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Abstract. We propose an extension of the well-known LP relaxation for
Markov random fields to explicitly allow continuous label spaces. Unlike
conventional continuous formulations of labelling problems which assume
that the unary and pairwise potentials are convex, our formulation allows
them to be general piecewise convex functions with continuous domains.
Furthermore, we present the extension of the widely used efficient scheme
for handling L1 smoothness priors over discrete ordered label sets to con-
tinuous label spaces. We provide a theoretical analysis of the proposed
model, and empirically demonstrate that labelling problems with huge
or continuous label spaces can benefit from our discrete-continuous rep-
resentation.

1 Introduction

Energy minimization algorithms have been used to infer the Maximum a Pos-
teriori (MAP) solutions of probabilistic formulations of many labeling problems
encountered in Computer Vision. For instance, the Graph Cut algorithm, which
enables the exact minimization of certain classes of pseudoboolean functions,
has been used for building extremely efficient interactive tools for image seg-
mentation [1]. Researchers, however, have not been able to replicate the success
of discrete energy minimization algorithms, such as Graph Cuts and Message
Passing, for building fast methods for solving labeling problems with very large
or even continuous label sets such as image denoising and optical flow.

The above-mentioned problems, like many others encountered in Computer
Vision, are defined over variables taking continuous labels. If the data term and
the smoothness costs are convex functions, the underlying Markov random field
(MRF) can be solved directly with convex optimization methods. However, this
is not the case for many real world image labelling problems which have non-
convex data terms and sometimes non-convex smoothness priors. For handling
such problems, standard MRF algorithms discretize the label space, sample the
energy costs associated with the chosen discrete label set, and then minimize the
resulting energy which is defined over discrete variables.

The label discretization needed for handling continuous label problems can
lead to arbitrarily large deviations from the true solution. The number of discrete
labels needed to represent a continuous label set should to be large enough to
provide a faithful solution to the original, continuous problem. Increasing the
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number of labels implies substantial memory requirements, e.g. the memory
consumption grows at least linearly with the number of labels, but can also grow
quadratically (depending on the utilized formulation and optimization method).
In particular, this often rules out e.g. leveraging graphics processing units to
accelerate MAP estimation in such MRFs.

In this paper, we propose a convex discrete-continuous formulation of labeling
problems. Our approach can compactly represent arbitrary data costs while still
operating on a continuous label space. In this sense, it bring together the best
of both discrete and continuous formulations. It is inspired from the observation
that the data cost can be approximated as a lower envelope of convex basis
functions. Fig. 1 illustrates the difference between (unary) potentials handled
by well-established LP relaxations for MRFs and the potentials allowed in our
approach. In this work the focus lies on how a more expressive potential function
Fig. 1(b) can be used to efficiently approximate an arbitrary cost profile for a
multi-label problem.

(a) (b)

Fig. 1. Unary potentials as induced by standard LP relaxations (left) under a special
ordered set of type 2 interpretation [2], and one example that can be modeled using
our discrete-continuous approach (right)

An outline of the paper follows. We discuss prior work on inference in MRFs
with a focus on continuous label sets in section 2. Section 3 provides the math-
ematical notations and presents the main result enabling our convex discrete-
continuous formulation for labeling problems, which is described in detail in
section 4. We compare the performance of our method with traditional discrete
optimization methods in section 5, and conclude in section 6 by listing some key
conclusions and ideas for future work.

2 Related Work

There is a vast literature on different formulations and solution methods for
Markov random fields. We refer to [3] for an extensive treatment of the respective
statistical background, and e.g. [4] for an exposition of the corresponding LP
relaxations. In certain cases the LP relaxation of discrete labeling problems
provides globally optimal answers as discussed in [5,6] for L1 smoothness priors
and in [7] for general pairwise potentials that are convex in the label difference.
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The key observation that motivates our approach is, that unary and pair-
wise clique potentials for many continuous labeling problems encountered in the
real world are not arbitrarily complex, but can be represented or at least well-
approximated by piecewise convex functions1. Our proposed formulation gener-
alizes the one described in [8], which completely convexifies the unary potentials
in order to obtain (in combination with a convex smoothness prior) a convex
problem over continuous labels. This method is a consequent continuation of
the celebrated local linearization/convexification principle prominently utilized
in the computation of optical flow (dating back to [9,10]). The assumption of
parametric or otherwise structured potentials in general also enables efficient
inference methods as discussed in [11,12,13], where the focus lies on exploiting
structured representation of higher-order clique potentials.

Continuous label spaces naturally raise the question of also using a continuous
representation of the underlying domain (e.g. the 2D image domain). Recently,
the analysis of the Mumford-Shah functional and its extensions in [14] proved
to be a source of inspiration to address general labeling problems on image grids
(e.g. [15]). [16,17] propose to solve discretized versions of the underlying contin-
uous model [14], thereby also handling continuous transitions of labels between
neighboring pixels. Their formulation is based on a primal-dual saddlepoint prob-
lem and the underlying representation turns out to be substantially different to
our proposed one.2

Peng et al [18] share their goal with the one of our work—inference in gen-
eral MRFs with continuous label spaces—, but employ a completely different
representation and inference procedure, which is based on convex belief propa-
gation and particle sampling to represent beliefs over continuous labels. Finally,
we want to mention that there are algorithmically very different approaches to
tackle large or continuous label spaces, e.g. by adaptive refinement of the discrete
label set as proposed in [19].

3 Notations and Preliminary Result

3.1 Notations

In the following we consider extended real-valued functions f : Rn → R ∪ {∞}.
The domain of f , dom(f), is {x ∈ R

n : f(x) < ∞}, and we assume that
dom(f) �= ∅. Hence, constraints on the feasible domain and infinite function
values can be interchanged. The convex conjugate of f , denoted by f∗, is de-
fined as f∗(y) = supx x

T y − f(x). The biconjugate f∗∗ is obtained by applying
convex conjugation twice. It is known that for any function f the convex con-
jugate f∗ is a lower-semicontinuous (l.s.c.) convex function, and f∗∗ = f iff f
is convex and l.s.c. Otherwise f∗∗ is the lower convex envelope of f , i.e. the
supremum of all convex functions below the epigraph of f .

1 This is also the main assumption of our framework.
2 An in-depth discussion of the relation between the models is subject of an extended
manuscript.
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For a convex set C we will use ıC for its indicator function. i.e. ıC(x) = 0
for x ∈ C and ∞ otherwise. We will also write e.g. ı{f(x) ≤ 0} to convert a
constraint (here f(x) ≤ 0) into a function. For a convex function f the corre-
sponding perspective will be denoted by f�. It is defined indirectly as the convex
conjugate f� = (f�)∗∗ of

(f�)∗(z, w) = ı{−z ≥ f∗(w)}.
For x > 0 we have f�(x, y) = xf(y/x). We use the somewhat indirect definition
above to handle also the case x = 0. Since (f�)∗ is an indicator function (i.e. a
set of constraints), f� is convex and positively 1-homogeneous, i.e. f�(kx, ky) =
kf�(x, y). Again, for x > 0 this can be verified directly from kxf(ky/kx) =
kxf(y/x), but this extends also to x = 0. If the domain of f∗ is R (or R

D if
f takes a vector argument), one obtains f�(0, y) = ı{y = 0} (we refer to the
supplementary material).

In this work we focus on MRFs with pairwise interactions. Hence, the poten-
tials will be defined on nodes s ∈ V and edges (s, t) ∈ E of a graph G = (V , E).
We will use

∑
s∼t as the easier-to-read replacement for

∑
s,t:(s,t)∈E .

3.2 Minimizing a Family of Convex Functions

It is well known and has been extensively used in the literature, that the mini-
mum of a finite number of values, e.g. {θ1, . . . , θn} can be formulated as convex
problem

min
i

θi = min
x

n∑

i=1

θixi = min
x

θTx (1)

subject to xi ≥ 0,
∑n

i=1 xi = 1 (i.e. x ∈ Δn, the n-dimensional unit simplex).
Note that the right hand side is a convex problem in x. The equivalence above is
essentially the basis of LP relaxations of Markov random fields, where x is usually
called the pseudo-marginal. Introducing the explicit weight vector x allows to
add constraints linking unary and clique potentials. We extend this construction
to a family of convex functions. Let {f1, . . . , fn} be a family of convex functions,
f i : [0, 1] → R and we consider the minimization problem

min
i

min
ξ∈[0,1]

f i(ξ). (2)

The task is to reformulate this problem into a form explicitly incorporating
a convex combination of weights, similar to Eq. 1. We will use the following
reformulation in our construction:

Observation 1. We have that

min
i

min
ξ∈[0,1]

f i(ξ) = min
x∈Δn,y:yi≤xi

n∑

i=1

f i
�(xi, yi) = min

x∈Δn,y:yi≤xi

n∑

i=1

xif
i(yi/xi).

(3)
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The proof is given in the supplementary material. At this point we want to add
a few remarks:

– If f i(ξ) = θi (constant functions), then Eq. 3 degenerates to Eq. 1. Surpris-
ingly, the same is true if f i linearly interpolates between e.g. θi and θi+1,
i.e. f i(ξ) = ξθi+1 + (1 − ξ)θi (like in Fig. 1(a)). This follows from the fact,
that the minimum is (also) attained at one breakpoint for piecewise linear
functions.

– If p := miniminξ∈[0,1] f
i(ξ) is not unique (with respect to i), then the

minimizer x∗ is not strictly binary, and for all i with x∗
i > 0, one has

x∗
i fi(y

∗
i /x

∗
i ) = p for optimal (x∗,y∗).

This construction also extends to families of functions {f i}i=1,...,n with vector-
valued arguments, i.e. f i : [0, 1]D → R with D being the dimension of the
domain. In this setting we have an analogy to Eq. 3,

min
i

min
ξ∈[0,1]D

f i(ξ) = min
x∈Δn,Y:yi≤xi

n∑

i=1

f i
�(xi,yi), (4)

where Y = (y1, . . . ,yn) ∈ [0, 1]D×n is now a D×n matrix instead of a n-vector,
and yi ≤ xi is understood element-wise.

4 Convex Discrete-Continuous Formulation for MRFs

This section describes our combined discrete-continuous approach to represent
labels for inference in MRFs. First, we review and reinterpret the standard local
polytope relaxation for MRFs, and subsequently introduce our extensions.

Recall from section 1 that we are addressing continuous labeling problems,
where a label value from the range [0, L] is assigned to each node s, where L is the
number of segments to represent the piecewise convex potentials. We are going
to represent the continuous label ls assigned at node s as ls =

∑
i(ix

i
s + yis),

where xi
s ∈ {0, 1} indicates the selected label range [i, i + 1] and yis ∈ [0, 1]

is the continuous offset within the subrange. Since exactly one subrange needs
to be selected, we have

∑
i x

i
s = 1. Enforcing xi

s to be either 0 or 1 is hard,
hence we relax xi

s ∈ {0, 1} to xi
s ∈ [0, 1]. The restriction to label ranges [0, L] is

not limiting, since general bounded label domains can be scaled and translated
without essentially changing the minimizer.

4.1 MAP Inference Using LP-MRF Relaxations Revisited

If one recalls the standard LP relaxation of discrete and labeling problem with
at most pairwise potentials, assigning one out of L states to each node,

ELP-MRF(x) =
∑

s,i

θisx
i
s +

∑

s∼t

∑

i,j

θijstx
ij
st (5)
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subject to xs ∈ ΔL, xst ∈ ΔL2

, and the marginalization constraints,

∑

j

xij
st = xi

s,
∑

i

xij
st = xj

t ∀s ∼ t, ∀i, j, (6)

then it is immediately clear that the objective is a sum of convex combinations
of the clique potentials θis and θijst, respectively. In the general higher-order MRF
setting there is one such convex combination for each clique. Since the “barycen-
tric” weights (or pseudo-marginals), xi

s and xij
st, are made explicit in the above

formulation, they can be coupled via marginalization constraints, thereby con-
necting clique variables xij

st with node marginals xi
s. By recalling the extension

described in Section 3.2 to find the global minimum of finite families of con-
vex functions via explicit weights, it becomes imminent that ELP-MRF can be
generalized in order to allow piecewise convex potentials.

4.2 Unary Potentials

The cost induced by unary potentials,
∑

i θ
i
sx

i
s, is easy to generalize: we assume

that real-valued convex functions f i
s : [0, 1] → R are given, then the new unary

cost reads as

∑

s

∑

i

(f i
s)�(x

i
s, y

i
s) =

∑

s

∑

i

xi
sf

i
s(y

i
s/x

i
s),

where we have also introduced continuous variables yis ≥ 0 to represent the
minimizer of f i

s. Since dom(f i
s) = [0, 1] (i.e. f i

s(ξ) = ∞ for ξ /∈ [0, 1]), we have
additional implicit constraints yis ≤ xi

s (in addition to the unit simplex con-
straint on xs). Since an assignment of an integral label value i > 0 at node s is
represented twice (as xi

s = 1, yis = 0, and alternatively as xi−1
s = 1, yis = 1), we

require that f i
s(0) = f i−1

s (1) (recall the graph in Fig. 1(b), which is continuous).

4.3 The General Discrete-Continuous Model

Generalizing the pairwise cost to continuous labels is far less trivial. In the fol-
lowing we present two models: the first formulation described in this section is
the proper generalization of the LP relaxation Eq. 5 and introduces extended
marginalization constraints. The second model discussed in Section 4.4 specifi-
cally addresses L1 smoothness costs, and is much more efficient to optimize.

Assume that a family of convex functions f ij
st : [0, 1]2 → R is given. Like for

the unary potentials we require that the induced graph of the smoothness cost
is continuous, i.e. f ij

st (0, ·) = f i−1,j
st (1, ·) and f ij

st (·, 0) = f i,j−1
st (·, 1). We replace

the standard pairwise cost for edge (s, t),

∑

i,j

θijstx
ij
st, by

∑

i,j

(f ij
st )�

(
xij
st, y

ij
st�

)
=

∑

i,j

xij
stf

ij
st

(
yijst→s

xij
st

,
yijst→t

xij
st

)

,



392 C. Zach and P. Kohli

where we introduced local copies yijst→s and yijst→t of y
i
s and yjt only relevant in

the scope of a label transition from i to j. Further, we use yijst� for the 2-vector

(yijst→s, y
ij
st→t). The values of yijst→s and yijst→t, respectively, must be consistent

with the node values, yis and yjt : we propose the following “decomposition” con-
straints,

yis =
∑

j

yijst→s and yjt =
∑

i

yijst→t. (7)

These constraints are not arbitrary, but define (together with the marginalization
constraints on xst and the bounds constraints 0 ≤ yijst→s ≤ xij

st, 0 ≤ yijst→t ≤ xij
st)

the convex hull of allowed configurations. We refer to the supplementary mate-
rial for the derivation. By combining the unary costs from Section 4.2 and the
extension for pairwise costs described above, one obtains the following discrete-
continuous labeling model,

EDC-MRF(x,y) =
∑

s,i

(f i
s)�(x

i
s, y

i
s) +

∑

s∼t

∑

i,j

(f ij
st )�(x

ij
st, y

ij
st�) (8)

s.t.
∑

j

xij
st = xi

s,
∑

i

xij
st = xj

t , y
i
s =

∑

j

yijst→s, y
j
t =

∑

i

yijst→t

xs ∈ ΔL, xst ∈ ΔL2

, 0 ≤ yis ≤ xi
s, 0 ≤ yijst� ≤ xij

st.

The constraints 0 ≤ yis ≤ xi
s and 0 ≤ yijst� ≤ xij

st are actually redundant, since

these constraints are implied by restricting f i
s and f ij

st to have domain [0, 1] and
[0, 1]2, respectively. Since the underlying implicit domain constraints might be
easily missed, we state these constraints on y here explicitly.

By comparingELP-MRF (Eq. 5) with EDC-MRF it is clear that the latter one is a
proper generalization of the LP relaxation and reduces to ELP-MRF for piecewise
linear potentials f i

s and f ij
st . The downside of this model is, that it is expensive to

optimize. Unlike ELP-MRF, which can be efficiently optimized by dual coordinate
methods (usually referred as message passing [20,4,21,22]), the dual of EDC-MRF

is more involved and may have O(L2) variables per node (depending whether
the 0 ≤ yijst� ≤ xij

st constraints are moved into f ij
st or not).

It is natural to ask whether the model in Eq. 8 returns globally optimal
results for arbitrary unary potentials and convex pairwise priors as it is the case
for the LP relaxation Eq. 5 [7]. Unfortunately, the answer seems to be negative
as indicated by our experiments. Global optimality is currently guaranteed only
for piecewise linear unary potentials and piecewise linear and convex pairwise
priors, and to globally convex unary and pairwise priors, i.e. the original problem
in terms of continuous labels assigned to nodes is convex. While in such cases it is
not reasonable to artificially subdivide the label range into L > 1 segments and
to optimize EDC-MRF, it is at least encouraging that the minimizer of EDC-MRF

returns the same solution as the original convex problem. Hence, the model in
Eq. 8 does not weaken the optimal solution.

We will give a sketch of the proof: let E1(z) =
∑

s Fs(z) +
∑

s∼t Gst(z) be
the original problem, with Fs and Gst convex functions corresponding to the
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unary and pairwise costs, respectively. For a given z we can determine feasible
arguments for EDC-MRF via e.g.

xi
s(z) =

{
1 if zs ∈ [i, i+ 1)

0 otherwise
yis(z) =

{
zs − i if zs ∈ [i, i+ 1)

0 otherwise.

Further, f i
s(ξ) = Fs(ξ+i) and f ij

st (ξs, ξt) = Gst(ξs+i, ξt+j). Let z∗ a minimizer of
E1 and (x∗,y∗) the minimizer of the corresponding discrete-continuous program
EDC-MRF Eq. 8. Since z∗ can be converted into a feasible argument (x(z∗),y(z∗))
of EDC-MRF, we have E1(z

∗) ≥ EDC-MRF(x
∗,y∗). On the other hand, EDC-MRF

consists only of convex combinations (subject to marginalization constraints) of
samples from convex functions, hence by Jensen’s inequality we have (for the
unary potentials)

∑

i

(f i
s)�(x

i
s, y

i
s) =

∑

i

xi
sf

i
s(y

i
s/x

i
s) ≥ Fs

(
∑

i

(
ixi

s + yis
)
)

.

A similar inequality holds for the pairwise terms. Overall we obtain E1(z
∗) ≤

EDC-MRF(x
∗,y∗) and together with E1(z

∗) ≥ EDC-MRF(x
∗,y∗) equality holds.

Experimentally we confirm this fact in Fig. 2, which shows the results of image
denoising using the (anisotropic) Rudin-Osher-Fatemi (ROF) model [23],

EROF (u; f) =
λ

2

∑

s

(us − fs)
2 +

∑

s∼t

|us − ut|. (9)

Since the data term in the ROF energy is quadratic, f i
s are quadratic and given

by f i
s(ξ) = λ(i + ξ − fs)

2/2 with ξ ∈ [0, 1]. The L1 smoothness term is slightly
more involved:

f ij
st (ξs, ξt) =

{
|ξs − ξt| if i = j

±(i− j + ξs − ξt) if i ≷ j
(10)

If e.g. i > j we have zs = i + ξs > zt = j + ξt, and the L1 smoothness cost is
therefore |zs − zt| = i− j + ξs − ξt. The other cases are similar.

4.4 Generalizing the “battleship” construction for L1 Smoothness

The LP relaxation of standard discrete labeling problems with general pairwise
smoothness costs (recall Eq. 5) requires to maintain O(L2) variables per node
(with respect to the label subrange count L) in the primal domain (the pairwise
pseudo-marginals xij

st). The constructions presented in [5,6]3 maintain only O(L)
unknowns per node. In order to understand the construction for L1 smoothness
in our discrete-continous approach, the properties of Eq. 5 must be analyzed for
this particular choice of pairwise potentials. The corresponding LP relaxation
reads as
3 Which is sometimes called the “battleship” construction due to the graph structure.
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(a) EROF = 143992 (b) EROF = 144002 (c) EROF = 565809 (d) EROF = 565973

Fig. 2. Visual and energy comparison between direct optimization [24] of the ROF
image denoising model (a, c), and artificially subdividing the label space [0, 255] into
4 even ranges and subsequent optimization of EDC-MRF (b, d). The small differences
in the obtained energy are likely due to the ultimately slow convergence of minimizing
EDC-MRF and due to numerical inaccuracies in require cube root computations.

ELP-MRF−L1(x) =
∑

s,i

θisx
i
s +

∑

s∼t

∑

i,j

|i− j|xij
st. (11)

subject to xs ∈ ΔL, xst ∈ ΔL2

, and the marginalization constraints Eq. 6. The
constraint

∑
i,j x

ij
st = 1 is redundant and can be dropped, thus xst ∈ ΔL2

can be

replaced by xij
st ≥ 0. The link between Eq. 11 and the battleship construction is,

that xii
st is eliminated from the marginalization constraints and the corresponding

non-negativity constraint is dropped.4

Via Fenchel duality it can be shown that the capacity constraints in the dual
of Eq. 11 are given by pist + pjts ≤ |i− j| and pist − pits = 0, respectively, for dual
variables pist, p

i
ts, representing the directed flow over edge (s, t). Since pist−pits =

0, pits can be eliminated, leaving capacity constraints pist − pjst ≤ |i − j|. Since
|·| is a metric, all other capacity constraints follow from pist − pi+1

st ≤ 1 and
pist − pi−1

st ≤ 1, i.e. only these constraints are necessary. By going back to the
primal program, this translates to the following objective,

ELP-Linear(x) =
∑

s,i

θisx
i
s +

∑

s∼t

∑

i

(
xi,i+1
st + xi,i−1

st

)
(12)

s.t. xi
s = xii

st + xi,i+1
st + xi,i−1

st xi
t = xii

st + xi−1,i
st + xi+1,i

st

xs ∈ ΔL, xi,i+1
st ≥ 0, xi,i−1

st ≥ 0.

It is possible to further simplify Eq. 12 to obtain the minimum-cut formulation
presented in [5,6], but the above formulation is the basis for our construction.

Before we continue, it is instructive to see, how a jump e.g. from label i to i+3
at edge (s, t) is actually represented in the above program: one has xi,i+1

st = 1,
xi+1,i+1
st = −1, xi+1,i+2

st = 1,xi+2,i+2
st = −1 and finally xi+2,i+3

st = 1, leading

4 Dropping xii
st ≥ 0 converts general pairwise potentials θijst into a metric, hence noth-

ing is lost whenever θijst is already a metric. A more detailed discussion of these
relations can be found in [25].
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the the correct smoothness cost of 3 and still satisfying all marginalization con-
straints. Thus, label discontinuities along an edge (s, t) correspond to chains of
+1 for xi,i+1

st (or xi,i−1
st ) and −1’s at respective xii

st to fulfill the marginalization
constraints for in-between labels.

In view of the energy Eq. 12 we only need to specify pairwise potentials for
transitions xii

st, x
i,i+1
st , and xi,i−1

st . These potentials are similar to the ones given
in Eq. 10 and read as

f ii
st(ξs, ξt) = |ξs − ξt| f i,i±1

st (ξs, ξt) = 1± (ξt − ξs). (13)

Further, since xii
st can be negative, we split xii

st into non-negative and non-positive
components, i.e. we replace xii

st by xii
st − x̄ii

st with xii
st ≥ 0 and x̄ii

st ≥ 0. After
combining everything the full program reads as

EDC-Linear(x,y) =
∑

s,i

(f i
s)�(x

i
s, y

i
s) +

∑

s∼t

∑

i

∑

k∈{0,±1}
(f i,i+k

st )�(x
i,i+k
st , yi,i+k

st� )

(14)

s.t. xi
s = xii

st + xi,i+1
st + xi,i−1

st − x̄ii
st, xi

t = xii
st + xi−1,i

st + xi+1,i
st − x̄ii

st,

yis = yiist→s + yi,i+1
st→s + yi,i−1

st→s, yit = yiist→t + yi−1,i
st→t + yi+1,i

st→t ,

xs ∈ ΔL, yis ∈ [0, xi
s], x

i,i+{0,±1}
st ≥ 0, y

i,i+{0,±1}
st� ∈ [

0, x
i,i+{0,±1}
st

]
.

Unlike ELP-Linear, which is equivalent to ELP-MRF−L1 , we do not yet know
whether EDC-Linear and EDC-MRF are equivalent for L1 smoothness. We ob-
served in our experiments, that minimizers of EDC-Linear have a slightly higher
(true) energy than solutions of EDC-MRF, but the numerical results are not fully
conclusive.

5 Numerical Results

In our numerical experiments we compare several methods: the baseline method
is the LP relaxation with a natural number of labels (256 for grayscale image
processing, 64 for dense stereo computation). Since we have L1 smoothness pri-
ors, we solve a respective minimum cut problem to find the minimizer. We call
the result “baseline” rather than ground truth, since the continuous label space
is still discretized. In order to judge the benefits of using convex potentials over
constant ones, we also apply the minimum cut on compressed sets of labels,
where the unary potentials are averaged (“GC-Avg”) or subsampled versions of
the original ones (“GC-Sampled”). Further, the impact of replacing the original
unary potentials by convex segments is demonstrated by running the baseline
method using convexified unary costs (“GC-Convex”). The full general model
described in Section 4.3 is denoted as “DC-MRF”, and the construction for L1

smoothness priors is depicted as “DC-Linear” in the following. Comparing the
results of DC-MRF/DC-Linear and the ones of GC-Convex indicate the tightness
of our proposed convex models.
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(a) Robust ROF (b) Stereo

Fig. 3. Fitting piecewise convex quadratic unary potentials (a) and lower envelopes
(b) to given data costs

We implemented prototype algorithms for finding minimizers of EDC-MRF for
L1 smoothness priors and EDC-Linear using the simultaneous-direction method
of multipliers (SDMM, see e.g. [26] for a comprehensive overview of proximal
methods for non-smooth convex optimization). General unary potentials are
transformed into a convex surrogate in each label range by fitting a quadratic
polynomial, such that the unary costs at the end-points are preserved. If the
fitted polynomial is concave, a linear approximation is used. Fig. 3 depicts two
cost profiles, a truncated quadratic data term of a robust ROF model and the
matching costs used for stereo, and the corresponding piecewise convex surro-
gates.

5.1 Robust ROF Energy

In order to determine the influence of reducing the number of ranges in the label
space, we utilize a robust version of the ROF energy, that replaces the quadratic
data term by the non-convex truncated one,

Erobust-ROF(u; f) =
λ

2

∑

s

min
{
(us − fs)

2, T
}
+
∑

s∼t

|us − ut|. (15)

Our choice of T is 500, hence deviations of about 22 grayscale units are consid-
ered as outliers. λ is set to 1/5. Figure 4(a) illustrates the baseline (reference)
result, and the minimizer of EDC-MRF using 8 ranges for the label space [0, 255]
is shown in Fig. 4(b). Further, a comparison in terms of PSNR between the
baseline and the results of the tested methods with varying numbers of ranges
is displayed in Fig. 4(c). From the graph we can learn two things: first, the
discrete-continuous models DC-MRF and DC-Linear are very close to the 256-
label result with convexified data term. Second, DC-MRF and DC-Linear are
far superior to naively reducing the number of discrete labels as in GC-Avg and
GC-Sampled. A full visual illustration of the obtained results and corresponding
values of Erobust-ROF are provided in the supplementary material. The supple-
mentary material also illustrates the evolution of energies with respect to CPU
time for the baseline approach and for the proposed discrete-continuous formu-
lation. In a nutshell minizming EDC-Linear quickly reaches an energy close to the
converged value for the robust ROF problem.
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(a) Baseline (b) DC-MRF (c) PSNR

Fig. 4. Visual comparison between the baseline solution (a) and the DC-MRF approach
(b) for the robust ROF denoising model. (c) illustrates the image differences to the
baseline solution for different methods. We were not able to minimize the full EDC-MRF

for 32 subranges due to memory consumption.

(a) 2 levels (b) 4 levels (c) 8 levels (d) Baseline

Fig. 5. Visual comparison for computational stereo using an L1 smoothness prior. The
columns correspond to numbers of used segment to represent the range [0, 128]. The
rightmost column always shows the (globally optimal) result of a max-flow approach
using 128 discrete labels for reference. 1st row: max-flow with sampled unary potentials.
2nd row: max-flow with averaged unary potentials. 3rd row: full 128-label maxflow, but
with convexified unary potentials in each subrange. 4th row: minimizers of EDC-Linear.
The differences between the 3rd and the 4th row illustrate how much a convexified
unary potential affects the minimizer and what is lost due to the compressed discrete-
continuous representation in EDC-Linear.
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5.2 Dense Stereo

Since the unary potentials of the robust ROF energy are very structured, we
illustrate our discrete-continuous MRF approach for the non-parametric data
term induced by stereo matching costs. We use the truncated L1 difference be-
tween 3× 3 patches after Sobel-filtering the (grayscale) input images, since this
is a realistic similarity measure for stereo. The truncation threshold is set to 20.
Since the full energy EDC-MRF is too expensive to optimize, we report visual
results for DC-Linear in Fig. 5. Following [8] we use a non-parametric convex
envelope to obtain a piece-wise convex approximation to the original matching
costs. The supplementary material also shows results for a parametric convex fit
using piece-wise quadratic surrogates.

6 Summary and Future Work

We presented a novel, discrete-continuous formulation to solve Markov random
fields over continuous label spaces. The proposed energy model is a proper exten-
sion of widely-used relaxations for labeling problems. While the proposed convex
approach is not a perfectly tight relaxation in general, preliminary numerical
results are promising. There are several directions for future work: most impor-
tantly, finding more efficient algorithms than our prototype implementation to
minimize the DC-MRF energy will enable applications for larger-scale problems.
Further, an improved theoretical analysis of the construction described in Sec-
tion 4.4 and respective generalizations are of high relevance. Finally, avoiding
the grid bias in the solution and using a more isotropic regularization approach
are beneficial in low-level vision applications and subject of future research.
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