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Preface

This volume contains the proceedings of the 10th International Conference on
Software Engineering and Formal Methods (SEFM 2012) held October 1–5, 2012
in Thessaloniki, Greece. The conference was hosted by the University of Sheffield
International Faculty, CITY College, and the South East European Research
Centre (SEERC), under the auspices of the Macedonia Thrace Chapter of the
Greek Computer Society (EPY).

The SEFM conference aspires to advance the state of the art in formal meth-
ods, to enhance their scalability and usability with regards to their application in
the software industry, and to promote their integration with practical engineer-
ing methods. To this end, SEFM brings together practitioners and researchers
from academia, industry, and government.

The Program Committee of SEFM 2012 received 98 full submissions from all
over the world. Each paper was reviewed by at least three reviewers. The Pro-
gram Committee selected 19 research papers, 2 tool papers, and 3 short papers
for inclusion in this volume, based on review reports and discussions, together
with 2 invited papers. The conference program included three keynote speakers:
Cliff Jones (Newcastle University), Corrado Priami (University of Trento), and
Wolfgang Reisig (University of Berlin).

The conference was preceded by a graduate school (September 24–28, 2012)
and four satellite workshops (October 1–2, 2012) following the traditions of
SEFM. The lectures were held by Antonio Cerone (UNU-IIST), Markus Roggen-
bach (Swansea University), Bernd-Holger Schlingloff (Humboldt University),
Gerardo Schneider (University of Gothenburg), and Siraj Ahmed Shaikh (Coven-
try University). The workshops that joined the conference were the 3rd Interna-
tional Workshop on Formal Methods and Agile Methods (FM+AM 2012), the
6th International Workshop on Foundations and Techniques for Open Source
Software Certification (OpenCert 2012), the 1st International Symposium on
Innovation and Sustainability in Education (InSuEdu 2012), and the 1st Inter-
national Symposium on Modelling and Knowledge Management for Sustainable
Development (MoKMaSD 2012).

We would like to thank the invited speakers and all the authors for sub-
mitting their papers, as well as the Program Committee members and all the
reviewers for their efforts in the selection process. We would also like to thank
the school lecturers for accepting our invitation to present at the school. Finally,
we are grateful to the members of the Steering Committee and the Organizing
Committee, as well as everyone else whose efforts contributed to making the
conference a success.

July 2012 George Eleftherakis
Mike Hinchey

Mike Holcombe
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Abstraction as a Unifying Link
for Formal Approaches to Concurrency

Cliff B. Jones

School of Computing Science, Newcastle University, NE1 7RU, UK
cliff.jones@ncl.ac.uk

Abstract. Abstraction is a crucial tool in specifying and justifying developments
of systems. This observation is recognised in many different methods for devel-
oping sequential software; it also applies to some approaches to the formal de-
velopment of concurrent systems although there its use is perhaps less uniform.
The rely/guarantee approach to formal design has, for example, been shown to be
capable of recording the design of complex concurrent software in a “top down”
stepwise process that proceeds from abstract specification to code. In contrast,
separation logics were –at least initially– motivated by reasoning about details
of extant code. Such approaches can be thought of as “bottom up”. The same
“top down/bottom up” distinction can be applied to “atomicity refinement” and
“linearisability”. Some useful mixes of these approaches already exist and they
are neither to be viewed as competitive approaches nor are they irrevocably con-
fined by the broad categorisation. This paper reports on recent developments and
presents the case for how careful use of abstractions can make it easier to marry
the respective advantages of different approaches to reasoning about concurrency.

1 Introduction

There is much research activity around formal support for concurrency. The reasons for
this ought be clear. For non-critical applications, good (semi-formal) engineering meth-
ods are sometimes adequate for sequential programs. Such methods borrow much from
past formal research and, even here, organisations such as Praxis report that adding for-
mal methods to the development process can bring about a return on investment because
of the tighter control and reduction in the late discovery of errors that are expensive to
fix because they result from decisions made much earlier in the design process.

Once one moves to the design of concurrent systems, the enormous increase in the
number of execution paths brought about by thread interaction makes it effectively im-
possible to have any confidence in correctness without some form of formal proof.

One might ask why designers should be so rash as to venture into such dangerous
territory. Unfortunately, there is no choice — the pressures to face concurrency be-
come ever greater. First, the (economic) limits for the extrapolation of “Moore’s law”
mean that hardware performance can only be increased by moving from “multi-core”
to “many-core” hardware (i.e. numbers of threads likely to measured in hundreds). Sec-
ondly, embedded systems often run in parallel with physical phenomena that are vary-
ing continuously; control software linked to the physical world by sensors and actuators

G. Eleftherakis, M. Hinchey, and M. Holcombe (Eds.): SEFM 2012, LNCS 7504, pp. 1–15, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 C.B. Jones

cannot ignore these state changes. Thirdly, a class of application has to be implemented
by physically distributed sets of processors.

The combination of a realisation that concurrency cannot be avoided with the ac-
knowledgement that its mastery requires formal tools has generated many research
strands. Notable activity in the areas of rely/guarantee thinking, separation logic, atom-
icity refinement and linearisability is addressed in the body of this paper (citations to
relevant papers are given below). To apply some of these research ideas to the paper
itself, the attempt here is to look for constructive interaction between several threads of
research. In particular, this paper looks to tease out the key concepts from the various
methods and indicate a path to one or more methods that achieve real synergy from
what are currently rather distinct approaches. This is a much deeper exercise than just
seeking combinations of notations.

A key distinction between top-down and bottom-up approaches is used below. Any
such dichotomy must be viewed with care and there is certainly no intention to make
a judgement that one approach is “better” than the other. If the task is to improve the
quality of millions of lines of legacy code, there is little choice but to use bottom-up
methods. On the other hand, faced with the challenge of developing and documenting a
large system from scratch, it would be unwise not to record each stage of design “from
the top” (i.e. the specification).1 One particular form of top-down formal development
that makes solid engineering sense is known as “posit and prove”. The idea is that each
step of design starts by recording an engineering intuition that might be a decomposition
of a problem into sub-tasks or the choice of a data representation for something that
was previously an abstraction that achieved brevity. In suitable formal methods, such a
posited step gives rise to “proof obligations” whose discharge justifies the correctness
of the step. It is well understood that redundancy is essential for dependability and this
posit and prove approach provides constructive redundancy. As discussed below, there
is a technical requirement of “compositionality” for such methods. Although relatively
easy to achieve for sequential systems, compositionality is far more elusive in the world
of concurrent systems.

It is however important to remember that no judgement is being made here about the
relative merits of top-down and bottom-up approaches. There is indeed evidence that,
in (complex) bottom-up analysis, it is necessary to recreate abstractions that are hidden
in the code [9,39]. It is hoped, and anticipated, that any new methods devised from
–for example– the combination of concepts from separation logic and rely/guarantee
thinking will provide benefit to both top-down and bottom-up approaches.

1.1 Rely/Guarantee Thinking

Specifications of sequential programs are normally given as pre and post conditions.2

Floyd showed [16] how predicate calculus assertions could be added to a flowchart of

1 Of course, there exists the issue of how to obtain the starting specification. This is not the
subject of the current paper but some contribution to a resolution of this issue is made in [36].
Interestingly, this joint work with Ian Hayes and Michael Jackson uses rely/guarantee ideas.

2 This paper does not waste space making the case for formality in system design but it is worth
remembering that formal concepts (e.g. data type invariants) are useful even when used in
specifications and developments that are not completely formal.
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a program to present a proof that the program satisfied a specification; Hoare made
the essential step [23] to give an inference system for asserted texts. Few programs can
tolerate completely arbitrary starting states and it is important to note that pre conditions
effectively grant a developer assumptions about the starting states in which the created
software will be deployed; in contrast, post conditions are requirements on the running
code.

The essence of concurrency is interference. In shared variable concurrency, such
interference manifests itself by one thread having to tolerate changes being made to
its state by other processes.3 No useful program can achieve a sensible outcome in the
presence of completely arbitrary interference. This is recognised in the rely/guarantee
approach [28,29,30] by recording the acceptable interference as a relation –known as a
rely condition– over pairs of states. (The use of relations fits with the fact that VDM [27]
employs relational post conditions.) Like pre conditions, rely conditions can be seen as
permission for the developer to make assumptions about contexts in which the final
code will be deployed. The commitment as to what interference a running component
will impose on its neighbours is recorded in a guarantee condition (again a relation over
states).

Not surprisingly, the proof obligations required in rely/guarantee reasoning are more
complex than for sequential programs. There is also scope for more variability and the
proof obligations concerned with introducing concurrency differ over various publica-
tions. One form (geared to decomposition — see Sect. 2.1) is:

Par-I

{P ,Rl} sl {Gl ,Ql}
{P ,Rr} sr {Gr ,Qr}

R ∨ Gr ⇒ Rl

R ∨ Gl ⇒ Rr

Gl ∨ Gr ⇒ G
↼−
P ∧Ql ∧Qr ∧ (R ∨ Gl ∨ Gr )

∗ ⇒ Q
{P ,R} sl || sr {G,Q}

What is crucial is that rely/guarantee systems of rules can be made “compositional”
in the same sense that Hoare-like methods for sequential programs enjoy this essential
property: a specification with rely/guarantee conditions records all that a developer need
know to create acceptable code. De Roever’s exhaustive survey book [10] distinguishes
between compositional and non-compositional development methods pointing out that
the post-facto “Einmischungsfrei” proof obligation in the Owicki/Gries method makes
it non-compositional.

Examples of rely/guarantee development are postponed to Section 2 where future
issues are explored. The most approachable text on past research in this area might
be [31]; a proof of the soundness of rely/guarantee methods is given in [7].

Compositionality is key to methods that are to be used in a top-down style where
a development is started from an overall specification and decomposed step by step
until the finest sub-components have been developed into code. Data abstraction is key

3 Process algebras might appear to finesse the whole issue of “states” but processes can be
constructed that effectively store values that can be changed and read by interaction; the issue
of interference reappears as reasoning about the traces of such interaction.



4 C.B. Jones

to achieving brief and understandable specifications; the corresponding development
method of data reification is also compositional. Interaction between data reification
and rely/guarantee thinking is explored in Section 3.1 below.

1.2 Separation Logic(s)

Just as in the preceding section, it is neither the aim to offer a complete description nor
to present a full history of research on separation logics4 and the extension to concurrent
separation logic here. Some important milestones include [6,46,44,51,26,52,45,4,47].
In fact, Peter O’Hearn pointed out at the Cambridge meeting to mark Tony Hoare’s
75th birthday that the fundamental idea of disjoint parallelism dates back to [25]. Of
interest for the current paper is the notion of “separating conjunction” and the emphasis
on reasoning about heap variables.5

To show that execution threads do not “race” on access to a particular variable, it
is enough to establish that there is mutual exclusion between any reference from those
threads to the relevant variable. With standard (“stack”) variables, this can be achieved
by ensuring that each variable is visible to at most one thread. Separation logic is, how-
ever, more often applied to programs using dynamic (“heap”) variables and it offers
ways of reasoning about the dynamic “ownership” of their addresses. The principal
tool is the “separating conjunction”: if two conjuncts have disjoint frames, they can be
associated with different threads of execution. Thus, two parallel processes can achieve
a post condition written as a separating conjunction by each achieving one of the con-
juncts. There is no interference and no “race” on addresses.

One important aspect of separation logic is that ownership can change dynamically;
this does however appear to be the reason that the “frame” of an operation is determined
by the alphabet of its assertions. Perhaps more significant for the objectives of the cur-
rent paper is that there are –in addition to separating conjunction– a number of other
operators in separation logic and that all of the operators are linked by useful algebraic
laws. A practical point is that the researchers involved with separation logic have put
considerable effort into providing tool support for their ideas.

The majority of papers on separation logic focus on “heap” variables6 that can be dy-
namically allocated and freed. The examples chosen are typically of low-level (operat-
ing system like) code performing tasks like maintaining concurrent queues and delicate
manipulations of tree representations. This creates the impression that separation logic
is aimed at “bottom up” analysis of extant code. Furthermore, much of the commend-
able effort on tool support is aimed at establishing freedom from stated faults such as
race conditions in extant code.

As an example (that is useful in Section 2) Reynolds considers a sequential in place
list reversal in [52]; the introduction of the problem is:

4 The justification for using the plural of “logic” is [49].
5 In [50] a move to high level programming constructs is made — that paper does not, however,

link the constructs to concurrency.
6 In [48], the ideas of separation logic are applied to “stack” variables but the resulting system

appears less pleasing than that for heap variables.
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The following program performs an in-place reversal of a list:

j : = nil; while i �= nil do
(k : = [i + 1]; [i + 1] := j ; j : = i ; i : = k).

(Here the notation [e] denotes the contents of the storage at address e.)

The reasoning then employs “separating conjunction” (∗) as in

∃α, β · list(α, i) ∗ list(β, j )
to specify that the lists starting respectively at addresses i and j encompass separate
sets of addresses. The extremely succinct separation logic rule for a parallel construct
is

SL

{Pl} sl {Ql}
{Pr} sr {Qr}

{Pl ∗ Pr} sl || sr {Ql ∗Qr}
There is a lot going on in this compact rule. The separating conjunction (written as an
infix “*” operator) is only valid if the frames of the two disjuncts are disjoint. Moreover,
since there is no explicit declaration of the read/write frames of either operand, these
are determined by the alphabets of the expressions.7 It is also the norm that the SL rule
is used on heap variables (i.e. machine addresses that are allocated at run time rather
than names of variables that are translated to machine addresses by a compiler).

Before considering the potential for using the core ideas of such ownership logics
early in the design process, the next section reviews what has already been done to
obtain complementary benefits from the two approaches outlined.

1.3 Existing Complementarity

The research around rely/guarantee thinking and separation logics is extremely ac-
tive. Both [57] and Viktor Vafeiadis’ Cambridge thesis [56] propose a combination
or rely/guarantee and separation thinking: the “RGSep” rules neatly specialise to either
of the original sets of rules.8

RGSep

{Pl ,R ∪Gr} sl {Gl ,Ql}
{Pr ,R ∪Gl} sr {Gr ,Qr}

{Pl ∗ Pr ,R} sl || sr {Gl ∪Gr ,Ql ∗Qr}
(The brevity of this rule is slightly artificial: see discussion in Sect. 2.1.)

Matt Parkinson’s “Deny/Guarantee” system [14] extends rely/guarantee ideas to
cope with the dynamic forking of threads. Although it belongs to a later discussion,
it is also worth mentioning here the “RGSim” approach [40].

7 This has the surprising consequence that some expression E and E ∧ x = x do not have an
equivalent effect.

8 Xinyu Feng’s research on SAGL [15] goes in a similar direction to RGSep — for reasons of
space, discussion here is confined to the latter.
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An interesting trace of interaction between the two main approaches discussed so
far can be seen in a series of papers that all address “Asynchronous Communication
Methods” in general — and more specifically Hugo Simpson’s “4-slot” algorithm [54].
Richard Bornat is a key figure in Separation Logic research but both of his papers [2,3]
make use of rely/guarantee descriptions — a fact that is explicit even in the title of the
earlier contribution. The current author’s contributions [37,38] interleave in time with
Bornat’s and throw an interesting light on a distinction that has been drawn between
methods. The talk by Peter O’Hearn at the 2005 MFPS (published as [45]) suggested
that the natural tool for proving the absence of data races is separation logic — in con-
trast, rely/guarantee reasoning is appropriate for “racy” programs. One key feature of
Simpson’s 4-slot algorithm is the avoidance of clashes (or data races) on any of the four
slots used as an interface between the entirely asynchronous read/write processes. How-
ever, [38] uses rely/guarantee conditions to describe the non-interference at an abstract
level — in fact, this is done before the number of slots has been determined.

The MFPS categorisation can be useful but it is important to remember that any such
split must be used judiciously. (This warning applies, of course, also to the use of “top
down” versus “bottom up” in the current paper.)

2 Seeking Further Synergy

It is clear that neither rely/guarantee nor separation logic alone can cope with all forms
of concurrency reasoning. This is precisely the reason that looking for synergy is worth-
while. Lacunae on the rely/guarantee side certainly include the ability to reason about
(dynamic) ownership and discourses about heap variables. (The extent to which the
ideas of Sect. 2.4 below can finesse these gaps is yet to be determined.)

From the other side, there are concepts with which separation logic appears to strug-
gle because interference can be problematic without races. Consider the innocent look-
ing thread, say α:

x ← 1; y ← x

Suppose that some thread control variables are added so that parallel processes do not
interfere during the execution of either assignment in thread α. The classical Hoare rule
would carry the information that x has the value 1 to the precondition of the second
assignment. If there is a concurrent process that increases the value of x by an arbitrary
amount (e.g. a loop that continues to execute x ← x + 1), then this transfer of “knowl-
edge” is certainly invalid. There are no data races here but, if one is to conclude y ≥ 1,
there have to be assumptions (rely conditions) about the context in which thread α will
run.

This section reports on some on-going research and speculates about some further
directions where abstraction might make it possible to get underneath the syntactic de-
tails of both rely/guarantee and separation logic; the hope is that, by really understand-
ing the conceptual contribution, one or more methods will evolve that are intuitive to
the intended users.
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2.1 Algebraic Laws about Rely/Guarantee

It has never been the intention to fix on one set of proof rules for rely/guarantee rea-
soning. One cause of differences between rules is the distinction between rules that are
convenient for composition versus those best suited to decomposition. This distinction
can be illustrated even on the standard Hoare-rule for while constructs: the most com-
mon form of the rule gives the post-condition of a while as the conjunction of the loop
invariant (say P ) with the negation of the test condition written in the loop construct —
thus P ∧ ¬ b. This is a useful composition rule but it is unlikely that, when faced with
a design step, the post condition will fall neatly into such a conjunction. An equivalent
Hoare rule with an arbitrary post condition of Q to be achieved after the loop requires
an additional hypothesis that P ∧ ¬ b ⇒ Q .9 For pre/post conditions, this distinction
is small and often glossed over in texts but for more complex rely/guarantee specifica-
tions, the difference in presentation between composition and decomposition rules is
greater — as can be seen by contrasting the rules in Sects. 1.1/1.3. Of course, the rules
are related by suitable “weakening rules” but the choice of an appropriate form of the
rule does matter when providing tool support for proof obligation generation.

There are also more interesting differences between versions of rules that generate
proof obligations for rely/guarantee reasoning. In [8], for example, an “evolution in-
variant” is used that can be thought of as relating the initial state to any state that can
arise. Just as (standard, single state) data type invariants have proved useful intuitive
aids in developments that are not necessarily formal, the idea of evolution invariants
has sparked interest in a number of areas.

These points prompted a desire to find something more basic that could be used to
reason about interference in a rely/guarantee style. In [18], inspiration is drawn from
the refinement calculus as presented by Carroll Morgan [41] (and, in particular the
“invariant command” of [42]) to employ guar and rely constructs written as commands.
The move away from fixed format presentation of rely/guarantee as in

{P ,R} s {G,Q}
brings advantages similar to those of the refinement calculus over Hoare-triples.10 In
addition, it makes clear that there is an algebra of the clauses. For example, the trading
of clauses between guarantee and post conditions that appears almost as black magic in
earlier papers becomes a law

(guar G • [Q ∧G∗]) = (guar G • [Q ])

Furthermore, the collection of laws in [18] fits with a pleasing refinement calculus top-
down development style (the reader is referred to that paper for the full set of rules and
a worked example — the style of formal semantics used there is that of [21]).

9 VDM uses relational post conditions that make it possible to express termination (sometimes
referred to as “total correctness”) via well-founded relations — this feels more natural than
the “variant function” of [11]. Be that as it may, the same distinction between composition and
decomposition presentations remains.

10 Jürgen Dingel has also looked at presenting rely/guarantee ideas in a form of refinement cal-
culus setting — his objective in [13,12] was not however to separate the commands in the way
done in [18].
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2.2 Framing

The early papers on rely/guarantee reasoning used VDM’s keyword style to define the
rd/wr frames. The move to a refinement calculus presentation not only gives a more
linear notation, it also prompts the use of a compact notation to specify the write frame
of a command. Thus:

x : [Q ]

requires that the relational post condition Q is achieved with changes only being made
to the variable x . This makes a small step towards the compact notation of separation
logic. Rather than go to the complete determination of frames from the alphabets of
assertions used there, a sensible intermediate step might be to write pre and post con-
ditions as predicates with explicit parameter lists and have the arguments of the former
determine the read frame and the extra parameters of the latter determine the write
frame. The indirection of having named predicates would pose little overhead in large
applications because it is rarely practical to write specifications in a single line.

2.3 Possible Values

Another interesting development in [38] is the usefulness of being able, in assertions,
to discuss the “possible values” that a variable can take. This idea actually arose from a
flaw in an earlier version of our development of Simpson’s four-slot implementation of
Asynchronous Communication Mechanisms: at some point there was a need to record
in a post condition for a Read (sub-)operation that the variable hold -r acquired the
value from a variable fresh-w that could be set by a Write process. This was written in

the earlier, flawed, version of the development [37] as hold -r =
↼−−−−
fresh-w ∨ hold -r =

fresh-w . But allowing that hold -r acquired the initial or final values of fresh-w is
not enough because the sibling (Write) process could execute many assignments to
fresh-w whilst the Read process was executing. This prompted a special notation for
the set of values that can arise and the post condition of the Read process can be cor-

rectly recorded as hold -r ∈�fresh-w . The possible values notation is equally useful in,
say, guarantee conditions and the full payoff comes in proofs.

An encouraging sign for the utility of the possible values notation (�x ) is that many
other uses have been found for the same concept. Furthermore, a pleasing link with
Ian Hayes’ on-going research on non-deterministic expression evaluation is formalised
in [20].

2.4 Separation as an Abstraction

Thus far, several ways in which abstraction can facilitate both cleaner developments
and, more generally, useful concepts for developing programs have been shown. In
this more speculative section, a way of viewing the core concept of separation as an
abstraction is explored.

Returning to Reynolds’ example of reversing a sequence, a top-down development
might start with a post-condition built around the function rev :X ∗ → X ∗
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rev(s) � if s = [ ] then s else rev(tl s)� [hd s ] fi

The post condition itself only has to require that some variable, say s , is changed so
that

r , s : [r = rev(↼−s )]

(Notice that this specification gives the designer the permission to overwrite the
variable s .)

This can be achieved by the following abstract program:

r ← [ ];
while s �= [ ] do
r , s : [r = [hd↼−s ]�↼−r ∧ s = tl↼−s ]

{r � rev(s) = rev(↼−s )}
od

Thus far, s and r are assumed to be distinct variables. That they are separate is a use-
ful and natural abstraction. A design decision to choose a representation in which both
variables are stored in the same vector must maintain the essential points of that ab-
straction! The requirement to maintain the abstraction of separation thus moves to a
data reification step. It is yet to be worked out what form of separation logic best suits
this view but it is hoped that is will again be a step towards combining the advantages of
separation logic thinking with ideas from rely/guarantee and data reification. (Sect. 3.1
describes existing links between rely/guarantee reasoning and data reification.)

2.5 Fiction of Atomicity as an Abstraction for Linearisability

There is insufficient space here to go into a complete exploration of a further pair of
approaches but it is worth mentioning that there are other issues that fit the analysis
of two ideas that have evolved from top-down and bottom-up views and look ripe for
reconsideration.

Research on linearisability was put on a firm foundation by [22]; recent interesting
papers include [17,5]. The basic idea is to look at detailed sub-steps and to find a larger
atomic operation that would have the same effect.

The idea that it is possible, in a top-down design process, to use a “fiction of atomic-
ity” is discussed in [32,33] (for the origins of the ideas see references in these papers).
The development process that links the abstraction to its realisation is known as “atom-
icity refinement” (or “splitting (software) atoms safely”). In one particular version of
this process, equivalences were found that justified enhanced concurrency. What was
crucial to the justification of these equivalences (see, for example, [53]) was a careful
analysis of the language in which observations can be made. (To make the point most
simply, if the observation language can observe timings, parallel processes are likely to
be seen as running faster; but there are much more subtle dependencies to be taken into
account as well.)

It must again be worthwhile to look at how these top-down and bottom-up views of
varying the level of atomicity of processes can benefit from each other. Furthermore,
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both the basic idea of separate sets of addresses and of rely/guarantee-like assumptions
about the effect of the processes look likely to be important when reasoning about the
different granularities.

3 Further Observations on Abstraction

Much is being made about the virtues of “abstraction” in this paper. It is useful to look
both at some past successes and issues around the use of this panacea in software design.
Section 2 starts out with a confession that the ideas in that section are speculative; it is
likely that “issues” will arise in their development and that past experience might be
useful in their resolution.

3.1 Rely/Guarantee Thinking and Data Reification

It is difficult to exaggerate the importance of data abstraction in specifying computer
systems. Whilst it is true that there are cases like sorting where a post condition is much
easier to write than an algorithm, most complex computing tasks can only be described
in a brief and understandable way if their description is couched in terms of abstract
objects that match the problem in hand. Of course, mathematical abstractions11 are not
necessarily available in programming languages. The top-down, stepwise, process of
“reifying” abstractions to data types that are available in implementation languages is a
key tool of formal methods (one of the first books to emphasise this is [27] and it has
been given its due prominence in VDM ever since).

Because the current author had seen this importance, it was completely natural that
–even in the earliest rely/guarantee developments– data abstraction and reification were
deployed. What was less apparent was the strength of the link between the ideas. In
fact, it was not until [33] that full recognition was given to the extent to which the
ability to find a representation affected whether or not granularity assumptions could be
met without locking. Having noticed this –on a range of examples– it can now be used
to help guide the choice of rely and guarantee predicates.

3.2 What Happens When Abstraction Fails?

It is illuminating to sketch the history of data abstraction/reification in VDM.12 Peter
Lucas’ first proof of the equivalence of two distinct (VDL) operational semantic for-
mulations in fact used a “twin machine” idea that amounted to a relation between the
two models. It was only later that the research on VDM focused on the use of a “re-
trieve” function that was in effect a homomorphism from the representation back to the
abstraction. This idea became the standard in VDM (e.g. [27]) and there was even a test
devised for “implementation bias”. Everything was rosy in the abstraction garden until
a few contrary examples appeared where, in each, it was impossible to find an unbiased

11 It is interesting to remember that all of the formal specification notations VDM [27], Z [19]
and B [1] employ the same collection of abstract objects: sets, sequences, maps and some form
of record.

12 This is done more fully, and in the context of other research, in [35].
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state that covered all allowable implementations. The essence of the problem was that,
for these rare applications, the abstract state had to contain information that allowed
non-determinacy; but once design decisions removed the non-determinacy, the states
could be simplified in a way that meant they had less information than the abstraction;
this meant that no homomorphism could be found.

The problem of justifying such design decisions was overcome by adding a new data
reification rule to VDM that derives from the research of Tobias Nipkow [43] (a parallel
development in Oxford led to [24]). The essential point here is that one should strive for
“bias freedom” but that it might not always be attainable. If this is genuinely the case,
there may be a need to devise new proof methods.

One particular “trick” that is often used in reasoning about concurrent programs is
to add “auxiliary” (or “ghost”) variables that record information that is not (readily)
available in the actual variables of a program. The temptation to do this is often strong
but this author has doubts about the wisdom of giving in to it. The danger is that it
is difficult to put precise limits on what it is legitimate to record in ghost variables.
Compositionality can be completely destroyed by recording information about a thread
that one might wish to revise without changing the design of any concurrent threads.
More is said on this topic in [34].

4 Conclusions and Next Steps

Clearly, much remains to be done to bring about intellectual and software tools that will
contribute to the work of software design for concurrent systems.

In some senses, what marks out a useful formal method is not its ability to express
anything but rather its expressive weakness! One seeks a notation that can cover a use-
ful class of applications but be weak enough to be tractable. For some applications
rely/guarantee conditions –coupled with liberal amounts of abstraction– fit this pattern.
The basic rely/guarantee relations make it possible to go through a top-down develop-
ment of non-trivial algorithms that allow (at least abstract) races on variable access.
Ketil Stølen showed in [55] that the same basic framework can be extended to han-
dle progress arguments. Similarly, separation logic approaches employ a notation for
which useful tool support has been developed. What one has to seek is a sweet spot
where much can be handled with a (close to) minimum of formal overhead.

Although the current author finds compact notations attractive (and remember the
point made by Christopher Strachey that it is far easier to manipulate a string of symbols
that fit on a line than multi-line texts), it is unavoidable that specifications of large sys-
tems get recorded using long formulae. This author has written many papers extolling
the advantages of abstraction but has seen enough formal specifications of systems such
as “cruise control” to avoid setting “single line specifications” as an objective. What is
important is to have notations whose operators are linked with useful algebraic prop-
erties: separation logic clearly achieves this and, for rely/guarantee, [18] makes a first
step in this direction but the objective must be kept in mind.

Another area where separation logic researchers have been wise is in their emphasis
on tool support for their ideas. This must –and will– be an objective of our research to
bring together different approaches to concurrency reasoning.
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It is sadly the case that most currently available programming languages are poor ve-
hicles for expressing (safe) concurrency. There is, therefore, a temptation to plan to em-
body the ideas from the research adumbrated in the body of this paper into yet-another
programming language. Such is not the immediate objective of the current author who
has seen too many languages that offer at most one new idea but implement many other
concepts less well than existing languages. The first step is tractable design concepts
(that might be used to develop programs into patterns in existing languages); it would
be pleasing if these patterns were adopted by some careful language designer(s).
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Abstract. We present COSBI LAB Language (L for short), a simple model-
ing language for biochemical systems. L features stochastic multiset rewriting,
defined in part through rewriting rules, and in part through imperative code.

We provide a continuous-time Markov chain semantics forL at three different
abstraction levels, linked by Galois connections. We then describe a simulation al-
gorithm for the most concrete semantics, which is then adapted to work at higher
abstract levels while improving space and time performance. Doing so results
in the well-known Gillespie’s Direct Method, as well as in a further optimized
algorithm.

1 Introduction

In this paper we present a computer language, called L , for modeling and simulat-
ing biochemical systems. In such setting, we are concerned with the modeling of the
kinds of behaviour leading to the creation of biomolecular complexes and their mutual
interaction. Complexes are to be thought as an aggregation of smaller molecules, kept
together by chemical bonds on specific zones called interaction sites.

Different kinds of mathematical structures have been used to model such entities.
Often, these take inspiration from graphs and their generalizations, e.g., hypergraphs.
Here, the smaller molecules are represented by graph nodes, which are taken as prim-
itive stateful entities. We shall name these stateful nodes “boxes”. Boxes also have a
list of sites, from which they can be connected to other boxes by (undirected) edges.
In this framework, complexes are just the connected components of the graphs. System
evolution is then typically modeled via a stochastic transition system, hence provid-
ing a semantics based on continuous-time Markov chains; this is done to capture the
inherent uncertainty of the biological phenomena, which are “noisy” in their nature.
The actual definition of the transition system depends on the modeling language at
hand. For instance, BlenX [5] is a language which uses a graph-like representation of
complexes, whose boxes are equipped with a process in a stochastic process algebra.
There, the stochastic operational semantics of the processes inside the boxes form the
basis for defining the transition system for graphs. Kappa [2] instead resorts to stochas-
tic rewriting rules, borrowing from graph rewriting techniques. These rules can be used
to express in an intuitive way how the graph is affected by biochemical reactions.

Often, however, the precise graph structure of complexes, their chemical bonds, and
the nature of the interaction sites is still unknown to researchers in biology. Modelers
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wishing to use graph-based modeling languages are then asked to provide more data
than those available. In such cases, it would be better to use a less detailed structure to
represent complexes. In our L language we use box multisets in lieu of box graphs.
Consequently, interaction sites are no longer represented, as well as exact chemical
bonds. Rather, we just represent the fact that two molecules belong to the same com-
plexes (or to different ones). This approach seem to be closer to the actual knowledge
available to researchers. As a bonus, we also get some performance improvements in
simulation, since e.g. graph isomorphism tests (untractable, but quadratic time under
certain assumptions [7]) are now replaced by multiset equality tests (linear time with
most representations).

In L , we use stochastic multiset rewriting rules to define the evolution of a system.
Three kind of rules are used: association rules (assoc) which merge two complexes,
dissociation rules (dissoc) which split them, and general dynamics dyn to model the
rest of the interactions. These rules are defined using complex patterns, selecting which
complexes are to be rewritten. Rewriting is, in part, automatic (for assoc and dissoc)
and can be augmented by imperative code whenever one needs to describe custom mul-
tiset manipulations. The effect of this code is atomic: no other rule firing is interleaved.
Having atomic “large” effects is useful, since otherwise such effects need to be carefully
programmed across many rules, often using “infinite” stochastic rates and dealing with
all the resulting concurrency issues [6]. For instance, if we want to model a vescicle re-
leasing at once all its carried molecules (the number of which is not statically known),
we can not use a basic rule, yet it is straightforward to program this behaviour.

We present the syntax of L in Sect. 2, and its semantics in Sect. 3. We then study
how the language can be efficiently simulated. In order to do so, we apply abstract
interpretation and construct two more abstract semantics in Sect. 4. We then apply this
to construct efficient simulation algorithms forL in Sect. 5. We start from a simple, yet
inefficient algorithm which is then adapted to exploit the abstract semantics. This results
in improvements to space and time performance. The algorithms constructed in this way
are the well-known Gillespie’s Direct Method [4] as well as a new improvement of it
which better takes advantage of the features of L .

2 Syntax

In Figure 1 we show the syntax of theL language. We give a short comment on the con-
structs in that figure. BasicType stands for a primitive type used in our language, while
BasicLiteral ranges over their values. The modeler can declare a box type, by specify-
ing a name for it and of a set of fields having basic types. More formally, FieldDecl is
a sequence of field declarations of form Field : BasicType, where Field is the name
of the field, and is unique inside the box. The field list can be empty (ε). Then, the
declaration of a box type BoxDecl has the form BoxType{FieldDecl}, where BoxType
is a name for the declared type. Moreover, FieldInit is a (possibly empty) sequence of
initialized fields, while BoxLiteral represents a box having all its declared fields instan-
tiated. For example, A{x : int; y : real} is a declaration of a box type A containing
fields x and y of the given types, and A{x = 3; y = 1.0} is an instantiation. We use Box
to denote the set of all possible box instantiations.
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BasicType ::= bool | int | real
BasicLiteral ::= BoolLiteral | IntLiteral | RealLiteral
Field ::= Ide
FieldDecl ::= ε | Field : BasicType; FieldDecl
FieldInit ::= ε | Field = BasicLiteral; FieldInit
Exp ::= BasicLiteral | null | Ide | Exp ∧ Exp | ¬Exp

| Exp + Exp | Exp − Exp | Exp ∗ Exp | Exp = Exp | Exp < Exp
| Exp.Field | Exp.count(BoxType) | Exp.first(BoxType)

BoxType ::= Ide
BoxDecl ::= BoxType{FieldDecl}
BoxLiteral ::= BoxType{FieldInit} NOTE: all declared fields must be instantiated
CplxLiteral ::= [IntLiteral : BoxLiteral; CplxLiteralTail]
CplxLiteralTail ::= ε | IntLiteral : BoxLiteral; CplxLiteralTail
Complexes ::= IntLiteral : CplxLiteral; ComplexesTail
ComplexesTail ::= ε | IntLiteral : CplxLiteral; ComplexesTail
Pattern ::= [BoxType{FieldInit} PatternTail]
PatternTail ::= ε | , BasePattern
Assoc ::= assoc Pattern Pattern rate Exp react Block
Dissoc ::= dissoc Pattern Patternno∗ rate Exp react Block
Dyn ::= dyn Pattern1 . . . Patternn rate Exp react Block
Block ::= var Ide := Exp; Block | CmdBlock
CmdBlock ::= end | Cmd ; CmdBlock
Cmd ::= skip | Ide := Exp | if Exp then Block else Block

| while Exp do Block | BoxCommand
BoxCommand ::= Ide := Exp.spawn(BoxLiteral, . . .) | Exp.spawn(Exp)

| Exp.remove(Exp) | Exp.merge(Exp) | Exp.move(Exp, Exp)
| foreach Ide : BoxType in Exp do Block | Exp.Ide := Exp

Decl ::= Assoc | Dissoc | Dyn | BoxDecl
Run ::= run Complexes end
Model ::= Run | Decl; Model

Fig. 1. Syntax of the L language

For any set S, we write mset S for the set of multisets over S, which we sometimes
identify with the set of functions S → N. A complex is a multiset of boxes, which we
represent in our syntax by a CplxLiteral. The latter is a non-empty sequence of the form
IntLiteral : BoxLiteral, where IntLiteral denotes how many instances of BoxLiteral
are present in the complex. When IntLiteral = 1, we omit to write it. For instance,
[2 : A{x = 3; y = 1.0}, B{}] is a complex. We use Cplx = mset Box to denote the set
of all possible complexes. The whole system state is then defined via the Run clause,
which specifies an initial sequence of Complexes, having form IntLiteral : CplxLiteral
where IntLiteral represents the initial population of the complex in the system at hand.

The dynamics of the system is given by multiset rewriting rules, which continuously
modify the system at hand (if no rule applies, the system does not evolve further).
Our rules are based on complex patterns. A Pattern is a sequence of literals of form
BoxType{FieldInit}, possibly followed by a wildcard ∗. Intuitively, a pattern without ∗
matches with complexes having exactly the specified boxes, while the wildcard allows
matching with complexes including other boxes as well. More formally, we say that a
box B1{ f1 = v1, . . . , fn = vn} matches with a box B2{g1 = h1, . . . , gm = hm} if B1 = B2,
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n ≤ m and for each i ∈ [1..n] there exists j ∈ [1..m] such that fi = g j and vi = h j. Then,
we say that a complex c ∈ Cplx matches with a pattern p, denoted with c |= p, if one of
the following conditions holds:

– p does not end with ∗, and there is a bijective correspondence between boxes in p
and those in c, where correspondent boxes match.

– p does end with ∗, and there is an injective correspondence between boxes in p and
those in c, where correspondent boxes match.

The following example illustrates some pattern matchings.

Example 1. Consider complexes c1 = [A{x = 1}], c2 = [B{}], c3 = [A{x = 0}, A{x = 1}],
c4 = [A{x = 1}, B{}] and c5 = [A{x = 1, y = 4}] and patterns p1 = [A], p2 = [A, A],
p3 = [A, ∗], p4 = [B], p5 = [B, ∗] and p6 = [A{x = 1}]. Then, only the following
relations hold: c1 |= p1, c1 |= p3, c1 |= p6, c2 |= p4, c2 |= p5, c3 |= p2, c3 |= p3, c4 |= p3,
c4 |= p5, c5 |= p1, c5 |= p3, c5 |= p6. �

Having defined patterns, we can now discuss the rewriting rules which lead the evo-
lution of the system. Our language features three kinds of such rules, namely Assoc,
Dissoc and Dyn. A rule assoc p1 p2 rate Exp react Block allows pairs of complexes
matching with p1 and p2 to associate. When that happens, the two reactant complexes
merge their boxes and form a new larger complex, mimicking the association of two
macromolecules in biological systems. The rate expression Exp provides the rate for the
stochastic transition, thus defining the “speed” of the association. The rate expression is
allowed to inspect the boxes in the two reactants via two special variables reactant1
and reactant2. For instance, assoc [A] [B, ∗] rate 5.2 ∗ reactant1.first(A).mass de-
fines a rate proportional to the mass of the first reactant. When an assoc rule is fired,
after the complexes are associated the code block specified in the react part is run. This
can access the newly formed product (via a special product variable) and modify it
further, e.g. by changing box fields, or adding/removing boxes. The react code block
can also spawn entirely new complexes.

A rule dissoc p1 p2 rate Exp react Block specifices the dual operation, namely
dissociation of a complex into two subcomplexes. Here, p1 specifies the complex to
break up, while p2 matches with a subcomplex to separate (no wildcard ∗ is allowed in
p2). The rate expression Exp can access reactant1 to provide a dissociation stochas-
tic rate, which is intended to define how fast is the reactant to split. In the case p2 has
multiple matches inside the reactant, we let all of them define an equally probable dis-
sociation, hence effectively dividing the rate among all the possible splits. After the rule
triggers and the split is performed, the react code block is run, and can access the new
complexes using the variables product1 and product2.

Rule dyn is used to define a generic molecular dynamics. Its semantics is as for
assoc, except that no complex merge is performed, and the react code block still has ac-
cess to the unmerged complexes reactant1 and reactant2. This rule effectively sub-
sumes assoc and dissoc, in that association/dissociation can be programmed manually
in the code block. However, associations and dissocations are so common to deserve
a special construct. Instead, the typical use for dyn is the modeling of monomolecular
reactions, in which only one reactant is present.
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The code blocks in rules are written in an imperative language, the constructs of
which are mostly standard. Therefore, we just briefly discuss the more peculiar ones.
Since the state ofL is stored in complexes, i.e. in multisets of boxes, we need constructs
to inspect and modify those. We provide a way to loop over all the boxes of a given type
in a complex (foreach b : BoxType in complex). To precisely define the semantics of
such loop, we require that the visit order follows the lexicographic order of box values.
The expression complex.first(BoxType) returns the first box in such ordering. Further
commands allows one to add (complex.spawn) and remove (complex.remove) boxes in
a complex. Similar operations can be done at the complex level: new complexes can be
created, and existing ones removed. We provide also ways to move boxes between com-
plexes (move) as well as to merge two complex as it happens for association (merge).

Example 2. As a simple example, we provide an L model for the enzymatic reaction
shown below:

E + S
k1−−⇀↽−−
k−1

ES
k2−→ EI

k3−→ E + P

The first double arrow models an enzyme molecule (E) associating and dissociating to
a substrate molecule (S ). When associated, the complex ES can react (second arrow):
the enzyme changes the substrate into some intermediate molecule (I). This reaction is
not reversible. Then, the intermediate molecule can dissociate from the enzyme, which
releases a product (P) in the system (third arrow). In L , we can model this behaviour
as follows. Below, the react blocks are used to change S into I, and then I into P.

E{} S {} I{} P{}
assoc [E] [S ] rate k1;
dissoc [E, S ] [S ] rate k−1;
dyn [E, S ] rate k2 react
reactant1.remove(reactant1.first(S ));
reactant1.spawn(I{});
end;

dissoc [E, I] [I] rate k3 react
product2.remove(product2.first(I));
product2.spawn(P{});
end;

run 100 : [E]; 100 : [S ]; end

�

3 Semantics

In this section we provide a semantics for the rules of ourL language. To keep our pre-
sentation short, we focus on the semantics of the assoc rule, only. The formal semantics
of the dissoc and dyn rules can be indeed defined similarly.

Suppose we are given a set of complexes annotated with their names. Names
uniquely identify the instances of complexes present in the system, so that complexes
comprised by exactly the same boxes are still distinguishable. For the sake of simplic-
ity, we assume that complexes’ names are natural numbers. Then, suppose that we are
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given an assoc rule which states that all the pairs of complexes satisfying patterns p1

and p2 react with a stochastic rate specified by an expression e. The semantics of the
assoc rule then collects the stochastic transitions involving all such pairs of complexes,
and their corresponding rates.

We start by defining two auxiliary binary set operators, which are similar to the
cartesian product. Operator⊗ defines the set of unordered pairs ({x1, x2}), while operator
⊗̂ defines the set of unordered pairs of distinct elements (hence requiring x1 � x2).

Definition 1 (⊗ and ⊗̂). Given two arbitrary sets S1 and S2, we define

S1 ⊗ S2= {{x1, x2} | x1∈S1 ∧ x2∈S2} S1⊗̂S2= {{x1, x2} | x1 ∈S1 ∧ x2∈S2 ∧ x1� x2}.
The following definition introduces the notion of system, representing a set of com-
plexes enriched with their names, and the notion of transition, representing two different
complexes that can react with a certain rate.

Definition 2 (Systems and Transitions). A system σ� is a set of annotated complexes,
i.e., ordered pairs 〈n, c〉 ∈ N × Cplx, where c and n represent a complex and its unique
name, respectively. We write Sys0 = ℘(N × Cplx) to denote the set of all the possible
systems. A transition is an ordered pair whose first element determines the reactants,
while the second element is the rate of the reaction. The reactants are characterized by
an unordered pair of annotated complexes. We write Tr0 = ((N×Cplx)⊗̂(N×Cplx))×R+
to denote the set of all possible transitions. Moreover, we let Res0 = ℘(Tr0).

It is worth noting that Res0 denotes all possible sets of transitions, and therefore repre-
sents the set of all possible semantics of an assoc rule.

Example 3. Let c1 = [A{x = 0}], c2 = [A{x = 1}] and c3 = [B] be three complexes, and
suppose that a system σ� is composed of 2, 1 and 2 instances of c1, c2 and c3 respec-
tively. Then, we represent σ� as follows: σ� = {〈0, c1〉 , 〈1, c1〉 , 〈0, c2〉 , 〈0, c3〉 , 〈1, c3〉}.
If we suppose that 〈0, c1〉 and 〈0, c2〉 can react with a rate 1.0, the corresponding transi-
tion is given as: 〈{〈0, c1〉 , 〈0, c2〉}, 1.0〉. �

We now define a function which selects from a system only those annotated complexes
which match with a given pattern.

Definition 3. Given a pattern p, we define a map �p�0 : Sys0 → Sys0 called the
evaluation of p in Sys0 as: �p�0σ� = {〈n, c〉 ∈ σ� | c |= p}, for any σ� ∈ Sys0.

Example 4. Consider the system σ� defined in Example 3 and a pattern [A] denoting
the complexes composed of only one box whose its type is A. Since complexes c1 and
c2 match with [A], while c3 does not, we have �[A]�0σ� = {〈0, c1〉 , 〈1, c1〉 , 〈0, c2〉}. �

We now define to the actual semantics of the assoc rule. Its general form is the follow-
ing: assoc p1 p2 rate e react Block. Starting from a system σ�, we evaluate patterns
p1 and p2 (Definition 3), obtaining two systems σ�1 and σ�2 whose complexes match
with patterns p1 and p2 respectively. Our goal is to determine all possible transitions
whose first reactant belongs to σ�1, and the second one belongs to σ�2. The rate of each
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transition is determined by evaluating the expression e. This evaluation depends on an
environment, i.e., a function which maps special variables reactant1 and reactant2

to their values. These values are the complexes which take part in the transition. The
following definition explains how it is possible to evaluate the rate characterized by an
expression e of a reaction between two complexes c1 and c2.

It is worth noting that the rate expression e should be “symmetric” in reactant1 and
reactant2: swapping their values should not affect the resulting association rate. This
reflect the fact that in biology association happens between unordered complex pairs.
To stress and enforce this symmetry, below we compute the rate as the average of the
rates resulting from both orders.

Definition 4. Let c1 and c2 be two complexes and let e be an expression characterizing
the rate of the reaction between these complexes. We determine the rate of this reaction
as follows:

rate(c1, c2, e) =
�e�expρ1 + �e�expρ2

2
,

where ρ1= [reactant1 �→c1, reactant2 �→c2] and ρ2= [reactant1 �→c2, reactant2 �→c1].

Given an assoc rule and a system, we define the set of all possible transitions that can
occur between complexes of the system.

Definition 5 (Semantics of assoc). Consider a rule assoc p1 p2 rate e react B and a
state σ� ∈ Sys0. We define the map �p1, p2, e�assoc−nc

0 : Sys0 → Res0 as

�p1, p2, e�assoc−nc
0 σ� ={

〈{〈n1, c1〉 , 〈n2, c2〉}, rate(c1, c2, e)〉 ∈ Tr0 | 〈n1, c1〉 ∈ �p1�0σ� ∧ 〈n2, c2〉 ∈ �p2�0σ�
}
.

The collecting semantics �p1, p2, e�assoc
0 : ℘(Sys0) → ℘(Res0) is defined as follows:

�p1, p2, e�assoc
0 Σ� =

{
�p1, p2, e�assoc−nc

0 σ� | σ� ∈ Σ�
}
.

Note that the semantics of the assoc rule contains only transitions of type Tr0, i.e., the
ones in which reactants must be different. This does not prevent two identical complexes
to react, since they have different names. However, a complex is prevented to react with
itself, which would be unwanted.

Example 5. Let us consider, one more time, the system σ� defined in Example 3 and let
us determine the semantics of the rules

rule1 : assoc [A] [B] rate 1.0 rule2 : assoc [A] [A] rate 1.0.

In Example 4 we showed that �[A]�0σ� = {〈0, c1〉 , 〈1, c1〉 , 〈0, c2〉}. We can, similarly
show that �[B]�0σ� = {〈0, c3〉 , 〈1, c3〉}. The following table represents the semantics of
the rules: rule1 gives rise to transitions 1.-6. from the following table, while rule2 gives
rise to transitions 7.-9.

rule1
1. 〈{〈0, c1〉 , 〈0, c3〉}, 1〉 2. 〈{〈0, c1〉 , 〈1, c3〉}, 1〉 3. 〈{〈1, c1〉 , 〈0, c3〉}, 1〉
4. 〈{〈1, c1〉 , 〈1, c3〉}, 1〉 5. 〈{〈0, c2〉 , 〈0, c3〉}, 1〉 6. 〈{〈0, c2〉 , 〈1, c3〉}, 1〉

rule2 7. 〈{〈0, c1〉 , 〈0, c2〉}, 1〉 8. 〈{〈1, c1〉 , 〈0, c2〉}, 1〉 9. 〈{〈0, c1〉 , 〈1, c1〉}, 1〉
Transitions 1.-6. occur between a complex matching with [A] and a complex matching
with [B] and their rate is 1, while in transitions 7.-9. both complexes match with [A]. �
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Fig. 2. Relationships between different levels of abstraction

Below, we state a simple property of the semantics of our expressions and commands.
As it happens in nominal calculi and in most languages with references, we have that the
actual names (n) used to annotate the “objects” (the complexes 〈n, c〉) are immaterial.

Lemma 1. The semantics of expressions, commands, and rewriting rules are stable
w.r.t. the renaming of annotated complexes. In particular, renaming does not affect the
computed transition rates for rules, or their modifications of the state.

4 Abstraction

There might be a huge number of annotated complexes satisfying the two patterns spec-
ified by an assoc rule that react. Hence, the number of reactions they give rise can
becomes enormous. Although precise, the provided semantics for rules can lead to an
inefficient simulation, as we will see. In this section we define two levels of abstraction
which we shall exploit to perform some optimization in the simulation ofL models. We
call the actual semantics of the assoc rules defined in Section 3 the semantics of level
0, while we refer to our new abstraction levels as level 1 and level 2. For both of them,
we define some opportune abstractions of Sys0 (Sys1 and Sys2) and Res0 (Res1 and
Res2), show how they can be related (via pairs of functions αsys−γsys and αres−γres) and
define two abstract semantics (�p1, p2, e�assoc

1 and �p1, p2, e�assoc
2 ) representing a sound

approximation of the actual semantics �p1, p2, e�assoc
0 of the assoc rules. In Figure 2

we give a brief outline of this idea which we then formalize in Sections 4.1 and 4.2.

4.1 Abstraction at Level 1

In Section 3 we have stated that the information about complexes’ names is not relevant
for the actual semantics of the assoc rules. Therefore, it is possible to abstract away
this piece of information and define another, more abstract semantics of these rules. In
the following we will define counterparts of Definitions 2, 3 and 5.

Although the names of complexes are not relevant for the computation of reaction
rates, it is important to know the exact amount of each complex present in a system,
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i.e. its population. This fact gives rise to another definition of the notion of system, on a
different level of abstraction. More precisely, for each complex, we memorize the num-
ber of instances of that complex present in a system. Then we remove information about
complexes’ names from the definition of transitions as well. The following definition
formalizes these intuitions.

Definition 6. A system σ is a multiset of complexes, i.e., σ ∈ mset Cplx = Sys1. A
transition is an ordered pair whose first element determines the set of reactants, while
the second element is the rate of the reaction. The set of reactants can be composed of
1 or 2 elements. The former case occurs when two identical complexes react, while the
latter case occurs when the reactants are not identical. We write Tr1 = (Cplx⊗Cplx)×R+
to denote the set of all possible transitions. Moreover, we let Res1 = ℘(Tr1).

Example 6. Under the hypotheses of Example 3 regarding the structure of complexes
c1, c2 and c3 and their populations which are, respectively 2, 1 and 2, we define the state
σ = [c1 �→ 2, c2 �→ 1, c3 �→ 2]. �

Definition 7. We define a function function names : Cplx × Sys0 → ℘(N) which for
every complex c ∈ Cplx and every system σ� ∈ Sys0 returns all possible names that c
might have in σ� as names(c, σ�) = {n ∈ N | 〈n, c〉 ∈ σ�}.
It is worth noting that

〈
℘(Sys0),⊆,∪,∩,∅,Sys0

〉
, and

〈
℘(Sys1),⊆,∪,∩,∅,Sys1

〉
(or

shortly,
〈
℘(Sys0),⊆〉 and

〈
℘(Sys1),⊆〉) are complete lattices. In the following we show

that they are also related by a Galois connection [1].

Definition 8. Let βsys
1 : Sys0 → Sys1 be defined as βsys

1 (σ�) = λc. |names(c, σ�)|.
We define the abstraction map αsys

1 : ℘(Sys0) → ℘(Sys1) and the concretization map
γ

sys
1 : ℘(Sys1)→ ℘(Sys0) as:

α
sys
1 (Σ�) = {βsys

1 (σ�) | σ� ∈ Σ�} γ
sys
1 (Σ) =

⋃{Σ� | αsys
1 (Σ�) ⊆ Σ}.

Lemma 2.
〈〈
℘(Sys0),⊆〉 , αsys

1 , γ
sys
1 ,
〈
℘(Sys1),⊆〉

〉
is a Galois connection.

The abstraction map αsys
1 modifies a system σ� by substituting the names of the com-

plexes belonging to that system with their population. The definition of γsys
1 depends on

α
sys
1 and derives from a well-known result from the theory of abstract interpretation. Its

meaning is clarified by the following lemma.

Lemma 3. Let δsys
1 : Sys1 → ℘(Sys0) be a function defined as:

δ
sys
1 (σ) = {σ� ∈ Sys0 | ∀c ∈ Cplx. |names(c, σ�)| = σ(c)}.

Then, γsys
1 (Σ) =

⋃
σ∈Σ δ

sys
1 (σ).

In the following we perform a similar abstraction to the set of transitions Res0 by re-
moving all pieces of information regarding the names of the complexes that can react.
At this point, it might be the case that more than one transition has the same reactants.
We group all these transitions together and we assign them a rate obtained as sum of
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the rates of each single transition. For instance, consider the transitions 5. and 6. from
Example 5: 〈{〈0, c2〉 , 〈0, c3〉}, 1〉 , 〈{〈0, c2〉 , 〈1, c3〉}, 1〉 ∈ Tr0. By removing complexes’
names, we have two transitions of the same form: 〈{c2, c3}, 1〉. The idea is then to sub-
stitute them with only one transition with rate 1+1 = 2: 〈{c2, c3}, 2〉 ∈ Tr1. This rate is
called propensity. We formalize our idea: the map comp we define below substitutes
the reactants of each transition by the set composed of their complexes, while the map
prop calculates the propensities of new transitions in the way we hinted at above.

Definition 9. We define maps comp : Res0 → ℘(Cplx ⊗ Cplx) and prop : (Res0 ×
(Cplx ⊗ Cplx))→ R as:

comp(R�) = {{c1, c2} | ∃n1, n2 ∈ N.∃r ∈ R+. 〈{〈n1, c1〉 , 〈n2, c2〉}, r〉 ∈ R�}
prop(R�, A) =

∑
〈B,r〉∈R� s.t. comp({〈B,r〉})=A r

Example 7. Let R� be the set composed of the 9 transitions obtained in Example 5.
Then, comp(R�) = {{c1}, {c1, c2}, {c1, c3}, {c2, c3}}. On the other hand, the propensities
are prop(R�, {c1}) = 1, prop(R�, {c1, c2}) = prop(R�, {c2, c3}) = 2, prop(R�, {c1, c3}) = 4
and prop(R�, A) = 0 for all other A ∈ ℘(Cplx ⊗ Cplx). �

We can now define another pair of abstraction and concretization maps in order to relate
Res0 and Res1.

Definition 10. We define the abstraction map αres
1 : ℘(Res0) → ℘(Res1) and the con-

cretization map γres
1 : ℘(Res1)→ ℘(Res0) as:

αres
1 (R�) = {{

〈
A, prop(R�, A)

〉
| A ∈ comp(R�)} | R� ∈ R�}

γres
1 (R) =

⋃{R� | αres
1 (R�) ⊆ R}.

Lemma 4.
〈
〈℘(Res0),⊆〉 , αres

1 , γ
res
1 , 〈℘(Res1),⊆〉

〉
is a Galois connection.

We define a map which removes from a system σ ∈ Sys1 corresponding to a multiset
of complexes (Definition 6) all those complexes not matching with a given pattern.

Definition 11. Given a pattern p and a system σ ∈ Sys1, the evaluation of p in σ is a
map �p�1 : Sys1 → Sys1 defined as:

�p�1σ = λc.

⎧⎪⎪⎨⎪⎪⎩
σ(c) if c |= p

0 otherwise.

Example 8. Consider the system σ defined in Example 6 and a pattern [A]. Since c1 and
c2 match with p, while c3 does not, we have �[A]�1σ = [c1 �→ 2, c2 �→ 1, c3 �→ 0]. �

Given a system σ ∈ Sys1, two complexes in it that may react, and the rate expression
specified by an assoc rule, the following definition specifies how the propensity of all
possible transitions induced by σwhich have these complexes as reactants is computed.
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Definition 12. Let c1 and c2 be two complexes appearing in a system σ ∈ Sys1 and let
e be an expression characterizing the rate of the reaction between these complexes. We
determine the propensity of this reaction as follows:

pσ(c1, c2, e)=
σ(c) · (σ(c)−1)

2
· �e�ρ1 pσ(c1, c2, e)=σ(c1) · σ(c2) · �e�ρ2+�e�ρ3

2
,

where the first equation applies when c1 = c2 = c, otherwise the second applies; also,
above we let ρ1 = [reactant1 �→c, reactant2 �→c], ρ2 = [reactant1 �→c1, reactant2 �→c2]
and ρ3= [reactant1 �→c2, reactant2 �→c1].

In the following we define �p1, p2, e�assoc
1 , the abstract semantics at level 1 of the actual

semantics of the assoc rules (Definition 5).

Definition 13 (Level 1 semantics of assoc). Consider a state σ ∈ Sys1 and a rule
assoc p1 p2 rate e react B. We define the map �p1, p2, e�assoc−nc

1 : Sys1 → Res1 as

�p1, p2, e�assoc−nc
1 σ = {〈{c1, c2}, pσ(c1, c2, e)〉∈Tr1 | �p1�1σ(c1)�0 ∧ �p2�1σ(c2)�0}.

The collecting semantics �p1, p2, e�assoc
1 : ℘(Sys1) → ℘(Res1) is defined as follows:

�p1, p2, e�assoc
1 Σ = {�p1, p2, e�assoc−nc

1 σ | σ ∈ Σ}.
Example 9. Let us consider, one more time, rule1 and rule2 introduced in Example 5
and the system σ defined in Example 6. Let us determine the semantics at level 1 of
these rules in σ. In Example 8 we showed that �[A]�1σ = [c1 �→ 2, c2 �→ 1, c3 �→ 0].
We can, similarly show that �[B]�1σ = [c1 �→ 0, c2 �→ 0, c3 �→ 2]. By Definition 12, we
have:

pσ(c1, c3, 1) = 4 pσ(c2, c3) = 2
pσ(c1, c2, 1) = 2 pσ(c1, c1) = 1 pσ(c2, c2) = 0.

The following table represents the semantics at level 1 of our rules: rule1 gives rise to
transitions 1.-2., while rule2 gives rise to transitions 3.-4.

rule1 1. 〈{c1, c3}, 4〉 2. 〈{c2, c3}, 2〉
rule2 3. 〈{c1}, 1〉 4. 〈{c1, c2}, 2〉

It is worth noting that since pσ(c2, c2) = 0, transition 〈{c2}, pσ(c2, c2)〉 does not belong
to Tr1, and therefore cannot be in �[A], [A], e�assoc−nc

1 . �

The following lemma shows a relationship between the semantics at levels 0 and 1.

Lemma 5. Given an expression e and two patterns p1 and p2, the following condition
holds:

�p1, p2, e�assoc
1 = αres

1 ◦ �p1, p2, e�assoc
0 ◦ γsys

1 .

4.2 Abstraction at Level 2

In this section we propose an additional abstraction of Res1 which calculates the cumu-
lative propensity of all the reactions the assoc rule gives rise to. Abstraction of systems
is the same one we introduced in the previous subsection.
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Definition 14. A system σ� is as a multiset of complexes, i.e., σ� ∈ Sys2 = Sys1 =

mset Cplx. Moreover, we let Res2 = R.

We shall sometimes write σ instead of σ# to stress the fact that Sys2 = Sys1. It is worth
noting that both 〈℘(Res1),⊆〉 and 〈℘(Res2),⊆〉 are complete lattices. In the following
we show that they are also related by a Galois connection [1].

Definition 15. We define the abstraction map αres
2 : ℘(Res1) → ℘(Res2) and the con-

cretization map γres
2 : ℘(Res2)→ ℘(Res1) as:

αres
2 (R) = {∑〈A,r〉∈R r | R ∈ R} γres

2 (R�) = ⋃{R | αres
2 (R) ⊆ R�}.

Lemma 6.
〈
〈℘(Res1),⊆〉 , αres

2 , γ
res
2 , 〈℘(Res2),⊆〉

〉
is a Galois connection.

We define �p1, p2, e�assoc
2 , the semantics of the assoc rules at level 2.

Definition 16 (Level 2 semantics of assoc). Consider a state σ ∈ Sys2 and a rule
assoc p1 p2 rate e react B. We define the map �p1, p2, e�assoc−nc

2 : Sys2 → Res2 as

�p1, p2, e�assoc−nc
2 σ =

∑

〈A,r〉∈�p1,p2,e�assoc−nc
1 σ

r.

The collecting semantics �p1, p2, e�assoc
2 : ℘(Sys2) → ℘(Res2) is defined as follows:

�p1, p2, e�assoc
2 Σ = {�p1, p2, e�assoc−nc

2 σ | σ ∈ Σ}.
The semantics of an assoc rule at level 1 determines all possible transitions Res1 the
rule gives rise to, and for each of them its propensity is calculated as well. At level 2 the
rule’s semantics determines only the cumulative propensity of the transitions obtained
at level 1.

Example 10. Consider the rules introduced in Example 5 and the system σ defined in
Example 6. Let us determine the semantics at level 2 of these rules in σ. In Example 9
we showed that the transitions obtained from rule1 are 〈{c1, c3}, 4〉 and 〈{c2, c3}, 2〉, so
their cumulative propensity is 4 + 2 = 6. On the other hand, rule2 gave transitions
〈{c1}, 1〉 and 〈{c1, c2}, 2〉 and their cumulative propensity is 1+2 = 3. Thus, the semantics
at level 2 of rule1 and rule2 are 6 and 3 respectively.

Although this is a quite simple example, we can notice that there is an actual reduc-
tion of numbers of transitions appearing in different semantics of these two rules: rule1

has 6 transitions Res0 at level 0, 2 transitions Res1 at level 1 and 1 transition Res2 at
level 2, while rule2 has 3 transitions Res0 at level 0, 2 transitions Res1 at level 1 and 1
transition Res2 at level 2. �

In order to compute the semantics of an assoc rule at level 2, we should first determine
the semantics of that rule at level 1 (Definition 16). Therefore, the complexity of the
computation of the semantics at level 2 appears to be higher then the one of semantics
at level 1. In some cases, however, we can compute the semantics at level 2 without
computing the one at level 1, as shown in the following lemma. The proofs relies on
well-known combinatorial properties.
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Lemma 7. Let e be an expression with no occurrence of reactant1 and reactant2,
σ ∈ Sys2 be a system. Then, the following equation holds:

�p1, p2, e�assoc
2 σ = �e�ρ ·

(
|�p1�1σ| · |�p2�1σ| −

(|�p1�1σ∩�p2�1σ|
2

)
−
(|�p1�1σ∩�p2�1σ|

1

))
.

Example 11. Let us consider one more time the system σ from Example 6 and the rule2

from Example 5. We compute rule2’s semantics at level 2 using Lemma 7. We showed
in Example 8 that �[A]�1σ = [c1 �→ 2, c2 �→ 1, c3 �→ 0], and therefore |�[A]�1σ| =
2+ 1+ 0 = 3. We have �[A], [A], 1�assoc

2 σ = 3 · 3−
(

3
2

)
−
(
3
1

)
= 3 · 3− 3·2

2 − 3 = 3, which
is equal to the semantics of rule2 computed by Definition 16 in Example 10. �

5 Simulation

In this section we discuss how to simulate biological models expressed in our rule-based
language. In doing that, we shall discuss how the abstractions provided in Sect. 4 can be
exploited so to build optimized algorithms. In order to keep our presentation concise,
we shall pretend that the model at hand is composed by assoc rules, only. Other kind
of rules (dissoc, dyn) can indeed be handled through the same techniques.

5.1 Level 0 Simulation

We start by considering the problem of simulating a level 0 system, described via an
initial state σ� ∈ S ys0 and a set of rules. A straightforward way to represent σ� is that
of storing the information relative to each complex 〈n, c〉 ∈ σ� in its own memory area.
That is, we allocate an “object” for every single complex in σ� in which we store n and
(a representation of) the multiset of the boxes in c, each one with its own state variables.

Simulating the system then can be done as follows. First, for each assoc rule, say
indexed by k ∈ K, we compute �[pk,1], [pk,2], e�assoc−nc

0 by enumerating all the anno-
tated complex pairs matching with the patterns. This provides us with sets of level 0
transitions {〈Ak, j, ak, j〉 | j ∈ J} (for some index set J), where each Ak, j mentions ex-
actly two annotated complexes. We assign to each transition the probability obtained
by normalizing the rates (i.e., ak, j/

∑
k, j ak, j), and then randomly choose one of them,

say 〈Aν,μ, aν,μ〉. Simulation time is advanced by a random amount, generated according
to the exponential distribution Exp(

∑
k, j ak, j). The two annotated complexes in Aν,μ are

removed from σ�, then associated by merging their multisets of boxes (say c1 and c2).
Finally we create a new annotated complex 〈n′, c1 ∪ c2〉 for some fresh n′, and insert
it in σ�. At this point, the react code block of the rule is run (possibly modifying the
newly created complex via its product variable, and spawning new complexes as well).
The whole procedure is then repeated.

Below, we provide pseudo-code for the whole simulation procedure. We let index
sets K, J to start counting from 1. Summing over the multi-index 〈k, j〉 ∈ K × J follows
the lexicographic ordering.

Level 0 simulation algorithm
1: {assoc [pk,1][pk,2] rate ek react ck | k ∈ K} := the set of rules of the model
2: σ� := the initial state ; simulation time t := 0



A Rule-Based and Imperative Language for Biochemical Modeling and Simulation 29

3: while t < tmax do
4: for all rule indexes k ∈ K do
5: compute the level 0 transitions {〈Ak, j, ak, j〉| j∈ J} :=�[pk,1], [pk,2], ek�assoc−nc

0 σ�

6: end for
7: compute a0 :=

∑
k, j ak, j ; generate a random number u := U(0, a0)

8: find the minimum rule-transition index 〈ν, μ〉 such that u ≤ ∑〈ν,μ〉〈k, j〉=〈1,1〉 ak, j

9: t := t + Exp(a0) ; apply reaction μ by associating complexes in Aν,μ, running
command cν, and updating state σ� accordingly

10: end while

The above simple algorithm is faithful to the continuous-time Markov chain which
define the stochastic behaviour of biochemical systems. However, its space and time
performance makes it unpractical for real-world applications. Indeed, one can note that
it allocates a rather large amount of memory. This is because biochemical systems can
involve a large number of complexes, hence allocating memory for each one of them
should be avoided. Fortunately, in typical models it is often the case that many dis-
tinct complexes actually have identical state, so one can actually reduce the memory
footprint by aggressively sharing the state data (and using copy-on-write to preserve
the semantics). Even with this optimization, time performance suffers by the explicit
enumeration of all possible reacting pairs. To overcome this problem, we abstract the
system to level 1.

5.2 Level 1 Simulation

Lemma 1 states that, since an expression e can not access to the n component of a com-
plex 〈n, c〉, evaluating e for distinct complexes sharing the same state yields the same
value. Because of this, one can then evaluate it only once, and multiply the result by the
number of complex pairs, hence obtaining the cumulative rate for all such transitions.
In order to do that, we do not need to actually enumerate all the complex pairs, but just
to compute their number, which can easily be done exploiting combinatorial formulae
while keeping track of the amount of complexes in each state, i.e. counting the popu-
lation for each species. This greatly improves the time performance of the simulation
algorithm.

Since we now need only a population count, we can avoid to store the names n for
each complex, so to furher improve the memory footprint. This essentially amount to
move to the level 1 abstraction, i.e. turningσ� ∈ S ys0 into aσ ∈ S ys1. Simulating at that
level results in a less detailed simulation output, which describes which species interact
without specifying the actual identities of the involved complexes. Since identities are
unimportant from a biological point of view, and quantities are, the result of simulation
still preserves all the relevant information of level 0.

Below, we adapt the level 0 simulation algorithm so to work at level 1. This actually
results in the well-known Gillespie’s Direct Method [4], which indeed works precisely
at that abstraction level. A minor difference worth mentioning is that in our models an
unbounded number of new chemical species (i.e., complexes) can be formed during
simulation, while in the reaction-based models considered by Gillespie the set of such
species is finite and statically known before simulation is started.
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Level 1 simulation algorithm (Gillespie’s Direct Method)

1: {assoc [pk,1][pk,2] rate ek react ckmidk ∈ K} := the set of rules of the model
2: σ := the initial state ; simulation time t := 0
3: while t < tmax do
4: for all rule indexes k ∈ K do
5: compute the level 1 transitions {〈Ak, j, ak, j〉| j∈ J} :=�[pk,1], [pk,2], ek�assoc−nc

1 σ
exploiting Def. 12 to compute propensities ak, j

6: end for
7: compute a0 :=

∑
k, j ak, j ; generate a random number u := U(0, a0)

8: find the minimum rule-transition index 〈ν, μ〉 such that u ≤ ∑〈ν,μ〉〈k, j〉=〈1,1〉 ak, j

9: t := t + Exp(a0) ; apply reaction μ by associating complexes in Aν,μ, running
command cν, and updating state σ accordingly

10: end while

Comparing the above to the level 0 algorithm, we find the main, important difference in
line 5, where we exploit the combinatorial formula in Def. 12 to compute propensities.

Several further standard optimizations can be applied, e.g., after a transition has been
applied, we can avoid to recompute those propensities which are known to be unaffected
by that transition. This is typically done via a dependency graph [3].

5.3 Level 2 Simulation

We saw how abstracting the model from level 0 to level 1 improves the space and
time performance of the simulation. We now investigate the consequences of further
abstracting the model to level 2. As we shall see, under some assumptions, this may
lead to further improvements in time performance.

Recall that level 2 systems σ# ∈ S ys2 are actually identical to level 1 systems
σ ∈ S ys1, so no information about the complexes is actually lost here. Instead, level 2
abstract the transitions which are being generated by the semantics. More in detail, we
have that all the level 1 transitions (∈ Res1) which are being generated by any given
rule are collapsed into a single level 2 transition (∈ Res2) having as its rate the sum of
all the rates of level 1 transitions. In this way, the propensities of level 1 transitions are
combined to form a single cumulative propensity for the rule at hand. Also, in the com-
mon case in which the rate expression of such rule is simply a constant, the cumulative
propensity for the rule can be computed efficiently exploiting Lemma 7. This suggests
a possible modification to the level 1 simulation algorithm (Direct Method) which we
provide below.

Level 2 simulation algorithm
1: {assoc [pk,1][pk,2] rate ek react ck | k ∈ K} := the set of rules of the model
2: σ# := the initial state ; simulation time t := 0
3: while t < tmax do
4: for all rule indexes k ∈ K do
5: compute the level 2 transition rk := �[pk,1], [pk,2], ek�assoc−nc

2 σ# exploiting the
formula in Lemma 7

6: end for
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7: compute r0 :=
∑

k∈K rk and generate a random number u := U(0, r0)
8: find the minimum rule-index ν such that u ≤ ∑νk=1 rk ; let u := u −∑ν−1

k=1 rk

9: compute the level 1 transitions {〈A j, a j〉 | j ∈ J} := �[pν,1], [pν,1], eν�assoc−nc
1 σ#

exploiting Def. 12 to compute propensities a j

10: find the minimum transition index μ such that u ≤ ∑μj=1 a j

11: t := t + Exp(r0) ; apply reaction μ by associating complexes in Aμ, running
command cν and updating state σ# accordingly

12: end while

The main change with respect to level 1 can be summarized as follows. In level 1
simulation, we generate all the level 1 transitions and then randomly pick among them.
In level 2 simulation, we only generate one level 2 transition per rule from which we
randomly pick one. After such choice is done, we know the rule ν which is to be ap-
plied: we then generate level 1 transitions for that rule only, and then pick among those.
The net result is that we perform two random choices among two small sets instead of
one choice in a large set. Assume for the sake of illustration that a model features 20
association rules, and that each pattern in them matches with 5 complexes. Generating
all the level 1 transitions requires enumerating all the � 20 · 5 · 5 = 500 cases. Instead,
performing two separate choices for level 2 and level 1 transition requires enumerating
only � 20 + 5 · 5 = 45 cases.

In order to exploit the observation above, it is important to exploit Lemma 7 to com-
pute level 2 transitions efficiently. For that, we need to quickly compute, for each asso-
ciation rule, the quantities |�p1�1σ|, |�p2�1σ|, and |�p1�1σ∩ �p2�1σ|. This can be done
by keeping track for each rule of three sets of complexes: those matching with p1, p2,
and both. These sets need to be updated infrequently: updates are needed only when
a complex c is added to a system σ for which σ(c) = 0, i.e., when the first copy of
c appears in the system. Having these three sets, computing the wanted cardinalities is
done by summing all the populations of the complexes. An incremental approach which
adjusts such quantities at every step – without recomputing them – is also feasible.

Steps number 9 and 10 can be further optimized. There, we find the set of complexes
Aμ to be associated by generating all the level 1 transitions for rule ν, and then using
their rates as weights for the random choice of Aμ. This might be improved by using
an alternative way to extract Aμ from the same distribution, so to avoid the expensive
enumeration of all the level 1 transitions. One such way is as follows. Randomly extract
a complex c1 from those matching with pattern pν,1, using their population count as
weights. Complex c2 can be chosen similarly using pν,2. Here, however, in the case c1

also matches with pν,2, we decrement the population of c1 by one unit. This adjustment
reflects the fact that association must involve two distinct annotated complexes. This
alternative way of extracting Aμ = {c1, c2} is advantageous since it requires at most a
linear scan of all the complexes matching p1 and p2. By contrast, enumerating the level
1 transitions can generate a quadratic number of them.

6 Conclusions

We introducedL , a rule-based imperative language for the modeling and simulation of
biochemical systems. We provided a concrete semantics for it, as well as two abstract
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ones. We then exploited the abstractions so to devise efficient simulation algorithms for
L . Future work will investigate extensions of L to more specific kinds of models,
e.g. those involving compartments or other formalisms to represent space.
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Abstract. We present an algorithm to extract control-flow graphs from
Java bytecode, considering exceptional flows. We then establish its cor-
rectness: the behavior of the extracted graphs is shown to be a sound
over-approximation of the behavior of the original programs. Thus, any
temporal safety property that holds for the extracted control-flow graph
also holds for the original program. This makes the extracted graphs suit-
able for performing various static analyses, in particular model checking.
The extraction proceeds in two phases. First, we translate Java bytecode
into BIR, a stack-less intermediate representation. The BIR transforma-
tion is developed as a module of Sawja, a novel static analysis framework
for Java bytecode. Besides Sawja’s efficiency, the resulting intermediate
representation is more compact than the original bytecode and provides
an explicit representation of exceptions. These features make BIR a nat-
ural starting point for sound control-flow graph extraction. Next, we for-
mally define the transformation from BIR to control-flow graphs, which
(among other features) considers the propagation of uncaught excep-
tions within method calls. We prove the correctness of the two-phase
extraction by suitably combining the properties of the two transforma-
tions with those of an idealized control-flow graph extraction algorithm,
whose correctness has been proved directly. The control-flow graph ex-
traction algorithm is implemented in the ConFlEx tool. A number of
test-cases show the efficiency and the utility of the implementation.

1 Introduction

Over the last decade, there has been a steadily increasing demand for software
quality and reliability. Different formal techniques have been deployed to reach
this goal, such as various static analyses, model checking and (automated) the-
orem proving. A major obstacle for the application of formal techniques is that
the state space of software is typically infinite. Appropriate abstractions are thus
necessary in order to make the formal analyses tractable. Further, it is important
that such abstractions are sound w.r.t. the original program: if a property holds
over the abstract model, it should also be a property of the original program.

A common approach is to generate an abstract model from the code, only
preserving the information that is relevant for the class of properties of interest.
In particular, control-flow graphs (CFGs) are a widely used abstraction, where
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only the control-flow information is kept, and all program data is abstracted away
(see e.g. [6,19,16]). In a CFG, nodes represent the control points of the program,
while edges represent the instructions that move control between control points.

Numerous techniques have been proposed to extract automatically control-
flow graphs from program code (see e.g. [15,8,16]). Typically, however, these are
not accompanied by a formal soundness argument. The present paper attempts
to fill this gap: we define a control-flow graph extraction algorithm for sequential
Java bytecode (JBC), and show that the extraction algorithm is sound w.r.t. the
behavior (i.e., executions) of the program. The extraction algorithm considers
all the typical intricacies of Java, such as virtual method call resolution, the
differences between dynamic and static object types, and exception handling. In
particular, it includes explicitly thrown instructions, and a significant subset of
run-time exceptions. The sound analysis of exceptional flows is particularly chal-
lenging for two reasons. First, the stack-based nature of the Java Virtual Machine
(JVM) makes it hard to statically determine the type of explicitly thrown ex-
ceptions, thus making it difficult to decide to which handler (if any) control will
be transferred. Second, the JVM can raise (implicit) run-time exceptions, such
as NullPointerException and IndexOutOfBoundsException, and to keep track of
where such exceptions can be raised requires much care.

We present a two-phase extraction algorithm using the Bytecode Intermediate
Representation (BIR) language [9], developed by Demange et al. The use of BIR
has several advantages. First of all, BIR provides a stack-less representation of
JBC. Thus, all instructions (including the explicit athrow) are directly connected
with their operands. This allows to determine the static type of explicitly thrown
exceptions. In addition, the representation of a program in BIR is smaller, since
operations are not stack-based, but represented as expression trees. Second, BIR
supports the analysis of implicitly thrown exceptions by generating assertions
that indicate when the next instruction might raise a run-time exception, fol-
lowing the approach proposed for the Jalapeño compiler [7]. Finally, Demange
et al. present formal translation rules from JBC, and define an operational se-
mantics for BIR. They show that the resulting program is semantics-preserving
with respect to observable events, such as raising exceptions, and sequences of
method invocations. This result increases the reliability of the correctness of the
BIR transformation, and in consequence, also of our CFG extraction algorithm.

Our two-phase extraction algorithm first uses the transformation from JBC
to BIR from Sawja [11], a library for static analysis of Java bytecode, and then
it extracts CFGs from BIR. It is implemented as the tool ConFlEx. Sawja
provides only intra-procedural support for exceptions. Thus, to obtain a sound
extraction tool, on top of this we implemented a fixed-point computation of
exceptional flow caused by uncaught exceptions.

Proving correctness of the two-phase extraction algorithm directly (e.g., by
means of behavioral simulation) is cumbersome. Instead, we use the correctness
of an idealized direct extraction algorithm by Amighi [2,3] to simplify the overall
correctness argument. We connect the CFGs that are extracted by the idealized
algorithm and by the two-phase algorithm via a (structural) simulation relation,
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and use a previous result (see [10, Th. 36]) to infer behavioral simulation. From
this, one can conclude that all behaviors of the CFG generated by the indirect al-
gorithm (BIR) are a sound over-approximation of the original program behavior.
Thus, the extraction algorithm produces control-flow graphs that are sound for
the verification of temporal safety properties. We outline the correctness proof
in Section 4; the details can be found in an accompanying technical report [3].

Organization. The remainder of this paper is organized as follows. Section 2
provides the necessary definitions for the algorithm and its correctness proof.
Section 3 presents the two-phase extraction algorithm, its implementation, and
experimental evaluation. In Section 4 we discuss the correctness of the algorithm.
Finally, in Section 5 we discuss related work, and conclude with Section 6.

2 Preliminaries

Control-flow graphs (CFGs) provide an abstract model of programs. Method
graphs are the basic building blocks of CFGs. LetMeth and Excp be two count-
ably infinite sets of method names and exception names, respectively. Method
graphs are defined as Kripke structures, as follows.

Definition 1 (Method Graph). A method graph for method m over given
finite sets M ⊆ Meth and E ⊆ Excp is a pair (Mm,Em), where Mm =
(Vm, Lm,→m, Am, λm) is a transition-labeled Kripke structure, and Em ⊆ VM

is a non-empty set of entry points of m. Vm is the set of control points of m,
Lm = M ∪ {ε, handle} is the set of transition labels, →m ⊆ Vm × Lm × Vm is
the labeled transition relation between control points, Am = {m, r}∪E is the set
of atomic propositions, and λm : Vm → P(Am) is a valuation function such that
m ∈ λm(v) for all v ∈ Vm, and for all x, x′ ∈ E, if x, x′ ∈ λm(v) then x = x′,
i.e., each control node is valuated with the method signature it belongs to, and
with at most one exception.

A node v ∈ Vm is marked with the atomic proposition r whenever it is a return
node of the method. Internal transfer edges are labeled with ε, and the control
transfers caused by the handling of exceptions are labeled with handle. All other
edges correspond to method calls, and are labeled with the called method.

The control-flow graph of a program is simply the disjoint union of all method
graphs of methods defined in the program. Figure 1 shows an example Java
program with two methods, and a corresponding CFG. Every control-flow graph
is equipped with an interface I = (I+, I−, E′), defining the methods that are
provided to and required from the environment, denoted by I+, I− ⊆ M , and
the exceptions that may be raised by each method, but not caught, indicated as
E′ ⊆ E. If I− ⊆ I+ then I is closed.

We use a standard notion of control-flow graph behavior based on pushdown
automata, where configurations are pairs of control nodes and stacks of method
invocations. Internal transitions are labeled with τ for normal transfers, throw x
and catch x for exceptional transfers, m1 call m2 and m1 ret m2 for normal
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Fig. 1. An example program and its control-flow graph

inter-procedural transfers, and m1 xret m2 for returns caused by an uncaught
exception. The formal definition is straightforward (see [12]), and its details are
not necessary to understand the correctness proof of our extraction algorithm.

3 Extracting Control-Flow Graphs from BIR

This section presents the two-phase transformation from Java bytecode into
control-flow graphs using BIR as intermediate representation. First, we briefly
present the BIR language, and its transformation function from JBC, named
BC2BIR. Next, we present how BIR is transformed into CFGs. We conclude by
describing the implementation of the algorithm as the ConFlEx tool [1], and
presenting some experimental results.

3.1 The BIR Language

The BIR language is an intermediate representation of Java bytecode. The main
difference with JBC is that BIR instructions are stack-less, in contrast to byte-
code instructions that operate over values stored on the operand stack. We give
a brief overview of BIR; for a full account we refer to [9].

Figure 2 summarizes the BIR syntax. Its instructions operate over expression
trees, i.e., arithmetic expressions composed of constants, operations, variables,
and fields of other expressions (expr.f). BIR does not have operations over strings
and booleans; these are transformed into method calls by the BC2BIR transfor-
mation. It also reconstructs expression trees, i.e., it collapses one-to-many stack-
based operations into a single expression. As a result, a program represented in
BIR typically has fewer instructions than the original JBC program.

BIR has two types of variables: var and tvar. The first are identifiers also
present in the original bytecode; the latter are new variables introduced by the
transformation. Both variables and object fields can be an assignment’s target.

Many of the BIR instructions have an equivalent JBC counterpart, e.g., nop,
goto and if. A return expr ends the execution of a method with return value
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expr ::= c | null (constants)
| expr ⊕ expr (arithmetic)
| tvar | lvar (variables)
| expr.f (field access)

lvar ::= l | l1 | l2 | . . . (local var.)
this

tvar ::= t | t1 | t2 | . . . (temp. var.)

target ::= lvar
| tvar
| expr.f

Assignment ::= target := expr
Return ::= return expr | return

MethodCall ::= expr.ns(expr,..., expr)
| target := expr.ns(expr,...,expr)

NewObject ::= target := new C(expr,...,expr)
Assertion ::= notnull expr | notzero expr

instr ::= nop | if expr pc | goto pc

| throw expr | mayinit C

| Assignment | Return
| MethodCall | NewObject
| Assertion

Fig. 2. Expressions and Instructions of BIR

Assertion Exception

[notnull] NullPointerException
[checkbound] IndexOutOfBoundsException

[notneg] NegativeArraySizeException

Assertion Exception

[notzero] ArithmeticException
[checkcast] ClassCastException
[checkstore] ArrayStoreException

Fig. 3. Implicit exceptions supported by BIR, and associated assertions

expr, while return ends a void method. The throw instruction explicitly trans-
fers control flow to the exception handling mechanism. Method call instructions
are represented by their method signature. For non-void methods, the instruc-
tion assigns the result value to a variable.

In contrast to JBC, object allocation and initialization are done in a single
step, during execution of the new instruction. Java also has class initialization,
i.e., the one-time initialization of a class’s static fields. BIR has the special in-
struction mayinit to indicate that at that point a class may be initialized for
the first time. Otherwise, it behaves exactly as nop.

BIR’s support of implicit exceptions follows the approach proposed for the
Jalapeño compiler [7]. It inserts special assertions before the instructions that can
potentially raise an exception, as defined by the JVM. Figure 3 shows all implicit
exceptions that are currently supported by the BC2BIR transformation [5], and
the associated assertion. For example, the transformation inserts a [notnull]

assertion before any instruction that might raise a NullPointerException, such
as an access to a reference. If the assertion holds, it behaves as a [nop], and
control-flow passes to the next instruction. If the assertion fails, control-flow is
passed to the exception handling mechanism. In the transformation from BIR to
CFG, we use a function χ to obtain the exception associated with an instruction
(as presented in Figure 3). Notice that our translation from BIR to CFG can
easily be adapted to other implicit exceptions, provided appropriate assertions
are generated for them.

A BIR program is organized in exactly the same way as a Java bytecode
program. A program is a set of classes, ordered by a class hierarchy. Every
class consists of a name, methods and fields. Methods have code, stored in an
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Input Output

pop ∅
push c ∅
dup ∅
load x ∅
add ∅

Input Output

nop [nop]

if p [if e pc’]

goto p [goto pc’]

return [return]

vreturn [return e]

Input Output

div [notzero e2]

athrow [throw e]

new C [mayinit C]

getfield f [notnull e]

Input Output

store x [x:=e] or [t0pc:=x;x:=e]

putfield f [notnull e;FSave(pc,f,as);e.f:=e′ ]
invokevirtual ns [notnull e;HSave(pc,as);t0pc:=e.ns(e

′
1...e

′
n)]

invokespecial ns [notnull e;HSave(pc,as);t0pc:=e.ns(e
′
1...e

′
n)] or

[HSave(pc,as);t0pc:=new C(e′1...e
′
n)]

Fig. 4. Rules for BC2BIRinstr

instruction array, with indexing starting with 0 for the entry control point.
However, in contrast to JBC, in BIR the indexes in the instruction array are
sequential.

3.2 Transformation from Java Bytecode into BIR

Next we briefly describe the BC2BIR transformation. It translates a complete
JBC program into BIR by symbolically executing the bytecode using an ab-
stract stack. This stack is used to reconstruct expression trees, and to connect
instructions to its operands. As we are only interested in the set of BIR instruc-
tions that can be produced, we do not discuss all details of this transformation.
For the complete algorithm, we refer to [9].

The symbolic execution of the individual instructions is defined by a function
BC2BIRinstr that, given a program counter, a JBC instruction and an abstract
stack, outputs a sequence of BIR instructions and a modified abstract stack. In
case there is no match for a pair of bytecode instruction and stack, the function
returns the Fail element, and the BC2BIR algorithm aborts.

Definition 2 (BIR Transformation Function). Let AbsStack ∈ expr∗. The
rules defining the instruction-wise transformation BC2BIRinstr : N× instrJBC ×
AbsStack → ((instrBIR)

∗ ×AbsStack)∪ {Fail} from Java bytecode into BIR are
given in Figure 4.

As a convention, we use brackets to distinguish BIR instructions from their JBC
counterparts. Variables tipc are new, introduced by the transformation.

JBC instructions if, goto, return and vreturn are transformed into corre-
sponding BIR instructions. The new instruction is distinct from [new C()] in
BIR, and produces a [mayinit]. The getfield f instruction reads a field from
the object reference at the top of the stack. This might raise a NullPointerEx-
ception, therefore the transformation inserts a [notnull] assertion.

Instruction store x produces one or two assignments, depending on the state
of the abstract stack. Instruction putfield f outputs a set of BIR instruc-
tions: [notnull e] guards if e is a valid reference; the auxiliary function FSave
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0: iload 0

1: ifne 6 0: if (n != 0) goto 2

4: iconst 0

5: ireturn 1: return 0

6: aload 0

7: iconst 1

8: isub 2: mayinit Number

9: invokestatic Number.even(int) 3: t03 := Number.even(n - 1)

12: ireturn 4: return t03

Fig. 5. Comparison between instructions in method odd() in JBC and BIR

generates a sequence of assignments to temporary variables; followed by the
assignment to the field e.f. Similarly, invokevirtual generates a [notnull]

assertion, followed by a set of assignments to temporary variables – represented
as the auxiliary function HSave – and the call instruction itself. The transforma-
tion of invokespecial can produce two different sequences of BIR instructions.
The first case is the same as for invokevirtual. In the second case, there are
assignments to temporary variables (HSave), followed by the instruction [new

C], which denotes a call to the constructor.
Figure 5 shows the JBC and BIR versions of method odd() from Figure 1. The

different colors show the collapsing of JBC instructions by the transformation;
the underlined instructions are the ones that produce BIR instructions. The BIR
method has a local variable (n) and a newly introduced variable (t03). Notice that
the argument for the method invocation and the operand to the [if] instruction
are reconstructed expression trees. The [mayinit] instruction shows that class
Number may be initialized in that program point.

3.3 Transformation from BIR into Control-Flow Graphs

The extraction algorithm that generates a CFG from BIR iterates over the in-
structions of a method. It uses the transformation function bG, that takes as
input a program counter and instruction from a BIR method, plus its exception
table. Each iteration outputs a set of edges.

To define bG, we introduce auxiliary definitions. First, let Et be the set of all
exception tables. H ∈ Et is the exception table for the given method, contain-
ing the same entries as the JBC table, but with control points relating to BIR
instructions. The function hH(pc, x) searches for the first handler for the excep-
tion x (or a subtype) at position pc. The function Hpc

x returns one edge after
querying hH : if there was an exception handler, it returns an edge to a normal
control node; otherwise, it returns an edge to an exceptional return node.

The extraction is parametrized by a virtual method call resolution algo-
rithm α. The function resα(ns) uses α to return a safe over-approximation of
the possible receivers to a virtual method call with signature ns, or the single
receiver if the signature is from a non-virtual method (e.g. a static method).
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Hpc
x =

{{ (•pc,xm , handle, ◦pc’m ) } if hH(pc, x) = pc’ �= 0
{ (•pc,xm , handle, •pc,x,rm ) } if hH(pc, x) = 0

bG(ipc, H) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{(◦pcm, ε, ◦pc+1m )} if i ∈ Assignment ∪
{[nop],[mayinit]}

{(◦pcm, ε, ◦pc+1m ), (◦pcm, ε, ◦pc’m )} if i = [if expr pc’]

{(◦pcm, ε, ◦pc’m )} if i = [goto pc’]

{(◦pcm, ε, ◦pc,rm )} if i ∈ Return⋃
x∈X{(◦pcm, ε, •pc,xm )} ∪ Hpc

x if i = [throw X]

{(◦pcm, ε, ◦pc+1m ), (◦pcm, ε, •pc,χ(i)
m )} ∪ Hpc

χ(i) if i ∈ Assertion

{(◦pcm, C, ◦pc+1m ), (◦pcm, ε, •pc,�Nm )} ∪ Hpc

�N ∪N pc
C if i ∈ NewObject⋃

n∈resα(ns){(◦pcm, n, ◦pc+1m )} ∪ N pc
n if i ∈ MethodCall

N pc
n =

⋃
•pc’,x,r
n ∈bG(n)

{(◦pcm, handle, •pc,xm )} ∪ Hpc
x

Fig. 6. Extraction rules for control-flow graphs from BIR

We divide the definition of bG into two parts. The intra-procedural analysis ex-
tracts for every method an initial CFG, based solely on its instruction array, and
its exception table. Based on these CFGs, the inter-procedural analysis computes
the functions N pc

n , which return exceptional edges for exceptions propagated by
calls to method n. The functions for inter-dependent methods are thus mutually
recursive, and are computed in a fixed-point manner.

Definition 3 (Control Flow Graph Extraction). The control-flow graph
extraction function bG : (Instr×N)×Et → P(V ×Lm×V ) is defined by the rules
in Figure 6. Given method m, with ArInstrm as its instruction array, the control-
flow graph for m is defined as bG(m) =

⋃
ipc∈ArInstrm

bG(ipc, Hm), where ipc
denotes the instruction with array index pc. Given a closed BIR program ΓB,
its control-flow graph is bG(ΓB) =

⋃
m∈ΓB

bG(m).

First, we describe the rules for the intra-procedural analysis. Assignments, [nop]
and [mayinit] add a single edge to the next normal control node. The condi-
tional jump [if expr pc’] produces a branch in the CFG: control can go either
to the next control point, or to the branch point pc’. The unconditional jump
goto pc’ adds a single edge to control point pc’. The [return] and [return

expr] instructions generate an internal edge to a return node, i.e., a node with
the atomic proposition r. Notice that, although both nodes are tagged with
the same pc, they are different, because their sets of atomic propositions are
different.

The [throw X ] instruction, similarly to virtual method call resolution, de-
pends on a static analysis to find out the possible exceptions that can be thrown.
The BIR transformation only provides the static type X of the thrown exception.
Let X also denote the set containing the static type, and all its subtypes. The
transformation produces an exceptional edge for each element x of X , followed
by the appropriate edge derived from the exception table.
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The rule for assertion instructions produces a normal edge, for the case that
the implicit exception is not raised, and an edge to the exceptional node tagged
with the exception type (as defined in Figure 3), together with the appropriate
edge derived from the exception table.

The extraction rule for a constructor call ([new C]) produces a single normal
edge, since there is only one possible receiver for the call. In addition, we also
produce an exceptional edge, because of a possible NullPointerException. The
rule for the other method invocations adds a single normal edge for each possible
receiver n returned by resα.

Next, we describe the inter-procedural analysis. In all program points where
there is a method invocation, the function N pc

n adds exceptional edges, relative
to the exceptions that are propagated by method calls. It checks if the CFG
of an invoked method n contains an exceptional return node. If it does, then
function Hpc

x verifies whether the exception is caught upon return. If so, it adds
an edge to the handler. Otherwise it adds an edge to an exceptional return node.
In the latter case, propagation of the exception continues until it is caught by a
caller method, or there are no more methods to handle it. This is similar to the
process described by Jo and Chang [16], who also present a fixed-point algorithm
to compute the propagation edges. It checks the pre-computed call-graph which
are the callers to a method propagating a given exception, and at which control-
points. If there is a suitable handler for that exception, it adds the respective
handling edges, and the process stop. Otherwise, the computation proceeds.

3.4 Implementation

The extraction rules from Figure 6 are implemented in our CFG extraction tool
ConFlEx. It uses Sawja for the transformation from bytecode into BIR, and
for virtual method call resolution. Sawja supports several resolution algorithms.
Experimental evaluation showed that the algorithm’s choice impacts the perfor-
mance, but does not affect significantly the precision. Table 1 shows the results
using Rapid Type Analysis [4], which presented the best balance between time
and precision [21]. The table provides statistics for the CFG extraction of sev-
eral examples with varying sizes. All experiments are done on a server with an
Intel i5 2.53 GHz processor and 4GB of RAM. Methods from the API are not
extracted; only classes that are part of the program are considered.

BIR Time is the time spent to transform JBC into BIR. For the transforma-
tion from BIR to CFG, we provide statistics for the intra-procedural and the
inter-procedural analysis.

Table 1 shows that in all cases the number of BIR instructions is less than 40%
of the JBC instructions. This indicates that the use of BIR mitigates the blow-
up of control-flow graphs, and clearly program analysis benefits from this. The
computation time for intra- and inter-procedural analysis grows proportionally
with the number of BIR instructions. The intra-procedural analysis is linear
w.r.t. to the number of instructions, and the experimental results of the inter-
procedural analysis show that it only contributes to a small part of the total
extraction time.
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Table 1. Statistics for ConFlEx

Software
# of # of BIR Intra-Procedural Inter-Procedural
JBC BIR time # of # of time # of # of time
instr. instr. (ms) nodes edges (ms) nodes edges (ms)

Jasmin 30930 10850 267 19152 19460 320 21651 21966 25

JFlex 53426 20414 706 38240 38826 859 42442 43072 23

Groove Ima. 193937 77620 587 159046 158593 4817 193268 192905 1849

Groove Gen. 328001 128730 926 251762 252102 13609 308164 308638 5541

Groove Sim. 427845 167882 1072 311008 311836 16067 386553 387556 6886

Soot 1345574 516404 98692 977946 976212 264690 1209823 1208358 57621

We do not provide comparative data with other extraction tools, such as
Soot [22], or Wala [14] because this would demand the implementation of similar
extraction rules from their intermediate representations. However, experimental
results from Sawja [11] show that it outperforms Soot in all tests w.r.t. the
transformation into their respective intermediate representations, and outper-
forms Wala w.r.t. virtual method call algorithms. Thus, our extraction algorithm
clearly benefits from using Sawja and BIR.

4 Correctness of CFG Extraction

This section discusses the correctness proof of the CFG extraction algorithm.
Providing a direct proof for our two-phase extraction is cumbersome. Instead,
we prove correctness indirectly, using as reference an idealized direct extraction
algorithm, denoted mG. The algorithm, defined and proved correct by Amighi [2],
is based directly on the semantics of Java bytecode, but assumes an oracle to
predict the exceptions that can be thrown by each instruction.

We exploit the idealized algorithm by proving that given a JBC program, the
CFG produced by our extraction algorithm (bG ◦BC2BIR) structurally simulates
the CFG produced by the direct extraction algorithm (mG). We then reuse an
existing result from Gurov et al. [10, Th. 36] that structural simulation implies
behavioral simulation. By transitivity of simulation we conclude that the behav-
ior induced by the CFG extracted by bG ◦ BC2BIR simulates the JVM behavior.
Figure 7 summarizes our approach.

The proof of structural simulation is too large to be presented completely in
this paper. Instead, we sketch the overall proof, and discuss one case (for the
athrow instruction) in full detail. For the remaining detailed cases, the reader
is referred to the accompanying technical report [3]. Before discussing the proof
sketch, we first introduce some terminology and relevant observations.

Preliminaries for the Correctness Proof. The BC2BIR transformation may col-
lapse several bytecode instructions into a single BIR instruction. Therefore, we
divide bytecode instructions as producer instructions, i.e., those that produce at
least one BIR instruction in function BC2BIRinstr, and auxiliary ones, i.e., those
that produce none. This division can be deduced from Figure 4 (on page 38).
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Fig. 7. Schema for CFG extraction and correctness proof

For example, store and invokevirtual are producer instructions, while add

and push are auxiliary.
We partition the bytecode instruction array into bytecode segments. These are

subsequences delimited by producer instructions. Thus each bytecode segment
contains zero or more contiguous auxiliary instructions, followed by a single
producer instruction. Such a partitioning exists for all bytecode programs that
comply to the Java bytecode Verifier. All methods in such a program must
terminate with return, or athrow, which are producer instructions. Therefore,
there can not be a set of contiguous instructions that is not delimited by a
producer instruction.

A BIR segment is the result of applying BC2BIR on a bytecode segment. Thus
there exists a one-to-one, order-preserving mapping between bytecode segments
and BIR segments, and we can associate each JBC or BIR instruction to the
unique index of its corresponding bytecode segment.

Figure 5 (on page 39) illustrates the partitioning of instructions into segments.
Method odd has four bytecode (and BIR) segments, as indicated by the coloring.
Producer instructions are underlined.

In the definition of the direct extraction algorithm [3], one can observe that all
auxiliary instructions give rise to an internal transfer edge only. This implies that
the sub-graphs for any segment extracted in the direct algorithm will start with
a path of internal transfer edges with the same size as the number of auxiliary
instructions, followed by the edges generated for the producer instruction.

Proof Sketch. Based on observations above, our main theorem states that the
method graph extracted using the indirect algorithm weakly simulates (cf. [17])
the method graph using the direct algorithm. In the proof, we do not consider
the abstract stacks, since only the instructions are relevant to produce the edges.

Theorem 1 (Structural Simulation of Method Graphs). Let Γ be a well-
formed Java bytecode program, and let Γ [m] be the implementation of method m.
Then (bG ◦ BC2BIR)(Γ [m]) weakly simulates mG(Γ [m]).

Proof. (Sketch) Let p range over indices in the bytecode instructions array,
pc over indices in the BIR instructions array, ◦p,x,ym over control nodes in
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mG(Γ [m]), and ◦pc,x,ym over control nodes in (bG ◦ BC2BIR)(Γ [m]). The control
nodes are valuated with two optional atomic propositions: x, which is an ex-
ception type, and y, which is the atomic proposition r denoting a return point.
Further, let segJBC (m, p) and segBIR(m, pc) be two auxiliary functions that
return the segment number that a bytecode, or a BIR instruction belongs to,
respectively, and let function min(s, x, y) return the least index pc in the BIR
segment s resulting in a node valuated with x and y.

We define a binary relation R as follows:

R
def
= { (◦p,x,ym , ◦pc,x,ym ) |

segJBC (m, p) = segBIR(m, pc) ∧ pc = min(segBIR(m, pc), x, y) }
and show the relation to be a weak simulation in the standard fashion: for every
pair of nodes in R, we match every strong transition from the first node by a
corresponding weak transition from the second node, so that the target nodes are
again related by R. It is easy to establish that the entry nodes of the sub-graphs
produced by the two algorithms for the same bytecode segment are related by R,
and hence the result.

The proof proceeds by case analysis on the type of the producer instruction
of the bytecode segment segJBC (m, p). We present one interesting case in full
detail; the other cases proceed similarly [3].

Case athrow Let X be the set containing the static type of the exception being
thrown, and all of its sub-types. This set is the same for the direct and indirect
extraction algorithms. Let x ∈ X .

The direct extraction for the athrow instruction produces two edges, with the
target node of the second edge depending on whether the exception x is caught
within the same method it was raised or not (see [3]):

mG((p, athrow), H) =

{
{ ◦pm ε→ •p,xm , •p,xm

handle→ ◦qm } if has handler

{ ◦pm ε→ •p,xm , •p,xm
handle→ •p,x,rm } otherwise

The transformation BC2BIRinstr returns a single instruction. Then, similarly
to mG, the bG function produces two edges (see Figure 6):

BC2BIRinstr(p, athrow) = [throw x]

bG([throw x]pc, H) =

{
{ ◦pcm ε→ •pc,xm , •pc,xm

handle→ ◦pc’m } if has handler

{ ◦pcm ε→ •pc,xm , •pc,xm
handle→ •pc,x,rm } otherwise

We have that (◦pm, ◦pcm) ∈ R. The transition ◦pm ε→ •p,xm , is matched by the corre-
sponding weak transition ◦pcm =⇒ •pc,xm . Thus obviously also (•p,xm , •pc,xm ) ∈ R.
Next, there are two possibilities for the remaining transitions, depending on
whether there is an exception handler for x in p and pc. If there is a handler,

then we get •p,xm
handle→ ◦qm, •pc,xm

handle
=⇒ ◦pc’m , and clearly also (◦qm, ◦pc’m ) ∈ R. If

there is no exception handler for x, we get •p,xm
handle→ •p,x,rm , •pc,xm

handle
=⇒ •pc,x,rm ,

and also (•p,x,rm , •pc,x,rm ) ∈ R. This concludes the case. �
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5 Related Work

Java bytecode has several aspects of an object-oriented language that make the
extraction of control-flow graphs complex, such as inheritance, exceptions, and
virtual method calls. Therefore, in this section we discuss the work related to ex-
tracting CFGs from object-oriented languages. To the best of our knowledge, for
none of the existing extraction algorithms a correctness proof has been provided.

Sinha et al. [18,19] propose a control-flow graph extraction algorithm for both
Java source and bytecode, which takes into account explicit exceptions only.
The algorithm performs first an intra-procedural analysis, computing the excep-
tional return nodes caused by uncaught exceptions. Next, it executes an inter-
procedural analysis to compute exception propagation paths. This division is
similar to how our algorithm analyses exceptional flows, using a slightly differ-
ent inter-procedural analysis. However, the authors do not discuss how the static
type of explicit exceptions is determined by the bytecode analysis, whereas we
get this information from the BIR transformation. Moreover, the use of BIR
allows us to also support (a subset of the) implicit exceptions.

Jiang et al. [15] extend the work of Sinha et al. to C++ source code. C++ has
the same scheme of try-catch and exception propagation as Java, but with-
out the finally blocks, or implicit exceptions. This work does not consider the
exceptions types. Thus, it heavily over-approximates the possible flows by con-
necting the control points with explicit throw within a try block to all its catch
blocks, and considering that any called method containing a throw may termi-
nate exceptionally. Our work consider the exceptions types. Thus, it produces
more refined CFGs, and also tells which exceptions can be raised, or propagated
from method invocations.

Choi et al. [8] use an intermediate representation from the Jalapeño com-
piler [7] to extract CFGs with exceptional flows. The authors introduce a stack-
less representation, using assertions to mark the possibility of an instruction
raising an exception. This approach was followed by Demange et al. when defin-
ing BIR, and proving the correctness of the transformation from bytecode. As a
result, our extraction algorithm, via BIR, is very similar to that of Choi. We differ
by defining formal extraction rules, and proving its correctness w.r.t. behavior.

Finally, Jo and Chang [16] construct CFGs from Java source code by comput-
ing normal and exceptional flows separately. An iterative fixed-point computa-
tion is then used to merge the exceptional and the normal control-flow graphs.
Our exception propagation computation follows their approach; however, the
authors do not discuss how the exception type is determined. Also, only ex-
plicit exceptions are supported; in contrast, we determine the exception type
and support implicit exceptions by using the BIR transformation.

6 Conclusion

This paper presents an efficient and sound control-flow graph extraction algo-
rithm from Java bytecode that takes into account exceptional control flow. The
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extracted CFGs can be used for various control-flow analyses, in particular model
checking. The algorithm is precise because it is based on BIR, an intermediate
stack-less bytecode representation, which provides precise information about ex-
ceptional control-flow, and the result is more compact than the original bytecode.

The algorithm is presented formally as an extraction function. We state and
prove its soundness: the behavior of the extracted graphs is shown to over-
approximate the behavior of the original programs. To the best of our knowledge,
this is the first CFG extraction algorithm that has been proved correct. The
proof is non-trivial, relying on several results to obtain a relatively economic
correctness argument phrased in terms of structural simulation. We believe that
the proposed proof strategy, with the level of detail we provide, paves the ground
for a mechanized proof using a standard theorem prover.

The extraction algorithm is implemented as the ConFlEx tool. The experi-
mental results confirm that the algorithm is efficient, and that it produces com-
pact CFGs.

Future Work. The extraction algorithm has been designed with modularity in
mind. Currently, we investigate how to relativize the algorithm on interface
specifications of programmodules in order to support modular control-flow graph
extraction. In particular, we target CVPP (see e.g. [20,13]), a framework and
tool set for compositional verification of control-flow safety properties. In this
setting, one typically wishes to produce CFGs from incomplete programs.

In addition, we will study how to adapt the algorithm to various generaliza-
tions of the program model, including data and multi-threading [12], and how to
customize it for other types of instructions (besides method calls and exceptions).

Acknowledgments. We thank the Celtique team at INRIA Rennes for their
clarifications about BIR and Sawja. Amighi and Huisman are partially supported
by ERC grant 258405 for the VerCors project.
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Abstract. In the last decade it became a common practice to formalise soft-
ware requirements to improve the clarity of users’ expectations. In this work we
build on the fact that functional requirements can be expressed in temporal logic
and we propose new techniques that automatically detect flaws and suggest im-
provements of given requirements. Specifically, we describe and experimentally
evaluate new approaches to consistency and vacuity checking that identify all in-
consistencies and pinpoint their exact source (the smallest inconsistent set). To
complete the sanity checking we also deliver a novel semi-automatic complete-
ness evaluation that can assess the coverage of user requirements and suggest
missing properties the user might have wanted to formulate. The usefulness of
our completeness evaluation is demonstrated in a case study of an aeroplane con-
trol system.

1 Introduction

The earliest stages of software development entail among others the activity of user
requirements elicitation. The importance of clear specification of the requirements in
the contract-based development process is apparent from the necessity of final-product
compliance verification. Yet the specification itself is rarely described formally. Never-
theless, the formal description is an essential requirement for any kind of comprehensive
verification. Recently, there have been tendencies to use the mathematical language of
temporal logics, e.g. the Linear Temporal Logic (LTL), to specify functional system re-
quirements. Restating requirements in a rigorous, formal way enables the requirement
engineers to scrutinise their insight into the problem and allows for a considerably more
thorough analysis of the final requirement documents [10].

Later in the development, when the requirements are given and a model is designed,
the formal verification tools can provide a proof of correctness of the system being
developed with respect to formally written requirements. The model of the system or
even the system itself can be checked using model checking [1,6] or theorem prov-
ing [2] tools. If there are some requirements the system does not meet, the cause has
to be found and the development reverted. The longer it takes to discover an error in
the development, the more expensive the error is to mend. Consequently, errors made
during requirements specification are among the most expensive ones in the whole
development.
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Model checking is particularly efficient in finding bugs in the design, however, it
exhibits some shortcomings when it is applied to requirement analysis. In particular, if
the system satisfies the formula then the model checking procedure only provides an
affirmative answer and does not elaborate for the reason of the satisfaction. It could be
the case that, e.g. the specified formula is a tautology, hence, it is satisfied for any sys-
tem. To mitigate the situation a subsidiary approach, the sanity checking, was proposed
to check vacuity and coverage of requirements [12]. Yet the existence of a model is still
a prerequisite which postpones the verification until later phases in the development
cycle.

The primary interest of this paper is to design, implement and evaluate techniques
that would allow the developers of computer systems to check sanity of their require-
ments when it matters most, i.e. during the requirements stage. The implementation of
our techniques is planned to be incorporated in the iFEST project [11]. Together with a
tool translating natural language requirements into LTL formulae our techniques could
provide automatic sanity checking procedure of freshly elicited requirements.

Contribution. This paper redefines the notion of sanity checking of requirements writ-
ten as LTL formulae and describes its implementation and evaluation. The proposed
notion liberates sanity checking from the necessity of having a model of the developed
system. Sanity checking commonly consists of three parts: consistency and vacuity
checking and completeness of requirements. Our approach to consistency and vacu-
ity checking is novel in identifying all inconsistent (or vacuous) subsets of the input
set of requirements. This considerably simplifies the work of requirements engineers
because it pinpoints all sources of inconsistencies. For completeness checking, we pro-
pose a new behaviour-based coverage metric. Assuming that the user specifies what
behaviour of the system is sensible, our coverage metric calculates what portion of this
behaviour is described by the requirements specifying the system itself. The method
further suggests new requirements to the user that would improve the coverage and thus
ensure more accurate description of users’ expectations. The efficiency and usability
of our approach to sanity checking is verified in an experimental evaluation and a case
study.

1.1 Related Work

The use of model checking with properties (specified in CTL) derived from real-life
avionics software specifications was successfully demonstrated in [3]. This paper in-
tends to present a preliminary to such a use of a model checking tool, because there the
authors presupposed sanity of their formulae. The idea of using coverage as a metric
for completeness can be traced back to software testing, where it is possible to use LTL
requirements as one of the coverage metrics [20,16].

Model-based sanity checking was studied thoroughly and using various approaches,
but it is intrinsically different from model-free checking presented in this paper. Com-
pleteness is measured using metrics based on the state space coverage of the underlying
model [4,5]. Vacuity of temporal formulae was identified as a problem related to model
checking and solutions were proposed in [13] and in [12], again expecting existence of
a model.
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Checking consistency (or satisfiability) of temporal formulae is a well understood
problem solved using various techniques in many papers (most recently using SAT-
based approach in [17] or in [18] where it was used as a comparison between different
LTL to Büchi translation techniques). The classical problem is formulated as to decide
whether a set of formulae is internally consistent. In this paper, however, a more elab-
orate answer is sought: specifically which of the formulae cause the inconsistency. The
approach is then extended to vacuity which is rarely used in model-free sanity checking.

Completeness of formal requirements is not as well-established and its definition
often differs. The most thorough research in algorithmic evaluation of completeness
was conducted in [9,14,15]. Authors of those papers use RSML (Requirements State
Machine Language) to specify requirements which they translate (in the last paper) to
CTL and to a theorem prover language to discover inconsistencies and detect incom-
pleteness. Their notion of completeness is based on verifying that for every input value
there is a reaction described in the specification. This paper presents completeness as
considering all behaviours described as sensible (and either refuting or requiring them).
Finally, a novel semi-formal methodology is proposed in this paper, that recommends
new requirements to the user, that have the potential to improve completeness of the
input specification.

2 Preliminaries

This section serves as a motivation for and a reminder of the model checking process
and its connection to sanity checking. A knowledgeable reader might find it slow-paced
and cursory, but its primary function is to justify the use of formal specifications and,
as such, requires more compliant approach.

2.1 LTL Model Checking

Definition 1. Let AP be the set of atomic propositions. Then this recursive definition
specifies all well-formed LTL formulae over AP, where p ∈ AP:

Ψ ::= p|¬Ψ|Ψ∧Ψ|X Ψ|Ψ U Ψ

Example 1. There are some well-established syntactic simplifications of the LTL lan-
guage, e.g. false := p∧¬p, true := ¬false, φ ⇒ ψ := ¬(φ∧¬ψ), F φ := true U φ,
G φ :=¬(F ¬φ). Assuming that AP = {α := (c = 5),β := (a �= b)}, these are examples
of well-formed LTL formulae: G β,α U ¬β.

In classical model checking one usually verifies that a model of the system in question
satisfies the given set of LTL-specified requirements. That is not possible in the context
of this paper because in the requirements stage there is no model to work with. Never-
theless, to better understand the background of LTL model checking let us assume that
the system is modelled as a Labelled Transition System (LTS).

Definition 2. Let Σ be a set of state labels (it will mostly hold that Σ = AP). Then an
LTS M = (S,→,ν,s0) is a tuple, where: S is a set of states, →⊆ S× S is a transition
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CS

NCS

wait

q3

q2

1 : G(wait ⇒ F(CS))
2 : G(¬CS⇒ F(CS))

Fig. 1. LTS for Peterson’s mutual exclusion protocol (with only one process) and two liveness
LTL formulae

relation, ν : S → 2Σ is a valuation function and s0 ∈ S is the initial state. A function
r : N→ S is an infinite run over the states of M if r(0) = s0,∀i : r(i)→ r(i+ 1). The
trace or word of a run is a function w : N→ 2Σ, where w(i) = ν(r(i)).

An LTL formula states a property pertaining to an infinite trace (a trace that does not
have to be associated with a run). Assuming the LTS is a model of a computer program
then a trace represents one specific execution of the program. Also the infiniteness of
the executions is not necessarily an error – programs such as operating systems or con-
trolling protocols are not supposed to terminate.

Definition 3. Let w be an infinite word and let Ψ be an LTL formula over Σ. Then it is
possible to decide if w satisfies Ψ (w |= Ψ) based on the following rules (where w(i) is
the i-th letter of w and wi is the i-th suffix of w):

w |= p iff p ∈ w(0),
w |= ¬Ψ iff w �|= Ψ,
w |= Ψ1∧Ψ2 iff w |= Ψ1 and w |= Ψ2,
w |= X Ψ iff w1 |= Ψ,
w |= Ψ1 U Ψ2 iff ∃i∀ j < i : wj |= Ψ1,wi |= Ψ2,

Example 2. Figure 1 contains LTS for a process engaged in Peterson’s mutual exclusion
protocol. The protocol can control access to the critical section (state CS) for arbitrarily
many processes that communicate using global variables to determine which process
will be granted access next. The two LTL formulae verify the liveness property of the
protocol, e.g. 1: if a process waits for CS then it will eventually get there.

Clearly, a system as a whole satisfies an LTL formula if all its executions (all infinite
words over the states of its LTS) do. Efficient verification of that satisfaction, however,
requires a more systematic approach than enumeration of all executions. An example
of a successful approach is the enumerative approach using Büchi automata.

Definition 4. A Büchi automaton is a pair A = (M,F), where M is an LTS and F ⊆ S.
An automaton A accepts an infinite word w (w ∈ L(A)) if there exists a run r for w in M
and there is a state from F that appears infinitely often on r, i.e. ∀i∃ j > i : r( j) ∈ F.

Arbitrary LTL formula φ can be transformed into a Büchi automaton Aφ such that
w |= φ ⇔ w ∈ L(Aφ). Also checking that every execution satisfies φ is equivalent to
checking that no execution satisfies ¬φ. It only remains to combine the LTS model of
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the given system M with A¬φ in such a way that the resulting automaton will accept
exactly those words of M that violate φ. Finally, deciding existence of such a word –
and by extension verifying correctness of the system – has been shown equivalent to
finding accepting cycle in a graph.

2.2 Model-Based Sanity Checking

As described in the introduction the model checking procedure is not designed to decide
why was a certain property satisfied in a given system. That is a problem, however,
because the reasons for satisfaction might be the wrong ones. If for example the system
is modelled erroneously or the formula is not appropriate for the system then it is still
possible to receive a positive answer.

These kinds of inconsistencies between the model and the formula are detected us-
ing sanity checking techniques, namely vacuity and coverage. In this paper they will
be described only for comparison with their model-free versions and interested reader
should consult for example [12] for more details.

Let K be an LTS, ϕ a formula and ψ its subformula. Then ψ does not affect the
truth value of ϕ in K if K satisfies ∀xϕ[ψ/x] if and only if K satisfies ϕ, where [ψ/x]
substitutes x with ψ. Then a system K satisfies a formula ϕ vacuously iff K |= ϕ and
there is a subformula ψ of ϕ such that ψ does not affect ϕ in K.

A state s of an LTS K is q-covered by ϕ, for a formula ϕ and an atomic proposition
q, if K satisfies ϕ but K̃s,q does not satisfy ϕ. There K̃s,q stands for an LTS equivalent to
K except the valuation of q in the state s is flipped.

It can be observed that these notions of sanity are deeply dependent on the system
that is being verified. In order to be used without a model these notions need to be
altered considerably while preserving the main idea. Vacuity states that the satisfaction
of a formula is given extrinsically and is not related to the formula itself. Coverage, on
the other hand, attempts to capture the amount of system behaviour that is described by
the formulae. These concepts are in this paper translated into model-free environment
and supplemented with consistency verification to form a complex sanity checking.

3 Model-Free Sanity Checking

As various studies concluded, undetected errors made early in the development cycle
are the most expensive to eradicate. Thus it is very important that the outcome of the
requirements stage – a database of well-formed, traceable requirements – is what the
customer intended and that nothing was omitted (not even unintentionally). While a pro-
cedure that would ensure the two properties cannot be automated, this paper proposes a
methodology to check the sanity of requirements. In the following the sanity checking
will be considered to consist of 3 related tasks: consistency, vacuity and completeness
checking.

Definition 5. A set Γ of LTL formulae over AP is consistent if ∃w ∈ APω : w satifies∧
Γ. Checking consistency of a set Γ entails finding all minimal inconsistent subsets

of Γ. A formula φ is vacuous with respect to a set of formulae Γ if
∧

Γ ⇒ φ. To check
vacuity of a set Γ entails finding all pairs of 〈φ ∈ Γ,Φ ⊆ Γ〉 such that Φ is consistent
and Φ⇒ φ (and for no Φ′ ⊆Φ does it hold that Φ′ ⇒ φ).
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The existence of the appropriate w can be tested by constructing A∧
Γ and checking

that L(A∧
Γ) is non-empty. The procedure is effectively equivalent to model checking

where the model is a clique over the graph with one vertex for every element of 2AP

(allowing every possible behaviour).
This approach to consistency and vacuity is especially efficient if a large set of re-

quirements needs to be processed and standard sanity checking would only reveal if
there is an inconsistency (or vacuity) but would not be able to locate the source. Fur-
thermore, dealing with larger sets of requirements entails the possibility that there will
be several inconsistent subsets or that a formula is vacuous due to multiple small sub-
sets. Each of these conflicting subsets needs to be considered separately which can be
facilitated using the methodology proposed in this paper.

Example 3. Let us assume that there are five requirements formalised as LTL formulae
over a set of atomic propositions {p,q,a}. They are 1 : F(p ⇒ p U q), 2 : GF(p),
3 : G¬(a∧ p), 4 : G(X q ⇒ a) and 5 : GF(q). In this set the formula 4 is inconsistent
due to the first 3 formulae and the last formula is vacuously satisfied (implied) by the
first 2 formulae.

3.1 Implementation of Sanity Checking

Let us henceforth denote one specific instance of consistency (or vacuity) checking
as a check. For consistency and a set Γ it means to check that for some γ ⊆ Γ is

∧
γ

satisfiable. For vacuity it means for γ⊆ Γ and φ ∈ Γ to check that
∧

γ⇒ φ is satisfiable.
In the worst case both consistency and vacuity checking would require an exponential
number of checks. However, the proposed algorithm considers previous results and only
performs the checks that need to be tested.

Both consistency and vacuity checking use three data structures that facilitate the
computation. First there is the queue of verification tasks called Pool, then there are two
sets, Con and Incon, which store the consistent and inconsistent combinations found
so far. Finally, each individual task contains a set of integers (that uniquely identifies
formulae from Γ) and a flag value (containing three bits for three binary properties).
First, whether the satisfaction check was already performed or not. Second, if the com-
bination is consistent. And the third bit specifies the direction in subset relation (up or
down in the Hasse diagram) in which the algorithm will continue. The successors will
be either subsets or supersets of the current combination.

The idea behind consistency checking is very simple (listed as Algorithm 1). The
pool contains all the tasks to be performed and these tasks are of two types: either to
check consistency of the combination or to generate successors. The symmetry of the
solution allows for parallel processing (multiple threads performing the Algorithm 1 at
the same time) given that the data structures are properly protected from race conditions.
The pool needs to be initiallised with all single element subsets of Γ and Γ itself, thus
in the subsequent iteration will be checked the supersets of the former and subsets of
the latter.

Algorithm 2 is called when the task t on the top of Pool is already checked. At this
point either all subsets or all supersets of t should be enqueued as tasks. But not all
successors need to be inspected, e.g. if t is consistent then also all its subsets will be
consistent – that is clearly true and no subset of t needs to be checked.
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Algorithm 1. Consistency Check

1 while t← getTask() do
2 if t.checked() then
3 genSuccs(t)

4 else
5 t.checked ← verCons(t)
6 updateSets(t)
7 Pool.enqueue(t)

Algorithm 2. genSuccs(Task t)

1 if t.con() then
2 if t.dir =↑ then
3 genSupsets(t)

4 else
5 if t.dir =↓ then
6 genSubsets.(t)

Algorithm 3. genSupsets(Task t)

1 foreach i ∈ {1, . . . ,n} do
2 t.add(i)
3 if ∀X ∈ Con : X �⊇ t ∧
4 ∀X ∈ Incon : X �⊆ t then
5 enqueue(t)

6 t.erase(i)

Algorithm 4. verCons(t=〈i1, . . . , i j〉)

1 F← createConj(φi1 , . . . ,φi j )

2 A← transform2BA(F)
3 return findAccCycle(A)

That observation is utilised again in Algorithm 3. It does not suffice to stop gener-
ating subsets and supersets when its immediate predecessors are found consistent (in-
consistent), because it can also happen that the combination to be checked was formed
in a different branch of the Hasse diagram of the subset relation. In order to prevent
redundant satisfiability checks two sets are maintained Con and Incon (see how these
are used on line 4 of Algorithm 3).

The actual consistency (and quite similarly also vacuity) checking is less compli-
cated (see Algorithm 4). First, the conjunction of formulae encoded in the task is cre-
ated, then the appropriate Büchi automaton is checked for existence of an accepting
cycle: using nested DFS [7]. The only difference when performing the vacuity check-
ing is that the task t consists of a list 〈i1, . . . , i j〉 which can be empty, and one index
ik. Since the task is to check that φi1 ∧ . . .∧φi j ⇒ φik the line 1 needs to be altered to
F ← createConj(φi1 , . . . ,φi j ,¬φik ). Because if φi1 ∧ . . .∧φi j ∧¬φik is satisfiable then
φi1 ∧ . . .∧φi j �⇒ φik , i.e. φik is not satisfied vacuously by {φi1 , . . . ,φi j}.

Discarding the Büchi automata in every iteration may seem unnecessarily wasteful,
especially since synchronous composition of two (and more) automata is a feasible op-
eration. However, the size of an automaton created by composition is a multiplication
of the sizes of the automata being composed. Furthermore, it would not be possible to
use the size optimising techniques employed in LTL to Büchi translation. And these
techniques work particularly well in our case, because the translated formulae (con-
junctions of requirements) have relatively small nesting depth (maximal depth among
requirements +1).
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4 Completeness Checking

The completeness checking is a little more involved: this is in fact the part that provably
cannot be fully automated. Hence the paper will first describe the problem and then
detail the semi-automatic solution proposed.

Let us assume that the user specifies three types of requirements: environmental as-
sumptions ΓA, required behaviour ΓR and forbidden behaviour ΓF . The environmental
assumptions represent the sensible properties of the world a given system is to work
in, e.g. “The plane is either in the air or on the ground, but never in both these states
at once”. The required behaviour represents the functional requirements imposed on
the system: the system will not be correct if any of these is not satisfied. Dually, the
forbidden behaviour contains those patterns that the system must not display. Assume
henceforth the following simplifying notation for Büchi automata: let f be a proposi-
tional formula over capital Latin letters A,B, . . . barred letters Ā, B̄, . . . and Greek letters
α,β, . . ., where A substitutes

∧
γ∈ΓA

γ, Ā stands for
∨

γ∈ΓA
γ and all Greek letters represent

simple LTL formulae. Then A f denotes such a Büchi automaton that accepts all words
satisfying the substituted f , e.g. AA∨B̄∧φ accepts words satisfying

∧
γ∈ΓA

γ∨∨
γ∈ΓB

γ∧φ.
The automaton AA thus describes the part of the state space the user is interested in
and which the required and forbidden behaviour should together submerge. That most
commonly is not the case with freshly elicited requirements and therefore the problem
is the following: find sufficiently simple formulae over AP that would, together with
formulae for R and F , cover a large portion of AA. In other words to find such φ that
AR∨F̄∨φ covers as much of AA as possible.

In order to evaluate the size of the part of AA covered by a single formula, i.e. how
much of the possible behaviour is described by it, an evaluation methodology for Büchi
automata needs to be established. The plain enumeration of all possible words accepted
by an automaton is impractical given the fact that Büchi automata operate over infinite
words. Similarly, the standard completeness metrics based on state coverage [5,19] are
unsuitable because they do not allow for comparison of sets of formulae and they require
the underlying model. Equally inappropriate is to inspect only the underlying directed
graph because Büchi automata for different formulae may have isomorphic underlying
graphs.

The methodology proposed in this paper is based on the notion of almost-simple
paths and directed partial coverage function.

Definition 6. Let G be a directed graph. A path π in G is a sequence of vertices
v1, . . . ,vn such that ∀i : (vi,vi+1) is an edge in G. A path is almost-simple if no vertex
appears on the path more than twice. The notion of almost-simplicity is also applicable
to words in the case of Büchi automata.

With almost-simple paths one can enumerate the behavioural patterns of a Büchi au-
tomaton without having to incorporate infinity. Clearly, it is a heuristic approach and a
considerable amount of information will be lost but since all simple cycles will be con-
sidered the resulting evaluation should provide sufficient distinguishing capacity (as
demonstrated in Section 5.2).
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Knowing which paths are interesting it is possible to propose a methodology that
would allow comparing two paths. There is, however, a difference between Büchi
automata that represent a computer system and those built using only LTL formulae
(that will restrict the behaviour of the former). The latter automata use a different eval-
uation function ν̂ that assigns to every edge a set of literals. The reason behind this is
that the LTL-based automaton only allows those edges (in the system automaton) for
which their source vertex has evaluation compatible with the edge evaluation (now in
the LTL automaton).

Definition 7. Let A1 and A2 be two (LTL) Büchi automata over AP and let APL be the
set of literals over AP. The directed partial coverage function Λ assigns to every pair of
edge evaluations a rational number between 0 and 1, Λ : 2APL× 2APL →Q. The evalu-
ation works as follows (where p = |A1∩A2|):

Λ(A1 = {l11, . . . , l1n},A2 = {l21, . . . , l2m}) =
{

0 ∃i, j : l1i ≡¬l2 j

p/m otherwise

From the definition one can observe that Λ is not symmetric. This is intentional because
the goal is to evaluate how much a path in A2 covers a path in A1. Hence the fact
that there are some additional restricting literals on an edge of A1 does not prevent
automaton A2 to display the required behaviour (the one observed in A1).

The extension of coverage from edges to paths and automata is based on averaging
over almost-simple paths. An almost-simple path π2 of automaton A2 covers an almost-

simple path π1 of automaton A1 by Λ(π1,π2) =
∑n

i=0 Λ(A1i,A2i)
n per cent, where n is the

number of edges and A ji is the set of labels on i-th edge on π j. Then automaton A2

covers A1 by Λ(A1,A2) =
∑m

i=0 max2i Λ(π1i,π2i)
m per cent, where m is the number of almost-

simple paths of A1 that end in an accepting vertex. It follows that coverage of 100 per
cent occurs when for every almost-simple path of one automaton there is an almost-
simple path in the other automaton that exhibits similar behaviour.

4.1 Implementation of Completeness Checking

The high-level overview of the implementation of the proposed methodology is based
on partial coverage of almost-simple paths of AA. In other words finding the most suit-
able path in AR∨F̄∨φ for every almost-simple path in AA, where φ is a sensible simple
LTL formula that is proposed as a candidate for completion. Finally, the suitability will
be assessed as the average of partial coverage over all edges on the path.

The output of such a procedure will be a sequence of candidate formulae, each as-
sociated with an estimated coverage (a number between 0 and 1) the addition of this
particular formula would entail. The candidate formulae are added in a sequence so
that the best unused formula is selected in every round. Finally, the coverage is always
related to AA and, thus, if some behaviour that cannot be observed in AA is added with
a candidate formula this addition will neither improve nor degrade the coverage.

Example 4. The method of Büchi automata evaluation will be partially exemplified us-
ing Figure 2. The example only shows the enumeration of almost-simple paths and
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1a)

1b)

1c)

1d)1235
1234235
12356
12342356

Aa Ab

Ac

1

2
3

4

5

6

a
a,b

¬a,b

c,a

a

a,d ¬c,b c

a

Fig. 2. 1a) Example Büchi automaton Aa; 1b) All almost-simple paths of Aa; 1c) and 1d) are
two different Büchi automata with relatively similar evaluations of almost-simple paths (see Ex-
ample 4)

the partial coverage of two paths. What remains to the complete methodology will be
shown more structurally in Algorithm 5. The enumeration of almost-simple paths of Aa

in Figure 1a) should be straightforward, part the fact that a path is represented as a se-
quence of edges for simplicity. Let us assume that Ab is the original automaton and Ac

is being evaluated for how thoroughly it covers Ab. There are 4 almost-simple paths in
Ab, one of them is π = 〈a;¬a,b;c,a;a〉. The partial coverage between the first edge of π
and the first edge of Ac (there is only one possibility) is 0.5, since there is the excessive
literal d. The coverage between the second edges is also 0.5, but only because of ¬c
in Ac; the superfluous literal ¬a restricts only the behaviour of Ab. Finally, the average
similarity between π and the respective path in Ac is 0.75 and it is approximately 0.7
between the two automata.

The topmost level of the completeness evaluation methodology is shown as Algo-
rithm 5. As input this function requires the three sets of user defined requirements, the
set of candidate formulae and the number of formulae the algorithm needs to select. On
lines 1 and 2 the formulae for conjunction of assumptions and user requirements (both
required and forbidden) are created. They will be used later to form larger formulae
to be translated into Büchi automata and evaluated for completeness but, for now, they
need to be kept separate. Next step is to enumerate the almost-simple paths of AA for
later comparison, i.e. a baseline state space that the formulae from ΓCand should cover.

The rest of the algorithm forms a cycle that iteratively evaluates all candidates from
ΓCand (see line 8 where the corresponding formula is being formed). Among the candi-
date formulae the one with the best coverage of the paths is selected and subsequently
added to the covering system.

Functions enumeratePaths and avrPathCov are similar extensions of the BFS al-
gorithms. Unlike BFS, however, they do not keep the set of visited vertices to allow state
revisiting (twice in case of enumeratePaths and arbitrary number of times in case of
avrPathCov). The avrPathCov search is executed once for every path it receives as
input and stops after inspecting all paths to the length of the input path or if the current
search path is incompatible (see Definition 7).
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Algorithm 5. Completeness Evaluation

Input : ΓA, ΓR, ΓF , ΓCand , n
Output: Best coverage for 1 . . .n formulae from ΓCand

1 γAssum ←∧
γ∈ΓA

γ
2 γDesc ←∧

γ∈ΓR
γ∨∨

γ∈ΓF
γ

3 A ← transform2BA(γAssum)
4 pathsBA← enumeratePaths(A)
5 for i = 1 . . .n do
6 max← ∞
7 foreach γ ∈ ΓCand do
8 γTest ← γDesc∨ γ
9 A← transform2BA(γTest )

10 cur← avrPathCov(A,pathsBA)
11 if max < cur then
12 max← cur
13 γMax ← γ

14 print( “Best coverage in i-th round is max.” )
15 γDesc ← γDesc ∨ γMax

16 ΓCand ← ΓCand \ {γMax}

5 Experimental Evaluation

All three sanity checking algorithms were implemented as an extension of the parallel
explicit-state LTL model checker DiVinE [1]. From the many facilities offered by this
tool, only the LTL to Büchi translation was used. As the original tool also its extension
was implemented using parallel computation, yet due to space limitation this aspect is
not to be described in this paper.

5.1 Experiments with Random Formulae

The first set of experiments was conducted on randomly generated LTL formulae. In
order for the experiments to be as realistic as possible formulae with various nesting
depths were generated. Nesting depth denotes the depth of the syntactic tree of a for-
mula. Statistics about the most common formulae show, e.g. in [8], that the nesting is
rarely higher than 5 and is 3 on average. Following these observations, the generating
algorithm takes as input the desired number n of formulae and produces: n/10 formulae
of nesting 5, 9n/60 of nesting 1, n/6 of nesting 4, n/4 of nesting 2 and n/3 of nesting
3. Finally, the number of atomic propositions is also chosen according to n (it is n/3)
so that the formulae would all contribute to the same state space.

All experiments were run on a dedicated Linux workstation with quad core Intel
Xeon 5130 @ 2GHz and 16GB RAM. The codes were compiled with optimisation op-
tions -O2 using GCC version 4.3.2. Since the running times and even the number of
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Fig. 3. Log-plot summarising the time complexity of consistency checking

checks needed for completion of all proposed algorithms differ for every set of formu-
lae, the experiments were ran multiple times. The sensible number of formulae starts at
8: for less formulae the running time is negligible. Experimental tests for consistency
and vacuity were executed for up to 15 formulae and for each number the experiment
was repeated 25 times.

Figure 3 summarises the running times for consistency checking experiments. For
every set of experiments (on the same number of formulae) there is one box capturing
median, extremes and the quartiles for that set of experiments. From the figure it is
clear that despite the optimisation techniques employed in the algorithm both median
and maximal running times increase exponentially with the number of formulae. On
the other hand there are some cases for which presented optimisations prevented the
exponential blow-up as is observable from the minimal running times.

Figure 4 illustrates the discrepancy between the number of combinations of formulae
and the number of vacuity checks that were actually performed. The number of combi-
nations for n formulae is n∗2n−1 but the optimisation often led to much smaller number.
As one can see from the experiments on 9 formulae, it is potentially necessary to check
almost all the combinations but the method proposed in this paper requires on average
less than 10 per cent of the checks and the relative number decreases with the number
of formulae.

5.2 Case Study: Aeroplane Control System

A sensible exposition of the effectivity of completeness evaluation proposed in this pa-
per requires more elaborate approach than using random formulae. For that purpose
a case study has been devised that demonstrates the capacity to assess coverage of
requirements and to recommend suitable coverage-improving LTL formulae. Random
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Fig. 4. Log-plot with the relative number of checks for vacuity checking

formulae were used only as candidates for coverage improvement: they were built based
on the atomic proposition that appeared in the input formulae and only very simple gen-
erated formulae were selected. It was also required that the candidates do not form an
inconsistent or tautological set. Alternatively, pattern-based [8] formulae could be used
as candidates. The methodology is general enough to allow semi-random candidates
generated using patterns from input formulae. For example if an implication is used as
the input formula, the antecedent may not be required by the other formulae which may
not be according to user’s expectations.

The case study attempts to propose a system of LTL formulae that should control
the flight and more specifically the landing of an aeroplane. The LTL formulae and
the atomic propositions they use are summarised in Figure 5. The requirements are
divided into 3 categories similarly as in the text: A requirements represent assumptions
and R and F stand for required and forbidden behaviour. For example the formula R2
expresses the requirement that whenever landing the plane should eventually slow down
from 200 mph to 100 mph (during which the speed never goes above 200 mph).

Initially, the coverage of R and F requirements is 0. Though they were not selected
specifically for the purpose of covering the A requirements, it is still alarming that not
a single path was preserved. The first formula selected by the Algorithm 5 and lead-
ing to coverage of 9.1 per cent was a simple G(¬l). Not particularly interesting per
se, nonetheless emphasising the fact that without this requirement, landing was never
required. Unlike the previous formula which would be added to forbidden behaviour,
the next select formula (F(¬b∧¬l)) is clearly required totalling the coverage to 39.4
per cent. This formula points out that the required behaviour only specifies what should
happen after landing, unlike assumption which also require flight. The final formula
F(¬l U (a∨ b)) connects flight and landing and its addition entails coverage of 54.9
per cent.
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Atomic Propositions

a ≡ [height = 0]
b ≡ [speed ≤ 200]
l ≡ [landing]
u ≡ [undercarriage]
c ≡ [speed ≤ 100]

LTL Requirements

A1 : G(a⇔ b) R1 : G(l ⇒ F(G(b)∧F(G(c))))
A2 : F(l)∧G(l ⇒ F(a)) R2 : G(l ⇒ F(b U c))
A3 : G(¬l ⇒¬b) R3 : G(¬b⇒¬u)
A4 : G(u⇒ F(a)∧u⇒ c) R4 : F(l U (u U c))

F1 : F(a∧F(¬a))

Fig. 5. The two tables explain the shorthands for atomic propositions and list the LTL require-
ments

6 Conclusion

This paper further expands the incorporation of formal methods into software devel-
opment. Aiming specifically at the requirements stage we propose a novel approach to
sanity checking of requirements formalised in LTL formulae. Our approach is compre-
hensive in scope integrating consistency, vacuity and completeness checking to allow
the user (or a requirements engineer) to produce a high quality set of requirements eas-
ier. The novelty of our consistency (vacuity) checking is that they produce all inconsis-
tent (vacuous) sets instead of a yes/no answer and their efficiency is demonstrated in an
experimental evaluation. Finally, the completeness checking presents a new behaviour-
based coverage and suggests formulae that would improve the coverage and, conse-
quently, the rigour of the final requirements.

One direction of future research is the pattern-based candidate selection mentioned
above. Even though the selected candidates were relatively sensible in presented ex-
periments, using random formulae can produce useless results. Finally, experimental
evaluation on real-life requirements and subsequent incorporation into a toolchain fa-
cilitating model-based development are the long term goals of the presented research.
This paper also lacks formal definition of total coverage (which the proposed partial
coverage merely approximates). We intend to formulate an appropriate definition us-
ing uniform probability distribution: which would also allow to compute total coverage
without approximation and would not be biased by concrete LTL to BA translation.
That solution, however, is not very practical since the underlying automata translation
is doubly exponential.
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Abstract. Effective static analyses must precisely approximate both
heap structure and information about values. During the last decade,
shape analysis has obtained great achievements in the field of heap ab-
straction. Similarly, numerical and other value abstractions have made
tremendous progress, and they are effectively applied to the analysis
of industrial software. In addition, several generic static analyzers have
been introduced. These compositional analyzers combine many types
of abstraction into the same analysis to prove various properties. The
main contribution of this paper is the combination of Sample, an exist-
ing generic analyzer, with a TVLA-based heap abstraction (TVAL+).

1 Introduction

During the last decades, heap analysis has been extensively, deeply and success-
fully studied. Its goal is to approximate all possible heap shapes in a finite way.
This is particularly important when analyzing object-oriented programs, which
heavily interact with dynamically allocated memory. Static analysis has been
widely applied to the abstraction of numerical information as well. Numerical
domains [8,22] track static information at different levels of approximation. In
addition, other approaches (e.g., string analyses) approximate other types of
information over the values computed during the execution.

Usually, the combination of the heap abstraction with information about other
values (called value domain) is necessary. For instance, consider a program that
sum the values contained in the nodes of a list. Here we would like to prove
that, at the end of the execution, the computed value of is the summation of
all elements in the given list. For this reason, several recent approaches have
combined heap and value abstractions. In this context, some heap analyses (e.g.,
TVLA) were extended with information about numerical values [21], or ad-hoc
heap analyses were combined with some existing numerical domains [3].

Thanks to compositional analyses based on abstract interpretation [5], we can
define a generic analyzer that combines various abstractions modularly and auto-
matically. In this way, the implementation of different domains can be composed
together without reimplementing the analysis. In addition, generic static analyz-
ers take care of all aspects not strictly related to the abstract domain, e.g., the
computation of a fixpoint. As far as we know, existing generic analyzers [10,9,24]
apply a fixed heap analysis, while they let the user specify the value abstraction
and the property of interest. Sample (Static Analyzer of Multiple Programming
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1 // list contains only
2 // positive integer values
3 IntNode it = list .next ;
4 it . value = −1;
5 it = null ;

(a) Running example (b) At the beginning and
at the end

(c) At line 4

Fig. 1. The running example and the states obtained by TVLA when analyzing it

LanguagEs) is a novel generic analyzer of object-oriented programs that is para-
metric not only in the value domain and in the property of interest, but in the
heap abstraction as well.
Contribution Given this context, the contribution of this work is the extension
of Sample with a TVLA-based heap analysis (TVAL+). In particular, we formalize
the structure of Sample, how we name nodes in TVLA states through name
predicates, and how we communicate the modifications performed by TVLA on
the heap structure to the value analysis. In this way, TVAL+ can be combined
with any existing value abstraction in Sample. The combination between TVAL+
and value analyses is completely automatic.

Intuitevely, Sample computes an abstract state for each program point. We
use TVLA as the engine to define the heap small-step semantics of our lan-
guage, while the value analysis tracks information over the values contained in
abstract heap nodes represented by heap identifiers. Since TVLA names nodes in
a completely unpredictable and arbitrary way, and it does not provide any infor-
mation from where nodes come from after the application of a TVLA action, we
augment standard TVLA states with name predicates, and we normalize the exit
states obtained by applying TVLA actions to keep the naming schema consistent.
When we perform this normalization, we communicate the changes performed
by TVLA on the heap structure to the value analysis. Our approach supports
this normalization without requiring any additional feature to the value analysis,
since it relies on standard semantic operators (namely, assignment and forgetting
of identifiers). The TVLA state can contain any instrumentation predicates.

1.1 Running Example

Consider now the code in Figure 1a. This program assigns −1 to the value
contained in the second node of a given list. Let us suppose that the list is
acyclic, it contains at least two nodes, and that the initial TVLA state is the one
depicted in Figure 1b. The node pointed by list.next is materialized when it is
assigned to the iterator, while it.value is materialized when it is assigned at line
4. Therefore, after the analysis of line 4, TVLA infers the heap state depicted in
Figure 1c1. Finally, when we assign null to it, TVLA removes this unary predicate

1 TVLA would actually give more options, which we omit here.
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%s PVar {x,y,z,..}

foreach (x in PVar) {
%p x(v 1) unique

}
(a) Program vari-
able predicates

%s Fields {n, i , ...}

foreach ( f in Fields ) {
%p f(v 1,v 2) function

}
(b) Field predicates

%action createObj(t) {
%new
{
t(v) = isNew(v)

}
}
(c) Object creation

%action getField(u,t , f) {
%f { E(v 1,v 2) t(v 1)

& f(v 1,v 2)}
{
u(v) = E(v 1) t(v 1)

& f(v 1, v)
}

}
(d) Field access

%action assignVariable(t , s) {
%f { source(v) }
{

t(v) = s(v)
}

}
(e) Variable assignment

%action assignField(t , f , s) {
%f { t(v), s(v) }
{

f(v 1, v 2) = (f(v 1, v 2) & !t(v 1))
| (t(v 1) & s(v 2))

}
}

(f) Field assignment

%action lub() {
{

}
}
(g) Upper
bound

Fig. 2. TVLA actions of the heap semantics

from the TVLA state, and this leads to summarize u2 with u4, and u3 with u5.
This brings the analysis to the initial state depicted in Figure 1b.

2 Background

2.1 Sample

Sample (Static Analyzer of Multiple Programming LanguagEs) is a novel generic
analyzer of object-oriented programs based on the abstract interpretation theory
[6,7]. Relying on compositional analyses, Sample can be instantiated with various
heap abstractions and value domains. A state of the analysis is a pair composed
by a state of the heap domain H and a state of the value domain V (formally, Σ =
H× V). Sample has been already applied to various value analyses [4,11,12,25],
and it supports some of the most common numerical analyses through Apron
[17]. In addition, some rough heap analyses have been already developed in
Sample. The analyzer works on an intermediate object-oriented language called
Simple, and it supports the compilation of Scala and Java bytecode to this
language. Simple is based on control flow graphs (cfg). Each block of the cfg
contains a list of statements that may be x := y.f, y.f := x, or x := new T.

2.2 Shape Analysis

TVLA [18] is a framework for defining and implementing heap abstractions in
3-valued first order logic [23] with transitive closure (FOLTC). In this section,
we sketch the standard TVLA features we adopt in TVAL+. For each analysis a
FOL signature (predicates of arity up to 2) is defined. The predicates are divided
into core (uninterpreted) predicates, and instrumentation predicates, which are
defined by a FOLTC formula over the core predicates. The abstract domain
is composed of sets of structures of 3-valued FOLTC. A 3-valued structure is
composed of normal and summary nodes. Normal nodes represent exactly one
concrete node, while summary nodes may represent many concrete nodes.
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The abstraction is defined by a set of unary predicates out of the signature,
which can be core or instrumentation predicates (the abstraction predicates AP ).
In a normalized structure any two distinct nodes are differentiated by at least
one abstraction predicate. For heaps, usually unary predicates represent local
reference valued variables and binary predicates represent reference valued fields.
The graphical representation, as in Figure 1b, uses circles for nodes (dashed for
summary nodes), labeled originless arrows for local variables (again dashed for
may point to), and labeled arrows between nodes to represent reference valued
fields. For example, for a linked list as in Figure 1b, we could use as abstraction
predicates with one free variable pointed-to-by-list (u0 in the example) list(x),
so that the first node is not summarized with the rest of the nodes.

In our example, we would need predicates to differentiate u1, u3 and u5.
We can achieve that by using (i) value-of-node-pointed-to-by-list (u1), that is,
∃y : list(y) ∧ value(y, x), (ii) value-of-node-pointed-to-by-it (u3 in 1c), that is,
∃y : it(y) ∧ value(y, x), and (iii) ∃y, z : it(y) ∧ next ∗ (y, z) ∧ value(z, x) for
differentiating the nodes coming before and after it.

Concrete transformers are represented by update formulae (P ′(x) = φ(x)).
Here P is a predicate symbol, φ a formula (evaluated in the pre-state), x are
bound variables (implicitly universally quantified - exactly as many as the arity of
P) and P ′ is P in the post state. For example, Figure 2f represents the assignment
t.f = s. Here the new value of f (the field being written) is given by a formula
on the old values of f, t and s (we omit here null checks).

TVLA works by applying a semantic reduction (called focus) before the ab-
stract transformer. Given an abstract state, focus produces a set of abstract
states with the same concrete representation, but ensuring some pairs of nodes
are not merged, in addition to the separation enforced by the abstraction predi-
cates. In the linked list example, before advancing to the next node, we would like
to make sure it is not merged with any other node, so we would focus on it using
the formula ∃y : it(y) ∧ next(y, x). TVLA uses widening (called blur) to ensure
termination. After applying the abstract transformer on the focused structures,
nodes which are not separable by the abstraction predicates are merged, and the
same happens for structures, ensuring a bound on the size of the abstract domain.

TVLA Actions
Figure 2 reports all TVLA actions that are used in TVAL+. For every program
variable x, a unary predicate Px(v) specifies the node that is pointed by the
local variable (Figure 2a). Unique specifies that at most one node satisfies the
predicate. Heap nodes are connected to each other when a field of an object ref-
erences another object. For every possible field f, we introduce a binary predicate
Pf (v1, v2) that connects heap nodes (Figure 2b). For example, if field n of node
a references node b, we have that Pn(a, b) = 1. In the definition, function means
that the field relation is a (partial) function. Object creation relies on the TVLA
built-in predicate isNew . It creates a new (non-summary) node and assigns it to
a temporary program variable temp (Figure 2c). When we access a field of an
object, the node modelling the target object may have been summarized with
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other nodes. However, we would like to obtain a concrete (i.e., not summarized)
node as the result of our access. With this purpose we add the focus formula
∃(v1, v2) : Ptarget(v1) ∧ Pf (v1, v2). As in the case of object creation, the result
is assigned to a temporary program variable (Figure 2d). In the case of assign-
ments, we assume there is always a unary predicate pointing to the source of
the assignment. In the case of a variable, it is the program variable predicate,
while in the case of a heap access or an object creation it is the variable temp
which was created as explained above. Therefore, we simply copy the valuation
of the unary predicate (Figure 2e). The treatment of the assignment to a field is
similar to normal assignment. However, the translation to TVLA is different, as
it involves a field predicate, and we need to access the target object whose field
is assigned (Figure 2f). When we join two states (e.g., when computing the exit
state of an if statement), we rely on the join performed automatically by TVLA
on all input structures in the entry state. Therefore, we simply provide TVLA
with the two states and an empty action, and we take the exit state as the result
of the upper bound operator (Figure 2g).

3 Heap and Value Analyses in Sample

The state of the computation of an object oriented program can be defined as
the combination of the heap structure with the values that can be contained in
heap locations or local variables. Let Ref be the set of concrete references, and
FieldName the set of field names. The heap may be defined by Ref×FieldName→
Ref for heap locations, and by VarId → Ref (where VarId is the set of local
variables) for the local variables. Let Val be the set of values (e.g., integers or
strings). The runtime values can be represented by Ref × FieldName → Val for
heap locations, and by VarId→ Val for local variables.

When we reason about the abstraction of concrete states, often we would like
to reason about heap structures and values separately. Therefore, we suppose
that concrete references are abstracted by abstract heap identifiers (HId). Each
heap analysis defines its own finite set of heap identifiers. A heap identifier
could represent one or many concrete references. Let γHId : HId → ℘(Ref) be
the concretization of abstract heap identifiers. We say that a heap identifier i
represents a summary node if |γHId(i)| > 1.

Since the heap analysis needs to abstract together many concrete heaps, a heap
interaction (e.g., a field access) may provide many heap identifiers. Sometimes
the heap analysis may not be able to establish one exact node for a heap access,
and therefore it would return a possible set of heap identifiers. In other cases,
the heap analysis could track disjunctive information through a set of heap
states at a given program point, and therefore it would return a definite set
of heap identifiers. Formally, we define set of heap identifiers SHId = ℘(HId) ×
{true, false}. The boolean flag is true if the set is definite (if it represents all
identifiers in the set), false if it is possible (if it represents some of them). Note
that trace partitioning [20] is supported in Sample[13]. Therefore, if the heap
domain uses a disjunction of heaps rather than a single 3-valued logical structure
(as often happens in TVLA), we can use this feature to prove complex properties.
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1 // list contains only
2 // positive integer values
3 IntNode it = list .next ;
4 it . value = −1;
5 it = null ;

(a) Non-deterministic code (b) Precise abstraction (c) Rough ab-
straction

Fig. 3. A non-deterministing program possible abstractions of the heap at line 7

Example: Consider the code in Figure 3a. This program non-deterministically
adds a node at the beginning of a list containing only one element. It then assigns
1 to field value of the node at the head of the list. Heap analyses could produce
different states at line 7. A precise analysis like TVLA may track two distinct
states (Figure 3b), while a rough analysis may abstract the two states into one
(Figure 3c). What happens when we assign to list.value? In the first scenario, we
have to perform a strong assignment to both the nodes pointed by list.value. This
is represented by assigning to the definite set of heap identifiers ({u5, u3}, true).
In the second scenario, we can only perform a weak assignment, since we do not
have two distinct states. This is represented by the possible set ({u1, u3}, false).

3.1 Replacements

The application of semantic or lattice operators could affect the structure and
the identifiers contained in the heap state. In particular, nodes could be ma-
terialized or merged. We must reflect these changes in the state of the value
domain to preserve the soundness of the analysis. This information is passed by
functions in R = ℘(HId) → ℘(HId) called replacements. Given a single relation
in a replacement, its semantics is to assign the upper bound of the values of
identifiers on the left side to all identifiers in the right side.

Running Example: Consider the transition from Figure 1b to Figure 1c.
The node u2 of the initial state is split into nodes u2 and u4 in the final state.
This is represented by the relation {u2} �→ {u2, u4}. The same happens on
u3 when it is split to nodes u3 and u5. Therefore we obtain the replacement
[{u2} �→ {u2, u4}, {u3} �→ {u3, u5}]. Consider now the transition obtained ana-
lyzing it = null, that is, the transition from Figure 1c to Figure 1b. u2 and u4
are summarized into u2. The same happens for u3 and u5 that are summarized
to u3, obtaining the replacement [{u2, u4} �→ {u2}, {u3, u5} �→ {u3}]. �

3.2 Heap Analysis

The semantic operators of the heap analysis are (i) getFieldIdH : (VarId ×
FieldName × H) → (SHId × H × R), (ii) assignVarH : (VarId × SHId × H) →
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assignVarV : (VarId × SHId × V) → V

assignVarV(x, (I, b), s) =

⎧
⎨

⎩

s if I = ∅⊔
i∈I assignIdV(x, i, s) if b = false�
i∈I assignIdV(x, i, s) if b = true

assignHIdsV : (SHId × VarId × V) → V

assignHIdsV((I, b), x, s) =

⎧
⎨

⎩

s if I = ∅⊔
i∈I assignIdV(i, x, s) if b = false�
i∈I assignIdV(i, x, s) if b = true

replaceV : (V × R) → V
replaceV(s, ∅) = s
replaceV(s, r) = forgetAllV((

⋃
I∈dom(r) I) \ (

⋃
I∈dom(r) r(I)), sn)

where dom(r) = {I1, · · · , In} ∧ s0 = s ∧ ∀i ∈ [1..n] :
s′i = assignVarV(temp, (Ii, false), si−1)∧
s′′i = assignHIdsV((r(Ii), true), temp, s′i)∧
si = forgetV(temp, s′′i )

and forgetAll : (℘(Id) × V) → V is defined as follows:
forgetAllV({i1, · · · , in}, s) = sn where s0 = s ∧ ∀k ∈ [1..n] :

sk = forgetV(ik, sk−1)

Fig. 4. Definition of replaceV

(H × R), (iii) assignFieldH : (VarId × FieldName × VarId × H) → (H × R), and
(iv) createObjectH : (C × H) → (SHId × H × R). C is the set of classes that
can be instantiated. All these operators return a state of the heap, and a re-
placement to represent merges and materializations of heap nodes. In addition,
getFieldIdH(x, f, h) returns a set of heap identifiers that could be pointed to by
x.f in h. assignVarH(x, I, h) assigns I to x, while assignFieldH(x, f, I, h) assigns I
to x.f. Finally, createObjectH(C, h) creates an instance of class C returning the
heap identifiers pointing to the fresh object as well.

3.3 Value Analysis

The value analysis treats variable and heap identifiers in the same way. Therefore
we define identifiers (Id) as variable (VarId) or heap (HId) identifiers (Id = VarId∪
HId). The semantic operators the value analysis has to provide are (i) assignIdV :
(Id× Id× V) → V, and (ii) forgetV : (Id× V) → V. assignIdV(x, y, v) assigns the
value of y to x in state v, while forgetV(x, v) removes the value of x from state v.
Usually these operators are already supported by existing value analyses. The
only additional feature the value analysis has to take into account is when a
single heap identifier represents a summary node performing weak updates.

Relying on these semantic operators, Figure 4 defines how replacements and
assignments are computed by Sample in the value analysis. These operators
will be used in the definition of the semantics of our language. assignVarV(x, I, s)
assigns the set of heap identifiers contained in I to variable x, while
assignHIdsV(I, x, s) assigns variable x to the set of heap identifiers inside I. Both
these functions behave in accordance with whether the set of heap identifiers is
definite or possible. If we assign a definite set of heap identifiers to a variable,
we assign the greatest lower bound of the values of all given heap identifiers
(since we have to assign the intersection of their values). On the other hand, if
we assign a possible set, we assign one of the values, and therefore we have to
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1
2
3
4
5
6

S�x := y.f, (h, s)� = (h2, s3) :
getFieldIdH(y, f, h) = (I, h1, r)∧
assignVarH(x, I, h1) = (h2, r1)∧
replaceV(s, r) = s1∧
replaceV(s1, r1) = s2∧
assignVarV(x, I, s2) = s3

S�y.f := x, (h, s)� = (h2, s3) :
assignFieldH(y, f, x, h) = (h1, r)∧
getFieldIdH(y, f, h1) = (I, h2, r1)∧
replaceV(s, r) = s1∧
replaceV(s1, r1) = s2∧
assignHIdsV(I, x, s2) = s3

S�x := new T, (h, s)� = (h2, s3) :
createObjectH(T, h) = (I, h1, r)∧
assignVarH(x, I, h1) = (h2, r1)∧
replaceV(s, r) = s1∧
replaceV(s1, r1) = s2∧
assignVarV(x, I, s2) = s3

Fig. 5. Sample’s semantics of statements

take the upper bound. Similarly, when we assign a variable to a possible set of
heap identifiers, we are affecting only one of the heap identifiers in the set, and
therefore we have to take the upper bound. Instead, when we are assigning to a
definite set, we take the greatest lower bound of the assignments of all the heap
identifiers.

replaceV(s, r) applies the replacement r to s. For each relation [D �→ C] ∈ r
it assigns the upper bound of the values of identifiers in D to each identifier in
C. In its definition we denote by temp ∈ VarId a variable identifier that does
not appear in the program. This variable is used as a gateway to build up the
abstract value represented by the variables in D, and to assign it to all identifiers
in C. At the end we remove all identifiers that appear at least once on the left part
of the replacement, and never on the right side. Intuitively, these identifiers are
replaced by something else, and they are never used as target of other replaced
variables. Therefore, they are not anymore used, and they can be safely removed.

Running Example: We suppose that all nodes of the given list contain values
greater or equal to zero at the beginning of the program in Figure 1a. Assuming
we analyze the program using intervals (that is, tracking the interval of numerical
values that each variable could have at a given program point), in the heap
state of Figure 1b the value domain tracks that [u1 �→ [0..∞], u3 �→ [0..∞]].
After the first statement, the replacement we have to apply contains the relation
{u3} �→ {u3, u5}. Therefore, the application of this replacement results in the
state [u1 �→ [0..∞], u3 �→ [0..∞], u5 �→ [0..∞]]. The semantics of it.value = −1
assigns [−1..− 1] to u3 obtaining the state [u1 �→ [0..∞], u3 �→ [−1..− 1], u5 �→
[0..∞]]. When we finally apply the second replacement during the evaluation of
it = null, the relation {u3, u5} �→ {u3} tells the analysis to (i) assign the upper
bound of u3 and u5 (that is, [−1..∞]) to u3, and (ii) remove u5. Therefore, the
final state is [u1 �→ [0..∞], u3 �→ [−1..∞]]. �

3.4 Overall Semantics

Figure 5 defines the semantics of the language introduced in Section 2.1. When
we assign y.f to x, we extract the identifiers pointed by y.f (line 2) and we assign
them to x in the state of the heap analysis (line 3). These two actions lead to
two distinct replacements, which are passed to the value domain (line 4 and 5)
before assigning the identifiers of y.f to x (line 6). Similarly, when we assign x to
y.f, we perform the assignment on the heap state (line 2), and we query the heap
analysis to obtain the identifiers pointed by y.f (line 3). The two actions produce
two replacements that are passed to the value domain (line 4 and 5). At the end,
x is assigned to the heap identifiers pointed by y.f in the value domain (line 6).
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When we assign new T to x, we create the object (line 2) and we assign it to x in
the heap analysis (line 3) obtaining two replacements. After the application of
these two replacements in the value domain (line 4 and 5), the heap identifiers
of the created object is assigned to x in the value domain (line 6).

4 TVAL+

We need that each node is represented exactly by one heap identifier in a TVLA
state, and each heap identifier points exactly to one node. Since TVLA names
nodes in a unpredictable way, and the same node could have several canonical
(that is, the evaluation of abstract predicates) names, we need to add some
predicates in order to track node identity. In addition, TVLA does not provide any
information about from where nodes come after an action, while these predicates
track that. Note that so far we did not use the names given by TVLA in the
running example, but we adopted a more predictable naming schema.

4.1 Name Predicates

We name nodes through unary non-abstraction predicates (called name predi-
cates). Each time we run TVLA, the entry state contains a name predicate for
each node. After running TVLA, name predicates tell us how nodes have been
split or merged. We then normalizes the exit state to ensure that each node
is pointed to exactly by one name predicate, and each name predicate points
exactly to one node.

Usually unary predicates are used to distinguish between different structures
when a join of heap states is performed. Since we only wish to track nodes,
we do not want the name predicates to influence the abstraction. We achieve
this behavior through non-abstraction predicates, since these allow nodes to be
merged even though different non-abstraction predicates hold for them [18].

The naming schema defines how we name nodes. A näıve approach is to
consecutively number all created heap nodes. The numbers are based on the
pre-state, and not counted globally, since otherwise we could go on creating new
names endlessly. In addition, we always need to obtain the same result when the
same operation is performed on the same pre-state. If we used a global counter,
this property would not be guaranteed. However, we would lose a lot of precision
in the analysis with this approach. Consider for instance an if statement that
allocates an object in both branches, but it assigns −1 to its value field in a
branch, and 1 in the other. Suppose that the internal counter of the state of the
analysis is 0. The analysis would name the nodes created by the new statements
in the two branches with the same name (that is, 1 for the created object,
and then 2 for its field value). When the abstract states in the two branches are
joined to compute the abstract state after the if statements, the values associated
with the heap identifier 2 in the value domain are joined as well. This means
that, regardless of the fact that the two nodes could be kept disjoint by the
heap analysis, we merged the values of the two nodes in the value domain,
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introducing a sensible loss of precision. In the example above, we would not be
able to distinguish that value 1 may have been assigned only to x.value, and -1
only to y.value after the if statement.

4.2 TVAL+ Naming Schema

This example shows that we need a more sophisticated naming schema. In par-
ticular, we have to take into account the context in which heap identifiers are
created. Therefore, the name of a new node is based on the allocation site. In
addition, since a given program point pp could create several nodes (e.g., inside
a while loop), we have to count the number of times we are allocating (in the
abstract) the node, and increment the counter at each iteration. Let PP be the
set of program points. A basic heap identifier is a pair composed of a program
point and a natural number (formally, BHIdTVAL+ = PP× N).

What happens when two nodes are merged into a summary node? Since TVLA
could summarize nodes created at different program points, we have to extend
the definitions above to precisely approximate this scenario. Therefore, a heap
identifier is composed by a set of basic heap identifiers. When TVLA summarizes
two nodes created at different program points (e.g., (pp1, n1) and (pp2, n2)), the
resulting name will be a set composed by both ({(pp1, n1), (pp2, n2)}).

Instead, when a node is materialized from a summary node, the output state of
TVLA will contain two nodes pointed by the same name predicate, and we have to
provide two different names when normalizing this state. To keep the precision of
the analysis in this scenario, we add another counter to the whole heap identifier.
Formally, the set of heap identifiers is defined by HIdTVAL+ = ℘(BHIdTVAL+)×N.
Normalization. By normalized state we mean a state in which (i) each node is
pointed only by one name predicate, and (ii) each name predicate points only to
one node. After we run TVLA on a normalized state, we may obtain a state in
which a name predicate points to many nodes, and a node is pointed by many
name predicates. Figure 6 formalizes this normalization. We focus the formal
definitions on the part of the TVLA state that deal with name predicates. Let
NodesTVAL+ be the set of node identifiers given by TVLA. We define the TVAL+
state by a function that relates each node to the set of name predicates that point
to it. Formally, ΣTVAL+ = NodesTVAL+ → ℘(HIdTVAL+). Function πId returns the
set of all heap identifiers contained in a given state, while rev returns a function
relating each heap identifier to the set of nodes it may point to.

First of all, we define what it means to merge a set of name predicates when
they point to the same node. mergeHIds takes the set union of all program points
in the set of heap identifiers, and the minimum values for the counters (point b).
The same approach is adopted for the global counter of the heap identifier (point
a). mergeHIds is the basis to define the merge of a complete state performed by
merge. This function applies mergeHIds to all nodes that are pointed by more
than one name predicate, and it builds up a coherent replacement function (point
c). After that, we have that each node is pointed to by one name predicate, but
we do not have yet that each name predicate points only to a node. split ensures
this. For each predicate name that points to (at least) two nodes, and for each
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πId : ΣTVAL+ → ℘(HIdTVAL+)
πId(f) =

⋃
n∈dom(f) f(n)

rev : ΣTVAL+ → (HIdTVAL+ → ℘(NodesTVAL+))
rev(f) = [id 
→ P : id ∈ πId(f) ∧ P = {p′ : id ∈ f(p′)}

mergeHIds : ℘(HIdTVAL+) → HIdTVAL+
mergeHIds({(Ei, ui) : i ∈ [0..n]}) = (E′,min({ui : i ∈ [0..n]})) : (a)

E′ = {(pp, c) : ∃(pp, c′) ∈ ⋃
i∈[0..n] Ei ∧ c = min({c′′ : (pp, c′′) ∈ ⋃

i∈[0..n] Ei} (b)

merge : ΣTVAL+ → (ΣTVAL+ × R)
merge(f) = (f′, r) :

f′ =

[

n 
→
{ {mergeHIds(f(n))} if |f(n)| > 1

f(n) if |f(n)| == 1
: n ∈ dom(f)

]

∧
r = [f(n) 
→ {mergeHIds(f(n))} : ∃n ∈ dom(f) : |f(n)| > 1] (c)

split : ΣTVAL+ → (ΣTVAL+ × R)
split(f) = (f′, r) :

f′ =

⎡

⎢
⎢
⎣

n 
→ P : n ∈ dom(f)∧

P =

⎧
⎨

⎩

{(T, |{k ∈ exclude((T, i), f) : k ≤ i}|+ in(n,N))} if f(n) = {(T, i)}∧
rev(f)(T, i) = N ∧ |N| > 1

f(n) otherwise

⎤

⎥
⎥
⎦ (d)

r = [{(T, i)} 
→ {(T, i′) : ∃n : f(n) = {(T, i)} ∧ rev(f)(T, i) = N ∧ |N| > 1∧
i′ ∈ ⋃

n′∈N{exclude((T, i), f) : k ≤ i}| + in(n′,N))} : |rev(f)(T, i)| > 1]

in : NodesTVAL+ × ℘(NodesTVAL+) → N

in(n,N) = |{n′ ∈ N : n′ <TVAL+ n}|

exclude : HIdTVAL+ × ΣTVAL+ → ℘(N)
exclude((T, i), f) = {j : j = i ∧ |rev(f)((T, i))| == 1}

normalize : ΣTVAL+ → (ΣTVAL+ × R)
normalize(f) = (f′, r) : (f1, r1) = merge(f) ∧ (f′, r2) = merge(f1) ∧ r = combine(r1, r2)

Fig. 6. Formal definition of the normalization of a TVLA state, where combine, given
two replacements, builds up a replacement that is their concatenation

pointed node by this predicate, it creates a unique predicate by modifying its
counter (point d), and it builds up a coherent replacement. The modification
of the counter relies on in, a function that, given a set of nodes, and a node in
that set, returns its position inside that set. To achieve this, we suppose that
a total order <TVAL+ over node identifiers is provided by TVLA. In addition,
exclude provides the set of the counters already used in other name predicates
that point only to one node, and therefore they will be in the normalized state.
In this way, we cover possible holes in the counters related to a given set of basic
heap identifiers, avoiding duplicates and ensuring that the set of heap identifiers
is bounded. Finally, normalize returns the normalized form of a given state
by applying merge and split in sequence, and combining the two replacements
returned by these two functions.

Running Example: When we analyze the running example introduced in
Section 1.1, we start from the TVLA state represented in Figure 7a. The name
predicates contain four basic heap identifiers {p1, p2, p3, p4} to name the nodes
in the entry state. Their initial counter is always zero. After the analysis of
line 4, we obtain the state depicted in Figure 7b. Here nodes u4 and u5 have
been materialized from nodes u2 and u3 respectively, and the name predicates
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(a) Initial and fi-
nal state

(b) At line 4 before
normalize

(c) At line 4 after
normalize

(d) At the end be-
fore normalize

Fig. 7. TVLA states of the running example with name predicates

({p2}, 0) and ({p3}, 0) both point to many (two) nodes. Therefore normalize
introduces ({p2}, 1) and ({p3}, 1), and it sets them to point to one of the two
nodes (Figure 7c). This is the entry state of the semantics of it = null. After the
computation of the semantics of this statement, we obtain the state in Figure
7d. Here we have that ({p2}, 0) and ({p2}, 1) refer to the same node u2 (and the
same happens with ({p3}, 0) and ({p3}, 1)). Therefore, normalize merges these
name predicates together into ({p2}, 0), obtaining the same state we had at the
beginning of the method (Figure 7a). Note that the heap identifier ({p2}, 0) in
the entry state represents something different in the exit state, since here it is
the result of the merge of {({p2}, 0), ({p2}, 1)} as expressed by the replacement
{({p2}, 0), ({p2}, 1)} �→ {({p2}, 0)}. �

4.3 Abstract Semantics

The abstract semantics applies the TVLA actions introduced in Section 2.2 and
normalizes the resulting states to define the semantic operators introduced in
Figure 3.2. In particular, (i) getFieldIdH applies the TVLA action in Figure 2d,
(ii) assignVarH that in Figure 2e, (iii) assignFieldH that in Figure 2f, and (iv)
createObjectH that in Figure 2c. In all the cases, after the application of the
TVLA action, the state is normalized through normalize . The same happens for
the lattice operators. In addition, createObjectH and getFieldIdH return the heap
identifier of the node pointed by temp.

5 Experimental Results

We ran TVAL+ on a set of case studies that represent a comprehensive set
of common interactions with the heap and some representative examples of list
manipulation. We combined TVAL+ with an implementation of intervals as value
domain. We ran the analysis on an Intel Core 2 Duo CPU at 2.53GHz with 4GB
of RAM. We used the Java HotSpot 64-Bit Server VM included in Java SE
Runtime Environment 1.6.0 26-b03. Table 1 depicts the experimental results.
Column #tvla shows the number of invocations of TVLA performed during the
analysis, while t reports the time of execution of the analysis.

The analysis is quite fast in many cases, since the execution rarely requires
more than few seconds. Anyway, most of these case studies are composed of few
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Table 1. Execution times

Program #tvla t (sec) Program #tvla t (sec)

createObject 4 0,7 createObjectIfCondition 7 0,2
accessNullField 7 0,3 assignFieldSelf 7 0,3
assignNumericField 8 1,3 assignNextField 9 0,6
createAndOverWrite 9 0,7 assumeEqual 10 0,2
assumeUnequal2 10 0,2 overwriteField 10 0,4
assignAndAccessNumericField 10 1,0 conditionalAssignment 11 0,4
assignTwoFields 12 0,9 assumeUnequal 13 0,3
conditionalAssignmentVariant 14 0,6 appendByFieldAccessTwo 15 0,6
createSharedObject 19 0,8 buildList 20 0,5
appendByFieldAccessThree 22 0,9 createOneOrTwoNodes 22 1,8
accessNextSummarized 23 0,6 swapHeapObjectsOnce 24 1,8
createThreeElementList 30 2,0 linkObjects 32 1,4
createSummarizedIntList 32 2,0 swapLoop 34 0,9
linkAndTraverseObjects 38 1,9 createObjectWhile 39 1,1
assignFieldsAndSummarize 44 4,1 createPrependList 54 1,4
assignAndAddFields 55 8,3 appendByFieldAccessFour 72 4,7
traverseFixedShortList 93 3,3 createAppendList 103 3,3
initializeFixedList 109 4,5 createNumericalList 148 14,4
traverseSummarizedList 164 8,6 initializeAbstractedListFields 220 31,8
sumListElementsZero 609 86,7

sequential statements, and the examples whose analysis is slower are the ones
that create a list and iterate over it. This means that the analysis has to compute
a fixpoint, and this explains why TVLA is invoked many times.

For each of the case studies, we checked by hand if the heap abstraction
produced by TVAL+ is what we expected, and if the information tracked by the
value domain was sound and precise. In all examples, we obtained the expected
results. For instance, in program sumListElementsZero we are able to (i) construct
and precisely summarize a list whose nodes all contain 0 in field value, (ii) traverse
the list computing the sum of the values, and (iii) prove that the sum of the
elements is zero at the end of the program. This underlines that the combination
of TVAL+ and the intervals domain fully benefits of the precision of TVLA,
leading to really precise results on the value analysis as well.

6 Related Work

In this paper, we used an existing, well-established shape analysis to improve
the results of other value analyses supported by Sample. McCloskey et al. [21]
introduced a general way of integrating various analyses represented in FOLTC,
combining different theories in a generic way. Their work allows the flow of
information between all analyses concerned. To allow this flow, each analysis
has to define classification and communication predicates, which are defined in
terms of other predicates as well as core predicates that are interpreted only in
that particular domain. Therefore, all analyses have to be represented in FOLTC.
In our work, we took a different approach. On the one hand, we propagate the
information only from the heap to the value analysis. On the other hand, we
completely automate the integration between the two analyses without enforcing
any restrictions on the value domain, which could track information that is not
represented in FOLTC, thus allowing easier use of existing analyses. In addition,
since the information flows only in one direction, this leads to faster analyses,
as we only need to propagate information once.

Gopan et al. [15] presented a framework to track numeric information on ar-
ray elements. This work is specific for numeric analyses over arrays, while our
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approach targets any value analysis. A previous work [14] shows that its instanti-
ation to a specific numeric domain is neither trivial nor automatic. The approach
they adopted to reflect the modifications performed by the heap analysis is sim-
ilar to ours. While they discharge the folding and unfolding of identifiers on the
interface of the numerical analysis by adding some specific operators (namely,
fold, expand, add, drop), our approach relies on assignment and forget.

Gulwani and Tiwari [16] combined analyzers represented in first order logic
through an approach based on the Nelson-Oppen method. They propagate equal-
ities both ways, but they place some restrictions on theories (e.g., convexity).

Magill et al. [19] adopted a shape analysis based on separation logic. Nu-
merical domains are used to refine the heap analysis through counter-examples
generated by the shape analysis. A potential error discovered by the shape anal-
ysis is translated into a counter-example program which is later reduced to a
heapless arithmetic program. This program passes through the arithmetic ana-
lyzer in order to try and rule out the error by finding some arithmetic properties.
This means they use arithmetic information only on demand to help to resolve
potential heap errors, and not to prove arithmetic properties in general.

Beyer et al. [2] combined the model checker BLAST [1] with TVLA using
Counter-Example Guided Abstraction Refinement for refining the shape analy-
sis. Instead, we allow general abstract domains (not just predicate abstraction as
in BLAST) at the price of having a fixed heap abstraction for the entire session.

Bouajjani et al. [3] developed a framework to statically infer properties over
programs manipulating lists containing integer numerical data. This approach
combines a specific heap analysis tracking information over lists with some ex-
isting numerical domains. Therefore, it cannot be automatically applied to other
value analyses, or to analyze other heap structures, but it can prove properties
that combine the content and the shape of lists.

Acknowledgments. Special thanks go to Roman Manevich for his support
during the implementation of TVAL+. This work was partially supported by the
SNF project “Verification-Driven Inference of Contracts”.
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Abstract. Event-B is a state-based formal method that supports a re-
finement process in which an abstract model is elaborated towards an
implementation in a step-wise manner. One weakness of Event-B is that
control flow between events is typically modelled implicitly via variables
and event guards. While this fits well with Event-B refinement, it can
make models involving sequencing of events more difficult to specify and
understand than if control flow was explicitly specified. New events may
be introduced in Event-B refinement and these are often used to decom-
pose the atomicity of an abstract event into a series of steps. A second
weakness of Event-B is that there is no explicit link between such new
events that represent a step in the decomposition of atomicity and the
abstract event to which they contribute. To address these weaknesses,
atomicity decomposition diagrams support the explicit modelling of con-
trol flow and refinement relationships for new events. In previous work,
the atomicity decomposition approach has been evaluated manually in
the development of two large case studies, a multi media protocol and
a spacecraft sub-system. The evaluation results helped us to develop a
systematic definition of the atomicity decomposition approach, and to
develop a tool supporting the approach. In this paper we outline this
systematic definition of the approach, the tool that supports it and eval-
uate the contribution that the tool makes.

1 Introduction

The Event-B formal method [1] is an evolution of classical B [2]. Event-B is
proven to be applicable in a wide range of domains, including distributed algo-
rithms, railway systems and electronic circuits. The Event-B modelling language
has a simple notation and structure. States of a system are defined by variables
and state changes of a system are defined by guarded actions, also called events.
The basic specification construct is a machine that is comprised of variables
and events. Event-B supports refinement [3] in which an abstract model is elab-
orated towards an implementation in a step-wise manner. During refinement
steps a model can be modified and enriched.

One weakness of Event-B is that control flow between events is typically mod-
elled implicitly. Since the Event-B language is a state-based language, ordering
between several events can only be modelled in event guards which include con-
ditions on state variables. Because Event-B is also used to model systems with
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rich control flow properties, it has been observed that explicit control flow spec-
ification is beneficial [4], [5].

A second weakness of Event-B is that all refinement relationships between
refinement events and the abstract events are not explicit. Refinement in Event-
B can consist of introducing new events. Although the refinement process in
Event-B provides a flexible approach to modelling, it is not able to explicitly
show the relationships between abstract events and new events introduced during
a refinement step.

To address these weaknesses, the atomicity decomposition approach [6] ad-
dresses the explicit control flow modelling and explicit refinement relationships
representation. It provides a graphical notation to structure the refinement pro-
cess and to illustrate the explicit ordering between events of a model. The atom-
icity decomposition graphical notation contains tree structured diagrams based
on Jackson Structure Diagrams (JSD) [7]. Semantics are given to an atomicity
decomposition diagram by generating an Event-B model from it.

In the rest of this paper, “AD” refers to Atomicity Decomposition. The steps
carried in our research are presented in Figure 1. AD is first introduced by
Butler [6] (step 1). It has been observed that methodological support for AD
was weak. So we decided to evaluate and enhance the existing AD approach
from [6]. For this reason we manually applied AD to two sizeable case studies,
a multi media protocol and a space craft system (step 2). The first case study,
the multi media protocol [8], contains requirements to establish, modify and
close a media channel between two endpoints for transferring multi media data.
Second case study is based on a space craft system called BepiColombo [9].
Developments of both these case studies involving manual translation of AD
diagrams to Event-B have been published in [10] and [11] respectively. Insights
gained from these case studies, enable us to define a formal description of the
AD language (ADL) and formal translation rules from AD diagrams to Event-B
(step 3). Based on the ADL and translation rule descriptions, we have developed
the AD tool support, as a plug-in for the Event-B tool-set, called Rodin (step
4). Our AD tool support, can automatically generate Event-B models from AD
diagrams. And finally we re-developed the case study models using the provided
AD tool support (step 5).

Fig. 1. Road Map

The contribution of this paper is to present ADL and translation rules from
AD diagrams to the Event-B language, covering steps 3, 4 and 5 of Figure 1.
We also outline the development of the AD tool and the technologies that were
used in this tool development. One of our objectives in this paper is to assess
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how application of translation rules, makes the automatic models of case studies
more consistent and systematic, compares with with the previous manual ones.

The paper is structured as follows: Section 2 outlines the Event-B method,
atomicity decomposition approach, related work and an overview of case studies
requirements; Section 3 contains the ADL description and definitions of trans-
lation rules; Section 4 presents the tool developed to support AD; In Section 5
we evaluate how the AD tool has helped us to enhance the development of case
studies in a more consistent and systematic way compared with the manual
development; finally Section 6 concludes.

2 Background and Related Work

2.1 Event-B

The Event-B formal method [1], [12] has evolved from classical B [2] and action
systems [13]. Event-B is used in modelling and verifying consistency of models.
The modelling language is based on set theory and first order logic.

A model in Event-B consists of several Contexts and Machines. Contexts
contain the static part (types and constants) of a model while machines contain
the dynamic part (variables and events). Contexts provide axiomatic properties
of an Event-B model, whereas Machines provide behavioural properties of an
Event-B model. A context can be “extended” by other contexts and “referenced”
by machines. A machine can be “refined” by other machines and can reference
contexts.

Building a model in Event-B usually starts with an abstract level, and contin-
ues in successive refinement levels. The abstract model provides a simple view
of the system, focusing on the main purposes of the system. Details are added
gradually to the abstract model during refinement levels. In Event-B, refinement
is used to introduce new functionality or add details of current functionality. One
of the important features of Event-B refinement is the ability to introduce new
events in a refinement level. From a given machine, Machine1, a new machine,
Machine2, can be built as a refinement of Machine1. In this case, Machine1
is called an abstraction of Machine2, and Machine2 will said to be a concrete
version of Machine1.

Rodin [14] is an Eclipse-based tool for formal modelling and proving in Event-
B. Rodin has an open platform, and is an extensible and adaptable modelling
tool. We have taken the advantage of the extensibility feature of the Rodin to
develop a tool support for the AD approach.

2.2 Atomicity Decomposition Approach

Although refinement in Event-B provides a flexible approach to modelling, it
has the weakness that we cannot explicitly represent the relationships between
abstract events and new events which are introduced in a refinement level. The
AD approach addresses this limitation. The idea is to augment Event-B refine-
ment with a graphical notation that is capable of representing the relationships
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between abstract and concrete events explicitly. Using the AD approach has an-
other advantage which is that we can represent event ordering explicitly. Figure 2
illustrates these two features of the AD graphical notation.

Assume machine M1 on the left hand side of Figure 2, refines some machine
M0 which contains the abstract specification of AbstractEvent. The machine M1
encodes its control flow (ordering between Event1 and Event2 ) via guards on
the events. This control flow is made explicit in the AD diagram presented in
the right hand side. This diagram explicitly illustrates that the effect achieved
by AbstractEvent at the abstract level, machine M0, is realized at the refined
level, machine M1, by occurrence of Event1 followed by Event2. The ordering of
the leaf events is always from left to right (this is based on JSD diagrams [7]).
The solid line indicates that Event2 refines AbstractEvent while the dashed line
indicates that Event1 is a new event which refines skip. In the Event-B model of
machine M1 on the left hand side, Event1 does not have any explicit connection
with AbstractEvent, but the diagram indicates that we break the atomicity of
AbstractEvent into two sub-events in the refinement.

machine M1 refines M0  sees C0 

variables Event1 Event2
invariants

@inv1 Event1 PAR_SET
@inv2 Event2 Event1
@inv3 Event2 = AbstractEvent

event INITIALISATION then
@act1 Event1 
@act2 Event2 
@act3 Event3 

end

event Event1 any par  where
@grd1 par Event1 

then
@act1 Event1 Event1 {par} 

end

event Event2 refines AbstractEvent
any par where

@grd1 par Event1
@grd2 par Event2

then
@act1 Event2 Event2 {par}

end

Fig. 2. Atomicity Decomposition Diagram

The parameter par in the diagram indicates that we are modelling multiple
instances of AbstractEvent and its sub-events. Events associated with different
values of par may be interleaved thus modelling interleaved execution of multiple
processes. The effect of an event with parameter par, is to add the value of par
to a set control variable with the same name as the event, i.e., par ∈ Event1
means that Event1 has occurred with value par. The use of a set means that
the same event can occur multiple times with different values for par. The guard
of an event with value par specifies that the event has not already occurred for



82 A. Salehi Fathabadi, M. Butler, and A. Rezazadeh

value par but has occurred for the previous event, e.g., the guard of Event2 says
that Event1 has occurred and Event2 has not occurred for value par.

2.3 Related Work

The desire to explicitly model control flow is not restricted to Event-B. To ad-
dress this issue usually a combination of two formal methods are suggested. A
good example of such an approach is Circus [15] combining CSP [16] and Z [17].
The combination of CSP and classical B [2] has also been investigated in [4]
and [18].

To provide explicit control flow for an Event-B model, a combination of two
formal methods is presented in [19] which is based on using CSP alongside Event-
B. As presented in Section 2.2, control flow can only be implicitly modelled in
state variables and event guards in Event-B. On the other hand CSP is a process-
based formalism, which explicitly supports specifying control flow via processes.

UML-B [20] provides a “UML-like” graphical front-end for Event-B. It adds
support for class-oriented and state machine modelling. State machines provide
us with a graphical notation to explicitly define event sequencing. Events are
represented by transitions on a state machine, and control flow is specified by
defining the source and target state of each transition.

Another method to explicitly define control flow properties of an Event-B
model is suggested in [21]. This method extends Event-B models with expres-
sions, called flows, defining event ordering. Flows are written in a language re-
sembling those in process algebra.

All the techniques outlined in this section only deal with explicit event se-
quencing; they do not support the explicit refinement relationships provided
by atomicity decomposition diagrams. The atomicity decomposition approach
provides a graphical front-end to Event-B along with other features such as
supporting explicit event sequencing and expressing refinement relationships be-
tween abstract and refinement events. An extra feature of the AD approach is
that the graphical front-end of it can provide an overall visualisation of the re-
finement structure, which is not supported by any of techniques outlined above.

2.4 Overview of Case Studies

This section outlines an overview of our case study systems, a multi media
protocol [8] and a space craft system based on BepiColombo [9].

Multi Media Protocol. This case study specifies a protocol for establish-
ing, modifying and closing a media channel. A media channel is established for
transferring multi-media data. There are three phases in the protocol: establish,
modify and close. In the modification phase some properties of the established
channel can be modified, such as the codec used for data encoding.

It is worth to compare our approach to the multi media protocol with the
approach taken by Zave and Cheung [8]. Zave and Chueng present Promela
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models of the behaviour of each end of the protocol and use the Spin model
checker to verify that these models satisfy certain safety and liveness properties.
In our approach with Event-B, we start with a more global view of the intention
of the protocol and then use atomicity decomposition to arrive at models that
have similar levels of detail to the Promela models.

Space Craft System. Exploration of the planet Mercury is the main goal
of the BepiColombo mission [9]. One of the BepiColombo subsystems consists
of a core and four devices. The core and the control software are responsible
for controlling the power of devices and their operation states and to handle
TeleCommand (TC) and TeleMessage (TM) communications. In our work, we
treat a part of the BepiColombo system related to the management of TC and
TM communications. The core software (CSW) plays a management role over
the devices. CSW is responsible for communication with Earth on one hand
and with the devices on the other hand. Here is the summary of the system
requirements:

– A TeleCommand (TC) is received by the core from Earth.
– The CSW checks the syntax of the received TC.
– Further semantic checking has to be carried out on the syntactically validated

TC. If the TC contains a message for one of the devices, it has to be sent to
the device for semantic checking, otherwise the semantic checking is carried
out in the core.

– For each valid TC a control TeleMessage (TM) is generated and sent to
Earth.

3 AD Language and Translation Rules

3.1 Atomicity Decomposition Language

To describe the AD language (ADL) syntax, we adopted Augmented Backus-
Naur Form (ABNF) [22]. ABNF is a metalanguage based on Backus-Naur Form
(BNF).

An excerpt of the ADL syntax, describing a single AD diagram, is presented
in Figure 3. This description is only a subset of the full ADL. It only includes
three of the AD constructors which are used in our case studies and are explained
later in the following sections. There are other AD constructors which are not
presented in this paper because of space limitation1.

A flow, in Figure 3, refers to a single atomicity decomposition. To describe the
type of a line (solid/dashed), we consider a boolean property, called “ref”. When
a sub-event refines the abstract event (solid line) , “ref” is one; otherwise “ref”
is zero. Considering Figure 3, the ABNF of ADL may be described informally
as follows:

1 The full list of the AD constructors is presented in the PhD thesis of the first author
of this paper: http://eprints.soton.ac.uk/340357/
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Fig. 3. Syntax of the AD Language (ADL)

– A flow consists of a name, zero or more parameters, followed by one or more
children. Each child of a flow has a “ref ” property.

– A child is either a “leaf ” with a name, or a constructor.
– A constructor is either a “loop” with one leaf as its child or a ‘xor” with two

or more leaves or an “one” with a parameter, followed by one leaf.

3.2 Translation Rules

Semantics are given to an AD diagram by generating an Event-B model from
it, based on some translation rules. In this section, we discuss these translation
rules. Here, due to space limitation, we only present translation rules that are
used in our two case studies. 2 The initial AD diagrammatic notation in [6] has
been extended with some AD constructors. Three of them, loop, xor and one,
used in our case study developments are introduced here.

The main syntactic elements of an Event-B machine are variables, invariants,
guards and actions. The encoding of AD diagrams in Event-B uses a collection of
Event-B syntactic patterns such as typing invariants, sequencing invariants, par-
titioning invariants, disabling guards, sequencing guards and leaf actions. Our
translation scheme defines a separate rule for each of these syntactic patterns.
Figure 4 outlines the full list of translation rules used in this paper. Each trans-
lation rule defines a transformation from an AD source element to an Event-B
destination element. Note that for each AD element usually there is more than
one applicable translation rule. We explain the role of each translation rule us-
ing snippets taken from the case studies. We first explain the rules related to
sequencing of events, then the rules for the loop constructor, a solid leaf, the xor
and one constructors.

Sequencing Rules. As discussed in Section 2.2, one major feature of AD di-
agrams is to explicitly represent sequencing between events. To illustrate this
concept, we have taken a part of the most abstract level diagrams of the Bepi-
Colombo system, presented in the upper level of Figure 5. In the most abstract
diagram, the name of the system appears in an oval as the root node, and the
names of the most abstract events appear in the leaves in an order from left to
right. This diagram illustrates the scenario when a TC is received by the core,
ReceiveTC event, and then it is validated by TC Validation Ok event.

2 The full set of translation rules is presented in the PhD thesis of the first author of
this paper: http://eprints.soton.ac.uk/340357/
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Fig. 4. Translation Rules

The arrows in Figure 5 indicate the application of translation rules. For ex-
ample, the TR1 arrow from the ReceiveTC leaf in the diagram to the ReceiveTC
variable in the Event-B model shows that the application of TR1 rule to each
source leaf produces a variable in the Event-B model. The generated variables
are used to control the flow of the leaf events.

Event-B Model:

variables   ReceiveTC TC_Validation_Ok

invariants
@inv1 ReceiveTC TC
@inv2 TC_Validation_Ok ReceiveTC

event ReceiveTC
any tc
where
@grd1 tc ReceiveTC

then
@act1 ReceiveTC

ReceiveTC {tc}
end

event TC_Validation_Ok
any tc
where
@grd1 tc TC_Validation_Ok
@grd2 tc ReceiveTC

then
@act1 TC_Validation_Ok

TC_Validation_Ok {tc}
end

Fig. 5. The Most Abstract Level Model, BepiColombo System

Application of TR2 to the first leaf produces an invariant which defines the
type of the leaf variable. Application of TR3 to the second leaf produces an
invariant which describes the sequencing constraint between two leaf events.
The sequencing invariant describes the second leaf variable as a subset of the
previous leaf variable, since the second leaf event is allowed to execute only after
execution of its previous leaf event.

In the most abstract diagram, since all leaves illustrate the most abstract
events, there is no solid line. For each leaf with a dashed line, TR4 generates
a non-refining event. The parameter of the leaf is transformed to the event
parameter. For each leaf, TR5 generates a disabling guard, which describes that
the leaf event has not executed for the same instance of the parameter before.
For each non-first event, like TC Validation Ok here, another guard is needed



86 A. Salehi Fathabadi, M. Butler, and A. Rezazadeh

to make sure that the previous event has been executed for the parameter value
before; this translation is carried out via TR6. Finally TR7 adds an action for
each leaf, which disables the corresponding leaf event for a specific parameter
value.

Translation rules (TR1-TR7) that are outlined in Figure 4 and applied in this
section, are only applicable to leaf nodes and encode sequencing collectively. We
discuss the rest of rules in the following sections.

Loop Constructor. The loop constructor is used to model zero or more exe-
cutions of a leaf. Figure 6 presents the most abstract AD diagram of the multi
media protocol which contains the loop constructor as its second child. The dia-
gram states that first a media channel is established, then it can be modified zero
or more times and finally it is closed. Considering Figure 6, there is no variable
generated for the leaf connected to the loop constructor, since we do not need
to record the loop event execution. The event after the loop event can execute
after execution of the event before the loop event (in the case of zero executions
of the loop event).

variables   establishMediaChannel close 

invariants
@inv1 establishMediaChannel MEDIACHANNEL
@inv2 close establishMediaChannel

event establishMediaChannel
any ch
where

@grd1 ch establishMediaChannel
then

@act1 establishMediaChannel
establishMediaChannel { ch }

end

event modify
any ch c 
where
@grd1 ch establishMediaChannel
@grd2 ch close

end

event close
any ch
where
@grd1 ch establishMediaChannel
@grd2 ch close
then

@act1 close close { ch }
end

Fig. 6. The Most Abstract Level, Multi Media Protocol

The loop event can execute several times before execution of next event. TR8
transforms the loop constructor to a guard in the loop event, modify. This guard
checks that the event after loop, close, has not executed before, for the intended
channel. The other Event-B elements in Figure 6 are generated via TR1-TR7
which have been described in the previous section (Figure 4).

Solid Line. The abstract atomic TC Validation Ok event in Figure 5, is de-
composed to three sub-events in a refinement level. Figure 7 presents the AD
diagram of this decomposition. Validating a received TC is not atomic. It is done
in two steps, checking the syntax, in TCCheck Ok event, and the semantics, in
TCExecute Ok event, of a received TC. After syntax and semantics checks, in
the third step, TCExecOk ReplyCtrlTM, a control TM is produced and sent back
to Earth.
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invariants
@inv1 TCExecute_Ok = TC_Validation_Ok
…

event TCExecute_Ok refines TC_Validation_Ok
…

Fig. 7. The AD Diagram of TC Validation Ok, BepiColombo System

Considering Figure 7, a solid line in an AD diagram has two effects. First, it is
translated to an invariant which connects the abstract variable to the refinement
variable (TR9); this is called a gluing invariant. Second, it is translated to an
event which refines the abstract event in the root node (TR10).

xor Constructor. Exclusive choice between two or more events is introduced
to the AD diagram with a new constructor called xor. An application of the xor
constructor in BepiColombo development is presented in Figure 8. A TC either
belongs to the core or the device and not both of them. The figure illustrates
a further level of refinement where the atomicity of semantics checking event,
TCExecute Ok, is decomposed to an exclusive choice between two sub-events;
TCCoreExecute Ok event checks the semantics of a TC which belongs to the core
and TCDeviceExecute Ok event checks the semantics of a TC which belongs to
the device.

invariants
@inv1 partition(TCExecute Ok, TCCore Execute Ok, TCDevice Execute Ok)

event TCCore_Execute_Ok refines   
TCExecute_Ok

any tc
where
@grd1 tc TCCheck_Ok
@grd2 tc TCCore_Execute_Ok
@grd3 tc TCDevice_Execute_Ok

then
@act1 TCCore_Execute_Ok

TCCore_Execute_Ok {tc}
end

event TCDevice_Execute_Ok refines 
TCExecute_Ok

any tc
where
@grd1 tc TCCheck_Ok
@grd2 tc TCDevice_Execute_Ok
@grd3 tc TCCore_Execute_Ok

then
@act1 TCDevice_Execute_Ok

TCDevice_Execute_Ok {tc}
end

Fig. 8. The AD Diagram of TC Execute Ok, BepiColombo System

xor sub-leaves inherit the type of their line (solid/dashed) from the xor con-
structor. Considering Figure 8, the xor constructor is connected to the root node
with a solid line, therefore both xor sub-leaves are connected with solid lines and
refine the abstract event in the root node.
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There are two translation rules for the xor constructor. First the xor construc-
tor is transformed to the partitioning invariant (TR11), which ensures exclusivity
of execution. The partition operator in Event-B is defined as follows:

partition(E0, E1, ..., En) ≡ (E0 = E1 ∪ ... ∪En) ∧ (i �= j ⇒ Ei ∩ Ej = ∅)
The generated partitioning invariant first describes the relationship between the
abstract variable and the refinement variables:
TCExecute Ok = TCCoreExecute Ok ∪ TCDeviceExecute Ok.
Second it described the mutually exclusive property of the the xor sub-events:
TCCoreExecute Ok ∩ TCDeviceExecute Ok = ∅.

The second translation rule (TR12) generates a guard for each xor sub-event.
This guard enforces the exclusiveness property of xor sub-events. The guard in
each xor sub-event checks that the other xor sub-events have not occurred for
the intended value of the TC.

one Constructor. The one constructor specifies execution of an event for ex-
actly one instance value of a new parameter. An application of the one construc-
tor in BepiColombo development is presented in Figure 9. Figure 9 illustrates
that the TCExecOk ReplyCtrlTM event is decomposed to produce exactly one
TM, in the TCExecOk ProcessCtrlTM event, followed by the completion action,
TCExecOk CompleteCtrlTM event.

invariants
@inv1 tc· card( TCExecOk_ProcessCtrlTM [{tc}] )  1

event TCExecOk_ProcessCtrlTM
any tc tm 
where
…
@grd1 tc dom(TCExecOk_ProcessCtrlTM)

then
@act1 TCExecOk_ProcessCtrlTM

TCExecOk_ProcessCtrlTM { tc tm }
end

Fig. 9. The AD Diagram of TCExecOk ReplyCtrlTM, BepiColombo System

As presented in Figure 9, the one constructor adds a new parameter, the
tm parameter, to its sub-event, TCExecOk ProcessCtrlTM. For each validated
tc, exactly one control tm should be processed. To enforce this constraint, the
one constructor is translated to an invariant and a guard. TR13 generates an
invariant which defines the one constructor property describing that for each tc,
the cardinality of the set of processed tms is at most one. And TR14 generates a
guard to make sure that the one sub-event has not executed for the same value
of intended tc before.

There are two more constructors, all and some, which adds a new parameter
to their sub-events. The all constructor specifies execution of an event for all



A Systematic Approach to Atomicity Decomposition in Event-B 89

instance values of a new parameter. And the some constructor specifies execution
of an event for some instance values of a new parameter. In this paper, we skip
defining them in depth.

Using the formal description of ADL, presented in Figure 3, the translation
rules outlined in Figure 4, can be defined formally. For instance, the formal
description of TR1 is presented in Figure 10. The left-hand box contains the
AD element description that is transformed to the right-hand box containing
the description of the Event-B element. In the case of TR1, each leaf (not the
loop leaf) is transformed to a variable (with the same name as the leaf) in the
generated Event-B model.

Fig. 10. TR1 Definition

4 Tool Support

Eclipse [23], is a multi-language software development environment comprising
an integrated development environment (IDE) and an extensible plug-in system.
The Rodin platform is an Eclipse-based IDE for Event-B and is further extend-
able with plug-ins. By taking advantage of the extensibility feature of the Rodin
platform for Event-B, we have developed a plug-in as tool support for the AD
approach. The AD plug-in helps developers to build Event-B models more easily,
since the AD plug-in addresses automatic generation of the Event-B models in
term of control flows and refinement relationships. The AD plug-in allows users
to define the AD diagram; then the AD diagram is automatically transformed
to an Event-B model.

The development architecture is briefly presented in Figure 11. We define the
ADL specification in an EMF (Eclipse Modelling Framework) [24] meta-model,
called the source meta-model, and then the source meta-model is transformed
to the Event-B EMF meta-model as the target meta-model. Currently AD di-
agrams are build as an EMF model, included in an Event-B machine. However
in the future we plan to develop a graphical environment for the plug-in. The
transformation is done using the Epsilon Transformation Language (ETL) [25].
ETL is a rule-based model-to-model transformation language.

Fig. 11. AD Tool Support Architecture



90 A. Salehi Fathabadi, M. Butler, and A. Rezazadeh

The ETL rule for TR1 (presented in Section 3.2) is as follow:

rule Leaf2Varibale
transform l : Source!Leaf
to v : Target!Variable {
v.name := l.name; }

This rule transforms a leaf from the ADL meta-model (as the source meta-
model) to a variable in the Event-B meta-model (as the target meta-model). In
the body of rule the name of the target component (variable) is assigned to the
name of the source component (leaf).

5 Evaluation

Our AD tool addresses automatic generation of control flow in Event-B mod-
elling. Moreover using the AD plug-in to create the Event-B model of a system,
ensures a consistent encoding of the AD diagrams in a systematic way. The man-
ually generated Event-B models are less systematic and less consistent, since at
the time of developing them our experience of AD applications were not enough.
The versions of the case studies reported in this paper are referred to as au-
tomatically generated models. We applied the tool to the two case studies and
compared the automatic models with the manual models, reported in our earlier
work. There are some differences between the automatic models and the manual
models, of which some of the more notable ones are described in this Section.

5.1 Naming Protocol

In the automatic Event-B models (like Figure 5), each control variable has the
same name as the corresponding event name. Whereas in the manual Event-B
models, there was no specific naming protocol for variables name. Providing a
unique naming protocol helps to understand the model more easily, and can help
to track the ordering between events more easily.

5.2 Alternative Approaches of Control Flow Modelling in Event-B

There are different approaches to model control flow in Event-B. In the automatic
Event-B model, we adopted the subset approach to model ordering between
sequential events. Considering Figure 5, the second control variable is a subset
of the first one (inv1 ). The alternative way is disjoint sets. The Event-B model

event ReceiveTC
any tc
where

@grd1 tc ReceiveTC
then

@act1 ReceiveTC ReceiveTC {tc}
end

event TC_Validation_Ok
any tc
where

@grd1 tc ReceiveTC
then

@act1 ReceiveTC ReceiveTC / {tc}
@act2 TC_Validation_Ok TC_Validation_Ok {tc}

end

Fig. 12. Disjoint Sets in the Most Abstract Level, BepiColombo System
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of disjoint sets for the diagram in Figure 5 is presented in Figure 12. In this
way the parameter tc is removed from ReceiveTC set variable in the body of
TC Validation Ok event.

One of the advantages of using the subset relationships in the Event-B models
is that the subset relationships between the control variables that represent
different states of the model can be specified in the invariants of the model.
Considering Figure 5, invariant inv2 specifies the ordering relationship between
control variables. This ensures that the orderings are upheld in the Event-B
model more strongly than if specified only in the event guards. Moreover, having
disjoint set variables would not allow us to model some of the constructors in a
simple way as subset variables provide.

5.3 A Merged Guard versus Separate Guards

Considering the automatic Event-B model in Figure 5, there is a separate guard
for each predicate (grd1 and grd2 in the TC Validation Ok event). These sepa-
rate guards are generated as a result of different translation rules (TR5 and TR6
respectively). Whereas in the manual Event-B model, we modeled all of the pre-
condition predicates in a single guard. For instance, guards of TC Validation Ok
event in Figure 5, can be merged as a single guard
(tc ∈ ReceiveTC \ TC V alidation Ok).

To verify the correctness and consistency of an Event-B model, some proof
obligations are generated by Rodin provers. Some of the generated proof obli-
gations are related to the guards verification. Proving such proof obligations
generated for the manual Event-B models needs more effort comparing to the
proof obligations generated for the automatic Event-B models, since the corre-
sponding separated guards are simpler predicates compared to a merged guard.

6 Conclusion

In the previous publications we have demonstrated how the atomicity decompo-
sition (AD) approach provides a means of introducing explicit flow control into
Event-B development process. In this paper, we have presented the formal de-
scription of the atomicity decomposition language (ADL) and translation rules
from the ADL to the Event-B language. We have developed a tool, supporting
the atomicity decomposition methodology; the tool support is developed as a
plug-in for the Event-B tool-set, Rodin. A brief description of AD tool devel-
opment has been illustrated. Using translation rules developed in the AD tool,
has helped us to develop the models of the previous case studies in an auto-
matic way. Compared to the previous manual models of the case studies, the
recent automatic models are more consistent and systematic. Some aspects of
this improvement have been outlined.

The current AD tool does not provide a graphical environment of AD dia-
grams. Instead an AD diagram is represented as an EMF model that is ma-
nipulated using an EMF structure editor. We consider developing a graphical
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environment of AD diagrams as future work. Also future work is needed in order
to improve the ADL and translation rules. For this reason, further applications
of the AD approach using the AD tool are being undertaken.

Acknowledgement. This work is partly supported by the EU research project
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Abstract. Distributed and concurrent object-oriented systems are dif-
ficult to analyze due to the complexity of their concurrency, communi-
cation, and synchronization mechanisms. The future mechanism extends
the traditional method call communication model by facilitating sharing
of references to futures. By assigning method call result values to futures,
third party objects may pick up these values. This may reduce the time
spent waiting for replies in a distributed environment. However, futures
add a level of complexity to program analysis, as the program semantics
becomes more involved.

This paper presents a model for asynchronously communicating ob-
jects, where return values from method calls are handled by futures. The
model facilitates invariant specifications over the locally visible commu-
nication history of each object. Compositional reasoning is supported,
as each object may be specified and verified independently of its envi-
ronment. A kernel object-oriented language with futures inspired by the
ABS modeling language is considered. A compositional proof system for
this language is presented, formulated within dynamic logic.

1 Introduction

Distributed systems play an essential role in society today. However, quality as-
surance of distributed systems is non-trivial since they depend on unpredictable
factors, such as different processing speeds of independent components. There-
fore, it is highly challenging to test such distributed systems after deployment
under different relevant conditions. These challenges motivates frameworks com-
bining precise modeling and analysis with suitable tool support. In particular,
compositional verification systems allow the different components to be analyzed
independently from their surrounding components.

Object orientation is the leading framework for concurrent and distributed
systems, recommended by the RM-ODP [23]. However, method-based commu-
nication between concurrent units may cause busy-waiting, as in the case of
remote and synchronous method invocation, e.g., Java RMI [2]. Concurrent ob-
jects communicating by asynchronous method calls have been proposed as a
promising framework to combine object-orientation and distribution in a natu-
ral manner. Each concurrent object encapsulates its own state and processor, and
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internal interference is avoided as at most one process is executing on an object
at a time. Asynchronous method calls allow the caller to continue with its own
activity without blocking while waiting for the reply, and a method call leads to
a new process on the called object. The notion of futures [8,20,27,31] improves
this setting by providing a decoupling of the process invoking a method and
the process reading the returned value. By sharing future identities, the caller
enables other objects to wait for method results. However, futures complicate
program analysis since programs become more involved compared to semantics
with traditional method calls, and in particular local reasoning is a challenge.

The execution of a distributed system can be represented by its communi-
cation history or trace; i.e., the sequence of observable communication events
between system components [10, 22]. At any point in time the communication
history abstractly captures the system state [13, 14]. In fact, traces are used in
semantics for full abstraction results (e.g., [5,24]). The local history of an object
reflects the communication visible to that object, i.e., between the object and
its surroundings. A system may be specified by the finite initial segments of its
communication histories, and a history invariant is a predicate which holds for
all finite sequences in the set of possible histories, expressing safety properties [7].

In this work we consider a kernel object-oriented language, where futures are
used to manage return values of method calls. Objects are concurrent and com-
municate asynchronously. We formalize object communication by a four event
operational semantics, capturing shared futures, where each event is visible to
only one object. Consequently, the local histories of two different objects share
no common events, and history invariants can be established independently for
each object. We present a dynamic logic proof system for class verification, fa-
cilitating independent reasoning about each class. A verified class invariant can
be instantiated to each object of that class, resulting in an invariant over the
local history of the object. Modularity is achieved as the independently derived
history invariants can be composed to form global system specifications. Global
history consistency is captured by a notion of history wellformedness. The for-
malization of object communication extends previous work [17] which considered
concurrent objects and asynchronous communication, but without futures.

Paper overview. Sect. 2 presents a core language with shared futures. The
communication model is presented in Sect. 3, and Sect. 4 defines the operational
semantics. Sect. 5 presents the compositional reasoning system, and Sect. 6 con-
tains related work and concludes the paper.

2 A Core Language with Shared Futures

A future is a placeholder for the return value of a method call. Each future has
an unique identity which is generated when a method is invoked. The future is
resolved upon method termination, by placing the return value of the method
in the future. Thus, unlike the traditional method call mechanism, the callee
does not send the return value directly back to the caller. However, the caller
may keep a reference to the future, allowing the caller to fetch the future value
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Cl ::= class C([T cp]∗) {[T w [:= e]?]∗ M∗} class definition
M ::= T m([T x]∗) {[var [T x]∗]? s ; return e} method definition
T ::= C | Int | Bool | String | Void | Fut<T > types
v ::= x | w variables (local or field)
e ::= null | this | v | cp | f(e) pure expressions
s ::= v := e | fr := v!m(e) | v := e? statements

| skip | if e then s else s fi | s; s

Fig. 1. Core language syntax, with C class name, cp formal class parameter, m method
name, w fields, x method parameter or local variable, and where fr is a future variable.
We let [ ]∗ and [ ]? denote repeated and optional parts, respectively, and e is a (possibly
empty) expression list. Expressions e and functions f are side-effect free.

once resolved. References to futures may be shared between objects, e.g., by
passing them as parameters. After achieving a future reference, this means that
third party objects may fetch the future value. Thus, the future value may be
fetched several times, possibly by different objects. In this manner, shared futures
provide an efficient way to distribute method call results to a number of objects.

For the purposes of this paper, we consider a core object-oriented language
with futures, presented in Fig 1. It includes basic statements for first order
futures, inspired by ABS [21]. Methods are organized in classes in a standard
manner. A class C takes a list of formal parameters cp, and defines fields w and
methods M . There is read-only access to the parameters cp. A method definition
has the form m(x){var y; s; return e}, ignoring type information, where x is
the list of parameters, y an optional list of method-local variables, s is a sequence
of statements, and the value of e is returned upon termination.

A future variable fr is declared by Fut<T> fr , indicating that fr may refer
to futures which may contain values of type T . The call statement fr := x!m(e)
invokes the method m on object x with input values e. The identity of the
generated future is assigned to fr , and the calling process continues execution
without waiting for fr to become resolved. The query statement v := fr? is used
to fetch the value of a future. The statement blocks until fr is resolved, and
then assigns the value contained in fr to v. The language contains additional
statements for assignment, skip, conditionals, and sequential composition.

We assume that call and query statements are well-typed. If x refers to an
object where m is defined with no input values and return type Int, the following
is well-typed: Fut< Int> fr; Int v; fr := x!m(); v := fr?.

Class instances are concurrent, encapsulating their own state and processor.
Each method invoked on the object leads to a new process, and at most one
process is executing on an object at a time. Object communication is asyn-
chronous, as there is no explicit transfer of control between the caller and the
callee. The core language ignores ABS features that are orthogonal to shared fu-
tures, including interface encapsulation, object creation, local synchronous calls,
and internal scheduling of processes by means of cooperative multitasking. We
refer to the report version of this paper for a treatment of these issues [18].
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class Adm(Prof p) {
String req() {var String cv, Fut<String> mb, Fut<Fut<String>> fr;

fr := p!ask(); mb:= fr?; cv := mb?;
... //register cv
return cv}}

class Prof(Stud s) {
Fut<String> ask() {Fut<String> mb; mb := s!getCV(); return mb}}

class Stud(String cv) { String getCV() {return cv}}

Fig. 2. A simple example with futures

Example. In order to illustrate the usage of futures, we consider the classes
in Fig. 2. The figure provides an implementation of a small system containing
an administrator, a professor, and a PhD student hired by the professor. The
administrator knows the professor, but does not know the student. In order to
get a CV of the student, the administrator sends a request to the professor.
The professor suggests a mailbox where the student can submit his CV directly
to the administrator. Technically, the mailbox is implemented by a future mb.
In order to acquire the CV, the administrator invokes the method ask on the
professor which returns a future reference. The administrator may then query
the future directly, and the future is resolved once the student submits a CV. In
this manner, the professor does not have to wait for the CV from the student and
then forward the result to the administrator. The future identity generated by
the professor is the one received by the administrator, which means that the CV
received by the administrator is the same as the one submitted by the student.

3 Observable Behavior

In this section we describe a communication model for concurrent objects com-
municating by means of asynchronous message passing and futures. The model
is defined in terms of the observable communication between objects in the sys-
tem. We consider how the execution of an object may be described by different
communication events which reflect the observable interaction between the ob-
ject and its environment. The observable behavior of a system is described by
communication histories over observable events [10, 22].

3.1 Communication Events

Since message passing is asynchronous, we consider separate events for method
invocation, reacting upon a method call, resolving a future, and for fetching
the value of a future. Each event is observable to only one object, which is the
one that generates the event. The events generated by a method call cycle is
depicted in Fig. 3. The object o calls a method m on object o′ with input values
e and where u denotes the future identity. An invocation message is sent from
o to o′ when the method is invoked. This is reflected by the invocation event
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o'o

u

<o      o', u, m, e >

<     o', u, m, e>

<o      , u, e>

o''

<o      o', u, m, e >

<o''      , u, e>

<o''      , u, e>

Fig. 3. A method call cycle: object o calls a method m on object o′ with future u. The
events on the left-hand side are visible to o, those in the middle are visible to o′, and
the ones on the right-hand side are visible to o′′. There is an arbitrary delay between
message receiving and reaction.

〈o→ o′, u,m, e〉 generated by o. An invocation reaction event 〈o � o′, u,m, e〉 is
generated by o′ once the method starts execution. When the method terminates,
the object o′ generates the future event 〈← o′, u,m, e〉. This event reflects that
u is resolved with return value e. The fetching event 〈o �, u, e〉 is generated by
o when o fetches the value of the resolved future. Since future identities may
be passed to other objects, e.g, o′′, this object may also fetch the future value,
reflected by the event 〈o′′ �, u, e〉, generated by o′′. Let type Mid include all
method names, and let Data be the supertype of all values occurring as actual
parameters, including future identities Fid and object identities Oid.

Definition 1. (Events) Let caller, callee, receiver : Oid, future : Fid, method :
Mid, args : List[Data], and result : Data. Communication events Ev include:

– Invocation events 〈caller→ callee, future,method, args〉, generated by caller.
– Invocation reaction events 〈caller � callee, future,method, args〉, generated

by callee.
– Future events 〈← callee, future,method, result〉, generated by callee.
– Fetching events 〈receiver �, future, result〉, generated by receiver

Events may be decomposed by functions. For instance, _.result : Ev → Data is
well-defined for future and fetching events, e.g., 〈← o′, u,m, e〉.result = e.

For a method invocation with future u, the ordering of events depicted in
Fig. 3 is described by the following regular expression (using · for sequential
composition of events)

〈o→ o′, u,m, e〉 · 〈o � o′, u,m, e〉 · 〈← o′, u,m, e〉[·〈_ �, u, e〉]∗

for some fixed o, o′, m, e, e, and where _ denotes an arbitrary value. This implies
that the result value may be read several times, each time with the same value,
namely that given in the preceding future event.
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3.2 Communication Histories

The execution of a system up to present time may be described by its history
of observable events, defined as a sequence. A sequence over some type T is
constructed by the empty sequence ε and the right append function _ ·_ :
Seq[T ] × T → Seq[T ] (where “_” indicates an argument position). The choice
of constructors gives rise to generate inductive function definitions, in the style
of [14]. Projection, _/_ : Seq[T ] × Set[T ] → Seq[T ] is defined inductively by
ε/s � ε and (a · x)/s � if x ∈ s then (a/s) · x else a/s fi, for a : Seq[T ],
x : T , and s : Set[T ], restricting a to the elements in s. A communication history
for a set S of objects is defined as a sequence of events generated by the objects
in S. We say that a history is global if S includes all objects in the system.

Definition 2. (Communication histories) The communication history h of
a system of objects S is a sequence of type Seq[Ev], such that each event in h is
generated by an object in S.

We observe that the local history of a single object o is achieved by restricting S
to the single object, i.e., the history contains only elements generated by o. For
a history h, we let h/o abbreviate the projection of h to the events generated
by o. Since each event is generated by only one object, it follows that the local
histories of two different objects are disjoint.

Definition 3. (Local histories) For a global history h and an object o, the
projection h/o is the local history of o.

4 Operational Semantics

Rewriting logic [28] is a logical and semantic framework in which concurrent and
distributed systems can be specified in an object-oriented style. Unbounded data
structures and user-defined data types are defined in this framework by means of
equational specifications. Rewriting logic extends membership equational logic
with rewrite rules, so that in a rewrite theory, the dynamic behavior of a system
is specified as a set of rules on top of its static part, defined by a set of equations.
Informally, a labeled conditional rewrite rule is a transition l : t −→ t′ if cond ,
where l is a label, t and t′ are terms over typed variables and function symbols
of given arities, and cond is a condition that must hold for the transition to
take place. Rewrite rules are used to specify local transitions in a system, from
a state fragment that matches the pattern t, to another state fragment that is
an instance of the pattern t′. Rules are selected nondeterministic if there are at
least two rule instantiations with left-hand sides matching overlapping fragments
of a term. Concurrent rewriting is possible if the fragments are non-overlapping.
Furthermore, matching is made modulo the properties of the function symbols
that appear in the rewrite rule, like associativity, commutativity, identity (ACI),
which introduces further nondeterminism. The Maude tools [11] allow simula-
tion, state exploration, reachability analysis, and LTL model checking of rewrit-
ing logic specifications. The state of a concurrent object system is captured by
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a configuration, which is a multiset of units such as objects and messages, and
other relevant system parts, which in our case includes futures. Concurrency
is then supported in the framework by allowing concurrent application of rules
when there are non-overlapping matches of left-hand sides.

4.1 Operational Rules

For our purpose, a configuration is a multiset of (concurrent) objects, classes,
messages, futures, as well as a representation of the global history. We use blank-
space as the multiset constructor, allowing ACI pattern matching. Objects have
the form object(Id : o, A) where o is the unique identity of the object and A is
a set of semantic attributes, including

Cl : c the class c of the object,
Pr : s the remaining code s of the active process,
Lvar : l the local state l of the active process, including

method parameters and the implicit future identity destiny,
Flds : a the state a of the fields, including class parameters,
Cnt : n a counter n used to generate future identities,
Mtd : m the name m of the current method.

Similarly, classes have the form class(Id : c, Mtds: d). Here, d is a multiset of
method definitions of the form (m, p, l, s), where m is the method name, p is
the list of parameters, l contains the local variables (including default values),
and s is the code. The history is represented by a unit hist(h) where h is finite
sequence of events (initially empty). Messages have the form of invocation events
as described above. At last, a future unit is of the form fut(Id : u,Val : v) where
u is the future identity and v is its value. Remark that a system configuration
contains exactly one history. The history is included to define the interleaving
semantics upon which we derive our history-based reasoning formalism.

The operational rules are summarized in Fig. 4. Method invocation is captured
by the rule call. The generated future identity (o, n) is globally unique (assuming
the next function is producing locally unique values). The future identity is
generated by this rule, but no future unit. If there is no active process in an
object, denoted Pr : empty, a method call is selected for execution by rule
method. The invocation message is removed from the configuration by this rule,
and the future identity of the call is assigned to the implicit parameter destiny.
Method execution is completed by rule return, and a future value is fetched by
rule query. A future unit appears in the configuration when resolved by rule
return, which means that a query statement blocks until the future is resolved.
Remark that rule query does not remove the future unit from the configuration,
which allows several processes to fetch the value of the same future. The given
language fragment may be extended with object creation and constructs for inter
object process control and suspension, e.g., by using the ABS approach of [17].



Compositional Reasoning about Shared Futures 101

skip: object(Id : o, Pr : (skip; s)) −→ object(Id : o, Pr : s)

assign : object(Id : o, Pr : (v := e; s), Lvar : l, Flds : a)
−→
if v in Lvar then object(Id : o, Pr : s, Lvar : l[v := eval(e, (a; l))], Flds : a)

else object(Id : o, Pr : s, Lvar : l, Flds : a[v := eval(e, (a; l))])

call : hist(h) object(Id : o, Pr : (fr := v!m(e); s), Lvar : l, Flds : a, Cnt : n)
−→
msg hist(h · msg)
object(Id : o, Pr : (fr := (o, n); s), Lvar : l, Flds : a, Cnt : next(n))

method : 〈o′ → o, u, m, v〉 hist(h) class(Id : c, Mtds : (q (m, p, l, s)))
object(Id : o, Cl : c, Pr : empty, Flds : a)
−→
hist(h · 〈o′ � o, u, m, v〉) class(Id : c,Mtds : (q (m, p, l, s)))
object(Id : o, Cl : c, Pr : s, Lvar : l[p := v][destiny := u], Flds : a, Mtd : m)

return : hist(h) object(Id : o, Pr : return e, Lvar : l, Flds : a, Mtd : m)
−→
hist(h · 〈← o, eval(destiny, l), m, eval(e, (a; l))〉)
fut(Id : eval(destiny,l), Val : eval(e,(a;l)))
object(Id : o, Pr : empty, Flds : a)

query : hist(h) fut(Id : u, Val : d) object(Id : o, Pr : (v := e?; s), Lvar : l, Flds : a)
−→
hist(h · 〈o �, u, d〉) fut(Id : u, Val : d)
object(Id : o, Pr : (v := d; s), Lvar : l, Flds : a)
if eval(e, (a; l)) = u

Fig. 4. Operational rules, using the standard rewriting logic convention that irrelevant
attributes may be omitted in a rule. Variables are denoted by single characters (the
uniform naming convention is left implicit), (a; l) represents the total object state, and
a[v := d] is the state a updated by binding the variable v to the data value d. The
eval function evaluates an expression in a given state, and in is used for testing do-
main membership. In rule call, msg denotes 〈o → eval(v, (a; l)), (o, n), m, eval(e, (a; l))〉,
where (o, n) is the generated future identity.

4.2 Semantic Properties

Given the operational semantics, we provide a notion of wellformedness for global
histories. We first introduce some notation and functions used in defining well-
formed histories. For sequences a and b, let a ew x denote that x is the last ele-
ment of a, agree(a) denote that all elements (if any) are equal, and a � b denote
that a is a prefix of b. Let [x1, x2, . . . , xi] denote the sequence of x1, x2, . . . , xi

for i > 0 (allowing repeated parts [...]∗). Functions for event decomposition
are lifted to sequences in the standard way, ignoring events for which the de-
composition is not defined, e.g., _.result : Seq[Ev] → Seq[Data]. The function
fid : Seq[Ev]→ Set[Fid] extracts future identities from a history:

fid(ε) � ∅ fid(h · γ) � fid(h) ∪ fid(γ)

fid(〈o→ o′, u,m, e〉) � {u} fid(〈o′ � o, u,m, e〉) � {u} ∪ fid(e)
fid(〈← o, u,m, e〉) � ∅ fid(〈o �, u, e〉) � fid(e)

where γ : Ev, and fid(e) returns the set of future identities occurring in the
expression list e. For a global history h, the function fid(h) returns all future
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identities on h, and for a local history h/o, the function fid(h/o) returns the
futures generated by o or received as parameters. At last, h/u abbreviates the
projection of history h to the set {γ | γ.future = u}, i.e., all events with future u.

Definition 4. (Wellformed histories) Let h : Seq[Ev] be a history of a global
object system S. The wellformedness predicate wf : Seq[Ev]→ Bool is defined by:

wf(ε) � true
wf(h · 〈o→ o′, u,m, e〉) � wf(h) ∧ o 
= null ∧ u /∈ fid(h)
wf(h · 〈o′ � o, u,m, e〉) � wf(h) ∧ o 
= null ∧ h/u = [〈o′ → o, u,m, e〉]
wf(h · 〈← o, u,m, e〉) � wf(h) ∧ h/u ew 〈_ � o, u,m,_〉
wf(h · 〈o �, u, e〉) � wf(h) ∧ u ∈ fid(h/o) ∧ agree(((h/u).result) · e)

It follows directly that a wellformed global history satisfies the communication
order pictured in Fig. 3, i.e.,

∀u . ∃o, o′,m, e, e .
h/u � [〈o′ → o, u,m, e〉, 〈o′ � o, u,m, e〉, 〈← o, u,m, e〉, [〈_ �, u, e〉]∗]

We can prove that the operational semantics guarantees wellformedness:

Lemma 1. The global history h of a global object system S obtained by the given
operational semantics, is wellformed, wf(h).
This lemma follows by induction over the number of rule applications, assuming
that object identifiers are unique (and not null). Wellformedness of a local history
for an object o, denoted wfo(h/o), is defined as in Def. 4, except that the last
conjunct of the case 〈o′ � o, u,m, e〉 only holds for self calls, i.e., where o and
o′ are equal. For local wellformedness, the conjunct is therefore weakened to
o = o′ ⇒ h/u = [〈o′ → o, u,m, e〉]. If h is a wellformed global history, it follows
immediately that each projection h/o is locally wellformed, i.e., wfo(h/o) holds.

5 Program Verification

The communication history abstractly captures the system state at any point in
time [13,14]. Partial correctness properties of a system may thereby be specified
by finite initial segments of its communication histories. A history invariant is
a predicate over the communication history, which holds for all finite sequences
in the (prefix-closed) set of possible histories, expressing safety properties [7]. In
this section we present a framework for compositional reasoning about object
systems, establishing an invariant over the global history from invariants over
the local histories of each object. Since the local object histories are disjoint
with our four event semantics, it is possible to reason locally about each ob-
ject. In particular, the history updates of the operational semantics affect the
local history of the active object only, and can be treated simply as an assign-
ment to the local history. The local history is not effected by the environment,
and interference-free reasoning is then possible. Correspondingly, the reasoning
framework consists of two parts: A proof system for local (class-based) reasoning,
and a rule for composition of object specifications.
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5.1 Local Reasoning

Pre- and postconditions to method definitions are in our setting used to establish
a class invariant. The class invariant must hold after initialization of all class
instances and must be maintained by all methods, serving as a contract for the
different methods: A method implements its part of the contract by ensuring that
the invariant holds upon termination, assuming that it holds when the method
starts execution. A class invariant establishes a relationship between the internal
state and the observable behavior of class instances. The internal state reflects
the values of the fields, and the observable behavior is expressed as potential
communication histories. A user-provided invariant IC(w,H) for a class C is a
predicate over the fields w, the read-only parameters cp and this, in addition to
the local history H which is a sequence of events generated by this. The proof
system for class-based verification is formulated within dynamic logic as used
by the KeY framework [9], facilitating class invariant verification by considering
each method independently. The dynamic logic formulation suggests that the
proof system is suitable for an implementation in the KeY framework.

Dynamic logic provides a structured way to describe program behavior by an
integration of programs and assertions within a single language. The formula
ψ ⇒ [s]φ express partial correctness properties: if statement s is executed in
a state where ψ holds and the execution terminates, then φ holds in the final
state. The formula is verified by a symbolic execution of s, where state modifica-
tions are handled by the update mechanism [9]. A dynamic formula [v := e; s]φ,
i.e., where an assignment is the first statement, reduces to {v := e}[s]φ, where
{v := e} is an update. We assume that expressions e can be evaluated within the
assertion language. Updates can only be applied on formulas without programs,
which means that updates on a formula [s]φ are accumulated and delayed until
the symbolic execution of s is complete. Update application {v := t}e, on an
expression e, evaluates to the substitution ev

t , replacing all free occurrences of
v in e by t. The parallel update {v1 := e1||...||vn := en}, for disjoint variables
v1, ..., vn, represents an accumulated update, and the application of a parallel
update leads to a simultaneous substitution. A sequent ψ1, ..., ψn � φ1, ..., φm

contains assumptions ψ1, ..., ψn, and formulas φ1, ..., φm to be proved. The se-
quent is valid if at least one formula φi follows from the assumptions, and it can
be interpreted as ψ1 ∧ ... ∧ ψn ⇒ φ1 ∨ ... ∨ φm.

In order to verify a class invariant IC(w,H), we must prove that the invariant
is maintained by all method definitions in C, assuming wellformedness of the
local history. For each method definition m(x){s; return e} in C, this amounts
to a proof of the sequent:

� (wfthis(H) ∧ IC(w,H))⇒ [H := H · 〈caller � this, destiny,m, x〉;
s; H := H · 〈← this, destiny,m, e〉](wfthis(H)⇒ IC(w,H))

Here, the method body is extended with a statement for extending the history
with the invocation reaction event, and the return statement is treated as a
history extension. Dynamic logic rules for method invocation and future query
can be found in Fig. 5. When invoking a method, the update in the premise of



104 C.C. Din, J. Dovland, and O. Owe

invoc
� ∀u . {H := H · 〈this → o, u, m, e〉|| fr := u} [s]φ

� [fr = o!m(e); s]φ

fetch
� ∀v′ . {H := H · 〈this �, e, v′〉|| v := v′} [s]φ

� [v := e?; s]φ

Fig. 5. Dynamic logic rules for method invocation and future query

rule invoc captures the history extension and the generation of a future iden-
tity u. Similarly, the update in rule fetch captures the history extension and the
assignment of a fresh value to v, where the wellformedness assumptions ensure
that all values received from the same future are equal. The soundness of these
rules is straightforward with respect to the semantics in Sec. 4. Assignments are
analyzed as explained above, and rules for skip and conditionals are standard.
We refer to Din et al. for further details [18].

5.2 Compositional Reasoning

The class invariant for some class C is a predicate over class parameters cp, fields
w, and the local projection of possible global histories h. History invariants for
instances of C, expressed as a predicate over the local history, can be derived
from the class invariant. For an instance o of C with actual parameter values e,
the history invariant Io:C(e)(h/o) is defined by hiding the internal state w and
instantiating this and the class parameters:

Io:C(e)(h/o) � ∃w . IC(w, h/o)this,cp
o,e

The history invariant IS(h) for a system S is then given by combining the history
invariants of the composed objects:

IS(h) � wf(h)
∧

(o:C(e))∈S

Io:C(e)(h/o)

The wellformedness property serves as a connection between the local histories.
Note that the system invariant is obtained directly from the history invariants of
the composed objects, without any restrictions on the local reasoning, since the
local histories are disjoint. This ensures compositional reasoning. The composi-
tion rule is similar to [17], which also considers dynamically created objects.

5.3 Example

In this example we consider object systems based on the classes found in Fig. 2.
Assume that the global system consists of the objects a : Adm, p : Prof , s : Stud ,
and m : Main , where the only visible activity of m is that it invokes req on the
administrator. The semantics may lead to several global histories for this system,
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depending on the interleaving of the different object activities. One global history
H caused by a call to req is as follows:

[〈m→ a, u1, req, ε〉, 〈m � a, u1, req, ε〉, 〈a→ p, u2, ask, ε〉, 〈a � p, u2, ask, ε〉,
〈p→ s, u3, getCV, ε〉, 〈← p, u2, ask, u3〉, 〈p � s, u3, getCV, ε〉, 〈a �, u2, u3〉,
〈← s, u3, getCV, cv〉, 〈a �, u3, cv〉, 〈← a, u1, req, cv〉]

It follows that the CV received by the administrator must be the same as the
one submitted by the student. In addition, the future identity u3 generated by
the professor is the one received by the administrator. We may derive these
properties within the proof system from the following class invariants:

IStud(cv)(H) � H � [〈c � this, u, getCV, ε〉, 〈← this, u, getCV, cv〉 .some c, u]∗

IProf (s)(H) � H � [〈c � this, u, ask, ε〉, 〈this→ s, u′, getCV, ε〉,
〈← this, u, ask, u′〉 .some c, u, u′]∗

IAdm(p)(H) � H � [〈c � this, d, req, ε〉, 〈this→ p, u, ask, ε〉,
〈this �, u, u′〉, 〈this �, u′, cv〉, 〈← this, d, req, cv〉 .some c, d, u, u′, cv]∗

letting h � p∗ express that h is a prefix of a repeated pattern p where ad-
ditional variables occurring in p (after some) may change for each repetition.
These invariants are straightforwardly verified in the above proof system. The
corresponding object invariants for s : Stud(cv), p : Prof (s), and a : Adm(p) are
obtained by substituting actual values for this and class parameters:

Is:Stud(cv)(h/s) � h/s � [〈_ � s, u, getCV, ε〉, 〈← s, u, getCV, cv〉 .some u]∗

Ip:Prof (s)(h/p) � h/p � [〈_� p, u, ask, ε〉, 〈p→ s, u′, getCV, ε〉,
〈← p, u, ask, u′〉 .some u, u′]∗

Ia:Adm(p)(h/a) � h/a � [〈_� a, d, req, ε〉, 〈a→ p, u, ask, ε〉,
〈a �, u, u′〉, 〈a �, u′, cv〉, 〈← a, d, req, cv〉 .some d, u, u′, cv]∗

The global invariant of a system S with the objects, s : Stud(cv), p : Prof (s),
a : Adm(p), and m : Main(a) is then

IS(h) � wf(h) ∧ Ia:Adm(p)(h/a) ∧ Ip:Prof (s)(h/p) ∧
Is:Stud(cv)(h/s) ∧ Im:Main(a)(h/m)

where wellformedness allows us to relate the different object histories. From this
global invariant we may derive that the CV received by the administrator must
be the same as the one submitted by the student.

As a special case, we consider a system where main invokes the req method
once, i.e. Im:Main(a)(h/m) � h/m � [〈m → a, u, req, ε〉 .some u]. History well-
formedness then ensures that the cycles defined by the remaining invariants are
repeated at most once, and that variables in the patterns are connected, i.e.,
the future u in Im:Main(a) is identical to the future d in Ia:Adm(p). The global
invariant then reduces to the following:

IS(h) � wf(h) ∧ h/m � [〈m→ a, u1, req, ε〉] ∧
h/a � [〈m � a, u1, req, ε〉, 〈a→ p, u2, ask, ε〉, 〈a �, u2, u3〉,

〈a �, u3, cv〉, 〈← a, u1, req, cv〉] ∧
h/p � [〈a � p, u2, ask, ε〉, 〈p→ s, u3, getCV, ε〉, 〈← p, u2, ask, u3〉] ∧
h/s � [〈p � s, u3, getCV, ε〉, 〈← s, u3, getCV, cv〉]
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This invariant allows a number of global histories, depending on the interleaving
of the activities in the different objects. The history H presented first in this
section satisfies the invariant, and represents one particular interleaving.

6 Related Work and Conclusion

Models for asynchronous communication without futures have been explored
for process calculi with buffered channels [22], for agents with message-based
communication [1], for method-based communication [4], and in particular for
Java [3]. Behavioral reasoning about distributed and object-oriented systems is
challenging, due to the combination of concurrency, compositionality, and ob-
ject orientation. Moreover, the gap in reasoning complexity between sequential
and distributed, object-oriented systems makes tool-based verification difficult in
practice. A survey of these challenges can be found in [6]. The present approach
follows the line of work based on communication histories to model object com-
munication events in a distributed setting [10,12,22]. Objects are concurrent and
interact solely by method calls and futures, and remote access to object fields
are forbidden.

By creating unique references for method calls, the label construct of Creol [26]
resembles futures, as callers may postpone reading result values. Verification sys-
tems capturing Creol labels can be found in [6,19]. However, a label reference is
local to the caller, and cannot be shared with other objects. A reasoning system
for futures has been presented in [16], using a combination of global and local
invariants. Futures are treated as visible objects rather than reflected by events
in histories. In contrast to our work, global reasoning is obtained by means of
global invariants, and not by compositional rules. Thus the environment of a
class must be known at verification time.

A reasoning system for asynchronous methods in ABS without futures is pre-
sented in [17], from which we redefine the four-event semantics to reflect actions
on shared futures. The semantics gives a clean separation of the activities of
the different objects, which leads to disjointness of local histories. Thus, object
behavior can be specified in terms of the observable interaction of the current
object only. This is essential for obtaining a simple reasoning system. In related
approaches, e.g., [6, 19], events are visible to more than one object. The local
histories must then be updated with the activity of other objects, resulting in
more complex reasoning systems. Based on the four-event semantics, we present
a compositional reasoning system for distributed, concurrent objects with asyn-
chronous method calls. A class invariant defines a relation between the inner
state and the observable communication of instances, and can be verified inde-
pendently for each class. The class invariant can be instantiated for each object
of the class, resulting in a history invariant over the observable behavior of the
object. Compositional reasoning is ensured as history invariants may be com-
bined to form global system specifications. The composition rule is similar to [17],
which is inspired by previous approaches [29, 30].

In order to focus on the future mechanism, this paper considers a core lan-
guage with shared futures. The report version [18] considers a richer language,
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including constructs for object creation and inter-object process control. The ver-
ification system is suitable for an implementation within the KeY framework.
With support for (semi-)automatic verification, such an implementation will be
valuable when developing larger case studies. It is also natural to investigate
how our reasoning system would benefit from extending it with rely/guarantee
style reasoning. Assumptions about callee behavior may, for instance, be used
to express properties of return values. More sophisticated techniques may also
be used, e.g., [15,25] adapts rely/guarantee style reasoning to history invariants.
However, such techniques requires more complex composition rules. Soundness
proofs for local reasoning and object composition rules are left as future work.
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Abstract. Crosscutting concerns are pervasive in embedded software
and ambient systems due to the stringent non-functional requirements
imposed on them. Maintaining families of these systems to address issues
with the crosscutting concerns, such as security concerns, is recognised
to be tedious and costly. To tackle the above problem, we adapt the
aspect-oriented paradigm to feature-modeling.

One of the most serious problems in aspect-oriented modeling is the
potential of taking a valid model and spoiling its validity when weaving
an aspect to it. We present a formal verification technique of aspectual
composition in the context of feature-modeling that is based on product
family algebra. We define a set of validity criteria for aspects with regard
to their corresponding base specifications. The verification is done prior
to the weaving of the aspects to their base specifications.

Keywords: Software product families, Aspect-oriented paradigm,
Feature-modeling, Formal methods, Requirements verification.

1 Introduction

Product family engineering involves developing a variety of related products
from core assets rather than developing them one-by-one independently. Feature-
modeling techniques are widely used at the domain analysis stage to specify and
manage the commonality and variability of product families in terms of fea-
tures. In the literature, several feature-modeling techniques have been proposed
using different notations and most of them are based on graphical notations [4].
In [8,9,10,11], Höfner et al. proposed a formal technique, product family alge-
bra, to capture a set of different notations and terms found in current feature-
modeling techniques. Product family algebra is notable for its capability to for-
mally and concisely specify feature models. Other feature-modeling languages
can be easily translated into that of product family algebra [2].

The development, maintenance, and evolution of complex and large feature
models are among the main challenges faced by feature-modeling practition-
ers. Maintaining crosscutting concerns, such as security concerns, is recognised
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in general software development as tedious and costly (e.g., [20]). These con-
cerns are pervasive, especially in embedded software and ambient systems due
to the various constraints imposed by the environment and the stringent non-
functional requirements imposed on them. The difficulties of dealing with unpre-
dicted changes to software requirements increase when a serious defect within a
family is detected after putting the products of the family on the market. When
the cause of the defect is spread to several parts of each of the products, the
maintenance becomes quite tedious if the family is not properly modeled. The
question then becomes how to quickly supersede the current feature model of a
family by a new one to ensure that all the products that involve the identified
configuration of features contributing to the problem get modified, replaced, or
removed. We adopt the aspect-oriented paradigm to feature-modeling to tackle
the above problems. We have proposed a language called AO-PFA [22] which
contributes to a modular management of the commonality and variability of
product families at the domain analysis stage of product family engineering.
Aspect-oriented programming leads to systems with high modifiability, but at
the same time the performance is hindered [14]. Also, the complexity of the
programming languages makes the aspect weaving process very convoluted and
prone to several aspectual compositional problems [18]. The language that we
use at the feature-modeling level is indeed a lot simpler than a language used at
the implementation level. That is why we conjecture that aspect-oriented tech-
niques, despite their mixed results at the programming level, can be helpful at
the feature-modeling level.

One of the most serious problems in aspect-oriented modeling is the poten-
tial of taking a model that is valid and spoiling its validity when weaving an
aspect to it. At the feature-modeling level, the interference of an aspect with
existing features, in a potentially undesired manner, can be caused either by the
enforcement of the model by adding or amending existing features, products or
families, or by relaxing the scope of a model by deleting features, products or
families. Particularly, when an aspectual feature is imposed at a specific point
in the feature model, it might alter the dependencies among features or, for
instance, create cyclic definitions of composite features. The main contribution
of this paper is a formal technique to verify aspectual composition in AO-PFA.
While [22] presents the language of AO-PFA and highlights its relevance to fea-
ture modeling, the current work tackles the problem of aspectual composition
within AO-PFA. We presents a set of definitions and propositions enabling the
verification of the validity of aspects with regard to their base specifications.

In Section 2, we briefly introduce the aspect-oriented specification language
and other related background knowledge. In Section 3, we present the proposed
formal approach to detect invalid aspects in the context of AO-PFA and highlight
the usage of the proposed technique with several examples. In Section 4, we
discuss and compare the proposed technique to those found in the literature,
and give the highlights of our future work.
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2 Background

2.1 Aspect-Orientation: Basic Concepts

To efficiently handle crosscutting concerns, the aspect-oriented paradigm (e.g.,
[12]) encapsulates crosscutting concerns by using aspects. In general, the whole
system specification (or code) is obtained by composing aspects with the system’s
base specification (or code). This paradigm has been adapted to the whole soft-
ware development life-cycle. From one software development stage to another,
aspects are present in terms of fine or coarse granularity. For instance, at the
pre-requirements stage, they are presented in terms of goals or features, while at
the programming level, they are given in terms of program constructs. However,
a terminology is widely and commonly used by the community of aspect-oriented
software development. An aspect is composed of a pointcut and an advice. The
advice describes what to realise by a crosscutting concern, while the pointcuts
describe how to compose the concerns with other concerns. In base systems,
points where aspects can be implicitly invoked are referred to as join points.
The process to compose an aspect with a base system is called the weaving pro-
cess. Roughly speaking, the weaving process introduces the advice to the base
system at selected join points that are specified by the pointcut.

2.2 Product Family Algebra

Product family algebra [8,9,10,11] extends the mathematical notations of semir-
ing to describe and manipulate product families. Precisely, a product family
algebra is a commutative idempotent semiring (S, + , · , 0 , 1 ). Each element
of the semiring is a product family. Operator + is interpreted as a choice between
two product families and operator · is interpreted as a mandatory composition
of two product families. The element 0 represents the empty product family and
the element 1 represents a product family consisting of only a pseudo-product
which has no features.

Other concepts in product family modeling can be expressed mathematically
in product family algebra. A product family a is the subfamily of a product
family b, denoted by a ≤ b, iff a + b = b. New product families can be derived
from other existing families by adding features. A refinement relation is defined
to capture such a relationship between two product families. Formally, a product
family a is the refinement of a product family b, denoted by a � b, iff ∃(c |:
a ≤ b · c ). Moreover, constraints are elicited in multi-view approaches when
integrating different views. In the context of product families, a constraint can
be informally described as “If a member of a product family has property P1, it
must also (not) have property P2”[10]. To capture such constraints in product
family algebra, a requirement relation is defined.

Definition 1 (e.g., [10]). For elements a, b, c, d and a product p in product
family algebra, the requirement relation (→) is defined in a family-induction style
as follows:

a �p b
def⇔ p � a =⇒ p � b and a �c+d b

def⇔ a �c b ∧ a �d b.
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1. bf tim con %time controller
2. bf lum sen %luminance sensor
3. bf wea sen %weather sensor
4. bf gra tv %graphical tv
5. bf web bas %web based
6. bf PDA %PDA
7. bf cable %cable
8. bf wireless %wireless
9. bf inter %Internet
10.bf mob net %mobile phone network
11.bf man lig %manual lighting
12.bf sma lig %smart lighting
13.bf man daw %manual door and window
14.bf sma daw %smart door and window
15.bf heat sys %heating system
16.bf ster sys %stereo system
17.bf wat intr %water intrusion
18.Lig dev = 1+lum sen %Light device
19.Daw dev = tim con· (1+wea sen)

%Door and window device

20.Usr Int = gra tv· (1+web bas) · (1+PDA)
%User Interface

21.Commun = (cable+wireless+cable· wireless)
· (1+inter) · (1+mob net) %Communication

22.Lig con = man lig· (1+sma lig)
%Lighting control

23.Daw con = man daw· (1+sma daw)
%Door and window control

24.HApp con = (1+heat sys)· (1+ster sys)
· (1+wat intr) %Home appliance control

25.fir det flow = sma lig· sma daw· HApp con
% fire detection flow

26.Home gateway = Lig con· Daw con· HApp con
· fir det flow %Home gateway

27.Home Auto PL = Commun· Usr Int· Lig dev
· Daw dev· Home gateway
%Home Automation product line

% Constraints
28.constraint(sma lig, Home Auto PL, Lig dev)
29.constraint(sma daw, Home Auto PL, Daw dev)
30.constraint(web bas, Home Auto PL, inter)

Fig. 1. PFA Specification of a Home Automation Product Line

A requirement relationship a
f→ b, reading as “a requires b within f” indicates

that for every product in f , if it is a refinement of a, then it must be a refinement
of b.

2.3 Aspect-Oriented Product Family Algebra (AO-PFA)

The language AO-PFA [21,22] is an extension to the language of product family
algebra. The motivation and benefits of AO-PFA can be found in [22]. Briefly,
AO-PFA is used to articulate aspects (crosscutting concerns) in product fam-
ily specifications. The maintainability of systems is enhanced by adopting the
principle of separation of concerns. Different software system evolution demands
can be captured as aspects where their specifications can be automatically com-
posed/weaved with that of the system.

Specifications of product family algebra can be efficiently analysed and verified
using a software tool Jory [2], which implements the automatic analysis of fea-
ture models based on binary decision diagrams. The specification language used
by Jory is based on product family algebra and is called PFA. It involves three
types of syntactic elements: basic feature declarations, labeled product families,
and constraints. A basic feature label preceded by the keyword bf declares a basic
feature. An equation with a product family label at the left-hand side and a prod-
uct family algebra term at the right-hand side gives a labeled product family. A
triple preceded by the keyword constraint represents a constraint, which specifies
a requirement relation as introduced in Definition 1. Figure 1 gives an example
of a PFA specification. Lines 1-17 are basic feature declarations, Lines 18-27
specify labeled product families, and Lines 28-30 correspond to constraints. For
example, a basic feature, luminance sensor, is declared by lum sen at Line 2, and
a subfamily light device (represented by Lig dev) that includes an optional fea-
ture lum sen (represented by the product family term (1 + lum sen)) is defined
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at Line 18. Line 28 corresponds to the following constraint in product family
algebra: sma lig �Home Auto PL Lig dev, which means that the feature sma lig
requires the feature Lig dev in the family Home Auto PL.

In AO-PFA, the base is specified by a PFA specification, while a sequence of
aspects is specified by an aspect specification. The aspect specification can han-
dle multiple aspects weaved to one base specification, and the weaving order is
naturally from top to bottom of the aspect specification. Moreover, each aspect
should capture the basic concepts of pointcut and advice. Precisely, the syntax
of an aspect is given as follows:

Aspect aspectId = Advice(jp)
where jp ∈ (scope, expression, kind )

The label of an aspect is specified by aspectId . The body of the advice is rep-
resented by Advice(jp). Since join points in PFA specifications are unified as
product family terms, Advice(jp) can be a general product family term; either
a ground term or a term with a variable jp that represents the instance of a
join point. Current aspect-oriented languages concur on the need of three ba-
sic attributes for a pointcut: the scope of join points, the kind of join points,
and a boolean expression as a guard. We echo this consensus by representing
the pointcut of an aspect in AO-PFA with a triple: (scope, expression, kind).
The pointcut triple specifies rules for composing aspects and plays an impor-
tant role when verifying aspectual composition. The expression of the pointcut
triple works as a guard for the selected join points. The verification approach
discussed in the next section primarily focuses on the analysis of the scope and
the kind of the pointcut triple. The scope specifies boundaries of join points in
the base specification. When the scope is the whole specification, we write “base”
in the field of scope. Two basic types of specific scopes, within and hierarchy, are
designed to respectively capture join points within the lexical structures or hi-
erarchical structures of the specified product families. Moreover, protect(scope)
is used to specify that eligible join points are excluded from the scope, and
two scopes can be combined with “:” and “;” to respectively indicate the union
and intersection of scopes. The kind selects join points based on the exact po-
sitions and forms of the product family algebra terms. There are seven types of
pointcut kinds. Pointcut kinds of declaration and inclusion refer to join points
at basic feature declarations in PFA specifications. Pointcut kinds of creation,
component creation, component and equivalent component refer to join points at
labeled product families in PFA specifications. Join points within constraints in
PFA specifications are captured by a pointcut kind of constraint[position list].
Obviously, each join point can only belong to one poincut kind. Due to space
limitations, we explain the detailed semantics of different types of pointcuts only
when necessary. We refer the reader to [21,22] for details and examples showing
the usage of those pointcuts.

A home automation product line adapted from [16] is used as a case study to
illustrate the application of AO-PFA in [21]. A home automation system includes
control devices, communication networks, user interfaces, and a home gateway.
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Different types of devices, network standards, and user interfaces can be selected
for different products. A home gateway offers different services for overall system
management. In this paper, we only use parts of the case study to show the usage
of the proposed verification technique for aspectual composition. Figure 1 is a
PFA specification of the home automation product line. The PFA specification is
used as the base specification and is composed with different aspects in Section 3.
We will show the problems caused by composing those aspects, and associate
them to the presented validity criteria.

3 Verification of Aspects at the Feature-Modeling Level

Adopting aspect-orientation at early stages facilitates a systematic aspect-oriented
development of product families throughout the whole life-cycle, which is espe-
cially important for model-driven software development [5]. A major type of
interference caused by aspectual composition is derived from early development
stages and should be handled earlier [18]. In the context of product families, the
safe feature composition problem has been widely studied (e.g., [13]), and is quite
challenging to tackle. The compositions of features can cause conflicts either by
the behavior of features, the incompleteness of feature models, or both [13]. In-
stead of detecting all invalid feature compositions at the detailed level of features,
adapting the aspect-oriented paradigm to feature-modeling helps to detect some
invalid feature compositions at the abstract level of features by verifying the as-
pectual composition, which comes to the main contribution of this paper. With
such an early detection, we can make necessary tradeoffs as early as possible
at the feature-modeling stage, and provide valuable knowledge for the following
design and implementation stages for product families.

In this section, we address the verification of aspectual composition in AO-
PFA specifications. In general, we formalise the validity criteria for PFA speci-
fications and analyse the impacts of aspects on PFA specifications.

3.1 Validity Criteria for PFA Specifications

We first establish our mathematical settings to identify what criteria need to
be satisfied for a valid PFA specification representing a product family feature
model. In PFA specifications, the most basic constructs are those labels that
either represent features or product families. Therefore, we abstract validity
criteria of PFA specifications at the finest granularity with regard to those labels.

Construction 1. Given a PFA specification S, let DS be the multi-set of labels
that are present in S at basic feature declarations or at the left-hand sides of
labeled product families. We call DS the defining label multi-set associated with
the specification S.

Definition 2. [Definition-valid specification] We say that a PFA specification S
is definition-valid iff ∀(v | v ∈ DS : NumOccur(v) = 1 ) where DS is the
defining label multi-set of S, and NumOccur(v) denotes the number of occurrence
of v in DS.
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Construction 2. Given a PFA specification S, let RS be the set of labels that
are present in S at the constraints or at the right-hand sides of labeled product
families. We call RS the referencing label set associated with the specification S.

Definition 3. [Reference-valid specification] We say a specification S is
reference-valid iff RS ⊆ DS, where RS is the referencing label set of S and DS is
the defining label multi-set of S.

Intuitively, Definition 2 indicates that a specification is definition-valid iff all the
elements in DS are unambiguously defined labels. If the multi-set DS actually
forms a set, we call DS the defining label set associated with a specification S.
Definition 3 indicates that a specification is reference-valid iff all the elements
in RS are not references to undefined labels. As an example, according to Con-
structions 1 and 2, the defining label multi-set and the referencing label set of the
specification home automation (Figure 1) are identical (i.e., Dhome automation =
Rhome automation = {tim con, lum sen,wea sen, gra tv ,web bas ,PDA, cable,
wireless , inter ,mob net ,man lig, sma lig,man daw , ster sys , sma daw , heat sys ,
wat intr , fir det flow ,Lig dev ,Daw dev ,Usr Int ,Commun,Lig con,HApp con,
Home gateway,Home Auto PL,Daw con}). Based on Definitions 2 and 3, we
claim that the specification home automation is definition-valid and reference-
valid.

Construction 3. Given a PFA specification S, let DS be its corresponding defin-
ing label set and GS = (V,E) be a digraph. The set of vertices V ⊆ DS, and
a tuple (u, v) is in E iff u occurs in a product family term T such that the
equation v = T is a labeled product family specified in S. We call GS the label
dependency digraph associated with the specification S.

Let GS = (V,E) be a label dependency digraph associated with a PFA speci-
fication S. For u, v ∈ V , we say that u defines v iff ∃(n | n ≥ 1 : (u, v)–path ∈
En ). Consequently, we say u and v are mutually defined labels, denoted by
mutdef(u, v), iff ∃(m,n|m,n ≥ 1 : (u, v)–path ∈ Em ∧ (v, u)–path ∈ En). In
particular, if u and v are identical and m = n = 1, we say u (or v) is self-defined.

Definition 4. [Dependency-valid specification] We say that a PFA specifica-
tion S is dependency-valid iff ∀(u, v | u, v ∈ V : ¬mutdef(u, v) ) where V and
mutdef(u, v) are defined according to GS = (V,E) that is the label dependency
digraph associated with the specification S.

Intuitively, Definition 4 indicates that a valid PFA specification does not have
any mutually defined or self-defined labels.

Lemma 1. Let GS = (V,E) be a label dependency digraph of a PFA specifica-
tion S. Two labels u and v are mutually defined iff there is a cycle including u
and v in GS. In particular, a label u is self-defined iff there is a loop through u
in GS.

The detailed proof of Lemma 1 can be found in [21]. Straightforwardly, the
digraph GS associated with a dependency-valid specification S should be cycle-
free and loop-free. For example, the dependency digraph of the specification
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Fig. 2. Dependency digraph corresponding to the home automation product line

home automation (Figure 1) can be constructed as given in Figure 2. The digraph
is loop and cycle free, which indicates that the corresponding specification is
dependency-valid.

3.2 Validity Criteria of Aspects in AO-PFA

In AO-PFA, aspects are composed with base specifications at the granularity of
product family terms. The obligation of aspectual composition is that the weaved
specifications resulting from composing aspects and base specifications should
remain valid. We first consider the following examples to illustrate that weaving
an aspect to a base specification may cause definition-invalid, reference-invalid
and dependency-invalid specifications.

Aspects Causing definition-invalid Specifications: We consider the following two
aspects that are developed independently. The aspect denoted as case1a aspect
intends to deploy a fingerprint reader device as an optional feature in the sub-
family Daw dev, while the aspect denoted as case1b aspect intends to deploy
the fingerprint reader device as a mandatory feature. We denote the finger-
print reader by fgr. The two aspects can be respectively specified in AO-PFA as
follows:

case1a aspect:
Aspect jp new = jp · (1 + fgr)
where jp ∈ (

base, true, creation(Daw dev)
)

case1b aspect:
Aspect jp new = jp · fgr
where jp ∈ (

base, true, creation(Daw dev)
)

The creation pointcut refers to join points at the exact definitions of labeled
product families. Let the base specification associated with the above two aspects
be the specification home automation (Figure 1). Both aspects will capture the
left-hand side of the labeled product family Daw dev at Line 19 in Figure 1 and
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introduce a new labeled product family Daw dev new. In other words, weaving
these two aspects to the same base specification can result in a definition-invalid
PFA specification.

Aspects Causing reference-invalid Specifications: We consider another aspect
(denoted as case2 aspect) that extends the fingerpinter reader fgr, with a new
feature password identify. The aspect is specified as follows:

case2 aspect:
Aspect jp = jp · password identify
where jp ∈ (

base, true, inclusion(fgr)
)

The inclusion pointcut refers to join points at the reference of the feature fgr.
Assume that we want to weave both aspects case1a aspect and case2 aspect to
the base specification home automation (Figure 1). If we weave case2 aspect
first, there is actually no modification to the base specification after the weaving
process as the feature fgr does not appear in the base specification. The feature
fgr then appears in the new specification after weaving case1a aspect. However,
case2 aspect does not take effect, which may not correspond to our expectation.
Actually, weaving the first aspect leads to a reference-invalid specification. It is
more reasonable to weave case1a aspect before case2 aspect.

Aspects Causing dependency-invalid Specifications: We consider composing the
aspect specified below (denoted as case3 aspect) with the base specification
home automation (Figure 1):

case3 aspect:
Aspect jp = jp · fir det flow
where jp ∈ (

base, true, inclusion(sma lig)
)

The dependency digraph of the specification home automation is given in Fig-
ure 2. The dotted edge illustrates the new edge introduced by case3 aspect, which
introduces a loop to the dependency digraph. The example shows that weaving
an aspect might lead to a dependency-invalid specification. Alternatively, assume
that we change the scope of the above pointcut to be within(Lig con) instead of
base, the dashed edge introduced by the modified aspect will not cause loops or
cycles in the dependency digraph.

Formalisation of Aspectual Composition. Instead of checking the validity
of specifications after weaving the aspects, our approach intends to detect the
above validity problems before the weaving process. Besides, it is necessary for us
to formalise such verification to enable automation. With regard to the validity
definitions of PFA specifications, composing an aspect to a base specification
may change the defining label multi-set, the referencing label set, and the label
dependency digraph of the original specification. Precisely, the effects of weaving
an aspect can be abstracted with the following construction.
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Table 1. The effect of pointcut kinds on DA and RA

kind of pointcut DA contains RA contains
inclusion all newly introduced labels specified by

Advice(jp) all labels
specified by
Advice(jp)1

component
equivalent component
declaration all newly introduced labels specified by

Advice(jp) and all labels in aspectId2
creation
component creation
constraint[list] empty set
1including the instance of jp in the case where jp appears in Advice(jp)
2including the instance of jp in the case where jp appears in aspectId

Construction 4. Let S′ be the PFA specification obtained by weaving an as-
pect A to a valid PFA specification S. The defining label sets, referencing la-
bel sets and dependency digraphs of S and S′ can be constructed according to
Constructions 1–3, respectively. To discuss the difference between S′ and S, we
denote DA, RA, E addA and E delA associated with the aspect A as follows:

• Let DA be a set of labels introduced by A which will be present at basic fea-
ture declarations or left-hand sides of labeled product families in S′. As ev-
ery element v ∈ DA is a defining label, the defining label multi-set of S′

is DS’ = DS �DA, where � denotes the multi-set union.
• Let RA be a set of labels introduced by A which will be present at constraints

or right-hand sides of labeled product families in S′. As every element v ∈ RA

is a referencing label, the referencing label set of S′ is RS’ = RS ∪RA.
• Let E addA be a set of tuples (u, v) such that u is a label that will be introduced

by aspect A at the right-hand side of a labeled product family in S′ and v is
the label present at the left-hand side of the labeled product family. Let E delA
be a set of tuples (u, v) such that the label u will be removed by A from the
right-hand side of a labeled product family in S, and v is the label present
at the left-hand side of the labeled product family. As E addA and E delA
correspond to edge additions and deletions in GS, the dependency digraph of S′

is GS’ = (V, (ES ∪ E addA)− E delA) where V ⊆ DS’.

Consequently, an aspect A is invalid w.r.t. a specification S iff the weaved speci-
fication S′ is definition-invalid, reference-invalid or dependency-invalid according
to Definitions 2–4, respectively.

Detection of Definition-Invalid and Reference-Invalid Aspects. Since
the pointcut kind decides the position of join points, we can directly construct DA

and RA with regard to different pointcut kinds as given in Table 1. Pointcut
kinds of declaration, creation, and component creation introduce new specifi-
cations where the specified product families are defined. Pointcut kinds of in-
clusion, component, equivalent component, and constraint[position list] introduce
new specifications where the specified product families are referenced. With ac-
cordance to Construction 4, the formal definitions for definition-valid aspect and
reference-valid aspects can be given by Definition 5 and 6, respectively.
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Definition 5. [Definition-valid aspect] We say that an aspect A is definition-
valid with regard to a specification S iff DS ∩DA = ∅.
Considering the example given earlier, we assume that, without loss of gener-
ality, case1a aspect is weaved before case1b aspect. We construct the defining
label set of the aspect according to the row corresponding to creation in Ta-
ble 1 and obtain Dcase1a aspect = Dcase1b aspect = {fgr ,Daw dev new}. Accord-
ing to Definition 5, since the intersection of Dhome automation and Dcase1a aspect is
empty, the aspect case1a aspect is definition-valid w.r.t. its base specification .
Let home automation one be the specification after weaving case1a aspect. Ac-
cording to Construction 4, we have Dhome automation one = Dhome automation �
Dcase1a aspect. As the intersection of Dhome automation one and Dcase1b aspect is
nonempty, the aspect case1b aspect is definition-invalid w.r.t. its base specifi-
cation home automation one. Actually, the problem in the example is caused
by the ambiguous definitions of a subfamily from two independently developed
aspects. The proposed verification leads to formally detecting such conflict at
the feature-modeling level and enabling tradeoffs at earlier development stages.

Definition 6. [Reference-valid aspect] We say that an aspect A is reference-
valid with regard to a PFA specification S iff (RS ∪ RA) ⊆ (DS ∪DA).

According to the row of inclusion in Table 1, we construct the defining label set
and referencing label set corresponding to the example of case2 aspect. We ob-
tain Dcase2 aspect = {password identify}, Rcase2 aspect = {fgr , password identify}.
Based on Definition 6, case2 aspect is reference-invalid w.r.t. the specification
home automation. On the other hand, suppose we weave case1a aspect before
case2 aspect. Let home automation one be the base specification associated with
case2 aspect. According to Table 1 and Construction 4, Rhome automation one =
Rhome automation∪{fgr ,Daw dev}. Consequently, case2 aspect becomes reference-
valid w.r.t. the specification home automation one. In this example, the violation
is indeed caused by introducing a feature reference to a undefined feature. De-
tecting such invalid aspectual composition at the feature-modeling level can help
us to decide the correct composition order of features at an early stage.

Detection of Dependency-Invalid Aspects. Unlike detecting violations of
definition-validity and reference-validity, detecting the violation of dependency-
validity of an aspect is not straightforward. The conventional way to detect
such dependency-invalid aspects is to construct the dependency digraph from
the weaved specifications and detect cycles and loops in the digraph. However,
such an approach would be time-consuming and the weaving process would be
unnecessary if the aspect is invalid w.r.t. a base specification. In order to detect
such dependency-invalid aspects prior to the weaving process, we formalise the
complex relations between the given aspect specification and the dependency
digraph of a base specification to verify if the aspectual composition should be
allowed.

With regard to Construction 4, instead of examining all edges in E addA
and E delA, we only consider the edges that may introduce loops or cycles in GS’.
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We use the following construction to identify vertices on the dependency digraph
in a base specification, which are directly affected by weaving an aspect.

Construction 5. Let GS be a dependency digraph associated with a valid spec-
ification S. We rename or create vertices in GS with regard to an aspect A as
follows:

• We denote a vertex in GS corresponding to the term specified by the pointcut
kind of A by k. When there is no such vertex, a new vertex is created and
named k.

• We denote a vertex in GS corresponding to the label specified by the pointcut
scope of A by s.

Proposition 1. [Pointcut Kind Condition] An aspect A is dependency-valid
w.r.t. a valid PFA specification S if the kind of pointcut of A is “constraint [list ]”.

Proof. When the kind of pointcut is constraint [list ], the aspect A only affects the
product families within the constraints. According to Construction 4, it indicates
that DA = E addA = E delA = ∅ . Consequently, we accomplish the proof by
proving (DA = E addA = E delA = ∅ =⇒ A is dependency-valid w.r.t. S). We
refer the reader to [21] for the detailed proof.  �

We define a function Walk: V × V → ordered-list(V) over a digraph. Walk(u, v)
returns the list of all vertices along a walk from u to v. A valid label dependency
digraph is a typical digraph that can have a topological ordering. A walk between
two vertices is indeed a path. Therefore, in the label dependency digraph, the
vertex list Walk(u, v) is sufficient to identify a path from u to v. Particularly,
if Walk(u, v) is empty, it indicates that there is no path from u to v.

Proposition 2. [Non-cycle Condition] Let S be a valid PFA specification and A
be an aspect that does not satisfy the pointcut kind condition (Proposition 1).
Construct the dependency digraph GS according to Construction 3 and denote
or create the vertex k in GS according to Construction 5. Then A is dependency-
valid w.r.t. S if ∀(x | x ∈ DS ∩ RA : Walk(k, x) = ∅ ).
The proof is quite long and we refer reader to [21] for the complete detailed
proof. From the proof, we have the equation:
A is dependency-invalid w.r.t. S ⇐⇒ ∃(v | v ∈ DS ∩RA : v ∈ JPdef ∨ ∃(u |
u ∈ JPdef : ∃(m | m ≥ 1 : (u, v)–path ∈ (ES)

m ) )
)

(1),
where JPdef is the set of family labels of labeled product families where join
points are present at their right-hand sides.

We say that an aspect is potentially dependency-invalid if it does not satisfy
both the pointcut kind condition (Proposition 1) and the non-cycle condition
(Proposition 2). If a potentially invalid aspect is detected, we further verify
whether it is actually invalid with regard to its base specification according to
its pointcut scope.
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Proposition 3. [Dependency-invalid aspect] Let S be a valid PFA specification
and A be a potentially dependency-invalid aspect. Denote the vertex that invali-
dates the condition of Proposition 2 by a. Vertices k and s are denoted or created
in GS as prescribed in Construction 5. Let Dep invalid(ts) be the following pred-
icate, where ts represents the type of the pointcut scope.

Dep invalid(ts)
def⇔

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

true if ts is base
s ∈Walk(k, a) ∧ s �= k if ts is within
s ∈Walk(k, a) ∧ s �= k ∧ s �= a if ts is hierarchy
¬Dep invalid(ts′) if ts is protect(ts′)
Dep invalid(ts1) ∨Dep invalid(ts2) if ts is (ts1 : ts2)
Dep invalid(ts1) ∧Dep invalid(ts2) if ts is (ts1 ; ts2)

Provided the set of join points is nonempty, the aspect A is dependency-invalid
w.r.t. S if Dep invalid(ts).

The proof of the above proposition is based on Lemmas 2, 3, and 4 given in the
Appendix. The complete detailed proof can be found in [21].

We revisit the previously introduced example corresponding to Figure 2. In
the digraph, we represent vertices that are in both the referencing label set of
the aspect and the defining label set of the base specification by grey vertices.
The vertices k and s are represented by the black vertex and bold circle vertex,
respectively. Based on Proposition 2 and the first item in Proposition 3, the
aspect case3 aspect is dependency-invalid w.r.t. its base specification; there is a
path from the vertex of sma lig to the vertex of fir det flow. On the other hand,
based on the second item in Proposition 3, the modified aspect with a bounded
scope is dependency-valid w.r.t. its base specification. The above verification
results confirm the results we obtained by detecting loops and cycles. However,
we do not need to construct the new edges introduced by aspects. It is indicated
that the aspect in this example should be created by specifying scopes, i.e., the
features should be composed to the base family within a certain scope.

4 Related Work, Discussion, and Conclusion

In our work, the aspect model composition is applied to feature models. A related
work of the composition of feature models can be found in [1]. Unlike AO-
PFA, Acher et al. [1] mainly focus on the insert and merge operators of feature
models. Their work considers the composition operators from the perspective of
model integration, whereas our work discusses the issue from the perspective of
composition mechanisms for different concerns. We refer the reader to [9] for the
integration of several views of a feature model using product family algebra.

Currently, many approaches have been proposed to adapt the aspect-oriented
paradigm to product family engineering at different abstract levels and dif-
ferent development stages. For example, [19] discusses the usage of aspect-
orientation for variability implementation, management, and tracing through-
out the whole lifecycle of product family engineering. AML (Aspectual Mixin
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Layers) [3] introduces the aspect-oriented paradigm into feature-orientation pro-
gramming. Xweave [6] applies aspects to design models of product families. Hi-
Transform [15] presents an approach to extend the aspect-oriented paradigm
to the model transformation. To the best of our knowledge, no other works
have attempted the introduction of the aspect-oriented paradigm at the formal
feature-modeling level.

In the literature of the aspect-oriented paradigm at the early requirement and
design stages, most approaches are informal. Those informal approaches are easy
to understand and are suited for user validation, but the verification in those ap-
proaches is only accomplished by informally “walking through” the artifacts [5].
By constructing our technique upon programming-like formal specifications, our
verification technique is inspired by a static code analysis approach described
in [17] that characterises the direct and indirect interactions of aspects with base
systems. Although analogised from AspectJ [12], the notations used in AO-PFA
are simplified and unified with the help of product family algebra.

Our paper is also related to safe feature compositions. A collection of exist-
ing approaches for safe feature compositions are discussed at the detailed level
of features (e.g., [7]). The approach in [13] formalises the existence-identifiers
and non existence-identifiers for composing features using proposition logic, and
SAT solvers are used to verify the correctness of feature composition. In our
approach, we formalise feature models based on product family algebra, and we
detect unsafe compositions at the abstract level of features by verifying aspectual
composition in AO-PFA. Precisely, to check Definitions 5 and 6 for definition-
validity and reference-validity of aspects, it is straightforward to see that the
complexities are both O(|V |), where |V | is the cardinality of the set of vertices
of the dependency digraph of the base specification. To check Propositions 1–3
for the dependency-validity of the aspect, by using graph algorithms (e.g., depth-
first search) the complexity is O(|V |+ |E|), where E is the set of edges and |E|
is less or equal to |V |2.

Our short term future work focuses on automating the aspectual verification
as presented in this paper. Moreover, even if the aspects given in terms of fea-
tures (i.e., as black-boxes) do not invalidate the feature model according to the
definitions and propositions given in this paper, features might still interact in
an undesirable way at the detailed level. We intend to tackle this issue as future
work based on the work presented in [11].
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13. Kuhlemann, M., Batory, D., Kästner, C.: Safe Composition of Non-Monotonic
Features. In: Proc. of 8th Intl. Conf. on Generative Programming and Component
Engineering, pp. 177–186. ACM, N.Y. (2009)

14. Kuusela, J., Tuominen, H.: Aspect-Oriented Approach to Operating System Devel-
opment Empirical Study. In: Elleithy, K. (ed.) Advanced Techniques in Computing
Sciences and Software Engineering, pp. 233–238. Springer, Netherlands (2010)

15. Oldevik, J., Haugen, Ø.: Higher-Order Transformations for Product Lines. In: Proc.
of the 11th Intl. Software Product Line Conf. IEEE CS, Wash. (2007)

16. Pohl, K.: Software Product Line Engineering: Foundations, Principles, and Tech-
niques, ch. 3. Springer, N.Y. (2005)

17. Rinard, M., Salcianu, A., Bugrara, S.: A Classification System and Analysis for
Aspect-Oriented Programs. SIGSOFT Softw. Eng. Notes 29(6), 147–158 (2004)

18. Sanen, F., Chitchyan, R., Bergmans, L., Fabry, F., Sudholt, M., Mehner, K.: As-
pects, Dependencies and Interactions. In: Cebulla, M. (ed.) ECOOP-WS 2007.
LNCS, vol. 4906, pp. 75–90. Springer, Heidelberg (2008)

19. Voelter, M., Groher, I.: Product Line Implementation using Aspect-Oriented and
Model-Driven Software Development. In: Proc. of the 11th Intl. Software Product
Line Conf., pp. 233–242. IEEE CS, Wash. (2007)

20. Xu, B., Yang, M., Liang, H., et al.: Maximizing Customer Satisfaction in Mainte-
nance of Software Product Family. In: Canadian Conf. on Electrical and Computer
Engineering, pp. 1320–1323 (2005)

21. Zhang, Q., Khedri, R., Jaskolka, J.: An Aspect-Oriented Language Based on Prod-
uct Family Algebra: Aspects Specification and Verification. Tech. rep., McMaster
University (2011)

22. Zhang, Q., Khedri, R., Jaskolka, J.: An Aspect-Oriented Language for Product
Family Specification. In: The 3rd Intl. Conf. on Ambient Systems, Networks and
Technologies, p. 10 (2012)



124 Q. Zhang, R. Khedri, and J. Jaskolka

Appendix: Additional Results Needed for the Proof
of Proposition 3

In this Appendix, we give the most important lemmas required for the proof of
Proposition 3. We also give the highlights of their proofs. The reader can find
all of the detailed proofs in [21].

Lemma 2. Let S be a valid PFA specification and A be a potentially dependency-
invalid aspect. When the scope of the pointcut is “base”, A is always dependency-
invalid w.r.t. S. When the scope of the pointcut is “protect(base)”, A is always
dependency-valid w.r.t. S.

Proof. We use Equation (1) and substitute the definition of JPdef. When the
type of the pointcut scope is base, join points are where k is present. Therefore,
JPdef = N+(k), where N+(k) denote the set of all successors of the vertex k.
When the type of the pointcut scope is protect(base), the set JPdef is empty. In
the proof, we use the definition of Walk(u, v), path concatenation, the one-point
rule, range split, empty range and ∃-false body.  �
Lemma 3. Let S be a valid PFA specification and A be a potentially dependency-
invalid aspect. Construct the dependency digraph GS according Construction 3
and denote or create the vertex k in GS according Construction 5.

– When the type of the pointcut scope is “within”, A is dependency-invalid
w.r.t. S iff ∃(v | v ∈ DS ∩ RA : s ∈Walk(k, v) ∧ s �= k ).

– When the type of the pointcut scope is “protect(within)”, A is dependency-
invalid w.r.t. S iff ∃(v | v ∈ DS ∩ RA : s /∈Walk(k, v) ∨ s = k ).

– When the type of the pointcut scope is “hierarchy”, A is dependency-invalid
w.r.t. S iff ∃(v | v ∈ DS ∩ RA : s ∈Walk(k, v) ∧ s �= k ∧ s �= v ).

– When the type of the pointcut scope is “protect(hierarchy)”, A is dependency-
invalid w.r.t. S iff ∃(v | v ∈ DS ∩ RA : s /∈Walk(k, v) ∨ s = k ∨ s = v ).

Proof. Equation (1) and Lemma 2 are used in the proof. When the type of the
pointcut scope is within, join points are bound to a labeled product family whose
label is s. Therefore, we have JPdef = {s}. When the type of the pointcut scope is
hierarchy , join points are bound to a labeled product family where s is present at
the right-hand side. Therefore, JPdef = N+(s). Besides, there should be a path
from k to s. On the other hand, when the type of the scope is protect(within),
labels in JPdef should not include s if there is a path from k to s. When the type
of the scope is protect(hierarchy), labels in JPdef should not include successors
of s if there is a path from k to s. Otherwise, the set JPdef is identical to the
one specified by a pointcut with scope base.  �
Lemma 4. Let S be a valid PFA specification and A be a potentially dependency-
invalid aspect. When the scope of pointcut is the union of two scopes of types ts1
and ts2, A is dependency-invalid when A is dependency-invalid w.r.t. at least one
of the scopes. When the scope of pointcut of A is the intersection of two scopes
of types ts1 and ts2, A is dependency-invalid when A is both dependency-invalid
w.r.t. the two scopes.
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Proof. Let the set of join points selected by a pointcut scope of type ts1 be JP1
def

and the set of join points selected by a pointcut scope of type ts2 be JP2
def.

When the type of the pointcut scope is (ts1 : ts2), then the set JPdef = JP1
def ∪

JP2
def. When the type of the pointcut scope is (ts1; ts2), then the set JPdef =

JP1
def ∩ JP2

def. Provided that JPdef �= ∅, we substitute the definition of JPdef in
Equation (1) and use Lemmas 2 and 3 to accomplish the whole proof.  �
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Abstract. In this paper we explore an observation-oriented denotational seman-
tics for instantaneous signal calculus which contains all conceptually instanta-
neous reactions of signal calculus for event-based synchronous languages. The
healthiness conditions are studied for especially dealing with the emission of
signals. Every instantaneous reaction can be identified as denoting a healthiness
function over the set of events which describe the state of the system and its
environment. The normal form, surprisingly, has the comparatively elegant and
straightforward denotational semantic definition. Furthermore, a set of algebraic
laws concerning the distinct features for instantaneous signal calculus is inves-
tigated. All algebraic laws can be established in the framework of our semantic
model, i.e., if the equality of two differently written instantaneous reactions is
algebraically provable, the two reactions are also equivalent with respect to the
denotational semantics.

1 Introduction

With the continual development of computer science and IT industry, real-time systems
[7,11] are designed to cater to many applications ranging from simple home appliances
and laboratory instruments to complex control systems for chemical and nuclear plants,
flight guidance of aircrafts, ballistic missiles and Cyber-Physical systems (CPS) [8],
etc. In essential, the correctness of real-time systems not only depends on the result of
logical computing, but also the result taken at the right time. Hence, compared to tradi-
tional non-real-time software systems, real-time systems have relatively rigid require-
ments and specifications; responses to external events should be within strict bounded
time limits; the external environment tends to be greatly terrible and highly nondeter-
ministic. All these characteristics bring serious challenges for the design of real-time
systems, thus the research on the theory of real-time systems facilitates the description,
analysis, design, implementation and verification of real-time systems.

Formal methods with rigorously mathematical description and verification techniques
are considered as approaches to ensure real-time system requirements always correct
and satisfied in the full development process from logical specification to physical im-
plementation. The software engineers focus on decomposition of the computational ac-
tivities into periodic tasks and set task priorities, and then select the scheduling policy
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to meet the desired hard real-time constraints. To separate the design task of software
engineers from the implementation task, the formal languages have to provide an inter-
mediate level of abstraction, which makes possible to leave the physical realisation job
to the compiler.

Inspired by the Esterel language [1,2], we propose a signal calculus which is an
event-based synchronous language for reasoning about embedded real-time systems.
Our calculus adopts the so-called synchronous hypothesis [10,14], i.e., instantaneous
reaction to signals and immediate propagation of signals in each time-instant. In [16],
the algebraic semantics of the instantaneous signal calculus which contains all concep-
tually instantaneous reactions has been completely explored. A set of algebraic axioms
is provided to describe the characteristic properties of the primitives and the combina-
tors. The great advantage of algebra is that it uses equational (and inequational) rea-
soning, with a single conceptual framework and notation throughout [4,9,3]. Further,
the corresponding algebraic normal form is provided and every instantaneous reaction,
however deeply structured, can be reduced into the normal form by a series of algebraic
manipulation. A term rewriting system can check the correctness of the reductions, and
it can also carry out the compilation task [6]. Consequently, that two differently written
instantaneous reactions happen to mean the same thing can be proved from the equation
of their algebraic presentations.

In this paper, our intention is to explore an observation-oriented denotational se-
mantics for instantaneous signal calculus. The healthiness conditions are studied for
especially dealing with the emission of signals. Every instantaneous reaction can be
identified as denoting a healthiness function over the set of events which record the ob-
servation of signal state. The normal form, surprisingly, has the comparatively elegant
and straightforward denotational semantic definition. Thus the normal form indeed ex-
poses the internal dependence of reactions in parallel branches and describes the intrin-
sic behaviour of instantaneous reactions. More importantly, with the help of the theory
of normal form, we fortunately obtain another effective approach to the semantic defini-
tions of instantaneous reactions. From the practical point of view, semantic definitions
are achieved by term rewriting rather than direct semantic computing, and the algebraic
construction is also amenable to efficient implementation by computer [12].

Furthermore, all algebraic laws concerning the distinct features for instantaneous
signal calculus can be established in the framework of our semantic model, i.e., if the
equality of two differently written instantaneous reactions is algebraically provable,
the two reactions are also equivalent with respect to the denotational semantics. By
demonstrating the validity of the algebraic laws, in fact, we prove the soundness of
algebraic method to semantics in [16].

The remainder of the paper is organized as follows. Section 2 gives a brief introduc-
tion to the instantaneous signal calculus. Section 3 is devoted to explore the observation-
oriented denotational semantics for primitives and combinators of the instantaneous
signal calculus. The healthiness conditions of instantaneous reactions are also provided
to construction the semantic domain. A set of algebraic laws of the instantaneous sig-
nal calculus is investigated in Section 4. we demonstrate that all algebraic laws can be
established in the framework of our semantic model. Section 5 concludes the paper and
refers to the future work.
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2 The Instantaneous Signal Calculus

In this section, we introduce the instantaneous signal calculus which contains all con-
ceptually instantaneous reactions of signal calculus for event-based synchronous lan-
guages. In the following part, all reactions are instantaneous, i.e., zero time reactions, if
we do not mention it deliberately.

2.1 Signals, Events and Event Guards

We first give a brief introduction to signals, events and event guards for the definition
of the instantaneous signal calculus. Technically, signals are means of communications
and synchronisations between different parts of systems (agents) and between a agent
and its environment. In our framework, we confine ourselves to pure signals which only
carry the present or absent information of signals for the purposed of precise definition
and mathematical treatment.

In general, a signal denoted by its name has three types of status, i.e., presence (+),
absence (-) and unknown (0)1. The unknown status indicates that the present or absent
information is still unclear at the time the observation is made, but it may be replaced by
a presence or absence status when the reactions perform their behaviors. Given a signal
s, we use tuples (s,+), (s,−), (s, 0) to represent the presence, absence and unknown
status respectively. Note that the status of signal should be consistent within its visible
spatial range. Besides, the status of signal is transient from a time perspective, i.e., the
status of signal is determined on a per-instant basis. Obviously, the status of signal at
different instants are usually different. The status of signal in the current instant is not
relevant to the one in the next instant.

Given a set S of signals, also called a sort, an (ordinary) event e specifies the status
of signals in the sort. The notation sort(e) denotes the sort of event e. It describes the
state of the system and its environment. Formally, an event can be modeled as a function
from its sort S to the consistent set B = {+,−, 0}which is a Scott flat Boolean domain
[13], ordered by the relation {+ ≥ 0,− ≥ 0}. Alternatively, an event is also considered
as a set of signals with status, i.e., for each signal, its status is unique in the set. In
technical, all the signals having unknown status can be omitted in the set. For instance,
given an event e = {(t,+)} and its sort S, any signal s different from signal t has the
unknown status in the event e, i.e., ∀s ∈ S • s �= t • (s, 0) ∈ e. Thus e(s) = + and
(s,+) ∈ e are both allowed to indicate the presence status of signal s in event e. The
notations for the absence or unknown status are similar. The notation E(S) stands for
the set of all events having sort S.

Definition 1 (Compatible). Let e1 and e2 be events over sort S, events e1 and e2 are
compatible if it is of no conflict on the status in the sort, i.e., ∀s ∈ S • e1(s) = e2(s) ∨
(s, 0) ∈ e1 ∨ (s, 0) ∈ e2. We denote it by compatible(e1, e2).

For incompatible events e1 and e2, there exists at least a signal s such that the status of s
in the two events are conflict, i.e., e1(s) = +∧e2(s) = −∨e1(s) = −∧e2(s) = +. In

1 As a variant of signal model in [16], the three-value signal model preserves the algebraic
semantics of instantaneous signal calculus.
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general, the unknown status is not in conflict with the presence or absence status since
it may be replaced by the other two status.

Here, we extend the set E(S) of events by a special element ⊥ to E⊥(S). For any
signal s, the status in the event⊥ is meaningless. The event⊥ indicates the system leads
to a chaotic state. Two types of order relation over E⊥(S) are introduced to semantic
research later.

Definition 2 (Refinement). Given events e1 and e2 in E⊥(S), event e1 is refined by
event e2, denoted by e1 ≤ e2, if either e2 is event⊥ or for each s, the status in the event
e2 is not less than the one in e1, i.e., e2 = ⊥ ∨ ∀s ∈ S • e2(s) ≥ e1(s).

The refinement relation indicates that for the observation of signal status, e2 has more
information than e1. Obviously,⊥ is the greatest event under the refinement.

Definition 3 (Strong Refinement). Given events e1 and e2 inE⊥(S), event e1 is strongly
refined by event e2, denoted by e1 ≤1 e2, if either e2 is event⊥ or events e1 and e2 have
the same set of signals with absence status and the latter owns a greater set of signals
with presence status, i.e., e2 = ⊥ ∨ ∀s ∈ S • e2(s) = e1(s) ∨ e1(s) = 0 ∧ e1(s) = +.

As described in definition 3, the strong refinement reveals the relation of the set of
present signals between events having the same set of signals with absence status. Nat-
urally, ⊥ is also the greatest event under the strong refinement. Note that the strong
refinement relation is the subset of the refinement relation, i.e., if event e1 strongly
refine e2, we also have e1 ≥ e2.

Finally, we introduce several operators on events. The notation e ⊕ (s, b) stands for
the update of e by the tuple (s, b), where e is an ordinary event and b ∈ B. For any
signal t (t �= s), the status in event e ⊕ (s, b) is the same as the one in e; for signal s,
(s, b) ∈ e⊕ (s, b). Given an event e, we write e\s to denote the event of sort sort(e)\s
which coincides with e on all signals but s. In particular, ⊥\s =df ⊥. Further, given
events e1 and e2 over S, the merge e1 ∪ e2 generates a new event. When e1 and e2 are
compatible, for any signal s ∈ S, (e1 ∪ e2)(s) = max(e1(s), e2(s)); otherwise, e1 ∪ e2
leads to the event⊥.

As the component of reactions, the event guards synchronise the behaviors of agents.
When the event can trigger the event guard of a reaction, the reaction is enabled. The
notations of event guards are given as follows:

g ::= ε | ∅ | s+ | s− | g · g | g + g | g

Now we give the meanings of event guards in Table 1. Let E be the set of all ordinary
events over the same sort. In actual, an event guard is identified as a set of ordinary
events which can trigger the guard. Almost all event guards have the usual meanings
and the definitions are straightforward. Guard ε can be triggered by every event in E.
By contrast, no any event can trigger the guard ∅. Guard s+ defines the set of events in
which the status is present while s− represents the set of events in which the status is
absent. Guard g1 · g2 can be fired by the event which triggers both g1 and g2. The event
firing either g1 or g2 can trigger guard g1 + g2. Intuitively, g defines all events which
are incompatible of any event in g.
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Table 1. The Meanings of Event Guards

[[ε]] =df E [[∅]] =df ∅ [[s+]] =df {e | (s,+) ∈ e ∧ e ∈ E}
[[s−]] =df {e | (s,−) ∈ e ∧ e ∈ E} [[g1 + g2]] =df [[g1]] ∪ [[g2]]

[[g1 · g2]] =df {e | e ∈ [[g1]] ∧ e ∈ [[g2]]}
[[g]] =df {e | ∀e′ ∈ [[g]] • ¬compatible(e, e′)}

2.2 Instantaneous Reactions

Here, we give the syntax of the instantaneous reactions below.

I ::= !s | II | ⊥ | g&I | I\s | I; I | I ‖ I

Informally, each reaction may sense the status of signals in the input event and generate
the output event. Due to the so-called synchronous hypothesis, outputs are generated
at the same instant inputs are observed. The inputs as well as the generated outputs
broadcast to all agents instantaneously. The outputs can be generated simultaneously
by several agents.

The meanings of all reactions are accord with the common intuitions. The reaction !s
emits signal s and terminates immediately; II does nothing but terminates successfully.
⊥ represents the worst reaction which leads to a chaotic state. The reaction g&I behaves
like I when the guard g is fired, otherwise it behaves like the reaction II . The reaction
I\s declares signal s as a local signal and the emission of s becomes invisible to outside.
I1; I2 indicates the sequential composition. I1 ‖ I2 immediately starts I1 and I2 in
parallel. Note that I1 and I2 can interact with each other. Two examples are given to
illustrate the execution of reactions.

Example 1. Let I1 = s+1 &!s2 ‖ (s+2 · s+1 )&!s3 ‖ s−2 &⊥.

Given an input event e1 = {(s1,+)}, the guard s+1 can be triggered; thus signal s2
is emitted immediately; at the time, the guard s+2 · s+1 is also satisfied and then s3 is
generated. Hence, I1 would react to the input event e1 by emitting s2 and s3. For input
event e2 = {(s2,−)}, I1 becomes chaotic since s2 is absent in the input event and no
reaction can emit it.

Example 2. Let I2 = s+1 &!s2 ‖ (s+2 · s+1 )&!s3 ‖ s+3 &⊥.

Given an input event e1 = {(s1,+)}, intuitively both signals s2 and s3 will be
emitted according to the above computation. However the reaction actually enters into
chaos state since s+3 activates the reaction ⊥.

As can be seen from these examples, the computation of an reaction is proceeded step
by step. When input event is given, we first inspect which guards are triggered. If the
guard is fired, the involved reaction will generate the corresponding signals. Then with
the generated signals, we repeat the computation until no new guard can be fired.
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3 The Observation-Oriented Denotational Semantics

This section considers the observation-oriented semantics model for instantaneous reac-
tions. We first investigate the healthiness conditions, especially dealing with the emis-
sion of signals. Healthiness conditions identify the valid semantic domains that char-
acterize the instantaneous reactions. Then the operators and the corresponding closure
are discussed to present the denotational semantic definitions. Finally, we define the
semantics of primitives and combinators concerning instantaneous reactions.

3.1 Healthiness Conditions

As described above, a reaction reacts to an input event by computing an output event,
i.e., by assigning a status to each signal. Intuitively, each reaction can be formalized
as an function over events. In other words, for each reaction, for a given set of input
signals with status, it generates a unique set of output signals with status. Note that the
input event and output event should defined over the same sort. However, not all such
functions can be denoted by significant reactions since all reactions actually tend to
generate signals. Thus, inspired by Hoare & He’s work in [5], healthiness conditions are
employed to characterize a valid semantic domain including all healthiness functions
over events each of which can be denoted by an instantaneous reaction. Thus we first
focus on the definitions which are necessary for the valid domain.

Definition 4. An (event) function over events E⊥(A) maps each event in E⊥(A) to the
event in E⊥(A), i.e., f : E⊥(A)→ E⊥(A), where the sort A stands for the alphabet of
function f , denoted by αf = A.

On the basis of the order relations over events, the corresponding order over functions
can be easily derived, i.e., f1 ≥ f2 =df ∀e • f1(e) ≥ f2(e) and f1 ≥1 f2 =df

∀e • f1(e) ≥1 f2(e). Similarly, we have f1 ≥1 f2 ⇒ f1 ≥ f2.

Definition 5 (Strengthening). Given a function f , we say that f is strengthening, if
∀e ∈ αf • f(e) ≥ e.

Obviously, strengthening functions improve the input event and those signals with un-
known status may be updated into the presence/absence status. The status of signals
which are not originally unknown can not be altered.

Definition 6 (Strongly Strengthening). Given a function f , we say that f is strongly
strengthening, if ∀e ∈ αf • f(e) ≥1 e.

Recall that all reactions tend to generate signals. The strongly strengthening functions
indicate that the new signals are generated in the output event. Note that both the input
event and the output event have the same set of signals with absence status. Actually,
the strongly strengthening function is also strengthening, but not vice versa.

Definition 7 (Strictness). Given a function f , we say that f is strict, if f(⊥) = ⊥.

We expect a strict function to behave chaotically if its initial input event is divergent,
and the result of executing it could lead to the chaotic state.
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Theorem 1. A function f is strict if it is strengthening.

The proof may be easily validated according to the definitions .

Definition 8 (Monotonic). Given a function f , we say that f is monotonic, if ∀e1, e2 ∈
αf • e1 ≥ e2 ⇒ f(e1) ≥ f(e2).

The monotonic functions preserve the refinement relation of events, i.e., given a finer
input event, it can always generate a finer output event.

Definition 9 (Strongly Monotonic). Given a function f , we say that f is strongly
monotonic, if ∀e1, e2 ∈ αf • e1 ≥1 e2 ⇒ f(e1) ≥1 f(e2).

Similarly, the strongly monotonic functions preserve the strong refinement relation over
events. Given more present signals, it generates more output signals.

Theorem 2. A function f is strongly monotonic if it is strongly strengthening and
monotonic.

Proof. Given events e1, e2. Suppose e1 ≥1 e2. Obviously, we have e1 ≥ e2. Thus
f(e1) ≥ f2(e2) is validated since f is monotonic. Besides, due to the strongly strength-
ening property of function f , both f(e1) ≥1 e1 and f(e2) ≥1 e2 are obtained. If
f(e1) is the chaotic event ⊥, it is obvious that f(e1) ≥1 f(e2). Otherwise, suppose
f(e1) �= ⊥. Thus we get ∀s ∈ αf • f(e1)(s) ≥ f(e2)(s). For each signal s, if
(s,−) ∈ f(e1) is valid, (s,−) ∈ e1 is derived from the inequality f(e1) ≥1 e1.
Similarly, we also have (s,−) ∈ e2 and (s,−) ∈ f(e2) since both e1 ≥1 e2 and
f(e2) ≥1 e2 are validated; that is ∀s ∈ αf • (s,−) ∈ f(e1) ⇒ (s,−) ∈ f(e2).
Consequently, f(e1) ≥ f(e2) is obtained, i.e., function f is strongly monotonic.

Definition 10 (Idempotent). Given a function f , we say f is idempotent, if f ◦ f = f .

From the definition, it is obvious that the idempotent function is stable under its output
events, i.e., f(e) is the fix point of function f . The generated signals can not give rise
to the response. In other words, the response to the output event is trivially.

Now we give the definition for healthiness functions:

Definition 11 (Healthiness Functions). Given a function f , we say that f is healthy,
if it is strongly strengthening, monotonic, idempotent.

Obviously, healthiness functions are also strict and strongly monotonic according to the
theorem 1 and 2. Due to the synchronous hypothesis, we expect an instantaneous re-
action to denote a healthiness function which is strengthening, monotonic, idempotent,
strict and strongly monotonic.

For each instant, the status of signals should be unique and stable; that is, the denoted
functions are expected to be idempotent. Further, the functions should be strengthening
since all reactions tend to generate new signals. Consequently, the strictness is derived
and it indicates that for each reactions, the response to the chaotic event leads to the
chaotic result. Finally, it is obvious that finer input events can always give rise to the
generation of finer output events, i.e., the functions should be monotonic and strongly
monotonic.
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3.2 The Semantic Domain

Now we turn to the definition of semantic domain, denoted by I, which including all
healthiness functions. Several primitive healthiness functions are also constructed. Be-
sides, two operators over I including composition (◦), addition (∪) are investigated
for the semantic definition later. However, not all the operators preserve the closure
with respect to the healthiness conditions. Thus the corresponding closure concerning
the operators are investigated and the least fix-point is also introduced to regain the
healthiness.

Firstly, we introduce primitive function χs which generates signal s as follows.

Definition 12 (Signal Emission)

χs(e) =df

{
e⊕ (s,+) : e(s) �= − ∧ e �= ⊥

⊥ : e(s) = − ∨ e = ⊥
Note that the event update function of first branch is strongly strengthening. As a con-
stant function, the second branch is also a strongly strengthening function. Hence, the
function χs is strongly strengthening and therefore it is also strict.

Given events e1, e2 and e1 ≥ e2, if (s,−) ∈ e1, χs(e1) = ⊥, then χs(e1) ≥ χs(e1);
if (s,−) �∈ e1, thus we have (s,−) �∈ e2, χs(e1) = e1⊕(s,+) ≥ e2⊕(s,+) = χs(e2).
Hence, we have that χs is monotonic.

Further, the event update function of first branch is idempotent, and the output event
is still within the domain of the first branch. It is the same as the constant function. Thus
the function χs is idempotent.

As described above, χs should be a healthiness function. Furthermore, let S be a
finite set of signals, we define χS =df χS\{s} ◦ χs. In particular, if S = ∅, define
χ∅(e) =df e for each event e. Obviously, function χS is strongly strengthening, strict,
idempotent and monotonic. Due to the unorder of set, the order of emission of signals
can be interchangeable which certifies the soundness of the definition. Thus function
χS is called the signal emission function hereinafter.

Theorem 3. The signal emission functions can be used to specify instantaneous reac-
tion, i.e., χS ∈ I.

We write the divergent function as χ⊥ (∀e • χ⊥(e) = ⊥), which generates divergent
event⊥ on any input event.

Theorem 4. The divergent function can be used to specify instantaneous reaction, i.e.,
χ⊥ ∈ I.

Now, we introduce two operators over I including ◦ and ∪ for deriving functions from
primitives. For composite operator, f1◦f2(e) =df f1(f2(e)). Easily, we claim that com-
posite functions preserve the monotonicity, strong monotonicity and strong strengthen-
ing, taking advantage of the definition. Besides, composite healthiness functions are
idempotent if they are commutative according to the lemma below.

Lemma 1. Given functions f1, f2 ∈ I, the composite functions f1 ◦f2, f2 ◦f1 are both
healthy if f1 and f2 is commutative, i.e., f1 ◦ f2 = f2 ◦ f1.
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Next, we give the definition of addition over the semantic domain I.

Definition 13. Given functions f and g, define (f ∪ g)(e) =df f(e) ∪ g(e).

From the definition, the addition is commutative and associative, taking advantage of
the properties of events. Given a countable index set K , the notation

⋃
k∈K fk repre-

sents the addition over a countable set of functions.

Lemma 2. Given strongly strengthening functions f1 and f2, the formula f1∪f2 ≥1 f1
is validated.

The lemma 2 indicates that the addition preserves the strongly strengthening property,
and thus it also maintains the strictness of functions. Furthermore, f1∪f2 is also mono-
tonic if both f1 and f2 are monotonic. Unfortunately, the addition, in general, may not
preserve the closure of the idempotence. Hence, we introduce the recursive computa-
tion to regain the expected idempotence. In actual, the recursive computation refers to
the least fix-point theory explored below.

Definition 14 (Continuity). Given a set F of event functions, A function F : F → F
is said to be continuous if it distributes over the limits of all chains of strongly strength-
ening event functions, i.e., for each chain fi (i ≥ 0) such that fk+1 ≥1 fk (k ≥ 0) is
validated, F (

⋃
i fi) =

⋃
i F (fi).

In general, we say function F : F → F is monotonic if for each monotonic event
function, it generates a monotonic function. For other properties of event functions,
the definitions are similar. Obviously, a continuous function always yields to a strongly
monotonic function.

Lemma 3. Given strongly strengthening and continuous function F , μX • F (X) =⋃
n≥0 F

n(χ∅).

where, F 0(X) =df χ∅, Fn+1(X) =df F (Fn(X)).

This lemma is a variant of Kleene’s fix point theory [15,5] and the proof is similar.

Corollary 1. Given strongly strengthening function f , F (X) = f ◦ X is continuous
and μX • (f ◦X) =

⋃
n≥0 f

n.

Theorem 5. Given monotonic and strongly strengthening function f and F (X) = f ◦
X , μX • F (X) =

⋃
n≥0 f

n is idempotent, i.e., μX • F (X) ∈ I.

Proof. Easily, f i (i ≥ 0) is a chain of strongly strengthening functions. Thus we have⋃
n≥0 f

n = lim
i→∞

fi. For each event, it has a finite sort. Hence, The set of all events

is also finite. Consequently, there exists M ≥ 0 such that ∀k ≥ M • ⋃
n≥0 f

n =

fk. Thus
⋃

n≥ fn is monotonic and strongly strengthening since composite functions
preserve the monotonicity and strongly strengthening. For each event e, we obtain
(
⋃

n≥0 f
n ◦ ⋃n≥0 f

n)(e) = f2M (e) = (
⋃

n≥0 f
n)(e), i.e.,

⋃
n≥0 f

n is idempotent.
Thus

⋃
n≥0 f

n ∈ I is validated.

Theorem 5 indicates that the recursive computation can regain the idempotence ac-
cording to the least fix-point theory. Recall that both the composition and the addition
preserve the monotonicity and strongly strengthening. Thus the least fix-point theory
provides an approach to generating healthiness functions by the recursive computation.
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3.3 The Observation-Oriented Semantics

Here, we propose the observation-oriented semantics for each instantaneous reactions,
i.e., each reaction is formally identified as a healthiness function. We write [[I]] to rep-
resent the denotational semantic definition for reaction I .

For each instantaneous reaction I and event e, we firstly define (semantic) output
set regarding e and (semantic) divergent condition in the framework of the denotational
semantic model.

Definition 15. Given reaction I and event e (e �= ⊥), the output set, denoted by
output(I, e) =df {s | (s, 0) ∈ e ∧ (s,+) ∈ [[I]](e)}, embodies all signals gener-
ated by reaction I regarding event e. The divergent condition, denoted by div(I) =df

{e | [[I]](e) = ⊥}, consists of all the events which leads to the chaotic state.

Now, the semantics of all primitives are defined as follows.

Definition 16 (Primitives). The reactions !s, II and ⊥ are defined as [[!s]] =df χs,
[[II]] =df χ∅, and [[⊥]] =df χ⊥ respectively.

Next, we give the semantic definitions for all combinators.

Definition 17 (Guarded Reactions)

[[g&P ]](e) =df

⎧⎨
⎩

[[P ]](e) : e ∈ [[g]] ∧ e �= ⊥
e : e �∈ [[g]] ∧ e �= ⊥
⊥ : e = ⊥

Clearly, all guarded reactions should be idempotent, monotonic and strongly strength-
ening. For each branch, the corresponding function is idempotent and strongly strength-
ening and the output event is still within the domain of function. Thus the piecewise
function is also idempotent and strongly strengthening. For the monotonicity, given
events e1, e2 and e1 ≥ e2. If e1 = ⊥ ∨ e2 = ⊥, we have [[g&P ]](e1) = ⊥. Other-
wise, consider e2 �= ⊥, if e2 can trigger guard g, e1 is also enabled to trigger g. Thus
[[g&P (e1)]] ≥ [[g&P ]](e2) is obtained following the monotonicity of [[P ]]; if e2 can not
trigger g, we get that [[g&P ]](e2) = e2 from the definition. According to the strength-
ening of [[g&P ]], [[g&P ]](e1) ≥ e1 ≥ e2 = [[g&P ]](e2) is derived. Hence we claim that
[[g&P ]] is monotonic, i.e., [[g&P ]] ∈ I.

Definition 18 (Concealment)

[[P\s]](e) =df

⎧⎪⎪⎨
⎪⎪⎩

[[P ]](e ⊕ (s,+))\s : [[P ]](e)(s) = +
[[P ]](e⊕ (s,−))\s : [[P ]](e)(s) �= + ∧ ∀e′ ≥ e • [[P ]](e′)(s) �= +

[[P ]](e) : [[P ]](e)(s) �= + ∧ ∃e′ ≥ e • [[P ]](e′)(s) = +
⊥ : [[P ]](e) = ⊥

Similarly, the concealment reactions are also idempotent, monotonic and strongly
strengthening. In general, if reaction P inside can generate signal local signal s, we
obtain the result by calculating the reaction to the new event e ⊕ (s,+). Naturally, the
local signal s is always invisible to the outside. In contrast, if P can not emit s, two
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possible cases are discussed. On one hand, if s cannot be emitted indeed even if the in-
put event is enhanced, then the newly input event is replaced by e⊕ (s,−); on the other
hand, if s cannot be emitted due to the insufficiency of signal status, then the result of
concealment should be identical with the result of P .

Definition 19 (Sequential)

[[I1; I2]](e) =df

{
[[I2]] ◦ [[I1]](e) : e ∈ C1(I1)

[[I1]](e) : e ∈ C2(I1)

where, C1(I) =df {e | ∀e′ ≥ e • e′ �= ⊥ ⇒ output(I, e′) = output(I, e)}, C2(I) =df

{e | ∃e′ ≥ e • output(I, e′) ⊇ output(I, e)}.

Due to the unknown status, some events can neither trigger the guard nor reject the
guard, e.g., event e = {(s, 0)} and guard g = s+. In this circumstance, due to the in-
sufficiency of signal status, it may lead to the inadequate execution of reactions, which
indicates that more signals can be generated if the input event is enhanced regarding
the strengthening. Thus we should take the adequate execution of reaction into consid-
eration when establishing the denotational semantics of the sequential. The status of
output event and control are passed on to reaction I2 when no more output signal can
be generated even if the input event is improved. Otherwise the execution of reaction I1
is inadequate, and the sequential I1; I2 behaves as I1 exactly.

Definition 20 (Parallel)

[[I1 ‖ I2]] =df μX • ([[I1]] ∪ [[I2]]) ◦X
Intuitively, I1 ‖ I2 immediately starts I1 and I2 in parallel. The function [[I1]] ∪ [[I2]]
seems as an appropriate candidate. Unfortunately, it can not preserve the idempotence
according to the discussion above. Thus the recursion is employed to regain the health-
iness based on the least fix-point theory.

Corollary 2. [[‖m∈MPm]] = μX • (⋃m∈M [[Pm]]) ◦X .

Definition 21 (Normal Form). The reaction ‖m∈Mgm&!sm ‖ h&⊥ is a normal form
for instantaneous reactions if it satisfies the two conditions below, where all gi and h
are guards, the index set M is finite and all signals si (i ∈M) are different.

(1). ∀m,n ∈M, g • (g · s+n ⊆ gm ⇒ g · gn ⊆ gm) ∧ (g · s+n ⊆ h⇒ g · gn ⊆ h).

(2). ∀m ∈M, gm · s−m ⊆ h ⊆ gm ∧ s+m ⊆ gm.

Theorem 6. All instantaneous reactions can be reduced into normal forms.

Theorem 6 indicates that every instantaneous reaction, however deeply structured, can
be reduced into the normal form by a series of algebraic manipulation. The proof is
given in [16].

Theorem 7. Given reaction I = ‖m∈Mgm&!sm‖h&⊥ in normal form, we have

[[I]] =
⋃

i∈M [[gm&!sm]] ∪ [[h&⊥]].
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As shown in theorem 7, the normal form, surprisingly, has the comparatively elegant
and straightforward denotational semantic definition since the recursion is avoided.
Considering theorem 6 and theorem 7, we actually obtain an effective approach to the
semantic definitions for instantaneous reactions, by transforming algebraically all reac-
tions into normal form and calculating the semantics for normal form reactions. From
the practical point of view, semantic definitions achieved by term rewriting rather than
direct semantic computing (including recursion) is amenable to efficient implementa-
tion by computer.

Finally, we define the equivalence between instantaneous reactions based on the de-
notational semantic model.

Definition 22. We say two instantaneous reactions I1 and I2 are (semantically) equiv-
alent regarding the denotational semantic model if [[I1]] = [[I2]], denoted by I1 =D I2.

4 Algebraic Properties

Algebra is well-suited for direct use by engineers in symbolic calculation of parame-
ters and the structure of an optimal design. Algebraic proof by term rewriting is the
most promising way in which computers can assist in the process of reliable design.
In this section, we propose a set of algebraic laws concerning the distinct features for
instantaneous reactions. All algebraic laws can be established in the framework of our
denotational model, i.e., if the equality of two differently written instantaneous reac-
tions is algebraically provable, the two reactions are also equivalent with respect to the
denotational semantics. Due to the space limit, proofs that the algebraic laws are sound
with respect to the denotational semantics are straightforward and have been omitted.

4.1 Parallel

The parallel is commutative and associative. Consequently, the order of parallel com-
position is irrelevant.

par - 1 I1 ‖ I2 =D I2 ‖ I1 (‖ comm)

par - 2 (I1 ‖ I2) ‖ I3 =D I1 ‖ (I2 ‖ I3) (‖ assoc)

The parallel is idempotent, due to deterministic behavior of reactions.

par - 3 I ‖ I =D I (‖ idemp)

Reactions ⊥ and II are the zero and the unit of parallel composition respectively.

par - 4 ⊥ ‖ I =D ⊥ (‖ − ⊥ zero)

par - 5 II ‖ I =D I (‖ − II unit)

A guard g also triggers the reaction s+&I if it can generate signal s.

par - 6 g&!s ‖ s+&I =D g&!s ‖ (s+ + g)&I
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4.2 Guard

The following law enables us to eliminate nested guards.

guard - 1 g1&(g2&I) =D (g1 · g2)&I (&multi)

Event guards with same reaction can be combined.

guard - 2 g1&I ‖ g2&I =D (g1 + g2)&I (& add)

The event guard distributes through the parallel.

guard - 3 g&(I1 ‖ I2) =D g&I1 ‖ g&I2 (& − ‖ distrib)

Reaction ∅&I behaves like II because its guard can never be fired.

guard - 4 ∅&I =D II (& − ∅ top)

Reaction ε&I always activates the reaction I .

guard - 5 ε&I =D I (&− ε buttom)

Reaction g&II never emits signals.

guard - 6 g&II =D II (&− II void)

4.3 Sequential

Reaction II is the unit of sequential composition.

seq - 1 II; I =D I =D I; II (; − unit zero)

The sequential distributes forwards through the parallel.

seq - 2 I1; I2 ‖ I3 =D (I1; I2) ‖ (I1; I3) (‖ − II unit)

The reaction I can be executed only if the guard g is triggered.

seq - 3 g&⊥; I =D g&⊥ ‖ g&I

The following law enables us to convert the sequential into the parallel.

seq - 4 g&!s;h&p =D g&!s ‖ (g · (h[ε/s+, ∅/s−]) + g · h)&p
provided that p ∈ {⊥, !t, II}

4.4 Concealment

The concealment is commutative and the order is not critical.

conc - 1 (I\s)\t =D (I\t)\s (\ comm)
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\s distributes backward over ‖ when one component does not mention signal s.

conc - 2 (I1 ‖ I2)\s =D (I1\s) ‖ I2 provided that s �∈ I2 (\ − ‖ quasi-distrib)

\s distributes backward over guarded reaction if s does not appear in the guard g.

conc - 3 (g&I)\s =D g&(I\s) provided that s �∈ g (\ − & quasi-distrib)

The following law illustrates how to eliminate the concealment.

conc - 4 (g&!s ‖ I)\s =D I[g/s+, g/s−] provided that s �∈ g and s �∈ ems(I)

where, ems(I) defines the set of the possible signals generated by reaction I .

4.5 Primitives

When reaction s−&!s is triggered it behaves like ⊥ since it violates the logical coher-
ence between the environment assumptions (i.e., absence of signal s) and the effect of
emission of signal s

prim - 1 s−&!s =D s−&⊥ (logical coherence)

Reaction s+&!s behaves like II because emission of s does not change the statues
of s.

prim - 2 s+&!s =D s+&II (axiom unit)

5 Conclusions and Future Work

In this paper, we explore an observation-oriented denotational semantics for instanta-
neous signal calculus which contains all conceptually instantaneous reactions of signal
calculus for event-based synchronous languages. Every instantaneous reaction is iden-
tified as denoting a healthiness function which is monotonic, strict, idempotent and
strongly strengthening. Besides, a set of algebraic laws concerning the distinct features
for instantaneous reactions are provided. All algebraic laws can be established in the
framework of our denotational model.

In the future, we will integrate the top-down and the bottom-up methods on linking
theories of programming by demonstrating the equivalence over denotational, algebraic
and operational semantics. Further, we will complete the signal calculus by introducing
delay-time reactions. We believe that the zero-time reactions and delay-time reactions
are orthogonal. Thus the extension is straightforward.
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Abstract. We consider TiMo (Timed Mobility) which is a process al-
gebra for prototyping software engineering applications supporting mo-
bility and timing constraints. We provide an alternative semantics of
TiMo using rewriting logic; in particular, we develop a rewriting logic
model based on strategies to describe a maximal parallel computational
step of a TiMo specification. This new semantical model is proved to be
sound and complete w.r.t. to the original operational semantics which
was based on negative premises. We implement the rewriting model
within the strategy-based rewriting system Elan, and provide an exam-
ple illustrating how a TiMo specification is executed and how a range
of (behavioural) properties are analysed.

Keywords: process algebra, mobility, time, rewriting logic, strategies.

1 Introduction

TiMo (Timed Mobility) is a process algebra proposed in [8] for prototyping
software engineering applications in distributed system design. TiMo supports
process mobility and interaction, and allows one to add timers to the basic
migration and communication actions. Recently, the model has been extended
to model security aspects such as access permissions [10]. The behaviour of TiMo

specifications can be captured using a set of SOS rules or suitable Petri nets [9],
both based on executing time actions with negative premises. In this paper, we
provide an alternative semantics of TiMo using rewriting logic and strategies.
Our aim is to obtain a semantical model of TiMo which can be used as the basis
for developing efficient tool support and investigating different semantic choices.

Rewriting Logic (RL) [18] is an algebraic formalism for dynamic systems which
uses equational specifications to define the states of a system, and rewrite rules
to capture the dynamic state transitions. Strategies [5,6] are an integral part
of RL which provide control over the rewriting process, allowing important dy-
namic properties to be modelled. In our work, we develop a RL model for TiMo

specifications. In particular, we formulate a strategy which captures the maxi-
mal parallel computational step of a TiMo specification, including its time rule
based on negative premises. The resulting RL model is then formally validated,
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by showing that it is both sound and complete w.r.t. the original operational
semantics of TiMo.

As a first attempt at developing tool support for TiMo based on the new
semantics, we use the strategy-based rewrite system Elan [4,6] to implement
TiMo specifications. The simple example we discuss provides a useful insight into
the proposed RL modelling approach, and illustrates the type of (behavioural)
properties that can be analysed.

The paper is structured as follows. Section 2 describes the syntax and seman-
tics of TiMo, and Section 3 briefly introduces RL and strategies. In Section 4, we
develop an RL model of TiMo, and prove its correctness. In Section 5, we show
how to implement our RL model within the Elan, and discuss what properties
can then be verified. Section 6 discusses related and future work.

2 TiMo (Timed Mobility Language)

TiMo (Timed Mobility) [8,9,10] is a process algebra for mobile systems where it
is possible to add timers to the basic actions, and each location runs according to
its own local clock which is invisible to processes. Processes have communication
capabilities which are active up to a predefined time deadline. Other timing
constraints specify the latest time for moving between locations.

We assume suitable data types together with associated operations, including
a set Loc of locations, a set Chan of communication channels, and a set Id of
process identifiers, where each id ∈ Id has arity mid . We use x to denote a finite
tuple of elements (x1, . . . , xk) whenever it does not lead to a confusion.

The syntax of TiMo is given in Table 1, where P represents processes and
N represents networks. Moreover, for each id ∈ Id , there is a unique process
definition (Def), where Pid is a process expression, the ui’s are distinct variables
playing the role of parameters, and the X id

i ’s are data types. In Table 1, it is
assumed that: (i) a ∈ Chan is a channel, and t ∈ N∪ {∞} represents a timeout;
(ii) each vi is an expression built from data values and variables; (iii) each ui is
a variable, and each Xi is a data type; (iv) l is a location or a location variable;
and (v) � is a special symbol used to state that a process is temporarily ‘stalled’.

The only variable binding construct is aΔt ? (u:X) then P else P ′ which
binds the variables u within P (but not within P ′). We use fv (P ) to denote
the free variables of a process P (and similarly for networks). For a process
definition as in (Def), we assume that fv(Pid ) ⊆ {u1, . . . , umid

}, and so the free
variables of Pid are parameter bound. Processes are defined up to the alpha-
conversion, and {v/u, . . .}P is obtained from P by replacing all free occurrences
of a variable u by v, etc, possibly after alpha-converting P in order to avoid
clashes. Moreover, if v and u are tuples of the same length then {v/u}P denotes
{v1/u1, v2/u2, . . . , vk/uk}P .

A process aΔt ! 〈v〉 then P else P ′ attempts to send a tuple of values v over
the channel a for t time units. If successful, it continues as process P ; otherwise
it continues as the alternative process P ′. A process aΔt ? (u:X) then P else P ′

attempts for t time units to input a tuple of values of type X and substitute
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Table 1. TiMo Syntax. Length of u is the same as X , and length of v in id(v) is
mid .

Processes P ::= aΔt ! 〈v〉 then P else P ′ � (output)
aΔt ? (u:X) then P else P ′ � (input)
goΔt l then P � (move)
P |P ′ � (parallel)
id(v) � (recursion)
stop � (termination)
� P (stalling)

Networks N ::= l [[ P ]] � N |N ′

Definition id(u1, . . . , umid : X id
1 , . . . , X id

mid
)

df
= Pid (Def)

them for the variables u. Mobility is implemented by a process goΔt l then P
which moves from the current location to the location l within t time units. Note
that since l can be a variable, and so its value is assigned dynamically through
communication with other processes, migration actions support a flexible scheme
for moving processes around a network. Processes are further constructed from
the (terminated) process stop and parallel composition P |P ′. Finally, process
expressions of the form �P are a purely technical device which is used in the sub-
sequent formalisation of structural operational semantics of TiMo; intuitively,
� specifies that a process P is temporarily (i.e., until a clock tick) stalled and
so cannot execute any action. A located process l[[P ]] is a process running at
location l, and a network is composed out of its components N |N ′.

As an illustrative example, consider a simple workflow example in which a
processing job moves from an initial location to a web service location and finally
to a done location. If an error occurs with the web service then the job enters
an error location. A pictorial representation of this example is given below.

Init Web
Done

Err
� �����

�����

The TiMo specification WF consists of four locations: Init ; Web; Done; and
Err . The following process identifier definitions are used:

job df= aΔ1 ? (l :Loc) then goΔ1 l then job else job
serv(l :Loc) df= aΔ2 ! 〈l〉 then serv(l) else serv(l)

servErr(l :Loc) df= aΔ2 ! 〈l〉 then servErr (l) else servErr(Err )

For instance, Init [[ job | serv (Web) ]] | Web [[ serv(Done) ]] could be an initial
TiMo network for this example.

A networkN is well-formed if: (i) there are no free variables inN ; (ii) there are
no occurrences of the special symbol � in N ; (iii) assuming that id is as in the
recursive equation (Def), for every id(v) occurring inN or on the right hand side
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Table 2. Three rules of the structural equivalence (Eq1-Eq3), and six action rules
(Call), (Move), (Com), (Par), (Equiv), (Time) of the operational semantics. In
(Par) and (Equiv) ψ is an action, and in (Time) l is a location.

(Eq1-3) N |N ′≡N ′ |N (N |N ′) |N ′′≡N | (N ′ |N ′′) l [[ P |P ′ ]]≡l [[P ]] | l [[P ′ ]]

(Call) l [[ id(v) ]]
id@l−→ l [[ � {v/u}Pid ]] (Move) l [[ goΔt l′ then P ]]

l′@l−→ l′ [[ � P ]]

(Com)

v1 ∈ X1 . . . vk ∈ Xk

l [[ aΔt ! 〈v〉 then P else Q | aΔt′ ? (u:X) then P ′ else Q′ ]]
a〈v〉@l

−−−−−−−−−−−−−→ l [[ � P | � {v/u}P ′ ]]

(Par)
N

ψ−→ N ′

N |N ′′ ψ−→ N ′ |N ′′
(Time)

N 	−→l

N
√

l−→ φl(N)

(Equiv)
N ≡ N ′ N ′ ψ−→ N ′′ N ′′ ≡ N ′′′

N
ψ−→ N ′′′

of any recursive equation, the expression vi is of type corresponding to X id
i . We

let Prs(TM ) and Net(TM ) represent the set of well-formed TiMo process and
network terms respectively. The first component of the operational semantics of
TiMo is the structural equivalence ≡ on networks. It is the smallest congruence
such that the equalities (Eq1–Eq3) in Table 2 hold. Using (Eq1–Eq3) one
can always transform a given network N into a finite parallel composition of
networks of the form l1 [[P1 ]] | . . . | ln [[Pn ]] such that no process Pi has the
parallel composition operator at its topmost level. Each subnetwork li [[Pi ]] is
called a component of N , the set of all components is denoted by comp(N),
and the parallel composition is called a component decomposition of the network
N . Note that these notions are well defined since component decomposition is
unique up to the permutation of the components. This follows from the rule
(Call) which treats recursive definitions as function calls which take a unit of
time. Another consequence of such a treatment is that it is impossible to execute
an infinite sequence of action steps without executing any local clock ticks.

Table 2 introduces two kinds of operational semantics rules: N ψ−→ N ′ and

N
√

l−→ N ′. The former is an execution of an action ψ by some process, and the
latter a unit time progression at location l. In the rule (Time), N 
→l means
that the rules (Call) and (Com) as well as (Move) with Δt = Δ0 cannot
be applied to N for this particular location l. Moreover, φl(N) is obtained by
taking the component decomposition of N and simultaneously replacing all the
components of the form l [[ goΔt l′ then P ]] by l [[ goΔt−1 l′ then P ]], and all
components of the form l [[ aΔtω then P else Q ]] (where ω stands for ! 〈v〉 or
? (u:X)) by l [[Q ]] if t = 0, and l [[ aΔt−1ω then P else Q ]] otherwise. After
that, all the occurrences of the symbol � in N are erased.

The above defines executions of individual actions. A complete computational
step is captured by a derivation of the form N

Ψ=⇒ N ′, where Ψ = {ψ1, . . . , ψm}
(m ≥ 0) is a finite multiset of l-actions for some location l (i.e., actions of the
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form id@l or l′@l or a〈v〉@l) such that N ψ1−→ N1 · · ·Nm−1
ψm−→ Nm

√
l−→ N ′.

That is, a derivation is a condensed representation of a sequence of individual
actions followed by a clock tick, all happening at the same location. Intuitively,
we capture the cumulative effect of the concurrent execution of the multiset of
actions Ψ at location l. We say that N ′ is directly reachable from N . Note that
whenever there is only a time progression at a location, we have N ∅=⇒ N ′.

As an example, consider two derivation steps in the workflow network:

Init [[ job | serv(Web) ]] | Web [[ serv(Done) ]]
{job@Init ,serv@Init}

==============⇒
Init [[ aΔ1 ? (l :Loc) then goΔ1 l then job else job | aΔ2 ! 〈Web〉 then

serv (Web) else serv (Web) ]] | Web [[ serv (Done) ]]
{a〈Web〉@Init}

==========⇒
Init [[ goΔ1 Web then job else job | serv (Web) ]] | Web [[ serv (Done) ]]

One can show that derivations are well defined as one cannot execute an un-
bounded sequence of action moves without time progress, and the execution
Ψ is made up of independent (or concurrent) individual executions. Moreover,
derivations preserve well-formedness of networks (see [8]).

3 Rewriting Logic and Strategies

Rewriting logic (RL) [18] is an algebraic specification approach which is able to
model dynamic system behaviour. In RL the static properties of a system are
described by a standard algebraic specification, whereas the dynamic behaviour
of the system is modelled using rewrite rules. Rewrite strategies are then used to
control the application of rewrite rules and allow a RL specification to capture
subtle aspects of a dynamic system. A brief introduction to RL and rewriting
strategies is presented below (for a more detailed introduction see [18,6]).

An S–sorted signature Σ defines a collection of function symbols, where: c :
s ∈ Σ means c is a constant symbol of sort s ∈ S; and f : s(1) . . . s(n)→ s ∈ Σ
means f is a function symbol in Σ of domain type s(1) . . . s(n), arity n, and
codomain type s. Let X = 〈Xs | s ∈ S〉 be a family of sets of variables. We
let T (Σ,X) = 〈T (Σ,X)s | s ∈ S〉 be the family of sets of all terms over Σ
and X . For any term t ∈ T (Σ,X)s, we let Var(t) ⊆ ∪s∈S Xs represent the
set of variables used in t. We let T (Σ,X)/E represent the free quotient algebra
of terms with respect to a set of equations E over Σ and X . For for any term
t ∈ T (Σ,X)s, we let 〈t〉E represent the equivalence class of term t with respect
to the equations E (see [17]).

In RL a specification (Σ,E) defines the states 〈t〉E of a system. The dynamic
behaviour of the system is then specified by rewrite rules [18,6]: l =⇒ r, for terms
l, r ∈ T (Σ,X)s and s ∈ S, where Var(r) ⊆ Var(l). Such rules represent dynamic
transitions between states 〈l〉E and 〈r〉E . We also allow rules to be labelled and
to contain conditions: [lb] l =⇒ r if c, where lb is a (not necessarily unique)
label, c ∈ T (Σ,X)bool and Var(c) ⊆ V ar(l). Intuitively, the condition means
that the rewrite rule can only be applied if term c rewrites to true. A Rewriting
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logic specification is therefore a triple Spec = (Σ,E,R) consisting of an algebraic
specification (Σ,E) and a set of (conditional) rewrite rules R over Σ and X .

As an example of an RL specification consider a model of a simple dynamic
system in which states are multi–sets of symbols A, B, and C. The resulting
RL specification Spec(MS ) = (Σ,E,R) is defined as follows. Let S = {ent,ms}
be a sort set and let Σ be an S-sorted signature which contains the following
function symbols:

A,B,C : ent ∈ Σ, @ : ent→ ms ∈ Σ,
empty : ms, @⊗@ : ms ms→ ms ∈ Σ,

(where @ is used to indicate the position of an argument in a function symbol
to allow for an infix notation). Note that the signature contains an implicit type
coercion operator @ : ent→ ms.) The set of equations E contains the equations
which axiomatize the associative/commutative properties of a multi–set. Note
that the rewrite rules defined below will be applied modulo these equations.
Finally, we define R to contain the following three rewrite rules:

[Rule1 ] A⊗m1 =⇒ B ⊗m1 [Rule2 ] B ⊗ C ⊗m1 =⇒ B ⊗A⊗m1
[Rule3 ] B ⊗ B ⊗m1 =⇒ C ⊗m1 .

where m1 ∈ Xms. Let A⊗ C be a multi–set representing the initial state of the
system. Then the trace A ⊗ C =⇒ B ⊗ C =⇒ B ⊗ A =⇒ B ⊗ B =⇒ C
represents one possible evolution of the system.

Rewriting Logic provides the notion of a strategy for controlling the application
of rewrite rules [5,6]. A strategy allows the user to specify the order in which
rewrite rules are applied and the possible choices that can be made. The result of
applying a strategy is the set of all possible terms that can be produced according
to the strategy. A strategy is said to fail if it can not be applied (i.e. produces no
results). The following is a brief overview of some elementary strategies (based
on [5,6]):

(i) Basic strategy: lb Any label used in a labelled rule [lb] t => t ′ is a
strategy. The result of applying a basic strategy l is the set of all terms
that could result from one application of any rule labelled lb.

(ii) Concatenation strategy: s1 ; s2 Allows strategies to be sequentially com-
posed, i.e. s2 is applied to the set of results from s1 .

(iii) Don’t know strategy: dk(s1 , . . . , sn) Returns the union of all the sets
of terms that result from applying each strategy s1, . . . , sn.

(iv) Don’t care strategy: dc(s1 , . . . , sn) Chooses nondeterministically to ap-
ply one of the strategies si which does not fail. The strategy
dc one(s1 , . . . , sn) works in a similar way but chooses a single result term
to return, where as first(s1 , . . . , sn) applies the first successful strategy in
the sequence s1 , . . . , sn .

(v) Iterative strategies: repeat∗(s) Repeatedly applies s , zero or more times,
until the s fails. It returns the last set of results produced before s failed.
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As an example, repeat∗(first(Rule1 ,Rule2 ,Rule3 ) is a strategy for Spec(MS )
which prioritises the rules so that Rule1 is always applied first if it can be,
Rule2 is applied only if the first rule cannot be applied and Rule3 is applied
only if the previous two rules cannot be applied.

The above elementary strategy language can be extended to a defined strategy
language [5,6] which allows recursive strategies to be defined. As an example,
consider the simple recursive search strategy search(i) defined below:

doStep =⇒ dk(Rule1 ,Rule2 ,Rule3 )
search(i) =⇒ fail if i <= 0
search(i) =⇒ first(found , doStep; search(i − 1 )) if i > 0

The strategy search(i) repeatedly applies the strategy doStep looking for a multi-
set term that satisfies the strategy found . It fails if the given maximum number
of iterations i is reached. So to search for a multi-set term containing A⊗B⊗C
we would define the strategy found by the following rewrite rule:

[found ] A⊗ B ⊗ C ⊗m1 =⇒ A⊗ B ⊗ C ⊗m1

A range of tools have been developed for supporting rewriting logic and strate-
gies, including: Maude [13]; Elan [4,6]; Stratego [21]; and Tom [2]. In this
paper we have chosen to use Elan to implement our examples given its simple
strategy language and the authors’ experience with this tool.

4 Modelling TiMo Using Rewriting Logic and Strategies

In this section we develop a semantic model of TiMo using rewriting logic and
strategies, and provide a formal argument of correctness.

4.1 Developing an RL Model for TiMo

Given a TiMo specification TM we consider how to develop a corresponding
RL model RL(TM ) that correctly captures the meaning of TM . Note for sim-
plicity, the parameters used in communication between processes within TM are
restricted to a single location parameter.

We begin by modelling the general concept of a process and network in RL. Let
S be the set of sorts in RL(TM ) containing: nat for time; Chan for channels;
VLoc, ALoc, and Loc for locations; Prs for processes. and Nets for networks.
Coping with the parameter passing that occurs in communication requires careful
consideration and for this reason the sort Loc is defined as the union of two
subsorts: VLoc represents the input location variables; and ALoc represents the
actual locations used in TM .

The S-sorted signature ΣRL(TM) for RL(TM ) contains the following function
symbols to capture the syntax for processes given in Table 1:

stop : Prs , S (@) : Prs → Prs , @ | @ : Prs Prs → Prs
go(@,@) then @ : nat Loc Prs → Prs
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in(@,@)(@) then @ else @ : Chan nat VLoc Prs Prs → Prs
out(@,@) < @ > then @ else @ : Chan nat Loc Prs Prs → Prs .

The function symbol @ | @ is defined equationally to be associative and com-
mutative as per the definition of TiMo. To model process definitions we add a
function symbol id : s1 . . . sn → Prs for each process identifier id(u1, . . . , un :
s1, . . . , sn), where si is assumed to be a well–defined data type in our model.

We then define the following function symbols to represent networks:

@[@] : ALoc Prs → Nets ; @ | @ : Nets Nets → Nets;

where @ | @ is again defined to be associative and commutative.
We now need to formulate appropriate rewrite rules to begin to capture the

intended semantics of TiMo. In the RL model developed here we choose the
approach of forcing network components with the same location to merge (this
turns out to be important since it simplifies the selection of a location to update).
The above approach is realized using the rule al[p1] | al[p2] ⇒ al[p1 | p2].
Clearly, such a rule is compatible with Eq 3 from Table 2. Each network term
will therefore have the form at1[pt1] | . . . | atn[ptn], where each location ati is
unique and where each pti will represent a set of parallel processes. Any process
term which does not contain the parallel operator at its topmost level is referred
to as an atomic process term. Each individual network location term will have
the form ati[pt1i | . . . | ptki ], where each ptji is an atomic process term.

Next we consider how to model the action rules given in Table 2 within our
RL model. First, we define two labelled rules to model the action rule (Move):

[move] al[go(t, al2) then p1 | p2] =⇒ al2[S(p1)] | al[p2]
[move] al[go(t, al2) then p1 | p2] =⇒

al[S (go(t− 1, al2) then p1) | p2] if t > 0

The two rules can both be applied when t > 0 and this leads to a non–
deterministic choice between moving location or allowing time to pass. Note
that if t = 0 then only the rule that moves to a different location is applicable.

To model the synchronisation required for communication as defined by the
action rule (Com) we have the following rule:

[com] al[out(c, t1) < al1 > then p1 else p2 | in(c, t2)(vl) then p3 else p4 | p5]
=⇒ al[S (p1) | S (p3[vl/al1]) | p5]

This rule makes use of a substitution function @[@/@] : Prs VLoc ALoc → Prs ,
where pt[vt/at] represents the process term that results by substituting all free
occurrences (not bound by an input action symbol) of VLoc term vt by the ALoc
term at within the process term pt. This function is straightforward to define
algebraically using recursion on process terms.

In any TiMo specification TM there will be process definitions of the form
id(u1, . . . , un : s1, . . . , sn) df= Pid which allow each process identifier id ∈ Id to be
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associated with a well–formed process expression Pid (see the action rule (Call)

in Table 2). In RL(TM ), for each id ∈ Id we add a rewrite rule of the form:

[calls] al[id(u1, . . . , un) | p]⇒ al[RL(Pid) | p]

whereRL(Pid) is the process term that results from translating Pid intoRL(TM )
and each ui is a variable of sort si in RL(TM ).

The above labelled rules are collectively referred to as process transition rules
and are used to define a strategy step that represents an update step as follows:

step =⇒ repeat∗(dc(calls ,move, com))

The strategy repeatedly applies the three process transition rules and makes use
of the dc built–in strategy as the order the rules are applied in is irrelevant given
that they act on disjoint sets of terms.

In TiMo the last step of any derivation involves applying the (Time) action
rule which allows time to progress and removes all stall symbols. We model this
by using a function tick(@) : Prs → Prs which is applied to the terms resulting
from step. We define tick recursively as illustrated by the sample rules below:

tick(stop) =⇒ stop
tick(S (p1 )) =⇒ p1
tick(p1 | p2 ) =⇒ tick(p1 ) | tick(p2 )
tick(id(u1 , . . . , un)) =⇒ id(u1 , . . . , un)
tick((out(a, t) < l > then p1 else p2 )) =⇒

(out(a, t − 1 ) < l > then p1 else p2 ) if t > 0
tick((out(a, 0 ) < l > then p1 else p2 )) =⇒ p2

To make the application of this function straightforward we overload tick so that
it can be applied to networks by defining tick(@) : Nets → Nets by

tick(al [p]) =⇒ al [tick(p)], tick(n1 | n2 ) =⇒ tick(n1 ) | tick(n2 )

We can now formulate a rewrite rule oneStep in RL(TM ) using the strategy
step and function tick that models a derivation step in TM :

[oneStep] al[p] | n1 =⇒ n3 | n1
where n2 := (step) al [p], n3 := () tick(n2 )

The pattern al[p] | n1 is used to match non–deterministically with a collection
of network components (due to the associative/commutative property of @ | @)
and so chooses the next location to update.

It is interesting to note that different semantic choices can be considered
for TiMo by appropriately updating the oneStep strategy. For example, we
could straightforwardly consider a synchronous semantics, introduce priorities
to locations or add fairness assumptions. This provides further motivation for
developing our RL model.
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4.2 Correctness of RL Model

Having developed an RL model for TiMo we now validate that it correctly
captures the semantics of TiMo. We do this by showing that our model is sound
(each step in our RL model represents a derivation step in TiMo) and complete
(every derivation step possible in TiMo is represented in our RL model). In the
sequel let TM be a TiMo specification and let RL(TM ) be the corresponding
RL model as defined in Section 4.1.

Not all the terms of sort Prs in RL(TM ) represent valid processes in TM
since they may contain the stall symbol S . Another problem can arise with the
improper use of location variables, that is terms of sort VLoc, since all uses other
than those in an input command need to be bound by an outer input command.
We formalise what we mean by a valid process term by defining a function VP .

Definition 1. The function VP : T (ΣRL(TM))Prs × P(T (ΣRL(TM))VLoc)→ B
is defined recursively other the structure of process terms as follows:

VP(stop,VS ) = true
VP(S (pt),VS) = false

VP(id(v1 , . . . , vn),VS) =
{

true if vi ∈ V S, for all vi of sort VLoc
false otherwise

VP(go(nt, at) then pt,VS) = VP(pt,VS)
VP(go(nt, vt) then pt,VS) = vt ∈ VS ∧ VP(pt,VS)
VP(in(ct, nt)(vt) then pt1 else pt2,VS) = VP(pt1,VS∪{vt})∧VP(pt2,VS)
VP(out(ct, nt) < vt > then pt1 else pt2,VS) =

VP(pt1,VS ) ∧ vt ∈ VS ∧VP(pt2,VS )
VP(out(ct, nt) < at > then pt1 else pt2,VS) = VP(pt1,VS)∧VP (pt2,VS)
VP(pt1 | pt2,VS ) = VP(pt1,VS ) ∧ VP(pt2,VS).

We define valPrs(TM ) = {pt | pt ∈ T (ΣRL(TM))Prs and VP(pt, {}) } to be the
set of all valid process terms and define the set valNet(TM ) of valid network
terms recursively by: (1) at[pt] ∈ valNet(TM ) if pt ∈ valPrs(TM ); and (2)
net1 | net2 ∈ valNet(TM ), if net1, net2 ∈ valNet(TM ).

It can be shown that oneStep preserves valid network terms.

Theorem 1. The strategy oneStep is well–defined with respect to valid network
terms, i.e. for any net1 ∈ valNet(TM ), if net1 =⇒ net2 using oneStep then
net2 ∈ valNet(TM ).

Proof. By the definition of oneStep it suffices to consider a valid network location
term of the form at[pt1 | . . . | ptn] ∈ valNet(TM ), where n > 0 and each pti
is an atomic process term. It can be seen that each process term pti is involved
in at most one process transition rule application when oneStep is applied. This
gives use four possible cases to consider for each pti. We omit the full proof for
brevity and refer the reader to [11]. ��
We can define an interpretation mapping between TiMo terms in TM and terms
in the corresponding RL model RL(TM ) as follows.
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Definition 2. The process term mapping σPrs : Prs(TM ) → valPrs(TM ) is
defined recursively by:

σPrs ( stop ) = stop, σPrs (id(v1, . . . , vn)) = id(v1, . . . , vn),
σPrs (goΔt l then P ) = go(t, l) then σPrs(P ),
σPrs (aΔt ? (vl : Loc) then P else P ′) =

in(a, t)(vl) then σPrs (P ) else σPrs(P ′),
σPrs (aΔt ! 〈l〉 then P else P ′) = out(a, t) < l > then σPrs(P ) else σPrs (P ′),
σPrs (P |P ′) = σPrs(P ) | σPrs(P ′).

The network term mapping σNet : Net(TM ) → valNet(TM ) is defined using
σPrs by σNet (l [[P ]]) = l[σPrs(P )] and σNet (N |N ′) = σNet (N) | σNet (N ′).

It is straightforward to show that σPrs and σNet are bijective mappings and thus
have inverses. In order to show the correctness of the RL model we need to prove
it is sound and complete with respect to TiMo (see Figure 1).

Soundness

net1 net2

N1 N2

�
oneStep

�
Ψ

=⇒
�

σ−1
Net

�
σ−1

Net
Completeness

N1 N2

net1 net2

�
Ψ

=⇒

�oneStep

�
σNet

�
σNet

Fig. 1. The properties of soundness and completeness required for RL(TM ) to be a
correct model of TM

We now show that for any TiMo specification TM the RL model RL(TM )
defined in Section 4.1 is a sound and complete model of TM .

Theorem 2 (Soundness). Let net1, net2 ∈ valNet(TM ) be any valid network
terms. Then if net1 =⇒ net2 using the strategy oneStep then σ−1

Net (net1)
Ψ=⇒

σ−1
Net (net2) for some finite multiset Ψ = {ψ1 , . . . , ψm} of l-actions and some

location l. In other words, the diagram for soundness in Figure 1 must commute.

Proof. By the definition of oneStep and the notion of a derivation in TiMo it
suffices to consider a valid network location term of the form

at[pt1 | . . . | ptn] ∈ valNet(TM ),

where n > 0 and each pti is an atomic process term. It can be seen that each
process term pti is involved in at most one process transition rule application
when oneStep is applied. This gives use four possible cases to consider for each
pti, one for each type of process transition rule and one for when no process
transition rules are applicable. The full proof is presented in [11] and for brevity
we present only the proof for the [com] rule here.
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Suppose the [com] rule is applied to two process terms pti and ptj , (i 
= j)

out(ct, nt1) < at2 > then pt1i else pt2i | in(ct, nt2)(vt) then pt1j else pt2j
⇒ S (pt1i ) | S (pt1j [vt/at2])

The instances of the stall symbol S will be removed by the application of the
tick function at the end of oneStep. Then by the action rule (Com) we have

at [[ ctΔnt1 ! 〈at2〉 then σ−1
Prs(pt

1
i ) else σ

−1
Prs (pt

2
i ) |

ctΔnt2 ? (vt : Loc)then σ−1
Prs (pt

1
j) else pt

2
j) ]]

ct<at2>@at−−−−−−−−→ at [[ �σ−1
Prs(pt

1
i ) | �{at2/vt}σ−1

Prs(pt
1
j ) ]]

The result follows since the stall symbol � will be removed by the time progres-
sion step in TiMo and since σ−1

Prs (pt
1
j [vt/at2]) = {at2/vt}σ−1

Prs(pt
1
j). ��

Theorem 3 (Completeness). Let N1, N2 ∈ Net(TM ) be any well–formed net-
work terms in TM . Then, if N1

Ψ=⇒ N2, for some location l and some multi-set
Ψ = {ψ1 , . . . , ψm} of l-actions, then σNet (N1) =⇒ σNet (N2) using oneStep. In
other words, the diagram for completeness in Figure 1 commutes.

Proof. By the definition of a derivation in TiMo and the strategy oneStep it
suffices to consider a well–formed network of the form

at [[P1 | . . . | Pn ]] ≡ at [[P1 ]] | . . . | at [[Pn ]],

where n > 0 and each Pi is an atomic process. Suppose at [[P1 | . . . | Pn ]] Ψ=⇒
N ′, for some finite set of at–actions Ψ = {ψ1 , . . . , ψm}, m ≥ 0. Then it can be
seen that each atomic process Pi is involved in at most one at–action ψi . We
show that the derivation applied to each process Pi is correctly captured by the
oneStep strategy in the RL model. This gives us four possible cases to consider
for each Pi: no action rule applied; a (Call) action rule is applied; a (Move)

action rule is applied; or a (Com) action rule is applied. We omit the full proof
for brevity (see [11]) and present only the proof for the (Com) action rule.

Suppose (Com) has been applied to two processes Pi and Pj , for i 
= j, i.e.

at [[ ctΔnt1 ! 〈at2〉 then P 1
i else P 2

i | ctΔnt2 ? (vt : Loc) then P 1
j else P 2

j ) ]]
ct<at2 >@at−−−−−−−−→ at [[ �P 1

i | �{at2/vt}P 1
j ]]

where the stall symbols � are removed by the final time step. Then we have

σPrs(ctΔnt1 ! 〈at2〉 then P 1
i else P 2

i | ctΔnt2 ? (vt : Loc) then P 1
j else P 2

j ))
= out(ct, nt1) < at2 > then σPrs (P 1

i ) else σPrs (P 2
i ) |

in(ct, nt2)(vt) then σPrs (P 1
j ) else σPrs(P 2

j )

By applying the [calls ] rule we have

out(ct, nt1) < at2 > then σPrs (P 1
i ) else σPrs (P 2

i ) | in(ct, nt2)(vt) then
σPrs (P 1

j ) else σPrs(P 2
j ) ⇒ σPrs (P 1

i ) | σPrs (P 1
j )[vt/at2]
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where all occurrences of the stall symbol S will be removed by the tick function.
It is then straightforward to see that

σPrs (P 1
i | {at2/vt}P 1

j ) = σPrs (P 1
i ) | σPrs (P 1

j )[vt/at2]

by definition of σPrs and since σPrs({at2/vt}P 1
j ) = σPrs (P 1

j )[vt/at2]. ��

5 An Illustrative Example

In this section we investigate using Elan [4,6], a strategy-based rewrite system,
to implement a TiMo specification based on our RL model. We consider a small
example which provides useful insight into the RL modelling approach used and
illustrates the type of (behavioural) properties that can be analysed.

Recall the simple TiMo workflow example introduced in Section 2. The spec-
ification WF can be mapped into an RL model RL(WF ) as described in Section
4.1 and then investigated using Elan to provide insight into the behaviour of the
original TiMo specification. A range of (behavioural) properties can be analysed
including time constraints, use of locations, and causality between actions. For
example, consider the following initial TiMo network:

Init [[ job | serv(Web) ]] | Web [[ serv(Done) ]]

After translating this into RL(WF ) we can use Elan to derive the following
rewriting trace which shows how a processing job can reach the Done location:

Init [job | serv (Web)] | Web[serv(Done)] =⇒
Init [in(a, 1)(WL) then go(1,WL) then job else job | out(a, 2) < Web > then
serv(Web) else serv(Web)] | Web[serv(Done)] =⇒
Init [go(1,Web) then job | serv(Web)] | Web[serv(Done)] =⇒
Init [out(a, 2) < Web > then serv(Web) else serv(Web)] |Web[job | serv(Done)]
=⇒
Init [out(a, 2) <Web> then serv (Web) else serv(Web)] |Web[in(a, 1)(WL) then
go(1,WL) then job else job | out(a, 2) < Done > then serv(Done)
else serv(Done)] =⇒
Init [out(a, 2) < Web > then serv (Web) else serv(Web)] |
Web[go(1,Done) then job | serv(Done)] =⇒
Init [out(a, 2) < Web > then serv (Web) else serv(Web)] |
Web[out(a, 2) < Done > then serv(Done) else serv(Done)] | Done[job]

The example trace contains six derivation steps and indeed it is easy to ver-
ify using Elan that this is the smallest number of steps needed in order for a
processing job starting at Init to reach the Done location. Next we consider what
happens if we change our network so that it contains a faulty service process:

Init [[ job | serv(Web) ]] | Web [[ servErr (Done) ]]
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Again, using Elan and a simple search strategy we are able to confirm that that
it is still possible for a processing job to reach the Done location. Furthermore,
we can show that it is now possible for a processing job to end up in the Err
location as the following term derived using Elan shows:

Init [out(a, 2) < Web > then serv(Web) else serv(Web)] |
Web[out(a, 2) < Err > then servErr (Err) else servErr(Err )] | Err [job]

6 Conclusions

In this paper we have considered using RL to develop a model and implemen-
tation of TiMo. The RL model was based on developing a strategy which can
capture a maximal parallel computational step of a TiMo specification, includ-
ing its time rule based previously on negative premises. We have also formally
shown the correctness of the resulting semantics by proving it is both sound and
complete. We illustrated how the Elan tool and, in particular, its user defined
strategies can be used to model and analyse a TiMo specification. While the
example used is intentionally simple for brevity, it still provides an interesting
first insight into the range of properties that can be investigated.

TiMo [8] is an appealing process algebra proposed for prototyping software
engineering applications where time and mobility are combined. Related models
can be found in the literature, such as the timed π-calculus [3], timed distributed
π-calculus [12], and timed mobile ambients [1]. RL provides an ideal logical
framework for modelling concurrent systems and has been used to model a range
of process algebras, such as CCS [16]. In particular, [20] provides a high-level
discussion of the use of Elan for prototyping Π-calculus specifications but while
the use of strategies is mentioned no specific details are provided. The RL model
of TiMo presented here appears to be novel in its use of strategies to cope with
maximal parallel computational steps.

In future work we intend to investigate extending our approach to handle
security related aspects of software engineering designs, such as the access per-
missions defined for TiMo specifications in [10]. Interestingly, the RL model
allows a range of semantic choices for TiMo to be considered by changing the
derivation step strategy (e.g. adding priorities or fairness assumptions) and we
are currently investigating these different semantic choices. We also intend to
perform a variety of verification case studies to illustrate the practical appli-
cation of our methods and investigate its limitations. Finally, we note that at
present the analysis of TiMo specifications is limited by the search capabilities
and efficiency of Elan. Work is now underway to develop Maude [13] and Tom

[2] implementations of the RL model presented here with the aim of improving
both the range and efficiency of model analysis.
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Abstract. We consider the problem of deploying and (re)configuring resources
in a “cloud” setting, where interconnected software components and services can
be deployed on clusters of heterogeneous (virtual) machines that can be created
and connected on-the-fly. We introduce the Aeolus component model to capture
similar scenarii from realistic cloud deployments, and instrument automated plan-
ning of day-to-day activities such as software upgrade planning, service deploy-
ment, elastic scaling, etc. We formalize the model and characterize the feasibility
and complexity of configuration achievability in Aeolus.

1 Introduction

The expression “cloud computing” is broadly used to refer to the possibility of building
sophisticated distributed software systems that can be run, on-demand, on a virtualized
infrastructure at a fraction of the cost which was necessary just a few years ago. Reaping
all the benefits of cloud computing is not easy: while the infrastructure cost falls dra-
matically, writing a distributed software system that adapts to the demand is difficult,
and maintaining and reconfiguring it is a serious challenge.

Several recent industry initiatives strive to address this challenge. CloudFoundry [6]
provides tools that allow to select, connect, and push to a cloud well defined services
(databases, message buses, . . . ), that are used as building blocks for writing applica-
tions using one of the supported frameworks. Canonical is developing Juju [8], that
shares several of CloudFoundry concepts. In the academic world, the Fractal compo-
nent model [4] focuses on expressivity and flexibility: it provides a general notion of
component assembly that can be used to describe concisely, and independently of the
programming language, a complex software system. Building on Fractal, FraSCAti [16]
provides a middleware that can be used to deploy applications in the cloud.

In all these approaches, the goal is to allow the user to assemble a working system
out of components that have been specifically designed or adapted to work together.
Component selection and interconnection are the responsibility of the user, and if some
reconfiguration needs to happen, it is either obtained by reassembling the system man-
ually, or by writing specific code that is still the responsibility of the user.
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While expressivity is certainly important, solving the cloud challenge also requires
automation: when the number of components grows, or the need to reconfigure appears
more frequently, it is essential to be able to specify at a certain level of abstraction a
particular configuration of the distributed software system, and to develop tools that
provide a set of possible evolution paths leading from the current system configuration
to one that corresponds to a user request.

Automated approaches have been developed for the particular case of configuring
package-based FOSS (Free and Open Source Software) distributions on a single sys-
tem, and there are generic, solver-based component managers for this task [1].

The goal of this paper is to lay the foundations of such an automated approach for
the much more complex situation that arises when one needs to: (re)configure not a
single machine, but a variety of possibly “elastic” clusters of heterogeneous machines,
living in different domains and offering interconnected services that need to be stopped,
modified, and restarted in a specific order for the reconfiguration to be successful.

To this end, we propose (in Sections 2 and 3) a novel component model, called
Aeolus and loosely inspired by Fractal, where components describe resources which
provide and require different functionalities, and may be created or destroyed. As a
major difference, though, Aeolus components are equipped with state machines that
describe declaratively how required and provided functionalities are enacted. That way
we can see Aeolus as an abstraction of Fractal, yet expressive enough to capture many
common deployment scenarii in the cloud. The declarative information is essential to
provide a planner with the input needed for exploring the possible evolution paths of
the system, and propose a reconfiguration plan, which is the key automation enabler.

In Section 4 we study formally the complexity of finding a deployment plan in Aeo-
lus, a property which we call achievability. We show that achievability is decidable in
polynomial time if no capacity restriction is imposed on the provided and required func-
tionalities. This simplified model, called Aeolus−, corresponds to what current main-
stream tools can handle, and our result explains why it is still possible, in simple cases,
to manage such systems manually.

We show that achievability becomes undecidable as soon as one allows to impose re-
strictions on the number of connections between required and provided functionalities.
This limiting result is particularly significant, as some industrial tools are starting to
incorporate such restrictions to account for capacity limitations of services in the cloud.
The model that we propose to deal with these aspects is called Aeolus flat to stress that
we do not deal yet with hierarchically nested components or location boundaries, that
we will address in future work on a comprehensive Aeolus model (Section 6).

2 Use Cases

We introduce the key features of Aeolus by eliciting them, step-by-step, from the anal-
ysis of realistic scenarii. As a running example, we consider several deployment use
cases for WordPress, a popular weblog solution that requires several software services
to operate, the main ones being a Web server and a SQL database. We present the
use cases in order of increasing complexity ranging from the simplest ones, where ev-
erything runs on a single physical machine, to more complex ones where the whole
appliance runs on a cloud.
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Package: wordpress

Version : 3.0.5+ dfsg -0+ squeeze1

Depends: httpd, mysql -client , php5 , php5 -mysql , libphp -phpmailer (>= 1.73-4), [...]

Package: mysql -server -5.5

Source: mysql -5.5

Version : 5.5.17 -4

Provides : mysql -server , virtual -mysql -server

Depends: libc6 (>= 2.12), zlib1g (>= 1:1.1.4) , debconf , [...]

Pre -Depends: mysql -common (>= 5.5.17-4), adduser (>= 3.40), debconf

Package: apache2

Version : 2.4.1-2

Maintainer : Debian Apache Maintainers <debian -apache@...>

Depends: lsb -base , procps , perl , mime -support , apache2 -bin (= 2.4.1-2),

apache2 -data (= 2.4.1 -2)

C o n f l i c t s : apache2 .2- common

Provides : httpd

D e s c r i p t i o n : Apache HTTP Server

Fig. 1. Debian package metadata for WordPress, Mysql and the Apache web server (excerpt)

Use case 1 — Package installation. Before considering the services that a machine is
offering to others (locally or over the network), we need to model the software instal-
lation on the machine itself, so we will see how to model the three main components
needed by WordPress, as far as their installation is concerned.

Software is often distributed according to the package paradigm [7], popularized
by FOSS distributions, where software is shipped at the granularity of bundles called
packages. Each package contains the actual software artifact, its default configuration,
as well as a bunch of package metadata.

On a given machine, a software package may exists in different states (e.g. installed
or uninstalled) and it should go through a complex sequence of states in different phases
of unpacking and configuration to get there. In each of its states, similarly to what hap-
pens in most software component models [9], a package may have context requirements
and offer some features, that we call provides. For instance in Debian, a popular FOSS
distribution, requirements come in two flavors: Depends which must be satisfied be-
fore a package can be used, and Pre-Depends which must be satisfied before a package
can be installed. This distinction is of general interest, as we will see later, so we will
distinguish between weak requirements and strong requirements.

An excerpt of the concrete description of the packages present in Debian for Word-
Press, Apache2 and MySQL are shown in Fig. 1.

To model a software package at this level of abstraction, we may use a simple state
machine, with requirements and provides associated to each state. The ingredients of
this model are very simple: a set of states Q, an initial state q0, a transition function
T from states to states, a set R of requirements, a set P of provides, and a function
that maps states to the requirements and provides that are active at that state, and
tells whether requirements are weak or strong. We call resource type any such tuple
〈Q,q0,T,P,D〉, which will be formalized in Definition 1.

A system configuration built out of a collection of resources types is given by an
instance of each resource type, with its current state, and a set of connections between
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(a) available components, not installed

(b) installed components, bound together on the httpd port

Fig. 2. A simple graphical description of the basic model of a package

requirements and provides of the different resources, that indicate which provide is ful-
filling the need of each requirement. A configuration is correct if all the requires which
are active are satisfied by active provides; this will be made precise in Definition 3.

A natural graphical notation captures all these pieces of information: Fig. 2 presents
two correct configurations of a system built using the components from Fig. 1 (only
modeling the dependency on httpd underlined in the metadata). In Fig. 2(b) the Word-
Press package is in the installed state, and activates the requirement on httpd; Apache2
is also in the installed state, so the httpd provide is active and is used to satisfy the re-
quirement, fact which is visualized by the binding connecting the two ports.

Use case 2 — Services and packages. Installing the software on a single machine is a
process that can already be automated using package managers: on Debian for instance,
you only need to have an installed Apache server to be able to install WordPress. But
bringing it in production requires to activate the associated service, which is more tricky
and less automated: the system administrator will need to edit configuration files so that
WordPress knows the network addresses of an accessible MySQL instance.

The ingredients we have seen up to now in our model are sufficient to capture the
dependencies among services, as shown in Fig. 3. There we have added to each package
an extra state corresponding to the activation of the associated service, and the strong
requirement (graphically indicated by the double tip on the arrow) on mysql up cap-
tures the fact that WordPress cannot be started before MySQL is running. In this case,
the bindings really correspond to a piece of configuration information, i.e. where to find
a suitable MySQL instance.

Notice how this model does not impose any particular way of modeling the relations
between packages and services: instead of using a single resource with an installed and
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Fig. 3. A graphical description of the basic model of services and packages

a running state, we can also model services and packages as different resources, and
relate them through dependencies.

Use case 3 — Redundancy, capacity planning, and conflicts. Services often need to
be deployed on different machines to reduce the risk of failure or due to the limitations
on the load they can bear. For example, system administrators might want to indicate
that a MySQL instance can only support a certain number of WordPress instances.
Symmetrically, a WordPress hosting service may want to expose a reverse web proxy /
load balancer to the public and require to have a minimum number of distinct instances
of WordPress available as its back-ends.

To model this kind of situations, we allow capacity information to be added on pro-
vides and requires of each resource in Aeolus: a number n on a provide port indicates
that it can fulfill no more than n requirements, while a number n on a require port means
that it needs to be connected to at least n provides from n different components. This in-
formation may then be used by a planner to find an optimal replication of the resources
to satisfy a user requirement.

As an example, Fig. 4 shows the modeling of a WordPress hosting scenario where
we want to offer high availability hosting by putting the Varnish reverse proxy / load
balancer in front of several WordPress instances, all connected to a shared replicated
MySQL database.1 For a configuration to be correct, the model requires that Varnish is
connected to at least 3 (active and distinct) WordPress back-ends, and that each MySQL
instance does not serve more than 2 clients.

As a particular case, a 0 constraint on a require means that no provide with the same
name can be active at the same time; this can be effectively used to model conflicts
between components. For instance, we can use this to model the conflict between the
apache2 and apache2.2-common packages that has been omitted in Fig. 2.

Use case 4 — Creating and destroying resources. Use cases like WordPress hosting
are commonplace in the cloud, to the point that they are often used to showcase the
capabilities of state of the art cloud deployment technologies. The features of the model
presented up to here are already expressive enough to encode these static deployment
scenarii. If one takes Juju’s (rather limiting) assumption that each service is hosted on
a separate machine, Fig. 4 may then be the representation of the current set of virtual
machines (VMs) that we have rented from a public cloud such as Amazon EC2.

1 All WordPress instances run within separate Apache-s, which have been omitted for simplicity.
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Fig. 4. A graphical description of the model with redundancy and capacity constraints (internal
sate machines and activation arcs omitted for simplicity)

To model faithfully deployment runs on the cloud, where an arbitrary number of
instances of virtual machine images can be allocated and deallocated on the fly, we also
allow in our model creation and destruction of all kinds of resources, provided they
belong to some existing resource type. This allows to compute reconfiguration plans
that create new resources to avoid violating capacity constraints. For instance, in the
configuration of Fig. 4, to respond to an increase in traffic load one will need to spawn
2 new WordPress instances, which in turn will require to create new MySQL instances,
as the available MySQL-s are not enough to handle the load increase.

3 The Aeolus flat Model

We now formalize the Aeolus flat model, that contains all the features elicited from the
use cases of the previous section. It is “flat” in the sense that all components live in a
single “global” context, are mutually visible, and can connect to each other as long as
their ports are compatible.
Notation. We consider the following disjoint sets: I for interfaces and Z for resources. We use
N to denote strictly positive natural numbers, N∞ for N plus infinity, and N0 for N plus 0.

We model components as finite state automata indicating the current state and possi-
ble transitions. When a component changes its state, it can also change the ports that it
requires from and provides to other components.

Definition 1 (Resource type). The set T f lat of resource types of the Aeolus flat model,
ranged over by T1,T2, . . . contains 5-ple 〈Q,q0,T,P,D〉 where:

– Q is a finite set of states;
– q0 ∈ Q is the initial state and T ⊆ Q×Q is the set of transitions;
– P = 〈P,R〉, with P,R ⊆I , is a pair composed of the set of provide and the set of

require ports, respectively;
– D is a function from Q to 3-ple in (P �→N∞)× (R �→N0)× (R �→ N0).

Given a state q ∈ Q, the three partial functions in D(q) indicates respectively the pro-
vide, weak require, and strong require ports that q activates. The functions associate to
the active ports a numerical constraint indicating:
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– for provide ports, the maximum number of bindings the port can satisfy,
– for require ports, the minimum number of required bindings to distinct resources,

• if the number is 0, that indicates a conflict, meaning that there should be no
other active port with the same name.

We assume as default constraints ∞ for provide ports (i.e. they can satisfy an unlimited
amount of requires) and 1 for require (i.e. one provide is enough to satisfy the require-
ment). We also assume that the initial state q0 has no strong demands (i.e. the third
function of D(q0) is empty).

We now define configurations that describe systems composed by components and
their bindings. A configuration, ranged over by C1,C2, . . ., is given by a set of resource
types, a set of deployed resources in some state, and a set of bindings. Formally:

Definition 2 (Configuration). A configuration C is a 4-ple 〈U,Z,S,B〉 where:

– U ⊆T f lat is the universe of the available resource types;
– Z ⊆Z is the set of the currently deployed resources;
– S is the resource state description, i.e. a function that associates to resources in Z

a pair 〈T ,q〉 where T ∈ U is a resource type 〈Q,q0,T,P,D〉, and q ∈ Q is the
current resource state;

– B ⊆I ×Z×Z is the set of bindings, namely 3-ple composed by an interface, the
resource that requires that interface, and the resource that provides it; we assume
that the two resources are distinct.

Notation. We write C [z] as a lookup operation that retrieves the pair 〈T ,q〉 = S(z), where
C = 〈U,Z,S,B〉. On such a pair we then use the postfix projection operators .type and .state to
retrieve T and q, respectively. Similarly, given a resource type 〈Q,q0,T,〈P,R〉,D〉, we use pro-
jections to (recursively) decompose it: .states, .init, and .trans return the first three elements;
.prov, .req return P and R; .Pmap(q), .Rwmap(q), and .Rsmap(q) return the three elements of the
D(q) tuple. When there is no ambiguity we take the liberty to apply the resource type projections
to 〈T ,q〉 pairs. Example: C [z].Rsmap(q) stands for the strong require ports (and their arities) of
resource z in configuration C when it is in state q.

We are now ready to formalize the notion of configuration correctness. We consider
two distinct notions of correctness: weak and strong. According to the former, only
weak requirements are considered, while the latter also considers strong ones. Intu-
itively, weak correctness can be temporarily violated during the deployment of a new
component configuration, but needs to be fulfilled at the end; strong correctness, on the
other hand, shall never be violated.

Definition 3 (Correctness). Let us consider the configuration C = 〈U,Z,S,B〉.
We write C |=req (z,r,n) to indicate that the require port of resource z, with interface

r, and associated number n is satisfied. Formally, if n = 0 all resources other than z
cannot have an active provide port with interface r, namely for each z′ ∈ Z \ {z} such
that C [z′] = 〈T ′,q′〉 we have that r is not in the domain of T ′.Pmap(q′). If n > 0 then
the port is bound to at least n active ports, i.e. there exist n distinct resources z1, . . . ,zn ∈
Z \{z} such that for every 1≤ i≤ n we have that 〈r,z,zi〉 ∈ B, C [zi] = 〈T i,qi〉 and r is
in the domain of T i.Pmap(qi).
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Similarly for provides, we write C |=prov (z, p,n) to indicate that the provide port
of resource z, with interface p, and associated number n is not bound to more than
n active ports. Formally, there exist no m distinct resources z1, . . . ,zm ∈ Z \ {z}, with
m > n, such that for every 1 ≤ i≤ m we have that 〈p,zi,z〉 ∈ B, S(zi) = 〈T i,qi〉 and p
is in the domain of T i.Rwmap(qi) or T i.Rsmap(qi).

The configuration C is correct if for each resource z in Z, given S(z) = 〈T ,q〉 with
T = 〈Q,q0,T,P,D〉 and D(q) = 〈P ,Rw,Rs〉, we have that (p �→ np) ∈ P implies
C |=prov (z, p,np), and (r �→ nr) ∈ Rw implies C |=req (z,r,nr), and (r �→ n′r) ∈ Rs

implies C |=req (z,r,n′r).
Analogously we say that it is strong correct if only the strong requirements are con-

sidered: namely, we require (p �→ np)∈P implies C |=prov (z, p,np) and (r �→ nr)∈Rs

implies C |=req (z,r,nr).

As our main interest is planning, we now formalize how configurations evolve from one
state to another, by the means of atomic actions.

Definition 4 (Actions). The set A contains the following actions:

– stateChange(z,q1,q2) where z ∈Z ;
– bind(r,z1,z2) where z1,z2 ∈Z and r ∈I ;
– unbind(r,z1,z2) where z1,z2 ∈Z and r ∈I ;
– newRsrc(z : T ) where z ∈Z and T is a
– delRsrc(z) where z ∈Z .

The execution of actions can now be formalized using a labeled transition systems on
configurations, which uses actions as labels.

Definition 5 (Reconfigurations). Reconfigurations are denoted by transitions C
α−→C ′

meaning that the execution of α ∈A on the configuration C produces a new configu-
ration C ′. The transitions from a configuration C = 〈U,Z,S,B〉 are defined as follows:

C
stateChange(z,q1,q2)−−−−−−−−−−−→ 〈U,Z,S′,B〉
if C [z].state = q1

and (q1,q2) ∈ C [z].trans

and S′(z′) =
{ 〈C [z].type,q2〉 if z′ = z

C [z′] otherwise

C
bind(r,z1,z2)−−−−−−−→ 〈U,Z,S,B∪〈r,z1,z2〉〉
if 〈r,z1,z2〉 �∈ B
and r ∈ C [z1].req∩C [z2].prov

C
unbind(r,z1,z2)−−−−−−−−→ 〈U,Z,S,B\ 〈r,z1,z2〉〉 if 〈r,z1,z2〉 ∈ B

C
newRsrc(z:T )−−−−−−−−→ 〈U,Z∪{z},S′,B〉
if z �∈ Z, T ∈U

and S′(z′) =
{ 〈T ,T .init〉 if z′ = z

C [z′] otherwise

C
delRsrc(z)−−−−−→ 〈U,Z \ {z},S′,B′〉
if S′(z′) =

{⊥ if z′ = z
C [z′] otherwise

and B′ = {〈r,z1,z2〉 ∈ B | z �∈ {z1,z2}}
Notice that in the definition of the transitions there is no requirement on the reached
configuration: the correctness of these configurations will be considered at the level of
a deployment run.
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Fig. 5. On the need of a multiple state change action: how to install a and b?

Also, we observe that there are configurations that cannot be reached through se-
quences of the actions we have introduced. In Fig. 5, for instance, there is no way for
package a and b to reach the installed state, as each package require the other to be
installed first. In practice, when confronted with such situations—that can be found
for example in FOSS distributions in the presence of Pre-Depend loops—current tools
either perform all the state changes atomically, or abort deployment.

We want our planners to be able to propose reconfigurations containing such atomic
transitions, as long as that is the only way to reach a requested configuration. To this
end, we introduce the notion of multiple state change.

Definition 6 (Multiple state change).
A multiple state change M = {stateChange(z1,q1

1,q
1
2), · · · ,stateChange(zl ,ql

1,q
l
2)} is

a set of state change actions on different resources (i.e. zi �= z j for every 1≤ i < j ≤ l).

We use 〈U,Z,S,B〉 M−→ 〈U,Z,S′,B〉 to denote the effect of the simultaneous execution of

the state changes in M : formally, 〈U,Z,S,B〉 stateChange(z1,q1
1,q

1
2)−−−−−−−−−−−−→ . . .

stateChange(zl ,ql
1,q

l
2)−−−−−−−−−−−−→

〈U,Z,S′,B〉.
Notice that the order of execution of the state change actions does not matter as all the
actions are executed on different resources.

We can now define a deployment run, which is a sequence of actions that trans-
form an initial configuration into a final correct one without violating strong correct-
ness along the way. A deployment run is the output we expect from a planner, when it
is asked how to reach a desired target configuration.

Definition 7 (Deployment run). A deployment run is a sequence α1 . . .αm of actions

and multiple state changes such that there exist Ci such that C = C0, C j−1
α j−→ C j for

every j ∈ {1, . . . ,m}, and the following conditions hold:

configuration correctness C0 and Cm are correct while, for every i ∈ {1, . . . ,m− 1},
Ci is strong correct;

multi state change minimality if α j is a multiple state change then there exists no
proper subset M ⊂ α j , or state change action α ∈ α j , and correct configuration

C ′ such that C j−1
M−→ C ′, or C j−1

α−→ C ′.

We now have all the ingredients to define the notion of achievability, that is our main
concern: given an universe of resource types, we want to know whether it is possible to
deploy at least one resource of a given resource type T in a given state q.

Definition 8 (Achievability problem). The achievability problem has as input an uni-
verse U of resource types, a resource type T , and a target state q. It returns as output
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true if there exists a deployment run α1 . . .αm such that 〈U, /0, /0, /0〉 α1−→C1
α2−→·· · αm−→Cm

and Cm[z] = 〈T ,q〉, for some resource z in Cm. Otherwise, it returns false.

Notice that the restriction in this decision problem to one resource in a given state is
not limiting: one can easily encode any given final configuration by adding a dummy
provide port enabled only by the required final states and a dummy component with
weak requirements on all such provides.

4 Achievability

In this section, we establish our main results concerning the difficulty of the achiev-
ability problem. The results change significantly depending on the restrictions imposed
on the numerical constraints that are allowed as co-domains of the three D(q) partial
functions. We consider here two extreme cases, which are detailed in the table below:

model co-domain(.Pmap()) co-domain(.Rwmap()) co-domain(.Rsmap())
Aeolus− {∞} {1} {1}

Aeolus flat N∞ N0 N0

Aeolus flat is the same model of Def. 1, while Aeolus− is a restriction of it where
only the default numerical constraints can be used: provide ports can always serve an
unlimited amount of bindings, and require ports cannot conflict with other active ports,
nor require a minimum number of bindings strictly higher than 1. In the following we
will show that achievability is decidable in Aeolus−, but undecidable in Aeolus flat.

Achievability Is decidable in Aeolus−. We start by presenting a decision algorithm
for the achievability problem in Aeolus−. The idea is to perform an abstract forward
exploration of all reachable configurations. Before presenting the algorithm, we list the
properties of Aeolus− we exploit:

– as in Aeolus− the value 0 on require ports is forbidden, the addition to a configura-
tion of new components cannot forbid the execution of formerly possible actions;

– as in Aeolus− provide ports have capacity ∞ and require ports have numerical con-
straint 1, the correctness of a configuration can be checked simply by verifying that
the set of active require ports is a subset of the set of active provide ports.

In the light of the second observation, and knowing that the sets of active require and
provide ports are functions of the internal state of the components, we abstractly rep-
resent configurations simply as sets of pairs 〈T ,q〉 indicating the type and the state of
the components in the configuration. This way, symbolic configurations abstract away
from the exact number of instances of each kind of component, and from their current
bindings.

We consider symbolic runs representing the evolutions of abstract configurations.
Moreover, thanks to the first observation, we can restrict ourselves to consider only evo-
lutions where the set of available pairs 〈T ,q〉 does not decrease. Namely, we perform a
symbolic forward exploration starting from an abstract configuration containing all the
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Algorithm 1. Checking achievability in the Aeolus− model
function ACHIEVABILITY(universe of resources U , resource type T , state q)

absConf := {〈T ′,T ′.init〉 | T ′ ∈U}
provPort :=

⋃
〈T ′,q′〉∈absConf{dom(T ′.Pmap(q′))}

repeat
new := {〈T ′,q′〉 | 〈T ′,q′′〉 ∈ absConf ,(q′′,q′) ∈T ′.trans}\absConf
newPort :=

⊕
〈T ′,q′〉∈new{{dom(T ′.Pmap(q′))}}

while ∃〈T ′,q′〉 ∈ new s.t. dom(T ′.Rsmap(q′)) �⊆ provPort∪newPort do
new := new\{〈T ′,q′〉}
newPort := newPort&{{dom(T ′.Pmap(q′))}}

end while
absConf := absConf ∪new
provPort := provPort∪newPort

until new = /0
if 〈T ,q〉 ∈ absConf and dom(T .Rwmap(q))⊆ provPort then return true
else return false
end if

end function

pairs 〈T ′,T ′.init〉 representing components in their initial state. Then we extend the
abstract configuration by adding step-by-step new pairs 〈T ′,q′〉.

Algorithm 1 checks achievability by relying on two auxiliary data structures: absConf
is the set of pairs 〈T ′,q′〉 indicating the type and state of the components in the current
abstract configuration, and provPort is the set of provide ports active in such a config-
uration. The algorithm incrementally extends absConf until it is no longer possible to
add new pairs.

At each iteration, the potential new pairs are initially computed by checking the
automata transitions, and stored in the set new. Not all those states could be actually
reached as one needs to check whether their strongly require ports are included in the
available provide ports provPort or in the ports opened by the new states. This is done
by a one-by-one elimination of pairs 〈T ′,q′〉 from new when their strong requirements
are unsatisfiable. During elimination, we use newPort, a multiset of the provide ports
which are activated by the component states currently in new. We use double curly
braces for multisets, and ⊕ and & for multiset union and difference.

When the final sets absConf and provPort are computed, achievability for the re-
source type T and state q can be simply checked by verifying the presence of 〈T ,q〉 in
absConf , and by controlling whether its (weak) requirements are satisfied by the active
provide ports provPort. Strong requirements are satisfied by construction.

We are now ready to prove our decidability result for the Aeolus− model.

Theorem 1. Let U be a set of resource types of the Aeolus− model. Given the resource
type T and the state q, the achievability problem for U, T , and q can be checked in
polynomial time (with respect to the size of the descriptions of the resources in U).

Proof. The symbolic representation of the initial configuration 〈U, /0, /0, /0〉 is included in
the initial set absConf . It is easy to see that given the transition C

α−→C ′ of a deployment
run, if the symbolic representation of C is included in absConf at the beginning of an
iteration of the repeat, then the symbolic representation of C ′ will be surely included
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in absConf at the end of such iteration. Therefore, if there exists a deployment run
able to achieve a component of type T in the state q, then the Algorithm 1 will detect
achievability. This proves that the algorithm is complete.

The soundness of the algorithm follows from the following argument. The symbolic
forward exploration performed by the algorithm corresponds to an actual deployment
run that initially creates sufficiently many components in order to guarantee that all
the state changes considered by the symbolic exploration can be actually executed, and
every time an action changes the state of one component of type T ′ from q′′ to q′, there
exists at least another component in the concrete system of type T ′ which remains in
state q′′.

The polynomial complexity of the algorithm follows from the fact that both the re-
peat and the while cycles perform a number of iterations smaller than the number of
different pairs 〈T ′,q′〉 in the universe of resource types U .  �

Achievability Is undecidable in Aeolus flat. We now show that the decision procedure
for achievability of the previous section cannot be extended to deal with the Aeolus flat
model. In fact, for this last model achievability turns out to be undecidable. The proof is
by reduction from the reachability problem in 2 Counter Machines (2CMs) [11], a well-
known Turing-complete computational model. A 2CM is a machine with two registers
R1 and R2 holding arbitrary large natural numbers and a program P consisting of a finite
sequence of numbered instructions of the following type:

– j : Inc(Ri): increments Ri and goes to the instruction j+ 1;
– j : DecJump(Ri, l): if the content of Ri is not zero, then decreases it by 1 and goes

to the instruction j+ 1, otherwise jumps to the instruction l.

A state of the machine is given by a tuple (i,v1,v2) where i indicates the next instruction
to execute (the program counter) and v1 and v2 are the contents of the two registers. It
is not restrictive to assume that the registers are initially set to zero.

We model a 2CM as follows. We use a component to simulate the execution of the
program instructions. The contents vi of the register Ri is modeled by vi components
in a particular state qi. Increment instructions add one component in this state qi, while
decrement instructions move one component in state qi to a different state. The state
qi activates a provide port onei, so the simulation of a jump has simply to check the
absence in the environment of active onei ports.

The resource types of the components that we use to model 2CMs are depicted in
Fig. 6. Namely, we consider four resource types: TP to simulate the execution of the
program instructions, TR1 and TR2 for the two registers and TB used to guarantee that
components of type TRi involved in the simulation cannot be deleted. In TP we assume
one state q j for each instruction j. If the j-th instruction is j : Inc(Ri), a protocol with
three intermediary states is executed. The first one will activate a port oni allowing a
resource of type TRi to start a complementary protocol. The second state of the protocol
activates a strong requirement on the provide port inci while the last state activates
a conflict on the same port inci. The complementary protocol of the resource type TRi

includes three states as well. The first one activates a strong requirement on the port oni:
in this way, the protocol can start only if the complementary protocol already started.
The second state of the protocol activates the port inci in order to allow the protocol
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Fig. 6. Modeling 2 counter machines (2CMs) in the Aeolus flat model (sketch)

to progress. Finally, the protocol completes by entering the qi state. Note that the first
state of the protocol opens a provide port a, and the first two states activates a strong
requirement on the absence in the environment of such an active port. This guarantees
that exactly one resource of type TRi will execute the protocol, in other terms, the
register Ri is incremented exactly by 1.

Fig. 6 also depicts the modeling of an instruction m : DecJump(Ri, l). The decrement
branch executes a protocol similar to the previous one, whose effect here is to decrement
Ri by 1. The jump branch simply checks the absence of components of type TRi in state
qi by activating a strong requirement on the absence of an active port onei (note that
such a port is indeed activated by components of type TRi in state qi).

In our component model, when a resource z is not used to satisfy strong requirements,
it could be removed by executing the delRsrc(z) action. The cancellation of a compo-
nents of type TRi could then erroneously change register contents during simulation. To
avoid that we force the connection of each resource of type TRi with a corresponding
instance of a component of type TB. These types of resources reciprocally “strongly”
connect through the ports c and d as soon as they move from their initial state q0. Such
connections remain active during the entire simulation, ensuring components will not
be deleted by mistake. Notice that it is necessary to add the capacity constraint 1 to the
provide ports c and d, in order to have an exact one-to-one correspondence between the
components of type TRi and those of type TB.

As a final remark, notice that the first state q1 of the resource type TP has a strong
requirement on the absence in the environment of an active provide port e, port which
is activated by all the states in TP. This guarantees that at most one component of
type TP will simulate program instructions. Moreover, we also have to avoid that such
component is removed by a delRsrc action during the simulation: this can be guaranteed
by using the same pairing technique with a component of type TB described above. It
is sufficient to impose that all the states of TP, but q0, activate a provide port on c with
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numerical constraint 1, and a strongly require port on d. For simplicity, this part of the
specification of TP is not shown in Fig. 6.

We are now ready to formally state our undecidability result.

Theorem 2. The achievability problem is undecidable in the Aeolus flat model.

Proof. Let M be a 2CM and let U = {TP,TR1 ,TR2 ,TB} be the set of the corresponding
resource types defined as in Fig. 6. In the light of the discussion above, we have that
achievability is satisfied for the universe U , the resource type TP and the state q j if and
only if the j-th instruction is reachable in M. The undecidability of achievability thus
follows from the undecidability of reachability for 2CMs.  �

5 Related Work

To the best of our knowledge this is the first paper that formally addresses the problem
of component deployment in the cloud. In this section we compare the approach we
have adopted to related formal models considered in slightly different contexts.

Automata have been adopted long ago in the context of component-oriented develop-
ment frameworks. One of the most influential model are interface automata [3], where
automata are used to represent the component behavior in terms of input, output, and in-
ternal actions. Interface automata support automatic compatibility check and refinement
verification: a component refines another if its interface has weaker input assumptions
and stronger output guarantees. Differently from that approach, we are not interested in
component compatibility or refinement, and we do not require complementary behavior
of components: we simply check in the current configuration whether all required func-
tionalities are provided by currently deployed components. The automata in Aeolus do
not represent the internal behavior of components, but the effect on the component of
an external deployment or reconfiguration actions.

Aeolus reconfiguration actions show interesting similarities with transitions in Petri
nets [13], a very popular model born from the attempt to extend automata with concur-
rency. At first sight, one might encode our model in Petri net, representing our compo-
nent states as places, each deployed component as a token in the corresponding place,
and reconfiguration actions as transitions that cancel and produce tokens. Achievabil-
ity in Aeolus would then correspond to coverability in Petri nets. But there are several
important differences. Multiple state change actions can atomically change the state of
an unbounded number of components, while in Petri net each transition consumes a
predefined number of tokens. More importantly, we have proved that achievability can
be solved in polynomial time for the Aeolus− fragment and that it is undecidable for
the Aeolus flat model, while in Petri nets coverability is an ExpSpace problem [14].

Several process calculi extend/modify the π-calculus [10] in order to deal with soft-
ware components. The Piccola calculus [2] extends the asynchronous π-calculus [10]
with forms, first-class extensible namespaces, useful to model component interfaces
and bindings. Calculi like KELL [15] and HOMER [5] extends a core π-calculus with
hierarchical locations, local actions, higher-order communication, programmable mem-
branes, and dynamic binding. More recently, MECo [12] has extended this approach by
proposing also explicit component interfaces and channels to realize tunneling effects



170 R. Di Cosmo, S. Zacchiroli, and G. Zavattaro

traversing the hierarchical location boundaries. On the one hand, all these proposals dif-
fer from Aeolus model because they focus on the modeling of component interactions
and communication, while we focus on their interdependencies during system deploy-
ment and reconfiguration. On the other hand, we plan to take inspiration from these
calculi in order to extend our model with boundaries and administrative domains.

6 Conclusions and Future Work

We have presented Aeolus flat, a component model expressive enough to capture most
common deployment scenarii for distributed software applications in the cloud. We
have shown that it is possible to generate a deployment plan in polynomial time for the
fragment Aeolus− of the model, corresponding to the industrial tools currently in use,
while it is not possible to generate a deployment plan for Aeolus flat, that captures more
faithfully the constraints imposed by real world applications.

Several interesting models between Aeolus− and Aeolus flat can now be considered,
to reconcile expressivity and decidability: one can impose in Aeolus flat an upper limit
on the number of resources that can be allocated during a deployment run; or one can
extend Aeolus− with only conflict constraints.

The Aeolus flat model can be extended to a hierarchical component model to take
into account administrative domains and components that are built by grouping together
other components. We will also experiment with different planning systems to explore
the issues related to plan generation, and use the results as additional guidance in the
search for the best compromise between expressivity and decidability.
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Abstract. Web services have become more and more important in these
years, and BPEL4WS (BPEL) is the OASIS standard for web services
composition and orchestration. It contains several distinct features, in-
cluding scope-based compensation and fault handling mechanism. This
paper focuses on the verification of BPEL programs, especially the ver-
ification of concurrent BPEL programs. The rely/guarantee approach
is applied. Firstly, we present the operational semantics for BPEL pro-
grams. Secondly we apply the rely/guarantee method in the design of
the verification rules. The rules can handle the features of BPEL pro-
grams, including compensation, fault handling and concurrency. Finally,
the whole proof system is proved to be sound based on our operational
semantics.

1 Introduction

Web services and other web-based applications have been becoming more and
more important in practice. In this flowering field, various web-based business
process languages have been introduced, such as XLANG [21], WSFL [15],
BPEL4WS (BPEL) [8] and StAC [4], which are designed for the description
of services composed of a set of processes across the Internet. Their goal is to
achieve the universal interoperability between applications by using web stan-
dards, as well as to specify the technical infrastructure for carrying out busi-
ness transactions. BPEL4WS (BPEL) is the OASIS standard for web services
composition and orchestration. It contains several distinct features, including
scope-based compensation and fault handling mechanism.

The important feature of BPEL is that it supports the long-running interac-
tions involving two or more parties. Therefore, it provides the ability to define
fault and compensation handing in application-specific manner, resulting in a
feature called Long-Running (Business) Transactions (LRTs). The concept of
compensation is due to the use of Sagas [3,10] and open nested transactions [17].
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The fault analysis has been considered in [19] for compensation processes. Butler
et al. have investigated the compensation feature in the style of process algebra
CSP, namely compensating CSP [7]. The compensation is expressed as P ÷ Q,
where P is the forward process and Q is its associated compensation behaviour.
If a process encounters a fault some time after the execution of P , the schedul-
ing of performing Q can undo the behaviour of P . In addition to the above two
features, BPEL provides two kinds of synchronization techniques for parallel pro-
cesses. In our model, shared-variables are introduced for the data exchange and
the synchronization between a process and its partners within a single service,
while channel communications are introduced for message transmission between
different services.

Due to the interesting features of BPEL programs mentioned above, the ver-
ification of BPEL programs is challenging. Verification of shared-variable con-
current programs was first studied in [18]. The rely/guarantee approach is a
compositional method for verifying concurrent programs [12]. The specification
of the rely/guarantee method not only contains pre/post conditions, but also
includes a rely-condition and a guarantee condition representing state changes
made by the environment and the component respectively. Verification system
for the rely/guarantee method has been studied in [20,22,9]. In this paper we
apply the rely/guarantee method to verify BPEL programs.

The remainder of this paper is organized as follows. Section 2 introduces the
syntax of BPEL programs and presents the operational semantics. In section 3,
we provide the verification rules of BPEL programs using rely/guaranteemethod,
including the rules for dealing with compensation, fault handling and shared-
variable concurrency. Section 4 explores the soundness of the verification system.
Section 5 discusses the related work about web services. Section 6 concludes the
paper and presents some future work.

2 The Operational Semantic Model

2.1 The Syntax of BPEL

We have proposed a BPEL-like language, which contains several interesting fea-
tures, such as scope-based compensation and a fault handling mechanism. Our
language contains the following categories of syntactic elements:

BA ::= skip | x := e | rec a x | rep a x | throw

A ::= BA | g ◦A | A; A | A� b�A | while b do A | A ‖ A
| undo n | {A ?A, A}n

where:
• The category BA stands for the basic activity. x := e assigns the value of e
to shared-variable x. skip behaves the same as x := x. Here, variables for
assignment can be regarded as the shared-variable understanding between
different flows within one service.
Activity throw indicates that the program encounters a fault immediately.
In order to implement the communications between different services, two
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statements are introduced; i.e., rec a x and rep a x. Command rec a x rep-
resents the receiving of a value through channel a, where rep a x represents
the output of value x via channel a.

• The categoryA stands for the activities within one service. Several constructs
are similar to those in traditional programming languages.A;B stands for se-
quential composition. A�b�B is the conditional construct andwhile b do A
is the iteration construct. g ◦ A awaits the Boolean guard g to be set true,
where event g is a Boolean condition.

• {A ?C, F}n stands for the scope-based compensation statement, where A,
C and F stand for the primary activity, compensation program and fault
handler correspondingly. Here, n stands for the scope name. If A terminates
successfully, program C is installed in the compensation list for later com-
pensating. On the other hand, if A encounters a fault during its execution,
the fault handler F will be activated. Further, the compensation part C does
not contain scope activity. On the other hand, statement “undo n” activates
the execution of the programs with scope name n.

A service may contain one or several flows running in parallel. We use the
notation A ‖ B to stand for two processes running in parallel within one
service. The parallel mechanism is the shared-variable model.

2.2 Operational Model

For the operational semantics of BPEL, its transitions are of the two types.

C −→ C′ or C
a.m−→ C′

where C and C′ are the configurations describing the states of an execution
mechanism before and after a step respectively. The first type is mainly used
to model non-communication transitions. The second type is used to model the
message communication between different services through channel a, where m
stands for the message for communication.
The configuration can be expressed as 〈P, σ, Cp〉, where:
(1) The first component P is a program that remains to be executed.
(2) The second element σ is the state for all the variables.
(3) The third element Cp stands for a compensation set; i.e., containing the

scope names whose compensation parts need to be executed. Cp can contain
several copies of the same element. Therefore, it can be understood as a bag.
We use the scope name to identify the corresponding program that needs
to be compensated. We introduce a function C(n) to represent the program
whose name (i.e., scope name) is n. When statement undo n is executed,
process C(n) will be scheduled and performed.

Regarding the program P in configuration 〈P, σ, Cp〉, it can either be a normal
program. Further, it can also be one of the following special forms:

ε : A program completes all its execution and terminates successfully. We use ε
to represent the empty program.

� : A program may encounter a fault and stops at the fault state. � is used to
represent a program that is in the fault state.
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2.3 Operational Semantics for BPEL

(1) Basic Commands

Firstly we list the operational semantics for basic commands. The execution of
x := e assigns the value of expression e to variable x, and leaves other variables
unchanged.

〈x := e, σ, Cp〉 −→ 〈ε, σ[e/x], Cp〉
For communication commands, statement rec a x receives message m through
channel a. The received message will be stored in variable x.

〈rec a x, σ, Cp〉 a.m−→ 〈ε, σ[m/x], Cp〉
rep a x stands for the sending command of channel communication. In the fol-
lowing transition rule, σ(x) stands for the data which needs to be set out.

〈rep a x, σ, Cp〉 a.σ(x)−→ 〈ε, σ, Cp〉
throw encounters a fault immediately after activation, while leaving all variables
and the compensation set unchanged.

〈throw, σ, Cp〉 −→ 〈�, σ, Cp〉
undo n does the compensation program corresponding to scope name n.

〈undo n, σ, Cp〉 −→ 〈C(n), L, Cp \ n〉, where n ∈ Cp

Here, function C(n) represents the program whose name is n (i.e, the scope
name). Cp \ n represents that scope name n is removed once from Cp.

(2) Sequential Constructs

For sequential composition P ;Q, if process P terminates successfully, the control
flow will be passed to Q for further execution.

if 〈P, σ, Cp〉 β−→ 〈P ′, σ′, Cp′〉 and P ′ �= ε, �
then 〈P ;Q, σ, Cp〉 β−→ 〈P ′;Q, σ′, Cp′〉
if 〈P, σ, Cp〉 β−→ 〈ε, σ′, Cp′〉, then 〈P ;Q, σ, Cp〉 β−→ 〈Q, σ′, Cp′〉
On the other hand, if P encounters a fault during its execution, P ;Q also en-
counters a fault during its execution.

if 〈P, σ, Cp〉 β−→ 〈�, σ′, Cp′〉, then 〈P ;Q, σ, Cp〉 β−→ 〈�, σ′, Cp′〉
g ◦ P waits for the Boolean guard g to be set true through the update of

variables.

〈g ◦ P, σ, L, Cp〉 −→ 〈P, σ, L, Cp〉, if g(σ)

For conditional and iteration, their transition rules are similar to the conven-
tional programming language.

(3) Parallel Composition

Now we consider the transition rules for parallel composition. First we define
function par(P,Q), which can be used in defining the transition rules for paral-
lel composition. Let
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par(P,Q) =df

⎧⎨
⎩

ε if P = ε ∧Q = ε
� if P = � ∧Q = � ∨ P = � ∧Q = ε ∨ P = ε ∧Q = �
P ‖ Q otherwise

If one component performs a transition, the whole process can also perform the
transition.

If 〈P, σ, Cp〉 β−→ 〈P ′, σ′, Cp′〉, then 〈P ‖ Q, σ,Cp〉 β−→ 〈par(P ′, Q), σ′, Cp′〉
〈Q ‖ P, σ, Cp〉 β−→ 〈par(Q,P ′), σ′, Cp′〉

The function par indicates the program status for a parallel process after ex-
ecuting a transition. On the other hand, if both of the two components are in
empty state, the whole process is also in empty state. If both of the two com-
ponents are in fault state, or one is in fault state and another one is in empty
state, then the whole parallel process is also in fault state.

(4) Scope

For scope {A?C, F}n, if the primary activity A performs a successful transition
which does not lead to the terminating state, the whole scope can also perform
the successful transition of the same type.

if 〈A, σ, Cp〉 β−→ 〈A′, σ′, Cp′〉 and A′ �= �

then 〈{A?C, F}n, σ, Cp〉 β−→ 〈{A′?C, F}n, σ′, Cp′〉
Further, if the primary activity performs a transition leading to the fault state,
the fault handler in the scope will be activated.

if 〈A, σ, Cp〉 β−→ 〈�, σ′, Cp′〉, then 〈{A?C, F}n, σ, Cp〉 β−→ 〈F, σ′, Cp′〉
Furthermore, we give one auxiliary transition shown below. It indicates that the
compensation program can be added into the compensation set when the pri-
mary activity has been terminated.

〈{ε?C, F}n, σ, Cp〉 −→ 〈ε, σ, Cp ∪ {n} 〉
In order to support the proof of the soundness of our verification system (in
Section 3) based on the operational semantics, we assume that every program
is in an open environment. That is, every program can perform an environment
transition (i.e., expressed as

e−→). For the above explored transition type −→
and

a.m−→, we generally regard them as
c−→ (i.e., standing for the component

transition) when studying the soundness of our verification system.

3 Verification Rules

In this section, we apply the rely/guarantee method to the verification of BPEL
programs. The verification rules are in the form

P sat (pre, rely, guar, post)

Here, P stands for the program and pre stands for the pre-condition. After the
execution of program P , post-condition post should be satisfied. Furthermore,
rely and guar are two relational formulae standing for the rely condition and
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guarantee condition. The above notation indicates that

if P satisfies the precondition pre at the initial state

and any environment transition satisfies rely

then it should satisfy postcondition post after the execution completes or encounters

a fault, and any component transition should satisfy guar.

We leave the proof of the soundness of our verification rules to the next section
(i.e., section 4). For the aim of dealing with the two typical features of BPEL,
i.e., fault handling and compensation, we introduce two variables ok and comp
in the four elements of a specification (pre, rely, guar, post).

• Boolean variable ok is used to identify whether a program is in the fault
state or not. If ok is true (or false) in the pre-condition, this indicates that
predecessor program is not in the fault state (or is in the fault state). On the
other hand, if ok is true (or false) in the post-condition part, this indicates
that the current system is not in the fault state (or in the fault state) after
performing the program.

• In order to deal with the compensation feature, we need to record the number
of each compensation program. Therefore, we introduce function comp to
handle this. More specifically, for the compensation program named n, we use
comp(n) to stand for the number that the compensation program has been
recorded. Initially, for each scope n, its recoded number is 0; i.e., comp(n) =
0. For the compensated program named n, we use function C(n) to represent
it.

• For formula pre and post, they can contain variables ok, comp, as well as
shared data variables x, y, · · · , z. On the other hand, rely and guar stand for
the changes of data and compensation information due to the environment
transition and component transition respectively. Hence, they should be in
the form of relational formula, i.e., they should contain variables comp, x, y,
· · · , z, as well as variables comp′, x′, y′, · · · , z′. This indicates that rely and
guar do not need to contain the information whether a process is in fault
state or not, which means that they do not contain ok and ok′.

3.1 Starting from Fault State

Firstly, for every BPEL statement, we provide a general rule when a program is
initially in the fault state. The rule indicates that if the current program starts
in the fault state, it is always in the fault state, where the post-condition is the
same as the corresponding pre-condition.

pre⇒ ¬ok
pre ∧ II ⇒ guar
pre stable when rely

S sat (pre, rely, guar, pre)

where, (1) II =df (ok′ = ok) ∧ (comp′ = comp) ∧ (x′ = x) ∧ · · · ∧ (z′ = z)

(2) p stable when f =df (p(V, ok) ∧ f(V, V ′))⇒ p(V ′, ok)
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Here, we use formula “pre ⇒ ¬ok” to represent that a program is initially in
the fault state. Furthermore, if a program is in the fault state, it cannot have
chances to be executed, i.e., it cannot do anything. Our guar formula reflects
this fact in the constraint condition “pre ∧ II ⇒ guar”.

In the definition of p stable when f , variable vector V stands for the variable
list, i.e., comp, x, y, · · · , z, which indicates that formula f does not contain
variable ok and ok′. It means that, after the environment transition reflected by
f , p should also hold for the new updated program variables and compensation
information due to the successful environment transition.

In the subsequent consideration, we explore the verification rules where the
predecessor of the current program successfully terminates (i.e., not in the fault
state).

3.2 Basic Commands

For throw, it immediately enters into the fault state while leaving the state of
data variables unchanged. Therefore, for pre-condition r∧ok, the corresponding
postcondition is ¬ok ∧ r.

(ok ∧ III ∧ ¬ok′)⇒ guar
r does not contain variable ok
(r ∧ ok) stable when rely

throw sat (r ∧ ok, rely, guar, ¬ok ∧ r)

Here, III =df (comp′ = comp) ∧ (x′ = x) ∧ · · · ∧ (z′ = z). The execution of
throw does not change the state of data variables. This can also be reflected
from the constraint of guar in the form “(ok ∧ III ∧ ¬ok′)⇒ guar”.

The rule for assignment is similar to traditional rely/guarantee methods when
the program starts in the normal state.

pre⇒ ok
pre⇒ post[e/x]
pre stable when rely
post stable when rely
pre ∧ ((x′ = e ∨ x′ = x) ∧∧

s∈{y,··· , z, ok, comp}(s
′ = s))⇒ guar

x := e sat (pre, rely, guar, post)

In this paper we focus on the rely/guarantee method within one service. There-
fore, we do not study the verification rules for communication commands (rec a x,
rep a y and their communication). Their investigation can be studied via the
Hoare logic for process algebra [1].

3.3 Sequential Constructs

For sequential composition, there are two rules, which can be distinguished from
the postcondition of the first program. The first rule below stands for the case
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that the first program successfully terminates.
pre⇒ ok
r ⇒ ok
A sat (pre, rely, guar, r)
B sat (r, rely, guar, post)

A ; B sat (pre, rely, guar, post)

The second rule indicates that the first program for sequential composition en-
counters fault during its execution. Then the whole program will also be in the
fault state. The postcondition for the whole program is the same as the post-
condition for the first program.

pre⇒ ok
r ⇒ ¬ok
A sat (pre, rely, guar, r)

A ; B sat (pre, rely, guar, r)

Now we consider the verification rules for g ◦ P . The notation g ◦ P is used for
the synchronization between different flows in a parallel composition.

pre ⇒ ok
pre stable when rely
post stable when rely
P sat (g ∧ pre, rely, guar, post)

g ◦ P sat (pre, rely, guar, post)

We can similarly consider the verification rules for conditional statement. Now
we start to consider iteration. The rules for iteration can be divided into two
cases. The first rule deals with the case when the iteration can perform the loop
body several times and finally the loop condition will be unsatisfied.

pre⇒ ok
pre stable when rely
post stable when rely
P sat (pre ∧ b, rely, guar, pre)

while b do P sat (pre, rely, guar, pre ∧ ¬b)
The second rule below can be used to indicate the case that the execution of
iteration encounters a fault.

pre ⇒ ok
pre stable when rely
post stable when rely
post⇒ ¬ok
P sat (pre ∧ b, rely, guar, post)

while b do P sat (pre, rely, guar, post)

We also have the consequence rule.
pre⇒ pre1, rely ⇒ rely1, guar1 ⇒ guar, post1 ⇒ post
P sat (pre1, rely1, guar1, post1)

P sat (pre, rely, guar, post)
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3.4 Scope and Compensation

Now we consider the verification rules for scope and compensation. These rules
can represent the features of BPEL.

For scope activity {A?C,F}n, the verification rules can be divided into two
cases. The first rule explores the case that the primarily activity A can success-
fully terminate. Then the compensation program C needs to be recorded for later
compensation. Therefore, for the specification of {A?C,F}n, its precondition and
rely condition are the same as those for primarily activity A respectively. The
changes for guarantee condition and postcondition between A and {A?C,F}n
are due to the recording of the compensation program.

pre⇒ ok
post⇒ ok
A sat (pre, rely, guar1, post[comp(n) + 1/comp(n)])
guar1 ∨ guar1[comp′(n)− 1/comp′(n)]⇒ guar

{A?C,F}n sat (pre, rely, guar, post)

The second rule below stands for the case that when A encounters fault, the
fault handler F for the scope {A?C,F}n will be triggered. For the postcondition
r of A, it should imply that ok is false. On the other hand, the fault handler F
should be started at the normal state. Therefore, the precondition for F should
be r[¬ok/ok].

pre⇒ ok
r ⇒ ¬ok
A sat (pre, rely, guar, r)
F sat (r[¬ok/ok], rely, guar, post)
{A?C,F}n sat (pre, rely, guar, post)

For undo n, the program corresponding to the name n (i.e., C(n)) will be exe-
cuted. For the execution of compensation program C(n), in the precondition of
C(n), the number of the recorded program named n should be one less, com-
pared with the number of the recorded program named n before the execution
of undo n.

p⇒ ok
comp(n) ≥ 1
guar1[comp′(n)− 1/comp′(n)] ∨ guar1⇒ guar
C(n) sat (pre[comp(n) + 1/comp(n)], rely, guar1, post)

undo n sat (pre, rely, guar, post)

3.5 Parallel Flows

In one service, flows are executed in parallel and communicate via shared-
variables. The classic parallel rule can be applied, after modification of the post-
condition to take into account the faulty states.
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pre⇒ ok
(rely ∨ guar1)⇒ rely2
(rely ∨ guar2)⇒ rely1
(guar1 ∨ guar2)⇒ guar
P sat (pre, rely1, guar1, post1)
Q sat (pre, rely2, guar2, post2)

P ‖ Q sat (pre, rely, guar, Merge(post1, post2))

Merge(q1, q2) =df ∃ok1, ok2 • q1[ok1/ok] ∧ q2[ok2/ok] ∧ ok = ok1 ∧ ok2

For Merge(q1, q2), it not only combines q1 and q2 together with their program
variables and compensation information, but also updates the state of ok for the
whole system. The definition of Merge(q1, q2) reflects the fact that the parallel
system is in fault state if at least one component is in fault state.

4 Soundness of Verification Rules

In this section we start to study the soundness of verification rules. The sound-
ness of our rely/guarantee approach is based on the operational semantics.
Firstly, we give the definition of A(pre, rely) and C(guar, post), from which we
can give the definition of the soundness for the rely/guarantee approach. Then
we select some statements for studying the soundness of our verification rules,
including sequential composition, scope and parallel composition.

4.1 Definition of Soundness

Definition 4.1 C0
β1−→ C1 · · · · · · βn−→ Cn is a computation sequence, where

n ≥ 1. �
Here, each Ci (i = 0, · · · , n) stands for a configuration. A computation sequence
can represent the execution of a program.

We use the notation cp[P ] to denote the set containing all computation se-
quences of process P . Further, we use cp[P ]ter and cp[P ]fau to denote the set
containing all computation sequences leading program P to the terminating state
and fault state respectively.

For a computation sequence seq, we use notation len(seq) to represent its
length (i.e., the transition numbers). Notation seq[i] is introduced to represent
the i-th transition of seq, where i ∈ {1..len(seq)}. We also introduce notation
seqi to represent the i-th configuration of seq, where i ∈ {0..len(seq)}. Specially,
notation seqlast is used to represent the last configuration of seq.

In order to give the soundness definition for our verification rules, we introduce
the notations below.

Definition 4.2.

A(pre, rely)

=df {seq | seq0 |= pre and for any environment transition in seq
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seqi
e−→ seqi+1, (seqi, seqi+1) |= rely}

C(guar, post)

=df {seq | for any transition seqi
c−→ seqi+1 in seq, (seqi, seqi+1) |= guar,

and if Pr(seqlast) = ε ∨ Pr(seqlast) = �, then seqlast |= post}
�

For a configuration 〈P, σ, Cp〉, the notation “〈P, σ, Cp〉 |= F” represents that
〈P, σ, Cp〉 satisfies formula F . This means that F is satisfied under data value
state σ, Cp and P . More specifically, if P is not in the fault state, it means that
“ok = true” in F , otherwise it means “ok = false” in F . For a scope name n, the
numbers of n stored in Cp stand for the number comp(n) in F . For a transition

C
β−→ C′, the notation “C

β−→ C′ |= F” has similar understanding, where the
unprimed variables in F are based on C and the primed variables are based on
C′. Meanwhile, we use Pr(C) to represent the program part of configuration C.

Based on the computation sequence, A(pre, rely) and C(guar, post), now we
give the definition for the soundness of verification rules.

Definition 4.3. P sat (pre, rely, guar, post) is sound

=df cp[P ] ∩ A(pre, rely) ⊆ C(guar, post) �
The understanding for program P satisfying a specification (pre, rely, guar,
post) starts from the concept of computation sequence. If a computation se-
quence of program P belongs to A(pre, rely), it should also belong to C(guar,
post). This indicates that, if a computation sequence seq of program P satisfies
the precondition pre and the rely condition rely of each environment transition
in seq, then the computation sequence seq should also satisfy the guarantee con-
dition guar for each component transition in seq. Moreover, if a computation
sequence leads the program to the terminating state or fault state, it should also
satisfy the postcondition post.

In the following part, we start to prove the soundness of the verification rules.
We select some statements for consideration, including sequential composition,
scope, and parallel composition. Others are similar.

4.2 Sequential Composition

For the two verification rules for sequential composition, here we focus on the
second one. We select the typical computation sequence for P ;Q which leads the
program to the fault state and it is due to the fact that process P encounters a
fault. For other computation sequences of P ;Q, the proof is similar. Let

seq1 : 〈P, α〉 β1−→ 〈P1, α1〉 · · · · · · βn−→ 〈�, αn〉,
seq : 〈P ;Q, α〉 β1−→ 〈P1;Q, α1〉 · · · · · · βn−→ 〈�, αn〉.

Here, the computation sequence seq1 leads program P to the fault state. Due
to the fault encountering of program P , process P ;Q will also encounter fault.
This can be reflected by the computation sequence seq for P ;Q and Q will not
be scheduled in this case.
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Now we need to prove that, for the above computation sequence seq, if seq
belongs to cp[P ;Q] ∩ A(pre, rely), it should also belong to C(guar, post).

seq ∈ cp[P ;Q]fau ∧ seq ∈ A(pre, rely) {Relationship of seq and seq1}
⇒ seq1 ∈ cp[P ]fau ∧ seq1 ∈ A(pre, rely) {P sat (pre, rely, guar, post)}
⇒ Each

c−→ transition in seq1 satisfies guar∧ {Relationship of seq and seq1}
seq1last |= post

⇒ Each
c−→ transition in seq satisfies guar∧ {Def of C(guar, post)}

seqlast |= post
⇒ seq ∈ C(guar, post) �

4.3 Scope

For scope {A?C,F}n, there are two verification rules. Firstly we consider the
proof for the soundness of the first rule. We take the following type of computa-
tion sequence for the proof. Others are similar. Let

seq1 : 〈A,σ, Cp〉 β1−→ 〈A1, σ1, Cp1〉 · · · · · · βm−→ 〈ε, σm, Cpm〉,
seq : 〈{A?C,F}n, σ, Cp〉 β1−→ 〈{A1?C,F}, σ1, Cp1〉 · · · · · · βm−→ 〈{ε?C,F}, σm, Cpm〉

−→ 〈ε, σm, Cpm ∪ {n}〉.
Here, seq1 is the computation sequence leading program A to the terminating
state, and seq is the corresponding computation sequence for {A?C,F}n. seq
records compensation name n in Cp in the last transition.

Now we consider the proof based on the soundness definition.

seq ∈ cp[{A?C,F}n]ter ∧ seq ∈ A(pre, rely) {Relationship of seq and seq1}
⇒ seq1 ∈ cp[A]ter ∧ seq1 ∈ A(pre, rely) {A sat (pre, rely, guar1, post1)}

{post1 = post[comp(n) + 1/comp(n)]}
{seq[m + 1] = {ε?C, F}, σm, Cpm〉

−→ 〈ε, σm, Cpm ∪ {n}〉}
⇒ seq1 ∈ C(guar1, post1) {Def of seq}

seq[m + 1] |= guar1[comp′(n) − 1/comp′(n)]
seqm+1 |= post

⇒ seq ∈ C(guar, post) �

Next we consider the soundness proof for the second verification rule for
{A?C,F}n. We focus on the computation sequence leading process A to the
fault state. Let

seq1 : 〈A, α〉 β1−→ 〈A1, α1〉 · · · · · · βu−→ 〈�, αu〉,
seq2 : 〈F, αu〉 γ1−→ 〈F1, αu+1〉 · · · · · · γm−→ 〈Fm, αu+m〉.
seq : 〈{A?C,F}n, α〉 β1−→ 〈{A1?C,F}n, α1〉 · · · · · · βu−→ 〈F, αu〉

γ1−→ 〈F1, αu+1〉 · · · · · · γm−→ 〈Fm, αu+m〉.
Here, seq1 is the computation sequence leading program A to the fault state,
and seq2 is the computation sequence of F due to the fault encountering of A.
Hence, here seq is the computation sequence of {A?C,F}n, combining seq1 and
seq2. Below is the detailed proof for seq.
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seq ∈ cp[{A?C,F}n] ∧ seq ∈ A(pre, rely) {Relationship of seq, seq1 and seq2}
⇒ seq1 ∈ cp[A]fau ∧ seq1 ∈ A(pre, rely)∧ {A sat (pre, rely, guar, r)}

seq2 ∈ cp[F ]
⇒ seq1 ∈ C(guar, r) ∧ seq2 ∈ cp[F ] {Relationship of seq, seq1 and seq2}
⇒ seq1 ∈ C(guar, r)∧

seq2 ∈ cp[F ] ∧ seq2 ∈ A(r[¬ok/ok], rely) {F sat (r[¬ok/ok], rely, guar, post)}
⇒ seq1 ∈ C(guar, r) ∧ seq2 ∈ C(guar, post) {Relationship of seq, seq1 and seq2}
⇒ seq ∈ C(guar, post) �

4.4 Parallel Composition

Now we consider the soundness proof for the verification rule of P ‖ Q. First,
we consider the merging behaviour for P , Q and P ‖ Q. Let

MERGE(seq1, seq2, seq)

=df

⎛
⎜⎜⎜⎜⎜⎜⎝

len(seq1) = len(seq2) = len(seq) ∧
∀i ∈ {0..len(seq)} • ( Pri(seq1) ‖ Pri(seq2) = Pri(seq)∧

Sti(seq1) = Sti(seq2) = Sti(seq) ) ∧
∀j ∈ {0..len(seq)} • ( lab(seq1[j]) = c ∧ lab(seq2[j]) = e ∧ lab(seq[j]) = c ∨

lab(seq1[j]) = e ∧ lab(seq2[j]) = c ∧ lab(seq[j]) = c ∨
lab(seq1[j]) = e ∧ lab(seq2[j]) = e ∧ lab(seq[j]) = e )

⎞
⎟⎟⎟⎟⎟⎟⎠

Here, Pri(seq) and Sti(seq) stand for the program part and the state part of the
i-th configuration in seq. Function lab(l) stands for the transition type for tran-
sition l, i.e., c transition (component transition) and e transition (environment
transition) (see page 176) .

The analysis for the computation sequence of P ‖ Q can be divided into the
following three cases.

(1) A computation sequence leads P ‖ Q to the fault state.
(2) A computation sequence leads P ‖ Q to the terminating state.
(3) A computation sequence leads P ‖ Q to the non-fault, non-terminating state.

Here, we only focus on the proof for the first case. The considerations for other
cases are similar. Let seq ∈ cp[P ‖ Q]. There are three typical cases:

• ∃seq1 ∈ cp[P ]ter and seq2 ∈ cp[Q]fau and MERGE(seq1, seq2, seq)
• ∃seq1 ∈ cp[P ]fau and seq2 ∈ cp[Q]ter and MERGE(seq1, seq2, seq)
• ∃seq1 ∈ cp[P ]fau and seq2 ∈ cp[Q]fau and MERGE(seq1, seq2, seq)

Here we only consider the first subcase. Assume seq ∈ A(pre, rely). We have the
following facts.

(a) Each c transition in seq1 and seq2 satisfies guar1 or guar2 respectively.

(b) Each e transition in seq1 and seq2 satisfies rely∨guar2 or rely∨guar1 respectively.

(c) Each c transition in seq satisfies guar.

Now we proceed with the detailed proof.
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seq ∈ cp[P ‖ Q]fau ∧ seq ∈ A(pre, rely) {Relationship of seq, seq1 and seq2}
⇒ seq1 ∈ cp[P ]ter ∧ seq2 ∈ cp[Q]fau {Fact (b) and rely ∨ guar2 ⇒ rely1}

{rely ∨ guar1 ⇒ rely2}
⇒ seq1 ∈ cp[P ]ter ∧ seq2 ∈ cp[Q]fau∧ {Def. A(pre, rely)}

Each e transition in seq1 and seq2
satisfies rely1 and rely2 respectively ∧
seq10 |= pre ∧ seq20 |= pre

⇒ seq1 ∈ cp[P ] ∧ seq2 ∈ cp[Q]fau∧ {P sat (pre, rely1, guar1, post1)}
seq1 ∈ A(pre, rely1) ∧ seq2 ∈ A(pre, rely2) {Q sat (pre, rely2, guar2, post2)}

⇒ seq1 ∈ C(guar1, post1) ∧ seq2 ∈ C(guar2, post2) {Def. C(guar, post)}
⇒ seq1last |= post1 ∧ seq2last |= post2 {Fact (c) ∧ Merge(post1, post2)}
⇒ seq ∈ C(guar,Merge(post1, post2)) �

5 Related Work

Compensation is one typical feature for long-running transactions. StAC (Struc-
tured Activity Compensation) [5] is another business process modeling language,
where compensation acts as one of its main features. Its operational semantics
has also been studied in [4]. Meanwhile, the combination of StAC and B method
has been explored in [6], which provides the precise description of business trans-
actions. Bruni et al. have studied the transaction calculi for Sagas [3]. The long-
running transactions were discussed and a process calculi was proposed in the
form of Java API, namely Java Transactional Web Services [2].

π-calculus has been applied in describing web services models. Laneve and
Zavattaro [13] explored the application of π-calculus in the formalization of the
semantics of the transactional construct of BPEL. They also studied a standard
pattern of Web Services composition using π-calculus. For verifying the prop-
erties of long-running transactions, Lanotte et al. have explored their approach
in a timed framework [14]. A model of Communicating Hierarchical Timed Au-
tomata was developed where time was also taken into account. Model checking
techniques have been applied in the verification of properties of long-running
transactions.

The above related approaches applied techniques in the specification and ver-
ification of BPEL, including process algebra and model checking techniques.
Meanwhile, theorem proving is another approach for verifying BPEL programs.
Luo et al. have studied the verification of BPEL programs using Hoare logic [16].
A big-step operational semantics has been studied and a set of proof rules were
proposed. They were proven sound with respect to the formalized semantics.
However, their approach does not cover the shared-variable feature for paral-
lel composition. Compared with the above approach [16], shared-variables are
introduced in this paper for the data exchange and synchronization between a
process and its partners within a single service. Therefore, our paper here adopts
the rely/guarantee approach to verifying concurrent BPEL programs.

6 Conclusion

Compensation and fault handling are the two main features of BPEL. This
paper has explored the verification of BPEL programs, especially the verification
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of concurrent BPEL programs. We have applied the rely/guarantee approach in
designing the verification rules. We have provided an operational semantics. A set
of verification rules has been explored, especially those rules for compensation,
fault handing and concurrent programs. The verification rules have been proved
to be sound based on the operational semantics.

In the near future, we plan to further study verification for BPEL programs,
including automatic verification. It is challenging to implement our proof system
in Theorem Prover. A case study would also be interesting to explored based on
our verification rules presented in this paper. Meanwhile, it is also challenging
to explore the link between the rely/guarantee method and the denotational se-
mantics [11] for BPEL programs.
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Abstract. In [1] the almost complete formal verification of a small hypervisor
with the automated C code verifier VCC [2] was reported: the correctness of the
C portions of the hypervisor and of the guest simulation was established; the
verification of the assembler portions of the code was left as future work. Suit-
able methodology for the verification of Macro Assembler programs in VCC was
given without soundness proof in [3]. A joint semantics of C + Macro Assembler
necessary for such a soundness proof was introduced in [4]. In this paper i) we
observe that for two instructions (that manipulate stack pointers) of the hyper-
visor code the C + Macro Assembler semantics does not suffice; therefore we
extend it to C + Macro Assembler + assembler, ii) we argue the soundness of
the methodology from [3] with respect to this new semantics, iii) we apply the
methodology from [3] to formally verify the Macro Assembler + assembler por-
tions of the hypervisor from [1], completing the formal verification of the small
hypervisor in the automated tool VCC.

1 Introduction

Kernels and Hypervisors: kernels and hypervisors for an instruction-set-architecture
(ISA) M run on processors with ISA M and have basically two roles

– the simulation/virtualization of multiple guests or user virtual machines of ISA M
– the provision of services for the users via system calls (e.g. inter process commu-

nication)

The salient difference between kernels and hypervisors is that under kernels guests only
run in user mode, whereas under hypervisors guests are also allowed to run in system
mode. Thus, hypervisors must implement two levels of address translations (either sup-
ported by hardware features like nested page tables or in software using shadow page
tables), whereas kernels must only realize one such level.

Kernel and hypervisor verification comes in 3 flavours:

– Verification of the C code alone. A famous example is seL4 [5]. Because kernels
and hypervisors cannot be written exclusively in C such a proof is necessarily in-
complete, but we will see shortly that closing this gap is not hard.
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– Complete verification at the assembler level. Examples are the pioneering work on
KIT [6] and the current effort in the FLINT project [7]. Complete code coverage
can be reached in this way, but, due to the exclusive use of assembler language,
productivity is an issue.

– Verification of both the C portion and the non C portion based on a joint semantics
of C + inline assembler [8,9] or C + Assembler functions. As already shown in
[10] C portions and non-C portions of a kernel can be verified separately and the
correctness proofs can then be joined into a single proof in a sound way. The same
could be done to cover the non C portions of seL4. In an interactive prover like
Isabelle, which is used in [9] and [5], formal work can directly follow the paper
and pencil mathematics. A small extra effort is needed if we want to perform such
work in an automated C code verifier like VCC.

For work applying formal methods specifically to hypervisors consider the Nova micro-
hypervisor [11], the recent MinVisor verification effort [12], or the partial verification
of the Microsoft Hyper-V hypervisor [13].

The baby hypervisor [1] virtualizes a number of simplified VAMP [14,15] (called baby
VAMP, see Fig. 2) guest processors (partitions) on a sequential baby VAMP host pro-
cessor. The baby VAMP ISA is a simplified DLX-ISA (which is basically MIPS). The
simplified VAMP architecture this work is based on does not offer any kind of virtu-
alization support. Privileged instructions of guests (running in system mode) cannot
be executed natively on the host. Instead, any potentially problematic instruction (e.g.
write to the page-tables, change of page-table origin) causes an interrupt on the host
machine and is subsequently virtualized by the baby hypervisor (see Fig. 3).

The baby hypervisor guarantees memory separation of guests by setting up an ad-
dress translation from guest physical addresses to host physical addresses by defining
a host page table [16] for each guest. A host page table is composed with the respective
guest page table (if the guest itself is running in user mode) by the baby hypervisor
to form a shadow page table that provides the direct translation from guest virtual ad-
dresses to host physical addresses. Then, running the host processor in user mode with
the page table origin pointing to the shadow page table is sufficient to correctly virtual-
ize the guest – as long as the guest does not perform changes to its own page table. To
detect this case, the baby hypervisor marks those pages containing the guest page table
as read only in the shadow page table. In case of a write access to the guest page table,
a page-fault interrupt occurs, which allows the baby hypervisor to correctly virtualize
the guest updating its page table.

As illustrated in Fig. 1, guest machines virtualized by the baby hypervisor are
represented by memory regions (data structures of the baby hypervisor implementa-
tion) of the host machine. Process-control-blocks (PCBs) correspond to register con-
tents of not-currently-running guests. At the beginning of the interrupt handler of the
baby hypervisor, guest registers are saved to their corresponding PCB, the function
hv_dispatch() is called to virtualize the instruction causing the interrupt, and, at
the end of the handler, guest registers are restored to the host machine registers.

Specifying assembler portions of code in a C verifier: C is a universal language, hence
it can simulate any other language. In [1], in order to verify the correctness of the baby
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hypervisor, a baby VAMP interpreter is implemented in C. For the verification, the
execution of hardware steps of the host processor that directly emulate guest steps are
replaced by calls of the interpreter (which is implemented in such a way that it performs
a single step of the baby VAMP model, i.e. executes a single machine instruction). The
data structures of the interpreter are the obvious ones: i) hardware memory, which is
fortunately already part of the C memory model of VCC and ii) processor registers,
which are stored in a struct in a straightforward way. Based on this and a specification
of the effects of process save and restore, the authors of [1] succeed to prove process
separation of the guests. We are left with the problem to verify process save and restore
in VCC and to integrate this proof with the existing formal proofs in a sound way.
Consider that in the context of system verification, the notion of soundness encompasses
that the resulting integrated formal model forms a sound abstraction of the physical
machine’s execution.

Verifying Macro Assembler in C: Theoretically, one could now try to prove properties of
assembler programs in VCC by proving the properties for the interpreter running the re-
sulting machine code programs. The expected bad news is that this turned out to be inef-
ficient. The good news is that modern hypervisors tend to use Macro Assembler instead
of assembler. The control operations of Macro Assembler (stack operations, conditional
jumps to labels) fit C much better than the (unstructured) jump and branch instructions
of assembler language. This in turn permits to perform a semantics-preserving transla-
tion of Macro Assembler code to C code. That this works in an extremely efficient way
was shown in [3]. Indeed, in [17], the author reports about the (isolated) verification of
all Macro Assembler portions of the Microsoft hypervisor Hyper-V. Thus, it seems that
we are left with i) the task to formally verify the Macro Assembler portions of the small
hypervisor from [1], ii) the task to integrate this into the formal proof reported in [1],
and iii) to show that this is sound relative to a joint semantics of C + Macro Assembler
presented in [4]. We achieve the first two tasks by extending the VCC proof of [1], and
we provide a pencil-and-paper proof for the third task.
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The Last Two Instructions: It turns out that two instructions of the hypervisor code are
not compatible with the chosen Macro Assembler semantics: in our Macro Assembler,
there is a built-in abstract notion of the stack. The corresponding stack pointer registers
are not visible anymore on Macro Assembler level; they belong to the implementation.
In order for the C + Macro Assembler code of the baby hypervisor to run properly
when an interrupt is triggered on the host machine, however, they must be set up with
appropriate values so that the stack abstraction for C + Macro Assembler is established.
The good news is that this is done without using control instructions of the ISA, thus, the
method from [3] can still be used. The moderately bad news is that in the end soundness
has to be argued relative to a joint semantics of 3 languages: C + Macro Assembler +
assembler.

Outline. In Section 2, we introduce a rather high-level stack-based assembler language
that we call Macro Assembler (MASM, not to be confused with Microsoft’s MASM) and
merge it with a very low-level intermediate language for C, C-IL, yielding an integrated
semantics of C-IL and MASM – which is amenable to verification with VCC. In order to
justify that the integration of semantics is done correctly, we state compiler correctness
simulation relations for the two languages as pencil-and-paper theory in Section 3.

Since the MASM semantics defined before in [4] is only applicable when the stack
pointers have been set up correctly, we remedy this shortcoming by extending MASM
semantics in a simple way suited specifically to the situation occuring in the baby hy-
pervisor in Section 4. Having achieved full coverage of the baby hypervisor code with
our stack-based semantics, we proceed by translating the MASM code portions to C
code according to the Vx86-approach in Section 5 – using VCC to verify correctness of
the translated code. We conclude with a brief discussion of the verification experience.

All details of theories presented in this paper can be found in [18].

2 Models of Computation

2.1 Macro Assembler – A Stack-Based Assembler Language

In [1], it is stated that the assembler code verification approach to be used for verifica-
tion of the missing assembler portions should be the same that has already been used
in the Verisoft project [8,15]: Correctness of assembler code execution is argued step-
by-step on Instruction-Set-Architecture (ISA) level. Overall correctness in combination
with the baby hypervisor C code is to be established by applying a compiler correctness
specification that relates ISA and C configurations.

The assumption in [1] is that it would be quite simple to use the baby VAMP in-
terpreter from [1] to verify the assembler code portions of the baby hypervisor by per-
forming steps until the code has been executed. However, while this approach works
decently in an interactive prover, this does not work so nicely in an automated prover.
Running the baby VAMP interpreter for more than a few specific consecutive steps
easily leads to huge verification times.
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With the tool Vx86 [3] it has been demonstrated that VCC can efficiently be used to
verify (isolated) non-interruptible x86 Microsoft Macro Assembler code – by translat-
ing Macro Assembler to C which is verified with VCC. Non-interruptability can safely
be assumed for the baby hypervisor code, thus, we decided to follow this approach.
In order to formally argue soundness, we need an assembler code execution model for
which simulation with a C code execution model is simple to establish. In this light
comes our custom high-level stack-based assembler language we call Macro Assembler
in the following brief summary.

Macro Assembler is a language with the following features: Jumps are expressed as
(different flavors of) gotos to locations in functions, function calls and return are al-
ways made with the call and ret macros, and the memory region that holds the stack is
abstracted to an abstract stack component (a list of stack frames) on which all stack ac-
cesses are performed. The first two choices restrict the applicability of MASM-semantics
to well-structured assembler code. For baby VAMP, the following instructions are im-
plemented as macros: call, ret, push, pop. A macro is simply a shorthand for a sequence
of assembler instructions.

Configuration. A Macro-Assembler configuration

c = (c.M, c.regs, c.s) ∈ confMASM

consists of a byte-addressable memoryM : B8k → B8 (where k is the number of bytes
in a machine word and B ≡ {0, 1}), a component regs : R → B8k that maps register
names to their values, and an abstract stack s : frame∗MASM. Each frame

s[i] = (p, loc, saved, pars, lifo)

contains the name p of the assembler function we are executing in, the location loc
of the next instruction to be executed in p’s function body, a component saved that
is used to store values of callee-save registers specified by a so-called uses list of the
function, a component pars that represents the parameter region of the stack frame, and
a component lifo that represents the part of the stack where data can be pushed and
popped to/from. For a detailed description of Macro Assembler semantics, see [18].
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2.2 Integrated Semantics – Merging C Intermediate Language and Macro
Assembler

In our verification effort, we are particularly interested in the correct interaction be-
tween assembler and C at function call boundaries. (Note that in contrast to the Verisoft
project, we do not have inline assembler code here, but assembler functions calling C
functions and vice versa.) Thus, we define an integrated semantics of a simple C in-
termediate language and Macro Assembler which allows function calls between those
languages to occur according to the compiler’s calling conventions.

In order to describe this integrated semantics, we first give a very short overview of
the features of our C intermediate language C-IL. C-IL is a very simple language that
only provides the following program statements: assignment, goto, if-not-goto, function
call, procedure call, and corresponding return statements. Goto statements specify des-
tination labels. Pointer arithmetic on local variables and the global memory is allowed.
There is no inherent notion of a heap in C-IL.

C-IL Configuration. A C-IL configuration

c = (M, s) ∈ confC-IL
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consists of a global, byte-addressable memory M : B8k → B8 and a stack s ∈
frame∗C-IL which is a list of C-IL-frames. Similar to MASM, a frame contains control
information in form of location and function name – further, it contains a local mem-
ory that maps local variable and parameter names to their values as well as a return
destination field for passing return parameters.

Integrated Semantics. In [4], we provide a more detailed report on the integrated se-
mantics – a defining feature of which is its call stack of alternating C-IL and MASM
execution contexts (see Fig. 4). Exploiting that both semantics use the same byte-
addressable memory, we obtain a joint semantics in a straightforward way by explicitly
modeling the compiler calling conventions and by calling the remaining parts of a C-IL-
or MASM-configuration an execution context for the respective language.

Configuration. A mixed semantics (MX-) configuration

c = (M, ac, sc) ∈ confMX

consists of a byte-addressable memoryM : B8k → B, an active execution context ac ∈
contextC-IL∪contextMASM, and a list of inactive execution contexts sc ∈ (contextinactive

C-IL ∪
contextinactive

MASM )∗ which, in practice, is alternating between C-IL and MASM.
Here, an inactive execution context always contains information on the state of

callee-save registers, which, before returning from MASM to C-IL, must be restored
in order to guarantee that execution of compiled C-IL code will proceed correctly – or,
respectively, the state of callee-save registers which will be restored automatically by
the compiled C-IL code when returning from C-IL to MASM.

3 Compiler Correctness Specification

We assume a compiler correctness specification in the spirit of the C0 compiler [19]
from the Verisoft project. We state a consistency relation that we expect to hold at
certain points between a baby VAMP ISA- and a MX-computation (Figs. 6, 7).

Definition 1 (Code consistency). The code region of the physical baby VAMP machine
d is occupied by the compiled code of program p.

consiscode(p, d) ≡ d.mlen(code(p))(codebase) = code(p)

where code(p) denotes the compiled code of program p represented as a byte-string,
len returns the length of such a string, mn(a) denotes reading a byte-string of length n
starting at address a from byte-addressable memory m and codebase denotes the address
in memory where the code resides.

Definition 2 (Memory consistency). The global memory content of the MX-machine
c is equal to that of the physical baby VAMP machine d except for the stack and code
region.

consismem(c, d) ≡ ∀a ∈ B32 \ coderegion \ stackregion : c.M(a) = d.m(a)
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Definition 3 (Stack consistency). The stack component of the MX-machine c is repre-
sented correctly in registers and stack region of the baby VAMP machine d.

consisstack(c, d, p) ≡ d.mlen(flattenstack(c))
(STACK_BASE_ADR) = flattenstack(c)

∧ consisregs(c, d, p)

where flattenstack denotes a function that, given a MX-configuration returns a list of
bytes that represent the stack in the physical machine according to the compiler defini-
tions and consisregs specifies that all machine registers have the values expected for the
given abstract stack configuration of c. These can only be defined when additional in-
formation about the compiler is given: E.g. in order to compute the return address field
of a stack frame, we need to know the address in the compiled code where execution
must continue after the function call returns. The calling conventions detail where pa-
rameters are passed (e.g. in registers and on the stack), while the C-IL-compiler defines
the order of local variables on the stack (and whether they are cached in registers for
faster access). For an exemplary stack layout of our integrated semantics, see Fig. 5.

Definition 4 (Compiler consistency). An MX-configuration c and a baby VAMP con-
figuration d are considered to be consistent with respect to a program p iff code consis-
tency, memory consistency and stack consistency are fulfilled.

consis(c, d, p) ≡ consiscode(p, d) ∧ consismem(c, d) ∧ consisstack(c, d, p)

Definition 5 (Optimizing compiler specification). The compiler relates MX compu-
tations (ci) and baby VAMP ISA computations (di) via two step functions s, t : N→ N

with the meaning that, for all i, MX-configuration cs(i) and ISA-configuration dt(i) are
consistent

∀i : consis(cs(i), dt(i))

in such a way that the step function s(i) at least describes those states from the com-
putation (ci) which are about to perform an externally visible action or where such
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an action has been performed in the previous step. Further, both s and t are strictly
monotonically increasing.

In our current sequential setting without devices, the only externally visible action pos-
sible is an external function call. From the viewpoint of C-IL-semantics, calls to MASM
functions are external, and vice versa.

For a well-structured example of a simulation proof for compiler correctness of a
multi-pass optimizing compiler, see [20]. In the compiler specification sketched in the
thesis of A. Shadrin [18], we expect compiler consistency to hold additionally at the
beginning and at the end of function bodies, which – while restricting the extent of
compiler optimization – simplifies the inductive proof significantly.

4 Extending the Semantics for Stack Pointer Setup

While we saw that the formalism of Macro Assembler is nicely suited to serve as a
basis for justification of a translation-based assembler verification approach, it became
obvious that the restrictions of Macro Assembler as described so far prevents the use of
Macro Assembler for some parts of the baby hypervisor code. In fact, Macro Assembler
semantics is a sound abstraction for execution of all but the first 46 assembler instruc-
tions of the baby hypervisor code – the last two of those 46 set up the stack pointer
registers in order to establish the stack abstraction of Macro Assembler (see Fig. 8).
Before those two instructions that set up the stack pointers occur, the stack pointers are
uninitialized and we cannot establish compiler consistency for the preceeding Macro
Assembler execution.

The Root of the Problem. In order to run the MX-machine (which makes use of a
rather high-level stack abstraction), we need to establish the stack abstraction correctly
on the physical machine in the first place. In order to apply our compiler correctness
specification, we need to establish initial compiler consistency, of which stack consis-
tency is one part. The first part of the baby hypervisor’s interrupt handler implementa-
tion actually has to set up the stack abstraction for the baby hypervisor code to run by
writing the stack pointer registers of the baby VAMP machine (see Fig. 8). The stack
abstraction of the original Macro Assembler semantics, however, abstracts the stack
pointers away.
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While we could have proven the correctness of the assembler instructions up to the
initialization of stack pointers using the baby VAMP ISA model in an interactive prover
(which would have been bearable after rewriting the assembler code to perform stack
initialization much earlier), we instead looked at the problem from the other side: What
changes do we need to make to Macro Assembler semantics in order to "lift" these in-
structions to the Macro Assembler formalism so that we can verify their correctness
with VCC? Considering the baby hypervisor implementation closely, we are in a situ-
ation where the stack pointers are always set up in the same way: by writing the stack
base address STACK_BASE_ADR of the baby hypervisor to both stack pointer registers,
effectively resulting in an empty initial stack configuration (i.e. there are neither param-
eters nor saved register values nor temporaries that can be popped from the stack). This
is the case since a baby hypervisor execution context is always created by an interrupt,
then the baby hypervisor performs emulation of a guest step and then the execution
context perishes by giving up control to the guest.

Our Proposed Solution. For the situation in question, a simple band-aid is to just
extend Macro Assembler semantics in such a way that there are two execution modes:

– abstractStack: The existing one with stack abstraction (stack pointer registers are
hidden), and

– noStack: a mode without stack (stack pointer registers are accessible while function
calls and stack operations are prohibited).

Defining the transitions between execution modes for this case is simple: When ex-
ecuting in noStack-mode, writing STACK_BASE_ADR to both stack pointer registers
immediately results in an equivalent configuration in abstractStack-mode with empty
stack content, whereas accessing the stack pointers in abstractStack-mode while the
stack content is empty leads to an equivalent noStack-mode configuration (see Fig. 9).

With these definitions, we achieve full code coverage on the baby hypervisor with the
resulting improved MX-semantics. While the chosen solution is rather specific, its sim-
plicity raises the question whether there are more cases in which we can lift assembler
instructions incompatible with stack abstraction to the Macro Assembler-level under
certain conditions. We think that the stack switch operation present in thread switch
implementations (substituting the stack pointers of the physical machine with the stack
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Fig. 10. Example of representing a Macro Assembler stack using C data structures

pointers associated with the next thread to run) is such a candidate, which will enable
the sound verification of the code of thread switch implementations using automated C
verifiers.

5 Assembler Verification Approach

For the assembler code verification of the baby hypervisor, we follow the general idea
used in Vx86 [3]: Assembler code is translated to C code which is verified using VCC.
Since there is very little assembler code in the baby hypervisor, we do not implement
a tool that performs the translation (e.g., like Vx86) – instead, we formally define the
translation rules and translate the code by hand according to the rules. We state this
translation using Macro Assembler and C-IL semantics in [18].

The translation, in general, works as follows: we model the complete MASM state
in C-IL using global variables and translate each MASM-instruction to one or several
C-IL-statements. Recall that a MASM-configuration contains three main parts: the byte-
addressable memory, a register component, and a stack of MASM-frames which each
consist of control information, saved registers, parameters, and a component lifo of
temporaried pushed to the stack. The byte-addressable memory is represented by C-
IL’s own byte-addressable memory. For register content, we introduce global variables
gpr and spr as arrays of 32-bit integer values of appropriate size. Control information
is translated implicitly, by preserving the structure of function calls and jumps of the
MASM-program during the translation. We model each of the stack components saved,
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pars and lifo by a corresponding global 32-bit integer array variable and a 32-bit un-
signed integer variable that counts the number of elements occupied in the array. For an
example of representing MASM-state, see Fig. 10.

Translation. We define a function τMX2IL : ProgMX → ProgC-IL which, given a pro-
gram πMX of the integrated semantics returns a C-IL program πC-IL = τMX2IL(πMX).
MASM-functions are translated to C-IL-functions; every MASM instruction of πMX is
translated to one or several C-IL statements while C-IL statements of πMX are simply
preserved in πC-IL.

Consider the translation of the push-instruction:

push r ⇒ lifohyb[cntlifo] = gpr[r]; cntlifo = cntlifo + 1

In MASM semantics, the push-instruction simply appends the value of register r to
the lifo-component (which is modeled as a list in MASM-semantics and as an array
with a counter in the translated program). Other examples are the translation of the
sw-instruction or the add-instruction below:

sw rd rs1 imm ⇒ ∗((int ∗)(gpr[rs1] + imm)) = gpr[rd]

add rd rs1 rs2 ⇒ gpr[rd] = gpr[rs1] + gpr[rs2]]

Here, rd, rs1, rs2 are register indexes, and imm is a 16-bit immediate-constant – and
sw is a store word instruction that stores the register content of register rd at offset
imm of the memory address in register rs1, while add is an instruction that adds the
values of registers rs1 and rs2, storing the result in rd.

Soundness. A soundness proof for this approach is given by proving a simulation
between the MX-execution of the original program πMX and the C-IL program πC-IL that
results from the translation. The simulation relation and a pencil-and-paper proof are
given in [18].

To achieve a clear separation between the original C-IL-code and the translated
MASM-code, we place the data structures that model MASM-state at memory addresses
which do not occur in the baby VAMP, i.e. addresses above 232. We call this memory
region hybrid memory, since it is neither memory of the physical machine (which is
covered by our compiler correctness specification) nor ghost state (VCC prevents in-
formation flow from ghost state to implementation state). Thus, the translation itself
does not affect the execution of the original C-IL code parts. The actual proof is a case
distinction on the step made in the MX-model: due to the way the translation is set up,
correctness of pure C-IL steps is quite simple to show, while inter-language and pure
MASM-steps have to explicitly preserve the simulation relation between the translated
and the original program.

In order to formally transfer properties proven with VCC on the verified C code to the
MX-execution we still lack a proof of property transfer from VCC C to C-IL. However,
this gap should be straight-forward to close as soon as a formal model of VCC C is
established.
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The main advantage of how we implement this approach over how it has been done
in the case of Vx86 is that we have a formal semantics for Macro Assembler that is
quite similar to the C intermediate language (for which we also have formal semantics)
we translate to. In [3], the closest formal basis for assembler code execution is given
by the x86-64 instruction-set-architecture model developed by U. Degenbaev [21] – the
authors apply the Microsoft Macro Assembler compiler to generate x86-64 code which
is then translated to C. A monolithic simulation proof for this approach appears to be
quite complex due to the big formal gap between the ISA model and the C seman-
tics – thus, we deliberately chose Macro Assembler semantics as an abstraction of the
ISA assembler code execution model in such a way that Macro Assembler semantics is
structurally very similar to C-IL semantics.

6 Results and Future Work

Code Verification. The practical part of this work extends the code verification of the
baby hypervisor by proving the central interrupt service routine correct – following its
implementation in Macro Assembler (consisting of 99 instructions, most of them mem-
ory accesses to store/restore register values to/from the corresponding PCB). Transla-
tion of the MASM code results in approximately 200 additional C code tokens – the
remainder of the baby hypervisor implementation consists of about 2500 tokens. For
verification, an additional number of 500 annotation tokens were needed. Originally,
about 7700 annotation tokens were present. With the formal models we have now, we
believe that the actual code verification effort comes down to about one person week. It
is quite obvious, that, from a practical verification engineering point of view, complet-
ing the baby hypervisor code verification was a minor effort compared to what already
had been done. Our main contribution is the justification of this code verification.

Using the verification block feature of VCC, it was possible to keep verification
times quite low (e.g. 41,48 seconds for the restore_guest function, 75,68 seconds
for the save_guest function). This feature allows to split the verification of large C
functions into blocks with individual pre- and postconditions. The total proof checking
time of the completed baby hypervisor codebase is 4571 seconds (approx. 1 1

4 hours) on
a single core of a 2.4 GHz Intel Core Duo machine.

Future Work. Possible extensions to this work include the generalization of calling
conventions between Macro Assembler and C-IL. It appears desirable to have a se-
mantic framework that can support many different compilers. For this, it could also be
interesting to replace C-IL by a more mainstream intermediate language or a different
flavor of C semantics. Similarly, Macro Assembler could be improved and generalized.

A work in progress deals with lifting the stack switch operation occuring in thread
switch implementations to the Macro Assembler level. Extending the high-level seman-
tics with a notion of active and inactive stacks (which is justified by a simulation with
the ISA implementation layer), it should be possible to prove in an automated verifier
that a given thread switch implementation based on switching stack pointers is correct.



Completing the Automated Verification of a Small Hypervisor 201

7 Summary

In this work, we used an integrated semantics of Macro Assembler, a high-level assem-
bler language, and C-IL, a simple C intermediate language, to give a pencil-and-paper
justification of a translation-based assembler verification approach in the spirit of Vx86
[3]. In contrast to the original work, the translation is expressed rigorously based on
formal semantics. We solved the problem of stack pointer setup by lifting a part of the
ISA assembler semantics to our improved Macro Assembler semantics which we used
as starting point for the translation of Macro Assembler code to C-IL code. The baby hy-
pervisor implementation was completed by implementing the central interrupt service
routine in Macro Assembler code, which was subsequently translated to C and verified
with VCC – completing the formal verification of the baby hypervisor.
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Abstract. In this paper, we focus on system configurations of Inte-
grated Modular Avionics (IMA) systems and present a novel approach
for their calculation. We consider IMA systems based on ASAAC stan-
dards (STANAG 4626, EN 4660). These systems are modelled, by means
of blueprints, using the SAE standardised modelling and analysis lan-
guage AADL. For the calculation of system configurations, the required
data is gathered from the system model and is transformed into a SAT
modulo theory (SMT) formula. This formula includes a set of user in-
put parameters, which steer the resource allocation. All feasible solutions
satisfy the schedulability by a given set of scheduling schemes. The as
schedulable considered configurations serve in choosing the final system
configuration, for which a set of possible valid reconfigurations is calcu-
lated. To facilitate more compact allocations and increase the quality of
(re-)configurations, we consider system modes. Both the chosen config-
uration and its corresponding reconfigurations are stored in the AADL
system model, making all necessary data available within the same de-
veloping environment.

1 Introduction

Following the advances in modern technology, traditional avionics systems, so
called federated systems, are faced with increased requirements and complex-
ity, as well as increased development and maintenance costs. Furthermore, due
to their long development process, federated systems are faced with the fact
that upon completion they may end up running on outdated hardware/software
components [1, 2].

In order to cope with these issues, the concept of Integrated Modular Avionics
(IMA) [3–8] originated. Being used at the beginning in a more conservative way,
only on small subsystems, IMA has gained lately a wider usage in the avionics
domain and by 2020 it is predicted that most of modern avionics systems will
be applying IMA [9]. Contrary to federated systems, where each aircraft func-
tion (flight management, cruise speed control, autopilot, etc.) is coupled with

G. Eleftherakis, M. Hinchey, and M. Holcombe (Eds.): SEFM 2012, LNCS 7504, pp. 203–217, 2012.
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its special and uniquely designed hardware, which can be seen as black boxes,
IMA systems are integrated into so called cabinets of processors, i. e., the hard-
ware components of IMA systems are not dedicated to any particular function
but serve as flexible hosts shared by multiple functions. Introducing new func-
tions in a federated system would require additional black boxes, whereas for
an IMA system it does not necessarily mean that new hardware is needed, thus
contributing to component, weight, volume, and power consumption (CO2 foot-
print) reduction. Furthermore, due to the independence between hardware and
software any updates on either hardware or software do not affect the coun-
terpart. In addition, the IMA concept makes the usage of COTS (components
off-the-shelf) possible, allowing in this way a more flexible system development.

In general, IMA systems lead to significant reduction of development and
maintenance cost as well as time to market of modern avionics systems [2–4,8,10].
However, safety being a crucial requirement, IMA systems introduce indeed new
challenges, which were easier to cope with, played a minor role or were not
present in federated systems. These are addressed/regulated by IMA guidelines
(DO-297 [3]) and standards such as ARINC-653 [6] and ASAAC [4,5], that are
used in the development of civil and military aircrafts, respectively. For instance,
IMA systems must provide means, such as system partitioning [11], for fault
containment for shared resources, being those processing or memory components,
so that aircraft functions (software components) belonging to different criticality
levels as categorised by the design assurance level in the DO-178B/ED12B [12]
avionics standard—from no affect (level E) to catastrophic (level A)—do not
affect each other, and the shared resources (hardware components) are sufficient
enough for the correct execution of all aircraft functions, e. g., the software is
provided with all necessary resources to meet its deadlines.

In this paper, we introduce a novel approach for the calculation of system con-
figurations of IMA systems based on the Allied Standard Avionics Architecture
Council (ASAAC) programme standards (NATO Standardization Agreement
STANAG 4626 [4] and the European Standard EN 4660 [5]). The generated sys-
tem configurations of such IMA systems, in following referred to as IMA/ASAAC
systems, represent allocations/mappings of the software onto the underlying
hardware. Our approach aims at facilitating the development of IMA/ASAAC
systems and tackles the above mentioned IMA challenges by yielding schedula-
ble system configurations, thus providing the allocated software with sufficient
resources to meet their deadlines. The introduced methodology is applicable to
ARINC-based IMA systems as well, as both standards indeed overlap and are
similar. However, as pointed out in [13], the significant difference is that, while
ARINC aims for static system partitioning (time and space), ASAAC is more
flexible, thus facilitating dynamic system reconfigurations.

For the modelling of IMA/ASAAC systems, we employ the SAE (Society
of Automotive Engineers) standardised modelling and analysis language AADL
(Architecture Analysis and Design Language) [14, 15]. For this purpose we de-
veloped a modelling concept that enables to capture the characteristics of an
IMA/ASAAC system in corresponding AADL models, so called blueprints.
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In order to calculate the system configurations, all the necessary data is ex-
tracted from the AADL models (blueprints) and is translated into an SMT
formula. To improve the quality of the mapping between software and hardware
components, a set of constraints is included into the SMT formula. As we are in-
terested only on schedulable system configurations, all feasible solutions undergo
a schedulability check, i. e., they are checked against schedulability requirements
of scheduling algorithms such as EDF and RMS. The resulting feasible and
schedulable configurations are then used to choose the final (optimal) system
configuration. For the sake of fault tolerance, for the chosen system configura-
tion a set of system reconfigurations is calculated, each introducing a scenario
of a possible hardware failure. Both the finally chosen system configuration and
its corresponding reconfigurations are written back in the AADL system model,
thus providing all system data within the same developing environment. The
reconfigurations are represented by means of a state machine introducing tran-
sitions from an unstable state, e. g., due to a hardware failure, into another stable
state. This work provides the following contributions:

(a) Modelling. In Sec. 3 we describe the modelling concept of IMA/ASAAC
systems by means of AADL and show how such a system is organised as a
blueprint.

(b) Flexibility. Our configuration approach is introduced in Sec. 4. The config-
uration calculation (cf. Sec. 4.1) facilitates a flexible/tunable configuration
mechanism for specifying different memory consumption and processor util-
isation choices, e. g., requiring up to 70% overall resource utilisation.

(c) Schedulability. By applying the schedulability check (cf. Sec. 4.1) only fea-
sible configurations are generated. Furthermore, if desired by the user, an
offline schedule plan for a chosen configuration is computed.

(d) Modes. In Sec. 4.2 we extend our approach by considering system modes,
and thus facilitating more resource-efficient configurations.

(e) Stability. The reconfiguration calculation (cf. Sec. 4.4) tries to find recon-
figurations that, when applied, lead to minimal changes with respect to the
previous system state (prior reconfiguration).

We implemented our methodology as an Eclipse plug-in for OSATE1 (Open
Source AADL Tool Environment).

2 ASAAC

The main purpose of the ASAAC programme was to investigate the applicability
of IMA on modern avionics systems and to implement corresponding standards
in conformance with IMA (STANAG 4626, EN 4660), denoted IMA/ASAAC
standards, satisfying the following goals [4, 5]: (i) reduced life cycle costs, (ii)
improved mission performance, and (iii) improved operational performance.

In the following, we briefly highlight those concepts of IMA/ASAAC standards
that are relevant for this paper. A more detailed description of these concepts
1 http://www.aadl.info
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and of IMA consideration in the ASAAC programme in general can be found
in [4, 5].

Software Architecture. To obtain the independence between the hardware
and software components in an aircraft, being the most important characteristic
of an IMA system, IMA/ASAAC standards follow a three layer stack concept
for the software architecture of such systems: (i) application layer, (ii) operat-
ing system layer, and (iii) module support layer. The communication (and the
independence) between the layers is established through standardised interfaces.

System Management. One of the major concepts of the IMA/ASAAC stan-
dards is the system management, which is responsible for the management and
controlling of the aircraft system starting with its initialisation, during the whole
flight and until the system is completely shut down. The system management
consists of two parts and it spans both the application and the operating system
layer. On the former layer resides the application management, and on the latter
resides the generic system management, which has more responsibilities and pro-
vides means for specific important tasks, e. g., identifying and providing solutions
in case of a fault occurrence: health monitoring, fault management, configuration
management and security management. In order to achieve a better management
performance, IMA/ASAAC systems include the following system management
hierarchy: Aircraft (AC) level is the top level of an IMA/ASAAC system and is
responsible for the management and controlling of the whole underlying system.
Integration Area (IA) level represents a subsystem consisting of the resources
of closely related system applications and is responsible for the management and
controlling of the subsystem it represents. An IA may be composed of further IAs.

Aircraft 
level

Integration Area 
level

Resource Element 
level

Integration Area 
level

Fig. 1. The IMA/ASAAC system hierarchy

Resource Element (RE)
level is the lowest level of an
IMA/ASAAC system and in
the system hierarchy, and is
responsible for the manage-
ment and controlling of the
hardware components.

Such a system (manage-
ment) hierarchy is shown
in Fig. 1. Each level of the
hierarchy is managed by its
corresponding system man-
agement component. How-
ever, the application man-
agement can be found only on the AC and IA levels, respectively, since RE
is responsible for hardware only. Whereas the generic system management is
present in all three levels. An IA can be seen as a partition, as the applications
residing on an IA can be allocated only on the hardware managed by the REs
belonging to this particular IA.
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System Blueprints. The concept of blueprints is important for IMA/ASAAC
systems as they define the whole system design and setup, and are used by the
system management to manage and control the system. IMA/ASAAC standards
distinguish between (i) design time and (ii) run time blueprints. The former are
compiled at design time. The latter represent simply a translation of all the
necessary system data, such as the mapping of software to the underlying hard-
ware (allocation); the interconnection between software components and hard-
ware components, respectively; and the partitioning [11] of the system, from the
design time blueprints into a standardised database storage, forming the final
system blueprint, which is loaded into the aircraft and is accessible at run time
by the system management. A system blueprint represents a valid system con-
figuration that according to the IMA/ASAAC standards “is described in terms
of configuration states and transitions between configuration states” [4, 5].

Reconfiguration. The flexibility of IMA/ASAAC systems supports fault toler-
ance, as required by the IMA/ASAAC standards, by means of the reconfiguration
concept. A reconfiguration represents the transition of an IMA/ASAAC system
at run time from one configuration to another, either as a result of an ordinary
(initiated by the aircraft crew) or a fault-detection event. All possible recon-
figurations should be calculated at design time and be included in the system
blueprint (cf. guideline GUI-CR_15 in [4, 5]).

Common Functional Modules. Common functional modules (CFMs) provide
an IMA/ASAAC system with the necessary components to build the so called
cabinets of processors that host the software components of an IMA/ASAAC
system. Depending on their functionality, CFMs are categorised into six types
(signal processing module (SPM), data processing module (DPM), etc.). Falling
into the group of hardware components, CFMs belong to the RE level and are
managed by their corresponding generic system management.

3 Modelling IMA/ASAAC Systems

To model IMA/ASAAC systems we apply the Architecture Analysis and Design
Language (AADL) [14,15]. AADL is an SAE (Society of Automotive Engineers)
standard that supports the specification of embedded systems through multiple
abstraction levels, and it enables the application of various important system
analyses such as behavioural and schedulability analysis. AADL components are
divided into three categories:

Software represented by subprogram, data, thread, thread group, and
process,

Hardware consisting of device, memory, bus, and processor, and
System where the composition of all component types is described in a (root)

system, which can consist of further subsystems.
Each component is characterised via the type (or the interface) and its

implementation. Further characteristics of the components and their relation
to each other are given by means such as features, properties, modes, port,
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connections, and flows. In addition, AADL components can extend other com-
ponent’s type/implementation, and can be organised in packages. Detailed in-
formation on AADL can be found in [14, 15].

In the following, we will represent the modelling of IMA/ASAAC systems by
means of AADL. We will, however, focus only on the modelling of those parts
of IMA/ASAAC systems that are relevant in our approach for the calculation
of system configurations. Other parts, such as the detailed modelling of the
system management, e. g., the generic system management and its functionalities
(health monitoring, fault management, configuration management and security
management), will not be discussed here.

First steps towards the use of AADL to model IMA/ASAAC systems were
already made in 2004 [16], showing that the application of AADL facilitates a
direct support of the IMA/ASAAC concept. In this paper, we push forwards the
modelling of IMA/ASAAC systems in AADL by applying the concept of system
blueprints. For this purpose we define four blueprint categories, each of them
defined as a separate AADL package:

Application describes all software components (incl. subcomponents, e. g.,
the threads belonging to a process) and their requirements, such as required
memory, communication specifics, deadline, period and execution time.

Resource describes all hardware components of the system platform, e. g.,
the type and available memory of CFMs, as well as the operating system (OS)
that operates on.

Composition describes the composition between the components in the Ap-
plication and Resource blueprints. Here the AC, IAs and REs and their sub-
components are specified with respect to the IMA/ASAAC system management
hierarchy.

System extends the Composition blueprint, respectively the AC system,
with system allocations (given in terms of AADL predefined property Actual_-
Processor_Binding) and fault-triggered reconfigurations (given in terms of a
state machine with modes and transitions between them).

Listing 1. AADL example
1 system Aircraft
2 properties
3 ASAAC_Properties::Elem_Type => AC;
4 end Aircraft;
5 system implementation Aircraft.impl
6 subcomponents
7 IA: system IA.impl;
8 RE: system RE.impl;
9 APP: system Application::Application.impl;

10 Platform: system Resource::Platform.impl;
11 end Aircraft.impl;

Components such as AC,
IA, RE, Application (consist-
ing of processes), CFM (consist-
ing of processors and mem-
ory) and the Platform (con-
sisting of CFMs and other
AADL hardware components)
are modelled each as an
AADL system. The system
states (excluding reconfigura-
tions) are captured by means
of an AADL state machine

(Statemachine). Each state reflects a system mode (take off, navigation, land-
ing, etc.).
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We model the Statemachine and its modes as a process (residing on the Com-
position blueprint), which is extended by all other processes, thus inheriting the
system modes. In order to be identified as such, the new components are anno-
tated with a corresponding property given by Elem_Type, defined in the property
set ASAAC_Properties, where further properties such as CFM_Type and OS_Type
can be found.

A simplified version of the AADL model of an aircraft level (AC) is shown
in Listing 1. In lines 1–4, where the type of the system Aircraft is specified,
the ASAAC property AC is given, i. e., Aircraft is an AC, hence the top level
of the whole system. Lines 5–11 show its implementation, where a number of
subcomponents is specified. Each of these components is in turn a system of an
ASAAC type (IA, RE, Application and Platform, respectively), and is designed
similarly to Aircraft.

4 Configuration Approach

The idea behind our approach is depicted in Fig. 2. On the top we have the
AADL blueprints of an IMA/ASAAC system, as well as the input parameters
given by the user/system designer. The main process is shown in the lower
part of the figure, namely the (re-)configuration process. In this part, schedula-
ble configurations are calculated considering the blueprint constraints and the
input parameters. Each of these configurations is checked against schedulabil-
ity requirements and has successfully passed the schedulability check performed
for the scheduling algorithms earliest deadline first (EDF) and rate monotonic
scheduling (RMS), based on the processor utilisation conditions given by Liu and
Layland [17]. Subsequently the configurations are ranked (cf. Sec. 4.3.). The de-

Application Resource Composition

IMA/ASAAC system (blueprint)

M

Configuration 
Computation

Schedulable 
Configurations

Configuration 
Ranking

Ranked
Schedulable 

Configurations

(Re-)configuration process

Reconfiguration

Input
Parameters

Configuration
Selection

Fig. 2. Our (re-)configuration approach

cision of which configuration will be eventually chosen is solely made by the
(experienced) system designer, who selects the preferred configuration and initi-
ates the configuration computation again. However, the goal is now to calculate
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possible reconfigurations for the originally selected one, by considering different
topologies that reflect hardware malfunction. Both the chosen configuration and
its valid reconfigurations are integrated into the AADL System blueprint (not
shown in Fig. 2). In the following we will discuss in more detail each step of the
configuration calculation process.

4.1 Calculation

The generation of possible system configurations is based on constraints φ ex-
tracted from system model M, described by AADL blueprints.

Definition 1 (Allocation). An allocation μ is a mapping of threads t ∈ T to
processors p ∈ P , i. e., μ : T → P , where T denotes the set of threads and P the
set of processors in a system model M, respectively. An allocation μ for model
M is called feasible, denoted M, μ |= φ, iff it satisfies the constraints φ.

Definition 2 (Configuration). Let γ = 〈M, μ〉, γ ∈ Γ , be a system configu-
ration, where M is a system model, μ an allocation for M, and Γ the set of all
configurations. A configuration γ is called feasible if μ is feasible. ΓMφ denotes
the set of feasible configurations (the configuration suite) for system model M.

For a system model M, we assume that the following constraints are encoded
into the SMT formula φ (in this case the theory of linear integer arithmetic with
Boolean constraints).

Constraint System. A feasible configuration γ has to ensure both (i) struc-
tural, denoted Si , and (ii) non-functional constraints, denoted Ni . Thus, in order
to find feasible configurations, the generation of configurations has to consider
both types of constraints, which are listed below:

S1 (Partitioning) The allocation is performed with respect to the ASAAC sys-
tem hierarchy (cf. Sec. 2), i. e., for instance, software components of an IA
can only be bound/allocated to hardware components belonging to this IA
(or its subsystem IAs).

S2 (CFM_Type) Threads of a process that requires a certain CFM type, can
only be allocated onto processors, whose parent module is of the respective
CFM type.

S3 (OS_Type) Threads of processes that belong to an application requiring a
certain operating system (OS) type, can only be allocated onto processors,
whose parent module provides the respective OS type.

S4 (Locality) All threads belonging to the same process shall be allocated onto
the same processor.

N1 (Memory) The memory capabilities of modules shall not be exceeded by the
memory requirements of processes, whose threads are bound to the proces-
sors of these modules.

N2a (Processor Utilisation) All threads bound to a processor shall not exceed
the specified processor utilisation limit as given in Equation 2.
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To generate the configuration suite, we use a technique similar to iterative SAT
solving [18], but in contrast, we use SMT formulae, thus benefiting from both
Boolean and mathematical reasoning. This approach generates iteratively a con-
figuration suite ΓMφ , i. e., a set of configurations for system model M satis-
fying the constraints φ. We start with an empty set of configurations Γ0 =
∅ and iteratively add further configurations yielding Γq ⊆ ΓMφ with Γq =
{γ1, . . . , γq}, 1 ≤ q ≤ m until we have reached a fixed point. This leads to
Γ0 ⊂ Γ1 ⊂ . . . ⊂ Γm = ΓMφ where m is the m-th iteration of the procedure.

Listing 2. Iterative
Configuration Enumeration
1 func ICE(M, φ)
2 begin
3 q := 0;
4 Γq := ∅;
5 CC0 := φ;
6 while ∃γq+1 : M, μq+1 |= CCq do
7 begin
8 γq+1 := getSolution();
9 Γq+1 := Γq ∪ {γq+1};

10 CCq+1 := CCq ∧ ¬γq+1;
11 q := q + 1;
12 end;
13 return Γq ;
14 end;

We start in the first iteration with con-
figuration constraint CC0 := φ, which
only encodes the structural and non-
functional requirements, leading to Γ1 =
{γ1} if there exists one. In the q-
th iteration, the method provides—by
construction—a new configuration γq+1 if
there is one. If in the q-th iteration no
further configuration can be found, the
fixed point has been reached. As long as
there are new configurations, the proce-
dure continues using γq+1 to build the
configuration constraint CCq+1 on basis
of CCq (following (1)).

CCq+1 := CCq ∧ ¬γq+1 q ≥ 0 (1)

Adding the negated configuration result γq+1 (cf. line 10), obtained using
getSolution() in line 8, ensures that this solution is excluded from subsequent
SMT solver solutions. In this way, all possible configurations are enumerated
leading to the configuration suite ΓMφ in the m-th iteration when the fixed point
is reached, consisting of only unique configurations.

Schedulability Check. IMA/ASAAC systems profit from the configuration
suite only if it contains schedulable configurations. Those configurations are fea-
sible configurations and thus have to make sure that all deadlines are met. For
this purpose, during the calculation process, we apply the processor utilisation
U(p) for processor p given by Liu and Layland [17]:

U(p) =
∑

t∈T (p)

wcett
πt

(2)

where wcett is the execution time of thread t ∈ T (p) on processor p, πt is the
period of t, and T (p) is the set of threads residing on processor p.

Online/Dynamic Scheduling. In the case U(p) ≤ n(21/n − 1) (≈ 0, 7), with
n = |T (p)|, then the configuration is schedulable for RMS. In the case U(p) ≤ 1
holds, we say the configuration is schedulable for EDF. This check is done for
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each processor and the set of threads residing on them. The configurations not
satisfying the processor utilisation condition are no further investigated and thus
discarded.

Offline/Static Scheduling. If all threads are periodic and an offline schedule for a
configuration (satisfying U(p) ≤ 1) is sought by the system designer, a schedule
plan wrt. a schedulable configuration is automatically calculated (cf. Fig. 3).
Similar to [19], we use the proof that the schedule plan is valid as provided by
the hyper-periodH given by Leung and Merrill [20], i. e., if for a given scheduling
plan within the interval [0, H ] all deadlines are met, with H = lcm(πt | t ∈ T (p))
defined as the least common multiple (lcm) of all thread periods πt, then this
applies as a proof that the schedulability of the configuration is feasible.

T3

T4

T1

T2

0 105 210 315 420 525 630 735 840 945 1050

(a) A schedule plan within the hyper-period (given in ms)

Thread d p wcet

T1 70 70 10
T2 35 35 10
T3 150 150 10
T4 50 50 5

(b) Attributes (in ms)

Fig. 3. Scheduling plan example

In Fig. 3a an example of such a scheduling plan is given, which shows four
threads T1 to T4 allocated on a processor p with U(p) ≈ 0, 59 and hyper-period
H = 1050ms. Their attributes are given in Fig. 3b. As both conditions (i)
U(p) ≤ 1 and (ii) all deadlines are met within the interval [0, H ], are satisfied,
the given set of threads allocated on p is schedulable and the plan is valid.

4.2 System Mode Consideration

In order to achieve tight allocations, i. e., to use the available resources as good
and efficient as possible, we extend our approach with the consideration of system
modes (take off, navigation, landing, etc.). This extension allows the allocation
of a larger number of processes/threads into processors, as not all of threads are
active at the same time or active on the same system mode, respectively. For this
purpose we need to separately consider the processor utilisation (cf. Equation 2)
for a processor p on each system mode m ∈ M , denoted U(p,m), where M
is the set of all system modes. Thus, for the same set of threads bound on
the same processor p it holds U(p,m) ≤ U(p) and

∑
m∈M U(p,m) ≥ U(p).
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When considering system modes, constraint N2a is replaced by the following
constraint:

N2b (Modes) For each single mode m ∈ M , all threads bound to processor p
and active on mode m shall not exceed the specified utilisation U(p,m).

Let us consider the example in Table 3b and assume that the threads T1 to
T3 are active on system mode take off (T ), and T2 and T4 on mode landing
(L). Both utilisations U(p, T ) (≈ 0, 49) and U(p, L) (≈ 0, 38) are less than U(p)
(≈ 0, 59), allowing further threads to be allocated on p.

4.3 Configuration Ranking

For the ranking of configurations (currently) we consider memory (consump-
tion) and processor utilisation. The ranking is based on a scoring system where
for each configuration the median value of (i) all processor utilisations and the
corresponding (ii) memory consumption is calculated and the configurations are
ranked, respectively; the position in the rankings is considered as the ranking
score (position = score). In the case that the scores for two (or more) con-
figurations are equal, we compare the average, maximum and minimum value,
respectively. For each configuration the ranking scores in (i) and (ii) are summed
up yielding the final ranking score. If two (or more) configurations have the same
score, these configurations are considered as equal wrt. (i) and (ii). The configu-
ration ranking should be understood only as assistance for the system designer
in choosing the final configuration. Thus, which configuration is finally chosen is
merely at the discretion of the system designer.

For example, consider configurations C0 with scores: 5 in (i) and 1 in (ii) and
C1 with: 3 in (i) and 2 in (ii). Adding up the scores we get for C0 : 5 + 1 = 6 and
for C1 : 3 + 2 = 5, thus C1 is ranked higher, thus in a better position than C0.

4.4 System Reconfiguration

Besides the computation of possible system configurations, the presented ap-
proach is also best suited to generate reconfigurations (cf. Sec. 2). Reconfig-
urations are performed (at run time) based on statically, i. e., at design time
computed configuration alternatives. These alternative configurations take into
account different malfunction scenarios: in principle all possible combinations of
the unavailability of single or multiple processors/modules can be considered.

In this approach, we purse the objective of stability. That is, for a configu-
ration γ, a proper reconfiguration γ� with respect to a hardware malfunction
is computed with a maximum of similarity. The procedure tries to keep those
parts of the configuration γ the same that correspond to unaffected hardware
entities. We distinguish the following cases: (i) breakdowns of processors, and (ii)
breakdowns of modules containing processors. In the first case, threads are not
allowed to be bound to the broken processors, and in the second case, threads
are not allowed to be bound onto any processors of a broken module. The second
case also subsumes the circumstance that a module cannot be reached due to a
broken network link.
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5 Prototype Evaluation

Our method is implemented as an Eclipse plug-in prototype for OSATE. The
plug-in allows the system designer to easily specify the input parameters: which
scheduling algorithm to use, should the modes be considered, is a schedule plan
desired, and the utilisation factors. The utilisation factors are used to tune
memory and processor utilisation (constraints N1, N2a/N2b), respectively,
e. g., for RMS with a utilisation factor of 0.5 we get a processor utilisation of
≈ 0.7 × 0.5 = 0.35. All the given parameters are integrated into the constraint
system (cf. Sec. 4.1).

Table 1. Results

Algo Modes 1.0 0.9 0.8 0.7 0.6 0.5

EDF OFF ≥ 103 ≥ 103 76 - - -
EDF ON ≥ 103 ≥ 103 ≥ 103 ≥ 103 ≥ 103 ≥ 103

RMS OFF - - - - - -
RMS ON ≥ 103 ≥ 103 ≥ 103 ≥ 103 37 -

To evaluate the pro-
totype, the IMA/ASAAC
systems were automati-
cally generated with dif-
ferent settings, as pro-
vided by our industrial
collaborators, which are
used as generation con-
straints for our evalua-
tion purposes. We want to

highlight here the advantage of considering system modes on the configuration
calculation process. In Tab. 1 the configuration results of a rather small sys-
tem (with 32 threads and 6 processors) are shown. The first column shows the
scheduling algorithm used (EDF or RMS), the second column indicates if system
modes are considered (ON) or not (OFF). The columns 3 to 8 show the util-
isation factor used. While during the configuration calculation, with EDF and
modes OFF, only 76 configurations could be calculated for a utilisation factor of
0.8 and none for less than 0.8, with modes ON it was possible to even find more
than 1000 unique configurations for all utilisation factors up to 0.5. Due to the
nature of the chosen system, no configurations could be found for RMS with no
mode consideration (OFF). However, considering modes (ON), it was possible
to calculate configurations for RMS for all utilisation factors up to 0.6.

In Fig. 4 the best ranked (of 100) configurations (for RMS, with modes
(ON)/(OFF) and factor 1.0) of a system with 116 threads and 9 processors
are depicted, summarising the corresponding minimum, maximum, average and
median values wrt. the processor utilisations U(p) (first 4-column group) and
U(p,m) (the rest 4-column groups for each mode: Navigation(N), TakeOff (T),
GroundProcedure(G) and AutomaticLanding(A)). Comparing the U(p) values
in Fig. 4a and Fig. 4b it can be noticed that the U(p) in Fig. 4b exceeds the
limit of 0.7, however, this shows only the U(p) values corresponding to the actual
allocations wrt. to each U(p,m), as only the latter do not exceed the limit of
0.7. It can be also noticed that at least on one processor no thread is allocated
in mode GroundProcedure. This allows more threads to be allocated on that
specific processor.

The advantage of considering modes (cf. Tab.1 and Fig. 4) is best observed
when utilisation factors are used and most importantly during the reconfigu-
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ration calculation, where unallocated processes/threads, due to less available
hardware, still have allocation possibilities as a result of U(p,m) ≤ U(p).

For the encoding of our constraint system, which has to be satisfied for feasible
configurations, we proceed as follows: while constraints S1 to S3 can be checked
statically by analysing the IMA/ASAAC system hierarchy, the remaining con-
straints are encoded into an SMT formula φ. The formula φ is then handed over
to the SMT solver (in our case we used the award-winning high-performance
SMT solver YICES [21]). Mostly for testing purposes, we have integrated into
our prototype and explored two different encoding schemes: integer and division-
weighted, and Boolean-weighted. The former scheme used 0/1-Integer and the
latter Boolean indicator variables for the thread to processor mapping. To our
surprise, the latter scheme turned out to lead to quite long calculation runs.
Depending on the size and structure of the system, using the former encoding
scheme the calculations were (in average) up to 60 times faster.

U(p) U(p, N) U(p, T) U(p, G) U(p, A) 
Min 0,572 0,117 0,172 0,117 0,196 
Max 0,699 0,431 0,463 0,320 0,357 
Avg 0,647 0,285 0,298 0,215 0,282 
Med 0,659 0,290 0,283 0,189 0,301 
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(a) No modes (OFF) and util. factor 1.0

U(p) U(p, N) U(p, T) U(p, G) U(p, A) 
Min 0,138 0,107 0,100 0,000 0,040 
Max 1,378 0,683 0,584 0,482 0,660 
Avg 0,664 0,286 0,299 0,227 0,286 
Med 0,620 0,209 0,256 0,225 0,271 
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(b) With modes (ON) and util. factor 1.0

Fig. 4. RMS scheduling

6 Related Work

There exists a wide variety of approaches that deal with modelling of real-time
and safety-critical systems, as well as their scheduling. We will focus mainly on
those that deal with AADL.

Delange et al. [19] presented an approach for modelling IMA systems in AADL
with respect to the ARINC 653 [6] standard, using the ARINC 653 Annex of
AADL. Furthermore, they introduce an efficient toolchain allowing amongst oth-
ers to automatically perform schedulability analysis and corresponding C code
generation. For scheduling they use the real-time scheduling framework Ched-
dar [22]. In [23], a similar approach for modelling IMA systems was introduced,
where a different schedulability analysis methodology [24] was proposed.

Aleti et al. [25] developed the tool ArcheOpterix that applies evolutionary
algorithms for optimising embedded systems architectures. These architectures
can be modelled in AADL and for a given set of constraints, such as memory
requirements and restrictions/permissions for processes to be allocated on the
same processor, optimised system allocations are found.
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De Niz et al. [26] presented a partitioning approach based on the bin-packing
algorithm, which is efficiently applied for system allocations by keeping low the
number of processors needed (with best-fitting allocations) as well as low off-
board intercommunication between processes. The method is integrated in OS-
ATE thus applicable to AADL system models [27].

Besides that none of the approaches mentioned above deal with IMA/ASAAC
systems, none of them tackles the system configuration/reconfiguration and
blueprint concept, nor do they provide means that facilitate flexible/tunable
configuration calculation with respect to memory consumption and processor
utilisation.

7 Conclusion
We have introduced in this paper a novel approach for the calculation of sys-
tem (re-)configurations of IMA/ASAAC systems. For this purpose we designed a
modelling concept for system blueprints of IMA/ASAAC systems using AADL.
From the AADL blueprints we extract a set of constraints, which we encode into
an SMT formula and the solutions of which represent the sought schedulable
configurations. We include into the set of constraints input parameters given by
the user/system designer, such as the specification of the scheduling algorithm
to be considered and the utilisation factors, allowing the user to steer the con-
figuration calculation. Furthermore, and most importantly, we consider system
modes in the calculation process. As the evaluation of the prototype shows, this
facilitates more compact allocations, and thus maximises the benefit from the
potential of the underlying hardware, and increases the quality and the number
of possible system (re-)configurations.

Currently we are preparing a real industrial case study to thoroughly evaluate
our prototype. As future work it naturally fits into the agenda the extension
of the framework in order to consider further constraints, e. g., communication
load between processes, the extension of the modelling concept for IMA/ASAAC
systems to include system management properties into AADL blueprints, as well
as the consideration of software exclusion during reconfiguration calculation,
e. g., in the case where only minimal resources (hardware and software) are
available to perform a safe landing or to complete the mission.
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Abstract. Runtime verification techniques are increasingly being applied in in-
dustry as a lightweight formal approach to achieve added assurance of correct-
ness at runtime. A key issue determining the adoption of these techniques is the
overheads introduced by the runtime checks, affecting the performances of the
monitored systems. Despite advancements in the development of optimisation
techniques lowering these overheads, industrial settings such as online portals
present new challenges, since they frequently involve the handling of high vol-
ume transaction throughputs and cannot afford substantial deterioration in the
service they provide.

One approach to reduce overheads is the deployment of the verification com-
putation on auxiliary computing resources, creating a boundary between the sys-
tem and the verification code. This limits the use of system resources with re-
source intensive verification being carried out on the remote-side. However, under
particular scenarios this approach may still not be ideal, as it may induce signif-
icant communication overheads. In this paper, we propose a framework which
enables fine-tuning of the tradeoff between processing, memory and communi-
cation monitoring overheads, through the use of a user-configurable monitoring
boundary. This approach has been implemented in the second generation of the
Larva runtime verification tool, polyLarva.

1 Introduction

Due to its scalability and reliability, runtime verification [2] is becoming a prevalent
technique for increasing the dependability of complex, security-critical, concurrent sys-
tems. Runtime verification broadly consists in checking for the correctness of the cur-
rent system execution at runtime; it avoids checking alternative system execution paths
and this, in turn, helps mitigate state-explosion problems associated with exhaustive
techniques such as model checking. In scenarios where delayed correctness violation
detection is unacceptable, runtime verification needs to be carried out in a synchronous
fashion with the execution of the system. Invariably, synchrony increases the interaction
with the system being monitored 1 and introduces overheads whose effects, particularly
at peak times of system load, are hard to predict and may affect adversely the system
behaviour.

1 Although the monitoring for system events and the verification of the generated events against
a specification are different operations, they are generally subsumed by the term runtime veri-
fication or runtime monitoring in the literature. We will use the terms interchangeably.
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This issue is particularly relevant to scenarios such as online betting and e-commerce
systems, where systems need to adequately handle multiple concurrent requests, result-
ing in uneven loads with peaks at particular times e.g., during an important sporting
event. The sheer size and complexity of such online portals, compounded with the
security-intensive nature of their execution (carrying a significant probability of fraud
attempts) makes synchronous runtime verification a good candidate for increased run-
time assurance. However, for this to be viable, the overheads introduced by the moni-
toring should not compromise the availability of system resources at any stage of the
execution of the system.

A possible approach to reduce the system overheads introduced by runtime veri-
fication is to deploy the synchronous verification processes onto separate computing
resources: events of interest generated by the system are sent over to the remote-side
(resources), where the necessary monitoring computation takes place and, as soon as
the remote-side deduces that the system has not violated the specification, control is
returned back to the system-side thereby allowing the system to proceed. This approach
promises to be effective when monitoring highly parallel systems because the synchrony
required between monitor and system usually concerns only a subset of the system pro-
cesses. Stated otherwise, in a system with a high degree of parallelism, the processes
that are not covered by the current runtime check may continue executing unfettered
on the system-side, without being burdened by the cost of the verification computation.
In cases of resource-intensive monitoring, this cost in (monitored) system performance
offsets any additional slowdown stemming from the added communication overhead
introduced by the distributed monitoring architecture.

For instance, consider an e-commerce system handling transactions of users that are
categorised as either greylisted (untrusted) or whitelisted (trusted) and a correctness
property for each greylisted user involving a computationally expensive statistical anal-
ysis of all financial transfers performed by that user. Performing the greylisted user
checks remotely frees the system-side from the associated computational overhead, en-
suring that whitelisted users (and other greylisted users not performing a transfer at the
moment) are not affected by the monitoring computation.

However, shifting all monitor checking to the remote-side is no silver bullet. In cer-
tain cases, performing verification checks remotely is impractical because these checks
would require access to resources and state information kept by the system e.g., a lo-
cal database; a remote evaluation of these verification conditions would require either
resource replication or expensive remote access of resources. Furthermore, even when
verification checks do not require access to system-side resources, there are still in-
stances where shifting all runtime verification checks to the remote-side does not yield
the lowest level of overhead. For instance, whenever the slowdown associated with
communication outweighs the benefits gained from shifting monitoring checks to the
remote-side, it is advantageous to perform the verification check at the system-side,
circumventing any communication overhead. In the above e-commerce example, we
may have a property stating that greylisted users may not transfer more than $1000 in
a single transaction: since the cost of a single integer comparison is typically less than
that of communicating with the remote-side, it may pay to monitor the property on the
system-side.
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Even more complex situations may also arise. Consider again the e-commerce sys-
tem which checks greylisted users for fraud. In this case, in order to minimise monitor-
ing overhead, it may be advantageous to split the verification check across the system-
side and remote-side. More precisely, in order to avoid communication overheads the
check of whether a user is greylisted or not is performed on the system-side; this obvi-
ates the need for any communication with the remote-side (where the expensive statis-
tical check is performed) whenever the user is whitelisted.

These examples attest that, in settings where verification can be done remotely, ad-
equate control over where and when the verification computation is executed is es-
sential for minimising the overheads of runtime monitoring security-critical concurrent
systems. In spite of this need, the existing technologies that can be used for remote-
verification (e.g., [8]) do not offer structuring mechanisms to support the fine-grained
distribution control just discussed. In this paper, we propose a runtime verification sys-
tem with a configurable monitoring-boundary enabling the user to decide which ver-
ification tasks are to be computed on the system side and which are executed on the
remote side. This approach has been implemented in the tool polyLarva, the second
generation of the tool Larva [5], where language-support is provided to enable the user
to easily stipulate the system-monitor boundary. Such added flexibility empowers the
user to decide the best allocation strategy for the runtime check at hand.
The contributions of the paper are:

1. the presentation of a framework enabling the fine tuning of system-side and remote-
side computations;

2. showing the feasibility of the framework through its realisation in the polyLarva
tool; and

3. evaluating the approach through a number of case studies, measuring the effect of
changing the configuration of the monitoring boundary.

The paper is organised as follows. In Section 2 we present our specification logic, the
target architecture and the mapping from the logic to this architecture. Section 3 in-
troduces the case study used to demonstrate the utility of our approach and Section 4
discusses the tests performed and the results obtained. Section 5 reviews related work
and Section 6 concludes.

2 Configuring the Monitoring Boundary

We limit ourselves to an interpretation of runtime verification that consists of two main
components. The behaviour of the system being monitored is characterised by a stream
of events which are analysed by a monitor which may be composed of various mon-
itoring tasks such as condition valuations and state updates. Our proposed framework
provides mechanisms, in the guise of a monitoring boundary, for controlling the local-
isation of the monitoring tasks, when setting up the runtime verification configuration.
One can therefore use this boundary to minimise the execution overhead introduced by
the instrumented runtime verification on the system. An important caveat is that the par-
titioning of monitoring components between the system-side and remote-side largely
depends on the kind of logic used and the forms of actions handled by the monitor.
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For instance, if the logic is a simple one limited only to identifying undesirable events,
i.e., no temporal event ordering, then verification essentially requires little computation,
which does not leave much scope for a monitoring boundary. However in more complex
logics, such as LTL e.g., [7,10], the monitor has to keep track of how much of the LTL
formula one has already matched. Similarly, in logics expressed as symbolic automata
e.g., [5], one can directly program the monitor state; this gives more flexibility as to
how much and which parts of the code are to be executed on either side. Analogously,
the extent and the nature of the actions taken by the monitor also determines the level
of placement manouvering that can be performed to minimise overheads.

2.1 Monitoring Using polyLarva

Our monitoring framework polyLarva uses a guarded-command style specification lan-
guage. Properties are expressed as a list of rules of the following form:

event | condition �→ action
Whenever an event (possibly carrying parameters) is generated by the system, the list of
monitor rules is scanned for rule matches relating to that event. If a match is found, the
expression specified in the condition of the rule is evaluated and, if satisfied, the action
is triggered.

Example 1. Consider a scenario in which one desires to monitor whether a greylisted
user pays using a credit card after verifying it, blacklisting offending users if this rule
is violated. This may be expressed in terms of the following two rules for each active
user:2

register(user, card) | isGreylisted(user) �→ registeredCards[card] := true;
pay(user, card) | isGreylisted(user) ∧ ¬registeredCards[card] �→ blacklist(user);

In the above rules, register and pay are system events, parametrised by the values
user and card; isGreylisted(user) and ¬registeredCards[card] are conditions, while
registeredCards[card] := true and blacklist(user) are actions taken by the system.
While some conditions and actions may be cheap to perform (e.g. registeredCards
[card] := true consists of a single assignment), others may be more computationally
expensive (e.g. a condition checking whether an ongoing transaction is fraudulent or
not may require more computation).

2.2 The Target Architecture

Our approach gives sufficient high-level mechanisms such that a user can configure
the monitoring boundary for synthesised lists of rules discussed in Section 2.1. This
architecture allows for the possibility of having two sub-monitors that are automati-
cally synthesised from a polyLarva script, one on the system-side and the other on
the remote-side as shown in Figure 1. Communication across nodes is carried out using
socket connections: socket-based communication is low-level enough to be optimisable,
while also providing the flexibility of technology-agnosticism.3

2 For simplicity, we assume that the array of registered cards starts offwith all cards unregistered,
and that only a single user may access a particular card.

3 As future work polyLarvawill be extended to support multiple technologies.
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Fig. 1. Separation of monitor and system in polyLarva

The typical monitoring control flow over such an architecture proceeds as follows:
(i) Events generated on the system-side trigger matching rules; (ii) Once a matching
rule is found, the condition to be evaluated is determined. This condition is made up of
a conjunctive sequence of (arbitrarily complex) basic conditions that are joined using
normal negation, disjunction and conjunction operators. The basic conditions are cat-
egorised as either system-side conditions, i.e., predicates which are to be evaluated on
the system-side, or remote-side conditions, i.e., predicates which should be evaluated at
the remote-side; (iii) The evaluation of the condition starts and control is passed back
and forth between the monitoring component on the system-side, whose role is that of
evaluating the system conditions, and the monitoring component on the remote-side,
whose role is to evaluate monitor conditions and coordinate control associated with
the boolean operators. (iv) If the condition succeeds, the list of actions dictated by the
matched rule is executed sequentially. Once again, actions are categorised as system-
or remote-side, which entails passing control back and forth between the two sides; (v)
Upon termination of the last action, control is passed back to the system to proceed.

Numerous variations and optimisations can be performed over the basic architec-
ture of the above control flow. For instance, it may be beneficial to perform the rule
matching process on the system-side, which avoids the overhead of communicating
the event to the remote-side when a rule is not matched. In cases when the matched
rule consists solely of system conditions and system actions, communication with the
remote-side can be avoided altogether if the system-side monitoring component is en-
trusted with rule coordination capabilities. A similar situation may arise if part of the
monitoring state is held at the system-side. Most of these optimisations are however
case-dependent and do not apply to all verification specifications in general. Thus, such
decisions cannot be automated: their control is best elevated at specification level and
left to the verification engineer.
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2.3 The Implementation

In polyLarva the rules presented in Example 1 are coded as shown in Program 2.1.
The rules are enclosed within a rules block, ①, which replicates them for every new
user session that is opened, ②. The state, conditions and actions blocks define
specification-specific monitor state, conditions and actions respectively that are used
later in the rules section.

Program 2.1. Monitoring greylisted users for card registration
② upon (newUserSession(u)) {

state {
remoteSide { boolean[] registeredCards; }

}
conditions {
systemSide { isGreylisted(u) = ... }

remoteSide { isRegistered(c) = { registeredCards[c] } }
}
actions {
systemSide { blacklistUser(u) = ... }

remoteSide { registerCard(c) = { registeredCards[c] := true } }
}
① rules {
register(u,c) \ isGreylisted(u) -> registerCard(c);
pay(u,c) \ isGreylisted(u) && !isRegistered(c) -> blacklistUser(u);

}
}

In this example, blacklistUser(u) is a system action changing the internal state
of the system relating to user u, whereas registerCard(c) is a remote action af-
fecting the remote state registeredCards (a boolean array keeping track of which
card numbers have been registered). Similarly, isGreylisted(u) is a system condi-
tion whereas isRegistered(c) is a remote condition, evaluated using the remote state
registeredCards. As a result, the first rule’s condition depends solely on system in-
formation, while the second refers to both the system state (whether a user is greylisted)
and the remote state (whether the card was previously registered).

Deciding whether to place conditions and actions on the system-side or the remote-
side to yield the minimum overhead is not straightforward and case-dependent. In the
next section we use a real-life case study to investigate the alternatives.

3 Case Study

polyLarva has been used to monitor JadaSite4 — an open source e-commerce solu-
tion written in Java, offering a range of features from back-office administration to au-
tomatic inventory control and online sales management. The case study focusses on

4 http://www.jadasite.com

http://www.jadasite.com
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adding monitoring functionality to analyse user transactions in order to detect and pre-
vent fraudulent transactions. Performing fraud detection in an offline manner, through
the analysis of logs, is not ideal since by the time the analysis is carried out, a fraudulent
user may have affected multiple transactions. Synchronous monitoring, enabling block-
ing a user upon suspicion of fraud, is desirable. Unfortunately, effective fraud detection
typically requires costly analysis of the user’s history, involving multiple database ac-
cesses and processor-intensive calculations. Furthermore, since at peak times the system
may have multiple users performing transactions concurrently, reducing the overhead
is crucial.

The most straightforward partitioning is to place only parts which refer to the system
state on the system-side, and placing the rest of the code on the remote-side. Through
the code in Program 2.1 we see how polyLarva allows the actions and conditions to
be tagged in such a manner (highlighted in grey) instructing this code partitioning.
However, partitioning of code can involve more intricate situations.

Example 2. Consider the following extension to Example 1 with the property that un-
trusted customers are not allowed to perform a payment if the probability of a fraud
being committed is above a certain threshold.

pay(user, card) | ¬isWhitelisted ∧ isFraudulent(user) �→ failTransaction(user, card);

The check for possible fraud is assumed to be a computationally expensive statistical
analysis, while the decision of whether a customer is whitelisted is assumed to depend
on the number of safely concluded payment transactions the user has already performed.
The monitoring execution of this property is depicted in Figure 2[left]), where the mon-
itor is notified of the relevant events (newUserSession and pay), updates its customer
state (increasing the number of transactions), checks any other appropriate conditions
(checks the transaction with the customer history for fraud patterns), and performs ac-
tions accordingly (stopping the transaction) before returning control to the system. Pro-
gram 3.1 shows an encoding of this example in polyLarva, except for the location of
state, conditions and actions, which will be discussed later.

Choosing the location of the monitoring code depends on different issues. For instance,
since the fraud check ③ is assumed to be a resource-intensive operation, locating it on
the remote-side relieves the system of the overhead, thus remaining responsive to the
rest of the users. The stopping of a transaction ⑤ is an action which affects the system,
meaning that it has to be located there. Finally, the transaction count is kept as a monitor
state, ①, read by the monitor condition isWhitelisted③ and written to by the verifier
action incrementTransactionCount⑥. This suggests that the three entities should
be co-located so as to reduce additional communication for remote state access. Since
the computation associated with this state is lightweight, it can be feasibly located on
the system-side without affecting the system performance in any considerable manner.
The script which specifies such a boundary configuration is shown in Program 3.2, with
the resulting communication pattern shown in Figure 2[right].

Note that control may have to go back and forth the two sides multiple times due to
the way the rules are structured. From this, it should be clear that (i) from a communi-
cation point of view, it would appear to be desirable to commute the two conjuncts on
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Program 3.1. Monitoring for fraud detection
upon { newUserSession(u) } {
state {

① integer transactionCount;
}
conditions {

② isWhitelisted = ...transactionCount...
③ isFraudulent(u) = ...CPU intensive algorithm...

}
actions {

④ incrementTransactionCount = transactionCount++;
⑤ stopTransaction(u,c) = ...

}
rules {

⑥ startTransaction \ true -> incrementTransactionCount;
⑦ pay(u,c) \ !isWhitelisted && isFraudulent(u) -> stopTransaction
(u,c);
}

}
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Program 3.2. Tagging the case study with a monitoring boundary
② upon newUserSession(u) {
conditions {
systemSide {
isWhitelisted(u) = {
EntityManager em = JpaConnection...
... query = em.createQuery(sql);
Long custTransNo = (Long) query.getSingleResult();
return (...custTransNo.intValue()...)

}
}
remoteSide { isFraudulent(u) = ...CPU intensive algorithm... }

}
actions {
systemSide { failTransaction(u,c) = ... }

}
① rules {
pay(u,c) !isWhitelisted(u) && isFraudulent(u) -> failTransaction(u,c);

}

line ⑦ so as to avoid control going from the monitor to the system side and back, but
the high computational cost of checking for fraudulence means that we would prefer
to start by performing the cheaper check for user trust first; (ii) If the system already
keeps a record of payment transaction counts per user in its database, one may locate the
trust checking condition to the system node, thus reducing communication by remov-
ing rule ⑥. In general, deciding the monitoring boundary can be seen as a minimisation
problem having: a system-side and a remote-side, a number of (weighted) monitoring
tasks, and a number of weighted communication signals as shown in Figure 3 (with task
represented as boxes and communication as arrows). A minimal placement is one with
the least number weighted boxes at the system-side, as few communication weights as
possible, and having conditions which fail with a high probability as early as possible.

In the next section we give case study results corresponding to different monitoring
boundary configurations showing how selected configurations can contribute to a non-
negligible reduction of the monitoring overhead in a real-life case study.

4 Results

We have carried out a series of empirical tests showing how different monitoring con-
figurations have a substantial impact on the performance of a monitored system. The
noticeable overhead differences justify the need for a verification technique that permits
flexibility with respect to the instrumented monitoring configurations i.e., a configurable
monitoring boundary. The tests also show how, in practice, the impact on system per-
formance cannot always be fully predicted at instrumentation time. Thus, a level of
abstraction that gives high-level control over the monitoring boundary, such as that
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presented for polyLarva, is required to facilitate the re-configuration of instrumented
monitors.

Our tests are carried out on the JadaSite ecommerce system introduced in Section 3.
Since the application we consider consists in a web portal handling an extensive amount
of concurrent user request, an important aspect of system performance affected by mon-
itor overheads is the Average time taken for a Payment Transaction (APT) to be pro-
cessed, which directly translates to system responsiveness. Our tests synthesise run-
time monitors for different monitoring boundary configurations for Program 3.1 using
polyLarva. Three distinct monitoring configurations were considered for our tests:

System-Side Monitoring (SM): Verification is entirely deployed on the system-side,
running on the same address space as the system (all tags are systemSide).

Remote-Side Monitoring (RM): Verification checking exclusively is carried out on
the remote-side, running on a separate machine from the system (all tags are re-
moteSide).

Hybrid Monitoring (HM): Verification checking is split between the system-side and
the remote-side as in Program 3.2.

For each user-load level, we also benchmark the performance of the Unmonitored
System (US), which helps us calculate the overhead introduced by each monitoring
configuration.

The performance of the monitored system is benchmarked subject to user loads rang-
ing from 40 to 120 concurrent user requests, involving operations such as adding items
to the shopping cart, confirming payment details and executing the payment transaction.
Load testing of the JadaSite web application, in conjunction with runtime monitoring,
is carried out using Apache JMeter 2.5.15. Java SE 1.6 is used for the compilation of the

5 http://jmeter.apache.org/

http://jmeter.apache.org/
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JadaSite system source code and for the generation and compilation of the polyLarva
monitors. JadaSite is deployed on an Apache Tomcat 7.0.236 server running on an AMD
Athlon 64 X2 Dual Core Processor 6000+ PC, 4GB RAM, running Microsoft Windows
7. The remote-side consisted of a separate machine having an Intel(R) Core(TM)2 Duo
CPU T6400, 2GB RAM with Microsoft Windows 7 operating system.

An important aspect affecting our tests is the ratio between whitelisted and greylisted
users. This is because the verification checks specified in tests such as Programs 3.1
differentiate between whitelisted users and greylisted ones: greylisted users are subject
to a monitoring condition requiring a computationally expensive fraud check whereas
whitelisted users are not. For our experiments, two-thirds of the users are chosen to
be whitelisted and the rest are considered to be greylisted. This ratio reflects more of
a realistic deployment of the system where most of the users are regular users; the
majority of these regular users are most likely to become whitelisted (trusted) after a
probation period during which their transactions do not violate any verification checks.

Table 1. Average payment transaction duration for each user wrt. user load (in secs)

Setup 40 50 60 70 80 100 120

US 11.4 17.7 24.0 28.7 37.4 56.2 69.2

SM 15.5 (35%) 21.5 (21%) 28.3 (17%) 34.6 (20%) 43.1 (15%) 67.8 (21%) 107.2 (55%)

RM 13.5 (18%) 19.7 (11%) 26.8 (11%) 34.4 (20%) 41.9 (12%) 60.4 (8%) 89.9 (30%)

HM 14.2 (24%) 22.7 (28%) 26.1 (8%) 30.9 (8%) 39.2 (5%) 58.4 (4%) 84.0 (21%)

Table 2. CPU processing units used wrt. to user load

Setup 40 50 60 70 80 100 120

US 16598 21836 28340 34026 39416 58097 73266

SM 17591 (6%) 22991 (5%) 31315 (10%) 36886 (8%) 43295 (10%) 63275 (9%) 103850 (41.7%)

RM 15215 (-8%) 20971 (4%) 26470 (-6%) 33729 (-1%) 42353 (7%) 58981 (1%) 93792 (28%)

HM 16187 (-2%) 23381 (7%) 28333 (0%) 32199 (-5%) 41195 (4.5%) 60636 (4.4%) 86216 (17.7%)

The main results of the experiments measuring the APT and the respective CPU us-
age at the system-side under different configurations can be found in Table 1 (depicted
in Figure 4) and Table 2. When compared to the base APT of the unmonitored system
in Table 1, it becomes evident that system-side monitoring (SM row) introduces sub-
stantial overheads, peaking at a level of 55% increase in APT when the tests hits a user
load of 120 concurrent transations. Table 2 indicates that the sharp increase in APT can
be attributed to the increase in CPU usage at the system-side, depleting resources from
the execution of the system.7 Such a deterioration in system responsiveness will most
likely discourage the adoption of runtime verification checks over the live system.

6 http://tomcat.apache.org/
7 Fraud checking was not memory intensive and, as a result, memory usage was not an issue.

http://tomcat.apache.org/
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Fig. 4. The average payment processing time wrt. user load

Table 1 shows that one effective way of substantially reducing overhead is by em-
ploying additional resources at the remote-side and shift all verification to the auxiliary
side (RM). Figures however show that, at a load of 120 users, overhead spike even
with this monitoring strategy reaching a level of 30% overhead increase. One possible
explanation for this is that the communication channel between the system-side and
remote-side becomes saturated causing a bottle-neck in the verification operations.

Our proposal towards solving this problem is to have a Hybrid setup, HR, leaveraging
parts of the verification on the system-side. Figures in Table 1 show that at low user
request loads, e.g., 40 and 50 users, RM performs better than a hybrid approach because
more of a less-scarce resource i.e., the communication channel, is being used as opposed
to CPU usage at the system-side. However, at higher user loads such, e.g., 80, 100
and 120 users, the balance tips in favour of shifting some verification on the system-
side, i.e., HR, where the overheads are consistently less that in the case of RM; at
these levels, a hybrid approach manages to approximately half the overheads introduced
by an extreme remote-side monitoring strategy. In more realistic distributions where
the level of untrusted (greylisted) users is even lower, a hybrid approach yielded even
better results. We conducted further experiments (see Table 3) where despite user load
increases, the number of greylisted users was fixed at 14 users. The results yield more
significant gains as the number of users increase.

In conclusion, the CPU figures obtained in Table 2 for RM and HM at low user-
request loads deserve further comment, since they appear to suggest that introducing
monitors sometimes actually reduces CPU usage. This might be attributed to reduced
context switching due to the blocked users waiting for monitor feedback.
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Table 3. APT per number of users (in secs) with increasing whitelisted users

Setup 40 70 100 120

US 11.4 28.7 56.2 69.2

SM 15.5 (35%) 35.2 (22%) 62.0 (9%) 99.2 (43%)

RM 13.5 (18%) 39.0 (36%) 60.9 (8%) 72.3 (4%)

HM 14.2 (24%) 34.3 (19%) 56.6 (1%) 69.6 (1%)

One aspect which is hidden in this quantitative analysis is the fact that the hybrid
approach allowed for the localisation of code which goes more naturally on the system
side e.g., code accessing data that is already computed on the system side. By contrast,
in the remote monitoring approach one would have no option but to duplicate this com-
putation and the associated data, introducing computation redundancy and additional
space overheads. In fact, in cases where resources replication is either not feasible or
undesirable,8 a hybrid approach turns out to be the only viable solution between these
two alternatives.

5 Related Work

Optimisation techniques for synchronous monitoring is a key issue in runtime
verification. These techniques broadly fall under two main categories: event sampling
techniques and static/dynamic analysis. In the first category [1,6] only a subset of the
system events generated are checked by the monitor, typically in line with some peri-
odic overhead upper limit; this arrangement allows the verification instrumentation to
give certain guarantees with respect to monitor overheads, at the expense of monitoring
precision. In the second category, static analysis is performed on the monitored proper-
ties and their instrumentation [4,3] in order to optimise their footprint. The first class of
techniques are not directly applicable to the security-critical systems discussed in the
Introduction since certain violations may go undetected. However a degenerate case of
sampling may be used in real world instantiations of our approach acting as a method of
last resort when the verification overheads overburden the system. The second class of
techniques are complementary to our approach since the enhanced control over where to
instrument monitors gives further scope for static analysis to optimise such placements.

To the best of our knowledge, Java-MaC [8] is the only runtime verification tool that
implicitely places a boundary between the system and the verifier (albeit with no sup-
port for flexibility), by distributing verification across nodes and potentially lowering
monitoring overheads. The monitor can however only be located on the verifier side;
we argued earlier why this placement strategy may not always yield an optimal level of
overheads. Other tools such as JavaMOP [9] and Larva [5] can support our proposed
architecture indirectly, since they allow full Java expressivity for monitoring checks and
actions. This permits monitor instrumentation to use monitoring actions to open con-
nections and instruct remote deployment of verification checks. However, such an ar-
rangement is far from ideal as it complicates immensely the specification of properties:

8 Issues such as data privacy may prove to be one such stumbling block.
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it requires additional knowledge of Java distribution mechanisms, thereby discouraging
the adoption of our proposed architecture. Moreover, this indirect approach clutters the
monitoring code which, in turn, makes monitoring more error prone.

6 Conclusions and Future Work

We have proposed a novel runtime verification technique facilitating the engineering
of runtime monitoring over highly parallel systems, thus minimising the inherent over-
heads introduced by the verification process. By elevating a configurable monitoring
boundary to the specification level, the technique allows the user to offload compu-
tationally expensive verification checks to a remote site while leaveraging the added
communication overhead by keeping lightweight verification checks at the site where
the monitored system is executing.

The technique has been implemented as part of a runtime monitoring tool called
polyLarva, which takes guarded-command style specification scripts and automatically
synthesises the system instrumentation together with the respective monitor verifying
the script. The tool allows the user to specify the location of where conditions and
actions are to be executed; these delineations correspond to configurable monitoring
boundary of the technique and give control over how system resources are managed.

We have also shown how our approach enables alternative monitor configurations
that lower overheads through tests performed on an online portal handling multiple
user requests in parallel. Our results indicate that different overhead savings can be ob-
tained under different monitoring boundary specifications, depending on the level of
service load experienced by the system and on whether monitoring is processing or
communication intensive. These results show that while resource-intensive monitoring
benefits substantially from remote monitoring, communication does not scale up as well
as other resources. Balancing resources overheads against the communication incurred
turned out to be essential to lower these overheads, and polyLarva facilitated the nec-
essary fine-tuning immensely.

Future Work: We plan to extend our work in various ways. We intend to further our
tests to deployment architectures involving more than one node for the remote-side of
the monitoring boundary. We are also exploring ways how to integrate our optimisation
technique with complementary techniques such as sampling. These efforts should yield
even lower monitoring overheads which would increase the appeal of the technique
to real-world scenarios with more stringent performance requirements, as opposed to
security-critical systems.

Work is already underway to extend polyLarva so that it can handle monitoring of
systems that are developed using different technologies and languages, thus broaden-
ing the appeal of the tool.9 To this end, our present monitoring boundary implemen-
tation over TCP should facilitate technology-agnostic monitoring of multi-technology
systems.

The elevation of the monitoring boundary at the specification level lends itself to
further conceptual development. We plan to extend our technique to handle dynamic

9 At the time of writing, polyLarva supports monitoring of systems written in Java.
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monitor partitioning across the system/remote-sides that can reconfigure itself as the
system evolves, thus adapting to changes such as fluctuating system loads. The moni-
toring boundary also gives scope for various static analyses that can be carried out on
our existing polyLarva scripts so as to obtain automated partitioning and placement of
monitors across the boundary.
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Abstract. Frama-C is a source code analysis platform that aims at con-
ducting verification of industrial-size C programs. It provides its users
with a collection of plug-ins that perform static analysis, deductive veri-
fication, and testing, for safety- and security-critical software. Collabora-
tive verification across cooperating plug-ins is enabled by their integra-
tion on top of a shared kernel and datastructures, and their compliance
to a common specification language. This foundational article presents a
consolidated view of the platform, its main and composite analyses, and
some of its industrial achievements.

1 Introduction

The past forty years have seen much of the groundwork of formal software anal-
ysis being laid. Several angles and theoretical avenues have been explored, from
deductive reasoning to abstract interpretation to program transformation to con-
colic testing. While much remains to be done from an academic standpoint,
some of the major advances in these fields are already being successfully imple-
mented [18,41,25,46,51] – and met with growing industrial interest. The ensuing
push for mainstream diffusion of software analysis techniques has raised several
challenges. Chief among them are: a. their scalability, b. their interoperability,
and c. the soundness of their results.

Point a is predictably important from the point of view of adoptability. Scaling
to large problems is a prerequisite for the industrial diffusion of software analysis
and verification techniques. It also represents a mean to better understand how
language idioms (e.g. pointers, unions, or dynamic memory allocation) influence
the underlying architecture of large software developments. Overall, achieving
scalability in the design of software analyzers for a wide range of software pat-
terns remains a difficult question.
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Point b – interoperability – enables the design of elaborate program analy-
ses. Consider indeed the interplay between program analyses and transforma-
tions [22], the complementarity of forward and backward analyses [2], or the
precision gain afforded when combining static and dynamic approaches [4]. Yet
running multiple source code analyses and synthesizing their results in a coherent
fashion requires carefully thought-out mechanisms.

Point c – soundness – is a strong differentiator for formal approaches. By
using tools that over-approximate all program behaviors, industrial users are
assured that none of the errors they are looking for remain undetected. This
guarantee stands in stark contrast with the bug-finding capabilities of heuristic
analyzers, and is paramount in the evaluation of critical software. But the design
and implementation costs of such high-integrity solutions are hard to expend.

The Frama-C software analysis platform provides a collection of scalable, in-
teroperable, and sound software analyses for the industrial analysis of ISO C99
source code. The platform is based on a common kernel, which hosts analyzers
as collaborating plug-ins and uses the ACSL formal specification language as a
lingua franca. Frama-C includes three fundamental plug-ins based on abstract in-
terpretation, deductive verification, and concolic testing; and a series of derived
plug-ins which build elaborate analyses upon the former. In addition, the exten-
sibility of the overall platform, and its open-source licensing, have fostered the
development of an ecosystem of independent third-party plug-ins. This article
is intended as a foundational reference to the platform, its three main analyses,
and its most salient derived plug-ins.

2 The Platform Kernel

2.1 Architecture

Figure 1 shows a functional view of the Frama-C architecture. Frama-C is based on
CIL [43], a front-end for C that parses ISO C99 programs into their normalized
representation: loop constructs are given a single form, expressions have no side-
effects, etc. Frama-C extends CIL to support dedicated source code annotations
expressed in ACSL (see § 2.2). This modified CIL front-end produces the C +
ACSL AST, an abstract view of the program shared among all analyzers. This
AST takes into account machine-dependent parameters (size of integral types,
endianness, etc) which can easily be modified by the end-user.

The Frama-C kernel provides several services, helping plug-in development [49]
and providing convenient features to the end-user.

– Messages, source code and annotations are uniformly displayed; parameters
and command line options are homogeneously handled.

– A journal of user actions can be synthesized, and be replayed afterwards, a
feature of interest in debugging and qualification contexts.

– A project system, presented in § 2.3, isolates unrelated program representa-
tions, and guarantees the integrity of their analyses.

– Consistency mechanisms control the collaboration between analyzers (§ 2.4).
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Message Printer Property Status

Journal Parameter Project . . .

Plug-ins Analyzer 1 Analyzer 2 Analyzer 3 . . .

Plug-ins Database

Kernel Services

(Modified) CIL C + ACSL AST

Fig. 1. Frama-C’s Functional View

Analyzers are developed as separate plug-ins on top of the kernel. Plug-ins are
dynamically linked against the kernel to offer new analyses, or to modify existing
ones. Any plug-in can register new services in a plug-ins database stored in the
kernel, making these services available to all plug-ins.

2.2 ACSL

Functional properties of C programs can be expressed within Frama-C as ACSL

annotations [3]. ACSL is a formal specification language inspired by Java’s JML [9],
both being based on the notion of function contract introduced by Eiffel [42]. In
effect, the specification of a function states the pre-conditions it requires from
its caller and the post-conditions it ensures when returning. Among these post-
conditions, one kind of clause plays a particular role by saying which memory
locations the function assigns, i.e. which locations might have a different value
between the pre- and the post-state.

For instance, Fig. 2 provides a specification for a swap function. The first pre-
condition states that the two arguments must be valid (int) pointers, i.e. that
dereferencing a or b will not produce a run-time error. In addition, the second
pre-condition asks that the two locations do not overlap. \valid and \separated

are two built-in predicates: ACSL features various functions and predicates to
describe memory states. However, it does not introduce any notion beyond the
C standard, leaving each plug-in free to perform its own abstractions over the
concrete memory layout. The assigns clause states that only the locations pointed

1 /*@ requires \valid(a) && \valid(b); requires \separated(a,b);
2 assigns *a, *b;
3 ensures *a == \at(*b,Pre) && *b == \at(*a,Pre); */
4 void swap(int* a, int* b);

Fig. 2. Example of ACSL specification
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to by a and b might be modified by a call to swap; any other memory location is
untouched. Finally, the post-condition says that at the end of the function, *a

contains the value that was in *b in the pre-state, and vice versa.
In addition to function specifications, ACSL offers the possibility of writing

annotations in the code, in the form of assertions (properties that must be true
at a given point) or loop invariants (properties that must be preserved across
any number of loop steps). Annotations are written in first-order logic, and
it is possible to define custom functions and predicates for use in annotations
together with ACSL built-ins. Plug-ins can provide a validity status to any ACSL

property and generate ACSL annotations. This allows ACSL annotations to play
an important role in the communication between plug-ins, as explicited in § 2.4.

2.3 Projects

Frama-C allows a user to work on several programs in parallel thanks to the
notion of project. A project consistently stores a program with all its required in-
formation, including results computed by analyzers and their parameters. Several
projects may coexist in memory at the same time. A non-interference theorem
guarantees project partitioning [48]: any modification on a value of a project P
does not impact a value of another project P ′.

Such a feature is of particular interest when a program transformer like Slicing

(§ 6.1) or Aoräı (§ 6.2) is used. The result of the transformation is a fresh AST that
coexists with the original, making backtracking and comparisons easy. Another
use of projects is to process the same program in different ways – for instance
with different analysis parameters.

2.4 Analyzers Collaboration

In Frama-C, analyzers can collaborate in two different ways: either sequentially,
by chaining analysis results to perform complex operations; or in parallel, by
combining partial analysis results into a full program verification.

The former consists in using the results of an analyzer as input to another
one thanks to the plug-ins database stored by the Frama-C kernel. Refer to § 6.1
for a comprehensive illustration of a sequential analysis.

The parallel collaboration of analyzers consists in verifying a program by het-
erogeneous means. ACSL is used to this end as a collaborative language: plug-ins
generate program annotations, which are then validated by other plug-ins. Par-
tial results coming from various plug-ins are integrated by the kernel to provide
a consolidated status of the validity of all ACSL properties. For instance, when
the Value plug-in (§ 3) is unable to ensure the validity of a pointer p, it emits an
unproved ACSL annotation assert \valid(p). In accordance with the underlying
blocking semantics, it assumes that p is valid from this program point onwards.
The WP plug-in (§ 4) may later be used to lift this hypothesis. The kernel au-
tomatically computes the validity status of each program property from the
information provided by all analyzers and ensures the consistency of the entire
verification process [16]: “if the consolidated status of a property is computed as
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valid [resp. invalid] by the kernel, then the property is valid [resp. invalid] with
respect to ACSL’s semantics”.

3 Fundamental Analysis: Abstract Interpretation

The Value plugin (short for Value Analysis) is a forward dataflow analysis based
on the principles of abstract interpretation [17]. Abstract interpretation links
a concrete semantics, typically the set of all possible executions of a program,
to a more coarse-grained, abstract one. Any transformation in the concrete se-
mantics must have an abstract counterpart that captures all possible outcomes
of the concrete operation. This ensures that the abstract semantics is a sound
approximation of the runtime behavior of the program.

Value, and abstract interpreters in general, proceed by symbolic execution of
the program, translating all operations into the abstract semantics. Termination
of looping constructs is ensured by widening operations. For function calls, Value
proceeds essentially by recursive inlining of the function (recursive functions are
currently not handled). This ensures that the analysis is fully context-sensitive.
If needed, the user can abstract overly complex functions by an ACSL contract,
verified by hand or discharged with another analysis.

Abstract Domains. The domains currently used by Value to represent the
abstract semantics are described below.

Integer Computations. Small sets of integers are represented as sets, whereas
large sets are represented as intervals with congruence information [30]. For
instance, x ∈ [3..255], 3%4 means that x is such that 3 ≤ x ≤ 255 and x ≡
3mod4.

Floating-Point Computations. The results of floating-point computations are
represented as IEEE 754 [34] double-precision finite intervals. Operations on
single-precision floats are stored as doubles, but are rounded as necessary. Ob-
taining infinities or NaN is treated as undesirable errors.

Pointers and Memory. To verify that invalid (e.g. out-of-bounds) array/pointer
accesses cannot occur in the target program, Value assumes that the program does
not purposely use buffer overflows to access neighboring variables [35, §6.5.6:8].
Abstract representation of memory states in a C program reflects this assump-
tion: addresses are seen as offsets with respect to symbolic base addresses, and
have no relation with actual locations in virtual memory space during execution.

Memory representation is untyped. It is thus straightforward to handle unions
and heterogeneous pointer conversions during abstract interpretation. The ab-
stract memory state maps each base address to a representation of a chunk of
linear memory. Each such object itself maps ranges of bits to values. Given an
array of 32-bit integers t, and reading from *(((char*)t) + 5), the analyzer deter-
mines that the relevant abstract value is to be found between bits [40..47]
of the value bound to &t. Using bit as unit, instead of byte, allows to handle
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bit-fields [35, §6.2.6.1:4] by fixing a layout strategy (the C standard itself does
not specify bit-fields layout, but then again, no more than any kind of data).

Finally, the content of some memory locations is deemed indeterminate by
the C standard. Examples include uninitialized local variables, struct padding,
and dereferencing pointers to variables outside their scope [35, §6.2.4:2]. Having
indeterminate contents in memory is not an error, but accessing an indeterminate
memory location is. To detect those, the values used to represent the contents of
memory locations are taken, not directly from the abstract domain used for the
values of an expression, but from the lattice product of this domain with two
two-valued domains, one for initializedness and the other for danglingness.

Propagation of Unjoined States. Value’s domains are non-relational. Instead,
the datastructures representing the abstract semantics have been heavily opti-
mized for speed and reduced memory footprint, to allow the independent propa-
gation of multiple distinct states per statement. This alleviates for a large part
the need for relational domains, by implicitly encoding relations in the disjunc-
tion of abstract states. Typically, by choosing to propagate k distinct states, the
user can ensure that simple loops with less than k iterations are entirely unrolled.
Successive conditionals are also handled more precisely: the abstract states re-
main separate after the two branches of the conditional have been analyzed.

Alarms. Each time a statement is analyzed, any operation that can lead to an
undefined behavior (e.g. division by zero, out-of-bounds access, etc.) is checked,
typically by verifying the range of the involved expression – the denominator of
the division, the index of the array access, etc.

When the abstract semantics guarantees that no undesirable value can occur,
one obtains a static guarantee that the operation always executes safely. Other-
wise, Value reports the possible error by an alarm, expressed as an ACSL assertion.
This alarm may signal a real error if the operation fails at runtime on at least
one execution, or a false alarm, caused by the difference in precision between the
concrete and abstract semantics. More precise state propagation typically results
in fewer false alarms, but lenghten analysis time. Upon emitting an alarm, the
analyzer reduces the propagated state accordingly, and proceeds onwards.

4 Fundamental Analysis: Deductive Verification

The WP plug-in is named after the Weakest Precondition calculus, a technique
used to prove program properties initiated by Hoare [32], Floyd [28] and Di-
jkstra [24]. Recent tools implement this technique efficiently, for instance Boo-
gie [38] and Why [27]. Jessie [39], a Frama-C plug-in developed at INRIA, also
implements this technique for C by compiling programs into the Why language.
Frama-C’s WP plug-in is a novel implementation of a Weakest Precondition calcu-
lus for generating verification conditions (VC) for C programs with ACSL anno-
tations. It differs from other implementations in two respects. First, WP focuses
on parametrization with respect to the memory model. Second, it aims at being
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fully integrated into the Frama-C platform, and to ease collaboration with the
other verification plug-ins (especially Value) as outlined in § 2.4.

The choice of a memory model is a key ingredient of Hoare logic-based VC
generators that target C programs (or more generally a language with mem-
ory references). A weakest precondition calculus operates over a language that
only manipulates plain variables. In order to account for pointers, memory ac-
cesses (both for reading and writing) must be represented in the underlying logic.
The simplest representation uses a single functional array for the whole memory.
However, this has a drawback: any update to the array (the representation of
an assignment *p=v) has a potential impact on the whole memory – any vari-
able might have been modified. In practice, proof obligations quickly become
intractable. Thus, various refinements have been proposed, in particular by Bor-
nat [6], building upon earlier work by Burstall [10]. The idea of such memory
models is to use distinct arrays to represent parts of the memory known to be
separated, e.g. distinct fields of the same structure in the “component-as-array
trick” of Burstall and Bornat. In this setting, an update to one of the arrays will
not affect the properties of the others, leading to more manageable VC.

However, abstract memory models sometimes restrict the functions that can
be analyzed. Indeed, a given model can only be used to verify code that does
not create aliases between pointers that are considered a priori separated by the
model. In particular, Burstall-Bornat models that rely on static type information
to partition the memory are not able to cope with programs that use pointer
casts or some form of union types.

In order to generate simpler VC when possible while still being able to verify
low-level programs, WP provides different memory models that the user can
choose for each ACSL property. The current version offers three main models:

– The most abstract model, hoare, roughly corresponds to Caveat’s model [46].
It can only be used over functions that do not explicitly assign pointers or
take the address of a variable, but provides compact VC.

– The default model is store. It is a classical Burstall-Bornat model, that
supports pointer aliasing, but neither cast nor union types.

– The runtime model is designed for code that perform low-level memory
operations. In this model, the memory is seen as a single array of char, so
that most C operations can be taken into account, at the expense of the
complexity of the generated VC.

As a refinement, store and runtime can avoid converting assignments into
array updates when the code falls in the subset supported by hoare. In particu-
lar, variables whose addresses are not taken and plain references – pointers that
are neither assigned nor used in a pointer arithmetic operation – are translated
as standard Hoare logic variables. This way, the overhead of other models with
respect to hoare is kept to the places where it is really needed.

Once a VC has been generated, it must be discharged. WP natively supports
two theorem provers: the automated SMT solver Alt-ergo [14], and the Coq proof
assistant [15]. Other automated provers can also be used through the multi-
prover backend of Why. Advantages of using a dedicated back-end rather than
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(G1) initialize, set precondition, π := ε

(G2) symbolically execute π in f

(G5) compute next π

(G3) generate test t

(G4) execute f on t

finish

ok

ok
fail

failok

no more paths in f

Fig. 3. The PathCrawler test generation method

relying completely on Why are twofold. First, it removes a dependency over
an external tool, meaning that for verification of critical software, there is one
component less that needs to be assessed. Second, WP can take advantage of
specific features of Alt-ergo, most notably native support for arrays and records
(that occur quite often in typical VC), that are not supported by Why yet.

In contrast to Jessie, that relies on an external tool for VC generation, WP

operates entirely within Frama-C. In particular, WP fills the property status table
described in § 2.4 for each annotation on which it is run. The dependencies of such
a status are the annotations taken as hypothesis during the weakest-precondition
calculus, the memory model that has been used, and the theorem prover that
ultimately discharged the VC. The memory model has a direct impact on the
validity of the result: an annotation can very well be valid under model store
but not under runtime, as the former entails implicit separation hypotheses
that are not present in the latter. In theory, the choice of a theorem prover is
not relevant for the correctness of the status, but this information is important
to fully determine a trusted toolchain.

Having WP properly embedded into Frama-C also allows for a fine-grained
control over the annotations one wants to verify with the plug-in. WP provides
the necessary interface at all levels (command-line option, programmatic API,
and GUI) to verify targetted annotations (e.g. those yet unverified by other
means in Frama-C, cf. § 2.4) as well as to generate all the VC related to a C

function.

5 Fundamental Analysis: Concolic Testing

Given a C program p under test and a precondition restricting its inputs, the
PathCrawler plug-in generates test cases respecting various test coverage criteria.
The all-path criterion requires covering all feasible program paths of p. Since the
exhaustive exploration of all paths is usually impossible for real-life programs,
the k-path criterion restricts exploration to paths with at most k consecutive it-
erations of each loop. The PathCrawler [51,7] method for test generation is similar
to the so-called concolic (concrete+symbolic) approach and to Dynamic Sym-
bolic Execution (DSE), implemented by other tools (e.g. DART, CUTE, PEX,
SAGE, KLEE).
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PathCrawler starts by: a. constructing an instrumented version of p that will
trace the program path exercised by the execution of a test case, and b. generat-
ing the constraints which represent the semantics of each instruction in p. The
next step, illustrated by Fig. 3, is the generation and resolution of constraint
systems to produce the test cases for a set of paths Π that satisfy the coverage
criterion. This is done in the ECLiPSe Prolog environment [47] and uses Con-
straint Logic Programming. Given a path prefix π, i.e. a partial program path
in p, the main idea [37] is to solve the constraints corresponding to the symbolic
execution of p along π. A constraint store is maintained during resolution, and
aggregates the various constraints encountered during the symbolic execution
of π. The test generation method follows the following steps:

(G1) Create a logical variable for each input. Add constraints for the precondition
into the constraint store. Let the initial path prefix π be empty (i.e. the first
test case can be any test case satisfying the precondition). Continue to Step
(G2).

(G2) Symbolically execute the path π: add constraints and update the memory
according to the instructions in π. If some constraint fails, continue to Step
(G5). Otherwise, continue to Step (G3).

(G3) Call the constraint solver to generate a test case t, that is, concrete values
for the inputs, satisfying the current constraints. If it fails, go to Step (G5).
Otherwise, continue to Step (G4) .

(G4) Run a traced execution of the program on the test case t generated in the
previous step to obtain the complete execution path. The complete path
must start by π. Continue to Step (G5).

(G5) Compute the next partial path, π, to cover. π is constructed by “taking
another branch” in one of the complete paths already covered by a previous
test case. This ensures that all feasible paths are covered (as long as the
constraint solver can find a solution in a reasonable time) and that only the
shortest infeasible prefix of each infeasible path is explored.

PathCrawler uses Colibri, a specialized constraint solving library developed at CEA
LIST and shared with such other testing tools as GATeL [40] and OSMOSE [1].
Colibri provides a variety of types and constraints (including non-linear con-
straints), primitives for labelling procedures, support for floating point numbers
and efficient constraint resolution. PathCrawler is a proprietary plug-in, also avail-
able in the form of a freely accessible test-case generation web service [36].

6 Derived Analyses

6.1 Distilling Values

The outputs of the Value plugin are twofold. In addition to emitting alarms for
statements it cannot guarantee are safe (§3), Value automatically computes a
per-statement over-approximation of the possible values for all memory loca-
tions. The derived analyses below reuse those synthetic results. In each case, the
analysis is sound. Value’s results are used to evaluate array indexes or resolve
pointers, ensuring that e.g. pointer aliasing are always detected.
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Outputs: over-approximates the locations a function may write to.
Operational inputs: over-approximates the locations whose initial values are

used by the function.
Functional dependencies: computes a relation between outputs and inputs of

a function; x FROM y, t[1] (and SELF) means that output x is either
unchanged (SELF), or that its new value can be computed exclusively from
inputs y and t[1].

Program Dependency Graph (PDG): produces an intra-procedural graph
that expresses the data and control dependencies between the instructions
of a function, used as a stepping stone for various analyzes [26].

Defs: over-approximates which statements define a given memory location.
Impact: computes the values and statements impacted (directly or transitively)

by the side effects of a chosen statement.
Slicing: returns a reduced program (a slice), equivalent to the original program

according to a given slicing criterion [33]. Possible criteria include preserving
a given statement, all calls to a function, a given alarm, etc.

Analyses such as Defs or Impact make compelling code understanding tools, as
they express in a very concise way the relationships between various parts of a
program. Slicing goes one step further: while it is essentially dual to the impact
analysis, it also builds reduced, self-contained programs, that can be re-analyzed
independently. Those three analyses are fully inter-procedural.

The analyses above illustrate sequential collaboration (§ 2.4). PDG makes
heavy use of Functional dependencies, while Defs, Impact and Slicing leverage
the information given by PDG. Some of those analyses can optionally compute
callwise versions of their results, yielding one result per syntactic call, instead
of one result per function. The improved precision automatically benefits the
derived analyses. All the results are stored by the Frama-C kernel, and can be
reused without being recomputed.

6.2 Annotation Generator

The Aoräı plug-in [50,31] plays a particular role among the core Frama-C plug-ins.
Indeed, it is one of the few whose primary aim is to generate ACSL annotations
rather than attempting to verify them. Aoräı provides a way to specify that all
possible executions of a program respect a given sequence of events, namely the
call and return of functions, possibly with constraints on the program’s state
at each event. The specification itself can be given either as a Linear Temporal
Logic (LTL, [45]) formula or in the form of an automaton. In the former case,
Aoräı uses ltl2ba [29] to obtain an equivalent Büchi automaton.

Given an automaton, Aoräı provides ACSL specifications for each function f

in the original C code. This instrumentation, summarized in Fig. 4, consists of
two main parts: two prototypes whose specification represents the transitions for
an atomic event (call or return from f), and the specification of f itself. As the
automaton is not always deterministic, Aoräı represents active states by a set of
boolean variables (aorai_state_*). Functions advance_automaton_* provide for each
such variable a complete set of behaviors indicating when they are set to 1 or 0.
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1 /*@ behavior transition_1: assumes aorai_state_S_0 == 1 && condition;
2 ensures aorai_state_S_next == 1; ... */
3 void advance_automaton_call_f(int x);
4

5 /*@ requires aorai_state_S_0 == 1 || aorai_state_S_1 == 1 || ...;
6 requires aorai_state_S_0 == 1 ==> has_possible_transition_S0; ...
7 ensures aorai_state_S_2 == 1 || aorai_state_S_3 == 1 || ...;
8 ensures \old(aorai_state_S_0 == 1) ==> aorai_state_S_2 == 1 || ...; ...
9 ensures aorai_state_S_2 == 1 ==> program_state_when_in_S_2; ... */

10 int f(int x) {
11 advance_automaton_call_f(x);
12 // Body of f
13 advance_automaton_return_f(result);
14 return result; }

Fig. 4. Aoräı’s instrumentation

The specification of f comprises various items. First, at least one state among
a given set must be active before the call. This set is determined by a rough
static analysis made by Aoräı beforehand. In addition, for each active state, at
least one transition must be activated by the call event. The main post-condition
is that when the function returns, at least one state is active among those deemed
possible by Aoräı’s static analysis. It is refined by additional clauses relating active
initial states with active final states, and the state of the program itself with the
active final states. Finally the main function has an additional post-condition
stating that at least one of the acceptance states must be active at the end of
the function (Aoräı does not consider infinite programs at the moment, i.e. it can
only check for safety properties and cannot be used for liveness).

Annotation generation is geared towards the use of deductive verification plu-
gins such as WP and Jessie for the verification of the specification. In particular,
the refined post-conditions are mainly useful for propagating information to the
callers of f in an Hoare-logic based setting. Likewise Aoräı also generates loop
invariants for the same purpose. However it does not preclude the use of the
Value plug-in to validate its specification, and therefore attempts to generate
annotations that fit in the subset of ACSL that is understood by Value.

6.3 SANTE

The Sante Frama-C plug-in (Static ANalysis and TEsting) [13] enhances static
analysis results by testing. Given a C program p with a precondition, it detects
possible runtime errors (currently divisions by zero and out-of-bound array ac-
cesses) in p and aims to classify them as real bugs or false alarms.

The Sante method contains three main steps illustrated in Fig. 5. Sante first
calls Value to analyze p and to generate an alarm for each potentially unsafe
statement. Next, Slicing is used to reduce the whole program with respect to one
or several alarms. It produces one or several slices p1, p2, . . . , pn. Then, for each
pi, PathCrawler explores program paths and tries to generate test cases confirming
the alarms present in pi. If a test case activating an alarm is found, the alarm
is confirmed and classified as a bug. If all feasible paths were explored for some



244 P. Cuoq et al.

Program p Precondition

Value analysis

p, Alarms

Program slicing

p1 p2 . . . pn

Test generation

Option: all, each,
min, smart

For smart:
try smaller slices
if necessary

Diagnostic

Fig. 5. Overview of the Sante method

slice pi, all unconfirmed alarms in pi are classified safe, i.e. they are in fact false
alarms. If PathCrawler was used with a partial criterion (k-path), or stopped by a
timeout before finishing the exploration of all paths of pi, Sante cannot conclude
and the statuses of unconfirmed alarms in pi remain unknown.

The number of slices generated, hence the number of test generation sessions,
is influenced by various Sante options. The all option generates a unique slice
p1 including all alarms of p, while the converse option each generates a slice
for each alarm. Options min and smart take advantage of alarm dependencies
(as computed by the dependency analysis) to slice related alarms together. The
smart option improves min by iteratively refining the slices as long as one
can hope to classify more alarms running PathCrawler on a smaller slice. Initial
experiments with Sante are available in [13].

7 Adoption

Adoption in the academic world has stemmed from a variety of partnerships.
Foremost is the Jessie plug-in [39] developed at Inria, which relies on a separa-
tion memory model but whose internal representation precludes its combination
with other plug-ins. Verimag researchers have implemented a taint analysis [11],
producing explicit dependency chains pondered by risk quantifiers. Demay et al
generate security monitors based on fine-grained feedback from the Value plug-
in [23]. Berthome et al [5] propose a source-code model for verifying physical
attacks on smart cards, and use Value to verify it. Bouajjani et al [8] auto-
matically synthesize invariants of sequential programs with singly-linked lists.
Finally, although the variety of objectives a static analyzer can have, and the va-
riety of design choices for a given objective, make it difficult to benchmark static
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analyzers, Chatzieleftheriou and Katsaros [12] have valiantly produced one such
comparison including Frama-C’s Value plug-in.

On the industrial side, companies are adopting or evaluating Frama-C. Delmas
et al verify the compliance to domain-specific coding standards [20]; their plug-
in is undergoing deployment and qualification. At the same company, the value
analysis is used to verify the control and data flows of a DAL C, 40-kloc ARINC
653 application [21]. Pariente and Ledinot [44] verify flight control system code
using a combination of Frama-C plugins, including Value and Slicing. Their contri-
bution includes a favorable evaluation of the cost-effectiveness of their adoption
compared to traditional verification techniques. Yakobowski et al use Value in
collaboration with WP to check the absence of runtime errors in a 50 kloc in-
strumentation and control (I&C) nuclear code [52]. Through these successes and
over the past few years, Frama-C has demonstrated its adoptability within diverse
industrial environments.

8 Conclusion

This article attempts to distill a unified presentation of the Frama-C platform from
a software analysis perspective. Frama-C answers the combined introductory chal-
lenges of scalability, interoperability, and soundness with a unique architecture
and a robust set of analyzers. Its core set of tools and functionalities – about
150 kloc. developed over the span of 7 years [19] – has given rise to a flourish-
ing ecosystem of software analyzers. In addition to industrial achievements and
partnerships, a community of users and developers has grown and strived, con-
tributing to the dissemination of the tools. This growth, fostered by a number
of active communication channels1, should be interpreted as a testimony to the
health of the software analysis community, and good omens for its future.
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28. Floyd, R.W.: Assigning meanings to programs. Proceedings of the American Math-
ematical Society Symposia on Applied Mathematics 19 (1967)

29. Gastin, P., Oddoux, D.: Fast LTL to Büchi Automata Translation. In: Berry, G.,
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Abstract. Automatically formalizing fUML models into CSP is a chal-
lenging task. However, checking the generated CSP model using FDR2
is far more challenging. That is because the generated CSP model holds
many implementation details inherited from the fUML model, as well
as the formalization of the non-trivial fUML inter-object communica-
tion mechanism. Using the state space compression techniques available
in FDR2 (such as supercompilation and compression functions) is not
enough to provide an effective model checking that avoids the state ex-
plosion problem. In this paper we introduce a novel approach that makes
use of a restricted CSP model (because it follows certain formalization
rules) to optimize the generated model. As an application of our ap-
proach, we design a framework that works on two levels; the first one
provides optimization advice to the modeller, while the second one au-
tomatically applies optimization rules which transform the CSP model
to a more optimized one with a reduced state space.

Implementing and applying the approach on two large case studies
demonstrated the effectiveness of the approach. We also prove that the
optimization rules are safe to be applied automatically without eliminat-
ing important information from the CSP model.

1 Introduction

Formalizing fUML (Foundational Subset for Executable UML) [1] models to a
CSP (Communication Sequential Processes) [2] formal representation, has been
previously considered [3,4]. This formalization allows modellers to check certain
properties in their fUML model without the need for specialist formal methods
knowledge. Our motivation for using fUML as a semi-formal modelling language
was its restricted standard and the ability to represent the implementation de-
tail of asynchronous systems. However, the automatically generated CSP model
that depends on such an inter-object communication mechanism is usually con-
voluted. Checking such a model using FDR2 [5] is a very challenging task due
to the high possibility of the state space explosion problem, or even the length
of time taken to perform the model checking.

Toward a solution to minimize the possibility of that problem, we propose
in this work an optimization approach that works on two levels. Firstly, on the
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fUML model level, where fUML optimization rules (“fUML-Opti-Rules”) are ap-
plied to provide the modeller with advice to optimize his fUML model. Secondly,
on the CSP model level, optimization rules (“CSP-Opti-Rules”) are applied to
generate another more optimized CSP model. In this paper we propose a frame-
work that integrates optimization with the formalization of fUML to CSP. The
fUML-Opti-Rules are applied automatically by an Optimization Advisor com-
ponent which generates some directions (advice) to the modeller that guides him
to do the optimization manually, while a Model Optimizer component applies
the CSP-Opti-Rules to generate an optimized CSP model. The paper does not
introduce a new optimization algorithm that can be applied on the state space
level because we do not have internal access to FDR2.

Our optimization is not applied on arbitrary CSP models (not generic op-
timization rules), rather it is applied on a generated CSP model that follows
certain formalization rules (defined in [3]) and built of a subset of the CSP lan-
guage. The main contribution of this work is that we seize the opportunity of
having such a constrained CSP model to develop optimization rules that lead to
a very reduced state space. Although the optimization rules do not preserve the
original CSP model semantics, they have been proved to preserve the deadlock
freedom property (the focus of this paper). Such specialized rules allowed for
boosting the optimization to new areas that are hard to reach with the generic
ones.

We implement this framework as a MagicDraw 1 [6] plugin called “Compass”
to allow modellers to seamlessly use our framework during the system modelling
process. The framework is based on Epsilon [7] to do the MDE (Model Driven
Engineering) tasks, such as the model validation and the model-to-model trans-
formation, supported by the fUML and CSP meta-models available in [1] and
[8] respectively.

In order to realize and validate our approach, we modelled the GSS (Gas
Station System) [9] and the CCS (Cruise Control System) [10] case studies in
fUML, and then we used Compass to formalize, optimize and then check the
model using FDR2. The GSS fUML model consists of nine objects communi-
cating with each other asynchronously, while the CCS consists of seven objects.
The behaviour of each object is modelled as an fUML activity diagram, parts of
three of them are included in this paper. We do not consider the class diagram
or any of its relations as our focus is on the behavioural analysis rather than the
structure of the system. The results2 of applying the optimization rules are out-
lined in this paper, and at the end of Section 6.3 we summarize the optimization
results.

The rest of this paper is organized as follows. In Section 2, we give a brief
introduction about fUML and CSP. In Section 3, we give an overview about the
framework that applies our optimization approach. In Section 4, Section 5 and

1 MagicDraw is an (award-winning) architecture, software and system modeling case
tool. It also supports additional plugins to increase its functionalities.

2 All the model checking in this paper has been done on an Intel Core 2 Duo machine
with 2 GB memory.
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Section 6 we describe the Optimization Advisor, Model Formalizer and Model
Optimizer components respectively of this framework. Finally, we discuss related
work and conclude in Sections 7 and 8 respectively.

2 Background

2.1 fUML

As defined by the OMG, fUML [1] is a standard that acts as an intermediary
between “surface subsets” of UML models and platform executable languages.
The fUML subset has been defined to allow the building of executable models.
Code-generators can then be used to automatically generate executable code
(e.g., in Java) from the models. Another option is to use model-interpreters
that rely on a virtual machine to directly read and run the model (e.g., Cameo
Simulation Toolkit [10]).

The fUML standard includes class and activity diagrams to describe a system’s
structure and behaviour respectively. Some modifications have been applied to
the original class and activity diagrams in the UML2 specification [11] to meet
the computational completeness of fUML. The modifications have been done by
merging/excluding some packages in UML2, as well as adding new constraints.
We list in [3] some examples of the differences between the UML2 and fUML
activity diagrams.

The Inter-object Communication Mechanism in fUML
The inter-object communication in fUML is defined by clause 8 in the standard
[1]. Such communication is conducted between active objects only. Active ob-
jects in fUML communicate asynchronously via signals (kind of classifier). This
is achieved by associating an object activation with each object that handles
the dispatching of asynchronous communications received by its active object.
Figure 1 shows the structure related to the object activation.

Fig. 1. Object Activation Structure

The object activation maintains two main lists: the first list (called event pool)
holds the incoming signal instances waiting to be dispatched, and the second
list (called waiting event accepters) holds the event accepters that have been
registered by the executing classifier behaviour. Event accepters are allowable
signals with respect to the current state of the active object.
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2.2 CSP

CSP [2] is a modelling language that allows the description of systems of inter-
acting processes using a few language primitives. Processes execute and interact
by means of performing events drawn from a universal set Σ. Some events are
of the form c.v, where c represents a channel and v represents a value being
passed along that channel. Our fUML formalization and the optimization theo-
rem proofs consider the following subset of the CSP syntax:

P ::= a→ P | c?x→ P (x) | d!v → P | P1 � P2

| P1  P2 | P1 ‖
A

P2 | P1 ‖ P2 | P \ A
| let N1 = P1 , . . . , Nn = Pn within P

The CSP process a → P initially allows event a to occur and then behaves
subsequently as P . The input process c?x → P (x) will accept a value x along
channel c and then behaves subsequently as P (x). The output process c!v → P
will output v along channel c and then behaves as P . Channels can have any
number of message fields, combination of input and output values.

The choice P1 � P2 offers an external choice between processes P1 and P2

whereby the choice is made by the environment. Conversely, P1  P2 offers an
internal choice between the two processes.

The parallel combination P1 ‖
A

P2 executes P1 and P2 in parallel. P1 and

P2 must simultaneously engage in events in the set A. P1 ‖ P2 is equivalent to
P1 ‖

α(P1) α(P2)

P2, where P1 and P2 synchronize on the intersection between their

alphabets’ sets.
The hiding operation P \ A describes the case where all participants of all

events in the set A are described in P . All these events are removed from the
interface of the process, since no other processes are required to engage in them.
The let . . .within statement defines P with local definitions Ni = Pi.

3 The Approach Framework Overview

Our optimization approach has been integrated with our previous formalization
framework [4] by adding two extra components (the Optimization Advisor and
the Model Optimizer), and separating the model-to-text task from the Model
Formalizer to another component (CSP Script Generator). Figure 2 shows the
comprehensive framework that performs the optimization and the formalization
tasks, however we will focus in this paper on the optimization components only.

Initially, the modeller uses a case tool (e.g., MagicDraw) to develop the fUML
model of the system and then chooses the property that he wants to check (dead-
lock freedom). The Optimization Advisor reads the fUML model and searches
for specific patterns that are inefficient in terms of the resultant state space of
the CSP model. The advice is reported to the modeller through an Optimization
Report, so he can modify the fUML model and start the model formalization.
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Fig. 2. The Integration of the Optimization Components

The Model Formalizer does the model-to-model transformation from fUML
to CSP automatically based on their meta-models and a group of formalization
rules to generate a CSP model (not script) that represents the fUML model
behaviours. It also generates the Object-to-Class mapping table which is used for
traceability by another component. At this stage, the CSP model is represented
in an XML file format. Based on the chosen property, the Model Optimizer starts
its function by reading the CSP model and applying a group of optimization rules
automatically. Those rules transform the initial CSP model to an optimized one
that still contains the required information to check the chosen property.

All the optimization rules included in this paper are independent (i.e., no
rule depends on another one) and the more rules the modeller applies the more
reduction in the state space he should get.

The CSP Script Generator component performs the model-to-text task that
generates a CSP script from the input optimized CSP model automatically based
on the same CSP meta-model. At this point FDR2 can be launched to do the
model checking and if the checked property (deadlock) is not met, FDR2 gen-
erates a counter-example. The UML Sequence Diagram Generator reads the
counter-example and uses the Object-to-Class mapping table to generate a UML
sequence diagram that represents the counter-example in a modeller friendly
format.

4 The Optimization Advisor

The fUML model may contain some patterns that are appropriate from the
modeller’s point of view and the system specification. However, when model
checking the CSP representation of this fUML model, a state space explosion
problem may happen. The focus here is on the patterns that cannot be removed
automatically because certain decisions will be required from the modeller to
avoid them.
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The Optimization Advisor component scans the fUML model with regards to
those patterns, and if found, it reports advice to the modeller to avoid them.
We use EVL (Epsilon Validation Language) [7] together with the fUML meta-
model to perform this task. The EVL script consists of a group of constraints,
each one examines the existence of a certain pattern within a specific context.
The following sub-sections describe two fUML-Opti-Rules and their optimization
effect.

4.1 fUML-Opti-Rule(1): Detecting Self-sending Signals

When an object sends a signal to itself, we call this “self-sending”. Although
this sounds benign, we found by experiment that self-sending signals cause an
extra overhead on the object’s event pool buffer. Generally, a self-sending signal
can be replaced by a direct control flow edge that joins the points of sending
and accepting this signal. This replacement is safe provided that there are no
actions between the two points (as they will be bypassed).

Another case is when the AcceptEventAction accepts the self-sending signal
(beside another signal), such as the one highlighted in Figure 3 for the Pump
object activity, because a direct control flow between the FuelLevelLow signal
sending and acceptance (shown as a dashed line) does not preserve the be-
havioural semantics of the original activity unless the self-sending signal has the
higher priority in the event pool (i.e., the first one to be dispatched from the
object’s event pool). For that reason, we do not apply this fUML-Opti-Rule au-
tomatically. The Optimization Advisor just highlights the self-sending signals
through the Optimization Report, leaving the choice to the modeller to do the
removal based on his understanding of the fUML model.

On the other hand, it is obvious that removing the CustomerFinished signal
sending and acceptance and replacing them with a direct control flow (shown as
a dashed line at bottom of the diagram) will not affect the overall behaviour of
the object.

We have developed an EVL constraint to check this pattern and report the
advice to the modeller. The following EVL constraint applies fUML-Opti-Rule(1)
on any SendSignalAction. The if condition checks if the target object of this send
action is the sender object. The message field defines what the modeller will see
in the Optimization Report in case that this constraint was not met.

context ActivityDiagram!SendSignalAction {

constraint fUML-Opti-Rule-1{

check {

if(self.target.incoming.source.type.name = self.owner.name)

{return false;}

else{ return true; } }

message : "The signal action ’" + self.name + "’ sends the signal to

its object which can be replaced by a direct control flow." }}
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( selfObj : Tank, attenObj, motorObj, gunObj ) Pump_AD

motorObj

attenObj

selfObj

selfObj

Accept(FuelLevelLow, PumpEnabled)

Accept(TankEmpty,TankNotEmpty)

Accept(CustomerFinished)

Send
(RequestPumpEnable)

Send
(CustomerFinished)

<<valueSpecification>>
Value(FALSE)

Send
(FuelLevelLow)

Send
(StartMotor)

To the reset of the diagram
Part of the diagram

Part of the diagram

FuelLevelLowPumpEnabled

TankEmptyTankNotEmpty

Fig. 3. Part of the Pump object activity

The Optimization Advisor managed to detect 4 self-sending signals in the
GSS fUML model, and by safely replacing them with direct control flows the
state space was reduced from 10.2M states to 4.7M states when checking the
CSP formal representation of that fUML model.

4.2 fUML-Opti-Rule(2): Detecting Unacknowledged Signals

An “unacknowledged” signal is one that has been sent from an object to another
object, and then it (source object) continues sending further signals without
waiting for an acknowledgment signal. The problem arises when this pattern is
repeated several times, because the system will be flooded with the unacknowl-
edged signals and thus the objects’ event pool buffers will overflow.

As an example in the GSS, the Meter object activity was doing nothing but
sending the FuelUnitDelivered signal to the Delivery object causing its event pool
to overflow. If we acknowledged this signal by adding an accept event action for
the FuelUnitDeliveredACK signal after the sending action, the Meter object will
be forced to wait until the Delivery object sends the acknowledgment. Acknowl-
edging signals does not convert the system from asynchronous to synchronous
one, but it just controls the communicated signals in order to reduce the state
space.

The Optimization Advisor uses the fUML-Opti-Rule(2) (represented in EVL)
to scan the fUML model searching for the unacknowledged signals and report
their existence through the Optimization Report. It is the modeller responsibility
to acknowledge the signals in the fUML model.

fUML-Opti-Rule(2) helped in detecting three unacknowledged signals in the
GSS fUML model. Acknowledging those signals reduced the state space of the
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corresponding CSP model from 4.7M to 3.0M states when checking deadlock
freedom.

5 The Model Formalizer

The Model Formalizer’s main function is to automatically transform the fUML
model to a CSP formal representation that captures its behaviour. The trans-
formation is done using ETL (Epsilon Transformation Language) which requires
the source fUML meta-model and the target CSP meta-model available in [1] and
[8] respectively. In our previous work [3] we presented a group of formalization
rules which maps between the fUML activity diagram elements and their corre-
sponding CSP. In [4] we described how we used a model-to-model transformation
technique to apply those formalization rules automatically using ETL.

Our focus in this paper is on the optimization rather than the formalization,
so we will not discuss the formalization rules and limit our discussion to the final
result (CSP model) when applying the formalization rules on an fUML activity
diagram. As an example for this application, consider the Tank object activity
diagram in Figure 4. The diagram shows part of the activity which initially
waits for the FuelUsed or the RequestTankStatus signals. If the Tank object
accepted the FuelUsed signal, it subtracts the received amount from the current
tankLevel by executing the ReduceLevel CallBehaviour action, then it checks the
current level to set the tankEmptyFlag to TRUE if the level is below a certain
threshold. If the Tank object accepted the RequestTankStatus signal (as a query
from the Pump object), the CheckLevel CallBehaviour action is executed so the
object sends a TankEmpty signal in the case where the action returned TRUE,
otherwise it sends a TankNotEmpty signal.

( selfObj : Tank, pumpObj : Pump ) Tank_AD

pumpObj : Pump

selfObj : Tank
selfObj : Tank

<<addStructuralFeatureValue>>
tankEmptyFlag

Accept(FuelUsed,
RequestTankStatus)

<<valueSpecification>>
Value(TRUE)

Send
(TankNotEmpty)

Send
(TankEmpty)

:ReduceLevel

:CheckLevel

:CheckLevel

To the rest of 
the diagram

RequestTankStatusFuelUsed

FALSE

FALSE

TRUE

TRUE

Fig. 4. Part of the Tank object activity

The Model Formalizer generates a CSP model by applying the ETL formal-
ization rules on the Tank fUML activity diagram. This CSP model can be rep-
resented as the following CSP localized process that captures the Tank activity
behaviour:
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Tank AD Proc(selfObj, pumpObj) =
let

AC1 = registerSignals!selfObj!rp1 → AC3
AC3 = accept!selfObj!FuelUsed → AC2

�

accept!selfObj!RequestTankStatus → AC4)
AC2 = AC5
AC5 = AC6
AC6 = TRUE!selfObj → AC7

�
FALSE!selfObj → · · ·

AC7 = valueSpecification!selfObj?var : TRUE → AC8(var)
AC8(var) = addStructuralFeatureV alue!selfObj!tankEmptyF lag!var → ...
AC4 = AC9
AC9 = TRUE!selfObj → AC10

�
FALSE!selfObj → AC11

AC10 = send!selfObj!pumpObj!TankEmpty → AC1
AC11 = send!selfObj!pumpObj!TankNotEmpty → AC1

within AC1

The formalization of the fUML model includes also a formalization of the fUML
inter-object communication mechanism (described in Section 2.1 and the for-
malization in [3]) that manages the signals sending, acceptance and dispatching
through the event pool and the waiting event accepters list. The explanation of
the localized CSP process below considers the formalization of this mechanism.

Initially, the registerSignals event adds the two signals (FuelUsed and Re-
questTankStatus) to the waiting event accepters list of the Tank object using
the registration point rp1. In AC3, the accept event is not enabled until one of
the two signals arrives to the object’s event pool. The internal behaviour of the
ReduceLevel and CheckLevel CallBehaviours will not affect the overall behaviour
of the object, for that reason the Model Formalizer abstracts them into the pro-
cesses AC2, AC5 and AC4 (which just enabling the next sub-process), and con-
verts the decision based on their outputs to an internal choice (in AC6 and AC9 )
so the model checker explores all the possible outputs. AC7 and AC8 are direct
formalization for the ValueSpecificationAction and the AddStructuralFeatureAc-
tion respectively. Finally, the send event synchronizes with the other objects to
insert signals in their event pools (e.g., TankEmpty in the Pump object’s event
pool).

6 The Model Optimizer

After the Model Formalizer finishes its function, the Model Optimizer starts
the automatic optimization of the generated CSP model. The Model Optimizer
performs a further transformation to the CSP model so that the model checker
(FDR2) requires less states and time to check it. This transformation is done
by applying a group of optimization transformation rules (CSP-Opti-Rules).
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The CSP-Opti-Rules are defined in ETL also to perform such model-to-model
transformation task based on the same CSP meta-model. Because the CSP-
Opti-Rules are applied automatically, we support each one with a mathematical
proof (theorem) to prove it is sound in that it does not eliminate important
information that is required for checking a specific property (deadlock).

As mentioned in the introduction, our CSP-Opti-Rules are not generic (i.e.,
they cannot be applied on all CSP models). We make use of the opportunity
of having a constrained CSP model that has been generated from specific rules
that consider only a subset of the CSP language. Also, our CSP-Opti-Rules
are constrained with the checked property (deadlock freedom). The following
sub-sections show our three CSP-Opti-Rules and their effect on the state space.

6.1 CSP-Opti-Rule(1): Removing Passive Processes

We differentiate between two types of objects. First, core objects, which include
the main behaviour of the system and interact with other objects in both direc-
tions (sending and accepting signals). Second, terminal objects, which represent
external entities; however they interact with the system. For example, the GSS
includes an object for the Attendant to simulate his interaction with the Pump;
however, it is a terminal object because it will not be part of the system imple-
mentation. To check the model against deadlock freedom, the modeller should
include all kinds of objects (core and terminal) in the fUML model to be able
to explore all the system behaviours.

Passive objects are special kinds of the terminal objects as they interact in
one direction (accepting signals only). The Motor object is one obvious example
of the passive objects in the GSS model as it does nothing but accept signals
(StartMotor and StopMotor signals) from the Pump.

In the CSP domain, a passive process is defined as the process that represents
the passive object behaviour, which is always willing to interact (never refuses
any interaction). On the implementation level, CSP-Opti-Rule(1) is represented
as an ETL rule that scans the CSP model for any passive process, and if found,
removes it from the CSP model. It removes the passive process from the parallel
combination between the system’s process which forms the SYSTEM big process.
CSP-Opti-Rule(1) rules out a process to be passive if it contains the send event,
which moves out the process from the passive condition (accepts signals only).

To formally verify that the removal of passive processes will not affect the
deadlock checking of the system, we proved the following theorem for the passive
process P2:

Theorem 1. If P2 is non-divergent and (s,XP2) ∈ F(P2) ⇒ XP2 = {}
(passive process), then for any process P1: P1 is deadlock free ⇔ P1 ‖ P2 is
deadlock free.

The assumption that P2 is non-divergent is guaranteed by the definition of
the formalization rules. Refer to [12] for the detailed proof of this theorem.

In the GSS fUML model, there is one passive object (the Motor object) and
thus one passive process. When checking deadlock freedom, without applying
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CSP-Opti-Rule(1) (or any other optimization rule) on the corresponding CSP
model, FDR2 was unable to complete the check without crashing. After applying
CSP-Opti-Rule(1), the Model Optimizer removed the Motor process the CSP
model and FDR2 succeeded to report the deadlock freedom after exploring 12.3M
states (the whole model). The reason of this reduction is the removal of the
Motor object’s buffer which was synchronizing with the send events in the Pump
object and hence the send event is considered as an external communication (i.e.,
turning a closed system into an open one).

6.2 CSP-Opti-Rule(2): Removing Abandoned Events

The global target of this rule is to search the CSP model for any event that
can be removed from the model without affecting the deadlock checking results.
We identify one kind of event that meets this criteria which we call “abandoned
events”. Abandoned events are those which do not synchronize with any other
events in another processes in the system. The removal is done by skipping to
the next event/process as shown in the example below:

Fig. 5. The effect of CSP-Opti-Rule(2) on P

Theorem 2 is the formal representation of CSP-Opti-Rule(2). The theorem
shows the constraints that make c an abandoned event, which is not to be mem-
ber in any other process alphabets (i.e. no process will synchronize on c). It
also shows that the removing of c from P1 (REMOV Ec(P1)) will not affect the
deadlock checking result.

Theorem 2. If c ∈ α(P1), c /∈ α(P2), P1 \ c is non-divergent and REMOV Ec

(P1) is defined then:

REMOV Ec(P1) ‖ P2 is deadlock free ⇔ P1 ‖ P2 is deadlock free.
The proof of Theorem 2 (available in [12]) applies when P1 is generated from

the following grammar: P ::= c→ P | c?x!y → P (x) | P � Q | P  Q.
Additionally, in the case of P � Q, the condition c /∈ initials(P ) ∧ c /∈

initials(Q) should be met, which is guaranteed because we do not use external
choice except in the formalization rule (Rule(4) in [3]) in Table 1.

In other words, it is safe to apply CSP-Opti-Rule(2) on any generated CSP
model from the Model Formalizer and by the correct selection of the abandoned
event (e.g., not to be the accept event), provided that the deadlock freedom is
the checked property.

We have implemented CSP-Opti-Rule(2) in ETL and applied it on the value-
Specification and addStructuralFeatureValue events, because they are not syn-
chronizing with any other events and they never happen after an external choice.
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Table 1. fUML to CSP mapping rule

fUML Element CSP Representation

Rule(4): Accept Event Action (*)

Accept(sig1, sig2, sig3)

...

... ...sig1 sig3

sig2

AC1 = registerSignals!bIH!rp2 → (
accept!bIH!sig1 → ...
�

accept!bIH!sig2 → ...
�

accept!bIH!sig3 → ...)

The elimination of the abandoned events reduces the state space size, and
thus allows faster FDR2 checks. When CSP-Opti-Rule(2) was applied on the
GSS corresponding CSP model, 8 abandoned events were removed to reduce
the state space from 12.3M to 10.2M states. Using the standard CSP hiding
operator instead of REMOV Ec(P ) did not provide such reduction in the state
space because the hiding does not remove the event, it just renames it to τ .

6.3 CSP-Opti-Rule(3): Toggling Internal Choices

Unlike the first two CSP-Opti-Rules, this one needs human input before its au-
tomatic application. It also does not lead to an optimized version of the original
model. Rather, it splits the original model into sub-models that are easier to
be checked separately using FDR2. This kind of CSP-Opti-Rules is very useful
when analyzing big models, as it will allow the modeller to focus on certain parts
of the model at a time. This is a bounded approach to find and solve the model’s
problems. Another benefit is that when the model is too big to be analyzed by
FDR2, the CSP-Opti-Rule can be used to analyze the system in different stages,
each stage is an analysis of one of the sub-models.

CSP-Opti-Rule(3) can be summarized as follows: when checking deadlock, if
all the sub-models are deadlock free, then the original model is deadlock free as
well. The splitting up of the original model is done based, generally, on reducing
the behavioural paths in the model’s processes. In particular, CSP-Opti-Rule(3)
replaces an internal choice with one direct connection to one of its choices. And
in the case of more than two choices, it disables one of them. The selection of
the enabled choice(s) comes from the modeller input through a Graphical User
Interface (GUI).

To apply this rule, the Optimization Advisor scans the fUML model for the
decision nodes that will be translated to internal choices in the CSP model and
builds a table with those nodes/choices. After building the table, the modeller
can use the GUI to toggle the choice branches and start the model checking. The
selected choices will be passed to the Model Optimizer that applies CSP-Opti-
Rule(3) based on the modeller selection. After the model checking, the modeller
can repeat the process with different choice(s). Illustrated below Theorem 3,
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which proves that this accumulative deadlock checking (on several stages) is
equivalent to the original model deadlock checking (as a whole).

Theorem 3. If SY S = P1  P2, SY S′ = P1 (after splitting SY S and choosing
the first branch), and SY S′′ = P2 (after splitting SY S and choosing the second
branch), then:

SY S Deadlock Free⇔ SY S′ Deadlock Free ∧ SY S′′ Deadlock Free
As a sample usage of this rule in the GSS case study, assume that the modeller

is doing some modifications in the fUML model and he wants to repeat the model
checking several times to ensure that the modifications do not affect the deadlock
freedom of the system. Using CSP-Opti-Rule(3) to disable the tank emptiness
choice (i.e., the tank can never be empty), FDR2 managed to check the model
for deadlock in 11 minutes after exploring 1.8M states instead of 18.4 minutes
and 3.0M states when the two choices are available (i.e., the tank can be empty
or not). Finally, the modeller should enable the other branch of the same choice
(i.e., the tank is always empty) to ensure the system deadlock freedom (done in
15 minutes and 2.6M states).

The following table summarizes the results of applying our approach on theGSS
and the CCS case studies using Compass. The “States” field shows the explored
number of states by FDR2 until reporting the deadlock freedom of the model. The
order of the applied rules is just according to our test scheme. It is obvious that
applying the CSP-Opti-Rules and the advice from the fUML-Opti-Rules led to a
substantial reduction in the state space and the model checking time.

Table 2. Optimization results for the GSS and CCS case studies

7 Related Work

There is a significant body of work researched in avoiding the model checking
state explosion problem. Some authors such as Planas et al. [13] avoided the
problem completely by using static analysis which cannot be used for analysing
the dynamic behaviour of the system’s object. The others who preferred the
model checking, can be categorized as follows:
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The first category includes the work that focuses on optimizing the corre-
sponding LTS (Label Transition System) of the formal model. FDR2 (and many
other model checkers), works by calculating the LTS semantics of the CSP pro-
cesses and then perform the model checking on the LTS level [14]. The bisimu-
lation minimization in FDR2 [15] is an optimization technique that lies in this
category. The supercompilation [16] is another example where FDR2 calculates a
set of rules for turning a combination of LTS’s into a single LTS, without explic-
itly constructing it. Also, Roscoe in [14] showed how to use FDR2 compression
functions such as: sbisim, normal and diamond to compress the LTS of the CSP
model. ProB [17] is another model checker that uses another optimization tech-
niques on the LTS level such as permutation flooding [18] and hash value [19]
symmetric reduction.

The second category includes those who concentrate on the formal model
optimization before translating it to the LTS representation. Decomposing the
formal model into constituent parts to have an effective model checking is one of
the techniques that has been used in this category. One such example is Wang et
al. [20] who proposed using Extended Hierarchical Automata (EHA) for UML
state diagrams formalization, and then slice the EHA model based on a slicing
criterion extracted from the checked property. Another example is Schneider et
al. [21] who proposed decomposing the CSP||B model into finer grained compo-
nents called chunks to allow checking divergence freedom in large systems using
FDR2. Apart from the decomposition, some data abstraction techniques can also
be used to optimize the formal model. For example, Jesus et al. [22] abstract any
infinite domain in the system to allow checking the CSP models using FDR2.

Our work lies in the second category, especially when considering the Model
Optimizer component which applies the CSP-Opti-Rules directly. However, we
could not find in the literature an approach that provides optimization advice
on the semi-formal model level before the formalization. Also implementing a
comprehensive framework to apply the formalization and optimization based on
an MDE technique is a distinguished point for our work.

8 Conclusion

We have described in this paper a framework for optimizing the formal represen-
tation (CSP) of the fUML models. The framework does the formalization and
the optimization tasks using different components. We described two of those
components that applies the optimization rules. The first one is the Optimization
Advisor which uses EVL to provide the modeller with some advice to avoid some
undesirable patterns in his fUML model. The second component is the Model
Optimizer which uses ETL to generate an optimized CSP model. The results
of applying the specialized optimization rules showed a substantial reduction in
the state space, and thus in the model checking time. We would argue that the
general idea of our optimization approach is applicable for the other work which
consider the UML formalization.

Currently, the included five optimization rules are all that we have developed
and verified; however, more optimization rules that address other generic (e.g.,
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livelock freedom or states reachability) and non-generic properties will be consid-
ered in future work. Also we will conduct further verification of the optimization
approach via more case studies that challenges its capabilities.
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Abstract. SysML activity diagrams are OMG/INCOSE standard models for
specifying and analyzing systems’ behaviors. In this paper, we propose an ab-
straction approach for this type of diagrams that helps to mitigate the state-
explosion problem in probabilistic model checking. To this end, we present two
algorithms to reduce the size of a given SysML activity diagram. The first elimi-
nates the irrelevant behaviors regarding the property under check, while the sec-
ond merges control nodes into equivalent ones. The resulting abstracted model
can answer safely the Probabilistic Computation Tree Logic (PCTL) property.
Moreover, we present a novel calculus for activity diagrams (NuAC) that captures
their underlying semantics. In addition, we prove the soundness of our approach
by defining a probabilistic weak simulation relation between the semantics of the
abstract and the concrete models. This relation is shown to preserve the satis-
faction of the PCTL properties. Finally, we demonstrate the effectiveness of our
approach on an online shopping system case study.

Keywords: Abstraction, SysML Activity Diagram, Probabilistic Automata,
PCTL.

1 Introduction

Various techniques have been proposed for the verification of software and systems in-
cluding model checking, type checking, equivalence checking, theorem proving, and
dynamic analysis. Particularly, the most popular one used for the assessment of UML
and SysML behavioral diagrams is model checking [1,2]. The latter is a formal au-
tomatic verification technique for finite state concurrent systems that checks temporal
logic specifications on a given model. In addition to qualitative model checking, quan-
titative verification techniques based on probabilistic model checkers [3] have recently
gained popularity. Probabilistic verification offers the capability of interpreting proba-
bilistically the satisfiability of a given property on systems that inherently exhibit proba-
bilistic behavior. Despite its wide use, model checking is generally a resource-intensive
process that requires large amount of memory and time processing. This is due to the
fact that the systems’ state space may grow exponentially with the number of variables
combined with the presence of concurrent behaviors and clocks. Moreover, several
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available model checkers cannot support all systems’ features such as buffers, channels,
and/or real variables. To overcome these issues, various techniques have been explored
[4] for qualitative model checking and then leveraged to the probabilistic case. Among
these techniques, several solutions aim at optimizing the employed model checking al-
gorithms by introducing symbolic data structures based on binary decision diagrams,
while others target the reduction of the input model. As we are interested in reusing ex-
isting model checkers, we concentrate on the second category that includes abstraction
approaches.

Abstraction is one of the most relevant technique for addressing the state explosion
problem [3,5]. It can be defined as a mapping from a concrete model into a more ab-
stract one that encapsulates the systems’ behavior while being of a reduced size. The
intuition behind this transformation is to be able to check a property against an abstract
model and then to infer safely the same result on the concrete model. Abstraction tech-
niques can be classified in four categories [6]: 1) Abstraction by state merging aims at
merging states of systems that have similar features. 2) Abstraction on variables targets
the data in the model and aims at representing a set of values as one symbolic variable.
3) Abstraction by restriction operates by forbidding some behavior of the system. 4)
Abstraction by observer automata restricts system’s behaviors to those acceptable by
an automaton that observes the system from outside. Our proposed framework takes
advantage of the first and the third category.

In this paper, we are interested in the efficient verification of systems’ design models
expressed as SysML activity diagrams [7]. These diagrams are behavioral and allow
for probabilistic behavior specification. Our approach combines two mechanisms of
abstraction, the first is based on ignoring the irrelevant action nodes with respect to a
given property and the second applies reduction rules that collapse control nodes in the
SysML activity diagram. Our approach is depicted in Figure 1. In order to prove the
soundness of our algorithm and the preservation of PCTL [3,8] properties satisfaction,
we present a new calculus, namely NuAC, that captures the semantics foundation of
SysML activity diagrams and we express its operational semantics as probabilistic au-
tomata. Furthermore, we demonstrate the practical application of our technique using
a case study that would be otherwise difficult to verify. Thus, we use the probabilis-
tic model checker PRISM [9] and we rely on our translation algorithm [2] that maps
SysML activity diagrams into PRISM model. Besides, we show significant reduction in
the state space and verification time, which makes probabilistic model checking helpful.

The remainder of this paper is organized as follows. Section 2 presents the related
work. Section 3 explains the formal representation of SysML activity diagrams. The
proposed abstraction approach is detailed in Section 4. Section 5 defines and proves
the soundness of our algorithm and the preservation of PCTL satisfaction. Section 6
describes the experimental results. Finally, Section 7 concludes this paper and provides
hints on the possible future works.

2 Related Work

In the literature, few works examine the abstraction of UML and SysML diagrams
before verification and the majority rely on the implemented abstraction algorithms
within the model checker.
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Fig. 1. A Novel Abstraction Approach Overview

Ober et al. [10,11] propose a set of UML model reduction techniques including static
analysis, partial order reduction, and model minimization. The abstraction is performed
on the semantic model instead of UML diagrams. Westphal [12] exploits the symmetry
of UML models in the type of object references to do verification. Shet [13] determines
the set of relevant events with respect to the safety property. Daoxi et al. [14] propose
an abstraction driven by LTL properties on Promela code of UML behavioral diagrams.
Xie and Browne [15,16] propose a verification framework for executable UML (xUML)
models. It is based on a user-driven state space reduction procedure. Beek et al. present
in [17] a framework called (UMC) for the formal analysis of concurrent systems spec-
ified by a collection of UML state machines. It is an on-the-fly based analysis with a
user-guided abstraction of the transition system. Gallardo et al. [18] abstract data and
events in hierarchical state chart diagrams. They minimize the original access defini-
tions of variables and use a single event name to represent a set of real ones. R. Eshuis
[19,20] apply data abstraction on guards and events. In addition, some probabilistic
model checker support abstraction, for example PRISM builds the symmetry reduction
and LiQuor1 includes bi-simulation.

In Table 1, we compare our approach to the existing ones. We observe that few of
them formalize SysML activity diagrams and prove the soundness of their proposed
abstraction approaches. Moreover, our abstraction approach is efficient as it reduces the
size of the model by a considerable rate. Furthermore, our mechanism allows to gain
advantage from algorithms built within the tool in use.

3 SysML Activity Diagrams

In this section, we describe the SysML activity diagram notation, and we present an
optimized and a modified version of the Activity Calculus (AC) [1], to provide a formal
syntax and operational semantics for SysML activity diagrams. This formal semantics
is useful to prove the soundness of our abstraction.

SysML reuses a subset of UML packages and extends others with specific systems’
engineering features, and it covers four main perspectives of systems modeling: struc-
ture, behavior, requirements, and parametric. Particularly, SysML activity diagrams are

1 http://www.i1.informatik.uni-bonn.de/baier/projectpages/LIQUOR/LiQuor

http://www.i1.informatik.uni-bonn.de/baier/projectpages/LIQUOR/LiQuor
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Table 1. Comparison with the Related Work

Approach Design Probabilistic Property Formalization Soundness
[10,11]

[12] �
[13] � �
[14] �

[15,16] �
[17] �
[18] �

[19,20] �
Our � � � � �

behavioral diagrams used to model system’s behavior at various level of abstractions
[21]. The main notation of SysML activity diagram can be decomposed into two cate-
gories of constructs: activity nodes and activity edges. The former contains three types:
activity invocation, object and control nodes. Activity invocation includes receive and
send signals, action, and call behavior. Activity control nodes are initial, flow final,
activity final, decision, merge, fork, and join nodes. Activity edges are of two types:
control flow and object flow. Control flow edges are used to show the execution path
through the activity diagram and connects activity nodes. Object flow edges are used
to show the flow of data between activity nodes. Concurrency and synchronization are
modeled using forks and joins, whereas, branching is modeled using decision and merge
nodes. While a decision node specifies a choice between different possible paths based
on the evaluation of a guard condition (and/or a probability distribution), a fork node
indicates the beginning of multiple parallel control threads. Moreover, a merge node
specifies a point from where different incoming control paths follow the same path,
whereas a join node allows multiple parallel control threads to synchronize and rejoin.

3.1 Syntax of SysML Activity Diagrams

The UML superstructure specifies basic rules for the execution of the various nodes
by explaining textually how tokens (i.e. locus of control.) are passed from one node
to another [22]. At the beginning, a first token starts flowing from the initial node and
moves downstream from one node to another with respect to the foregoing set of con-
trol routing rules defined by the control nodes until reaching either an activity final
or a flow final node. However, activity diagram semantics as specified in the standard
stay informal since it is described informally using textual explanations. Inspired by
this concept, we express the Backus-Naur-Form (BNF) of the new version of Activity
Calculus (NuAC) that captures the syntax and the execution of activity diagrams. This
new version optimizes the syntax presented in [1] and allows multiplicity for fork and
decision constructs. Before presenting the NuAC syntax, firstly, we rewrite the SysML
activity diagram constructs in the formal way as described in Table 2. The BNF of
NuAC is illustrated in Figure 2.

During the execution, the structure of the activity diagram is kept unmodified but the
location of the tokens changes. The NuAC syntax was inspired by this idea so that an
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Table 2. Mapping Activity Diagram Artifacts into NuAC Syntax

AD Constructs NuAC Syntax Description

ι �N Initial node
l : � Activity final node

l : � Flow final node

l : a�N Action node

l : Decision( a Decision node with
(p1,g1,N1), a convex distribusion

· · · , {p1, · · · , pn} with guarded
(pn,gn,Nn)) transitions {g1, · · · ,gn}

l : Merge(N ) or l Merge node specifies the continuation.

l : Fork(N1, · · · ,Nn) Fork node models the concurrency
between n control threads.

Join node models synchronization.
l : x.Join(N ) It rejoins a set of input pins.

or l Each pin is specified by an index x.

A ::= ε | ιk �N
N ::= N

n | l : Merge(N ) | l : x.Join(N )

| l : Fork(N , · · · ,N ) | l : a
n �N

| l : Decision((p1,g1,N ), · · · ,(pn ,gn,N ))
| l : � | l : � | l

Fig. 2. Syntax of New Activity Calculus (NuAC)

NuAC term presents a static structure while tokens are the only dynamic elements. We
can distinguish two main syntactic concepts: marked and unmarked terms. A marked
NuAC term corresponds to an activity diagram with tokens. An unmarked NuAC term
corresponds to the static structure of the diagram. A marked term is typically used to
denote a reachable configuration. A configuration is characterized by the set of tokens
locations in a given term.

To support multiple tokens, we augment the “overbar” operator with an integer n

such that N
n

denotes a term marked with n tokens such that N
1
= N and N

0
= N .

For the term ιk, k can be either 1 or 0. Multiple tokens are needed when there are loops
that encompass in their body a fork node. Furthermore, we use a prefix label for each
node (except initial) to uniquely reference it in the case of a backward flow connection.
Particularly, labels are useful for connecting multiple incoming flows towards merge
and join nodes. Let L be a collection of labels ranged over by l, l0, l1, · · · and N be
any node (except initial) in the activity diagram. We write l : N to denote an l-labeled
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activity node N . The NuAC term A is built using a depth-first traversal of the activity
diagram directed by its activity edges. It is important to note that nodes with multiple
incoming edges (e.g. join and merge) are visited as many times as they have incoming
edges. Thus, as a syntactic convention, the algorithm uses either the definition term
(i.e. l : Merge(N ) for merge and l : x.Join(N ) for join) if the current node is visited
for the first time or the corresponding label (i.e. l) if the same node is encountered
later during the traversal process. We denote by Decision(−,g,N ) to express the non-
probabilistic decision while p has no value. Also, we denote by A [N ] to specify N
as a sub term of A .

3.2 Semantics of SysML Activity Diagrams

The execution of SysML activity diagrams is based on token’s flow [22]. To give a
meaning to this execution, we use structural operational semantics to formally describe
how the computation steps of NuAC atomic terms take place. The NuAC semantics
rules shown by Figure 3 is based on the informally specified tokens-passing rules de-
fined in [22].

INIT-1 ι�N
ι−→1 ι�N

ACT-1 l : a
m �N

l−→1 l : a
m−1 �N ∀m > 0

ACT-2 l : a
m �N

n −→1 l : a
m+n �N ∀m > 0

FORK-1 l : Fork(N1, · · · ,Nn)
m l−→1 l : Fork(N1, · · · ,Nn)

m−1 ∀m > 0
PDEC-1

l : Decision((p1,g1 ,N1), · · · ,(pi,gi,Ni), · · · ,(pn ,gn,Nn))
m l−→pi

l : Decision((p1,g1 ,N1), · · · ,(pi,gi,Ni), · · · ,(pn ,gn,Nn))
m−1 ∀m > 0

MERG-1 l : Merge(N )
m l−→1 l : Merge(N )

m−1 ∀m > 0
MERG-2 A [l : Merge(N )

m
, l

k
]−→1 A [l : Merge(N )

m+k
, l] m,k ≥ 1

JOIN-1

A [l : x.Join(N )
m
, l

k
x]

l−→1 A [l : x.Join(N )
m+k−1

, lx ] ;x > 1 ∀m,k ≥ 1
FLOWFINALA [l :

⊗
]

l−→1 A
FINAL A [l : �]

l−→1 |A |
PROG

N
α−→q N ′

A [N ]
α−→q A [N ′]

Fig. 3. NuAC Operational Semantic Rules

We define Σ as the set of non-empty actions labeling the transitions (i.e. the alphabet
of NuAC, to be distinguished from action nodes in activity diagrams). An element α ∈Σ
is the label of the executing active node. Let Σo be Σ ∪{o} where o denotes the empty
action. Let p be probability values such that p ∈ {−}∪]0,1]. The general form of
a transition is A

α−→p A ′. The probability value specifies the likelihood of a given
transition to occur and it is denoted by P(A ,α,A ′). The semantics of SysML activity
diagrams is expressed using A as a result of the defined inference rules that can be
described in terms of Probabilistic Automata (PA) [23].
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4 The Abstraction Approach

This section describes our approach to abstract a design model expressed as SysML
activity diagrams. To do so, we propose essentially two abstraction algorithms.

The first one hides the action nodes of the SysML activity diagram that are not part of
the atomic propositions of the PCTL property to be verified à la [5]2. Initially, SysML
activity diagram is an action-based diagram, where actions are the executed entities and
guards denote the branching choices between alternative actions. The control nodes are
essentially used to coordinate the execution of these actions. Thus, PCTL properties
essentially comprise propositions on actions and guards. The atomic propositions of
a PCTL property φ are formed with a set of independent variables var(φ) such that
var(φ)⊆ {ai : i≤ n}∪{gi : i≤ m} where ai is a variable corresponding to an action,
gi is a guard variable, and respectively, n and m are the number of actions and guards.

Abs : NuAC×Var(Φ)→ NuAC
Abs (N ,var(φ) ) = Case (N ) of

l : a�N ′ ⇒ i f a ∈ var(Φ) then
l : a�Abs(N ′,var(φ))

e l s e
ε �Abs(N ′,var(φ))

end
O t h e r w i s e Abs (N ,var(φ) )

Listing 1.1. Action Nodes Abstraction Algorithm

The procedure Abs presented in Listing 1.1 abstracts a given SysML activity dia-
gram with respect to the action variables that are not part of the set var(φ). It takes
as input a NuAC term N along with var(φ) and generates an abstract term such that
Abs(N ,var(φ)) = N̂ and var(N̂ ) = var(φ).

The second algorithm minimizes an activity diagram by merging specific control
nodes while preserving the number of tokens and their control paths. This is achieved
by preventing the modification of guarded and probabilistic choices. The procedure
Minim presented in Listing 1.2 aims at merging consecutive control nodes of the same
type. For that, we propose an equivalence relation inspired by the structural congruence
relation defined by Milner [24]. This equivalence relation satisfies the following rules:

1. l : Fork(. . . ,Ni, . . .)≡ l : Fork(. . . ,Nk, . . . ,Nm, . . .) if Ni ≡ l′ : Fork(Nk, . . . ,Nm).
2. l : x.Join(N ′)≡ l : z.Join(N ) if N ′ ≡ l′ : y.Join(N ) and z = x+y.
3. l : Merge(N )≡ l : Merge(N ′) and l = l′ if N ≡ l′ : Merge(N ′).
4. l : Decision(. . . ,(p,g,N ), . . .)≡ l : Decision(. . . ,(p× pk,g∧gk,Nk), . . . ,(p× pm,

g∧gm,Nm), . . .) if N ≡ l′ : Decision((pk,gk,Nk), . . . ,(pm,gm,Nm)).

Basically, Abs produces a new model that includes mainly the specified actions in the
property φ where other actions are considered as silent action (Milner [24]). Thus, the

2 Close to the cone of influence of [5].
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Minim : NuAC → NuAC
Minim (N ) = Case (N ) of

l : Merge(N ′) ⇒ Case (N ′ ) of
l′ : Merge(N ′′) ⇒ l : Merge(Minim(N ′′)) and Rewrite(N ′′, l′, l)

O t h e r w i s e ⇒ l : Merge(Minim(N ′))
l : x.Join(N ′) ⇒ Case (N ′ ) of

l′ : y.Join(N ′′) ⇒ l e t
z = x+y

in
l : z.Join(Minim(N ′′)) and Rewrite(N ′′, l′, lx+ j)

O t h e r w i s e ⇒ l : Join(Minim(N ′))
l : Fork(N1, · · · ,Ni, · · · , Nn) ⇒ Case (Ni ) of

l′ : Fork(N ′
k , · · · , N ′

m) ⇒
l : Fork(Minim(N ′

1 ), · · · , Minim(N ′
k ), · · · ,

Minim(N ′
m), · · · , Minim(Nn))

O t h e r w i s e ⇒ l : Fork(Minim(N1), · · · ,Minim(Ni), · · · , Minim(Nn))
l : Decision((p1,g1,N1), · · · ,(pi,gi,Ni), · · · ,(pn,gn,Nn)) ⇒ Case (Ni ) of

l : Decision((p′1,g
′
1,N

′
1 ), · · · ,(p′j,g′j,N ′

j ), · · · ,(p′m,g′m,N ′
m)) ⇒

l : Decision((p1,g1,N1), · · · ,(pi× p′1,gi∧g′1,N ′
1 ), · · · ,

(pi× p′j,gi∧g′j,N ′
j ), · · · ,(pi× p′m,gi∧g′m,N ′

m),

· · · ,(pn,gn,Nn))
O t h e r w i s e ⇒ l : Decision((p1,g1,Minim(N1)), · · · ,(pn,gn,Minim(Nn)))

O t h e r w i s e Minim (N )

Listing 1.2. Control Nodes Abstraction Algorithm

resulting activity diagram has a reduced number of actions, which increases the occur-
rence of consecutive control nodes. Consequently, applying Abs first is more efficient3

as showed by the following proposition.

Proposition 1 (Application Order). For a SysML activity diagram “A ” and a prop-
erty “φ”, we have: Minim(Abs(Minim(A ),φ))≡Minim(Abs(A ,φ)).

Proof. Let M1 ≡Minim(A ),M2 ≡Abs(M1,φ) and M3 ≡Minim(M2), we have:

1. M1 ≡Minim(A )⇔ if ∃l : Nk�Nm ∈A , then l : Nk�Nm is replaced by l : Nkm

if one of control merging rules is satisfied.
2. M2 ≡Abs(M1,φ))⇔∀a /∈var(φ) : Abs(l : a

n�N ,var(φ)) = l : εn�N . In fact,
Abs produces new consecutive control nodes and preserve the diagram structure.

It is clear that the second step has no effect on the first one and vice versa. In addition,
applying Minim two times successively is equivalent to apply it once. Thus, the propo-
sition holds.  �

5 Abstraction Soundness and Property Preservation

In this section, we first prove the soundness of our proposed abstraction algorithms.
Next, we prove that our algorithms preserve the satisfaction of PCTL properties.

3 In term of time execution.



Efficient Probabilistic Abstraction for SysML Activity Diagrams 271

5.1 Abstraction Soundness

Our aim is to prove that our abstraction algorithm is sound and preserves PCTL proper-
ties. Let A be a SysML activity diagram and MA be its corresponding PA constructed
by the NuAC operational semantics S such that S(A ) = MA . And, let δ be our abstrac-
tion composed of Abs and Minim algorithms such that δ (A ) = Â , where Â denotes
the abstracted SysML activity diagram. Let M

Â
be its corresponding PA defined using

the NuAC operational semantics S such that S(Â ) = M
Â

. As illustrated in Figure 4,
proving the soundness of our algorithm is to find a relation R between MA and M

Â
.

The formal description of MA is represented in Definition 1 where Dist(S) is a convex
distribution over a set S.

A MA

Â M
Â

S

δ

S

R

Fig. 4. Abstraction Correctness

Definition 1 (New Activity Calculus PA). A probabilistic automata of an activity cal-
culus term A is a tuple MA = (s, L, S, Σ , δ ) where:

– s is an initial state, such that L(s)=A ,
– L is a labeling function,
– S is a finite set of states reachable from s, such that, S = {si:0≤ i ≤ n|L(si) ∈ {N }},
– Σ is a finite set of actions corresponding to the alphabet of A ,
– δ : S×Σ → Dist(S) is a (partial) probabilistic transition function such that, for

each s ∈ S and α ∈ Σ assigns a probabilistic distribution μ ∈ Dist(S) such that:
• For each S′ ⊆ S, S′ = {si:0≤i≤n : s

α−→pi si}. Each s
α−→pi si satisfies one NuAC

semantic rule and μ(S′) = ∑n
i=0 pi = ∑n

i=0 μ(si) = 1.

• For each transition s
α−→1 s′′ satisfying a NuAC semantic rule, μ is defined

such that μ(s′′) = 1.

To define the relation MA R M
Â

, we introduce the notion of weak relation while δ
abstracts away from invisible actions. Formally, the probabilistic weak simulation [23]
relation defined in Definition 2 introduces the notion of observable action a preceded
and followed invisible steps. We denote a weak transition by (s

a
=⇒ P) where P is the

distribution over states reached from s through a sequence of combined steps.

Definition 2 (Weak Probabilistic Simulation). A weak probabilistic simulation be-
tween two probabilistic automata M1 and M2 is a relation R � S1× S2 such that:

1. each start state of M1 is related to at least one start state of M2,
2. for each pair of states s1Rs2 and each transition s1

a−→ P1 of M1, there exist a weak
combined transition s2

a
=⇒ P2 of M2 such that P1�R P2.
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Here, �R is the lifting of R to a probability space. It is achieved by finding a weight
function [23] that associates each state of M1 with others in M2 by a certain probability
value. It is defined below.

Definition 3 (Weight Function). A function ( : S× S′ → [0,1] is a weight function
for the two distribution μ1,μ2 ∈ Dist(S) w.r.t. R � S× S′ iff:

1. ((s1,s2)> 0⇒ (s1,s2) ∈R,
2. ∀ s1 ∈ S : Σs2∈S((s1,s2) = μ1(s1),
3. ∀ s2 ∈ S : Σs1∈S((s1,s2) = μ2(s2) then s1Rs2.

For our proof, we stipulate herein the abstraction relation denoted by A �R′ Â be-
tween SysML activity diagrams A and Â .

Definition 4 (Abstraction Relation). An abstraction relation is a weak probabilistic
relation between a SysML activity diagram A and its abstracted model Â by applying
δ algorithm.

In the following, we present the soundness of our algorithm. Let MA be a PA repre-
senting the semantic of the NuAC term A , M

Â
is the PA representing the semantics of

Â such that Â = δ (A ,φ). Proving that δ is sound means proving there exists a weak
probabilistic simulation between MA and M

Â
, i.e. MA �R M

Â
.

Theorem 1 (Soundness). The abstraction algorithm δ is sound.

Proof. The proof follows a structural induction on NuAC terms. In an inductive way,
we select the a�N case to prove the soundness for Abs procedure procedure. The
remaining cases can be proved similarly for both Abs and Minim functions.

Let L(s1) = a�N ⇒ ∃ s′1 : s1 → s′1 by applying ACT-1 rule such that: s′1 = a�
N ⇒ μ1(s′1) = 1. By considering s2 as the abstracted state of s1, L(s2) = Abs(L(s1)),
we will have two cases:

1. a∈var(φ) : L(s2) = Abs(a�N ) = a� Abs(N ). By applying ACT-1, ∃ s′2 : s2 →
s′2 such that: L(s′2) = a�Abs(N )⇒ μ2(s′2) = 1. Then, it exists a weight function
( for R = (s′1,s

′
2) such that:

(a) ((s′1,s
′
2) = 1⇒((s′1,s

′
2) = μ1(s′1), and

(b) ((s′2,s
′
1) = 1⇒ μ2(s′2) =((s′2,s

′
1), then

(c) ((s1,s2)> 0⇒ s1 �R s2
2. a /∈var(φ) :

L(s2) = Abs(s1) = Abs(a�N ) = ε� Abs(N )⇒∃ s′2 : s2 → s′2.
By applying ACT-1 rule such that L(s′2) = ε �N ⇒ μ2(s′2) = 1.
It exist a weight function ( for R = (s′1,s

′
2) such that:

(a) ((s′1,s
′
2) = 1⇒((s′1,s

′
2) = μ1(s′1), and

(b) ((s′2,s
′
1) = 1⇒ μ2(s′2) =((s′2,s

′
1), then

(c) ((s1,s2)> 0⇒ s1 �R s2

It is clear that, the marked NuAC term A is the unique initial state of MA corresponding
to the unique initial state in M

Â
. By following the same style of proof, we find:

A �R M
Â

, which confirms that Theorem 1 holds.  �
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5.2 Property Preservation

In order to perform model-checking, a property should be specified. We selected PCTL
to express such property. Formally, its syntax is given by the following BNF grammar:

φ ::= ) | a | φ ∧φ | ¬φ | P�� p[ψ ]
ψ ::= Xφ | φU≤kφ | φUφ

Where a is an atomic proposition, k ∈N, p ∈ [0,1], and ��∈ {<,≤,>,≥}. Also, other
useful operators can be derived such as:

– Future: Fφ ≡ )U φ or F≤ kφ ≡ )U≤ k φ .
– Generally: Gφ ≡ ¬(F¬φ) or G≤ kφ ≡ ¬(F≤ k¬φ).

To specify a satisfaction relation of a PCTL formula in a state s, a class of adversaries
(Adv) has been defined [8] to solve the nondeterminism decision. Hence, a PCTL for-
mula should be satisfied under all adversaries. The satisfaction relation (|=Adv) of PCTL
formula is defined as follows:

– s |=Adv )
– s |=Adv a⇔ a ∈ L(s)
– s |=Adv φ1∧φ2 ⇔ s |=Adv φ1∧ s |=Adv φ2

– s |=Adv ¬φ ⇔ s �|=Adv φ
– s |=Adv P�� p[ψ ]⇔ P({π ∈ IPathM,s|πAdv |= ψ}) �� p
– π |=Adv Xφ ⇔ π(1) |=Adv Xφ
– π |=Adv φ1 U≤ k φ2 ⇔ ∃ i≥ k.(π(i) |=Adv φ2∧π( j) |=Adv φ1 ∀ j < i)
– π |=Adv φ1 Uφ2 ⇔ ∃ k ≥ 0. π |=Adv φ1 U≤ k φ2

Here, we prove by induction on the structure of the PCTL grammar, except for the neXt
operator (PCT L\X ), that a formula (φ ) holds in the concrete model if it holds in the
abstracted model as stated in Theorem 2.

Theorem 2 (PCTL Preservation). For two models M and M̂ such that M �R M̂. If φ
is a PCT L\X property, then we have: (M̂ |= φ)⇒ (M |= φ).

Proof. To prove the preservation of PCTL properties, we follow an inductive reasoning
on the PCTL structure.  �

6 Experimental Results

In this section, we apply our abstraction algorithm on an online shopping system case
study [25]. In order to show our abstraction efficiency, we use our translation algorithm
[2] to map SysML activity diagrams into PRISM input language where we verify PCTL
properties on both: the concrete and the abstract models. This is done in the purpose
of providing experimental results demonstrating the efficiency and the validity of our
abstraction.

To this end, we compare the results perspective of the verification cost (β ) in terms
of time verification and the abstraction efficiency (η) in terms of model’s time con-
struction. With respect to the verification cost, we measure both the time required to
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construct the model, denoted by Tc, and the time required for verifying the property,

denoted by Tv. The verification cost is given by β = 1− |T v(M̂)|
|T v(M)| . Concerning the ab-

straction efficiency, we measure the number of transitions (#t) for both concrete and

abstract diagrams. It is given by η = 1− |T c(M̂)|
|T c(M)| . The result of the verification of a

property is denoted by Res.

6.1 Model Description

The online shopping system aims at providing services for purchasing online items.
Figure 5a illustrates the corresponding SysML activity diagram4. It contains four call-
behavior actions5, which are: “Browse Catalogue”, “Make Order”, “Process Order” and
“Shipment”. As example, Figure 5b expands the call behavior action “Process Order”.

(a) Online Shopping System. (b) Process Order.

Fig. 5. The Concrete SysML Activity Diagram

6.2 Property Specification

In order to verify the functional requirements of the online shopping system, we propose
the following properties and its related PCTL expressions.

1. For each order, what is the minimum probability value to make a delivery? From
this expression, it is clear that only the main diagram (M) and “Process Order”
behavior (M3) are affected. We express this property in PCTL as follows, where n
is the order number and K is the maximum allowed number to make an order.

Pmin =?[(n≤ K) U (Delivery)]

4 This diagram is not symmetric which mean that we can not benefit from the symmetry reduc-
tion built within PRISM.

5 Each call-behavior action is represented by its proper diagram.
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2. After browsing the catalogue, what is the minimum probability value to ship a se-
lected item? The propositions of this property belong to the main diagram (M) and
both behaviors: “Browse Catalogue”, “Process Order” and “Shipment” where n and
m representing the order and the shipment numbers, respectively. Its corresponding
PCTL expression is:

Pmin =?[((SelectItem ∧ m = n ∧ m≤ K) ⇒ F(Delivery)) ⇒ F(Shipment)].

6.3 Verification Result

After applying our abstraction algorithm, we obtain the abstract SysML activity dia-
grams shown in Figure 6 for property #1. Due to the lack of space, we are not providing
the abstract SysML activity diagram related to property #2.

(a) Online Shopping System. (b) Process Order.

Fig. 6. The Abstract SysML Activity Diagram

(a) Property #1. (b) Property #2.

Fig. 7. Shopping Online System Abstraction Rate

Figure 7a illustrates both abstraction rates in term of model size and computation
time for the verification of property #1. For the verification of property #2, Figure 7b
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shows the evolution of the abstraction rate in terms of model size and computation
time. In summary, the results demonstrate that the abstraction efficiency is important
especially when the model’ size is growing. Furthermore, they show that our abstraction
algorithm actually preserves the verification results.

7 Conclusion

In this paper, we presented an automatic abstraction approach to improve the scalabil-
ity of probabilistic model-checking in general and more especially for the verification
of SysML activity diagrams. Also, we proposed a calculus dedicated to these diagrams.
We have proved the soundness of our algorithm by defining a probabilistic weak simula-
tion relation between the semantics of the abstract and the concrete models. In addition,
the preservation of the satisfaction of PCTL\X properties is proved. Finally, we demon-
strated the effectiveness of our approach by applying it on an online shopping system
application.

As future work, we would like to extend our approach by investigating several di-
rections. First, we intend to integrate our algorithm within PRISM model checker. Sec-
ond, we plan to apply our proposed abstraction on a composition of SysML activity
diagrams. Next, we explore other abstraction approaches especially data abstraction
targeting events and guards reduction. Finally, we intend to investigate reducing the
property within the model at the same time to check M̂ |= P̂ instead of M |= P.
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Abstract. Critical software needs to obtain an assessment before com-
missioning. This assessment is given after a long task of software analysis
performed by assessors. They may be helped by tools, used interactively,
to build models using information-flow analysis. Tools like SPARK-Ada
exist for Ada subsets used for critical software. But some emergent lan-
guages such as those of the ML family lack such adapted tools. Pro-
viding similar tools for ML languages requires special attention on spe-
cific features such as higher-order functions and pattern-matching. This
paper presents an information-flow analysis for such a language specifi-
cally designed according to the needs of assessors. This analysis can be
parametrized to allow assessors getting a view of dependencies at several
levels of abstraction and gives the basis for an efficient fault tolerance
analysis.

1 Introduction

Software is used to control everyday life as well as high risk systems. While
games on smartphones and recreational instant messengers can contain soft-
ware failures without staking human lives or implying catastrophic financial
consequences, aeronautic trajectory controllers or automatic train protections
are critical software.

Critical software must pass a safety assessment before its commissioning, given
by sworn assessors. They perform a precise analysis as required by standards of
the involved domains (IEC-61508 [16] for general purposes, CENELEC-50128
[15] for railways, etc.). This analysis aims at discovering any lack leading to
feared events. Prior to software development, a hazard analysis states all safety
prescriptions and drives software specification construction. Software analysis
must convince the assessor that the development satisfies all safety requirements
expressed in this specification. Assessment is a huge and difficult task, which
amounts between 10 and 15% of the total development costs, due to the growing
number of critical functionalities assigned to software components. Assessors can
be helped by software analysis tools, however they do not want to delegate the
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acceptance to a totally automatic and opaque tool, as they can be prosecuted in
case of accident.

The assessment activity rests upon standard methodologies such as software
FMECA1 and Fault Tree Analysis, which are based on functional models. It
mainly consists in exploiting some data flow analysis to build models, determine
the impact of failures etc. Models construction especially relies on identification
of the real inputs and outputs of a program or a software component (i.e. param-
eters, external entities – functions and constants – and side effects – accesses to
values from terminals, files, sensors etc.) and dependencies between these inputs
and outputs. Such models help recovering specifications of a software component,
allowing to abstract it as a black box whose functional behaviour is simpler to
manipulate. In the context of FMECA, the assessor has to study the effects re-
sulting from the injection of failures on the functional behavior of a component.
A fault injection is a modification of the value of an identifier (not necessarily
erroneously), usually an input. As a consequence, we can also define a real input
as an identifier “having an impact” on the component, i.e when it is modified
(by a fault injection), the value of one of the outputs -at least- may change.

A last requirement in this kind of activity is to cope with abstraction. One may
not be interested in the real dependencies of some components, either because
we do not have their implementation or because they are considered “trusted”
or out of scope. In such a case, we must be able to stop the analysis on such
components, considering them as “terminal basic bricks” whose dependencies
will be represented by the component’s name. Such components will be “tagged”,
hence enabling a choice of the abstraction level. This choice is under the assessor’s
responsibility, taking benefits of his experience in the domain of the system (e.g.
railway) and his knowledge of this particular instance of it (e.g. a subway) he got
through the documentation of the system. Determining the target of analysis
then consists of understanding which components are considered critical and
which ones can be safely abstracted.

Programming languages of the ML family become to be used in critical soft-
ware development. Hence they need tools for computer-aided certification, in
particular dependency analysis tools. Some industrial projects are already writ-
ten using ML languages. Jane Street Capital develops critical trading systems
in OCaml [9] which deals with hundreds of millions of dollars everyday. The
certified embedded-code generator SCADE is also written in OCaml [12]. Many
other critical software are developed using ML languages such as the Goanna
static analysis for safety critical C/C++ [6], or the LexiFi Apropos software
platform for pricing and management of financial products [8].

This paper presents a static analysis for functional programming languages
to compute dependencies based on assessor’s needs, as recensed by one of the
authors (P. Ayrault, an independent safety assessor (ISA) for railway domain)
and informally presented in the previous paragraphs.

We first examine related works about information-flow analysis in functional
languages in Section 2. In Section 3, the core language is introduced with its

1 Failure Modes, Effects and Criticality Analysis.
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syntax and operational semantics. Then Section 4 formalizes the dependency
analysis aiming to address the previously quoted needs and states its correctness.
This static analysis is the first step towards a tool enabling specification and
verification of dependencies of a software component written in a functional
language (like Spark-Ada does for Ada). This tool should allow the user to
specify the real inputs and outputs, their dependencies and should be able to
verify that the code is correct with respect to these specifications. In Section 5,
we illustrate this on a small program. Then we conclude and give some possible
extensions.

2 Related Work

Tools for model construction, based on information-flow analysis, exist for sub-
sets of imperative languages. For example SPARK-Ada2 gives the dependencies
between inputs and outputs of software components written in an Ada subset.
Functional languages begin to be used in development of critical software and
tools related to safety. Unfortunately there are only very few tools dedicated to
those languages and they are not as specifically designed for safety as are the
tools for imperative languages.

Several motivations have led to information-flow analysis. The first one was
compiler optimization with slicing [18], binding-time analysis [4,10], call-tracking
[17] etc. Currently, the most studied matter is probably data security [7,14]
(including secrecy and integrity).

Information-flow analysis for higher-order programming languages has been a
long-term study.

In [2] the authors proposed a data-flow analysis for a lambda calculus. The goal
of their analysis was run-time optimization using caching of previously computed
values (do not compute an expression a second time if only independent values
have changed). In their language, any sub-expression can be annotated with a
label. Their run-time analysis is obtained by extending the usual operational
semantics of the lambda calculus with a rule dealing with these labels. Hence,
the analysis consists in evaluating the whole expression which leads to a value
containing some of the labels present in the original expression. If a label is not
present in the value, it means that the corresponding sub-expression is unused
to compute the value.

In [1] the authors show that several kinds of information-flow analysis can be
based on the same dependency calculus providing a general framework for secure
information-flow analysis, binding-time analysis, slicing and call-tracking.

In [13] the analysis proposed by Abadi and al. in [2] is done statically using
a simple translation and a standard type system. The authors claim that com-
bined with the work of [1] their static analysis can also be used for all kinds
of dependency analysis addressed in [1]. Later, in [14], the authors proposed a
data-flow analysis technique for a lambda-calculus extended with references and

2 See http://libre.adacore.com/libre/tools/spark-gpl-edition/
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exceptions. A new approach based on a specific type system was proposed to fill
the lacks of the previous approach.

This latter approach, used as a basis to build the Flow Caml language, uses
a lattice representing security levels in order to ensure secrecy properties. As
previously shown in [1], this kind of framework can be used for other kinds
of dependency analysis by using different lattices. From our experiments, Flow
Caml can be used to compute dependencies by “cheating”, “misusing” it and
leads to pretty good results up to a certain point. The basic idea is to set one
different security level per identifier to be traced, using a flat security lattice.
Inference then mimics dependency analysis as long as no explicit type constraint
with level annotation is present and as long as no references are used. This
last point is the most blocking since invariance of references requires equality of
levels. Hence, having different levels on the traced identifiers will make the type-
checker rejecting such programs. In one sense, we need to be more conservative
since we do not want to reject programs accepted by the “regular compiler”.
We could say that Flow Caml accurately works but at some point, not in the
direction we need. Moreover, the type system can’t “ignore” — i.e. really con-
sider as opaque — dependencies for some identifiers the assessor doesn’t matter
about. This is an important point since considering identifiers “abstract” means
that the safety analysis must not take them into account for some reasons and
allows reducing “noise” (flooding) polluting valuable dependency information.
Assigning a convenient level on functions to trace them is to be more difficult
since explicit type annotations get quickly complex. We succeeded for first order
functions, even polymorphic, but it is unclear how to handle higher order.

All of these approaches try to provide an automatic information-flow analysis.
This automation is valuable for the different purposes they address. However,
assessors need a parametric tool that can be used interactively in order to help
them building their own models.

3 The Core Language

3.1 Syntax

The language we consider is an extended λ-calculus with the most common
features of functional programming languages: constants, sums, let-binding,
recursion and pattern-matching. It comprises the functional kernel of CamlLight.

Sums are built from constant and parametrized constructors. Parametrized
constructors only contain one parameter without loss of expressiveness since
constructors with several parameters can be encoded using one parameter being
a pair. In the same way, tuples can be encoded as nested pairs.

The considered pattern-matching only contains two branches where the sec-
ond pattern is a variable, but it does not affect the language expressiveness
since a pattern-matching with more branches can be encoded by nested pattern-
matching with two branches. Conditional expressions are encoded as a pattern-
matching against two constants constructors True and False.
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Expressions
e ::= i Integer constant

| x Identifier
| C | D(e) | (e1, e2) Sum constructors and pair
| let x = e1 in e2 let-binding
| fun x→ e Abstraction (function)
| rec f x→ e Recursive abstraction
| e1 e2 Application
| match e1 with p→ e2 | x→ e3 Pattern-matching

Patterns
p ::= x Pattern variable

| i Integer constant pattern
| C | D(p) Sum constructor patterns
| (p1, p2) Pair pattern

Bindings
s ::= let x = e Toplevel let binding

Programs (i.e. sequence of bindings)
prg ::= ε

| s ; ; prg

3.2 Operational Semantics

This section shortly presents the operational semantics of the language. This is
a standard call-by-value semantics evaluating an expression to a value:

Values
v ::= i Integer

| C | D(v) Constant and parametrized constructors
| (v1, v2) Pair
| (ξ, fun x→ e) Simple closure (functional value)
| (ξ, rec f x→ e) Recursive closure

where ξ is an evaluation environment mapping identifiers onto values.
Evaluation rules will be given for the 3 kinds of constructs of the language,

i.e. expressions, patterns and definitions (which are mostly expressions bound
at top-level and must be processed specifically since they largely contribute to
the representation of dependencies, the bound identifiers being those appearing
in the “visible” result). These rules are similar to those commonly presented for
other functional languages.

Evaluation of expressions

ξ � C � C
ξ � e � v

ξ � D(e) � D(v)
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Sum expressions are evaluated to the value corresponding to the constructor as
introduced in its hosting type definition, embedding the values coming from the
evaluation of their arguments if there are some.

ξ � fun id → e � (ξ, fun id → e) ξ � rec f id → e � (ξ, rec f id → e)

Evaluation of a function expression leads to a “functional value” called a clo-
sure, embedding the current evaluation environment, the name of the formal
parameter and the expression representing the body of this function.

ξ � e1 � (ξ1, fun id → e) ξ � e2 � v2 (id, v2)⊕ ξ1 � e � v3

ξ � e1 e2 � v3

ξ � e1 � (ξ1, rec f id → e) ξ � e2 � v2
(id, v2)⊕ (f, (ξ1, rec f id → e))⊕ ξ1 � e � v3

ξ � e1 e2 � v3

Evaluation of an application processes the argument expression, leading to a
value v2 and the functional expression leading to a closure. The environment of
this closure is then extended (operator ⊕) by binding the formal parameter id to
the value v2 (and the function name to its closure in case of recursive function),
then the body of the function gets evaluated in this local environment.

ξ � e1 � v1 (x, v1)⊕ ξ � e2 � v2

ξ � let x = e1 in e2 � v2

The let in construct locally binds the identifier x to a value: the definition
expression e1 is first evaluated, let v1 be its value, then the expression e2 is
evaluated in the extended environment binding the identifier x to the value v1.

ξ � e1 � v1 p, v1 �p ξ1 ξ1 ⊕ ξ � e2 � v2

ξ � match e1 with p -> e2 | x -> e3 � v2

ξ � e1 � v1 ∀ξ1.¬(p, v1 �p ξ1) (x, v1)⊕ ξ � e3 � v3

ξ � match e1 with p -> e2 | x -> e3 � v3

Evaluation of a pattern-matching first processes the matched expression, leading
to a value v1. We then need an extra operation, *p verifying that a value is
“compatible” with a pattern and if so returns the bindings of pattern variables
to add to the environment before the evaluation of the right-side expression of
a matching case. The rules describing this operation follow below.

If the first case of the pattern-matching has a pattern, p, compatible with e1,
then its induced pattern variables bindings are added to the current evaluation
environment in which the right-side part expression of the case, e2, is evaluated
resulting in the whole expression value.

If the first case does not match, then the second one, x, will always match,
extending the evaluation environment by binding x to v in which the right-side
part expression is evaluated.

Matching values against patterns

x, v �p (x, v) C,C �p ∅
p, v �p ξ

D(p), D(v) �p ξ

p1, v1 �p ξ1 p2, v2 �p ξ2

(p1, p2), (v1, v2) �p ξ1 ⊕ ξ2
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Evaluation of top-level definitions
ξ � e � v

ξ � let x = e �s (x, v)⊕ ξ

Evaluation of programs (successive top-level definitions)

ξ0 � ε �prg ξ0
ξ0 � s �s ξ1 ξ1 � prg �prg ξ2

ξ0 � s ; ; prg �prg ξ2

4 Dependency Analysis

The dependency analysis is described as an alternative semantics (like an ab-
stract interpretation [5]) called “dependency semantics”. The dependency se-
mantics performs a dependency inference by evaluating a program to a value
(called dependency term) describing the dependencies of this program. This in-
ference is the first step to verify dependencies stated by user specifications. The
dependencies are expressed as structured values containing the “abstract” top-
level identifiers having an impact on the evaluated program. External primitives
or “trusted” components are given explicit dependencies since their definitions
are either unavailable or unnecessary to analyze.

It is important to note that this analysis is more accurate than a “simple grep-
like” command since the fact that an identifier does not appear in an expression
does not mean that this expression does not depend on it. Moreover, the form of
the dependency terms allows to keep trace of the structure of dependent data.

4.1 Dependency Semantics

The dependency on an identifier expression is simply described by the name of
the identifier. A dependency term may be empty: a basic constant expression
does not depend on anything. Constant and parametrized sum constructors as
well as pairs allow representing the structure of the expression’s value. Union of
dependencies allows combining dependencies of several sub-expressions.

Values: Dependency terms
Δ ::= ⊥ Empty dependency

| x Identifier (abstract or built-in)
| C | D(Δ) Constant and parametrized sum constructors
| (Δ,Δ) Pair
| < λx.e, Γ > Closure
| Δ⊗Δ Union of dependencies

Dependency semantics: Evaluation of expressions

The following judgments use a dependency environment Γ binding free iden-
tifiers to their corresponding dependency term.

(const) Γ � i �e ⊥
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A constant expression evaluates to an empty dependency: this means that the
expression does not involve (depend on) any top-level identifier.

(ident) Γ � x �e Γ (x)

Evaluation of an identifier returns the value bound to this identifier in the envi-
ronment. This value can be either the identifier itself, if the top-level definition
of this identifier has been “tagged” as abstract, or another dependency term
corresponding to its definition otherwise.

(pair) Γ � e1 �e Δ1 Γ � e2 �e Δ2

Γ � (e1, e2) �e (Δ1,Δ2)

A pair expression evaluates to a pair value in which each component is the eval-
uation of the corresponding component in the expression. This allows keeping
trace of the dependency of each component separately. If only one of its compo-
nents is used afterwards in the program, only the corresponding dependencies
will be taken into account and not a significantly larger over-approximation.

(constr-1 ) (constr-2 )
Γ � C �e C

Γ � e �e Δ

Γ � D(e) �e D(Δ)

Sum constructor expressions are evaluated to their dependency term counter-
part, embedding the dependencies of their argument if they have some.

(lambda) Γ � λx.e �e< λx.e, Γ >

As in the operational semantics, functions evaluate to closures containing the
definition of the function and the current environment. This rule has been cho-
sen in order to provide a high level of precision, as opposed to the choice of
analysing functions’ bodies to synthesize a term containing only partial infor-
mation.

(recursion) Δ = DepsOfFreeVars(λx.e, Γ )

Γ � rec f x.e �e< λx.e, (f,Δ)⊕ Γ >

where DepsOfFreeVars(λx.e, Γ ) is the union (⊗) of the dependency terms of all
free variables present in the function definition. Γ contains the binding of each
free variable to its dependency term, which has already been computed.

Recursive functions also evaluate to closures. As opposed to the operational
semantics, there is no need of recursive closure. However to avoid forgetting
dependencies caused by effective recursive calls, one must admit that recursive
calls possibly depend on all free variables present in the body of the function.
This is mandatory as the following example shows:

l e t ab s t r i d = . . . ; ; (∗ Assumed tagged ‘ ‘ abs t rac t ’ ’ . ∗)
l e t rec f x = i f x then f fa l se e lse ab s t r i d ; ;
l e t v = f true ; ;

where omitting abstr id which is free in the body of f is wrong since calling f

with true involves a dependency during the recursive call.
Note that this approach is correct because recursive calls do not introduce

extra dependencies except those coming from the evaluation of parameters and
the body.
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(apply-concr)

Γ � e1 �e Δ1 Δ1 =< λx.e, Γx > Γ � e2 �e Δ2 (x,Δ2)⊕ Γx � e �e Δ

Γ � e1 e2 �e Δ

(apply-abstr)
Γ � e1 �e Δ1 Δ1 �=< λx.e, Γx > Γ � e2 �e Δ2

Γ � e1 e2 �e Δ1 ⊗Δ2

There are two cases for the evaluation of an application. Either the function
evaluates to a closure (see Rule apply-concr), hence the evaluation takes the
same form as in the operational semantics or the function evaluates to something
else (Rule apply-abstr) and then the dependencies are the approximation of the
dependencies of both left and right expressions. This happens when a top-level
function is tagged as “abstract”, (in this case the environment binds the identifier
of the function to the dependency term reduced to this identifier, hence not
revealing the dependency term of its body) or when the applied expression is
not yet determined.

(let-in) Γ � e1 �e Δ1 (x,Δ1)⊕ Γ � e2 �e Δ2

Γ � let x = e1 in e2 �e Δ2

The dependency semantics of a let binding mimics its operational semantics.

(match-static-1 )

Γ � e �e Δ statically known(Δ) p,Δ �m Γ1 Γ1 ⊕ Γ � e1 �e Δ1

Γ � match e with p → e1 | x → e2 �e Δ1

(match-static-2 )

Γ � e �e Δ statically known(Δ) ∀Γ1.¬(p,Δ �m Γ1) (x,Δ)⊕ Γ � e2 �e Δ2

Γ � match e with p → e1 | x → e2 �e Δ2

During pattern-matching analysis, the structure of the matched value maybe
statically known as expressed by the following predicate:

statically known(Δ) 	 Δ = C ∨Δ = D( ) ∨Δ = ( , )

In this case, we can then benefit from this information to deduce which branch
to follow during the analysis as described by the two previous rules. The rule
(match-static-1 ) applies when the dependency term of the matched expression
has the same structure as the pattern of the first branch. If the first pattern does
not match, the rule (match-static-2 ) applies. The �m operation (whose rules are
given below) computes the bindings induced by the pattern and the value and
that must be added to the environment when analyzing each right-side part of
the cases.

(match)
Γ � e �e Δ ¬(statically known(Δ))

p,Δ �p Γ1 Γ1 ⊕ Γ � e1 �e Δ1 x,Δ �p Γ2 Γ2 ⊕ Γ � e2 �e Δ2

Γ � match e with p → e1 | x → e2 �e (Δ⊗Δ1 ⊗Δ2)

When the branch is not statically known, an over-approximation of the real
dependencies is done. The dependencies of the matched value are computed.



ML Dependency Analysis for Assessors 287

Then the expression of each branch is analyzed in the environment extended
with the variables bound in the pattern (rules for �p are given below). Finally
the dependency of the whole expression is computed as the union of these three
dependencies. Here, the structure of the value is lost because of the union of
heterogeneous values.

Evaluation of definitions and programs

A top-level definition can be tagged as being either “abstract” or “concrete”.
This choice influences which dependency term will be bound to the identifier
being defined, hence allows selecting the level of abstraction, granularity of the
analysis. In this way, the abstraction is directly controlled by the user and not
through modifications of the analysis algorithm itself.

(let-concr) Γ � e �e Δ

Γ � let x = e �s (x,Δ)⊕ Γ

If the identifier is tagged as “concrete”, the rule (let-contr) applies and the
identifier is bound to the dependency term resulting from the evaluation of its
definition through the dependency semantics.

(let-abstr)
Γ � let x = e �s (x, x)⊕ Γ

Conversely, if the identifier is tagged as “abstract”, the rule (let-abstr) applies
and the definition will bind the identifier to its name in the environment. This
means that any use of this identifier in the program will be considered as de-
pending only on this identifier and its own dependency term will be hidden.

Γ � ε �prg Γ (prog)
Γ0 � s �s Γ1 Γ1 � prg �prg Γ2

Γ0 � s ; ; prg �prg Γ2

The dependency semantics of a program mimics its operational semantics.

Evaluation of non-statically known pattern-matching

i,Δ �p ∅ C,Δ �p ∅
p,Δ �p Γ

D(p),Δ �p Γ

x,Δ �p (x,Δ)

p1,Δ �p Γ1 p2,Δ �p Γ2

(p1, p2),Δ �p Γ1 ⊕ Γ2

A pattern variable matches any dependency term and binds the corresponding
identifier to the dependency term in the returned environment. Pattern-matching
of pairs is done using an over-approximation because the matched dependency
term is not necessary a pair (values considered as “abstract” can be matched).

Evaluation of statically known pattern-matching

x,Δ �m (x,Δ) C,C �m ∅

p1,Δ1 �p Γ1 p2,Δ2 �p Γ2

(p1, p2), (Δ1,Δ2) �m Γ1 ⊕ Γ2

p,Δ �p Γ

D(p), D(Δ) �m Γ
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4.2 Proof of Correctness

The goal of the analysis is helping assessors to certify a given level of fault
tolerance. In order to achieve this goal, the analysis must satisfy a correctness
property based on the notion of fault tolerance. Hence, the notion of fault injec-
tion and its impact on the execution of a program are formalized and serve as a
basis to express and prove a theorem of correctness.

Formalizing the notion of fault injection requires definitions of a reference
environment (coming from the evaluation of the initial program) and an impact
environment (from the evaluation after a fault injection). Similarity between
those evaluation environments and the dependency environment (obtained from
the dependency evaluation of the program) is defined below and serves as a basis
to construct the proof of correctness of the analysis.

Definition 1 (Similar environments).
For a program P = let x1 = e1, . . . , let xn = en and an evaluation environ-
ment ξn = (xn, vn), . . . , (x1, v1), ξ• (where ξ• is the environment corresponding
to the free identifiers of the program), a dependency environment Γn is said sim-
ilar to ξn if they share the same structure (i.e. Γn = (xn, Δn), . . . , (x1, Δ1), Γ•)
and if for any identifier xi, the value vi (resp. the dependency term Δi) corre-
sponds to the operational (resp. dependency) evaluation of ei in the environment
ξi−1 (resp. Γi−1).

Definition 2 (Fault injection on xi).
Let P = let x1 = e1, . . . , let xn = en be a program. Injecting a fault in (P, xi)
at rank i < n consists of building two environments ξref (reference environment)
and ξimpact (impact environment) in the following way:

1. ξref is the environment built during the evaluation of the program P .
2. If vi is the value bound by the evaluation of the expression ei (bound to xi

in the environment ξref ), then choose a value v different from vi.
3. Build the environment ξimpact by evaluating the rest of the program assuming

that xi is bound to the value v (instead of vi):
– for j = 1 . . . i-1, ξimpact(xj) = ξref (xj).
– ξimpact(xi) = v, fault injection on the identifier xi by bypassing evalua-

tion of expression ei and binding xi to v in the environment
– for j = i+1 . . . n, ξimpact(xj) = vj with vj being the result of the evalu-

ation of the expression ej : (ξimpactj−1 * ej � vj).

Definition 3 (Impact of a fault injection).
Using the previous notations, given a program P and a reference environment
ξref we say that an expression e is impacted by the fault injection if there exist
two different values v and v′ and an impact environment ξimpact obtained by a
fault injection in (P, xi), such that ξref * e � v and ξimpact * e � v′.

Theorem 1 (Correctness of the dependency analysis).
Let P be a program, e an expression of this program and x an identifier defined
at top-level in P . Assuming that x is the only identifier tagged as “abstract” in
P , if Γ * e �e Δ and x does not appear in Δ then e is not impacted by any fault
injection in (P, x).



ML Dependency Analysis for Assessors 289

Sketch of the proof. A reference evaluation environment is built by evaluating
the program P through the operational semantics. An impact environment is
obtained by a fault injection on x. Then a dependency environment is built by
evaluating the program P through the dependency semantics. We then prove
that the dependency and the evaluation environments are similar (according to
the definition above).

A proof by induction on the dependency evaluation of the program states
that in each case, the value of e is the same in the reference and the impact
environments. For more details, a complete proof has been published in [3].

5 An Example

We now present a simple but relevant program to show how our dependency
analysis could be used in practice. In the following, we display both top-level
definitions and the corresponding results of the dependency analysis. We consider
that the initial dependency environment contains some primitives like +, -,

abs, assert, fst, snd with their usual meanings. This sample code depicts a
simple voter system where 3 inputs are compared together with a given tolerance.
The output is the most represented value and a validity flag telling if a given
minimal number of inputs agreeing together has been reached. Obviously we are
interested in the dependencies on the inputs and the two fixed parameters of
the system: the threshold and minimal number of agreeing inputs. Inputs may
be coming from the external environment, but for the analysis, since they are
tagged “abstract”, they must be given each a dummy value.

The first five definitions introduce “abstract” identifiers. Their bodies being
constants, their dependencies are ⊥. However, since they are tagged “abstract”,
identifiers are bound to a dependency denoting their name. Subsequent defi-
nitions bind functions, leading to dependencies being closures embedding the
current environment. The interesting part mostly arises in the last definition
where all the defined functions are applied, leading to a non-functional result.
This result shows two kinds of information. First, we remark that the structure
of the result is kept, i.e. is a pair, since the toplevel structure is (Δ1, Δ2). Deeper
structures (ofΔ1 and Δ2) also exhibit the pair construct but are combined by ⊗,
hence revealing that approximations of the analysis led to the loss of the knowl-
edge of the real structure at this point. As long as a dependency term is not a
union (⊗), the analysis ensures that this term reflects the structure of the real
value issued by effective computation. Conversely, apparition of ⊗ dependencies
stops guarantying this property. This means that in some cases, dependencies
will still show all “abstract” identifiers an expression depends on, but won’t ac-
curately show which part of the expression depends on which identifiers. The
second interesting information is that, since the structure is kept in this case,
the first component of the result does not depend on min quorum whereas the
second does.
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(∗ The tagged ‘ ‘ abstrac t ’ ’ values , i . e . those to be traced . ∗)
(∗ Tolerance and minimal number of agreeing inputs . ∗)
l e t th r e sho ld = 2 ; ; �e ⊥ Γ1 = (” threshold”, threshold) ⊕ Γ
l e t min quorum = 2 ; ; �e ⊥ Γ2 = (” min quorum”, min quorum) ⊕ Γ1

(∗ ‘ ‘Dummy’ ’ va lues se t on inputs to perform the e f f e c t i v e ana l ys i s . ∗)
l e t s en so r1 = 42 ; ; �e ⊥ Γ3 = (” sensor1”, sensor1) ⊕ Γ2

l e t s en so r2 = 45 ; ; �e ⊥ Γ4 = ...
l e t s en so r3 = 42 ; ; �e ⊥ Γ5 = ...

(∗ A comparison funct ion modulo the thre sho ld . ∗)
l e t eq v1 v2 =

l e t de l t a = (v1 − v2 ) in
( abs de l t a ) <= thre sho ld ; ; �e< λ v1.λ v2.let delta = ..., Γ5 >

(∗ A va l i d i t y check funct ion ensuring tha t the minimum
number of agreeing inputs i s reached . ∗)

l e t va l i d num = num >= min quorum ; ; �e< λ num.(num ≥ min quorum), Γ6 >

(∗ The vote funct ion re turning the most represented va lue
and the number of inputs agreeing on t h i s va lue . ∗)

l e t vote in1 in2 in3 =
l e t cmp1 = eq in1 in2 in
let cmp2 = eq in2 in3 in
let cmp3 = eq in3 in1 in
match (cmp1 , cmp2 , cmp3) with
| ( fa lse , fa lse , fa l se ) −> (0 , 4)
| ( true , true , fa l se ) | ( true , fa lse , true ) | ( fa lse , true , true ) −>

a s s e r t fa l se
| ( true , true , true ) −> ( in1 , 3)
| ( true , , ) −> ( in1 , 2)
| ( , true , ) −> ( in2 , 2)
| ( , , true ) −> ( in3 , 2) ; ;

�e< λin1.λin2.λin3.let cmp1 = eq in1 in2 in..., Γ7 >

l e t main =
l e t vot = vote s en so r1 s en so r2 s en so r3 in
let re sponse = f s t vot in (∗ Get f i r s t component of the pair . ∗)
l e t accordance = snd vot in (∗ Get the second one . ∗)
l e t va l i d i t y = va l i d accordance in
( response , v a l i d i t y ) ; ; �e

(
( ( threshold ⊗ sensor2 ⊗ sensor1, threshold ⊗ sensor3 ⊗ sensor2),

threshold ⊗ sensor1 ⊗ sensor3 )
⊗( sensor1,⊥) ⊗ ( sensor3,⊥) ⊗ ( sensor2,⊥)

,
min quorum ⊗ ( sensor2,⊥) ⊗ ( sensor3,⊥) ⊗ ( sensor1,⊥)
⊗
( ( threshold ⊗ sensor2 ⊗ sensor1, threshold ⊗ sensor3 ⊗ sensor2),

threshold ⊗ sensor1 ⊗ sensor3 )
)

Future work addresses the problem of automatic verification of computed de-
pendencies against those stated by the programmer. This implies being able
to “understand” dependency terms. We explain here a few intuitions in this
way. First of all, easy-to-read dependencies are those only containing identifiers
or constructors. In this way, dependencies combined with a ⊗ must be seen
as unions of simple sets where ⊥ is the neutral element. Hence, x1 ⊗ x2 ⊗ ⊥
means that dependency only implies identifiers x1 and x2. When dependencies
show constructors, we must look at identifiers appearing inside them. For in-
stance, A(x1) ⊗ B(x2) also represents {x1;x2}. Difficulties arise with closure
dependencies since no application reduced the function. A possible approach is
digging in the term, harvesting both occurrences of arguments and identifiers
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bound outside the function. This is a pretty crude approach but this still allows
having information and in practice, we expect programs to be complete, i.e.
with defined functions used, hence applied at some point. The loss of structure
previously explained (see the code sample presentation) is also an issue since
it makes more difficult checking the computed dependencies wihout structure
against structured ones as the user could have stated them.

6 Conclusion and Further Work

Assessors perform huge tasks of manual software analysis. They may be assisted
by automatic tools but they require tools specifically adapted for their needs
and used interactively under their control. The dependency analysis presented
in this paper has been implemented in a prototype (about 2000 lines of OCaml)
and tested by an assessor on several examples such as a cruise control system.
The adequacy of the analysis with higher-order functions has been demonstrated
formally and experimentally. This tool answers a practical need of assessors by
providing an information-flow analysis tool with a fine parametrization (using
the tags abstract/concrete). This parametrization proved to be the backbone of
the analysis.

Future work includes the development of the dependency verification tool as it
was sketched on the example of Section 5. Next step is to produce a fine-grained
analysis of pattern-matching based on the notion of execution paths. This more
precise analysis would allow the assessor to recover or verify more accurately the
dependencies between the real inputs/outputs, hence to get a finer model of the
system under assessment.

Our analysis performs a kind of information-flow analysis sharing several as-
pects of the one done in Flow CAML. An extension of our analysis with notions
present in Flow CAML (for instance security levels) may make our analysis able
to check security properties along with the fault tolerance analysis.

Acknowledgement. We would like to express our greatest thanks to Thérèse
Hardin for her participation in the work presented in this paper.
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Abstract. This paper presents a new approach to test generation from
extended finite state machines using genetic algorithms, by proposing
a new fitness function for path data generation. The fitness function
that guides the search is crucial for the success of a genetic algorithm;
an improvement in the fitness function will reduce the duration of the
generation process and increase the success chances of the search algo-
rithm. The paper performs a comparison between the newly proposed
fitness function and the most widely used function in the literature. The
experimental results show that, for more complex paths, that can be log-
ically decomposed into independent sub-paths, the new function outper-
forms the previously proposed function and the difference is statistically
significant.

Keywords: fitness function, state-based testing, genetic algorithms.

1 Introduction

The continuous growth of software systems, in size and complexity, has increased
the need for efficient and automated software testing. In recent years, software en-
gineering, and in particular software testing, have known a novel approach, which
transforms the software engineering task into an optimisation problem. This
optimisation problem is then automatically solved using metaheuristic search
techniques, such as Genetic Algorithms (GA), tabu search, ant colony or par-
ticle swarm optimisation. This new approach, namely Search-Based Software
Testing (SBST) [13] has been studied by both industry and academy.

Metaheuristics have been used also for test generation from formal specifica-
tion models, such as state machines [2,8,11]. This paper focusses on test gener-
ation for extended finite state machines (EFSMs) using genetic algorithms. Its
main contribution is to propose a new fitness function for path data generation
for EFSMs, that improves the previous function studied in the literature, in
terms of success rates and efficiency of GA. The paper is structured as follows:
section 2 briefly provides the background and section 3 presents the newly pro-
posed fitness function. An empirical evaluation is realized in section 4. Finally,
related work and conclusions are presented in sections 5 and 6.
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2 Background

An Extended Finite State Machine (EFSM) is a 6-tuple (S, s0, V, I, O, T ) [8,17]
where: S is a non empty set of logical states; s0 ∈ S is the initial state; V
is the finite set of internal variables; I and O are the set of input and output
interactions, respectively; T is the finite set of transitions. A transition t ∈ T is
represented by a 5-tuple (ss, inp, g, op, se) in which: ss and se represent the start
state and the end state of t; inp is the input, inp ∈ I ∪ {Nil}, inp may have
associated input parameters; g is the guard and is eitherNil or is represented as a
set of logical expressions given in terms of variables in V , parameters of the input
interaction point and some constants; op is a computational block which consists
of assignments and output statements. By path of an EFSM we mean a sequence
of adjacent transitions of the EFSM [17]. In following, in order to facilitate the
reading of longer transition paths, the input declarations considered will have
the form ti(parlist) or ti() when the parameter list is empty, ti representing a
transition from T .

The problem we focus on in this paper is to generate test data for feasible
paths in the state machine. A feasible path is a path for which there exist values
for the input parameters, such as to satisfy all the guards and trigger all the
transitions from the given path. However, the transition’s computational block
may assign to a variable a certain value, e.g. x := 1, and the next transition guard
to check whether x > 1. A path containing these two successive transitions is
infeasible because it is impossible to find input values to trigger it.

The problem of generating test data for feasible paths was studied in [8,11,12]
and the solution proposed was to employ genetic algorithms or other metaheuris-
tic search techniques, using a fitness function for state-based testing. An indi-
vidual (or chromosome) is a list of input values, for example x = (x1, . . . , xn),
corresponding to all parameters of the path transitions (in the order they ap-
pear). The search spaces can be very large and solving the constraint system
associated to the path is a NP-complete problem, which can be addressed with
GA, for example. A fitness function, which evaluates the satisfaction of the
guards (constraints) from the given path, and assigns better fitness values to the
individuals that diverge later from the path was proposed in [11]. It is inspired
by a well-known fitness function from structural testing, introduced by Wegener
et. al [16], of the form: fitness = approach level + normalized branch level.
The approach (approximation) level is a metric that shows at which level the
provided input determines the program to diverge from the target path [13]. The
branch level estimates how close to being true the first unsatisfied condition is.
Since the approach level takes only discrete values between {0, 1, . . . ,m}, the
branch level has to be normalized (mapped onto [0; 1]) [13]. The branch level
is usually computed using the objective functions proposed by Korel [10] and
further improved by Tracey in [15] (as described in Table 1). For normalization,
exponential functions are usually employed, like f(d) = 1−1.001−d, where d ≥ 0
is the branch distance.

The formula fitness = approach level + normalized branch level, for short
al + nbl, was adapted for state-based testing in [11] and used also in [8] with a
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Table 1. Traceys objective functions

Relational predicate Objective function

a = b if abs(a− b) = 0 then 0 else abs(a− b) +K
a �= b if abs(a− b) �= 0 then 0 else K
a < b if a− b < 0 then 0 else (a− b) +K

Logical predicate Objective function

Boolean if TRUE then 0 else K
a ∧ b obj(a) + obj(b)
a ∨ b min(obj(a), obj(b))

Require: Target path p, containing the transitions t1, t2, . . . , tm, corresponding guards
g1, g2, . . . , gm, chromosome x = (x1, . . . , xn)

Ensure: The fitness value of the chromosome x = (x1, . . . , xn) for the given path.
Create an instance of the EFSM in the initial configuration.
aproach level ← m− 1
for i = 1 → m do

{for every transition ti in the sequence p}
if not gi then

Calculate obj(gi)
return aproach level + norm(obj(gi))

else
aproach level ←− aproach level − 1
Apply transition ti with the corresponding values from (x1, . . . , xn)

end if
end for
return 0

Fig. 1. Fitness function evaluation: al+ nbl
.

slight modification. A high level description of the algorithm for computing the
al+ nbl fitness function for state-based testing is given in Fig. 1, an illustrative
example can be found in [11].

3 Fitness Function Based on Independent Sub-paths

In this paper we improve the above fitness by rewarding the individuals that
satisfy more constraints from the path, even if they have diverged earlier. The
conventional function al+ nbl, which stops when a guard is violated, only takes
into account the approach level and the local branch distance. Therefore, it does
not make any use of information that is encoded in the chromosome after the
place in which the first guard is violated. There are many cases when a guard
does not evaluate any internal variables of the EFSM, e.g. [x > 0] (or the guard
evaluates some context variables, but these have not been modified since their
initialization). Thus, this kind of constraint could be optimized ”separately” and



296 R. Lefticaru and F. Ipate

then the values obtained for the particular transition could be used along with
the other path values.

For example, consider the transition path t1(x1, x2)→ t2(x3, x4)→ t3(x5, x6,
x7)→ t4(x8) described below

t ss → se Input parameters Transition guards Transition actions

t1 s0 → s1 t1(x1, x2) g1 : x1 > 3 ∧ x2 = 1 v1 := x1; v2 := x2;
t2 s1 → s2 t2(x3, x4) g2 : x3 = v1 ∧ x4 > v2 v3 = x3 − x4;
t3 s2 → s3 t3(x5, x6, x7) g3 : x5 > 0 ∧ x6 > x7 v1 = x5 + x6 − x7;
t4 s3 → s4 t4(x8) g4 : x8 = 10 v1 = x8;

If the transition t1 is taken, then the internal variables v1, v2 are modified
and then t2 uses the modified v1 and v2 for the guard evaluation. This is the
reason for the al + nbl evaluation, that checks first if g1 is satisfied and then
if g2 is true. On the other hand, the guards for the transition t3 and t4, [x5 >
0 ∧ x6 > x7] and x8 = 10, respectively, do not depend on the EFSM’s previous
configuration (internal variables). Considering that the path t1 → t2 → t3 → t4
can be decomposed, at logical level, into independent sub-paths [[t1, t2], [t3], [t4]],
we propose an evaluation of the type al + nbl for each sub-path and a global
fitness function path fitness =

∑subpaths no
i=1 fitness(subpathi).

The difference between the conventional evaluation and the new one is that
the latter will reward individuals based on the independent sub-paths, not only
on the first block of genes from the chromosome, corresponding to the satisfied
guards and the first unsatisfied condition.

Falsified Fitness value Fitness value with independent
guards al+ nbl components based-fitness

- 0 0
g1 3 + norm(obj(g1)) (2 + norm(obj(g1))) + 0 + 0

g1, g3 3 + norm(obj(g1)) (2 + norm(obj(g1))) + (1 + norm(obj(g3))) + 0
g1, g4 3 + norm(obj(g1)) (2 + norm(obj(g1)) + 0 + (1 + norm(obj(g4)))
g2 2 + norm(obj(g2)) (1 + norm(obj(g2))) + 0 + 0

g2, g3 2 + norm(obj(g2)) (1 + norm(obj(g2))) + (1 + norm(obj(g3))) + 0
g3 1 + norm(obj(g3)) 0 + (1 + norm(obj(g3))) + 0)
g4 0 + norm(obj(g4)) 0 + 0 + (1 + norm(obj(g4)))

Our intuition is that this new fitness function will behave the same as the
conventional al + nbl when the EFSM path has only one independent sub-path
(in this case, each transition depends on at least one previous transition). Fur-
thermore, we expect the new fitness function to give better results than the
conventional one when the EFSM path has more independent sub-paths, be-
cause the level of satisfaction of each one is measured in this new formula. In
what follows we will define the notion of independent sub-paths, show how these
can be determined (Fig. 2) and finally present an algorithm for computing the
new fitness function (Fig. 3). In the following definitions we will consider the
EFSM model (S, s0, V, I, O, T ).
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1. For the given EFSM model build a transition-variable dependency matrix,
depends on, having the size n×m, where n = number of transitions in EFSM, m =
number of variables in V . depends oni,j = 1 if ti depends on vj and 0 otherwise.

2. Build a transition-variable modification matrix, modifies, having the size n×m,
modifiesi,j = 1 if ti modifies the variable vj and 0 otherwise.

3. Based on the previous matrixes and given a certain path tI1 → . . . → tIp , compute
a transition-transition dependency matrix, having the size p × p, where p is the
path length:

Initially dep has all the elements 0
for i = 2 → p do

for k = 1 → m do
if depends onIi,k = 1 then

{transition tIi depends on variable vk}
for j = i− 1 → 1 do

if modifiesIj ,k = 1 then
{previous transition tIj modifies the variable vk}
depi,j = 1;
{The ith transiton from the path depends on the jth transition}
depj,i = 1;
{the matrix will be symmetric}
break
{no further dependencies are searched for tIi and vk}

end if
end for

end if
end for

end for

4. Given this transition-transition dependency matrix dep, built for the path tI1 →
. . . → tIp determine the connected graph components, or equivalent, the indepen-
dent sub-paths.

Fig. 2. Computing the independent sub-paths

Definition 1. A transition t ∈ T , t = (ss, inp, g, op, se) depends on the internal
variable vi ∈ V if the value of vi is evaluated in the guard g.

Definition 2. A transition t = (ss, inp, g, op, se) modifies the internal variable
vi ∈ V if vi appears on the left hand side of an assignment operation of the op
sequence of atomic operations.

Definition 3. Let t1 → t2 → . . . → ti → . . . → tj → . . . → tp be a path
in the EFSM. The transition tj = (ss, inp, g, op, se) directly depends on the
transition ti = (s′s, inp

′, g′, op′, s′e) if there exists an internal variable vk ∈ V
such as ti modifies the internal variable vk, tj depends on vk and there is no
other transition tr, i < r < j that modifies the internal variable vk.

Discussion Regarding the ICF and al + nbl Functions
Normally, an EFSM transition is triggered when the guard is satisfied and the
system is in the corresponding start state ss for that transition. In the ICF
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Require: Target path tI1 → tI2 → . . . → tIp containing the tran-
sitions to be triggered; corresponding guards gI1 , gI2 , . . . , gIp ; set of inde-
pendent subpaths of p (connected components in the dependency graph):
Indep = [[tJ1,1 , . . . , tJ1,l1

], [tJ2,1 , . . . , tJ2,l2
], . . . , [tJk,1 , . . . , tJk,lk

]]; chromosome x =

(x1, . . . , xn)
Var br dist = (br dist1, . . . , br distp) {array with branch distance for each guard}
Var fit comp = (fit comp1, . . . , fit compk) {fitness of each indep. component}
begin
Instantiate the EFSM in the initial configuration
for i = 1 → p do

if not gIi then
br disti ← obj(gIi)

else
br disti ← 0

end if
Call the transition tIi , with the corresponding subset of values from (x1, . . . , xn)
{If the current state of the EFSM is not the appropriate one, but the guard gi is
satisfied, the transition will be fired.}

end for
for i = 1 → k do

{For each connected component compute the component fitness value}
app level ← li {initially approach level = length of the ith component}
j ← 1
repeat

if br disttJi,j
> 0 then

{br dist of the jth transition from ith independent component is > 0}
fit compi ← app level+ norm(br disttJi,j

)

else
app level ← app level − 1
j ← j + 1

end if
until j = li ∨ br disttJi,j

> 0

end for
return fit comp1 + fit comp2 + . . .+ fit compk
end

Fig. 3. Independent components-based fitness function (ICF)

evaluation, see Fig. 3, the current state is ignored, as it is not involved in the
guard predicates. A drawback of the fitness function al+ nbl is the following: if
some values from the chromosome satisfy the guard gj , but some previous values
did not satisfy their corresponding guard gi, i < j, then evaluation does not take
into account the gj.

A transition can depend on several transitions. Therefore, the result of de-
pendency relation is a directed graph, each node (vertex) representing a tran-
sition and each edge representing a dependence between two transitions. The
dependency relation between transition, formulated in definition 3 takes into
account only the last transition that modifies the variable. For example, if
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t1 → t2 → t3 → t4 is a path in the EFSM, t1 and t3 modify the variable
v1, the guard of t4 evaluates v1, then we say that t4 directly depends on t3 and
ignore the former dependence on t1. On the other hand, there are transitions
that are clearly independent and form a sub-path containing a single transition.
These transitions have guards that do not involve the internal variables from V ,
e.g. x > 0, where x is the input parameter of the transition, or, if the guards
use a variable from V , then this variable has not been changed by any other
previous transition from the given path. Having the dependency graph between
transitions, one can easily obtain the connected components, using for example
a classical algorithm [5]. The dependency graph is oriented and if ti depends on
tj the reverse is never true. However, in order to easily obtain the connected
components using the algorithm given in [5], we considered its adjacency matrix
symmetric.

In the dependence relation constructed only the last transition that modifies a
variable is taken into account and consequently some additional problems might
appear. For example, if t1 → t2 → t3 is a path in the EFSM, t1 modifies a
context variable v1, t2 modifies other variable using the previously modified v1,
e.g. v2 := v1 and t3 evaluates in the guard the variable v2, then we conclude that
t3 depends on v2 and furthermore that t3 depends on t2. However, one can also
trace back the dependencies and take into account that t3 depends indirectly
on t1.

4 Empirical Evaluation

4.1 EFSM Models

To compare the performances of the fitness functions presented before, we con-
sidered two EFSM models, given in Fig. 4. The first EFSM represents a library
book and the second one a class 2 transport protocol. These two models were
chosen because slightly modified versions of them were used in previous work on
state-based testing, [11] and respectively [2,8,9].

The Book EFSM consists of four states, S = {s0, s1, s2, s3}, where s0 is the
initial state, a set of 2 internal variables V = {bId, rId} (representing the cos-
tumers which borrowed and reserved the book, respectively) and 16 possible
transitions. The model is self-explanatory, more details are provided below and
in Table 2.

State Description Context variables

s0 Book available bId = 0, rId = 0
s1 Book borrowed bId > 0, rId = 0
s2 Book reserved bId = 0, rId > 0
s3 Book borrowed and reserved bId > 0, rId > 0, bId �= rId

The second model is a simplified version of a class 2 transport protocol, that
has been used in many experiments [2,8,9] and is considered nontrivial. This
EFSM is based on the AP-module of the simplified transport protocol, for con-
necting to transport service access point and a mapping module respectively. It



300 R. Lefticaru and F. Ipate

(a) (b)

Fig. 4. EFSM models representing: (a) Book, (b) Class 2 transport protocol

consists of six states {s1, s2, s3, s4, s5, s6}, where s1 is the initial state, five con-
text variables {opt, R credit, S credit, TRsq, TSsq} and 20 transitions. In Table
3, representing the transitions of the class 2 protocol, the output statements were
ignored (as they did not modify the context variables ) and in some cases the set
of actions remained “Nil” after this deletion. The parameters written in italic
are not used in assignment operations or in the guards and they were ignored
for data generation, obtaining in this way an useful domain reduction.

It can be observed that the Book EFSM realizes assignment operations in
which only parameters or constant values are assigned to the context variables,
so it is no problem if the dependency relation described in section 3 takes into
account only the direct dependencies. Furthermore, all the paths in the Book
model are feasible. In the Protocol example, the assignments use also context
variables on the right hand side, e.g.: S credit := S credit − 1 or TSsq :=
(TSsq+1)mod128. In this case, it would be useful to trace back the dependencies
and find the transitions which previously modified the variables that appear on
the right hand side of the assignment, in order to proper identify the independent
sub-paths.

The Protocol example contains many infeasible paths, e.g. t1 → t5 → t11 → t8
and t0 → t2 → t12 → t8. In the given examples, both t0 and t1 execute the
assignment R credit := 0 which will falsify the guard of t8 (containing the clause
R credit �= 0), as no other modification of R credit is realized on the given paths.
Using a random path generation for Protocol paths of length 4 we obtained
15 such infeasible paths from 100 generated paths. For even longer transition
sequences, the chances of obtaining an infeasible path are higher because: (a)
transitions t0 or t1 will always appear (at least) as the first transition in every
possible path and (b) it is very likely to have a t8 transition and a definition
clear sub-path for the variable R credit, from t0 or t1 to t8.

4.2 Independent Sub-paths Examples

Given the following path in the Book EFSM: t1 → t8 → t7 → t4 → t0 → t4 →
t0 → t5 → t15 → t12 → t4, the independent sub-paths computed using the
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Table 2. The main transition of the Book EFSM

t ss → se Input Description Guards Operations

t0 s0 → s1 t0(x) borrow book ok x > 0 bId := x;
t1 s0 → s2 t1(x) reserve book ok x > 0 rId := x;
t2 s0 → s0 t2(x) borrow book failed x ≤ 0 Nil
t3 s0 → s0 t3(x) reserve book failed x ≤ 0 Nil
t4 s1 → s0 t4(x) return book ok x = bId bId := 0;
t5 s1 → s3 t5(x) reserve book ok x > 0 ∧ x �=bId rId := x;
t6 s1 → s1 t6(x) return book failed x �= bId Nil
t7 s1 → s1 t7(x) return book ok x ≤ 0 ∨ x = bId Nil
t8 s2 → s1 t8(x) borrow book ok x = rId bId := x; rId := 0;
t9 s2 → s0 t9(x) cancel reservation ok x = rId rId := 0;
t10 s2 → s2 t10(x) borrow book failed x �= rId Nil
t11 s2 → s2 t11(x) cancel reservation failed x �= rId Nil
t12 s3 → s1 t12(x) cancel reservation ok x = rId rId := 0;
t13 s3 → s2 t13(x) return book ok x = bId bId := 0;
t14 s3 → s3 t14(x) cancel reservation failed x �= rId Nil
t15 s3 → s3 t15(x) return book failed x �= bId Nil

Table 3. The main transitions of the Class 2 transport Protocol (transitions t4, t6, t16−
t20 are omitted because they have no guards nor assignment operations)

t ss → se Input declaration Guards Operations

t0 s1 → s2 t1(dst add, prop opt) Nil opt := prop opt; R credit := 0;
t1 s1 → s3 t2(peer add, opt ind, cr) Nil opt := opt ind; S credit := cr;

R credit := 0;
t2 s2 → s4 t2(opt ind, cr) opt ind < opt TRsq := 0; TSsq := 0;

opt := opt ind; S credit := cr;
t3 s2 → s5 t3(opt ind, cr) opt ind > opt Nil
t5 s3 → s4 t5(accpt opt) accpt opt < opt opt := accpt opt; TRsq := 0;

TSsq := 0;
t7 s4 → s4 t7(Udata, E0SDU ) S credit > 0 S credit := S credit -1;

TSsq := (TSsq +1)mod128;
t8 s4 → s4 t8(Send sq, R credit �= 0 AND TRsq := (TRsq+1)mod128;

Ndata,E0TSDU) Send sq = TRsq R credit := R credit -1;
t9 s4 → s4 t9(Send sq, R credit = 0 ∨ Nil

Ndata,E0TSDU ) Send sq �= TRsq
t10 s4 → s4 t10(cr) Nil R credit := R credit + cr;
t11 s4 → s4 t11(XpSsq, cr) TSsq ≥ XpSsq ∧ S credit := cr + XpSsq - TSsq;

cr + XpSsq - TSsq ≥ 0 ∧
cr +XpSsq - TSsq ≤ 15

t12 s4 → s4 t12(XpSsq, cr) TSsq ≥ XpSsq ∧ Nil
(cr + XpSsq - TSsq < 0 ∨
cr +XpSsq - TSsq > 0)

t13 s4 → s4 t13(XpSsq, cr) TSsq < XpSsq ∧ S credit := cr + XpSsq - TSsq
cr + XpSsq - TSsq - 128 ≥ 0 ∧ - 128;
cr + XpSsq - TSsq - 128 ≤ 15

t14 s4 → s4 t14(XpSsq, cr) TSsq < XpSsq ∧ Nil
(cr + XpSsq - TSsq -128 < 0
∨ cr + XpSsq - TSsq - 128 > 15)

t15 s4 → s4 t15() S credit > 0 Nil
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algorithm from Fig. 2 are [[t1, t8, t7, t4], [t0, t4], [t0, t5, t15, t12, t4]] and the depen-
dency graph has the following connected components:

t1 t8 t7

t4 t0 t4

t0

t4

t5

t15

t12

(a) First component (b) Second component (c) Third component

Similarly, for the Protocol model, the independent components for the path
t0 → t2 → t10 → t8 → t17 → t18 → t1 → t5 → t14 → t7 → t15 are
[[t0, t2, t10, t8], [t17], [t18], [t1, t5, t14, t7, t15]]. This transition dependency graph be-
low shows that the transition t8 depends on two transitions t2 and t10, through
the context variables TRsq and R credit, respectively.

t0 t2 t8

t10

t17

t18

t1 t5

t7

t14

t15

(a) First component (b) Second, third comp. (c) Fourth component

4.3 Experiment Settings and Results

To compare the two fitness functions, we performed a controlled experiment,
measuring the success rates and the efficiency of GA in the two cases and per-
forming a statistical t-test to find out if the observed differences are statistically
significant. In the experiment, we considered the two previously presented EFSM
models and a large pool of randomly generated paths, for each model, having
different lengths. For each randomly generated path, a genetic algorithm was
applied 100 times using the conventional fitness function al+ nbl and again 100
times using the independent components-based fitness ICF. The performances of
the GA in the two cases were recorded and analysed, with regard to the success
rate and the average number of generations after the 100 runs. The null hy-
pothesis (H0) is thus formulated as follows: There is no difference in efficiency
(number of generations needed by the GA to find a solution) between the two fit-
ness functions, al+ nbl and ICF. The alternative hypothesis (Ha) is that there
is a difference between the two fitness functions.

In the experiments we used the JGAP library [6]. The encoding for the Book
model used integer-valued genes ranging in the domain [−100, 100], the initial-
ization of the initial generations was realized using uniformly distributed ran-
dom numbers from this interval, starting each time from a different seed. The
selection operator employed was BestChromosomesSelector, that takes the top
80% chromosomes into the next generation. Recombination was performed by
means of the JGAP class CrossoverOperator, with the crossover rate fixed by
default at population size/2 [6], and mutation was realized using Mutation-
Operator with a 1/12 mutation rate. The population size was 20 individuals
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and the maximum allowed number of evolutions was 1000 in all the cases.
For statistical analysis the Apache Commons Mathematics Library was used
http://commons.apache.org/math/. The statistical tests were realized using a
significance level α = 0.05, the p-values were also recorded, to decide if the tests
were significant (confidence 95%) and very significant (confidence 99%). Due to
space constraints, the detailed results are given in an Appendix, available at
http://www.ifsoft.ro/~florentin.ipate/icf_results.pdf.

For the Book EFSM, a first set T1 of 20 paths was generated, each with
lengths between 6 and 15. The results obtained show that the new fitness function
has a higher efficiency (the GA finishes in less generations) and the results are
statistically significant for 14 out of 20 paths. Overall 65% of the differences
turned out to be even very significant (13 out of 20 have the p-value much lower
than 0.01, confidence 99%). The experiments showed that the difficulty of a path
is not given only by its length (a longer path increases exponentially the search
space), but also by the constraints that should be satisfied.

Additionally, we considered for the Book model two more test sets of 20
random paths each: T2, having paths of length 20, and T3, with paths of length
25. The purpose was to evaluate the fitness performances when the search space
increases - in this case its dimension was 20120 and 20125, respectively. For both
test suites, ICF had better results than al+ nbl, the differences were significant
for 16 out of 20 paths in T2 and for 18 paths out of 20 for T3. In the case of
T2, ICF had better results in 15 out of 16 significant differences and, in the
case of T3, in all of them. Furthermore, the results were very significant (99%
confidence) for 15 paths in T2 and 17 paths in T3, respectively. These results are
summarized in Table 4.

As the complexity of the search problem increased, the GA ended in several
cases without finding a solution. The results obtained for the paths of length 20
and 25 show that ICF also behaves better than the al + nbl function when the
complexity of the search problem increases. Furthermore, the differences between
the two functions are higher when the space increases.

A set of random paths was initially generated for the Protocol model, but
compared with the Book EFSM, there are the following significant differences:
(1) Many of the shorter paths (lengths 6-15) were extremely easy to trigger (usu-
ally test data was obtained from the first generation of the GA, by both fitness
functions). (2) By increasing the path length to 25, 30 and 35, we obtained sets
of randomly generated paths having a high percent of infeasible paths (approxi-
mately 50%). (3) The remaining generated paths were easy to trigger (the GA
only needed a few generations, using either of the two fitness functions). Conse-
quently, for most paths, the statistic tests could not reject the null hypothesisH0

To provide a convincing answer for our initial question, however, we increased
the search space (each gene was coded using integer values from [−500, 500]) and
studied the feasibility problem, in order to discard from the transition sets the
great number of infeasible paths.

Consequently, we generated 60 longer paths, having lengths 25, 30 and 35,
and we executed the GA 30 times for each path. For 32 paths, the GA could not
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find a solution in any of the 30 runs. We manually inspected all these ”difficult”
paths and they were definitely infeasible. More precisely, all of them contained
a t8 transition (having the condition R credit �= 0 in the guard) after a t0
or a t1 call (which set R credit := 0) and no intermediary transition to alter
R credit. On the other hand, paths that contain t8 after a t0 or t1 can be
feasible if intermediary transitions favourably change the value of R credit (e.g.
t10). Using this property, we have modified the path generator such that, when
a newly generated transition path contains t8 but no t10 between the last call
of t0 or t1 and t8, it replaces the t8 transition with one that has the same start
state and end state, by randomly choosing another transition from the set {t7,
t9, t10, . . . , t15}.

Using this modified generator, we also increased the search space size in order
to overcome the problem of “easy to trigger” paths; the following sets of feasible
Protocol paths were generated: P1 (20 paths with lengths between 6 and 15), P2

(20 paths of length 20), P3 (20 paths of length 25), P4 (20 paths of length 30)
and P5 (20 paths of length 35).

After generating test data for the P1 path set, we discovered that both fitness
functions guided similarly the search because 15 out of 20 paths were very easy
to trigger (in 1-2 generations) and 4 out of 20 paths were easy to trigger (in
less than 100 generation, in which case the averages for the two functions were
close and the p-value obtained was 0.10 ≤ p ≤ 0.40). Only one path, having the
independent components [[t0, t3], [t20], [t1], [t6], [t18], [t1, t5, t10, t8, t11], [t16]],
needed 593 generations for the GA with al + nbl function and 505 generations
for the ICF, but this difference was not considered statistically significant (the
p-value was 0.11).

On the other hand, for the other 4 test sets, P2 − P5, by increasing the path
length, the search problem became more difficult and we could observe several
statistically significant differences between the two fitness functions, as presented
in the Appendix available on-line. From a total of 23 paths rejecting the null
hypothesis H0, the ICF outperformed the al + nbl fitness in all 23 cases and
the results were very significant for 15 out of 23 cases (p < 0.01). Note that 8
of these 23 paths are very easy to trigger (2-5 generations) and the other 15 are
more complex. For the remaining paths from the sets P2−P5, the performances
of the two functions are comparable since, in general, these paths did not have
a high complexity. In conclusion, in the case of the Protocol model, the results
are similar for simpler paths. However, increasing the difficulty of the search
problem, ICF outperforms al + nbl and the scores obtained are statistically
significant. Consequently, ICF is more adequately for more complex landscapes,
when it can guide the search faster than the al + nbl function.

The overall results obtained from this experiment, for both models, are sum-
marized in Table 4. The first columns represent: the EFSM model used, the path
set id, the number of paths in the test set and the length of the paths. The next
three columns show: the number of cases in which the differences were statisti-
cally significant (p < 0.05), from these cases the number in which ICF is more
efficient (ICF+) and in which al+nbl is more efficient (Alnbl+), respectively.
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Table 4. Summary of experimental results

EFSM Path No. of Path Stat. ICF Alnbl Very ICF Alnbl
Model Set Paths Lengths Signif. + + Signif. + +

Book T1 20 6 – 15 14 14 0 13 13 0
Book T2 20 20 16 15 1 15 14 1
Book T3 20 25 18 18 0 17 17 0

Book T1–T3 60 6 – 25 48 47 1 45 44 1

Protocol P1 20 6 – 15 0 0 0 0 0 0
Protocol P2 20 20 6 6 0 3 3 0
Protocol P3 20 25 4 4 0 2 2 0
Protocol P4 20 30 6 6 0 4 4 0
Protocol P5 20 35 7 7 0 4 4 0

Protocol P1–P5 100 6 – 35 23 23 0 13 13 0

Book, Protocol All 160 6 – 35 71 70 1 58 57 1

The last three columns have the same meaning, but refer to the very significant
cases (p < 0.01).

Summarizing the results, as shown in Table 4, ICF function has a higher
efficiency on 70 paths from 71 paths, on which the differences between functions
were significant. The confidence in these tests is even higher for 58 cases, when
the p-value was less than 0.01, and for these ICF obtained better scores in 57 out
of 58 paths. The fitness function ICF obtained higher performances compared
to the al + nbl function, especially for more complex test paths.

The main threats to the validity of these empirical studies are: construct, in-
ternal and external validity threats. The first category includes the imprecision
of cost measures such as number of iterations to make comparison between differ-
ent search techniques. In our case, only GA were used, so this kind of measure
was appropriate. Some internal validity threats can be: inadequate parameter
settings for one or more of the search techniques (this was not the our case,
involving only GA with same setting for fitness functions) or biased selection of
the EFSM models, that have certain characteristics that can favour a certain
fitness function.

The threats to external validity are the conditions that restrict our capacity to
generalize these results. These can be related to the models used. Although the
models are not trivial, using other EFSMs would give more confidence to the re-
sults. Furthermore, the length of the randomly generated paths could contribute
differently to the performance of the fitness functions. As both types of paths
were used: (a) with relatively short lengths (6-15) and (b) with a higher num-
ber of transitions (20, 25, 30, 35), we believe that this would not be a problem.
However, this aspect should be considered in further research with additional
EFSM case studies.

5 Related Work

Evolutionary approaches have been applied for different aspects of EFSM test-
ing, such as: finding feasible transition paths and generating input sequences to
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trigger these paths [1,3,7,8,9]; applying genetic algorithms in the case of timed
extended finite state machines [2]; studying the efficiency of search based test
generation for EFSM models [17].

Although our approach appears to be conceptually similar to the well-known
Chaining approach [4], in that it takes into account the dependencies between
variables, there are a number of key differences. First, while our method is de-
vised to select test data from a model (EFSM), the chaining approach is based
on a program (white-box testing). Furthermore, our algorithm uses a global, evo-
lutionary inspired, search, whereas the chaining approach employs a local search
(although attempts have been made to extend the technique to evolutionary
testing [14]). Last, and most importantly, the chaining approach is aimed at
determining test data to reach a given target node and, consequently, involves a
complex process of constructing possible roots through the graph and eliminat-
ing those which are not feasible, whereas our method works on a predefined path
and is aimed at increasing the success rate and efficiency of the algorithm which
finds test data to execute the path.

6 Conclusions and Future Work

This paper proposes a new fitness function for path data generation from EFSMs,
namely independent component-based fitness (ICF). This new function takes into
account the independent sub-paths and it is expected to provide a better guid-
ance to the search, compared to the conventional approach al + nbl. Its perfor-
mance is evaluated for two EFSM models, Book and Protocol.

After performing statistic tests, we conclude that ICF obtains better results
than al + nbl for the majority of the paths and it clearly improves the success
rate of the GA, especially for complex paths. When the transition paths are
easy to trigger, the two fitness functions have approximately the same behaviour
and there is no significant difference between them. However, for complex paths
the differences are very significant (confidence 99%) and the fitness function
proposed clearly improves the conventional one.

As future work, we plan to improve the proposed approach by verifying the
obtained results for more complex EFSMs, analysing how often independent
sub-paths occur in real world EFSMs, comparing the results obtained by GA
with other metaheuristic search techniques.
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Abstract. We present a fine-grained security model to enforce the access
control on the shared constraint store in Concurrent Constraint Program-
ming (CCP) languages. We show the model for a nonmonotonic version
of Soft CCP (SCCP), that is an extension of CCP where the constraints have
a preference level associated with them. Crisp constraints can be mod-
eled in the same framework as well. In the considered nonmonotonic soft
version (NmSCCP), it is also possible to remove constraints from the store.
The language can be used for coordinating agents on a common store of
information that represents the set of shared resources. In such scenarios,
it is clearly important to enforce the integrity and confidentiality rights
on the resources, in order, for instance, to hide part of the information to
some agents, or to prevent an agent to consume too many resources.

1 Introduction and Motivations

Coordination models and languages represent a very expressive approach for
the development of applications for this class of dynamic and open systems
such as operating systems, databases and mobile code. In the context of dis-
tributed/concurrent systems, the ability to coordinate the agents coupled with
the possibility to control the actions they perform is significantly important. The
necessity of guaranteeing security properties is rapidly arising in open and un-
trusted environments, due to several threats to the integrity and confidentiality
properties of the exposed data.
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The ingredient at the basis of our research is Nonmonotonic Soft Concurrent
Constraint Programming (NmSCCP) [6]. The idea behind semiring-based soft con-
straints [4] was to further extend the classical constraint notion by adding the
concept of a structure (i.e., a semiring) representing the levels of satisfiability
of the constraints. The NmSCCP language extends the classical Soft Concurrent
Constraint Programming (SCCP) language [5] with the possibility of relaxing (i.e.,
removing constraints) the store with a retract action, which clearly improves
the expressivity of the language [6]. However, non-monotonicity raises further
security concerns, since the store σ is a shared and centralized resource accessed
in a concurrent manner by multiple agents at the same time: can an agent A
relax a constraint c added to σ by the agent B? Since in this case we are reasoning
about soft constraints instead of crisp ones, “how much” of c can agent A relax?
Security aspects related to constraint-based language have not been inspected
yet in literature, even if foreboded in [12].

In this paper, we equip the core actions of the NmSCCP language [6] with a
formal system of rights on the constraints, and then we study the execution of
agents from this new perspective. We take inspiration from the Access Control
List (ACL) model [18]. An ACL is a list of permissions attached to an object: it
specifies which users or system processes are granted access to objects, as well
as what operations are allowed on given objects.

In the proposed model, when an agent A1 adds a piece of information to
the store, i.e., a constraint c, it specifies also the confidentiality and integrity
rights [21] on that constraint, for each agent Ai participating to the protected
computation. For instance, how much of c the agent A3 can remove from the
store (i.e., the retract rights), or how much of c the agent A2 can query with
an ask operation (i.e., the ask rights). When an agent adds some information to
the shared store (in a constraint-form), it also defines the ACL over that piece
of information, via the same tell action. In our approach, both the resources in
the store and the rights over them are represented as constraints. Supposing to
know the number of agents at the beginning of the computation is a common
practice in many security-related fields, as the execution of multiple threads on
the same shared memory. We propose NmSCCP as a language to enforce a secure
access over general shared resources, checking if quantitative rights over them
are respected, e.g., “Peter may not eat more than 10% of the birthday cake”.

Moreover, as a further result with respect to [6,2], we introduce a new oper-
ation named execp, which can be used to execute a new agent in parallel; the
inspiration comes from the eval operation of Linda (see Sec 3). Our model can
be easily specialized for crisp languages, as CCP [16], since crisp constraints can
be represented in the same semiring-based framework as well (see Sec. 2).

The paper elaborates on a preliminary work [2] and it is organized as follows:
in Sec. 2 we present the background information on soft constraints and the
NmSCCP language. In Sec. 3 we describe the related work. In Sec. 4 we define the
set of rights (for tell, ask and retract actions) on constraints, while in Sec. 5 we
show the operational semantics of our secure language. Section 6 presents an
example of secure coordination, and Sec. 7 draws the final conclusions.
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ci : ({x} →N)→ R+ s.t. ci(x) = 2x + 8 cj : ({x} →N)→ R+ s.t. cj(x) = x + 5

ck : ({x} →N)→ R+ s.t. ck(x) = x + 3 cw : ({x, y} →N)→ R+ s.t. cw(x, y) = x + y + 5

Fig. 1. Four weighted soft constraints evaluated 〈R+ ∪ {+∞},min, +̂,+∞, 0〉)

2 Soft Constraints and Nonmonotonic SCCP

Semiring-based constraints [4,3] rely on a simple algebraic structure, called
“c-semiring” (simply semiring in the following), to formalize the notion of
satisfaction/preference level associated with the constraint.

A semiring [3] S is a tuple 〈A,+,×, 0, 1〉 such that: i) A is a set and 0, 1 ∈ A;
ii) + is commutative, associative and 0 is its unit element; iii) × is associative,
distributes over +, 1 is its unit element and 0 is its absorbing element. Moreover,
+ is idempotent, 1 is its absorbing element and× is commutative. Let us consider
the relation ≤S over A such that a ≤S b iff a + b = b. Then it is possible to prove
that [4]: i) ≤S is a partial order; ii) + and × are monotonic on ≤S; iii) 0 is its
minimum and 1 its maximum; iv) 〈A,≤S〉 is a complete lattice and, for all a, b ∈ A,
a + b = lub(a, b) (where lub is the least upper bound). Informally, the relation ≤S

gives us a way to compare semiring values and then constraints. In fact, when
we have a ≤S b we can say that b is better than a.

In [3] the authors extended the semiring structure by adding the notion
of division, i.e., ÷, as a weak inverse operation of × for residuated semir-
ings [3]. In this case, the set {x ∈ A | b × x ≤ a} admits a maximum for all
elements a, b ∈ A, denoted as a ÷ b. All classical soft constraint instances, i.e.,
Classical 〈{false, true},∨,∧, false, true〉1, Fuzzy 〈[0..1],max,min, 0, 1〉, Probabilistic
〈[0..1],max, ×̂, 0, 1〉 and Weighted 〈R+ ∪ {+∞},min, +̂,+∞, 0〉 (where ×̂ and +̂
respectively represent the arithmetic multiplication and addition), are resid-
uated, and the notion of semiring division can be applied to all of them [3].
As an example, the inverse of the × operator in 〈R+ ∪ {+∞},min, +̂,+∞, 0〉
is represented by the arithmetic subtraction (i.e., −̂), and it is defined as :
a ÷ b = min{x | b+̂x ≥ a} = 0 if b ≥ a, or a−̂b if a > b.

A soft constraint [4] may be seen as a constraint where each instantiation
of its variables has an associated preference. Given S = 〈A,+,×, 0, 1〉 and an
ordered set of variables V over a (finite) domain D, a soft constraint is a function
which, given an assignment η : V → D of the variables, returns a value of the
semiring. Using this notation C = η → A is the set of all possible constraints
that can be built starting from S, D and V. In Fig. 1 we show four weighted
constraints (i.e., 〈R+ ∪ {+∞},min, +̂,+∞, 0〉) as example.

Any function in C involves all the variables in V, but we impose that it
depends on the assignment of only a finite subset of them. So, for instance,
a binary constraint cx,y (as cw in Fig. 1) over variables x and y, is a function

1 The Classical semiring can be used to represent crisp constraints and, therefore, lan-
guages like CCP [16].
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cx,y : (V → D)→ A, but it depends only on the assignment of variables {x, y} ⊆ V,
that is the support, or scope, of the constraint. The function supp : C → V returns
the variables that support a constraint. Note that cη[v := d1] means cη′ where η′
is ηmodified with the assignment v := d1. Note also that, with cη, the result we
obtain is a semiring value, i.e., cη = a with a ∈ A.2

Given the set C, the combination function of constraints ⊗ : C × C → C is
defined as (c1 ⊗ c2)η = c1η × c2η. Considering Fig. 1, ck ⊗ cj = ci. Having defined
the operation ÷ on semirings, the constraint division function �÷ : C × C → C
(which subtracts the second constraint from the first one) is instead defined as
(c1 �÷ c2)η = c1η÷ c2η [3]. Considering Fig. 1, ci �÷ cj = ck. Informally, performing ⊗
or �÷ between two constraints means building a new constraint whose support
involves all the variables of the original ones. This new constraint associates
with each tuple of domain values for such variables a semiring element that is
obtained by multiplying or, respectively, dividing the elements associated by the
original constraints to the appropriate sub-tuples. According to their definition,
the ⊗ and �÷ operators respectively inherit the properties of × and �÷.

Given a constraint c ∈ C and a variable v ∈ V, the projection [4] of c over
V − {v}, written c ⇓(V\{v}) is the constraint c′ such that c′η =

∑
d∈D cη[v := d].

Informally, projecting means eliminating some variables from the support. This
is done by associating with each tuple over the remaining variables a semiring
element which is the sum of the elements associated by the original constraint
to all the extensions of this tuple over the eliminated variables. Considering the
examples in Fig. 1, cw ⇓({y})= cj.

The partial order ≤S over C can be easily extended among constraints by
defining c1 �S c2 ⇐⇒ ∀η, c1η ≤S c2η; as an example, in Fig. 1 we have cj � ck.
Consider the set C and the partial order �. The entailment relation �⊆ ℘(C)×C
is defined s.t. for each C ∈ ℘(C) and c ∈ C, we have C � c iff

⊗
C � c.

Nonmonotonic SCCP. With respect to classical Concurrent Constraint Program-
ming (CCP) [16], in SCCP [5] the tell and ask agents are equipped with a preference
(or consistency) threshold that is used to determine their success, failure, or
suspension, as well as to prune the search.

The NmSCCP language [6] has an important difference with regard to the clas-
sical SCCP: the consistency level of the store can be increased by retracting
constraints from it. For this reason, the semantics of the actions in NmSCCP in-
cludes also an upper bound on the store consistency, since it can be increased
by a retract(c) action (for example). The retract(c) operation is at the basis of our
nonmonotonic extension of the SCCP language, since it permits to remove the
constraint c from the current store σ. It is worth to note that our retract can be
considered as a “relaxation” of the store, and not only as a strict removal of the
token representing the constraint, since in soft constraints we do not have the
concept of token [4]. Thus, a constraint c can be removed even if it is different
from any other constraints previously added to σ, as long it is entailed by the
store, i.e., σ � c.

2 0̄ and 1̄ respectively represent the constraints associating 0 and 1 to all assignments of
domain values; in general, ā returns the semiring value a for all possible assignments.
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C1:�=→a2
a1

check(σ)� = true if

⎧
⎪⎪⎨
⎪⎪⎩

σ ⇓∅≯S a2

σ ⇓∅≮S a1

(with a1 ≯ a2)

C2:�=→φ2
a1

check(σ)� = true if

⎧
⎪⎪⎨
⎪⎪⎩

σ � φ2

σ ⇓∅≮S a1

(with a1 ≯ φ2 ⇓∅)

C3:�=→a2
φ1

check(σ)� = true if

⎧
⎪⎪⎨
⎪⎪⎩

σ ⇓∅≯S a2

σ � φ1

(with φ1 ⇓∅≯ a2)

C4:�=→φ2
φ1

check(σ)� = true if

⎧
⎪⎪⎨
⎪⎪⎩

σ � φ2

σ � φ1

(with φ1 � φ2)

Otherwise, check(σ)� = f alse

Fig. 2. Definition of the check function for each of the four checked transitions

Due to the non monotonic nature of the store, in [6] we have also added a
nask operation, not present in SCCP, which is satisfied if a given constraint is not
entailed by the current store.

InNmSCCPwe also have an upper bound on the preference of the store, which is
needed to prune “too good” computations obtained at a given step. In this way,
we are able to model intervals of acceptability, while in SCCP there is only a check
on “not good enough” computations, i.e., decreasing too much the consistency
w.r.t the lower threshold. In Fig. 2 we show the new action prefixing symbol� in
the syntax notation, which can be considered as a general “checked” transition
of the type→ϕ2

ϕ1
(e.g., we can write ask(c)→ϕ2

ϕ1
A), where ϕi is a placeholder that

can stand for either a semiring element ai or a constraint φi, i.e., ϕi ::= ai|φi.
The syntax and the semantics of the core actions of NmSCCP are presented in

Sec. 5, already enhanced with integrity and confidentiality rights and the new
execp operation. In the following, we briefly describe an example of a parallel
computation of the agents A1 and A2, in order to familiarize the reader with
NmSCCP (ci, cj and ck are taken from Fig. 1).

A1||A2 :: 〈(tell(ci)→1̄
0̄ ask(cj)→1̄

0̄ success) ‖ (retract(ck)→1̄
0̄ success), 1̄〉

A computation starts in the empty initial store (i.e., 1̄). After A1 adds ci, then A2
may remove ck from the store and successfully terminate; after this, A1 checks if
cj is still implied by the store (this holds), and then it may terminate in the sucess
agent as A2. Since here we do not want to constrain the higher/lower preferences
of the store, all the transitions are labeled with 0̄/1̄ constraints.

3 Related Work

Most of the related proposals we report in this section come from studies on
the Linda language, which is closely related to CCP [16]. Even if Linda has been
extended by considering security mechanisms [20,10,19], as far as we know,
no similar work has been presented for the CCP language family, even if such
scenario has been already predicted in [12].
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The Linda model is implemented as a coordination language in which the
primitives operate on an ordered sequence of typed data objects called “tuples”;
these primitives are added to a sequential language, and interact with a logi-
cally global associative memory, called the tuplespace, in which processes store
and retrieve tuples. The basic primitives are: in, which atomically reads and
removes (i.e., consumes) a tuple from tuplespace, rd non-destructively reads a
tuplespace, out produces a tuple, writing it into tuplespace, and eval creates
new processes to evaluate tuples, writing the result into tuplespace.

In [20] the authors present SecSpaces, the design of a new coordination model
which extends Lindawith fine-grained access control; SecSpaces is a capability-
based system where the dynamic privileges acquisition happens only if an agent
reads an entry that contains a control field value in the data fields.

In [10] the authors present a novel coordination model which provides three
mechanisms to manage tuple access control. The first mechanism supports log-
ical partitions of the shared repository: in this way it is possible to restrict the
access to tuples inside a partition, simply by limiting the access to the parti-
tion itself. The second mechanism consists of adding to the tuples some extra
information that exploits asymmetric cryptography, in order, for instance, to
authenticate the producer of a tuple or to identify its reader/consumer. Finally,
there is support to define access-control policies based on the kind of operations
an agent performs on a tuple, thus discriminating between (destructive) input
and (non-destructive) read permissions on each single tuple.

One interesting proposal is the Klaim language [14]. It exploits a standard
access control mechanism where permissions describe which operations the
agents can perform on the available spaces. In its original version, Klaim does
not allow dynamic permission acquisition; this is supported by MuKlaim [9],
that is a sort of core for Klaim, since it implements its basic features. Further, the
solution offered by Klaim is not particularly suitable for environments where
the system configuration changes frequently.

Other related proposals are Klava [1] and a secure version of Lime [11]. The
former introduces encrypted messages into the fields of the tuples, and the
matching rule allows the evaluation of messages encrypted into fields; the en-
cryption of messages ensures that they can be read only by the allowed clients.
In [11] the authors present a secure implementation of Lime (Linda in Mobile
Environment), that provides a password-based access control mechanism at the
level of tuples and tuple spaces. Finally, in [15] the authors propose a general
model for coordination middlewares that exploits process handlers to control
the behaviour of processes; a language derived from CCS is used to describe
which operations are allowed.

Comparing the previous works based on Lindawith our solution for NmSCCP,
the main difference consists in the fact that, in our case, the controls cannot be
applied on a single piece of information, as a token in crisp constraint systems
or tuples in the Linda store. The reason is that in a semiring-based framework
the information is mixed in the store without any identity, and it is represented
by quantities that can be even partially removed from it.
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4 Defining the Tell/Ask/Retract Rights

In the language presented in this paper (see Sec. 5), we use control mechanisms
in order to guarantee integrity and confidentiality [21] on a shared store of
constraints. However, since we work on a semiring-based formalism (see Sec. 2),
our checks need to be focused on a quantitative, rather than qualitative, point
of view, differently from previous works on Linda (see Sec. 3). In fact, our
approach is able to set “how much” of the current store each agent can retract
or ask. Therefore, also the rights, together with the information they are applied
on (i.e., soft constraints) are soft, in the sense they may also concern part of the
added information. In a crisp vision of access control, if c1 is added to the store,
it would be possible to prevent only the removal of the entire c1, but not part of
it as, instead, we can manage with NmSCCP.

When an agent inserts a constraint into the store by performing a tell action, it
also specifies the rights that all the other agents have on that constraint (see Sec. 5
for the semantics of the operation). We define three kinds of rights: the tell rights,
stating how much the added constraint can be “worsened” by the other agents,
the ask rights, which specify how much of the constraint can be “read” by each
agent, and the retract rights, describing how much of the added constraint can
be removed via a retract action. This approach is inspired by the classical matrix-
based ACL security model [18]. Each entry in a typical ACL specifies a subject and
an operation and follows the structure: (object identity, user identity)
-> permitted operations. The tell and retract rights can be classified as integrity
rights [21], while the ask rights are classified as confidentiality rights [21].

Definition 1 (Tell, Ask and Retract Rights)
Tell Rights: Each constraint ck added to the store is associated with a vector

Rt = 〈ct1 , ct2 , . . . ctn〉, where n is the number of agents participating to the concur-
rent computation. cti represents the tell right imposed on agent Ai. In particular, cti

represents how much of ck the agent Ai can write in the store with successive tell
operations, that is, how much Ai can worsen ck.

Ask Rights. Each constraint ck added to the store is associated with a vector
Ra = 〈ca1 , ca2 , . . . can〉, where n is the number of agents participating to the concur-
rent computation. cai represents the ask right imposed on agent Ai. In particular, cai

represents how much of the added ck constraint can be read (with an ask operation) by
agent Ai.

Retract Rights: Each constraint ck added to the store is associated with a vector
Rr = 〈cr1 , cr2 , . . . crn〉, where n is the number of agents participating to the concurrent
computation. cri represents the retract rights imposed on agent Ai, that is, how much
of ck can be removed by agent Ai with a retract operation.

The three right vectors Rt, Ra and Rr are represented in Tab. 1 as a matrix of
rights R, which collects the ACL for each entity and for each one of the three
kinds of right. This matrix of rights represents a new kind of information for
CCP-like languages, and it belongs to the state of the computation of NmSCCP
agents: it is updated at each step via the NmSCCP actions (see Sec. 5).
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Table 1. The vision of the store for the imposed rights given as the Rmatrix

Rt (Tell) Ra (Ask) Rr (Retract)
Agent1 Rt[1] Ra[1] Rr[1]
Agent2 Rt[2] Ra[2] Rr[2]

. . . . . . . . . . . .
Agentn Rt[n] Ra[n] Rr[n]

With an abuse of notation we define the composition of rights operation as
R′ = R⊗R̄, whereR andR′ respectively model the former and the new matrix of
rights in the computation state, while R̄ represents the new rights that modify the
former matrix. As already anticipated, R̄ is a parameter of the tell action of our
language (see Fig. 3). R′ = R ⊗ R̄ is implemented with equations (1), (2) and (3)
(i.e., respectively tell, ask and retract rights): (1)∀i.R′t[i] = Rt[i]⊗R̄t[i], (2)∀i.R′a[i] =
Ra[i]⊗R̄a[i], (3)∀i.R′r[i] = Rr[i]⊗R̄r[i]. Note that we use the⊗ (see Sec. 2) because
even rights are soft constraints.

As an example of composition of rights, we consider the Weighted semiring
〈R+ ∪ {+∞},min,+,+∞, 0〉 and the following R and R̄:

R = (Rt = 〈x, 5̄, x + y〉,Ra = 〈y, x, 1̄〉,Rr = 〈x, z, 2̄〉)
R̄ = (R̄t = 〈y, x, 3̄〉, R̄a = 〈1̄, 1̄, 1̄〉, R̄r = 〈1̄, x, 6̄〉)

the R′ composition of rights is given by

R′ = R ⊗ R̄ = (R′t = 〈x + y, x + 5̄, x + y + 3̄〉,R′a = 〈y, x, 1̄〉,R′r = 〈x, x + z, 8̄〉)
Note that, since rights on soft constraints are represented by soft constraints as
well, they behave in the same way: when new rights are added to the security
matrix (R ⊗ R̄), they are composed with the ⊗ operator, since in our semiring-
based formalism we do not have the concept of tokens (see Sec. 2).

5 The Secure NmSCCP Language

Given a soft constraint system as defined in Sec. 2, the syntax of NmSCCP agents
is given in Fig. 3. Note that in this paper we present the syntax and extend the
semantics (with rights) of the core subset of the actions defined in [6] (e.g., the
tell, ask, nask and retract actions). In Fig. 3, P is the class of programs, F is the
class of sequences of procedure declarations (or clauses), A is the class of agents,
c ranges over constraints, X is a set of variables and Y is a tuple of variables.

One difference w.r.t. [6] is that the tell action has a new parameter (in addition
to c), that is the R̄ rights. When executing tell(c, R̄), it is not obviously possible
to quantitatively impose more rights on c than c itself: therefore, the syntactic
conditions on R̄when writing NmSCCPprograms are that∀i. c � R̄t[i], c � R̄a[i], c �
R̄r[i].

A second difference w.r.t. [6] is represented by the new execp operation that
can be used to execute a procedure P(Y) in parallel, passing to the new agent
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P� F.A
F� p(Y) :: A | F.F
A� secfail | success | tell(c, R̄)� A | retract(c)� A | execp(p(Y), R̄) | E | A‖A | ∃x.A | p(Y)
E� ask(c)� A | nask(c)� A | E + E

Fig. 3. Syntax of the NmSCCP language with the new execp operation

R1 σ � ∅ Rt[i] � c Rt[i] = Rt[i]�÷ c check(σ ⊗ c)�
〈telli(c, R̄)� A, σ,R〉 −→ 〈A, σ ⊗ c,R ⊗ R̄〉

R2 σ = ∅ Rt[i] = Rt[i]�÷ c check(σ ⊗ c)�
〈telli(c, R̄)� A, σ,R〉 −→ 〈A, σ ⊗ c,R ⊗ R̄〉

R3 Rr[i] � c R′r[i] = Rr[i]�÷ c σ � c σ′ = σ�÷ c check(σ�÷ c)�
〈retracti(c)� A, σ,R〉 −→ 〈A, σ′,R′〉

R4
Rt[i] � R̄t Ra[i] � R̄a Rr[i] � R̄r p(Y) :: B ∈ F check(σ)�

〈execpi(p(Y), R̄))� A, σ,R〉 −→ 〈A ‖ B, σ,R ∪ R̄〉

R5
〈Ej, σ,R〉 −→ 〈Aj, σ

′,R′〉 j ∈ [1, n]
〈Σn

i=1Ei, σ,R〉 −→ 〈Aj, σ′,R′〉

R6 Ra[i] � c σ � c check(σ)�
〈aski(c)� A, σ,R〉 −→ 〈A, σ,R〉

R7 Ra[i] � c σ �� c check(σ)�
〈nask(c)� A, σ〉 −→ 〈A, σ〉

R8 〈A, σ,R〉 −→ 〈A′, σ′,R′〉
〈A ‖ B, σ,R〉 −→ 〈A′ ‖ B, σ′,R′〉
〈B ‖ A, σ,R〉 −→ 〈B ‖ A′, σ′,R′〉

R9 〈A, σ,R〉 −→ 〈success, σ′,R′〉
〈A ‖ B, σ,R〉 −→ 〈B, σ′,R′〉
〈B ‖ A, σ,R〉 −→ 〈B, σ′,R′〉

R10
〈A[x/y], σ,R〉 −→ 〈B, σ′,R′〉
〈∃x.A, σ,R〉 −→ 〈B, σ′,R′〉 y fresh

R11 〈A, σ,R〉 −→ 〈B, σ′,R′〉
〈p(Y), σ,R〉 −→ 〈B, σ′,R′〉 p(Y) :: A ∈ F

Fig. 4. The transition system for the secure NmSCCP

a subset of the owned R̄ rights. We introduce this operation in order to model
also the eval operation provided by the Linda language (see Sec. 3), where it is
used to evaluate a further agent in parallel. Our execp is defined for the same
aim, but in addition, in NmSCCP it is also used in order to pass different rights to
the new agent (a real application of this operation is the fork of processes).

To give an operational semantics to our language we need to describe an ap-
propriate transition system 〈Γ,T,�〉where Γ is a set of possible configurations,
T ⊆ Γ is the set of terminal configurations and �⊆ Γ × T is a binary relation
between configurations. The set of configuration is Γ = {〈A, σ,R 〉} where σ ∈ C
and R is the matrix of rights, while the set of terminal configuration is instead
T = {〈success, σ,R〉}. To remember even rights during the computation, in Def. 2
we extend the representation of a computation state w.r.t. [6].

Definition 2 (Computation States). The state of a computation in NmSCCP is repre-
sented by a triple 〈A, σ,R〉, where A is the description of the agent to be executed, σ is
the ongoing constraint store, and R is the current matrix of rights. R is initialized as
∀i.Rt[i] = ∅,Ra[i] = ∅,Rr[i] = ∅.
In Fig. 4 we describe the transition system of the language. The actions of the
agents are labeled with the identifier of the executing agent, in order to manage
the changes and the security check related to the rights.

Tell: in R1 and R2 rules (see Fig. 4), the parameters of the action are rep-
resented by the constraint c, inserted by agent Ai, and by the new rights R̄
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representing how much of c can be respectively added (R̄t), asked (R̄a) or re-
moved (R̄r) by the other agents. In this way, access rights are added to the
matrix of rights R just as the new constraint c is added to the store σ.

If the tell represents the first step of the computation, that is if σ = ∅, we use
rule R2 where we do not check the tell rights for Ai. The reason is that, since
Rt = ∅ at the beginning of the computation, it would not be ever possible to
add a constraint since ∅ �� c. Otherwise, if the store is not empty (i.e., R1), the tell
operation can be executed if it also satisfies the tell rights, i.e., if Rt[i] � c. If this
holds, then the tell rights of Ai have to be updated according to the added c, i.e.,
R′t[i] = Rt[i]�÷ c, in the sense that they are consumed. The actual matrix of rights
R is updated with the passed new rights R̄: therefore, the matrix of rights in the
successive state corresponds to R′ = R̄ ⊗R.

The new storeσ⊗c must also satisfy the conditions of the specific� transition,
that is check(σ′)�, according to the four cases shown in Fig. 2.

Retract: with R3 we are able to “remove” a constraint c from the store σ,
using the �÷ constraint division function as defined in Sec. 2. In this case we
check if the retract rights of Ai are satisfied, that is if Rr[i] � c. Moreover, we
have also to check if c is entailed by the store, i.e., if σ � c, in order to be able to
effectively remove it. If these two conditions are satisfied, than the retract can be
executed leading to the new store σ′ = σ�÷ c and the matrix of rights is updated
as R′r[i] = Rr[i]�÷ c: also in this case, as for the tell operation, Ai consumes part
of its (retract) rights. The new store σ′ = σ�÷ c must also satisfy check(σ′)�.

Execp: with R4 we are able to create a new agent in parallel with the other
already being executed. The “body” of the new agent is described by one of
the procedures defined in the declaration section F, as defined in Fig. 3: in the
precondition of the rule, p(Y) :: B ∈ F. The creating agent can pass to the son
a part of his rights, and at most all of his rights. The precondition of this rule
checks if the passed tell/ask/retract rights R̄ (parameter of the execp) are entailed
by the current rights owned by the creator agent. These rights are then passed
to the son, but they are not revoked from the creator, i.e., subtracted with the
operation R�÷ R̄: the rights of the creator agent are not consumed. A new row is
created in the matrix of rights, corresponding to the new running agent (∪ R̄ in
R4). The execp operation is equivalent to the Linda eval operation (see Sec. 3).

Nondeterminism: the composition operator +, represented in R5 with
∑

,
can be applied to the E agents in Fig. 3, that is ask and/or nask agents. This
rule nondeterministacally chooses one of the agents whose guard succeeds, and
clearly gives rise to global nondeterminism.

Ask: rule R6 checks the presence of constraint c in the current store σ, that is
if σ entails c (i.e., σ � c). The other conditions are, in addition to check(σ)�, to
check ifRa[i] � c, that is to check if the ask rightsRa[i] of the agent Ai performing
the ask request entails c. Since the ask just represents a reading of the store, the
σ store is not modified and the Ra[i] rights are not consumed: as a result, the
same c can be read several times with different successive ask operations.

Nask: rule R7 is needed to infer the absence of a statement whenever it cannot
be derived from the current state [6]. The rule is enabled when c is not entailed
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by the store, i.e., σ �� c. Note that the rights checked in rule R7 are just the same
ask rights used by ask operations: the constraint added with a tell can be used
for a positive or negative query in the store, and, therefore, the ask rights are
enough to control both kinds of readings and hide part of such information.

Parallelism: a parallel agent (rules R8 and R9) succeedes when both agents
succeed. This operator is modeled in terms of interleaving (as in the classical
CCP [16] ): each time, the agent A ‖ B can execute only one between the initial
enabled actions of A and B (R8); a parallel agent succeed if all the composing
agents succeed (R9).

Hidden variables: the semantics of the existential quantifier in R10 is similar
to that described in [16] by using the notion of freshness of the new variable added
to the store. Hidden variables cannot be observed by an external observer.

Procedure calls: the semantics of the procedure call (R11) (i.e., the call to a
different portion of code) has already been defined in [5]: the notion of diagonal
constraints [16,5] is used to model parameter passing.

Note that the semantics given in Fig. 4 implements both the Discretionary
and Mandatory Access Control principles (DAC and MAC) [13]. The controls are
discretionary in the sense that a subject with a certain access permission is
capable of passing a permission to any other agent Ai: in our framework, this
is enforced by R̄ in rules R1 and R2, that is the matrix of rights related to the
constraint c added to the store by a tell. DAC is also enforced by the semantics
of the execp, since rights are passed to the new agent. In addition, also the MAC
model is enforced as well, since any operation by any subject on any object
is tested against the set of authorization rules to determine if the operation is
allowed or not: the semantics of the rules in Fig. 4 enforces these controls.

Moreover, the execp operation models the passing of rights during process
fork-like operations in Operating Systems. The process executing an execp or a
tell action can pass to other agents only the strictly necessary rights for accom-
plishing their tasks, according to the principle of least privilege [17].

Note that we consider that each agent knows the identifier of the other agents
participating to the secure computation on the shared store, to be able to pass
the rights to each of them. This is a general premise for a secure computation,
as for example in Operating Systems Primitives (e.g., POSIX IPC) [7], where a
shared memory is referenced in the compilation of both processes. Note that
in this paper we consider a concurrent but not distributed execution of the
agents, which run on the same processor and do not “migrate” to other units. In
addition, also other works in literature define an identifier for each entity whose
computation is controlled [10]. However, we can suppose that the identifiers of
agents are instead names of (security) classes each agent belongs to. The rights
for each class are then shared by all the included agents; in this way it is not
necessary to know the exact number of the agents, if this represents a limitation.

Security Failures. If the computation does not succeed, clearly it useful to detect
the operations that led to a security violation over the resources. To capture the
security failures of agents during a computation, we add the transition rules
in Tab. 5. secfail (see Fig. 3) is an agent indicating that a security violation
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SF1
σ � 1̄, supp(σ) � ∅ Rt[i] �� c check(σ ⊗ c)�

〈telli(c, R̄)� A, σ,R〉 −→ secfail

SF2-SF3 Ra[i] �� c check(σ)�
〈aski(c)/naski(c)� A, σ,R〉 −→ secfail

SF4 (Rt[i] �� R̄t or Ra[i] �� R̄a or Rr[i] �� R̄r) check(σ)�
〈execpi(p(Y), R̄))� A, σ,R〉 −→ secfail〉

SF5 Rr[i] �� c check(σ�÷ c)�
〈retracti(c)� A, σ,R〉 −→ secfail

SF6
〈A, σ,R〉 −→ sec f ail

〈A ‖ B, σ,R〉 −→ secfail
〈B ‖ A, σ,R〉 −→ secfail

SF7
〈E1, σ,R〉 −→ secfail

〈E1 ‖ E2, σ,R〉 −→ 〈E2, σ,R〉
〈E2 ‖ E1, σ,R〉 −→ 〈E2, σ,R〉

Fig. 5. Security failures in NmSCCP

occurred. The observables of failed computations can be detected by using the
function FA = {secfail | 〈A, ∅,R〉 →∗∗ secfail}, which collects the results of failing
computations. Note that failures are not present in the original NmSCCP [6], where
the computation can only successfully terminate or suspend. Moreover, as far
as we know, security failures are a novelty for CCP-like languages in general.

With SF1 rule in Tab. 5 the tell operations fails if the tell rights are not satisfied
(i.e., Rt[i] �� c). This happens also with SF2, SF3 and SF4 rules for, respectively,
the ask/nask (Ra[i] �� c) and retract rights (Rr[i] �� c). Rule SF5 is fired when the
rights passed to the new agent are not implied by those possessed by the creator
(tell, ask or retract rights). Rule SF6 states that the parallel computation fails
as soon as one of the computation branches fails, while, according to SF7, a
nondeterministic computation fails if all its branches fail.

6 An Example on RGB Color Managing

The RGB model is an additive color model in which red, green, and blue lights
are added together to reproduce a broad array of colors. One common applica-
tion of the RGB color model is the display of colors on CRT, LCD or LED displays
such as a television, a computer monitor, or a large scale screen. During digital
image processing each pixel can be represented in the computer memory and in
the interface hardware (for example, a graphics card) as three different binary
values for the red, green, and blue color components.

In the following example we model a RGB pixel manager. Three colors are
created in sequence by the pixel manager: magenta, red, and, at last, yellow. The
principal manager (AC) adds color white (i.e., all the possible information) to
the store and then creates three separate sub-managers of, respectively, red (AR),
green (AG) and blue color (AB). Each of these managers is in charge to modify
its color by augmenting or decreasing its intensity, to query the intensity of the
other colors if they want, but not to change the other two colors. AC checks the
end of the color sequence, that is if the final yellow is in the store. Moreover, AC

checks if the intensity of the brightest and darkest color obtained in the store is
above grey and below brown by using the transition→brown

grey/yellow, in order to limit
the flickering of the screen. The AC agents is described in the following:
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Table 2. The lattice of the colors/rights

White (0̄) Grey

Cyan

Magenta

Yellow

Blue

Green

Red

Brown Black (1̄)

Table 3. The matrix of the rights after
tell(white,RAC ) by agent AC

Rt (Tell) Ra (Ask) Rr (Retract)
AC white white white

AC :: 〈tell(white,RAC )→black
white execp(PRed,RAR )→black

white execp(PGreen ,RAG )→black
white

execp(PBlue,RAB )→brown
grey nask(white)→brown

grey ask(yellow)→brown
yellow success, black〉

For the sake of readability, we do not detail the representation of the used
constraints, but we just show the name of the color as a placeholder for the
corresponding constraint. However, in the practice, we can use the cartesian
product of three Weighted semirings, which is still a semiring [4], to represent the
intensity of each primary color: for instance, 〈x = 255, y = 0, z = 0〉 corresponds
to preference red and 〈x = 255, y = 255, z = 255〉 to white, according to the
color theory. We only need three variables x, y and z to represent the problem.
Therefore, we suppose white = red ⊗ green ⊗ blu = 0̄, since it contains all the
colors, and black = 1̄ since it represents the absence of color (i.e., of information
in the store). The lattice of the colors is represented in Tab. 2.

After the first tell of AC, the global matrix of rights is shown in Tab. 3. AC

maintains the highest possible tell/ask/retract rights (i.e., white) for the color white
it added to the store, since it is the principal controller of the screen resource.
After the creation of the three sub-managers, the vector of rights RAR , RAG and
RAB lead to the matrix of rights depicted in Tab. 4. Note that AC passes to the
son agents only the necessary rights for accomplishing their tasks, according
to the principle of least privilege [17]. For example, AR has only the necessary ask
rights to check if its managed color (i.e., red) is on the screen, but since it does
not modify the store (the sequence magenta, red and yellow always contains red),
both tell and retract rights are black (i.e., no rights).

The parallel computation then becomes AC ‖ AR ‖ AG ‖ AB, where the body
of operations of AR, AG and AB is respectively represented by PRed, PGreen and
PBlue. Their description is shown in the following:

PRed :: ask(red)→black
white success

PGreen :: retract(green)→black
white nask(magenta)→black

white tell(green,RG)→black
white success

PBlue :: nask(white)→black
white retract(blue)→black

white success

The vector of rights RG, parameter of the tell(green,RG) in PGreen, is equal to
[black, black, black], since the AG terminates after this operation and, for this
reason, no additional rights are necessary. The matrix of rights at the end of the
parallel computation is shown in Tab. 5. The tell and retract rights have been
consumed by agents AG and AB. Therefore, it would not be possible for them to
add or retract again any color from the screen.
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Table 4. The matrix of the rights after the
creation of AR, AG, AB

Rt (Tell) Ra (Ask) Rr (Retract)
AC black white black
AR black red black
AG green magenta green
AB black white blue

Table 5. The matrix of the rights at the end
of the parallel computation

Rt (Tell) Ra (Ask) Rr (Retract)
AC black white black
AR black red black
AG black magenta black
AB black white black

This parallel computation successfully terminates by showing all the desired
three colors in sequence. But, for example, according to the matrix of rights
shown in Tab. 4, the secfail agent could be achieved by AG if it tries to remove
color yellow instead of only green (see SF3 in Fig. 5), since green �� yellow (see
Tab. 2). Then, secfail would be propagated to the whole parallel computation,
by using rule SF5 in Fig. 5.

Note that the presented example can be applied to more realistic scenarios
with minor changes. For example, consider the three colors as Platinum, Gold
and Silver traffic classes on QoS networks. QoS can then be monitored and
enforced at an aggregate level (i.e., per-class).

7 Conclusions

In this paper, we have extended the NmSCCP language [6] in order to enhance
with access rights the operations that can be performed on the store. Our model
is based on the classical ACL security model: for each agent and operation (e.g.,
a constraint retract operation) we specify a quantity of information (i.e., a con-
straint) that that agent is allowed to operate on, that is, a quantity of information
it is entitled to add, query, or remove. Therefore, both the resources and the ac-
cess rights on them are represented with constraints. Since we adopt semiring-
based soft constraints (see Sec. 2), the resources and the access rights are not
represented as “crisp” pieces of information, as tuples in Linda [20] instead,
or tokens in crisp constraint systems, as CCP [16]. The enhancement of CCP-like
languages with security mechanisms is novel, even if possible extensions in this
sense have been already anticipated in [12]. The presented model of rights is
general, and it can be applied to any CCP language, wether “soft” or not.

As future work, we would like to prototype the presented soft security mech-
anisms with a constraint-based language, as, for example Constraint Handling
Rules [8]. Moreover, we would like to use the lattice theoretic feature as a unify
principle to combine SCCP with a Bell-LaPadula-like security system.
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12. López, H.A., Palamidessi, C., Pérez, J.A., Rueda, C., Valencia, F.D.: A Declarative
Framework for Security: Secure Concurrent Constraint Programming. In: Etalle, S.,
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Abstract. Assurance of high integrity systems based on closed systems
is a challenge that becomes difficult to overcome when a classical testing
approach is used; in particular the evidence generated from a classi-
cal testing approach may not meet the objectives of rigorous standards.
This paper presents a new approach for the formal verification of closed
systems, in particular commercial off the shelf (COTS) products. The
approach brings together the formal language Event-B, mathematical
proof theory and the Rodin toolset and provides the mechanism for cre-
ating abstract models of closed systems and to then verify these system
properties against operational requirements. From an industrial perspec-
tive this approach represents a step change in the use and successful
integration of closed systems; using formal methods to guarantee their
integration and functionality. The outcome of the proof of concept will
provide a solution that will increase the level of confidence on complex
system of system solutions containing closed systems. Moreover, it will
support the production of safety-cases by providing formal proofs of a
system’s correctness.

Keywords: closed systems, COTS, Event-B, Rodin, formal verification,
virtualisation, VMWare.

1 Context

Closed Systems (CS) are becoming more common in the safety critical domain
and in particular within the military domain. As the name connotes a closed
system is a solution which is available as a black box where access to internal
modules and design artifacts is not possible. In the context of this paper we will
refer to a closed system as a software based system and of which can refer to
either of the following contexts:

1. Systems developed by a third party that are commercially available to the
public domain as readymade solutions; also known as COTS
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2. Systems developed by a third party that are not commercially available but
due to legal, export controls or other commercial reasons are not open to
the system integrator

The justifications provided by system integrators for adopting a CS product as
opposed to a bespoke solution are typically:

– Adoption of state of the art technology : The supplier of a CS has the
budget to invest in R&D and innovative methods to provide state of the art
technology. Furthermore these suppliers tend to invest in and continuously
develop the product to stay competitive for longer

– Cost reduction : It is debatable whether a CS product offers a significant cost
reduction or not, because the CS product may not be integrated seamlessly
with the complete end system. If instead there are no significant issues with
the integration of the CS, the end cost will be less than if the same solution
was developed from scratch. Another key factor is that having the product
on an open market pushes suppliers to offer competitive prices

– Reliability : In principle CS products have been tested thoroughly by the
supplier, in that the solution is deemed reliable in particular contexts. The
caveat is that the customer may have conditions that the solution has not
been tested under and this becomes an issue, in particular when the CS is
used in a safety critical system

The rollout of a CS product in a safety critical domain is not a straightforward
activity as the assumptions made about the CS product may not hold when the
product is integrated and tested with the rest of the system. It often happens
that the CS product does not operate as expected in the specific environment
or that some of the system requirements are not satisfied by the closed sys-
tem. Furthermore the Verification and Validation (V&V) of Closed Systems is
particularly difficult to perform because in most cases there is no design or re-
quirements documentation available in the public domain, nor has the evidence
of V&V activities performed by the supplier been made public. Determining the
conditions and environment under which the CS product was validated is not
simple. The non-existence of this data makes it more difficult to build a case for
the reliability and safety of the end product.

Where all this might not be vital in a non-safety critical domain, it is par-
ticularly relevant in a safety critical domain where, for instance, the DO-178
standard requires evidence of V&V activities to meet specific objectives.

2 Existing Approaches

2.1 Integration Testing and Prototyping

The validation of CS based solutions typically starts as soon as the CS product is
made available to the system integrator. First the product is taken through a pro-
totyping stage with parts of the system being integrated with the CS products.
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This stage validates some functional integration aspects; it does not necessarily
address safety or reliability properties of the system as the focus is instead on
validating the functional integration with the end system. The prototyping stage
may lead to the identification of issues with the CS that require customizations,
of which in some cases the supplier of the CS product can be open to fixing.
This stage can also identify limitations which could lead to either rejecting the
CS product or the system integrator having to identify workarounds.

Once the various elements of the solution are amenable to integration the
system is formally built and only then can it go through integration testing. The
approach used for testing is driven by the set of requirements including safety
requirements, use cases, the test environment and last but not least the time
available to perform the testing.

There are several risks associated with this approach:

– The identification of issues and the need for workarounds might come late in
the lifecycle when there is no other option but to develop bespoke solutions.
This impacts on the cost and schedule of the end system

– A limited test coverage as a result of the limited time available for testing
and a limited test environment which does not allow for simulating the real
in-service environment. This impacts on the confidence in the end solution
and could result in a system deployed with untested states and an impact
on the ability to generate a sound safety case

– As safety can be seen as an emergent property of the integrated system [3],
the safety analysis, which could result in the need for significant re-design,
occurs too late in the verification process

2.2 Fault Injection Testing

Fault injection testing is another approach that aims to address scenarios where
there is insufficient evidence to demonstrate that the CS will not fail unac-
ceptably or where the CS does not satisfy safety requirements. The primary
objective of fault injection testing is to understand whether additional fault de-
tection, isolation and recovery (FDIR) mechanisms are required or if the existing
FDIR mechanisms are satisfactory. An example of a successful application of the
method is described in [4].

The key risks associated with this method are:

– The APIs may not be sufficiently well documented resulting in additional
effort to effectively customise the test environment and integrate it with the
target system

– The results produced are constrained by the number of fault scenarios gen-
erated and as a consequence the evidence generated may be inadequate to
demonstrate the robustness of the target system

– The fault injection tool may not provide all of the interfaces required to
integrate with the equipment under test and as a consequence it may not be
possible to inject faults in the target system
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– Potential failures caused by unexpected component interactions in the inte-
grated system are not addressed by this approach

There are a number of other approaches that can be used to facilitate the verifi-
cation and validation of CS based solutions, such as using pre-existing evidence
or reverse engineering. For further details see [5].

3 Solution Description

This paper outlines an approach that we have been applying to a real industrial
project using the Event-B formal method. The system being analysed uses a
number of complex static configurations and we were able to specify general re-
quirements on these configurations in Event-B, and verify specific configurations
using model checking and mathematical proofs. We also use refinement to map
a high level model of the requirements to a lower level model that represents an
abstraction of the CS product. Our experience to date suggests this approach
encourages a deeper analysis of the system requirements and how these relate to
the characteristics of the CS product than a less formal approach. The formal
models and verification results also contribute to the safety case for the system.

The work on the case study is still in an intermediate stage, yet enough work
has been completed to draw preliminary conclusions on the method and issues
faced.

3.1 Tools Description

The case study uses the Event-B language, which is a formal language built
upon set theory and mathematical proof, and is an evolution of the industrial-
strength B method. This is in combination with the Rodin toolset, which is
an Eclipse-based open source development environment for Event-B models [1].
Rodin includes proof obligation generation and automated proof tools along with
a range of model-checking plug-ins. To date, Rodin has mostly been used in a
research environment, yet using real industrial case studies.

The extensions to Rodin which are utilised in this case study are UML-B [6]
- a UML-like graphical front end for Event-B which provides strong support
for model refinement - and ProB [2], a plug-in which supports simulation and
model-checking of both Event-B and UML-B models.

3.2 Case Study Overview

The system to be verified through the case study is a shared computer environ-
ment (SCE) which consists of hardware, virtualization middleware and applica-
tions. The hardware is composed of multiple servers, and the virtualization is
provided by VMWare - a closed system - which enables multiple applications to
be running on the same server and provides dynamic load-balancing and resource
reallocation across the system.
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Fig. 1. Example of UML-B model Refinement

The abstract design for the system is broken down into logical servers, which
represent groupings of applications that should be running on the same server.
The hierarchy of the applications is introduced by the classification of each ap-
plication to a function or sub-function; this allows for functions to span multiple
logical servers if they have sub-functions running on each. In relation to VMWare,
each function and sub-function corresponds to a Virtual Appliance (VApp) and
can have multiple Virtual Machines (VMs) as depicted in the following figure:

Fig. 2. Relationship between Design View and VMWare Architecture View

Each SCE operates according to a fixed number of static configurations map-
ping functions and sub-functions to logical servers. In this way it is possible to



328 B. Bicknell et al.

define configurations for multiple SCEs, a single SCE (should one or more of the
SCEs fail), or minimum safe configurations (so that the critical applications can
continue running in the event of multiple server failures in the same SCE).

3.3 Modeling Strategy

The initial model developed has got four levels of refinement as shown in
figure 3.

Fig. 3. Refinement Strategy

The properties of the system that can be verified formally are broken down
into two phases; the static verification of each configuration, and the dynamic
verification of the design requirements with the behavior of VMWare. The static
phase of the verification involves proving that the configuration adheres to the
requirements within the design - for instance, that a function assigned to a single
logical server should not have any sub-functions (see figure 1) - but also that the
memory, processing and network resources assigned to the sum of the functions
and sub-functions running on each logical server do not exceed the limits on a
single server (see figure 4).

VMWare can control the memory and processing resources; however, if the
overall limits for the server are exceeded then it cannot guarantee that all of
the applications will run correctly. Perhaps more critically, VMWare has no
control over the network usage; so it is imperative that the network resource
use is checked before each configuration is run. The model depicted in figure
4 introduces the concept of the memory, processing and network requirements
of each VApp and the corresponding limits on each of the blades. The con-
text includes these values as attributes as they are unchanging. The overall
network limits are also introduced via two constants NetworkIngressLimit and
NetworkEgressLimit.
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Fig. 4. UML-B model of physical resources and associated attributes

In each of the static cases the formal verification is achieved by modelling the
requirements as axioms in the model and then inserting the mappings specific to
the configuration into the model, examples of which describing the requirements
on the memory are shown below:

AXIOMS

Axiom10 : ∀LB ·LB ∈ LogicalBlade⇒
(SUM(MemReservation[FunVM [FuncLBs−1[{LB}]]]) +
SUM(MemReservation[SubVM [SubLB−1[{LB}]]])) < BladeMemory

Axiom11 : ∀v ·v ∈ VM ⇒MemLimit(v) ≤ BladeMemory

END

To verify the static design requirements we used ProB to check that the ax-
ioms are consistent, i.e. that ProB can find sets and constants that satisfy the
axioms. By using ProBs constraint solving abilities, we discovered several mod-
elling errors in the UML-B model when ProB could not find a solution that
satisfied the axioms that represented the customer requirements for the rela-
tionships between functions, sub-functions. We then verified that an example
configuration (also defined using axioms) was consistent in ProB and therefore
satisfied the axiomatic constraints on configurations such as affinity rules and
function allocations.

The advantage of using a model checker in this case is clear; if new configu-
rations are designed, or existing configurations are changed slightly by adding
new functions, then a static check can be simply and quickly performed on the
configuration in an automated fashion without having to manually recalculate
any of the resource limits or check that the mappings are valid.
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To verify that an example configuration obeys the resource requirements we
used the Rodin provers. The resource rules were expressed as a theorem which, if
the configuration is valid, should follow from the axioms describing the resourcing
required by the configuration. This involved time consuming interactive proof,
even for a simple configuration. Axiom 10 presented above is one example where
several hypotheses had to be added manually during the proof to ”point” the
provers in the correct direction due to the overall complexity of the expression.
As a result we have proposed a new proof rule which will be added to the Rodin
provers, thereby decreasing the time needed to prove future configurations.

The dynamic verification involves demonstrating that the combination of the
system and VMWare behaves in such a way that the system design requirements
are not invalidated, as these requirements are not inherent within VMWare. More
specifically, there are certain affinity rules within the design, such as groupings
of functions which have to be running on the same server, that were created
to maximize the performance of those functions. These affinity rules help min-
imizing the overhead generated by the inter-server communication and ensure
that the state of the functions within a group is consistent, i.e. in the event of
a server hosting a group of functions failing then all those functions running in
that server will have to be restarted and the system will not be left in a state
where certain functions within the group are running whilst others are not as
it would be the case if these affinity rules did not exist. These affinity rules
could also be invalidated by VMWare Distributed Resource Scheduler (DRS) if
it decides to reallocate applications due to an increased load on one or more of
the servers. The potential issues are even more apparent when server failures
are considered; in this case entire logical servers have to be reallocated or the
configuration has to be changed, all by VMWare whilst retaining the design re-
quirements and operational capacity of the system. The formal approach here,
although not yet complete, will be to model the dynamic behavior of VMWare
in Event-B, and verify this using the Rodin provers against the existing axioms
in the static verification representing the design and resource requirements.

The key limitations to the approach are:

– The complete CS has to be modelled and thus assumptions have to be made
about its behaviour. This is in fact what determines the scope of the mod-
elling; for instance, it is assumed for the dynamic behaviour that the memory
reallocation and low-level processes work reliably. However it is important
to keep in mind that these are the type of issues that, as mentioned earlier,
are often verified during the development of the CS.

– Another known limitation to this approach is inherent to the Event-B lan-
guage and is due to the restricted set of requirements that are amenable to
the language. Only a subset of the requirements could be modelled; it is not
possible to model requirements concerning the performance of the system,
for instance. This is not to say that this is not possible with other formal
languages, however.
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– A further limitation which has become apparent through the work is that the
requirements presented are often in an unsuitable form for formal modeling,
and consist of a mix of high and low levels. During the case study another,
intermediate, requirements document had to be produced to fill the gap
between the initial requirements and the formal model.

The modelling process required the participation of the customer fundamentally
to clarify the requirements and design specified by the customer; at each step in
the process models were produced, which raised questions, and after more infor-
mation was gained the models were developed further. A benefit of using a formal
method such as Event-B is that it encourages deep requirements analysis due
to the completeness of requirements necessary for formal modeling; before and
during the modelling missing and inconsistent requirements were found, most of
which were corrected or included in the intermediate requirements document.
A further benefit of the Event-B approach described is that it encourages the
investigation, discovery and modelling of safety constraints much earlier in the
verification process than traditional methods.

4 Preliminary Conclusions

The work on the case study is still in an intermediate stage, yet the following
preliminary conclusions can be drawn:

– Static properties of VMs running in VMWare can be formalised using the
Event-B method and verified using the Rodin toolset

– Event-B is a suitable method to verify properties which are not managed by
VMWare but which are critical and have to be validated before running the
virtualised applications

– The Event-B method offers the mechanisms to abstract specific details per-
tinent to the CS and focus on a sub-set of properties which are complex to
verify using a classical testing approach. However models generated need to
be verified to ensure they provide a correct representation of the system and
for that to be done test cases have to be generated

– The proposed method does not exclude a level of testing because the formal
models generated do not address all aspects of the system under test, for
instance the method does not enable the verification of the system perfor-
mance

– Event-B models of VMWare can be reused and expanded with more detail
if required

– We found UML-B’s class diagram notation very suitable for modelling this
system. UML-B allowed us to construct a model very quickly and to explore
different modelling choices, along with providing a mechanism to visualise
the model and communicate it to others

Further work is going to be performed to formally verify the design requirements
with the behavior of VMWare.
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Abstract. One way to reduce the cost of formally verifying a large pro-
gram is to perform proofs over a specification of its behaviour, which its
implementation refines. However, interesting programs must often sat-
isfy multiple properties. Ideally, each property should be proved against
the most abstract specification for which it holds. This simplifies rea-
soning and increases the property’s robustness against later tweaks to
the program’s implementation. We introduce extensible specifications, a
lightweight technique for constructing a specification that can be instan-
tiated and reasoned about at multiple levels of abstraction. This avoids
having to write and maintain a different specification for each property
being proved whilst still allowing properties to be proved at the high-
est levels of abstraction. Importantly, properties proved of an extensible
specification hold automatically for all instantiations of it, avoiding un-
necessary proof duplication. We explain how we applied this idea in the
context of verifying confidentiality enforcement for the seL4 microkernel,
saving us significant proof and code duplication.

1 Introduction

Formally verifying real software is expensive: proving a single property of a pro-
gram’s implementation can require an order of magnitude more effort than to
write the implementation [4,5]. To avoid expending this much effort on every prop-
erty to be proved of an implementation, it is common to construct an abstract spec-
ification for the software and prove that the software’s implementation formally
refines this specification. While this is expensive, subsequent reasoning can then
be performed over the abstract specification. In practice, such proofs can require
only a similar amount of effort as that to write the implementation [5].

The verification of the seL4 microkernel [4] provides a useful data-point, being
to our knowledge the most extensive code-level verification ever performed of a
general-purpose software artifact. A microkernel is a minimal operating system
kernel; seL4 implements services such as threads, virtual address spaces, IPC,

� NICTA is funded by the Australian Government as represented by the Department of
Broadband, Communications and the Digital Economy and the Australian Research
Council through the ICT Centre of Excellence program.

G. Eleftherakis, M. Hinchey, and M. Holcombe (Eds.): SEFM 2012, LNCS 7504, pp. 333–341, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



334 D. Matichuk and T. Murray

(a) Without Extensible Specification (b) Using an Extensible Specification

Fig. 1. Proving Confidentiality for seL4

and capability-based access control. An initial proof of refinement between the
kernel’s C implementation and an abstract specification of its behaviour con-
sumed about 25 person-years of effort [4]. This produced a proof on the order
of 200,000 lines of Isabelle/HOL, including proving the basic kernel invariants
for the abstract specification. However, subsequent proofs of security properties,
namely integrity and authority confinement [9], have been carried out on the
abstract specification, making use of these invariants, and then transferred to
the C implementation via refinement. These proofs were completed in under 10
person months [9].

Reusable, general purpose software systems, such as operating system (OS) ker-
nels, must often satisfy multiple properties. For instance, a secure OS kernel like
seL4 should enforce not only integrity and authority confinement, but also confi-
dentiality and availability. Unfortunately, writing a specification that captures all
of these properties is tricky: one can reason about integrity in the presence of non-
determinism, but doing so with confidentiality under refinement is much harder
because nondeterministic specifications tend to have insecure refinements [8].

seL4’s abstract specification, where integrity and authority confinement were
proved, is nondeterministic. Under-specification of seL4’s scheduling behaviour
is a major source of nondeterminism in this specification. The scheduling routine
is maximally nondeterministic, saying only that the kernel can either (nondeter-
ministically) schedule some runnable thread, or schedule the idle thread. Thus
any sensible scheduling algorithm is a valid refinement of this scheduling speci-
fication. However, this includes malicious scheduling algorithms that might leak
information via their scheduling decisions, perhaps by choosing the next thread
to schedule by examining some secret information. For this reason, confidential-
ity cannot be proved about this specification, because it abstracts away from
details that are relevant to confidentiality. We must therefore prove confidential-
ity of a less nondeterministic specification that, for instance, precisely specifies
the kernel’s scheduling behaviour. We call this specification, the deterministic
specification. This situation is depicted in Figure 1(a).

This might suggest that the initial abstract specification for seL4 was too
nondeterministic. However, proving the kernel invariants, integrity and author-
ity confinement at this level was the right thing to do. This is because, not only
is a more abstract specification easier to reason about but, by proving these
properties at a more abstract level, they become far more resilient to changes
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in the kernel’s design and implementation, and we can still derive these proper-
ties for the deterministic specification by refinement. Specifically, having proved
these properties about the nondeterministic specification, we can conclude that
they hold for all possible refinements, which include all sensible scheduling im-
plementations for instance. If we need to tweak an implementation detail of the
scheduler, we need not fear that doing so will break these properties. The same
does not necessarily follow if we have proved them only about the deterministic
specification, which captures the precise scheduling behaviour.

This suggests that properties should be proved at the most abstract level at
which they still hold. However, in the worst case, each property would require
its own specification, as well as associated proofs of refinement between them.
Any changes to the most abstract specification, such as an API evolution, must
be reflected in all other specifications, and all proofs updated. This is expensive
when APIs continually evolve and specifications duplicate much of each other’s
code, as happens with the nondeterministic and deterministic seL4 specifications.

In this short paper, we present extensible specifications, a technique for con-
structing specifications that avoids these problems while still allowing properties
to be proved at the highest levels of abstraction. This technique is designed pri-
marily for very large mechanical proof efforts, with large bodies of existing proofs
and specifications, where duplicating existing artifacts and performing and main-
taining unnecessary proofs is undesirable. These ideas have been developed and
formalised within the proof assistant Isabelle/HOL; however, they should be
applicable to any other proof assistant for higher order logic.

2 Extensible Specifications

The seL4 specifications are formalised as nondeterministic state monads [2] and
we explain extensible specifications with reference to this formalism.

An imperative programmay be specified as a nondeterministic state monad by
defining a state type that is a record containing a field for each global variable in
the program and each relevant piece of global state (such as the state of external
devices with which the program interacts). The program is then a function that
takes one of these records as its input and yields an updated record and a return
value as its output. Nondeterministic computations yield a set of such outputs.
Traditional “do-notation”, as supported by Haskell for instance, is used to phrase
monadic specifications in an imperative style.

A Running Example. We use a toy example program to motivate and explain
extensible specifications throughout this section. This program contains two func-
tions of interest, called alloc and dealloc whose signatures are:

int alloc(void); void dealloc(int i);

alloc takes no arguments and allocates a new resource, returning an integer ID
to the allocated resource. dealloc takes an ID as its argument that represents an
allocated resource, and deallocates the resource if it is currently allocated, and
does nothing otherwise. For simplicity, alloc is allowed to fail if there are no
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alloc-abs ≡ do
ids ← gets ids;
assert (ids �= ∅);
i ← select ids;
modify (ids-update (λf . f − {i}));
return i

od

dealloc-abs i ≡ do
ids ← gets ids;
when (i /∈ ids)
(modify (ids-update (λf . f ∪ {i})))

od

Fig. 2. An example abstract specification

resources to allocate. Figure 2 depicts abstract specifications of these functions.
The state type for these specifications is a record that contains a single field, ids,
which holds a set of integers representing the IDs of currently free resources.

Given a field name x, gets x reads from the state record the value stored
in field x, while modify (x-update func) updates the x-field of the state record
with the result of running the function func on the current value stored in that
field. Given a set S, select S nondeterministically selects a value from S. Hence,
alloc-abs first reads the set of free IDs and asserts that it is not empty. It then
nondeterministically selects from this set the next ID to allocate, before updating
the set of free IDs in the state record by removing the chosen ID from it. Finally
alloc-abs returns the chosen ID to its caller.

It is straightforward to show certain correctness conditions about these func-
tions. For instance, we can prove that, whenever it is successful, alloc-abs returns
the unique resource ID i that is now allocated but was originally free. This state-
ment may be written in a monadic Hoare logic variant [2] as:

{|λs . ids s = X |} alloc-abs {|λi s ′. i /∈ ids s ′ ∧ ids s ′ ∪ {i} = X |} (1)

This statement is read as follows: if, before alloc-abs executes from some pre-
state s, ids s = X, then whenever it terminates, returning a result i in some
post-state s ′, i /∈ ids s ′ ∧ ids s ′ ∪ {i} = X.

alloc-abs completely abstracts away from the order in which resources are
allocated. Reasoning about this order requires a more concrete specification of
alloc’s behaviour. Suppose alloc is implemented by having it maintain a list of
unused resource IDs, from which it selects the first item (and fails when this list is
empty). Figure 3 depicts a hypothetical concrete specification of this behaviour.
This specification operates on a state record that extends the original by adding
a new field ids-list that contains a list of currently free resource IDs. The original
set ids is retained to allow existing properties like (1) to be phrased over this
new specification. While not really necessary in this example, this is vital for
larger specifications with a massive body of existing proof, such as seL4.

Extensible Specifications. Notice that much of the code in Figure 3 is duplicated
from Figure 2. Also, proving an analogous result to (1) for alloc-conc requires re-
proving it directly or concluding it from a proof of refinement between alloc-abs
and alloc-conc. For large specifications, either approach requires significant effort.

By defining a single extensible specification for alloc that subsumes both
alloc-abs and alloc-conc (and doing the same for dealloc), we can avoid this
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alloc-conc ≡ do
ids-list ← gets ids-list;
assert (ids-list �= []);
i ← return (hd ids-list);
modify (ids-update (λf . f − {i}));
modify (ids-list-update tl);
return i

od

dealloc-conc i ≡ do
ids ← gets ids;
when (i /∈ ids)
(do

modify (ids-update (λf . f ∪ {i}));
modify (ids-list-update (λl . i ·l))

od)
od

Fig. 3. A hypothetical concrete specification

alloc-ext select-ext update-ext ≡ do
ids ← gets ids;
more ← gets more;
next-ids ←
return (select-ext ids more);

g-ids ←
return (guard-set ids next-ids);

assert (g-ids �= ∅);
i ← select g-ids;
modify (ids-update (λids. ids − {i}));
modify (more-update (update-ext i));
return i

od

guard-set ids-set next-ids-set ≡
if next-ids-set ⊆ ids-set ∧ next-ids-set �= ∅
then next-ids-set else ids-set

dealloc-ext i update-ext ≡ do
ids ← gets ids;
when (i /∈ ids)
(do

modify (ids-update (λf . f ∪ {i}));
modify (more-update (update-ext i))

od)
od

Fig. 4. An example extensible specification

effort. A specification is made extensible by augmenting its state type with an
extra extended state component of arbitrary type, and inserting carefully placed
extended computation points in its code, which are placeholders for code that
operates on the extended state. Extended computations are placed (1) where
the extended state is read to resolve nondeterminism that abstracts away imple-
mentation choices, and (2) where extended state needs to be updated to ensure
consistency with the program’s implementation. By instantiating the extended
state with a concrete state type and the extended computations with specifica-
tion code that operates over this state, one produces an instance of the extensible
specification.

Figure 4 depicts extensible specifications for alloc and dealloc. As we will
show, each may be instantiated to behave like the abstract and concrete specifi-
cations above, avoiding the duplication between them.

Importantly, we can also prove properties about these extensible specifications.
Such properties hold for all instances of these specifications. This avoids proof
duplication and/or having to maintain refinement proofs between specifications
like alloc-abs and alloc-conc. We can easily rephrase (1) to be over alloc-ext:

{|λs. ids s = X |} alloc-ext select-ext update-ext {|λi s ′. i /∈ ids s ′ ∧ ids s ′ ∪ {i} = X |}
Due to the similarity between alloc-ext and alloc-abs, the proof of (1) is easily
adapted to alloc-ext. This is true for any property of the original specification.
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Because it holds for all instances of alloc-ext, the above Hoare triple automatically
applies to the instantiations shown below for alloc-abs and alloc-conc.

alloc-ext and dealloc-ext operate over a state type that extends the original
state type with an extra field, more, of arbitrary type. They are parametrised
by subroutines that perform extended computation (select-ext and update-ext).
While we have included them in this paper for ease of presentation, passing
the extended computations as parameters can be avoided by defining them as
abstract operations on a type-class that the extended state implements. This
approach should also work for other higher order logic proof assistants, like Coq.

We obtain alloc-ext from alloc-abs by adding two blocks of extended compu-
tation. The first reads the extended state and uses it to help resolve the non-
deterministic selection of the next ID to allocate, while the second updates the
extended state following this selection.

alloc-ext is carefully constructed so that it behaves like alloc-abs with respect
to the non-extended state. alloc-ext calls the extended computation select-ext to
obtain the set of IDs from which to subsequently select the ID to allocate. Impor-
tantly, alloc-ext then makes use of the function guard-set whose purpose is to force
alloc-ext to behave like alloc-abs no matter what select-ext did: guard-set ensures
that the subsequent assert fails only when ids is empty and the subsequent select
always chooses an ID from ids. guard-set does this by checking that the set cho-
sen by select-ext is a non-empty subset of ids and replacing it by ids if it is not. By
building alloc-ext this way, we ensure that any property unrelated to the extended
state that alloc-abs satisfies also holds for all instantiations of alloc-ext.

The original specifications of Figure 2 can be recovered by instantiating the
extended state to be of type unit (the type with one element), and the extended
computations to be no-ops. For alloc-ext, we have select-ext return the entire set
ids, which ensures that the subsequent select behaves exactly like the nondeter-
ministic select in alloc-abs. Finally, we have update-ext leave the extended state
unchanged. Hence alloc-abs = alloc-ext (λids more. ids) (λi more. more) and
dealloc-abs i = dealloc-ext i (λi more. more).

We can also instantiate alloc-ext to behave like alloc-conc from Figure 3, to
reason about the concrete behaviour of alloc. We instantiate the extended state
to include a list of currently unallocated resource IDs. We define the functions
ids-list-ext, which reads this list from the more field, and ids-list-update-ext, which
updates it; we omit these definitions for brevity. We then have select-ext return
the singleton set containing the head of this same list, and have update-ext modify
this list by replacing it with its tail (i.e. by removing its first item).

alloc-ext will behave deterministically, by performing the select from the sin-
gleton set given by select-ext, so long as this set is contained in ids, to prevent
guard-set causing selection from the entirety of ids. alloc-ext behaves the same as
alloc-conc in this case so long as ids-list is empty if and only if ids is. The invariant
valid-list ensures this, and is trivial to prove of the deterministic instantiation.

valid-list s ≡ distinct (ids-list s) ∧ set (ids-list s) = ids s

It states that each ID in ids-list is distinct, and each ID in ids-list is in ids and vice-
versa. Under this invariant, the instantiated extensible specification exhibits the



Extensible Specifications for Automatic Re-use of Specifications and Proofs 339

hypothetical concrete behaviour precisely. Specifically, valid-list s −→ alloc-conc
s = alloc-ext (λids more. {hd (ids-list-ext more)}) (λ-. ids-list-update-ext tl) s
and dealloc-conc i = dealloc-ext i (λi . ids-list-update-ext (λl . i ·l)).

These kinds of invariants, which assert consistency between the instantiated
extended state and the non-extended state, are commonly required for reason-
ing that a concrete instantiation of an extensible specification behaves correctly
with respect to the extended state. They are also the same kind of invariants
required to prove refinement between alloc-abs and alloc-conc, for instance; al-
though extensible specifications avoid the need for this additional refinement
proof.

3 Proving Confidentiality for seL4

We now explain how we applied extensible specifications to assist proving con-
fidentiality of the seL4 microkernel. Our requirement for proving confidentiality
was having a deterministic specification, with proofs of the thousands of lemmas
that establish the correctness of the individual kernel functions, and proofs of
the kernel invariants, integrity and authority confinement on this specification.
These results have already been proven for seL4’s nondeterministic abstract spec-
ification. Extensible specifications allow us to obtain these results for the deter-
ministic specification as well without unnecessary effort.

The abstract seL4 specification is approximately 5,500 lines of Isabelle/HOL,
and the proofs of integrity and authority confinement, and the kernel correctness
lemmas and invariants, comprise around 65,000 lines of Isabelle/HOL. However,
nondeterminism is used to abstract away from implementation details in only
three main places: the precise order in which hardware address space identifiers
(ASIDs) are allocated, the order in which capabilities are recursively deleted
during a revoke system call, and to abstract away the scheduling algorithm, as
explained earlier. If we were to take the approach depicted in Figure 1(a) and
manually define a deterministic abstract specification for seL4, it would duplicate
around 98% of the abstract specification. We would also have to prove refinement
between this new specification and the original, and maintain this proof going
forward. This refinement theorem would have to be repeatedly applied to prove
the thousands of correctness lemmas, as well as the kernel invariants, integrity
and authority confinement for the deterministic specification.

We avoided these problems by altering about 2% of the abstract specifica-
tion to make it extensible, as depicted in Figure 1(b) where the dashed arrow
indicates that the deterministic specification is an instance of the extensible
one. We repeated the process shown in Section 2 for each nondeterministic func-
tion in the specification. Section 2’s example is a simplification of the cases for
hardware ASID allocation and capability revocation: each of these involves re-
placing a nondeterministic selection with a deterministic one, based on some
extra state that the deterministic specification must track. We are currently de-
signing a confidentiality-preserving scheduler for seL4. Once complete, we will
modify the current extensible specification to allow scheduling decisions to be
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implemented by extended computations. Rephrasing the invariants and correct-
ness lemmas, authority confinement and integrity properties and adapting their
proofs to the extensible specification altered only ∼1, 000 lines of Isabelle/HOL
(∼1.5%). These results then hold for the original specification and the determin-
istic one without further effort.

By making the seL4 abstract specification extensible, we have avoided dupli-
cating tens of thousands of lines of proof and specification code, and performing
unnecessary refinement proofs. This would have required significant effort, and
made the resulting artifacts a nightmare to maintain as seL4’s API evolves.

4 Related Work

The basic ideas of extensible specifications are certainly not new. The extended
state, and its abstract extended operations, which parametrise alloc-ext for in-
stance, define the interface of an abstract data type [7] that instances of the
extensible specification implement. Extensible specifications also resemble a
lightweight form of Aspect-Oriented Programming [3], where our concrete ex-
tended computations resemble advices and the sites at which they are placed
resemble join points. When making a specification extensible, the appropriate
join points are sites where extended state needs to be read to resolve nondeter-
minism, and sites where extended state needs to be updated.

While presented here in the context of state monads, extensible specifications
also resemble mechanisms for specification and proof re-use within the B method
(e.g. [1]) and Event-B (e.g. [10]). With these sorts of methods, a generic pattern
can also carry assumptions that instances of it must meet in order to inherit
results proved for the pattern. We can do likewise for extensible specifications
by attaching assumptions to the type-class of the extended state. Monadic exten-
sible specifications are arguably cleaner and simpler than these other methods,
largely because they inherit the elegance and power of higher order logic for
abstracting over extended computation.

Sophisticated verification systems that support automated stepwise refine-
ment also offer similar benefits to extensible specifications. For instance, Chal-
ice [6] allows the differences between two specifications to be encoded using
skeleton syntax, and refinement between them automatically proved via SMT.
This avoids duplicating code between specifications, and having an explicit re-
finement proof. We expect SMT could also be used to prove properties for the
concrete specification already shown of the more abstract one. Unlike extensible
specifications where proof re-use comes for free, here it relies on SMT solving.

5 Conclusion

We have presented extensible specifications, a lightweight technique for construct-
ing specifications that can be instantiated and reasoned about at multiple levels
of abstraction. By using extensible specifications one avoids having to write and
maintain a different specification for each property being proved of a program,
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whilst still allowing properties to be proved at the highest levels of abstraction.
Properties proved of an extensible specification hold automatically for all instan-
tiations of it, avoiding unnecessary proof duplication. This technique has been
vital in assisting the ongoing proof of confidentiality for the seL4 microkernel,
where it saved duplicating tens of thousands of lines of proof and specification
code, and for maintaining these artifacts as the kernel has continued to evolve
during this proof effort. Our experience applying extensible specifications to seL4
suggests that they are practically applicable and scale to real-world verification
efforts.

Acknowledgements. Thanks to Gerwin Klein, David Greenaway and Mark
Staples for valuable feedback on earlier drafts of this paper.
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Abstract. Circus is a formal language that combines Z and CSP, pro-
viding support for specification of both data and behavioural aspects
of concurrent systems. Furthermore, Circus has an associated refinement
calculus, which can be used to develop software in a precise and step-
wise fashion. Each step is justified by the application of a refinement law
(possibly with the discharge of proof obligations). Sometimes, the same
laws can be applied in the same manner in different developments or
even in different parts of a single development. A strategy to optimize
this calculus is to formalise this application as a refinement tactic, which
can then be used as a single transformation rule. CRefine was developed
to automate the Circus refinement calculus. However, before the work
presented here, it did not provide support for refinement tactics. In this
paper, we present an extension to CRefine: a new module that automates
the process of defining and applying refinement tactics formalised in the
tactic language ArcAngelC . Finally, we illustrate the usefulness of the
extension in the development of an industrial case study.

Keywords: Circus, CRefine, ArcAngelC , refinement tactics.

1 Introduction

Circus [4] is a formal language that can be used to specify concurrent and reactive
systems. It is a combination of Z [15] and CSP [14]: the former can be used
to model systems with complex data structures and the latter is specific to
concurrent systems and defines the concurrent behaviour of the system. Besides
the specification of data and behavioural aspects of concurrent systems, Circus
has an associated refinement calculus [10]. This calculus consists of repeated
application of refinement laws to an initial abstract specification to produce a
concrete specification. Using a refinement calculus, programs can be developed
correctly in a stepwise fashion. Each step is an application of a refinement law,
which is usually valid under certain conditions that need to be proved.

Sometimes, during the development using refinement calculus, the same laws
are applied in the same manner in various developments or even in different
parts of a single development. A strategy to optimize this calculus is to for-
malise these applications as refinement tactics, which can then be used as single
transformation rules. Using this approach, the refinement calculus becomes more
agile, reducing time and effort.

The manual development using refinement calculus is a hard and error-prone
task because it encompass many refinement laws in mostly long and repetitive
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developments. CRefine [12]1 was developed to support the application of the
Circus refinement calculus. It automatically manages the development and its
proof obligations, most of which are automatically proved. However, the previous
version of CRefine did not support the definition and use of refinement tactics.

This paper presents an extension to CRefine, which adds the support for the
definition and application of refinement tactics to CRefine. This extension consti-
tutes a useful addition that can be used while modelling systems in Circus. Using
the new module, users can define and use tactics that considerably optimise the
Circus development process. The tactic language supported is ArcAngelC [13],
a refinement tactic language for Circus programs that is similar to the tactic
language for sequential programs ArcAngel [11] that is equally supported by
Refine [11]. Both languages are based on the general language Angel [9].

The main addition to ArcAngelC comparing to ArcAngel is the possibility of
defining tactics that can be applied to different classes of elements within a
Circus specification: actions, processes and programs. ArcAngel tactics can only
be applied to sequential programs. ArcAngelC has a formal semantics, which is
based on ArcAngel’s semantics, but adds some generality to support all extra
Circus structural combinators. Using ArcAngelC , we can formalize basic tactics,
as law applications, and tacticals, which are tactics combinators. Most of the
structural combinators, which allow tactic application to specific parts of a pro-
gram, are inherited from ArcAngel. However, structural combinators for Circus
specific constructs, like those from CSP, are also part of ArcAngelC .

The remaining of this paper is structured as follows. The next section provides
an overview of Circus. In Section 2, we briefly present CRefine and its features.
The Circus tactic language, ArcAngelC , is described in Section 3. The new module
of CRefine that provide support for refinement tactics is presented in Section 4.
Section 5 presents the use of CRefine and its extension in an industrial case study.
Finally, in Section 6 we make our final considerations and discuss future work.

2 CRefine

CRefine [12] provides support for the Circus refinement calculus. It plays an im-
portant role in the development process by providing an automatic management
of the overall development and tools for documenting it. The automatic manage-
ment includes a filter that displays to the user only those refinement laws that
are applicable to the term selected, the application of the refinement laws that
transforms the term selected possibly generating proof obligations (hereafter
called POs), most of which are automatically proved.

CRefine GUI is composed of a main menu and three main frames: refinement,
code and proof obligations. The first frame displays all the refinement steps of
the development, including the result of the law applications. The current result
of the refinement process is displayed in a second frame. Finally, the last frame
lists all POs that have been generated in the development and marks them as

1 CRefine can be downloaded from http://www.cs.york.ac.uk/circus - this distribu-
tion also contains the tactics module presented here along with examples.
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valid, invalid, or unknown. Valid POs are those that have been automatically
proved correct by CRefine’s prover module, which besides reasoning on syntactic
restrictions also integrates with external SAT solvers like VeriT [2] using the
ZB2SMT package [8]. The invalid POs are those that have been proved incorrect
by the same module; they indicate an error in the development. Finally, POs
marked as unknown are those that could not be evaluated by CRefine; they need
to be manually verified by the user.

Using CRefine the user starts with a LATEX document that follows the CZT
syntax for Circus. This document contains the abstract specification to which we
repeatedly apply refinement laws using CRefine. The law application consists of
selecting the term in the development frame, and choosing an applicable law in
the pop-up menu list. Some law applications requires arguments that are input
by the user. Afterwards, the law is automatically applied: CRefine updates all
frames based on the result of the application.

3 ArcAngelC

In ArcAngelC a tactic is declared as Tactic N(args) tactic end. The declara-
tion is composed of a tactic name N, the tactic’s arguments args , if any, and
a tactic program tactic. The declaration can also include two optional clauses,
proof obligations, which lists the POs generated by the tactic application, and
generates, that documents the program generated. These clauses are used for
documentation purposes only and do not have any consequence in its application.

ArcAngelC has five basic tactics. The tactic law L(args) p applies a refinement
law L using arguments args . A similar construct is tactic T(args), which applies
a given tactic T using arguments args . The tactic skip always succeeds and the
tactic fail always fails. The inclusion of recursion in the language (explained
later in this section) introduces an extra possibility for the eventual outcome of
a tactic. As well as succeeding or failing to apply, it may fail to terminate and
run indefinitely. Whilst such a tactic will not in general be useful when writing
tactic programs, it is helpful to be able to reason about it. We follow Dijkstra [5]
and call the non-terminating tactic abort.

The tactic applies to p do t is given a meta-program (or program pattern)
p that characterises the programs to which the tactic t is applicable; the meta-
variables used in p can then be used in t . For example, A[ns1 | cs | ns2]Skip is a
meta-program that characterises those parallel compositions whose right-hand
action is Skip; here, A, ns1, cs and ns2 are the meta-variables.

The tactical t1 ; t2 applies t1, and then applies t2 to the outcome of the
application of t1. If either t1 or t2 fails, so does the whole tactic. When it succeeds,
the proof obligations generated are those resulting from the application of t1 and
t2. Tactics can also be combined in alternation: t1 | t2. First t1 is applied. If that
succeeds, then the composite tactic succeeds; otherwise t2 is applied. If then
the application of t2 succeeds then the composite tactic succeeds; otherwise the
composite tactic fails. If one of the tactics aborts, the whole tactic aborts.
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By way of illustration, the tactic below uses alternatives. It promotes local
variables declared in a main action to state components. This is the result of an
application of either Law 1 (prom-var-state) or Law 2 (prom-var-state-2) depend-
ing on whether the process has state or not.

Tactic promoteVars( ) =̂ law prom-var-state() | law prom-var-state-2() end

The standard form of angelic choice is commutative. ArcAngelC ’s choice, how-
ever, as denoted by the alternation operator is not, as this gives more control
to tactic programs. It provides an angelic choice that is implemented through
backtracking: on failure, law applications are undone up to the last point where
further alternatives are available (as in t1 | t2) and can be explored.

Consider, for example, the following tactic.

Tactic promoteVarsExt( ) =̂
(law prom-var-state() | law prom-var-state-2()) ; tactic T()
end

If law prom-var-state() succeeds, but tactic T() subsequently does not, there is
no point in backtracking to apply law prom-var-state-2(), and then try tactic T()
again. Instead, we should cut the search and define the tactic as:

!( law prom-var-state() | law prom-var-state-2() ) ; tactic T()

Recursive application is supported through the μT operator. Sometimes re-
cursive tactics can result in nontermination (abort). For practical reasons, our
implementation provides bounded forms of recursion (see Section 4.2).

Often, we want to apply tactics to parts of a program; this is supported by
structural tactic combinators. Essentially, there is one for each Circus program,
process, or action constructor. For all the structural combinators, if the applica-
tion of a tactic to a component program, process, or action fails or aborts, then
so does the application of the whole tactic.

4 CRefine Extension

CRefine has been used to automate the application of the Circus refinement
calculus. However, to reduce time and effort in this application, we developed a
new module in CRefine that makes it possible to create tactics and use them in
a program development. This extension is describe in the sequel.

4.1 Using Tactics

CRefine’s GUI was modified to allow the use of refinement tactics. The changes
include the addition of a new item to the menu, ArcAngelC, which gives access
to a tactic editor, in which users can create, edit and delete tactics. Tactics
are written in LATEX using specific commands for ArcAngelC ’s constructs. The
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successful compilation results in the addition of the tactic to CRefine. The tactic
may then be used as a single transformation rule.

Tactic application can be achieved in the same way as for law application: term
selection followed by the tactic selection, possibly with the input of tactic argu-
ments. A successful application results in the update of all frames.

4.2 CRefine’s Extended Architecture

The extension to the original architecture of CRefine did not require integration
with any further external frameworks. However, new components were added
to the tool’s architecture. In the presentation layer, we implemented three Java
classes and dozens of methods in existing classes to provide the interface of this
extension (as presented in the previous section). In the management layer, we did
not implement any Java class, but we also extended with 87 new methods that
provides support for tactic application following CRefine’s initial architecture.

In this extension, we added a new package, Tactics, to the data layer. It is
responsible for creating and applying refinement tactics and only interacts with
the IM (Internal Manager), which is the main class of the management layer. The
IM is responsible for controlling the application internally. Hence, the Tactics
package, through the IM, has access to all other tool packages in order to perform
the management of the refinement tactics.

In the Tactics package, we added an ArcAngelC parser that directly follows
the ArcAngelC syntax. Furthermore, this package has a sub-package, Apply, that
provides support for tactics application. In this package each ArcAngelC con-
struct was transformed into a Java class that inherits (possibly indirectly) from
TacticComponent , an abstract class with a single method, apply. Most of the
classes implement this method following directly the ArcAngelC semantics [13].
The only exception is the recursive tactic as we explain in the sequel.

In [13], recursion is defined as the least upper bound of approximation chains
(Kleenes theorem). Its direct translation yields a non-terminating calculation
because the set of such chains is potentially infinite. In ArcAngelC , we use a lazy
application of the tactics based on an analysis of the abstract syntax tree, which
takes into consideration only those ArcAngelC constructs that have influence on
the execution paths of a tactic: sequence, alternation, and cut.

For pragmatic reasons, we introduce a tactical for recursive tactics that im-
poses an upper limit of unfoldings that are performed. The tactical μA monitors
the number of iterations performed and behaves like abort if a certain thresh-
old n is reached. Pragmatically, this supports the implementation of more robust
mechanisms for error-catching, as well as the possibility to safely utilise tactics
that may fail to terminate. This is especially useful when it is not evident if, and
under what conditions, tactics are guaranteed to terminate. By choosing a suffi-
ciently high value for n we obtain a reasonable approximation of the behaviour of
the recursive tactic. If we do not want to treat non-termination as an abnormal
case, but use it to control the behaviour of other tactics, the alternative tactical
μF yields failure rather than abortion when the threshold is exceeded.
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The user might create his own tactics. For that, he writes the tactic using the
specific editor and compiles it. Internally, this compilation involves a lexical and
syntactical analysis. This process validates the tactic declaration and their argu-
ments. Currently, predicates, integers, refinement laws, tactic, lists and functions
can be given as arguments to tactics. The tactic compilation also checks the ex-
istence of refinement laws and tactics used. A successful compilation stores the
tactic in the tool’s tactic repository. CRefine’s current distribution comes with a
repository that contains 134 refinement laws (from [13] and [10]).

The tactic application starts with the user selecting a term. The Tactic module
provides CRefine with a list of tactics that is displayed to the user. We partially
implemented a filter of applicable tactics according to the part of the program
that is selected. This filter only checks if the first level refinement tactic can be
applied to the selected term. When a tactic is chosen (possibly with the input of
its arguments, if needed) both the tactic and the term are sent to the IM, which
invokes the method apply of the tactic giving the selected term as argument.
Each implementation of the method apply verifies if the selected term fits the
structure expected by the tactic. For instance, the Java class that corresponds to
the tactic t1 ; t2, verifies if the selected term is a sequential composition of either
Circus actions or processes. If this is the case, the tactics t1 and t2 are applied to
each part of the sequential composition. The result is used by CRefine to update
all frames accordingly. If the selected term is not a sequential composition, the
tactic application fails.

The implementation of the new module provided CRefine users with refine-
ment tactics, which have been proposed as a means to optimise the application
of the Circus refinement calculus. Nevertheless, the benefits and scalability of
the new module could only be validated after its application to an industrial
case study. The next section describes this case study. Its complexity and exis-
tent formalisation in ArcAngelC [13] made it an excellent candidate with which
we were able to validate CRefine’s extension providing empirical evidence of its
usefulness in practical applications.

5 Case Study

Control systems are often used in safety-critical applications and their verifica-
tion has been of great interest. In [3], Cavalcanti et al. present an approach that
aims at proof of correctness of code, as opposed to validation of requirements
or designs. They give a semantics to discrete-time Simulink diagrams [1] using
Circus, and propose a verification technique for parallel Ada implementations.

Control diagrams model systems as directed graphs of blocks interconnected
by wires. Simulink [1] is a tool for drawing and analysing such diagrams.

The strategy of this case study is to verify SPARK Ada programs with respect
to Simulink diagrams using Circus. This verification is based on calculating a
Circus model for the diagram and calculating a Circus model for the SPARK
Ada program, and proving that the former is refined by the latter. In the Circus
model of the diagram, each block is represented by a process, and the diagram
by a parallel composition of such processes [13].
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Table 1. Case Study

NB Phase BJ Phase Total

Tactics of Refinement 31 54 85

Tactic Applications 235 203 438

Law Applications 184 101 285

Proof Obligations 87 50 137

Proved Proof Obligations 81 46 127

Unproved Proof Obligations 6 4 10

ArcAngel Operators 97 78 175

Execution Time (seconds) 7 5 12

The refinement proof is achieved using a refinement strategy that comprises
four phases. In [13], we formalise the first two phases: NB and BJ. We split each
phase into small steps that correspond to its informal specification presented
in [3]. For instance, the phase NB is split into steps NBStep1 to NBStep8. The
remaining phases are still in the process of formalization of their tactics.

Using CRefine, we mechanised the first two phases, NB and BJ, and applied
it to all blocks of the case study presented. We are currently working on the
formalisation (and mechanisation) of the remaining phases.

The NB result was accomplished in 7 seconds in a machine with a Core 2
Duo processor and 4GB RAM. The tactic application generated 87 POs, 81 of
which were automatically discharged. The 6 OPs that were not automatically
discharged are related to absence of deadlock in Circus specifications. The proof
of these POs requires the integration with the Circus model checker, which is
in our Agenda of development. The NB phase includes 31 tactics. The overall
application of this phase has 184 refinement law applications. The application
of the phase BJ was accomplished in 5 seconds. This phase generated 50 OPs,
46 of which were automatically discharged. The remaining OPs are also related
to absence of deadlock in Circus specifications. The phase BJ has 54 refinement
tactics, 203 refinement tactics applications and 101 refinement laws applications.
These results are summarized in Table 1.

This case study can be considered as a good test to check our module for
scalability, reliability and runtime. This is due to the fact that it has a large
number of refinement law and tactic applications, several ArcAngelC ’s construc-
tors and the discharge of more than one hundred OPs, whose management are
not trivial. In the case study, 64 refinement tactics were successfully defined and
used. Together, these tactic exercise the vast majority of ArcAngelC constructs
like basic tactics, tacticals, various structural combinators, and program tactics.
The remaining constructors were tested individually with unit tests.

One of the contributions in the application of this case study is the automation
of 438 refinement tactic applications, all of which were transparent to the user
whose only task is to select the overall specification and select the tactics NB
and BJ. Furthermore, the refinement laws applications generated 137 OPs; from
these, 127 were automatically discharged. As described in [13], despite being
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apparently applicable only for a small subset of systems, the tactics developed
in our case study is applicable to a very large family of systems developed using
Simulink and Ada. This is due to the fact that the tactics presented in [13] and
mechanised here cover the vast majority of the block structures found in Simulink
Diagrams in practice. Hence, our mechanisation becomes an important contri-
bution to the state-of-the-art in the development of safety-critical applications
and their verification (based on [3]).

6 Conclusion

In this paper, we present an extension to CRefine, a tactic module, that allows
the definition and use of refinement tactics in a program development as a sin-
gle transformation rule. We have presented the concepts of the tool and briefly
discussed its user interface. CRefine tactics are defined using a refinement-tactic
language for Circus programs, ArcAngelC . These tactics can be used in several
developments or even many times within a single development, optimizing the
Circus refinement calculus. This approach is useful for automating formal devel-
opment and verification of system models.

The extension of CRefine has been validated using an industrial case study,
which consists in the application of a refinement strategy to verify SPARK Ada
programs with respect to Simulink diagrams using Circus. We have mechanised
the first two phase of this strategy, NB and BJ, and applied to all components
of the PID controller. This case study involved 21 ArcAngelC constructs that
include basic tactics, tacticals, various structural combinators, and program tac-
tics. The remaining 18 constructs have been tested with unit tests. The overall
application of the case study has 85 refinement tactics, 438 refinement tactics ap-
plications, 285 refinement laws applications and 137 POs (127 were automatically
discharged). These numbers provide empirical evidence of the applicability (and
advantages) of the strategy and the tool support presented here.

Despite being a relatively small example, the case study was proposed by
QinetiQ, and its implementation is representative of the architectural pattern
used for the development of their safety-critical applications in avionics. Their
verification already uses Z and CSP independently to check different aspects of
these systems, namely, functionality and scheduling, separately. Circus and the
refinement strategy that we formalise allows the verification of those aspects as
part of a single formal argument. The refinement technique has been developed
in conjunction with QinetiQ. With the use of Circus, we have managed to enlarge
the set of properties and systems that can be checked, without increasing the
proof burden, and therefore, the costs. QinetiQ intends to use our strategy (and
tools) in the verification of some of their safety-critical systems. Nevertheless,
further improvements are in our research agenda as we discuss in the sequel.

The current tactic editor accepts only ASCII characters; users must type the
corresponding LATEX commands to create and edit their tactics. In a near future,
we intend to provide a Unicode editor in which users may use the non-ascii
symbols of ArcAngelC , like for instance, the structural combinators.
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We have only partially implemented the tactics filter used to display available
tactics to the developer. In principle, a full implementation of this feature re-
quires an application of all available tactics to the term. However, this approach
may become impractical due to the tactics complexity. We will investigate opti-
mised ways to provide this feature without affecting the tool’s performance.

The error messages in tactic application need improvement since they do not
indicate precisely the source of the errors: when a tactic application fails, a
simple error message is given to the user. We intend to improve the messages by
creating a log that accurately reports the reasons of the errors.

CRefine intends to be part of a development framework for Circus users. That
means that using CRefine, users will be able to develop executable code from an
abstract Circus specification. For that, an integration of all Circus tool initiatives
is needed. Besides CRefine, the Circus model-checker and theorem prover [7],
the Circus type-checker [16], an improved version of the Circus code generator
presented in [6], and a Circus animator will be part of the Circus framework. This
integration will provide Circus with a complete IDE that will foster the use of
Circus for software and hardware development.
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in the tool’s extension. Leo Freitas has provided insights related to the CZT.
INES and CNPq partially supports the work of Marcel Oliveira: grants
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A Laws of Refinement

Law 1 (prom-var-state). begin (state S ) L(x : T ) • (var x : T •MA) end
= begin (state S ∧ [ x : T ]) L( ) •MA end

Law 2 (prom-var-state-2). begin L(x : T ) • (var x : T •MA) end
= begin (state [ x : T ]) L( ) •MA end

References

1. Beucher, O.: MATLAB und Simulink (Scientific Computing). Pearson Studium
(August 2006)
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Abstract. The Stream X-machine (SXM) is an intuitive and powerful
modelling formalism that extends finite state machines with a mem-
ory (data) structure and function-labelled transitions. One of the main
strengths of the SXM is its associated testing strategy: this guarantees
that, under well defined conditions, all functional inconsistencies between
the system under test and the model are revealed. Unfortunately, despite
the evident strength of SXM based testing, no tool that convincingly
implements this strategy exists. This paper presents such a tool, called
JSXM. The JSXM tool supports the animation of SXM models for the
purpose of model validation, the automatic generation of abstract test
cases from SXM specifications and the transformation of abstract test
cases into concrete test cases in the implementation language of the sys-
tem under test. A special characteristic of the modelling language and
of the tool is that it supports the specifications of flat SXM models as
well as the integration of interacting SXM models.

Keywords: model-based testing, automated test generation, functional
conformance, incremental testing, stream x-machines, implementation,
tool.

1 Introduction

Performing systematic software testing manually is a time consuming and costly
process, because it requires the manual definition, maintenance and execution
of appropriate test cases. The manual definition of test cases can be increasingly
complex, often resulting in test cases that may not provide full coverage of the
implementation. Also, manual software testing is prone to human errors, which
may be introduced either in the selection or execution of test cases. Consequently,
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there is a clear need for automating software testing. The automation increases
the reliability of the software testing process, because there is minimum human
involvement in the generation and the execution of test cases.

One approach to the automation of software testing is model-based testing
(MBT). MBT enables the automatic generation of test cases using models that
specify the expected behaviour of the implementation under test (IUT). If MBT
relies on a formalism for behavioural modelling and test case generation, various
properties can be guaranteed for the IUT, such as functional conformance. One
of the popular approaches to MBT is based on state-based descriptions, which
are typically used to model the control flow of a system.

Stream X-machine (SXM) [9] is a state-based formalism capable of modelling
both the data and the control of a system. SXMs are special instances of the
X-machines introduced by Eilenberg [8]. SXMs extend finite state machines by
incorporating memory and processing functions instead of simple labels. The
powerful modelling capabilities of SXMs have been used in a number of research
projects, such as the EURACE, SUMO and Epitheleome Project1, for the sim-
ulation of cellular and social systems. Furthermore, SXMs have the significant
advantage of offering a testing method [12,9] that, under certain design-for-test
conditions, ensures the conformance of an IUT to its specification.

Although there have been several improvements to the SXM testing method
with the aim to relax the design-for-test conditions [11,13], there exists no tool
that demonstrates the practical benefits of the method. The small number of
existing tools [16,17,15] are concerned with the modelling and the animation of
SXM models, but not with the use of SXMs for automated software testing.

In this paper, we present JSXM, a new (and, to the best of our knowledge,
the only existing) suite of tools that supports automated model-based test gen-
eration using SXMs. JSXM supports animation of SXM models, model-based
test generation and test transformation. The test generation is based on the
SXM testing method and, given an SXM model, it generates a set of test cases
in XML format, which are independent of the programming language of the
implementation. Test transformation is used for transforming the general test
cases to concrete test cases in the underlying technology of the implementation.
Currently, a JUnit transformer is available , which generates JUnit test cases.

The rest of the paper is organised as follows. Section 2 presents the SXM
formalism and Section 3 the SXM testing method and the improvements of
the method to relax the design-for-test conditions. Section 4 presents JSXM
and describes how the SXM testing method has been implemented. Section 5
discusses the evaluation of JSXM in terms of effectiveness of the generated test
cases, efficiency of the test generation process and the validation of JSXM in
existing applications. Section 6 outlines the existing related tools for SXMs.
Finally, Section 7 concludes the paper and presents some future directions.

1 http://www.flame.ac.uk

http://www.flame.ac.uk
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2 Stream X-Machines

A Stream X-machine [9] is a computational state-based model capable of mod-
elling both the data and the control of a system. SXMs extend finite state ma-
chines with two important additions: (a) the machine has some internal storage,
called memory; and (b) the transition labels are not simple symbols, but process-
ing functions that represent basic operations that the machine can perform. A
processing function processes inputs from an input stream and produces outputs
on an output stream while it may also change the value of the memory.

Definition 1. An SXM is a tuple Z = (Σ,Γ,Q,M,Φ, F, q0,m0) where:

– Σ is a finite set of input symbols and Γ is a finite set of output symbols;
– Q is a finite set of states;
– M is a (possibly) infinite set called memory;
– Φ is a finite set of partial functions φ (called processing functions) that map

memory-input pairs to output-memory pairs, φ : M ×Σ → Γ ×M ;
– F is the next-state partial function, F : Q × Φ→ Q;
– q0 ∈ Q and m0 ∈M are the initial state and initial memory respectively.

An SXM is usually graphically represented by the state diagram of its associated
finite state automaton: AZ = (Φ,Q, F, q0).

Example 1. Fig. 1 illustrates the associated automaton of an SXM model of a
system that allows performing basic operations on a bank account. For simplic-
ity, let us assume that the system’s interface comprises four operations: open(),
deposit(a), withdraw(a), and close(), where a is a positive number. These com-
prise the input alphabet Σ of the SXM.2 The memory of the system consists of
a single number, the available balance b. Initially an account is inactive (state:
initial) and needs to be opened (state: active) with its balance set to zero before
any transaction can be performed. Depositing an amount results in increasing
the balance (state: normal), while the withdrawal of an amount can only take
place if the amount does not exceed the balance. An account can be closed only
if its balance is zero and once closed (state: closed) it cannot be re-activated.
The above requirements are specified in the state diagram and in the definition
of its processing functions (shown on the right of the diagram in Fig. 1).

The next state function F can be extended to the function F ∗ : Q × Φ∗ → Q
receiving sequences of processing functions (paths in the associated automaton).
The language accepted by the associated automaton of Z from state q is defined
as LAZ (q) = {p ∈ Φ∗ | (q, p) ∈ dom F ∗} and the language accepted by the
automaton is notated as LAZ = LAZ (q0).

An SXM is deterministic if for every state, memory, input combination there
is at most one possible transition, i.e. for every φ1, φ2 ∈ Φ such that (q, φ1) ∈
dom F and (q, φ2) ∈ dom F for some q ∈ Q either φ1 = φ2 or dom φ1∩ dom φ2 =
∅. In this paper we only consider deterministic SXMs. It can be checked that the

2 Processing function names are capitalized to easily distinguish from input symbols.
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Open(b, open()) = (openOut, 0)
Deposit(b, deposit(a)) =

(depositOut, b + a)
Withdraw(b, withdraw(a)) =

(withdrawOut, b − a) if a < b
WithdrawAll(b, withdraw(a)) =

(withdrawOut, 0) if a = b
Close(b, close()) = (closeOut, b)

Fig. 1. A state transition diagram for an SXM modelling a bank account and its
processing functions (e.g., Close), which are triggered by input symbols (e.g., close())

account SXM is deterministic, since Withdraw and WithdrawAll, which both
accept the input withdraw(a) at state normal, have disjoint domains.

If p ∈ Φ∗ is a sequence of processing functions then the function ‖p‖ : M ×
Σ∗ → Γ ∗ ×M associates a memory value and a stream of input symbols with
the corresponding stream of output and final memory produced by following p.

An SXM Z is completely-defined if every sequence of inputs s ∈ Σ∗ is pro-
cessed by at least one sequence of functions p ∈ LAZ accepted by the associated
automaton. Any SXM that is not completely defined can be transformed into
one that is completely defined by adding at each state and for each not accepted
input σ a self-transition labelled with the processing function σerror. To make
the account SXM completely defined we need to add the processing functions:
Openerror,Depositerror, Withdrawerror, Closeerror, and use these as labels for
loop transitions at the states that the corresponding inputs are refused. For
simplicity these transitions are not shown in the diagram.

3 The SXM Testing Method

SXMs have the significant advantage of offering a testing method that under
certain design-for-test conditions ensures the conformance of an IUT to a spec-
ification. The goal of the testing method is to devise a finite test set X ⊆ Σ∗

that produces identical results when applied to the specification and the IUT
only if they both compute identical functions. The main assumption that needs
to be made for the IUT is that it consists of correct elementary components, i.e.
the processing functions are correctly implemented. Furthermore, it is estimated
that the number of states in the IUT is n′ ≥ n, where n is the number of states
of the specification. Let k = n′ − n.

There have been several improvements to the method with the aim to relax
the design-for-test conditions. The main variants are briefly presented next.

3.1 Test Generation for Input-Complete Specifications

The original SXM testing method [12,9] relies on the following design-for-test
conditions:

– Output-distinguishability: Processing functions should be distinguish-
able by their different outputs on some memory-input pair, i.e. for every
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φ1, φ2 ∈ Φ, m ∈ M and σ ∈ Σ such that (m,σ) ∈ dom φ1 and (m,σ) ∈
dom φ2, if φ1(m,σ) = (γ,m1) and φ2(m,σ) = (γ,m2) then φ1 = φ2.

– Controllability: Processing functions have to be input-complete w.r.t. mem-
ory, i.e. for each m ∈ M there is σ ∈ Σ such that (m,σ) ∈ dom φ. This
implies that for all memory values there should exist an input value that
triggers the execution of the processing function.

The test generation is a two stage process: (1) the W method [2] is applied on
the associated automaton AZ to produce a set Y ⊆ Φ∗ of sequences of processing
functions, which are then (2) translated into sequences of inputs for Z.

Y is obtained by constructing a state cover S and a characterization set W of
AZ . S ⊆ Φ∗ contains sequences to reach all states of AZ , while W ⊆ Φ∗ contains
sequences to distinguish between any two distinct states of AZ . Each sequence
y ∈ Y consists of three sub-sequences, i.e., y = stw, where s ∈ S drives the
automaton to a specific state, t ∈ Φ∗ attempts to exercise transition-paths up to
length of k+1 and w distinguishes the resulting state from any other state. Thus
Y = SΦ[k+1]W = S(

⋃
0≤i≤k+1 Φ

i)W . Note that Y may include legal as well as
non-legal sequences of processing functions (positive and negative testing).

Definition 2. A test function t : Φ∗ → Σ∗ is a function that converts a sequence
of processing functions to a sequence of inputs and is defined as:

– t(ε) = ε

– t(pφ) =

{
t(p) if p �∈ LAZ

t(p)σ if p ∈ LAZ

where p ∈ Φ∗ is a sequence of processing functions, φ ∈ Φ, and σ ∈ Σ is a
suitable input such that (m,σ) ∈ dom φ and ‖p‖(m0, t(p)) = (g,m), i.e. m is
the attained memory after executing the path p.

Thus, for a path that belongs to the language of the associated automaton, a
sequence of inputs of the same length is produced. For a path that does not be-
long to the language of the associated automaton, the generated input sequence
is one input longer than the longest accepted prefix of the sequence. The ex-
tra input attempts to exercise the first non-existing transition. Such an input is
guaranteed to exist for every processing function if the machine is controllable.

The final test suite for checking functional equivalence is:

X = t(Y ) = t(SΦ[k + 1]W )

The controllability condition is rather strict and in most practical situations
specifications are not naturally input-complete. The account SXM is not con-
trollable since Withdraw and WithdrawAll are only defined for m > 0 and
m > 1 respectively. If a specification is not input-complete then the specifica-
tion as well as the IUT needs to be augmented with extra inputs. However,
the introduction of the extra inputs might lead to several problems, since after
successful testing, the extra inputs of the IUT need to be removed or hidden,
with the potential danger of introducing faults to the IUT. In order to alleviate
this problem, the testing method has been generalized in [11] to non-controllable
specifications, as presented in the following section.
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3.2 Test Generation for Input-Uniform Specifications

In [11] the notion of realizable sequences is introduced. There may exist sequences
of functions that are accepted by the automaton but they cannot be driven by
any input sequence. These sequences are called non-realizable.

Definition 3. A sequence p ∈ Φ∗ is called realizable in q and m if p ∈ LAZ (q)
and ∃s ∈ Σ∗ such that (m, s) ∈ dom ‖p‖. The set of realizable sequences of Z in
q and m is notated as LRZ(q,m). Let LRZ be defined as LRZ(q0,m0).

A state is r-reachable if it can be reached by a realizable sequence p ∈ LRZ .

Definition 4. A set Sr ⊆ LRZ is called a r-state cover of Z if for every r-
reachable state q of Z there exists a unique p ∈ Sr that reaches the state q.

The set of memory values that can be attained at a state q is notated as
MAtt(q) and it consists of all memory values that are the result of realizable
sequences that end at state q, i.e. MAtt(q) = {m ∈ M | ∃p ∈ LRZ and ∃s ∈
Σ∗, ‖p‖(m0, s) = (g,m)}.
Example 2. In the account SXM, all sequences of processing functions that
are accepted by the associated automaton are also realizable. Sr = {ε, Open,
Open Deposit, Open Close}. At states initial, active, and closed the only
attainable memory is m = 0; at state normal, m > 0.

Definition 5. A set Y ⊆ Φ∗ r-distinguishes between q1 and q2 if for every
m1 ∈ MAtt(q1) and every m2 ∈ MAtt(q2) there exist sequences in Y that are
realizable either in m1 and q1 or in m2 and q2 but not in both of them, i.e.
LRZ(q1,m1) ∩ Y �= LRZ(q2,m2) ∩ Y .

The proposed testing method has replaced the controllability condition with a
less strict design-for-test condition that requires the specification to be input-
uniform. When a specification is input-uniform, the inputs that will drive a
sequence of functions can be selected one at a time. If a sequence φ1, . . . , φn is
realizable and the specification is input-uniform and σ1, . . . , σn−1 is any input
sequence that drives the sequence φ1, . . . , φn−1 then there always exist an input
σn that will drive the next function φn. This implies that the specific choices of
the previous inputs do not influence the choice of the inputs that follow.

Since the model is not required to be controllable the test generation method
cannot rely on the W method. It is based on a state counting approach involving
the construction of the cross-product machine of the specification and the IUT.

Example 3. The account SXM is not input-uniform as it can be illustrated with
the following example: Although the sequence Open Deposit Withdraw is real-
izable, for instance with the sequence: open() deposit(2) withdraw(1), a different
choice of inputs for Open Deposit as open() deposit(1) does not allow to find any
input for Withdraw, since the balance is 1 and withdrawing the least amount of
1 is not possible (the guard condition for Withdraw is a < b). The withdraw(1)
input will fire the WithdrawAll function instead.
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3.3 Test Generation for Generic Specifications

An even more general approach was proposed in [13], in which the only re-
quired design-for-test condition is output-distinguishability. The test generation
method is also based on state counting using the cross-product automaton of
the specification and the implementation.

On the other hand, the condition required for distinguishing states has been
strengthened: two states will have to be separable, i.e. distinguished by two
realizable sequences with overlapping domains.

Definition 6. A pair of states (q1, q2) is separable if there exists a finite set
of sequences Y such that ∀m1 ∈ MAtt(q1),m2 ∈ MAtt(q2), there exists p1 ∈
LR(q1,m1) ∩ Y and p2 ∈ LR(q2,m2) ∩ Y such that dom p1 ∩ dom p2 �= ∅.
Definition 7. A set Ws ⊆ Φ∗ is called a separating set of Z if it separates
(distinguishes) between every pair of separable states of Z.

Example 4. The state initial in the account SXM is separable from all other
states since the sequences Open and Openerror have overlapping domains; at
any m they accept the sequence open(). A separating set that separates all
state pairs for the account SXM is: Ws = {Open,Openerror, Close, Closeerror,
WithdrawAll,Withdrawerror}.
An important theoretical result presented in [13] involves the case in which Sr

reaches all states of Z and Ws separates all pairs of states in Z. In that special
case the testing method reduces to a variant of the W -method:

Y = UWs = ((SrΦ[k + 1]) ∩ LAZ )Ws

Furthermore, the testing method requires that all sequences of U = (SrΦ[k +
1])∩LAZ are realizable, i.e. it is required that U ⊆ LRZ . Note that the sequences
of processing functions of maximum length k + 1 that follow the r-state cover
are limited to those that are accepted by the associated automaton.

In the SXM account example the set Sr covers all states, the set Ws dis-
tinguishes between all pairs of states and U is realizable, therefore the testing
method can be applied for functional equivalence.

4 The JSXM Tool

JSXM [3] is a tool, developed in Java, that allows the specification of SXM
models, their animation and most importantly the automated test generation.

Animation of the model means the execution of the model by providing an
input stream and observing the resulting output stream. The interactive or batch
animation, which are supported by the tool, allow the model designer to validate
the specification, i.e. ensure that the correct functionality is modelled.

Once a model is validated, it can be used for the automated generation of test
cases. The test cases that are generated by JSXM are in XML format and they
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are independent of the technology or programming language of the implemen-
tation. These general test cases can then be transformed by the JSXM tool to
test cases in the programming languages of the IUT.

In the following sections we briefly describe the JSXM modelling language
and the associated tool suite.3

4.1 The JSXM Modelling Language

The JSXMmodelling language is an XML-based language with Java in-line code.
This allows software engineers who are familiar with these widespread technolo-
gies to model systems in a formalism that allows the automated generation of
test cases and removes the barrier of having to learn a new notation.

The states and the transitions are described in XML. An extract of the JSXM
code4 for representing the state transition diagram of Fig. 1 is provided below:

<states>
<state name=”initial” /><state name=”active” />
<state name=”closed” /> <state name=”normal” />

</states>
<initialState state=”initial” />
<transitions>
<transition from=”initial” function=”Open” to=”active” />

<transition from=”active” function=”Close” to=”closed” />
<transition from=”active” function=”Deposit” to=”normal” />
...

</transitions>

The input and the output symbols are also described in XML code. Input
and output symbols can be basic symbols (such as openRequest) or compound
symbols carrying arguments, as for example the deposit(amount) input that
carries an integer argument. The types of the arguments are specified as XSD
types. The modeller can extend the types with any user-defined complex XSD
type. The outputs are structured in a similar way to inputs:

<inputs>
<input name=”open” />
<input name=”close” />
<input name=”deposit”>

<arg name=”amount” type=”xs:int” />
</input>
<input name=”withdraw”>

<arg name=”amount” type=”xs:int”/>
</input>

</inputs>

<outputs>
<output name=”openOut” />
<output name=”closeOut” />
<output name=”depositOut”>

<result name=”amount” type=”xs:int” />
</output>
<output name=”withdrawOut”>

<result name=”amount” type=”xs:int” />
</output>

</outputs>

The memory and the body of the processing functions are written in in-line
Java code. This allows the definition of any complex Java data structure as the
memory of the system.

<memory>
<declaration> int balance </declaration> <initial> balance = 0 </initial>

</memory>

3 The tool can be downloaded from http://www.jsxm.org
4 The complete JSXM specification for the SXM account can be found at
http://www.jsxm.org/SEFM2012

http://www.jsxm.org
http://www.jsxm.org/SEFM2012
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Processing functions are specified by defining their inputs, outputs, precon-
ditions (specifying the domain of the function) and effects on the memory. For
brevity only one processing function is shown. Note the object.get par() ap-
proach for retrieving the parameter par of compound inputs and outputs.

<function name=”Withdraw” input=”withdraw” output=”withdrawOut”>
<precondition> balance > withdraw.get amount() </precondition>
<effect>

balance = balance − withdraw.get amount();
withdrawOut.set amount(withdraw.get amount());

</effect>
</function>

4.2 Test Generation Process

The JSXM tool implements the extended W -method for generic specifications
(Section 3.3) for the generation of the test set. For the test generation process
the modeller needs to provide:

– a JSXM specification of the SXM model Z.

– an r-state cover Sr and a separating set Ws

– a set of input generators (explained in detail in Section 4.3).

– the estimated difference k of states between the IUT and the specification.

The test generation process consists of the following steps:

1. It is being checked that all states of Z are r-reachable by Sr.

2. The set SrΦ[k + 1] is generated.

3. The generated set is restricted to these sequences that are accepted by the
associated automaton: U = (SrΦ[k + 1]) ∩ LAZ

4. It is being checked that all generated sequences are realizable, i.e. U ⊆ LRZ .

5. The sequences of the characterization set W are attached to the generated
sequences yielding: UWs = ((SrΦ[k + 1]) ∩ LAZ )Ws

6. The resulting set of sequences is optimized: any sequence that is a proper
prefix of another sequence in the set is removed from the set, since any
faulty behaviour produced by this proper prefix will be identified during the
animation of the prefix as part of the longer sequence.

7. All sequences of processing functions are transformed to sequences of inputs
generated by the input generators. During this step it is expected that some
of the sequences will not be realizable (at their Ws postfix) as formally
described in the definition of the test function.

8. Finally, all the input sequences are fed to the animator that acts as an oracle
and provides the expected output sequences.

As described in Section 3.3, if Ws separates all pairs of states and all sequences
in step 4 are realizable, then the resulting suite is sufficient to guarantee the
functional conformance of the implementation to the specification.
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4.3 Input Generators

The test function transforms sequences of processing functions to sequences of
inputs. The modeller has to define for each processing function an input gener-
ator function.

An input generator function is a (partial) function inφ : M → Σ for φ ∈ Φ.
The input generator guarantees to find an input, if the memory is in the domain
of the input generator. Otherwise a suitable input does not exist to make the
function fire. We could define the following input generators for the account:

inDeposit(balance) = 100
inWithdraw(balance) = 1 if balance > 1
inWithdrawAll(balance) = balance if balance > 0

The transformation of a sequence p ∈ Φ∗ of processing functions to a sequence
of inputs is recursively defined as:

– t(ε) = ε

– t(pφ) =

{
t(p)inφ(m) if p ∈ LRZ and m ∈ dom inφ

t(p) otherwise

where m is the memory attained after the sequence t(p), i.e. ‖p‖(m0, t(p)) =
(g,m). From the definition it is clear that it is being assumed that the spec-
ification is input-uniform. In what follows we discuss what are the practical
limitations of this assumption and how they may be overcome.

If the specification is controllable then the processing functions are input-
complete w.r.t. memory, which implies that for every possible memory value
there exists an input that triggers the function and therefore inφ can also be
totally defined. If the specification is input-uniform and the input generator
is defined for all attainable memory values, then the algorithm is able to find
suitable input sequences for all realizable sequences of processing functions.

If, however, the specification is not input-uniform, the generation of inputs for
realizable sequences is not generally guaranteed as it is illustrated in the following
example. The input generators defined above for the account SXM would fail to
generate appropriate inputs for the following long but still realizable sequence:
Open Deposit Withdraw100, in which 100 Withdraws follow a Deposit. The
sequence could still be made realizable by increasing the amount parameter of
the deposit(100) input that was generated for Deposit. So the input generators
successfully generate input values up to a certain length of the function sequence.

The length of the function sequences depends on k. Even in the cases of
non input-uniform specifications, the modeller can carefully design the input
generators in such a way so that the specification “behaves” uniformly for all
bounded-sequences that will be generated for the selected k. In most practical
situations k takes small values (usually less than 5). Larger k values are not
expected to reveal new errors (unless the implementation is grossly erroneous)
and are computationally expensive for producing the test sets, since the number
of test cases and the total length of the test set depend exponentially on k.
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Nevertheless, we are investigating solutions that will generalise the input gen-
erators so that all realizable sequences can be generated. We are currently ex-
amining the possibility of applying constraint satisfaction techniques to solve
this problem. If we need to generate an input sequence for: Open Deposit
Withdraw Withdraw Withdraw, the following symbolic input sequence could
be generated: deposit(x) withdraw(w1) withdraw(w2) withdraw(w3), with the
related arithmetic constraints that need to be solved: x > 0, w1 < x,w1 + w2 <
x,w1 + w2 + w3 < x. A constraint solver could return the following values:
x = 4, w1 = w2 = w3 = 1, which would make the sequence realizable.

4.4 Generated Test Cases and Transformation

For the input-output test cases to be produced, all the input sequences are fed to
the JSXM animator, which acts as an oracle, and the resulting output sequences
are recorded. The resulting test cases (pairs of input and output sequences) are
stored in a XML file5 in a programming language independent format.

In order to execute the tests on the IUT, the language independent generated
test cases need to be transformed to the programming language of the IUT. This
is the task of a test transformer. The JSXM tool allows modellers to extend
the tool by defining their own test transformer for any programming language.
Currently the JSXM test suite offers a JUnit test transformer, which transforms
the abstract test cases into JUnit test cases.6

4.5 IUT Wrappers

Since the SXM model and the IUT are at different levels of abstraction, a wrap-
per (or adapter) is needed that will translate IUT values back to model values.
In the case of Java testing, a wrapper class consists of wrapper methods for each
method of the class under test. All control flow paths within a method should
produce some observable result: either a returned value or an exception. These
results are then translated by the corresponding wrapper method to values that
will be compared by the test engine with the model outputs.

For example, a Java method public void open() may perform some processing
(change the internal state) but it is not expected to return any result. For the
purpose of testing, however, the implementation needs to satisfy the observability
design-for-test condition. A wrapper wraps the method call and, depending on
the outcome, returns the expected output that will be matched with the output
of the model (e.g., openOut). Similarly, if the open method throws an exception
(because it could not be executed) the exception has to be caught by the wrapper
and a model output should be returned (e.g., openError).

4.6 Interacting JSXM Models and Incremental Testing

By using interacting SXM models one can perform automated incremental test-
ing of classes that are based on other classes.

5 The generated XML file can be found at http://www.jsxm.org/SEFM2012
6 The generated JUnit test cases can be found at http://www.jsxm.org/SEFM2012
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This is achieved via a special type of parameters in SXM specifications, which
is the sxm type. Values of this type are instances of SXM models. The interaction
of SXM instances resembles the object-oriented method invocation: an SXM,
within the effect of a processing function, may send a “message”, in the form of
an input symbol, to another SXM, which produces an output, which is returned
to the sender SXM.

In the following example we present the memory, a processing function and
its corresponding input from a borrower SXM. The borrower may borrow a book
if a book is available. A separate book SXM model exists, which specifies the
behaviour of a book (borrowing, returning, checking availability).

<memory>
<declaration> BookSXM book; </declaration><initial> book = null; </initial>

</memory>
<inputs><input name=”borrowBook” ><arg name=”book” type=”sxm”/></input></inputs>
<functions>

<function name=”BorrowBook” input=”borrowBook” output=”borrowBookOut”>
<precondition> ((BookSXM) (borrowBook.get book())).isAvailable().result;
</precondition>
<effect>

book = (BookSXM) borrowBook.get book();
book.setBorrowed();

</effect>
</function>

</functions>

Through the BorrowBook processing function, the borrower SXM instance
sends the input isAvailable() to a book SXM instance. The book SXM instance
is being animated with this input and an output is produced, which is returned
to the borrower SXM instance.

Test sets are generated separately for each SXM and its corresponding class
and programs can be incrementally tested. This incremental approach removes
the need to create a separate flat model which specifies the whole system.

5 Evaluation

5.1 Validation of the JSXM Tool in Existing Applications

The JSXM tool has been used and practically validated in several application sce-
narios described briefly below. All the applications are from the area of service-
oriented computing and Web services. The XML-based specifications of JSXM
and the capability to extend the input types by user-defined XSD types fa-
cilitate easier integration with Web technologies and related XML-based Web
service standards.

In [5] SXMs are utilised for modelling the behavioural specification of Web
services and the SXM testing method is used for generating test cases, which
verify that the service implementations conform to their specification. This ap-
proach is further elaborated in [18] where JSXM is used as the main tool in a
framework for the validation and verification of Web services.
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The animation capability of the JSXM tool (execution of SXM models) en-
ables the run-time verification approach that is presented in [6]. The animator
serves as an oracle that provides the expected outputs for the purpose of run-time
monitoring of Web services. JSXM provides an API that allows calling the ani-
mator’s methods programmatically. This API is utilised in the implementation
of the run-time verification architecture described in [1].

In [7] a novel approach is proposed for just-in-time testing of conversational
Web services. The aim of just-in-time testing is to detect potential problems
(functional inconsistencies) in service implementations and to pro-actively trig-
ger adaptations of the service-based application. The JSXM and its test genera-
tion capability is utilised in order to automatically generate test cases on the fly
without any human intervention and to test the service before its invocation.

It is important to notice that in all these applications the SXM testing method,
and its realization through the JSXM tool, managed to successfully identify er-
rors in the implementations, even with small values of k ≤ 2. Furthermore,
although the SXM testing method is based on the assumption that the basic
processing functions are correctly implemented in the IUT, the generated test
set managed to reveal not only control flow errors but also errors in the im-
plementation of the functions. This implies that practically SXM testing is also
able to reveal functional mismatches in the processing functions, although this
capability is not theoretically guaranteed. This capability is demonstrated in the
next section on the example of the account SXM.

5.2 Effectiveness and Efficiency of the Test Generation

To demonstrate the effectiveness of the generated test set we have performed
mutation testing on the Java class Account, which is the implementation of
the account SXM. Mutation testing was performed with Jumble [14], which
is a class level mutation testing tool that works in conjunction with JUnit.
The test set generated from JSXM for k = 0 managed to kill all 19 mutants.7

The mutants changed both control logic of the program (negated conditionals,
boundary values in conditions) as well as assignments within program paths
(arithmetic operators, assigned values).

Concerning the efficiency of the test generation process, Table 1 shows the
number of test cases generated and the time required for the test generation for
different values of k. The test generation was performed on a Quad Core i7, 2.5
Ghz. The absolute times in seconds are provided only as an indication.

Table 1. Number of generated test cases and generation time for different values of k

k 0 1 2 3

number of test cases 143 841 5293 35151

time to generate (sec) 0.06 0.26 1.67 46.06

7 A description of the mutants can be found at http://www.jsxm.org/SEFM2012
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JSXM: A Tool for Automated Test Generation 365

6 Related Tools

Currently, a small number of tools is available for SXMs. Most tools are con-
cerned with the modelling and the animation of SXM models.

The Flexible Large-scale Agent Modelling Environment (FLAME) [10] is a
framework that uses SXMs for modelling agent-based systems and for generating
simulations in C. The FLAME framework provides an XML-based specification
language, referred as XMML, for creating specifications that serve as models of
the behaviour of agents. In-line C code is used for defining the behaviour of the
processing functions, similarly as JSXM uses in-line Java code. FLAME includes
Xparser, which is a parser for parsing XMML, in order to automatically generate
simulation programs in C that can run models efficiently on HPCs [16].

X-system [15] is a tool that facilitates the modelling and the animation of
SXMs. X-system has been implemented in Prolog and uses the X-Machine Defini-
tion Language (XMDL) for writing the specifications. XMDL was later extended
by XMDL-O [4], which supported an object-based notation. Both languages are
supported by the X-system, which is used mainly for animation of models.

Ma et al. [17] describe a tool for SXM models and the automatic genera-
tion of tests. It is not evident if this tool is capable of generating concrete test
cases (sequences of inputs), since the authors demonstrate only the generation
of processing function sequences (first step of the test generation process).

To the best of our knowledge, JSXM is the only tool available for automatically
generating concrete (executable) test cases based on the SXM testing method.
Neither FLAME nor X-system are known to be able to generate concrete test
cases.

7 Conclusions

In this paper we have presented the JSXM tool for automated testing. The tool
builds on the SXM formalism and implements an extension of the W method
for generating test sets that are able to guarantee the functional conformance of
an IUT to its specification. Currently the JSXM test generation is guaranteed
to work in the case of input-uniform specifications. In Section 4.3, however, we
have discussed and demonstrated through an example, that the test generation
can practically work even in the case of some non input-uniform specifications.

Additionally, the JSXM language allows the definition of interacting SXM
model instances. This feature enables the incremental testing of object oriented
programs, where each class is separately modelled as an SXM.

The tool’s applicability has been demonstrated in several application scenarios
from the area of Web service testing, monitoring and run-time verification.

In the future we intend to change the input generators so that the test gen-
eration works for generic specifications. We also intend to implement the test
generation based on state-counting, so that the tool covers also cases of specifi-
cations in which not all states are separable.
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Abstract. We present a hybrid approach to information flow security
where security violations are detected at execution time. We track se-
cure values and secure locations at run time to prevent problems such as
password disclosure in C programs. This analysis is safe in the presence
of pointer aliasing. Such problems are hard to solve using static analysis
(or lead to many false positives). Our technique works on programs with
annotations that identify values and locations that need to be secure.
We instrument the annotated program with statements that capture rel-
evant information flow with assertions that detect any violation. This
instrumentation does not interfere with the safe assignment of values to
variables in the program. The instrumented assertions are invoked only
when relevant values or locations are involved. We demonstrate the ap-
plicability of our approach by analysing various Linux utilities such as
su, sudo, passwd, ftp and ssh. Our experiments show that for safe exe-
cutions the overhead introduced by our instrumentation is, on average,
less than 1%.

Keywords: Information flow, Program instrumentation, Assertion
generation, Monitoring.

1 Introduction

The problem addressed by information flow security is to ensure that data identi-
fied as secret or high security are not exposed in any way external to the program
under analysis. Values can be exposed by assignment to a public or low security
variable, or by direct output, such as through a print function. Note, that the
latter is essentially the same as exposed assignment as the value is assigned to
the low security parameter of the function.

Traditional approaches to flow security [10,12] analyse programs with respect
to program variables, which can involve a costly static analysis, and great im-
precision when dealing with pointer aliasing. The core idea behind our approach
is to dynamically track the values in a program, rather than the variables, to en-
sure that no secure value is leaked at run time. We present an approach to track
secure values that uses a simple static analysis phase to instrument a program
with assertions that enable dynamic monitoring of values and induce program
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failure on a security violation. Our approach detects a wide range of security vi-
olations and works effectively for explicit flows in the presence of pointers. Our
experiments indicate that the overheads introduced by our monitor are very low.

The flow of information in a program can be represented as a sequence of as-
signment statements: pairs 〈addr, val〉 such that a location in the memory addr
is assigned a value val. Note, the memory address is also a value. Such an assign-
ment is safe if val is not secret or if memory location addr can not be observed
by an attacker. We refer to memory locations that can not be accessed by an
attacker as safe locations. A safe program is one where all assignment statements
are safe. Checking all assignments statically (at compile time) requires imprecise
approximation, otherwise the complexity of such analysis is at least NP-hard and
often undecidable.

Our approach enforces information flow safety during a dynamic run of a pro-
gram (say P ) by annotating it with a set of statements that detect vulnerabilities
during execution and fail the program before a vulnerability occurs. An anno-
tated program (say P ′) captures the set of secret values received by a program
and verifies each assignment in P with respect to that set during its dynamic
run. That is, before every assignment statement in P there is an assertion in P ′

which checks an assigned value and induces a failure if a vulnerability is detected.

1 function (int x)
2 char *high = "secret";
3 char *a = high;
4 char *low = "public";
5 if (x)
6 a = low;
7 low = strdup(a);
8 }

Listing 1. Vulnerabilities we detect

The C code fragment at Listing 1 demonstrates the types of issues we are
able to solve using our approach. Let the character pointer high be a designated
secure location and a value secret assigned to high be a secret value that should
not be exposed to an attacker. Our analysis will verify the safety of assignment
statements with respect to the secure value secret and a secure location high.
The safe locations are the blocks of memory where secret values are stored: in
this case addresses of memory blocks high points to (i.e., &high[0]). An aliasing
statement at line 3 forces a character pointer a to point to a safe location. We
verify this statement as safe, since no flow of data from the safe locations has
occurred. We then identify the assignment at line 4 as safe (while low represents
an unsafe location the value transferred to low is different to our secret value).
As evaluation of values occurs at run time, we can correctly identify the safety
of an assignment at line 7 during a run of a program. That is, if argument x is
different to 0, then the statement at line 6 is executed, which implies that the
assignment at line 7 is safe (a value assigned to an unsafe location is different to
secret). This is because pointer a points to value public. If x evaluates to 0, the
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statement at line 6 is not executed and we detect a vulnerability which transfers
a secret value secret to an unsafe location pointed by low.

At this stage our approach does not detect a class of security violations caused
by implicit information flows. For example, given the statement if (high) low

= 1; else low = 0;, where high is safe, our approach fails to detect an unsafe
implicit flow from high to low, which may disclose a branch taken during the
execution. However we will detect all assignments of high security values to
insecure locations.

The rest of the paper is organised as follows. Section 2 presents our technique
at an abstract program level. Section 3 shows how to apply our technique for
C programs. Section 4 discusses empirical results of a prototype implementa-
tion of our technique. Section 5 presents related work and Section 6 offers our
conclusions.

2 Low-Overhead, Hybrid, Secure Value Tracking

Our approach is a hybrid static and dynamic technique operating on a program
pre-annotated with locations of secure assignments marked. During the static
stage we perform a number of source-to-source transformations on P to gener-
ate P ′, which adds statements to track secure values and detect any insecure
assignment of secure values. At the dynamic stage we only need to run P ′. The
assertions in P ′ observe the execution. A program passing the dynamic phase
(no detected failures) does not leak any private information through insecure
assignments.

Assignment is the only relevant operation to our analysis, so we consider pro-
grams at the abstract level of imperative sequences of assignments with minimal
standard control structures and function calls, similar to how the program would
look in Static Single Assignment form or as assembly code. We present our ap-
proach for an abstract imperative language, and show how it is implemented for
C in Section 3. We first describe our memory model and the details of the im-
perative language enriched with pointers used to describe transformations. We
then discuss the set of compositional transformation rules used to derive P ′, and
how the dynamic execution phase ensures safety.

2.1 Abstract Language

Figure 1 shows the syntax of our abstract imperative language. The set of vari-
ables Vars is the set of elements generated by Var , which consists of primitive
(indicated by PrimVar) and pointer types (indicated by the prefix ptr). Before
we define the rest of the syntax, we describe our model of memory. Let Vals be
the set of values. A particular instance of the memory (or state) is represented as
a function over the set of values (i.e., a function of the type Vals → Vals). Every
variable x from the set Vars has a representation in memory. This is indicated
by the function ρ where ρ(x,m) represents the address of the variable x in mem-
ory m. The r-value of a variable can be obtained using the function eval, which
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Var ::= PrimVar | ptr Var
e ::= x | e⊕ e | f(e) | eval(x) | addressof(x)
c ::= skip | def(x) | x := e | if e then c1 else c2 | while e do c | c; c | assert(e)
f ::= Ident 	 c

P ::= f̃ ; e

Fig. 1. Abstract Language

can defined to be m(ρ(x,m)). For variables that are pointers, the address of the
value that the pointer points to is given by addressof(ptrx,m) = m(ρ(x,m))
while the value that the pointer points to is eval(ptrx,m) = m(m(ρ(x,m))).
Primitive variables are direct mappings from addresses to their values in m,
while ptr is a pointer dereferencing operator.

Expression e consists of variables x, composite expressions e⊕ e (where ⊕ is
a binary operator), function calls f(e), and operators eval(x) and addressof(x).
Command c consists of atomic commands skip, assignment statements (x := e),
sequential composition of commands (c; c), conditional expressions (if e then c1
else c2), loops (while e do c) and assertions (assert(e)). Command assert(e)
terminates a program if an expression e evaluates to false and executes skip

otherwise.
Function definitions consist of unique function names (Ident) followed by a

command. A program P is a possibly empty sequence of function definitions
followed by an expression.

We also assume the usual small step semantics [13] of executing a program
p in state m. We denote this by 〈p,m〉 �→ 〈p′,m′〉 where the execution of a
statement in p in state m yields the state m′ and p′ is the residual program. We
define �−→ to be reflexive transitive closure of �→. We say a program terminates
normally when p′ is skip.

2.2 Static Program Instrumentation

The static phase of our analysis makes simple source-to-source transformations
on a program. An input program P is such that it contains a number of annotated
assignment statements. These annotations merely flag the assignments required
to be safe. Such statements represent assignment of secret data received by a
program to its variables. We treat memory locations that are assigned private
values as safe. Annotated and non-annotated statements in P are distinguished
using a boolean function Γ (stmt), which returns true if an assignment statement
stmt in P is annotated and false otherwise.

The transformations instrument P with statements that track values dur-
ing execution and assertions that will fail if security violations occur at run
time. For the purposes of dynamic evaluation we define an auxiliary function
compare(val, V ), which compares a value val to the elements of a collection V and
evaluates to true if val is not found in V and to false otherwise. The compare

function is left abstract at this stage since it depends on the implementation
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Define:
def(x) → def(x)

Skip:
skip → skip

(1)

Assignment1:
Γ (x := e) = true

x := e; → x := e;
Hval += eval(x);
Hvar += addressof(x);

(2)

Assignment2:
Γ (x := e) = false

x := e; → def(t);
t := e;
if (addressof(x) /∈ Hvar)

then assert(compare(eval(t),Hval));
else skip;

x := t;

(3)

Assert:
assert(e) → assert(e)

If:
c1 → c′1, c2 → c′2

if e then c1 else c2 → if e then c′1 else c′2
(4)

While:
c → c′

while e do c → while e do c′
Sequence:

c1 → c′1, c2 → c′2
c1; c2 → c′1; c

′
2

(5)

Function:
c → c′

f 	 c → f 	 c′
Program:

f̃ → f̃ ′

f̃ ; e → def(Hvar); def(Hval); f̃ ′; e
(6)

Fig. 2. Rewrite Rules

language and the type of security analysis performed. We discuss constructing
the compare function further in Section 3.

Figure 2 shows the full set of transformation rules applied on the input pro-
gram P , which yields a modified program P ′, equipped with statements and
assertions required to prevent vulnerabilities caused by assignment of secret val-
ues to unsafe locations.

The first step of program instrumentation involves annotating an input pro-
gram P with the set of statements that record secret values a program ma-
nipulates during a dynamic run. This step also identifies and records memory
locations that are allowed to be assigned private data. Since our technique is
based on value comparison, we identify safe locations using addresses of memory
blocks of the actual data storage (retrieved using the addressof operation). To
keep track of secure values and locations we use collections of values Hvar and
Hval, such that during the execution of P ′, Hvar will hold memory addresses of
secure locations and Hval will hold secret values for a particular run. During the
execution of P ′, a memory block is considered to be safe (allowed to be assigned
secret data), if its address is recorded in Hvar. Similarly, assignment of a value v
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to a non-secure location is considered safe if Hval does not contain v or another
value that is similar to v (as determined by the compare function). Additionally,
this step of program annotation involves explicit definitions of Hvar and Hval

(Figure 2, Rule Program).
The second step of the instrumentation inserts statements that record private

values and secure locations. This is done for every annotated assignment state-
ment in the input program P (i.e., those where Γ (x := e) evaluates to true,
Rule Assignment1). To record safe addresses we insert statements (immediately
after annotated assignments) that retrieve addresses of declared safe memory
blocks using the addressof operation. We add these addresses to the collection
that tracks safe memory locations (Hvar). This is followed by a statement that
records a secret value (assigned to a safe location) to the collection that tracks
secret values (Hval). Secret values are determined using the eval operation. Note,
that application of addressof and eval operations guarantees that we correctly
record addresses and values of memory blocks that contain data, not the ad-
dresses or values of the pointers that may point to them.

Finally, we enforce the safety of assignments that are not annotated in P (i.e.,
those where Γ evaluates to false, Rule Assignment2). For each such statement
we insert a security assertion that verifies it with respect to Hvar and Hval. Such
an assignment statement is safe if either the address of the memory block that
is being assigned a value is recorded in Hvar (safe location) or if the value that
flows to an unsafe memory location is different to any of the secure values stored
in Hval. We introduce the temporary variable t so that we do not evaluate e
twice. The value returned by e is necessary to determine if it is a secure value.
Furthermore, if safe, we also wish to assign this value to x. Note, this use of
assertions is a monitoring approach as a program failure is induced before a
secret value flows to an unsafe location.

We consider skip and def statements to be safe, because they do not assign
data and thus can not jeopardise the safety of a run. These statements are
left unchanged. For any other statements (such as conditionals and loops) we
recursively apply previous rules.

2.3 Execution of Instrumented Program

During the dynamic stage, the instrumented program P ′ monitors information
flow safety of an original program (P ). A failure of a security assertion is a
prevented security vulnerability. On execution, Hvar and Hval are initialised to
empty collections. As execution proceeds, values and addresses for annotated
assignments are added to Hvar and Hval. Note, that before Hvar and Hval are
appended with values any assignment statement is safe, since there is no des-
ignated private data available for comparison. Non-annotated assignment state-
ments are evaluated with respect to data stored in Hvar and Hval. If an unsafe
location is being assigned a value, P ′ invokes compare which determines the
safety of the value with respect to the values stored in Hval. For the cases when
compare determines similarity between assigned values and data from Hval, ex-
ecution is aborted and the vulnerability that occurred is reported. A program
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execution passing the dynamic analysis phase (no detected failures) does not
leak any secure information (via assignment of data) for that particular run.

Our framework can be formally described as follows. Let p be a program and
Xs be the set of secure variables and Vs be the set of secure values obtained
from the annotations.

Definition 1. An execution of p in state m is safe if and only if
(〈p,m〉 �−→ 〈p′,m′〉 and for every location loc and for every variable x belonging
to Xs, with ρ(x,m′) not equal to loc) implies m′(loc) does not belong to Vs.

This can also be stated as:
(〈p,m〉 �−→ 〈p′,m′〉 ⇒ {m′(loc)|loc ∈ dom(m′)\{ρ(x,m′)|x ∈ Xs}} ∩ Vs = ∅.
Theorem 1. Let p→ q using the rewrite rules shown in Figure 2.

If every execution of p in state m is safe then every execution of q in m is
safe. Moreover if the execution of p terminates normally, the execution of q will
also terminate normally.

If there is an execution of p in state m that is unsafe, then the execution of q
in state m will be safe but q will not terminate normally.

The above theorem can be proven via induction over the structure of the pro-
gram. The proof itself is standard but tedious. It relies on Hval having all values
that are comparable to values in Vs and Hvar having the locations corresponding
to Xs. �

3 Application to C programs

The rewrite rules discussed in Section 2 are expressed on an abstract language
and need to be mapped to a concrete level to apply to a real implementation
language. Further, implementations of the compare function, addressof function,
and collectionsHvar andHval need to be provided. Note, this means that compare
can be tailored to suit specific flow safety definitions/requirements. This section
discusses how to adopt our approach for programs written in the C programming
language.

Hvar and Hval. To store safe locations and values of variables we use globally
defined arrays. Hvar is an array of integers (i.e., intptr t), which stores safe
addresses. As C is a typed language, we implement Hval as a collection of arrays
per data type. These arrays can grow dynamically as desired.

Memory Addresses. Since in C variables may span across multiple memory
blocks, we represent memory locations that identify secure or insecure loca-
tions as start addresses of consecutive memory blocks that hold actual data.
For instance, if a character pointer (say char *ptr) is secure we use the location
&ptr[0]. For composite data types (struct or union) we use the collection of the
start location of the structure and the start locations of each field. For example,



374 K. Vorobyov, P. Krishnan, and P. Stocks

struct stt {char *str, int i} st has the memory locations { &st, &st.str[0],
&st.i}.

The addressof operation is implemented as a set of functions. For each data
type that we handle (say T) we define intptr t addressof T(T var), which ex-
tracts addresses for variables of type T. For example, for type char* we define
intptr t addressof charPtr (char* var), which returns &var[0]. Note, that this
can be determined statically.

Library or External Functions. Code in function bodies that are available
is instrumented as described above. However, approximations are required for
library or external functions for which the source code is unavailable. Calls to
external functions are potential security flow hazards because function calls may
leak their arguments. For example, printf("%s",ptr) is a security violation if
&ptr[0] is a safe location. Functions for which source code is unavailable are
annotated before analysis as either safe or unsafe. Every call to an unsafe ex-
ternal function is instrumented with an assertion that evaluates the function
arguments and fails if any of the arguments refers to a safe location or value. For
example, a call to the unsafe standard function printf("%s",ptr) is transformed
to if (eval(ptr) ∈ Hvar) assert(0); printf("%s",ptr);.

External function calls also may potentially make assignments to pointer ar-
guments. For safety, we over-approximate that any parameter of an external
function that is a mutable pointer results in an assignment of data. The pro-
gram is analysed as if there were an assignment of that parameter’s value to
itself immediately after the execution of the function. For example, for a func-
tion call strcpy(d,s) to library function strcpy(char *dest, const char *src)

we assume d is assigned in the body of strcpy and treat the call as if it were
strcpy(d,s); d = d;. No assertions are generated for arguments that are con-
stant arguments as these cannot be changed.

Value Comparison. The compare function can be simply implemented as a
direct look-up based on equality. However, more sophisticated or tailored com-
parisons may also be used. Our initial studies primarily target password flow
analysis, so we implement compare as a function that uses Levenshtein distance
[5] as the measure of similarity between values (strings). Levenshtein distance is
frequently used to evaluate the strength of passwords against dictionaries [6]. It
is computed using the number of edits required to transform one string into an-
other. Our case studies implement compare as failing if the Levenshtein distance
between strings is less then some pre-defined threshold and succeeding otherwise.
The benefit of using this measure is that we can detect similar, but not identical
strings, for example, partially exposed passwords. However, this implementation
may induce failures for different, but very short strings. For instance, compare
will return 0 when comparing any strings of length less than the threshold.

Safe Termination. C memory deallocation procedures (e.g., free) do not guar-
antee destruction of values. This may result in disclosure of private values left
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in memory after a program terminates. Our analysis checks that a program cor-
rectly cleans up its private values by first disabling memory deallocation func-
tions and then, before program termination, checking that no location in Hvar

contains any value in Hval. This is easily done using C standard library functions
atexit, on exit and signal. Note that while this approach is adequate for our
experimentation purposes, a more sophisticated approach that remembers des-
ignated safe memory addresses and scans possibly freed memory on termination
could be used in production monitoring systems.

3.1 Example of Instrumentation

Listing 2 shows the resulting instrumented program for the program in List-
ing 1 where the assignment at line 2 is annotated to be safe. To simplify the
presentation we omit checks for safe termination procedures.

1 char *hval[]; // -- Values that we track intptr_t hvar []; // --
2 Safe addresses
3
4 // Compare function: return addressof(var) ∈ Hvar or eval(var) /∈ Hval

5 int compare (char *var , char *hval[], intptr_t hvar[]);
6
7 // Track values: Hvar += addressof(var),Hval += eval(var)
8 void record_safe(char *var , intptr_t hvar[], char *hval[]);
9
10 // Instrumented program
11 function (int x)
12 char *high = "secret";
13 /* Instrumented */ record_safe(high , hvar , hval);
14
15 /* Instrumented */ assert (compare (a, hvar , hval));
16 char *a = high;
17
18 /* Instrumented */ assert (compare (low , hvar , hval));
19 char *low = "public";
20
21 if (x) {
22 /* Instrumented */ assert (compare (a, hvar , hval));
23 a = low;
24 }
25 /* Instrumented */ assert (compare (a, hvar , hval));
26 low = strdup(a);
27 }

Listing 2. Instrumented program P ′

We instrument the program as follows. We first add global definitions of struc-
tures to hold the addresses and values that we track (hval and hvar arrays in
lines 1 and 2 respectively). We then provide definitions of functions compare and
record safe (in lines 5 and 8 respectively) required for analysis. We do not show
the body of these functions here. The function compare checks the address of the
provided pointer and succeeds if it is a safe location (e.g. &var[0] is stored in
hvar). The function record safe records addresses and values of safe locations to
hvar and hval. The call to record safe at line 13 records &high[0] to hvar and
"secret" to hval. Further, for every assignment that is not annotated (and hence
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could potentially involve a low security location), we add an assertion statement
(lines 15, 18, 22 and 25) which checks the type of address that is being assigned
a value (high or low) and an assigned value.

4 Implementation and Empirical Results

We have implemented our technique in a prototype tool built on top of the
Clang [1] compiler architecture (LLVM project, version 2.9 [3]), for programs
written in the C programming language. The platform for all results reported
here was Intel Core i5-2400 3.1 GHz machine with 4GB of RAM, running Gentoo
Linux.

To evaluate our approach we have checked the safety of password flow in six
UNIX utilities using our prototype: su, sudo, passwd, vlock, ftp, and dropbear

which is an implementation of ssh. The choice of utilities was dictated by the
availability of password-authenticating functionality at a system level—tools for
which safe password flow is important. These utilities differ in both functionality
and implementation. All these tools are mature and have been extensively tested,
yet we have detected leaks in su and ftp: su does not safely destroy the hash
sum of the plain-text password and ftp does not overwrite a pointer where the
plain-text password value received from the user is stored.

Table 1. Run time statistics

Program LOC Overall Annotations Assertions Recompile
Time (s) Time (s)

su (coreutils 8.13) 2342 1.277 3 3 0.261

sudo (1.8.2) 5266 1.944 1 14 2.327

passwd (shadow 4.1.4) 3465 2.340 3 64 0.289

vlock (2.2) 1635 0.296 1 12 0.162

ftp (inetutils 1.8) 9595 2.791 2 99 1.206

dropbear (2011.54) 14533 9.415 1 5 2.146

Table 1 shows instrumentation statistics of our prototype. The overall time
measures time for applying our technique on the source programs, and recompile
time measures the time taken to compile the instrumented program. Table 1 also
shows the number of injected assertions and the number of annotations, which
flag the assignment of password data to program variables1.

It can be seen that the speed of our transformation directly depends on the
complexity of the source code, ranging from 0.296 seconds for vlock (1635 lines)
to approximately 9.5 seconds for dropbear (14533 lines). Generating the asser-
tions does not take more than 0.01 seconds. Most of the time is spent on parsing
and generating abstract syntax trees. The average parsing time per tool is ap-
proximately 70% of the overall time and ranges from the maximum of 81% for

1 manually located and identified.
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ftp to the minimum of 51% for vlock. The rest of the time is mostly spent on
the output of the modified files.

The time required to recompile generated source code directly depends on
the number source files that are modified and the dependencies that need to be
preserved in the build. In the majority of the cases this time is smaller than the
analysis time. For example in su only 1 file needs to be recompiled, hence the
minimal compile time of 0.261 seconds. In some cases, however, for example for
sudo, the recompile time appears to be greater than the analysis time due to
dependencies in source files. Note, neither recompile nor analysis time depends
directly on the number of generated assertions, but on the size of the software.

These results suggest that our technique may scale well for large and complex
software, because analysis time is dependent on the size of the software, rather
than on the complexity of the constructs, since our transformations are purely
syntactic. Also this entire instrumentation process is performed only once.

Figure 3 shows run time overhead statistics for programs instrumented by
our technique. To reliably determine overheads produced by our technique we
performed 50 series of runs of modified and original executables, such that each
series contains 1000 runs. This is to account for variance produced by the au-
tomation (expect framework), networking (for ftp and dropbear) and system
I/O. Also the execution time of a single run of programs such as su, vlock, and
sudo is too small to measure accurately. We add a loop to execute each program
1000 times to get a single measurement.

Additionally, to correctly calculate the overheads, we disabled abort state-
ments in instrumented assertions. Assertions are evaluated and violations re-
ported, but program failure is not triggered. This is due to the discovered vulner-
abilities in su and ftp utilities, which result in failures of instrumented programs
regardless of the input.

Figure 3 shows the running times of original and instrumented programs. The
figure adjacent to the name of the program is the percent overhead. The bars
indicate standard deviation. The times reported refer to average running time
per 1000 runs, per 50 series.

In continuous runs of the modified and original versions of the tools we have
used correct password values of 10 characters in length. This is to avoid failures
due to short strings comparison and ensure that the run of a modified program
invokes the majority of the instrumented assertions. We calculate the overhead
for realistic password values.

It can be seen that overheads produced by the application of our technique do
not exceed 0.5% and range from 0.06% for ftp to 0.049% for passwd. Standard
deviation for the the majority of the tools is also small, which allows us to
conclude that overhead results are precise. For dropbear, however, the standard
deviation is considerably greater for the instrumented program than for the
original. This is because of variable response times of the network, since during
experimentation dropbear was configured to connect and disconnect to a real
SSH server. Despite the influence of the network, the variance is as small as 0.05
seconds per run.
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Fig. 3. Results of Experiments

It can be seen that the number of generated assertions does not impact over-
head produced by the instrumentation. For example, overhead produced for ftp
(0.06%) is the lowest despite having the largest number of injected assertions
(99). This is because the main factor that effects overhead is the length of the
strings that need to be compared and the number of secure values tracked. For
instance, in passwd a password is entered three times (old once, new twice), hence
the largest overhead of 0.49%.

We now discuss issues that could affect the validity of our results. The first is
the choice of programs in our experiments. Although these are realistic tools we
cannot claim they are representative of all programs in the security domain. The
second issue is the number of values and locations we track. We believe we track
all values and locations relevant to security. But, since the annotation process
is manual, some values or locations may potentially have been overlooked. This
could result in lower overheads. The final issue is related to the input values
chosen for the execution of the systems. While we have chosen typical values
of passwords, there is no guarantee that these passwords exercised all paths
within the program. We have not implemented any coverage metric. Thus there
could be paths that might lead to higher overheads. While we do not report
any security violations for some of the programs (e.g, dropbear and vlock) these
programs may have information flow vulnerabilities. Of course, our work is not
about certifying programs – thus we can claim that all the paths that we have
tested for these programs are safe.

5 Related Work

Security analysis using information flow is a well studied area. Here we sum-
marise only those papers that are directly relevant to our approach.
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Language-based information flow analysis [10,16] adds annotations to pro-
grams that enable information analysis. However adding such annotations is
non-trivial especially given the semantics of the annotations. The annotations
required in our approach are only to identify secure locations and values.

Russo and Sabelfeld [9] describe the trade-off between static and dynamic
information flow analysis. They present a framework for hybrid analysis. While
the paper’s main contribution is expressivity and impossibility results, its frame-
work enables us to classify our work as a hybrid (program transformation occurs
statically and value tracking occurs at run time) monitoring technique. Our pro-
gram annotations assign security levels to memory locations and these security
levels do not change. However, at the programming language level, because of
aliasing, the security level associated with a variable, especially of a pointer, can
change dynamically.

There are a number of theoretical approaches to dynamic information flow
analysis. For instance, Shroff et al. [11] present a theoretical framework for mon-
itoring based information flow. Their framework detects both direct and indirect
information flows and thus implements dynamic non-interference. They show
that the run time overhead is O(n2) where n is the number of program points.
Austin and Flanagan [2] present two semantics for information flow. The first
semantics (called universal labelling) dynamically labels each value while the
second semantics (called sparse labelling) labels only values that flow from one
domain to another. The theory is described using a variant of the λ-calculus.
They have built an interpreter for their system and show that sparse labelling is
much better than universal labelling, but the overheads even for sparse labelling
can be close to 100%. It is not clear how these results translate to real programs.

We now review practical approaches to information flow analysis. Le Guernic
et al. [4] analyse information flow in both sequential and concurrent programs.
They use static analysis at run time and to detect indirect flows, which has the
usual issues with static analysis such as false positives. Furthermore, they do not
handle pointers.

LIFT [8] tracks values at the binary level. This is achieved by tagging the
values. The overhead for propagating the tags and checking the tags can be
quite high. It varies from about 6% to 300%. Their main advantage is the ability
to track information flow across library calls.

Panorama [11] performs security information flow analysis in three stages –
testing, monitoring and analysing. First, the code under investigation is loaded
into the testing environment, where the set of automated tests are conducted
and program behaviour is monitored. The result obtained from monitoring is
then analysed with respect to user-defined security requirements. The focus in
Panorama is to track information flow under test cases.

LeakProber [15] provides profiling of paths that leak data. Their analysis is
based on computing data flow graphs and tracking the appropriate path at run
time. Their aim is to identify vulnerabilities by comparing normal and inse-
cure data propagation graphs. They also focus mainly on data that crosses the
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user/kernel boundary. For that they patch and recompile the kernel to support
profiling.

Resin [14] is similar to our work and tracks values and has assertions that
are checked at run time. Web-based systems is the main application domain and
Resin supports the specification of policies and filters especially when data leaves
one domain. As they mainly support programs written in PHP and Python and
track only secure values and not secure locations, they do not need to handle
aliasing. A significant limitation of their approach is the need to modify the
interpreter to handle the security policies. Our work modifies only the input
program and standard tools (such as gcc) can still be used. Resin has high over-
heads (more than 400% for some SQL related operations) while our overheads
are negligible.

Magazinius et al. [7] inject monitors at the source code level. These monitors
are similar to the assertions we insert into the programs. They handle code that
is evaluated on the fly (i.e., executing strings as code), but they do not handle
pointers (or aliasing) and also assume that functions have no side-effects. The
overheads of their approach are also high, ranging from 20% to 1700%. In C
programs, executing strings as code is not an issue.

In summary, we focus on programs written in C where issues such as aliasing
make static analysis difficult or unreliable. Although we do not handle implicit
flows, the overheads of our approach are much lower than any of the other
approaches.

6 Conclusions

In this paper we have described a hybrid approach for information flow that
tracks secure values and locations. We assume that we have the source code
of the program whose execution we wish to monitor for information leakage.
We instrument the input program with statements to track relevant information
flows. These statements record secure values (using Hval) and locations (using
Hvar) that are involved in the flow. The use of Hvar enables us to handle pointer
aliasing. We also insert assertions that determine if the high security values
flow into low security locations. This is achieved using the function compare

which checks that a location that is not in Hvar does not receive a value in
Hval. The exact values in Hvar and Hval are calculated at execution time for the
particular run of the program. The inserted assertions are executed before the
actual assignment occurs. Hence, we have developed a monitoring approach for
secure information flows. We have implemented the approach for C programs
using Clang compiler. Our experiments with various Linux programs show that
the overhead to detect the leakage of passwords is less than 1%. This is because
Hval and Hvar are implemented as arrays. Updating these arrays at run time
involves simple assignment statements. It is the execution of compare that is
most time consuming. Finally, our approach has no false positives. A program
run that does not violate any of the inserted assertions will not leak any secure
information (via assignment).
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