preserve the satisfaction of PCTL properties.

3 In term of time execution.



Efficient Probabilistic Abstraction for SysML Activity Diagrams 271

5.1 Abstraction Soundness

Our aim is to prove that our abstraction algorithm is sound and preserves PCTL proper-
ties. Let A be a SysML activity diagram and MA be its corresponding PA constructed
by the NuAC operational semantics S such that S(A ) = MA . And, let δ be our abstrac-
tion composed of Abs and Minim algorithms such that δ (A ) = Â , where Â denotes
the abstracted SysML activity diagram. Let M

Â
be its corresponding PA defined using

the NuAC operational semantics S such that S(Â ) = M
Â

. As illustrated in Figure 4,
proving the soundness of our algorithm is to find a relation R between MA and M

Â
.

The formal description of MA is represented in Definition 1 where Dist(S) is a convex
distribution over a set S.

A MA

Â M
Â

S

δ

S

R

Fig. 4. Abstraction Correctness

Definition 1 (New Activity Calculus PA). A probabilistic automata of an activity cal-
culus term A is a tuple MA = (s, L, S, Σ , δ ) where:

– s is an initial state, such that L(s)=A ,
– L is a labeling function,
– S is a finite set of states reachable from s, such that, S = {si:0≤ i ≤ n|L(si) ∈ {N }},
– Σ is a finite set of actions corresponding to the alphabet of A ,
– δ : S×Σ → Dist(S) is a (partial) probabilistic transition function such that, for

each s ∈ S and α ∈ Σ assigns a probabilistic distribution μ ∈ Dist(S) such that:
• For each S′ ⊆ S, S′ = {si:0≤i≤n : s

α−→pi si}. Each s
α−→pi si satisfies one NuAC

semantic rule and μ(S′) = ∑n
i=0 pi = ∑n

i=0 μ(si) = 1.

• For each transition s
α−→1 s′′ satisfying a NuAC semantic rule, μ is defined

such that μ(s′′) = 1.

To define the relation MA R M
Â

, we introduce the notion of weak relation while δ
abstracts away from invisible actions. Formally, the probabilistic weak simulation [23]
relation defined in Definition 2 introduces the notion of observable action a preceded
and followed invisible steps. We denote a weak transition by (s

a
=⇒ P) where P is the

distribution over states reached from s through a sequence of combined steps.

Definition 2 (Weak Probabilistic Simulation). A weak probabilistic simulation be-
tween two probabilistic automata M1 and M2 is a relation R � S1 × S2 such that:

1. each start state of M1 is related to at least one start state of M2,
2. for each pair of states s1Rs2 and each transition s1

a−→ P1 of M1, there exist a weak
combined transition s2

a
=⇒ P2 of M2 such that P1 �R P2.
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Here, �R is the lifting of R to a probability space. It is achieved by finding a weight
function [23] that associates each state of M1 with others in M2 by a certain probability
value. It is defined below.

Definition 3 (Weight Function). A function � : S× S′ → [0,1] is a weight function
for the two distribution μ1,μ2 ∈ Dist(S) w.r.t. R � S× S′ iff:

1. �(s1,s2)> 0 ⇒ (s1,s2) ∈ R,
2. ∀ s1 ∈ S : Σs2∈S�(s1,s2) = μ1(s1),
3. ∀ s2 ∈ S : Σs1∈S�(s1,s2) = μ2(s2) then s1Rs2.

For our proof, we stipulate herein the abstraction relation denoted by A �R′ Â be-
tween SysML activity diagrams A and Â .

Definition 4 (Abstraction Relation). An abstraction relation is a weak probabilistic
relation between a SysML activity diagram A and its abstracted model Â by applying
δ algorithm.

In the following, we present the soundness of our algorithm. Let MA be a PA repre-
senting the semantic of the NuAC term A , M

Â
is the PA representing the semantics of

Â such that Â = δ (A ,φ). Proving that δ is sound means proving there exists a weak
probabilistic simulation between MA and M

Â
, i.e. MA �R M

Â
.

Theorem 1 (Soundness). The abstraction algorithm δ is sound.

Proof. The proof follows a structural induction on NuAC terms. In an inductive way,
we select the a�N case to prove the soundness for Abs procedure procedure. The
remaining cases can be proved similarly for both Abs and Minim functions.

Let L(s1) = a�N ⇒ ∃ s′1 : s1 → s′1 by applying ACT-1 rule such that: s′1 = a�
N ⇒ μ1(s′1) = 1. By considering s2 as the abstracted state of s1, L(s2) = Abs(L(s1)),
we will have two cases:

1. a∈var(φ) : L(s2) = Abs(a�N ) = a� Abs(N ). By applying ACT-1, ∃ s′2 : s2 →
s′2 such that: L(s′2) = a�Abs(N )⇒ μ2(s′2) = 1. Then, it exists a weight function
� for R = (s′1,s

′
2) such that:

(a) �(s′1,s
′
2) = 1 ⇒�(s′1,s

′
2) = μ1(s′1), and

(b) �(s′2,s
′
1) = 1 ⇒ μ2(s′2) =�(s′2,s

′
1), then

(c) �(s1,s2)> 0 ⇒ s1 �R s2
2. a /∈var(φ) :

L(s2) = Abs(s1) = Abs(a�N ) = ε� Abs(N )⇒∃ s′2 : s2 → s′2.
By applying ACT-1 rule such that L(s′2) = ε �N ⇒ μ2(s′2) = 1.
It exist a weight function � for R = (s′1,s

′
2) such that:

(a) �(s′1,s
′
2) = 1 ⇒�(s′1,s

′
2) = μ1(s′1), and

(b) �(s′2,s
′
1) = 1 ⇒ μ2(s′2) =�(s′2,s

′
1), then

(c) �(s1,s2)> 0 ⇒ s1 �R s2

It is clear that, the marked NuAC term A is the unique initial state of MA corresponding
to the unique initial state in M

Â
. By following the same style of proof, we find:

A �R M
Â

, which confirms that Theorem 1 holds. ��
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5.2 Property Preservation

In order to perform model-checking, a property should be specified. We selected PCTL
to express such property. Formally, its syntax is given by the following BNF grammar:

φ ::= � | a | φ ∧φ | ¬φ | P�� p[ψ ]
ψ ::= Xφ | φU≤kφ | φUφ

Where a is an atomic proposition, k ∈N, p ∈ [0,1], and ��∈ {<,≤,>,≥}. Also, other
useful operators can be derived such as:

– Future: Fφ ≡ � U φ or F≤ kφ ≡ � U≤ k φ .
– Generally: Gφ ≡ ¬(F¬φ) or G≤ kφ ≡ ¬(F≤ k¬φ).

To specify a satisfaction relation of a PCTL formula in a state s, a class of adversaries
(Adv) has been defined [8] to solve the nondeterminism decision. Hence, a PCTL for-
mula should be satisfied under all adversaries. The satisfaction relation (|=Adv) of PCTL
formula is defined as follows:

– s |=Adv �
– s |=Adv a ⇔ a ∈ L(s)
– s |=Adv φ1 ∧φ2 ⇔ s |=Adv φ1 ∧ s |=Adv φ2

– s |=Adv ¬φ ⇔ s �|=Adv φ
– s |=Adv P�� p[ψ ]⇔ P({π ∈ IPathM,s|πAdv |= ψ}) �� p
– π |=Adv Xφ ⇔ π(1) |=Adv Xφ
– π |=Adv φ1 U≤ k φ2 ⇔ ∃ i ≥ k.(π(i) |=Adv φ2 ∧π( j) |=Adv φ1 ∀ j < i)
– π |=Adv φ1 Uφ2 ⇔ ∃ k ≥ 0. π |=Adv φ1 U≤ k φ2

Here, we prove by induction on the structure of the PCTL grammar, except for the neXt
operator (PCT L\X ), that a formula (φ ) holds in the concrete model if it holds in the
abstracted model as stated in Theorem 2.

Theorem 2 (PCTL Preservation). For two models M and M̂ such that M �R M̂. If φ
is a PCT L\X property, then we have: (M̂ |= φ)⇒ (M |= φ).

Proof. To prove the preservation of PCTL properties, we follow an inductive reasoning
on the PCTL structure. ��

6 Experimental Results

In this section, we apply our abstraction algorithm on an online shopping system case
study [25]. In order to show our abstraction efficiency, we use our translation algorithm
[2] to map SysML activity diagrams into PRISM input language where we verify PCTL
properties on both: the concrete and the abstract models. This is done in the purpose
of providing experimental results demonstrating the efficiency and the validity of our
abstraction.

To this end, we compare the results perspective of the verification cost (β ) in terms
of time verification and the abstraction efficiency (η) in terms of model’s time con-
struction. With respect to the verification cost, we measure both the time required to
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construct the model, denoted by Tc, and the time required for verifying the property,

denoted by Tv. The verification cost is given by β = 1− |T v(M̂)|
|T v(M)| . Concerning the ab-

straction efficiency, we measure the number of transitions (#t) for both concrete and

abstract diagrams. It is given by η = 1− |T c(M̂)|
|T c(M)| . The result of the verification of a

property is denoted by Res.

6.1 Model Description

The online shopping system aims at providing services for purchasing online items.
Figure 5a illustrates the corresponding SysML activity diagram4. It contains four call-
behavior actions5, which are: “Browse Catalogue”, “Make Order”, “Process Order” and
“Shipment”. As example, Figure 5b expands the call behavior action “Process Order”.

(a) Online Shopping System. (b) Process Order.

Fig. 5. The Concrete SysML Activity Diagram

6.2 Property Specification

In order to verify the functional requirements of the online shopping system, we propose
the following properties and its related PCTL expressions.

1. For each order, what is the minimum probability value to make a delivery? From
this expression, it is clear that only the main diagram (M) and “Process Order”
behavior (M3) are affected. We express this property in PCTL as follows, where n
is the order number and K is the maximum allowed number to make an order.

Pmin =?[(n ≤ K) U (Delivery)]

4 This diagram is not symmetric which mean that we can not benefit from the symmetry reduc-
tion built within PRISM.

5 Each call-behavior action is represented by its proper diagram.
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2. After browsing the catalogue, what is the minimum probability value to ship a se-
lected item? The propositions of this property belong to the main diagram (M) and
both behaviors: “Browse Catalogue”, “Process Order” and “Shipment” where n and
m representing the order and the shipment numbers, respectively. Its corresponding
PCTL expression is:

Pmin =?[((SelectItem ∧ m = n ∧ m ≤ K) ⇒ F(Delivery)) ⇒ F(Shipment)].

6.3 Verification Result

After applying our abstraction algorithm, we obtain the abstract SysML activity dia-
grams shown in Figure 6 for property #1. Due to the lack of space, we are not providing
the abstract SysML activity diagram related to property #2.

(a) Online Shopping System. (b) Process Order.

Fig. 6. The Abstract SysML Activity Diagram

(a) Property #1. (b) Property #2.

Fig. 7. Shopping Online System Abstraction Rate

Figure 7a illustrates both abstraction rates in term of model size and computation
time for the verification of property #1. For the verification of property #2, Figure 7b
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shows the evolution of the abstraction rate in terms of model size and computation
time. In summary, the results demonstrate that the abstraction efficiency is important
especially when the model’ size is growing. Furthermore, they show that our abstraction
algorithm actually preserves the verification results.

7 Conclusion

In this paper, we presented an automatic abstraction approach to improve the scalabil-
ity of probabilistic model-checking in general and more especially for the verification
of SysML activity diagrams. Also, we proposed a calculus dedicated to these diagrams.
We have proved the soundness of our algorithm by defining a probabilistic weak simula-
tion relation between the semantics of the abstract and the concrete models. In addition,
the preservation of the satisfaction of PCTL\X properties is proved. Finally, we demon-
strated the effectiveness of our approach by applying it on an online shopping system
application.

As future work, we would like to extend our approach by investigating several di-
rections. First, we intend to integrate our algorithm within PRISM model checker. Sec-
ond, we plan to apply our proposed abstraction on a composition of SysML activity
diagrams. Next, we explore other abstraction approaches especially data abstraction
targeting events and guards reduction. Finally, we intend to investigate reducing the
property within the model at the same time to check M̂ |= P̂ instead of M |= P.
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