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Abstract Major depressive disorder (MDD) is the fourth leading cause of disease

burden worldwide, and women have approximately two times the risk of onset than

men. Thus understanding the pathophysiology of MDD has widespread

implications for attenuation and prevention of disease burden, particularly in

women. MDD has been historically linked to adrenal and gonadal hormone

dysregulation. This review argues the importance of applying prenatal stress

models [i.e., fetal disruption of hypothalamic-pituitary-adrenal axis (HPA) cir-

cuitry] to understanding the fetal programming of sex differences in MDD. We

review the literature on the important roles of HPA and HP-gonadal (HPG)

hormones in understanding the comorbidity of MDD and endocrine dysregulation.

We further review the literature on the fetal programming of MDD. Integrating

J.M. Goldstein (*)

Brigham and Women’s Hospital Departments of Psychiatry and Medicine, Division of Women’s

Health, Connors Center for Women’s Health and Gender Biology, Boston, MA, USA

Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA

Department of Psychiatry, Division of Psychiatric Neuroscience, Massachusetts General Hospital,

55 Fruit Street, Boston, MA 02114, USA

e-mail: jill_goldstein@hms.harvard.edu

L.M. Holsen

Brigham and Women’s Hospital Departments of Psychiatry and Medicine, Division of Women’s

Health, Connors Center for Women’s Health and Gender Biology, Boston, MA, USA

Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA

R. Handa

Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ,

USA

S. Tobet

Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA

D.W. Pfaff and Y. Christen (eds.), Multiple Origins of Sex Differences in Brain,
Research and Perspectives in Endocrine Interactions,

DOI 10.1007/978-3-642-33721-5_10, # Springer-Verlag Berlin Heidelberg 2013

139

mailto:jill_goldstein@hms.harvard.edu


these literatures and our current work, we argue the critical importance of

investigating the disruption of the development of fetal HPA circuitry, during

periods in which the sexual differentiation of the brain occurs, that we hypothesize

place the male or female fetus at differential risks for MDD in adulthood. We

believe that an understanding of the mechanisms involved in sex differences in the

dysregulation of gonadal and adrenal hormones during fetal development in MDD

will have etiologic implications and importance for the psychopharmacologic and

hormonal treatment and prevention of MDD, particularly in women.

Clinical Evidence of Endocrine Disruption Related

to Mood Disorders

Major depressive disorder (MDD) is the fourth leading cause of disease burden

worldwide (Murray and Lopez 1997; Ustun et al. 2004), and the incidence of MDD

in women is twice that of men (Kessler 2003; Kendler et al. 2006). Thus, understand-

ing the pathophysiology of MDD has widespread implications for attenuation and

prevention of disease burden (Ustun et al. 2004), particularly in women. Over 40

years of research implicates hormonal dysregulation in mood disorders, with the

earliest reports citing elevated cortisol in patients with major depression (Board et al.

1956; Gibbons and McHugh 1962). While in subsequent years a number of hormonal

systems have been demonstrated to be associated with depression [i.e., appetite-

regulatory, thyroid, and growth hormones (Coplan et al. 2000; Brouwer et al. 2005;

Kurt et al. 2007; Barim et al. 2009)], evidence overwhelmingly supports the involve-

ment of the hypothalamic-pituitary-adrenal (HPA) and hypothalamic-pituitary-

gonadal (HPG) axes (Plotsky et al. 1998; Young and Korszun 2002; Swaab et al.

2005) in the development of mood dysregulation. In particular, hormonal

dysfunctions in women have been found to precede MDD onset (Nemeroff et al.

1984; Harlow et al. 2003), suggesting that hormonal abnormalities are important in

female vulnerability to MDD. Despite the important findings stemming from this

critical line of investigation, there is a dearth of literature on sex differences in HPA-/

HPG-axis functioning. Further, a number of other confounds (illness state versus

disorder trait, treatment and medication status, age, and single episode versus recur-

rent diagnosis of MDD) present challenges to elucidating the role of sex in the co-

occurrence of hormonal dysregulation and mood disorders.

HPA Axis and MDD

There is a long history of work characterizing the HPA system as central to

understanding the development of MDD (Nemeroff et al. 1984; Holsboer et al.

1987; Plotsky et al. 1998; Arborelius et al. 1999; Heim et al. 2002; Parker et al.
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2003; Raison and Miller 2003; Barden 2004; Swaab et al. 2005; Antonijevic 2006).

Depressive symptoms can occur in the context of either endogenously elevated

cortisol (i.e., Cushing syndrome; Sonino et al. 1998) or exogenously administered

corticosteroids (Kelly et al. 1980), and patients treated with corticosteroids can

develop MDD (Ling et al. 1981). Animal and human studies demonstrated consis-

tent HPA axis abnormalities associated with MDD, most notably elevated levels of

cortisol in plasma, CSF, and 24-h urine, in addition to high CSF fluid corticotrophin

releasing hormone (CRH) levels, blunted responses to CRH administration, and

nonsupression of cortisol secretion upon dexamethasone suppression test (Carroll

et al. 1976a, b, 1981; Jarrett et al. 1983; Nemeroff et al. 1984; Halbreich et al. 1985;

Holsboer et al. 1985; Banki et al. 1987; Evans and Nemeroff 1987; Holsboer et al.

1987; Rubin et al. 1987; Nemeroff et al. 1991; Arborelius et al. 1999; Heim and

Nemeroff 2001; Heim et al. 2001; Newport et al. 2003; Oquendo et al. 2003; Raison

and Miller 2003; Barden 2004). HPA dysregulation has been related to, among

other things, age (Nelson et al. 1984a, b; Bremmer et al. 2007), depression subtype

(hypercortisolemia in atypical depression and normal cortisol levels in melancho-

lia; Brouwer et al. 2005), and single versus recurrent episodes (Poor et al. 2004).

Several studies have examined the utility of HPA reactivity as an indicator of

treatment response in MDD. For example, while the elevation in CRH has been

shown to resolve with treatment (Nemeroff et al. 1991; De Bellis et al. 1993; Veith

et al. 1993), some studies report an incomplete resolution to normal levels,

suggesting that these HPA abnormalities may be part of the vulnerability to MDD

(or a trait) and not only state-related. Although decreases following treatment in

abnormally elevated pre-treatment cortisol levels have been widely reported

(Gibbons and McHugh 1962; Carroll et al. 1976a, b), a recent meta-analysis

found that cortisol levels did not change pre- versus post-treatment in over half of

subjects with depression (McKay and Zakzanis 2010). An examination of subject

characteristics related to changes in cortisol post-treatment revealed the greatest

decreases in those with the melancholic subtype. Time of sample collection,

inpatient versus outpatient setting, type of treatment or antidepressant, subject

sex, and number of past episodes were not associated with cortisol changes follow-

ing treatment, although the length of the current episode was negatively associated

with change in cortisol levels (McKay and Zakzanis 2010). This finding supported

the hypothesis that the nature of HPA axis dysregulation shifts dramatically from

acute [overall hypersecretion of corticotrophin releasing hormone (CRH),

adrenocorticotropin hormone (ACTH), and cortisol] to chronic (reduced ACTH

and hypercortisolemia) phases of depression (Parker et al. 2003).

The issues of state versus trait (independent of treatment) and underlying

vulnerability to relapse in depression have been examined sparingly, with findings

initially pointing to hypercortisolemia as a state (not trait) feature of MDD. In

remitted patients compared with controls, cortisol levels were reported to be similar

(Trestman et al. 1993) or even decreased (Ahrens et al. 2008), although these

studies were small (n/group ~20–30). However, a recent well-powered study

examined morning and evening salivary cortisol levels in 308 controls, 579

individuals with remitted MDD, and 701 patients currently in an MDD episode
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(Vreeburg et al. 2009). Results showed that remitted and current MDD subjects

demonstrated significantly higher awakening cortisol levels compared to controls,

providing compelling evidence that elevated cortisol is not specific to current state

but persists following recovery and may therefore be a trait characteristic (Vreeburg

et al. 2009). Although findings held when adjusted for sex (57–71 % female,

depending on group) and other demographic variables, specific sex differences

were not explored. When tracked longitudinally, baseline cortisol and dexametha-

sone suppression test abnormalities also predicted vulnerability to relapse, neces-

sity for continued medication to sustain remission, and remission rate following

hospitalization in MDD (O’Toole et al. 1997; Zobel et al. 1999; Appelhof et al.

2006; Ising et al. 2007).

Further evidence for the role of the adrenal cortex is suggested by work on

dehydroepiandrosterone sulfate (DHEA-S) and MDD. DHEA-S, which is produced

by the adrenal gland, is considered a weak androgen and has been significantly

associated with MDD, depending on age and sex (Orentreich et al. 1984; Schmidt

et al. 2002), illness severity, medication status, and time of sampling. In unmedi-

cated MDD patients, DHEA-S had anti-glucocorticoid action in the brain (Young

et al. 2002; van Broekhoven and Verkes 2003). In fact, studies demonstrated lower

depressive symptoms and better memory function with increased levels of DHEA-S

(Wolkowitz et al. 1999; van Broekhoven and Verkes 2003). A high cortisol:DHEA-

S ratio, which is a functional indicator of hypercortisolemia (Gallagher and Young

2002), was significantly associated with MDD, emphasizing anti-glucocorticoid

DHEA-S action (Young et al. 2002; van Broekhoven and Verkes 2003).

Despite significant advances in understanding the comorbidity of major depres-

sion and HPA axis dysregulation as evidenced above, there is a paucity of data on

sex differences in the comorbidity. This is striking for three reasons. First, as

mentioned previously, there are well-documented sex differences in MDD inci-

dence and prevalence (Kessler 2003; Kendler et al. 2006). Second, substantial data

support sex differences in HPA-HPG axes functioning during stress in healthy

control populations (Kudielka and Kirschbaum 2005; Goldstein et al. 2010;

Andreano et al. 2011) and in MDD women (Holsen et al. 2011). Finally, as

discussed below, there are significant interactions of the HPA axis with the HPG

axis, which we know is different between the sexes.

Among the few investigations reporting significant sex differences in HPA axis

functioning in MDD, the direction of effects is mixed. Men, but not women, with

MDD demonstrate abnormal ACTH pulsatility (Young et al. 2007a). Additionally,

elevated cortisol has been documented in depressed men versus depressed women

(Bremmer et al. 2007) and versus non-depressed men (Hinkelmann et al. 2011), but

also in depressed women versus depressed men (Poor et al. 2004) versus non-

depressed women (Young and Altemus 2004; Chopra et al. 2009). These conflicting

reports on sex differences in cortisol levels may be related to timing of cortisol

assessment across studies and/or genetic factors. Recent data suggest an interaction

between sex and adrenoreceptor gene polymorphisms in HPA hyperactivity using a

dexamethasone/CRH test pre- and post-treatment (Haefner et al. 2008). Specifi-

cally, increased ACTH and cortisol responses were seen in males (but not females)
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homozygotic for the alpha(2)-adrenoreceptor (ADRA2A) gene and females (but

not males) homozygotic for the beta(2)-adrenoreceptor (ADRB2) gene (Haefner

et al. 2008). Collectively these findings offer initial evidence of sex differences in

the role of HPA axis functioning in MDD pathophysiology.

Several reports have found no effect of sex on HPA dysfunction in MDD

(Carroll et al. 1976a, b; Nelson et al. 1984a; Maes et al. 1987, 1989, 1994; Dahl

et al. 1989; Deuschle et al. 1998; Brouwer et al. 2005; Rubin et al. 2006; Vreeburg

et al. 2009). However, the majority of these studies cited above (including those

reporting sex differences and those with null findings) did not initially design their

studies to investigate sex differences but rather analyzed the data by sex post hoc.

This approach is problematic, since potential confounding (uncontrolled in the

initial designs) is typical. For example, the vast majority of studies of MDD

oversample women (Maes et al. 1987; Brouwer et al. 2005; Rubin et al. 2006;

Young et al. 2007a; Vreeburg et al. 2009; Hinkelmann et al. 2011). Some have

matched on sex whereas some included women using oral contraceptives or

estrogen-replacement therapy (Brouwer et al. 2005), which have been shown to

affect plasma levels of cortisol (Kirschbaum et al. 1999). Further, only a few

mention “matching for menstrual status” (Maes et al. 1987; Rubin et al. 2006),

and those that do generally refer to including similar numbers of women who are

pre- or post-menopausal rather than actually controlling for menstrual cycle phase

(for example, conducting study visits only within certain phases such as early

follicular or late luteal). These methodological confounds present significant

challenges to understanding the inconsistencies in the literature on sex differences

in HPA axis dysregulation and MDD comorbidity.

The importance of HPA axis abnormalities in MDD is underscored by human

postmortem studies. One human postmortem study found a 25 % decrease in the

density of glucocorticoid receptor (GR) mRNA in MDD compared with healthy

brains in frontal cortex, dentate gyrus, and subiculum, suggesting a down-

regulation of GRs affecting the negative feedback system of the HPA axis resulting

in hypercortisolemia (Webster et al. 2002). CRH action on ACTH is potentiated by

arginine vasopressin (AVP), which is co-expressed with CRH in some neurons of

the paraventricular nucleus of the hypothalamus (PVN) and was enhanced in MDD

(von Bardeleben et al. 1989; Muller and Holsboer 2006). A recent postmortem

study reported increased AVP mRNA in the PVN and supraoptic nucleus in MDD,

particularly with melancholic features (Meynen et al. 2006). This finding is consis-

tent with an increased number of AVP-immunoreactive neurons in PVN (Purba

et al. 1996), particularly those co-localizing with increased CRH in PVN in MDD

(Raadsheer et al. 1994a, b). It is also consistent with studies of MDD reporting

elevated AVP plasma levels (van Londen et al. 1997; van Amelsvoort et al. 2001;

de Winter et al. 2003), positive correlations of plasma AVP with cortisol (De Bellis

et al. 1994; Inder et al. 1997; de Winter et al. 2003), and increased ACTH and

cortisol in MDD and controls with intravenous administration of AVP (Gispen-de

Wied et al. 1992), which are findings that were not due to medication confounds

(van Londen et al. 1997; van Amelsvoort et al. 2001; Meynen et al. 2006).
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HPG Axis and MDD

The relationship between mood disturbances and gonadal hormones was initially

recognized, in part, through developmental endocrine disorders such as polycystic

ovarian syndrome (PCOS), which is associated with high levels of comorbid

depression (Himelein and Thatcher 2006b). The mechanisms behind this comor-

bidity are not fully understood, as data do not support an association between

depressive symptoms and androgen levels, infertility issues, or hirsutism (Keegan

et al. 2003; Rasgon et al. 2003; McCook et al. 2005; Himelein and Thatcher 2006a).

Further evidence is derived from the abundant literature relating women’s repro-

ductive system to mood fluctuations and depression (Payne 2003; Spinelli 2005;

Payne et al. 2009). For example, pubertal onset (Angold and Costello 2006), late

luteal menstrual cycle phase (Steiner 1992), chronic use of oral contraceptives

(Young et al. 2007b), the postpartum period (Bloch et al. 2000; Brummelte and

Galea 2010), and postmenopause (Graziottin and Serafini 2009) are all associated

with vulnerability to MDD. However, the establishment of this relationship in

women has not been accompanied by parallel examination of possible hormonal

deficits linked to mood dysregulation in men at similar ages.

Human studies of MDD patients have found deficits in gonadal function

(Rubinow and Schmidt 1996; Harlow et al. 2003), e.g., androgens (Baischer et al.

1995; Rubinow and Schmidt 1996; Schweiger et al. 1999; Seidman et al. 2001;

Weiner et al. 2004) and estradiol (Young et al. 2000), and pituitary function, i.e.,

low follicle stimulating hormone (FSH; Daly et al. 2003). Women with persistent

MDD had two times the risk of earlier perimenopausal transition, and those with a

lifetime history of MDD had higher FSH and lower estradiol levels, suggesting an

early decline in ovarian function (Young et al. 2000; Harlow et al. 2003). Further

reports suggested a relationship between depressive symptom severity and estradiol

levels (Baischer et al. 1995) and that ovarian dysfunction preceded the onset of

MDD (Harlow et al. 2003). Abnormalities in luteinizing hormone (LH) levels and

pulsatility in women with MDD have been consistently documented (Young et al.

2000; Meller et al. 2001; Harlow et al. 2003). LH pulse frequency and testosterone

secretion in males with MDD were also lower (Schweiger et al. 1999), although

conflicting reports suggested relatively normal HPG axis functioning in MDD

males (Rubin et al. 1989).

HPA-HPG Interactions

There is some evidence that inhibition of HPG activity by stress and other factors

may be linked to HPA activity (Halbreich and Kahn 2001). CRH inhibits gonado-

tropin releasing hormone (GnRH) and gonadotropin secretion in model animal

studies (Nikolarakis et al. 1986; Olster and Ferin 1987). In fact, the low levels of

estradiol seen in MDD premenopausal women may lead to decreased inhibitory
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feedback of the HPA axis in the presence of increased HPA drive with unopposed

progesterone. This may in turn account for elevated levels of cortisol in MDD

women compared to MDD men or non-depressed women (Young and Altemus

2004). Although the mood disturbances in premenstrual syndrome do not reach the

severity or duration of major depression, transient dysregulation of the HPA axis

during the luteal phase has been noted in this population (Rabin et al. 1990; Roca

et al. 2003), offering further support for the influence of gonadal steroid hormones

on HPA functioning related to mood.

Further, in postmortem studies of MDD, CRH-producing neurons in PVN that

co-localized with estrogen receptor alpha (ERa) were enhanced in MDD, again

suggesting HPA-HPG interactions in MDD (Bao et al. 2005). In our recent func-

tional imaging study in MDD women, gonadal hormone abnormalities (lower

estradiol) were significantly associated with functional brain activity deficits in

key regions in the stress response circuitry (e.g., amygdala and hippocampus;

Holsen et al. 2011). We are currently testing the hypothesis that the vulnerability

for these stress response circuitry deficits and endocrine abnormalities begins

during fetal development.

Brain Circuitry Linking MDD, HPA and HPG

The comorbidity between depression and HPA-HPG-axis dysregulation is not

surprising from a brain circuitry point of view, given that depression is a disorder

that involves hypothalamic nuclei [such as paraventricular (PVN) and ventromedial

(VMN)], central amygdala, hippocampus, subgenual anterior cingulate cortex

(ACC), and medial and orbitofrontal cortex (mPFC OFC; Dougherty and Rauch

1997; Mayberg 1997; Drevets et al. 2002; Sheline et al. 2002; Rauch et al. 2003),

regions that are dense in glucocorticoid and sex steroid hormone receptors

(MacLusky et al. 1987; Clark et al. 1988; Handa et al. 1994; Kawata 1995; Tobet

and Hanna 1997; Donahue et al. 2000; Östlund et al. 2003). The overlap between

these circuitries has been historically noted from behavioral and endocrinological

findings but, with the advent of magnetic resonance imaging (MRI) technology,

there is a greater focus on the investigation of brain circuitry implicated in the

regulation of mood and endocrine functioning. This technology allows for

hypothesis-driven in vivo exploration of this shared circuitry.

HPA Axis Hormones Associated with Brain Activity

Over the past 5 years, there has been a rapid increase in studies examining the

relationship between HPA hormones (more specifically endogenous and exogenous

cortisol) and brain activity in subcortical and cortical stress response regions using a

variety of functional MRI (fMRI) paradigms in healthy control subjects (generally

comprising mixed-gender samples with age ranges between 18 and 35 years).
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Amygdala and hippocampal activity in response to stimuli of high negative emo-

tionality was positively associated with pre- versus post-scan (Root et al. 2009) and

diurnal amplitude (Cunningham-Bussel et al. 2009) salivary cortisol. This relation-

ship between hyperactivation in the amygdala and increased cortisol is supported

by additional evidence suggesting that, when categorized by level of endogenous

cortisol, individuals with high cortisol demonstrate greater amygdala activity than

those with low cortisol levels (van Stegeren et al. 2007, 2008), an effect that is

blocked by administration of a noradrenergic antagonist. Cushing syndrome (CS),

which is associated with chronic hypercortisolemia, also appears to be associated

with hyperactivity in arousal regions. Adolescents with CS compared with age- and

gender-matched controls demonstrated increased activation of the amygdala and

hippocampus during successful encoding of emotional faces, despite similar mem-

ory performance (Maheu et al. 2008). Further, adults with CS showed

hyperactivation in the anterior hippocampus, medial frontal gyrus, ACC, caudate,

and superior parietal lobule during identification of emotional facial expressions.

Accuracy in CS patients was lower and correlated with brain activity, suggesting

these differences could be partially explained by compensatory recruitment of these

regions (Langenecker et al. 2012). However, in general, these findings point to a

pattern of significantly enhanced activation in the presence of heightened endoge-

nous cortisol levels in healthy controls and CS patients.

In cortical stress response circuitry regions, however, somewhat contrasting

results emerge. For example, one study reported a negative correlation between

ventromedial prefrontal cortical activation to negative (versus neutral) stimuli and

pre- versus post-scan cortisol levels (Root et al. 2009). Further, decreased

activations in the ACC and OFC were observed in individuals who demonstrated

a significant increase in cortisol levels (i.e., “responders”) during a psychosocial

stress paradigm (negative feedback during arithmetic problems), as compared to

cortisol non-responders (Pruessner et al. 2008). Interestingly, although several of

these studies included sex as a covariate in the analyses, only one focused specifi-

cally on sex differences. They reported a lateralized pattern of activations in the

frontal cortex in males [i.e., increased cerebral blood flow (CBF) in the right PFC

and decreased in left OFC, which were associated with cortisol levels] and

activations in the ventral striatum, putamen insula, and ACC (unrelated to cortisol

level variation) in females (Wang et al. 2007). Taken together, these findings

suggest potentially divergent roles of subcortical versus cortical arousal regions

in response to stress and cortisol variation, which may be influenced by gonadal

steroid hormones given substantial differences in activation patterns between men

and women and the importance of HPA and HPG interactions.

Importantly, the literature on changes in endogenous cortisol levels associated

with brain responses to emotional and stressful paradigms highlights the significant

variability among even healthy individuals in the psychophysiological reaction to

stress, as not all study subjects are ultimately classified as cortisol “responders”

(Wust et al. 2000; Muehlhan et al. 2011). One methodological alternative to relying

on natural variation in cortisol levels is to observe similar phenomena following

administration of exogenous cortisol (i.e., hydrocortisone). In general, the
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amygdala and hippocampus appear to be most sensitive to hydrocortisone,

demonstrating significant decreases in activation in comparison to placebo (Lovallo

et al. 2010). Striking sex differences in the neural response to hydrocortisone

(versus placebo) during fear conditioning have been observed, with increased

activation in the ACC, OFC, and mPFC in response to the conditioned (versus

unconditioned) stimulus in females and decreases in these same regions in males

(Stark et al. 2006; Merz et al. 2010).

HPG Axis Hormones Associated with Brain Activity

Although studies on the HPA hormone-brain relationships occasionally report

controlling for menstrual cycle phase in women (Stark et al. 2006), gonadal hormone

variation is the primary focus of functional neuroimaging studies of HPG hormone

effects on brain activity. A number of investigations have provided evidence of

estradiol and progesterone influences on brain activity during cognitive paradigms,

including executive functioning (Berman et al. 1997), language processing (Fernandez

et al. 2003), and verbal memory (Craig et al. 2008; Konrad et al. 2008) among others

(Dietrich et al. 2001; de Leeuw et al. 2006). Here we focus on emotional paradigms,

given the role of emotion dysregulation in mood disorders. Activation in stress response

circuitry regions has been shown to be modulated across menstrual cycle in healthy

women in response to negative arousal images, with greater activation in the anterior

hypothalamus, amygdala, hippocampus, ACC, and OFC during the early follicular

phase compared with late follicular/midcycle (Goldstein et al. 2005). Further, in

healthy women, hyperactivity of the amygdala and hippocampus was present during

late luteal compared with early follicular menstrual cycle phase (Andreano and Cahill

2010), with estradiol being negatively associated with amygdala activation (Andreano

and Cahill 2010). Direct comparisons between males and females were consistent with

these patterns, with greater hyperactivity in men than in women during their late

follicular/midcycle compared to when they were in early follicular (Goldstein et al.

2010). Results suggested gonadal hormonal modulation of subcortical arousal by

prefrontal circuitry (Goldstein et al. 2005, 2010).

Using paradigms that examine inhibitory control during cognitive and emotional

processing, inhibitory responses to negative (versus neutral) emotional stimuli

targets during the luteal phase (versus follicular) are associated with greater activa-

tion in the medial OFC (Protopopescu et al. 2005), ACC, DLPFC, and putamen

(Amin et al. 2006). In contrast, increased OFC activity during follicular rather than

luteal phase was observed in response to male faces judged on sexual desirability

(Rupp et al. 2009), which may suggest a significant shift in OFC processing and

decision-making related to positive and negative stimuli across the menstrual cycle.

However, a study utilizing a reward paradigm recently demonstrated greater follic-

ular than luteal phase activation to anticipation of positive reward delivery in the

OFC (Dreher et al. 2007). These discrepancies might be related to differences in

menstrual phase definition, with follicular phase defined as days 4–8 (Dreher et al.
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2007), 8–12 (Protopopescu et al. 2005), or 10–12 after the start of menstruation

(Rupp et al. 2009), and luteal phase defined as 19–23 days following the start of

menstruation (Rupp et al. 2009), 6–10 days post LH surge (Dreher et al. 2007), or

1–5 days before menses onset (Protopopescu et al. 2005). Although the healthy

control women in these samples had regular cycles, this variation in phase defini-

tion across studies could have significant effects on estradiol and progesterone

levels, leading to substantial differences reported in these studies in brain activity

across the menstrual cycle.

Similar to literature (cited above) on exogenous HPA hormone administration and

brain activity, a number of investigations have examined effects of exogenous

gonadal hormone regulation of neural responses to emotional stimuli. Compared

with placebo, progesterone administration (during early follicular phase when pro-

gesterone levels are naturally low) is related to increased amygdala reactivity to

emotional face processing, increased amygdala-dorsal ACC connectivity, and

decreased amygdala-fusiform gyrus connectivity (van Wingen et al. 2008b). Testos-

terone administration, contrastingly, increased hippocampus and inferior temporal

gyrus activation during memory formation and retrieval of male faces in middle-aged

women (van Wingen et al. 2008a). Compared with placebo, testosterone increased

amygdala responsivity to levels equivalent to those observed in young women (van

Wingen et al. 2009) and reduced functional connectivity between the amygdala and

OFC (vanWingen et al. 2010). Thus, administration of exogenous gonadal hormones

exerts significant influence on amygdala responsivity in general and coupling

between the amygdala and other limbic and cortical regions during evaluation of

emotionally salient cues.

Recent Findings in Mood Disorders

A few studies recently demonstrated compelling evidence of links between HPA-

HPG hormone dysregulation and brain activity deficits in MDD. Hydrocortisone

administration to currently depressed women resulted in increased hippocampal

activation during encoding of neutral (versus negative or positive) words in com-

parison to healthy control women, a trend not observed during placebo

(Abercrombie et al. 2011). Importantly, this relationship between exogenous corti-

sol administration and memory formation did not occur in depressed men,

suggesting sex differences in the effect of cortisol on memory processing in

depression (Abercrombie et al. 2011). Further, we showed that young women

with MDD displayed hypoactivation in a number of regions involved in the stress

response circuitry that were significantly associated with gonadal hormone deficits

(Holsen et al. 2011), including decreased estradiol and increased progesterone

levels in MDD women during late follicular/midcycle phase of the menstrual

cycle. Finally, hypoactivation to positive stimuli in the nucleus accumbens and

hyperactivations in the amygdala and lateral OFC in response to negative stimuli

during the luteal phase (versus late follicular) were reported in women with

148 J.M. Goldstein et al.



premenstrual dysphoric disorder compared with healthy controls (Protopopescu

et al. 2008b). Findings from these initial studies indicate a complex interaction

between HPA (cortisol) and HPG (progesterone, estradiol) dysregulation and brain

activation during cognitive and emotional processing (respectively) in women with

mood disorders, providing support for mechanisms implicating neuroendocrine

systems associated with sex differences in depression.

Sexual Dimorphisms in Shared Mood and Endocrine Circuitry

Extant literature suggests that the circuitry shared between mood regulation and

endocrine functioning also includes highly sexually dimorphic regions and there-

fore may help us understand sex differences in MDD. In vivo imaging and post-

mortem studies have demonstrated sex differences in brain volumes (or nuclei) of

regions associated with MDD. In women, relative to cerebrum size, findings

support greater relative volumes of hippocampus (Filipek et al. 1994; Giedd et al.

1996; Murphy et al. 1996; Goldstein et al. 2001), ACC (Paus et al. 1996; Goldstein

et al. 2001) and OFC (Goldstein et al. 2001). In men, there are greater volumes

(relative to cerebrum size) of the amygdala (Giedd et al. 1996; Goldstein et al.

2001), hypothalamus (Swaab and Fliers 1985; Allen et al. 1989; Goldstein et al.

2001), and paracingulate gyrus (Paus et al. 1996; Goldstein et al. 2001). Thus

women tend to have relatively larger volumes of hippocampus, OFC, and ACG,

whereas men have relatively larger amygdala and hypothalamic volumes. Recent

findings offer additional evidence that regional brain volumes in women vary

across the menstrual cycle, with hippocampal gray matter volume increased and

dorsal basal ganglia gray matter volume decreased during follicular rather than

luteal phase (Protopopescu et al. 2008a). Further, estradiol, progesterone, and

testosterone levels in young adults explained 13 %, 13 %, and 2 % in the variation

of superior parietal gyrus, medial temporal pole, and inferior frontal gyrus gray

matter volume, respectively (Witte et al. 2010), suggesting significant associations

between gonadal hormone levels and neuroanatomic variation in humans.

One potential factor involved in human sexual dimorphisms may be the role of

gonadal hormones on brain development, as seen in particular in model animal

work by collaborators Tobet and Handa (McEwen 1983; Simerly et al. 1990;

Tobet et al. 1993, 2009; O’Keefe et al. 1995; Park et al. 1996; Tobet and Hanna

1997; Gorski 2000; Chung et al. 2006). Our findings in humans indirectly

suggested that this factor might also, in part, contribute to understanding human

sexual dimorphisms in adulthood (Goldstein et al. 2001). In animals, nuclei of the

corticomedial amygdala, PVN, VMN, hippocampus, OFC, and ACG express high

concentrations of gonadal and/or adrenal hormone receptors compared with other

brain regions (Handa et al. 1994; Pacak et al. 1995; Koob 1999; Solum and Handa

2002; Tobet 2002; Östlund et al. 2003; Lund et al. 2004, 2006; Suzuki and Handa

2004). These brain regions have been implicated in MDD and HPA function. Our

hypotheses are in part based on the premise, supported by our work on sex
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differences in another disorder with fetal origins, schizophrenia (Goldstein et al.

2002), that normal sexual dimorphisms during fetal development in MDD may go

awry in brain regions associated with MDD and HPA function and that

mechanisms involved in understanding normal sexual dimorphisms, such as the

roles of gonadal and adrenal hormones (in association with genes; Handa et al.

1994; Majdic and Tobet 2011), will contribute to understanding sex differences in

MDD in adulthood.

Prenatal Stress Models of Understanding Sex Differences

in MDD and Comorbid Endocrine Dysregulation

Preclinical and clinical studies have demonstrated lasting effects of prenatal adverse

events on the HPA axis and noradrenergic stress systems (Takahashi et al. 1992;

Weinstock et al. 1992; Vallee et al. 1997; Weinstock 1997). These include

conditioned stress responses such as heightened glucocorticoid, norepinephrine,

and autonomic response to novel stressors and altered dopaminergic, gamma

aminobutyric acid (GABA)-ergic, and serotonergic function (Heim et al. 2000;

Heim and Nemeroff 2001). Animal studies demonstrated the impact of prenatal stress

on hypothalamic and hippocampal structure and function (Takahashi et al. 1992;

Matsumoto and Arai 1997; Weinstock 1997), with lasting effects on the HPA axis in

adult offspring by programming a “hyperactive” system that was vulnerable to adult

depression, anxiety, and autonomic nervous system deficits among others (Weinstock

et al. 1992; Henry et al. 1994; Barker 1995; Arborelius et al. 1999; Seckl 2001). Our

current work has demonstrated that mid-to-late gestation is a particularly vulnerable

time for the impact of prenatal events on sex-specific brain development (Tobet et al.

2009; Majdic and Tobet 2011) and development of the hormonal systems such as

HPA (Celsi et al. 1998; Slotkin et al. 1998; Tronche et al. 1999; Sandau and Handa

2007; Zuloaga et al. 2011). Thus preclinical studies, including our own work, have

demonstrated the vulnerability of the HPA system to adverse prenatal events with

sex-specific effects on HPA function and affect.

Models for investigation of HPA compromise have included prenatal stress and

infection during mid-to-late gestation that have demonstrated sex-specific effects in

preclinical studies. From preclinical studies, sex effects (i.e., greater in females than

males) include (1) greater glucocorticoid transfer across the placenta in female mice

(Montano et al. 1993; Fameli et al. 1994); (2) greater immobility in standard tests

associated with MDD phenotypic behavior (Alonso et al. 2000); (3) increased

ACTH corticosterone and glucocorticoid receptor (GR) binding (Weinstock et al.

1992; McCormick et al. 1995; Regan et al. 2004); (4) increased corticosterone

sensitivity (Rhodes and Rubin 1999); (5) greater susceptibility to changes following

loss of GABAB receptor function (McClellan et al. 2010; Stratton et al. 2011); (6)

greater susceptibility to cell death in the amygdala following developmental expo-

sure to the glucocorticoid agonist dexamethasone (Zuloaga et al. 2011); and (7)
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greater susceptibility to diet-induced hepatosteatosis and insulin growth factor

(IGF)-1 deficits (Carbone et al. 2011). In humans, MDD females compared with

MDD males show (1) increased GR and MR mRNA in temporal and PFC regions

(Watzka et al. 2000); (2) higher levels of cortisol (Frederiksen et al. 1991; Heuser

et al. 1994; Laughlin and Barrett-Connor 2000); and (3) decreased volume of

hippocampus and increased amygdala (Vakili et al. 2000; Janssen et al. 2004;

Weniger et al. 2006). Thus we have been testing the hypothesis that sex differences

in the impact of adverse fetal HPA programming demonstrated in preclinical

studies, contribute to sex differences in adult MDD.

Receptors responsible for the expression and/or regulation of expression of HPA

hormones reside in brain regions implicated in MDD. Hypothalamic nuclei (such as

PVN and ventromedial nucleus) and hippocampus are involved in the regulation of

HPA hormones, as demonstrated in earlier work by Tobet and Handa (Tobet and

Hanna 1997; Brown et al. 1999; Lund et al. 2006; Sandau and Handa 2006;

Foradori and Handa 2008; McClellan et al. 2010; Stratton et al. 2011). They are

dense in CRH and glucocorticoid receptors, vasopressin, GABA receptors, and sex

steroid receptors (Keverne 1988; Handa et al. 1994; Pacak et al. 1995; Koob 1999;

Tobet et al. 1999; Dellovade et al. 2001; Davis et al. 2002; Solum and Handa 2002;

Tobet 2002; Östlund et al. 2003; Lund et al. 2004, 2006; Suzuki and Handa 2004;

Weiser and Handa 2009). Studies have argued that the effects of prenatal stressors

on the brain are mediated by neurotransmitter systems that interact with

glucocorticoids and gonadal steroid receptors such as GABA and glutamate

(Tobet et al. 1999; Seckl and Walker 2001; Owen et al. 2005; McClellan et al.

2008, 2010; Zuloaga et al. 2011), which we have demonstrated in our current

program project [National Institute of Health Office for Research on Women’s

Health-National Institute of Mental Health P50 MH082679].

In Summary

MDD is a major public health problem with substantial economic, social, and disease

burden worldwide. Women are approximately two times more likely than men to

present with a lifetime history of MDD. Moreover, this sex difference starts in early

adolescence and persists through the mid-50s. Thus, understanding the pathophysiol-

ogy of this disorder, particularly for women, has important implications for attenuation

of suffering worldwide. There is substantial literature supporting the notion that MDD

(at least some forms) is a disorder whose vulnerability begins during fetal development.

A number of potential pathways may connect adverse conditions arising during fetal

development and sex differences in MDD in adulthood. We are currently investigating

prenatal stress models that focus on disruption of the development of the fetal HPA

circuitry—during periods in which the sexual differentiation of the brain occurs—that

we hypothesize place the male or female fetus at differential risks for MDD in

adulthood. Further, we have been testing the hypothesis that the fetal hormonal

programming will be significantly associated with sex differences in brain activity
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deficits in stress response circuitry and adult HPA and HPG deficits in MDD. Finally,

the demonstration of altered neuroendocrine regulation in relation to sex differences in

brain activity in MDD may contribute to understanding the higher prevalence of

endocrine disorders in MDD than in the general population, thus promoting further

inquiry into development of neuroendocrine treatment modalities. We believe that an

understanding of the mechanisms involved in sex differences in the dysregulation of

gonadal and adrenal hormones during fetal development in MDD will have etiologic

implications and importance for the psychopharmacologic, hormonal and immunoreg-

ulatory treatment and prevention of MDD, particularly in women.
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