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Abstract. We introduce an online learning approach to produce dis-
criminative part-based appearance models (DPAMs) for tracking multi-
ple humans in real scenes by incorporating association based and cate-
gory free tracking methods. Detection responses are gradually associated
into tracklets in multiple levels to produce final tracks. Unlike most pre-
vious multi-target tracking approaches which do not explicitly consider
occlusions in appearance modeling, we introduce a part based model that
explicitly finds unoccluded parts by occlusion reasoning in each frame, so
that occluded parts are removed in appearance modeling. Then DPAMs
for each tracklet is online learned to distinguish a tracklet with others
as well as the background, and is further used in a conservative cate-
gory free tracking approach to partially overcome the missed detection
problem as well as to reduce difficulties in tracklet associations under
long gaps. We evaluate our approach on three public data sets, and show
significant improvements compared with state-of-art methods.
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1 Introduction

Tracking multiple targets in real scenes remains an important topic in computer
vision. Most previous approaches can be classified into Association Based Track-
ing (ABT) or Category Free Tracking (CFT); ABT is usually a fully automatic
process to associate detection responses into tracks, while CFT usually tracks a
manual labeled region without requirements of pre-trained detectors. This paper
aims at incorporating merits of both ABT and CFT in a unified framework. A
key aspect of our approach is online learning discriminative part-based appear-
ance models for robust multi-human tracking.

Association based tracking methods focus on specific kinds of objects, e.g.,
humans, faces, or vehicles [1H5]; they use a pre-trained detector for the con-
cerned kind of objects to produce detection responses, then associate them into
tracklets, i.e., track fragments, and produce final tracks by linking the tracklets
in one or multiple steps. The whole process is typically fully automatic. On the
contrary, category free tracking methods, sometimes called “visual tracking” in
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Frame 664 Frame 685 Frame 706

Fig. 1. Limitations of previous association based tracking methods. See text for details.

Table 1. Comparison of association based tracking with category free tracking

initialization  track solution motion cue
association based tracking auto & imperfect global available
category free tracking manual & perfect individual unavailable

previous work, continuously track a region based on manual labels in the first
frame without requirements of pre-trained detectors ﬂaﬁ]

We focus on automatically tracking multiple humans in real scenes. As hu-
mans may enter or exit scenes frequently, manual initialization is impractical.
Therefore, association based tracking is frequently adopted in previous work for
this problem ﬂ—@] In the ABT framework, linking probabilities between tracklet
pairs are often defined as

Prink(T; — Tj) = Po(T; — Tj) P (Ti — T5) P (T; — Tj) (1)

where P, (), Py, (-), and P;(-) denote appearance, motion, and temporal linking
probabilities. P;(-) is often a binary function to avoid temporally overlapped
tracklets to be associated, and designs of P,(-) and P,,(-) play an important role
in performance. A global optimal linking solution for all tracklets is often found
by a Hungarian algorithm ﬂQ, IE] or network flow methods @, @}

However, in most previous ABT work, occlusions are not explicitly considered
in appearance models for calculating P,(-), leading to a high likelihood that re-
gions of one person are used to model appearances for another. In addition, ABT
only fill gaps between tracklets but does not extend them; hence missed detec-
tions at the beginning or end of a tracklet cannot be corrected for associations.
An example is shown in Figure[l} the man in blue is missed from frame 664 until
frame 685 due to failure of detectors. Moreover, to compute P, (-) in Equ.[] it is
often assumed that humans move linearly with a stable speed; this assumption
would be problematic for long gaps. For example, in Figure[Il person 29 in frame
664 and person 28 in frame 706 are actually the same person but his track is
fragmented due to the failure of the detector during the direction change.

One possible solution to overcoming the detection limitation is to use category
free tracking methods. However, it is difficult to directly use CFT in association
based tracking due to differences in many aspects, as shown in Table [l First,
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Fig. 2. Tracking framework of our approach. Colors of detection responses come from
their tracklets’ colors, and black circles denote samples extracted from backgrounds.
Head or tail are the earliest or latest parts of a tracklet. Best viewed in color.

CFT starts from a perfect manually labeled region; however, in our problem, au-
tomatic initialization is provided by an pre-learned detector, and some detections
may be imprecise or false alarms. Second, CFT methods often find best solutions
for one or few targets individually; however, in multi-target tracking, a global so-
lution for all targets is more important. Finally, CF'T often ignores motion cues,
to deal with abrupt motion, while most multi-human tracking problems focus on
surveillance videos where people are unlikely to change motion directions and
speeds much in a short period, e.g., 4 or 5 frames.

We propose a unified framework that finds global tracking solutions while in-
corporating the merits of category free tracking with little extra computational
cost. We introduce the online learned Discriminative Part-based Appearance
Models (DPAMS) to explicitly deal with occlusion problems and detection limi-
tations. The system framework is shown in Figure2l A human detector is applied
to each video frame, and detection responses in neighboring frames are conser-
vatively associated into tracklets. Then based on occlusion reasoning for human
parts, we select tracklets that are reliable for CFT. DPAMs for each tracklet are
online learned to differentiate the tracklet from backgrounds and other possibly
close-by tracklets. A conservative CFT method is introduced to safely track re-
liable targets without detections, so that missing head or tail parts of tracklets
are partially recovered and gaps between tracklets are reduced making linear
motion estimations more precise. Finally a global appearance model is learned,
and tracklets are associated according to appearance and motion cues.

We emphasize that the category free tracking module in our framework is
not proposed to find specific targets from “entry to exit” as most existing CFT
methods do, but is used for extrapolating the tracklets and enabling associations
to be made more robustly.
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The contributions of this paper are:

— A unified framework to utilize merits of both ABT and CFT.
— Part based appearance models to explicitly deal with human inter-occlusions.
— A conservative category free tracking method based on DPAMs.

The rest of the paper is organized as follows: Section 2 discusses related work;
building part-based feature sets is described in Section 3; Section 4 introduces
the online learning process of DPAMs and the conservative CF'T method; exper-
iments are shown in Section 5, followed by conclusion in Section 6.

2 Related Work

Tracking multiple humans has attracted much attention from researchers. To
deal with large number of humans, many association based tracking approaches
have been proposed [11, |, 2]. These approaches detect humans in each frame
and gradually associate them into tracks based on motion and appearance cues.
Appearance models are often pre-defined [9, 4] or online learned [1, 12, [13]. Oc-
clusions are often ignored |13, |2] or modeled as potential nodes in an association
graph [4, [1], but have not been used explicitly for appearance modeling, indi-
cating high possibilities that parts used for modeling appearances of a person
belong to other individuals. Moreover, performance of ABT is constrained by
detection results; missed detections in the beginning or ends of a track cannot
be recovered, and tracklets with long gaps between them are difficult to associate
according to the commonly used linear motion model |9, [14, [10].

Category free tracking methods do not depend on pre-learned detectors, and
appearance models are often based on parts to deal with partial occlusions [6-8].
However, CFT focuses on single or a few objects individually without finding
a global solution for all targets, and is difficult to deal with large number of
targets due to high complexity. In addition, CFT methods are often sensitive to
initialization; once the tracking drifts, it is difficult to recover. If the initialization
is imprecise or even a false alarm, the proposed tracks would be problematic.

Note that some previous work also adopts CFT techniques into multi-target
tracking problems [9, 13, [15]. However, CFT is often used to generate initial
tracklets, which may include many false tracklets or miss some tracklets without
carefully tuning the initialization thresholds for each video. However, we use con-
servative CF'T methods to reduce association difficulties and missed detections
in an association based framework, but we do not rely it on finding whole tracks.
Some previous work also uses parts in tracking [16, [17]; however, only separated
persons with few inter-occlusions are considered in [16] while our scenarios are
more crowded with frequent occlusions. Parts in [17] are used for detection but
not for appearance modeling in tracking as we did.

3 Building Part-Based Feature Sets for Tracklets

In order to improve efficiency, we track in sliding windows one by one instead of
processing the whole video at one time. In the following, we will use the term
current sliding window to refer to the sliding window being processed.
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Fig. 3. Illustrations for human parts: (a) parts definition for a normalized 24 x 58 human
detection response; 15 squares are used to build part-based appearance models, their
sizes are shown in blue numbers; (b)(c) show automatic occlusion inference results in
real scenes; visible parts for each person are labeled with the same color, and occluded
parts are not shown and not used for appearance modeling. Best viewed in color.

Given the detection responses in the current sliding window, we adopt the
low level association approach as in ﬂﬁ] to generate reliable tracklets from con-
secutive frames. These tracklets are then associated in multiple steps.

An appearance model for a tracklet T} includes two parts: a set of features
Fo={fL f2, ..., f} and a set of weights W = {wy,wa,...,w,}. The features
could be color or shape histograms extracted from some regions of responses in
the tracklet, and there is a unique F} for each Tj. The set of weights measures
importance of features and is often shared between multiple tracklets. We will
use the term appearance models to represent the set of weights for clarity. Given
W, the appearance similarity between two feature sets F; and Fj is defined
as y_, wih( J’f, /i), where h;(+) is an evaluation function for two features, e.g.,
Euclidean distances or correlation coefficient between two vectors.

A tracklet T}, is defined as [, detected or interpolated responses in consecutive
frames from time ¢} to t;’“ as Ty = {d}c,...,dff}, where [;, is the length of
T).. We produce two feature sets F¢*? and F}*! including features modeling
appearances of T}’s head and Tj’s tail, i.e., the earliest or latest parts of T},
respectively. Appearance linking probability from T}, to Tj is evaluated on F,ﬁ““
and the“d using a set of appropriate weights W.

In order to explicitly consider occlusions, features are extracted from parts
instead of from whole human responses. As shown in Figure[B|(a), we use 15 parts
to represent a human so that the parts are not too large to model occlusions and
not too small to include meaningful features. Each response dfc is normalized into
24 x 58 and is a union of the 15 parts defined as dj, = {r}(1),7,(2),...,74(15)}.
Each 7}, (u) is a set of features extracted from part u; for example, r} (1) include
the color histogram or the hog feature of part 1. If part u is occluded, all features
in 7{ (u) are invalid, as they may not come from the concerned human. In this
section, we aim at building F,?e“d and F,ﬁ““ for each tracklet Ty by explicitly
considering human inter-occlusions. Scene occluders, e.g., screens, pillars, are
not considered due to difficulty of inferring them.
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Algorithm 1. The algorithm of building head feature set for one tracklet
Input: tracklet Tj.
Initialize Dp¢*? = ¢ and SPe*d(j) = ¢ Vje{1,...,15}
Fori=t;,... tij do:

— For j=1,...,15 do:

o If |Shead( )| < & and 75(5) is unoccluded, Spee? () = Sreed(5) U {ri(H)};

— If at least one of 5 (j) is unoccluded, Dl'**¢ = Dpead U {d}}

- Ifvje{1,...,15}, \sheﬂd( )| = 8, break;
Compute each feature in Fe*? by averaging corresponding features in Spe?.
Output: Fjre*d,

We assume that all persons stand on the same ground plane, and the camera
looks down towards the ground, which is valid for typical surveillance videos.
Two scene examples are shown in Figure B(b)(c). Such assumptions indicate
that smaller y—coordmate@ in a 2D frame corresponds to larger depth from the
camera in 3D. Therefore, given detection responses in one frame, we sort them
according to their largest y-coordinates indicating their ground plane positions,
from largest to smallest. Then we do occlusion reasoning for each person. If more
than 30% of a part is occupied by parts of persons who have larger y-coordinates,
it is labeled as occluded; otherwise, it is unoccluded. Some examples of automatic
detected unoccluded parts are shown in Figure B(b)(c) in colored squares.

To produce F,?e“d for tracklet T), we decompose the set into 15 subsets as

Fhead {Fhead( ) Fhead( ) o 7Flizead(15)} (2)

Each F ,?e“d(j) is a subset that contains features only extracted from part j.
To suppress noise, each feature is taken as the average of valid features from
the first § responses in T}, where § is a control parameter and is set to 8 in
our experiments. For each part j we introduce a set S,}ge“d(j), which contains
multiple 74 (j)s, i.e., features from part j, from different responses, so that each
feature in Fhe“d(j) is taken as the average value of corresponding features in
Shead(j). Meanwhile, we also maintain a set DI'*?, which contains all responses
used in building Fj] head. ; this set is used in the 1earn1ng process for appearance
models. For example7 D’k’e“d may include the first, second, and eighth responses
in tracklet Tj.

Algorithm [l shows the process of building F{***?, where [57°*?(j)| denotes the
number of elements in SP¢e4(j), and Speed = U; S he“d( j); the process of building
F}eil is similar. Our algorithm tends to find the earliest § unoccluded regions
for each part. If a part is occluded in early frames, we use later unoccluded
ones to represent its appearance, assuming that the occluded parts have similar
appearances with those temporally nearest unoccluded ones; this is a widely used
assumption in CFT work [18, [§]. If a part j is occluded in the whole tracklet,
Fhead(j) would be an empty set, as all features in it are invalid.

! See Figure B(b)(c) for definition of y-coordinates.
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4 Online Learning DPAMs for Conservative Category
Free Tracking

In this section, we introduce conservative category free tracking methods, so
that tracklets are extended from heads or tails to partially overcome the missed
detection problem, and long gaps between tracklets are shortened to make linear
motion assumptions more reliable.

4.1 Learning of Discriminative Part-Based Appearance Models

As category free tracking in our framework is a conservative process and we do
not heavily rely on it to find whole trajectories, we care more about precision
than recall. Therefore, we only do CF'T for reliable tracklets, which satisfy three
constraints: 1) they are longer than a threshold ¢, as short tracklets are more
possible to be false alarms; 2) the number of non-empty feature set defined in
Equf2 is larger than a threshold 3, as appearance models may be unreliable if
there are not enough unoccluded parts; 3) it does not reach the boundary of
current sliding window. We set ( = 10 and 8 = 6 in our experiments.

If T}, qualifies for CFT from its tail, we online learn discriminative part-base
appearance models (DPAMs), so that the learned models well distinguish T}
with other close-by tracklets as well as the background. Far away tracklets are
not worth considering as it is difficult to confuse T} with them.

A linear motion model is often used in association based tracking work. As
shown in Figure Hi(a), if the tail of tracklet T} locates at position pt‘“l, after
time At, the human is predicted to be at position pt® + v1%! At, where vi*" is
the velocity of T’s tail part. Therefore, we may use the linear motion model to
estimate which tracklets are possibly close to T} in the category free tracking
process; we call these tracklets distracters.

As the linear motion model is probably invalid over a long period, we do
category free tracking only in one second long intervals. If the CFT does not
meet termination conditions (detailed later), we do the CFT again for the next
one second based on re-learned distracters and appearance models. We expect
that the CFT results do not locate too far from the linear estimated positions

NEe
\@z - -

tall tall
(b)

+V At

Fig. 4. Online learning of appearance models for category free tracking: (a) estimation
of potential distracters for Tx; (b) online collected samples for learning DPAMs
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within one second. The estimated distance between T} and another tracklet T;
at frame t (t > ti¥) is defined as
”( tail Jrvtazl(t tick)) ( ;zead head(t ))H ift < tl
Dist; = 4 [|(p); o + ot — 1)) — pll| ifte [tzl7tzi] (3)
||( tazl + Ut‘“l(t t;’”)) _ (p%ail + Ufa“(t _ tii))H ift> tz

where || - || denotes the Euclidean distance, and p! denotes the response position
of tracklet T; at frame ¢. A tracklet T; is a distracter for T}, if it satisfies

It e th el th<t<th &  Fte (il +4] Dist, <whi® (4

where 7 denotes the frame rate per second, w is a weight factor, set to 2 in our
experiments, and hfca” denotes the height of T}’s tail response. Equ. @ indicates
that a distracter is a tracklet that has temporal overlap with T}, so that it
belongs to a different human than T}, and may be close to the future path of T,
such as T and T, in Figure l(a). Responses in all distracters should have low
appearance similarities with responses in T}j; they form a set named as !I/,i‘“l.

In addition, to better distinguish T} from the background, we also collect a
set of responses B}%! from the background in frame tfj, defined as

Bivit = {dl} Vi€ [l,y] & where d) is in frame tﬁc’“ & ph = pieitqpteily (5)

The positions of these responses are selected from possible future positions of T}
in the video, but the responses are extracted at the last frame of T}. Therefore,
as long as vi‘”l is not zero, these responses do not belong to Tj and should have
low appearance similarities with responses in Tj.

Then we build positive and negative training sets ST and S~ for learning

DPAMSs for T},’s tail, defined as

T={ = () ),y = +1} vdir, di? € Diwil (©)
ST = {.’xZ = (d;cl’dzz) 1} Vd“ c Dtazl & dez c Btazl wtazl (7)

where D4 is the set of responses used in building F}* as shown in Algorithm
[ Some visualized examples are shown in Figured(b). For a training sample x;,
a control function v, (z;) is defined to measure its validity of feature g as

(®)

v () = 1 if &(fy) is not unoccluded in both responses in z;
BT 10 otherwise

where @(f,) denote the part (1 to 15) that a feature f, belongs to. We adopt the
standard RealBoost algorithm to learn discriminative appearance models based
on valid features only as shown in Algorithm 2] where hy(x) denotes the weak
classifier, i.e., an evaluation function for two feature gs, e.g., Euclidean distance
or correlation coefficient between two vectors, and is normalized to [—1,1]. We
adopt features defined in [13], including color, texture, and shape information.
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Algorithm 2. The learning algorithm for DPAMs

Input: training set St and S™.
Initialize the weights for samples w; =
Fort=1,...,T do:
— Forg=1,...,n do:
o r =73 wiyihg(xi)vg(zs)
o ag=yIn "
— Select ¢* = argmin ), w; exp(—aqyihg(T:)ve(2:))
q

1 3 ) +.o, = 1 H ) -
Q‘Sﬂ,lfx@ES ’w’_2|s—|7lf$’€S .

— Set at = Qg*, ht = hq*, Vt = Vg
— Update sample weights w; = w; exp(—asyshe(x;:)ve(x;)), and normalize weights.
Output: H(z) = 3] axhe().

4.2 Conservative Category Free Tracking

With online learned DPAMs, we adopt a conservative category free tracking
method on each reliable tracklet. The CFT is done one frame by one frame. In
each frame, a set of samples are generated around the predicted response by the
linear motion model as shown in Figure[fl Sizes and positions of the samples are
randomly disturbed around values of the predicted response. A feature set F
for each sample is extracted to evaluate its similarity to F,ﬁ’”l. The sample with
highest score, named as d*, is chosen as a potential extension.

However, the potential extension is not taken, if it meets any of the following
termination conditions:

— d* goes beyond the frame boundary or the sliding window boundary.

— The similarity between d* and F,ﬁ‘”l is smaller than a threshold 6.

— The similarity between d* and any F***? is larger than a threshold 6, where
T; starts at the frame where d* locates.

In our experiments, we set #; = 0.8 and 63 = 0.2. These constraints assures a
high similarity between d* and F{*' and a low similarity between d* and any
distracters, so that the category free tracking is less likely to drift or go beyond
a true association. For example, in Figure Bl T} and 15 are actually the same
person, and if CFT goes beyond T»’s head, T}, and T cannot be associated, and
additional temporal overlapped tracks would be produced for the same person.
But if the CFT stops early, we may still successfully associate them.

tall+v 1a|I*1 E
tall
=71
| I
=T
\ | 2

Fig. 5. Illustrations for category free tracking process. The green dashed rectangle is
predicted by the linear motion model; the orange dashed ones are samples generated
around the predicted position.
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Algorithm 3. The CFT algorithm for one tracklet from its tail
Input: A reliable tracklet T} for CFT, and the frame rate per second +.
Initialize max frame number for one second tracking tmaes = tif + 7.
Initialize the appearance feature set Fgo" for Ty’s tail using Algorithm [II
‘While T} does not meet the boundary of current sliding window do:
— Find potential distracters in the predicted tracking path of T} from tﬁj t0 tmaz-
— Collect training samples from T}, its distracters, and the background in the pre-
dicted path, and learn DPAMs for the next one second using Algorithm
— For ¢ :tif +1,...,tmas do:
e Generate samples around the predicted position p®* + vf2% « 1.
e Extract the feature set for each sample and evaluate its similarity to Ff®
using the learned DPAMs.
e Check whether termination conditions are met. If yes, stop CFT; otherwise,
add the best response d* into T%’s tail, and update pfc‘”l and vi‘”l
— Update tif, and set tmaes = tif + 7.
Output: Updated tracklet 7.

If d* is accepted as an extension, we update pfc‘“'l and v,@a” for Tj. However, we

do not update F{*" to avoid drift. This is different with most existing category free
tracking approaches, where appearance models are online updated for continuous
tracking. In our framework, CFT is only used to partially overcome detection limi-
tations and shorten gaps between tracklets to make linear motion estimation more
accurate. If CFT stops early, it is still possible to fill missing gaps by the global as-
sociation. But errors in CFT may cause failure of associations as discussed above.
The whole CFT method is shown in Algorithm Bl

After conservative category free tracking, we learn a global appearance model
similar to [13] using only unoccluded parts from all tracklets, and then use the
Hungarian algorithm to find global optimal association results.

Figure [6l shows some comparing tracking results by using or disabling the cat-
egory free tracking module. We can see that person 13 in Figure [B(b) would be
fragmented into two tracklets without the CFT due to long time missed detec-
tions and non-linear motions. However, the conservative CFT shortens the gaps
between the two tracklets so that they become easy to be associated. In addi-
tion, person 10 in Figure[B(b) is achieved in frame 330 without having detection
responses at that time; person 8 and 15 are similar in Figure Bl(d).

5 Experiments

We evaluate our approach on three public data sets: PETS 2009 [19], ETH
[20], and Trecvid 2008 [2], which have been commonly used in previous multi-
target tracking work. We show quantitative and visualized comparisons with
state-of-art methods. We adopt the commonly used evaluation metrics in [10, 2],
including recall and precision, showing detection performance after tracking;
false alarms per frame (FAF); number of trajectories in the ground truth (GT);
mostly tracked (MT), mostly lost (ML), and partially tracked (PT), denoting
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ratios of tracks with successful tracked parts for more than 80%, less than 20%,
and others; fragments (Frag), the number of times that a ground truth track is
interupted; id switches (IDS), the number of times that a produced track changes
its matched ground truth track.

The three data sets have different resolutions, densities, and average motion
speeds. However, we use the same parameter settings on all, and performances
all improve compared with state-of-art methods. This indicates low sensitivity
of our approach on parameters.

As detection performance would influence tracking results, for fair compar-
isons, we use the same detection results as in |13,110, 2] on three data sets, which
are provided by authors of [2, |[10]. No scene occluders are manually assigned.

5.1 Results on PETS 2009 Data Set

We use the same PETS 2009 video clip as used in [21] for fair comparison. The
target density is not high in this set. However people are frequently occluded by
each other or scene occluders, and may change motion directions frequently.

The quantitative comparison results are shown in Table 2l We modified the
ground truth annotations from [21], and fully occluded people that appear later
are still labeled as the same person. We can see that by only using part based
appearance models, the MT is improved by more than 10%, and fragments are
reduced by 43% compared with up-to-date results in [L0]. By using category
free tracking, we further improve MT by 5%, and reduce fragments by 85%.
This indicates our part based models are effective for modeling humans’ ap-
pearances, and the conservative CF'T method shortens gaps between tracklets
so that fragmented tracks can be associated based on the linear motion model.
Some visualized examples are shown in Figure BI(b).

5.2 Results on ETH Data Set

The ETH data set [20] is captured by a pair of cameras on a moving stroller in
busy street scenes. The heights of human may change significantly from 40 pixels
to more than 400 pixels. The cameras shift frequently making the linear motion
model less reliable, and there are frequent full inter-occlusions due to the low
camera angle. We use the same ETH sequences as in [10]. Only data captured
by the left camera are used in our experiment.

The quantitative results are shown in Table Bl We can see that using the
part models only, MT is improved for about 8%; using category free tracking
improves MT significantly for an additional 12%. In ETH data, partial and full
occlusions are frequent; therefore, the part based models help build more precise
appearance models. The category free tracking method recovers many missed
detections, especially for humans who appear for only short periods, e.g., less
than 40 frames, and therefore improves MT significantly.

Some tracking examples are shown in Figure [Bl(d) and Figure[Tl(a). Person 10
in Figure[(a) is detected from frame 151 until frame 158, but we start to track
her from frame 140 until frame 162. After frame 162, our conservative CFT stops
tracking due to large appearance changes caused by the shadows.
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Frame 60 Frame 70

Frame 80

Fig. 6. Comparisons of tracking results with or without category free tracking: (a)(c)
show results without CFT, (b)(d) show results on the same sequences with CFT

Table 2. Comparison of results on PETS 2009 dataset. The PRIMPT results are
provided by authors of [E] Our ground truth is more strict than that in ﬂz_ll]

Method Recall Precision FAF GT MT PT ML Frag IDS
Energy Minimization [21] - - - 23 82.6%174% 0.0% 21 15
PRIMPT [10] 89.5%  99.6% 0.020 19 78.9% 21.1% 0.0% 23 1
Part Model Only 92.8%  95.4% 0.259 19 89.5% 10.5% 0.0% 13 0
Part Model + CFT 97.8%  94.8% 0.306 19 94.7% 5.3% 0.0% 2 0

5.3 Results on Trecvid 2008 Data Set

Trecvid 2008 is a very difficult data set, which contains 9 video clips with 5000
frames for each. The videos are captured in a busy airport; the density is very
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Table 3. Comparison of tracking results on ETH dataset. The human detection results
are the same as used in |10], and are provided by courtesy of authors of [10].

Method Recall Precision FAF GT MT PT ML FragIDS
PRIMPT [10] 76.8%  86.6%  0.891 124 58.4% 33.6% 8.0% 23 11
Part Model Only  77.5%  90.9% 0.595 124 66.1% 25.0% 8.9% 21 12
Part Model + CFT 81.0%  87.8% 0.861 124 78.2% 12.9% 8.9% 19 11

Table 4. Comparison of tracking results on Trecvid 2008 dataset. The human detection
results are the same as used in |2, 113, [10], and are provided by authors of [2].

Method Recall Precision FAF GT MT PT ML FragIDS
Offline CRF Tracking [2] 79.2%  85.8%  0.996 919 78.2% 16.9% 4.9% 319 253
OLDAMs [13] 80.4%  86.1% 0.992 919 76.1% 19.3% 4.6% 322 224
PRIMPT [10] 79.2%  86.8%  0.920 919 77.0% 17.7% 5.2% 283 171
Part Model Only 78.7%  88.2% 0.807 919 73.0% 20.9% 6.1% 253 149
Part Model + CFT 79.2%  87.2% 0.895 919 75.5% 18.6% 5.9% 247 145

high, and people occlude each other frequently. Quantitative comparison results
are shown in Table[d Compared with [10], using only part based models reduces
fragments and id switches by about 11% and 13% respectively; using CFT ad-
ditionally reduces fragment and ID switches by about 2% and 3%. In Trecvid
2008 data sets, most improvements come from part based models and less from
the category free tracking method, which is quite different with results on PETS
2009 and ETH. This is because Trecvid 2008 is a very crowded data set; in the
CFT process, there are often many distracters for each tracklet. Therefore the
CFT often stops early because the probability is quite high that at least one of
many distracters would have similar appearances with the concerned person.
Figure [((b)(c) show some tracking examples. We see that person 28 & 29 in
Figure[l(b) and person 121 in Figure[f(c) are under heavy occlusions due to high
densities of humans; however, our approach is able to find correct discriminative
part-based appearance models, and therefore tracks these persons successfully.

5.4 Computational Speed

The processing speed is highly related with the number of humans in videos.
We implement our approach using C++ on a PC with 3.0GHz CPU and 8GB
memory. The average speeds are 22fps, 10fps, and 6fps on PETS 2009, ETH, and
Trecvid 2008 respectively. Compared with [10], which reported 7fps on Trecvid
2008, our approach does not impose much extra computational cost?. The major
extra cost is from the feature extractions for all samples in the CFT module,
which could be constrained by setting the number of evaluated samples.

% Detection time is not included in both our reported speed and that in [10].
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Fig. 7. Tracking results of our approach on ETH and Trecvid data sets

6 Conclusion

We introduced online learned discriminative part-based appearance models for
multi-human tracking by incorporating merits of association based tracking and
category free tracking. Part-based models are able to exclude occluded regions
in appearance modeling, and a conservative category free tracking can partially
overcome limitations of detection performance as well as reduce gaps between
tracklets in the association process. Experiments on three public data sets show
significant improvement with little extra computational cost.
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