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Abstract. Numerous geometric problems in computer vision involve the solu-
tion of systems of polynomial equations. This is particularly true for so called
minimal problems, but also for finding stationary points for overdetermined prob-
lems. The state-of-the-art is based on the use of numerical linear algebra on the
large but sparse coefficient matrix that represents the original equations multi-
plied with a set of monomials. The key observation in this paper is that the speed
and numerical stability of the solver depends heavily on (i) what multiplication
monomials are used and (ii) the set of so called permissible monomials from
which numerical linear algebra routines choose the basis of a certain quotient
ring. In the paper we show that optimizing with respect to these two factors can
give both significant improvements to numerical stability as compared to the state
of the art, as well as highly compact solvers, while still retaining numerical stabil-
ity. The methods are validated on several minimal problems that have previously
been shown to be challenging with improvement over the current state of the art.

1 Introduction

Many problems in computer vision can be rephrased as several polynomials in several
unknowns. This is particularly true for so called minimal structure and motion prob-
lems. Solutions to minimal structure and motion problems are essential for RANSAC
algorithms to find inliers in noisy data [13, 24, 25]. For such applications one needs to
efficiently solve a large number of minimal structure and motion problems in order to
find the best set of inliers. Once enough inliers have been found it is common to use
non-linear optimization e.g. to find the best fit to all data in a least squares sense. Here
fast and numerical stable solutions for the polynomials systems of the minimal prob-
lems are crucial for generate initial parameters for the non-linear optimization. Another
area of recent interest is global optimization used e.g. for optimal triangulation, resec-
tioning and fundamental matrix estimation. While global optimization is promising, it
is a difficult pursuit and various techniques has been tried, e.g. branch and bound [1],
L∞-norm methods [16] and methods using linear matrix inequalities (LMIs) [17]. An
alternative way to find the global optimum is to calculate stationary points directly,
usually by solving some polynomial equation system [14, 23]. So far, this has been an
approach of limited applicability since calculation of stationary points is numerically
difficult for larger problems. A third area are methods for finding the optimal set of
inliers [11, 12, 21], which are based on solving certain geometrical problems, which
involve solving systems of polynomial equations.
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Recent applications of polynomial techniques in computer vision include solving for
fundamental and essential matrices with radial distortion [19], panoramic stitching [2]
and pose with unknown focal length [3]. To solve such geometric problems by solving
systems of polynomials in several unknowns is often not trivial. First of all one has
model the problem and choose parameters in order to get as simple equations as pos-
sible. Then efficient and numerical stable techniques are applied to solve the resulting
system of equations.

Related Works. Traditionally, researchers have hand-coded elimination schemes in
order to solve systems of polynomial equations. Recently, however, new techniques
based on algebraic geometry and numerical linear algebra have been used to find all
solutions, cf . [22]. In [7] several techniques for improving the numerical stability by al-
lowing a larger set of so called permissible monomials from which to choose the basis
of C[x]/I . By clever use of e.g. QR factorization with column-pivoting the numerical
stability can be improved by several orders of magnitude. In [18] a system for auto-
matic generation of minimal solvers is developed. The script first calls upon algebraic
geometry packages to determine the number of solutions and to determine a basis for
C[x]/I . Then repeated numerical tries with increasingly number of equations are tried
until a large enough set is found. Then the equations are trimmed down automatically to
give a compact set of equations and monomials. Finally these are hardcoded in a solver.
Similar techniques for automatic trimming of equations has been developed in [20],
where equations (rows) and monomials (columns) are removed if they have no numer-
ical effects on the construction of the action matrix. Another recent work [4] focuses
on speed improvement for polynomial solvers with techniques that avoid direct action
matrix eigenvalue computation.

In this paper, we focus on optimizing polynomial solvers with respect to their size
as well as numerical accuracy. The goal is to generate a solver that have better numeri-
cal accuracy with as compact set of equations as possible. This is unlike [18] and [20],
where the main goals are to generate compact solvers. The common criterion is to re-
move equations and monomials that do not affect the overall solvability of the solvers.
While such compact solvers are generally faster, they tend to have inferior numerical
accuracy. We propose to use the numerical accuracy of the solvers as the criterion, and
optimize the set of equations in the template, as well as the permissible set. We apply
local search on this combinatorial problem and generate solvers for minimal problems
with better numerical accuracy and smaller template.

2 Action Matrix Method

In this section we review some of the classical theory of multivariate polynomials. We
consider the following problem:

Problem 1. Given a set of m polynomials fi(x) in s variables x = (x1, . . . , xs),
determine the complete set of solutions to

f1(x) = 0, . . . , fm(x) = 0. (1)

We denote by V the zero set of (1). In general V need not be finite, but in this paper we
will only consider zero dimensional V , i.e. V is a point set.
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The general field of study of multivariate polynomials is algebraic geometry. See [10]
and [9] for an introduction to the field. In the language of algebraic geometry, V is an
affine algebraic variety and the polynomials fi generate an ideal I = {g ∈ C[x] : g =
Σihi(x)fi(x)}, where hi ∈ C[x] are any polynomials and C[x] denotes the set of all
polynomials in x over the complex numbers.

The motivation for studying the ideal I is that it is a generalization of the set of
equations (1). A point x is a zero of (1) iff it is a zero of I . Being even more general,
we could ask for the complete set of polynomials vanishing on V . If I is equal to this
set, then I is called a radical ideal.

We say that two polynomials f , g are equivalent modulo I iff f − g ∈ I and denote
this by f ∼ g. With this definition we get the quotient space C[x]/I of all equivalence
classes modulo I . Further, we let [·] denote the natural projection C[x] → C[x]/I , i.e.
by [fi] we mean the set {gj : fi − gj ∈ I} of polynomials equivalent to fi modulo I .

A related structure is C[V ], the set of equivalence classes of polynomial functions
on V . We say that a function F is polynomial on V if there is a polynomial f such that
F (x) = f(x) for x ∈ V and equivalence here means equality on V . If two polynomials
are equivalent modulo I , then they are obviously also equal on V . If I is radical, then
conversely two polynomials which are equal on V must also be equivalent modulo I .
This means that for radical ideals, C[x]/I and C[V ] are isomorphic. Now, if V is a point
set, then any function on V can be identified with a |V |-dimensional vector and since
the unisolvence theorem for polynomials guarantees that any function on a discrete set
of points can be interpolated exactly by a polynomial, we get that C[V ] is isomorphic
to Cr, where r = |V |.

3 Revisit Basis Selection Technique

In this section, we review in detail the basis selection method introduced in [6]. We
further discuss the key components of this method and motivate why potential improve-
ment can be achieved.

The goal is to construct the action matrix for the linear mapping Txk
: p(x) �→

xkp(x) in the r-dimensional space C[x]/I in numerically stable manner. Specifically,
given the equation system, for a linear basis of monomials B = {xα1 , . . . ,xαr} for
C[x]/I and the action variable xk , we want to express the image xkx

αi ( ∀xαi ∈ B )
in terms of the basis monomials, i.e. xkx

αi ∼ ∑
j Aijx

αj . The matrix A = {Aij}T
is called the action matrix. In previous methods [7,18], the so-called single elimination
template is applied to enhance numerical stability. It starts by multiplying the equations
(1) by a set of monomials producing an equivalent (but larger) set of equations. There
is no general criterion how to choose such set of monomials, which are usually selected
as the minimal set of monomials that make the problem solvable or numerically stable.
We will discuss later that the choices of multiplication monomials affect the overall
numerical accuracy the solvers. By stacking the coefficients of the new equations in an
expanded coefficient matrix Cexp, we have

CexpXexp = 0. (2)

This expanded coefficient matrix is usually called elimination template.
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Using the notation in [7], we partition the set of all monomials M occurring in the
expanded set of equations as M = E ⋃R⋃P . We use P (P for permissible) to denote
the set (or a subset) of monomials that stay in M after the multiplication of the action
variable. And we denote the reducible set xkx

αi /∈ P for xαi ∈ P as R. The monomials
E (E for excessive) are simply the monomials which are neither in R nor in P . We then
order them so that E > R > P holds for all monomials in their respective sets. After
applying the corresponding reordering of the columns of Cexp, we yield

[
CE CR CP

]
⎡

⎣
XE
XR
XP

⎤

⎦ = 0. (3)

Giving a linear system as in (3), we know that if we choose from P a linear basis B =
{xα1 , . . . ,xαr}, we are able to use numerical linear algebra to construct corresponding
action matrix. Traditionally, the Gröbner bases are used to generate B for some ordering
on the monomials (e.g. grevlex [18]). In this case, the permissible set is the same as basis
set. The key observation of [6] is that by allowing adaptive selection of B from a large
permissible set (|P| ≥ r), one can improve the numerical accuracy greatly in most
cases. To achieve this, we first eliminate the E-monomials, since they are not in the
basis and do not need to be reduced. By making Cexp triangular through either LU or
QR factorization, we have

⎡

⎣
UE1 CR1 CP1

0 UR2 CP2

0 0 CP3

⎤

⎦

⎡

⎣
XE
XR
XP

⎤

⎦ = 0, (4)

where UE1 and UR2 are upper triangular. The top rows of the coefficient matrix involv-
ing the excessives can be removed,

[
UR2 CP2

0 CP3

] [
XR
XP

]

= 0. (5)

We can further reduce CP3 into upper triangular matrix. In [6], the column-pivoting QR
is utilized to try to minimize the condition number of the first |P|−r columns of CP3Π ,
where Π is a permutation matrix. This will enhance the overall numerical stability of
the extraction of action matrix. The basis is thus selected as the last r monomials after
the reordering of Π i.e.

[
XP′ XB

]t
. This gives us

[
UR2 CP4 CB1

0 UP3 CB2

]
⎡

⎣
XR
XP′

XB

⎤

⎦ = 0. (6)

From this, we can express monomials in R and P ′ as linear combination of B:

[
XR
XP′

]

= −
[
UR2 CP4

0 UP3

]−1 [
CB1

CB2

]

XB. (7)
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Fig. 1. Numerical accuracy (mean of log10(errors) ) of the solver in [8] for uncalibrated camera
with radial distortion. Left: With multiplication monomials of degree 5 (393×390), 6 (680×595),
7 (1096×865) and 8 (1675×1212). The numbers in the parenthesis are the sizes of corresponding
Cexp. Right: Vary the number of permissible monomials. Note the minimal size of the permissible
set is 24 which is the number of solutions.

Since by construction xkx
αi ∈ R⋃P ′ ⋃B, we can construct the action matrix from

the linear mapping in (7) by finding corresponding indices of xkx
αi (∀xαi ∈ B).

This method above gives generally good performance concerning speed and numer-
ical accuracy for most minimal problems in computer vision [7]. However, there are
several parameters that are chosen manually for different problems (1) the set of multi-
plication monomials and (2) the choices of the permissible set. For different problem,
in [6, 7], the general guideline is to use as few equations as possible (this is usually
done by fine tuning the set of equations and see if the solver is still numerical stable).
For the permissible set, it was suggested that one should choose it as large as possible,
since this in theory should provide better chance getting stable partial-pivoting QR. One
may ask, will we gain more numerical stabilities by adding more equations or using a
smaller set of permissible monomials?

We present here an example to show the effects of such factors on current state of the
art polynomial solvers. The problem we study is the estimation of fundamental matrix
for uncalibrated cameras with radial distortion [8], which will be discussed in more
details in Section 5.1. In [8], the original equations are multiplied with set of monomials
so that the highest degree of resulting equations is 5. To shed light on the effects of more
equations, we allow the highest degree to be 8. We note that adding equations by simply
increased degrees will actually hurt the overall numerical accuracy (Figure 1, Left). On
the other hand, we also vary the size of permissible set used in the solver, where we
choose the last few monomials in grevlex order similar to [8]. We can see in Figure 1
(Right), by reducing the size of permissible set in this way, the solver retains numerical
stability for permissible set of large size, while lose its accuracy for smaller permissible
set (in this case when size is smaller than 36). We will show in the next few sections
that one can actually gain numerical accuracy by adding equation if we carefully choose
the multiplication monomials. Similarly, we can also achieve similar or even improved
accuracy with smaller permissible set.
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4 Optimizing Size and Accuracy for Solvers

In this section, we describe our method for optimizing numerical accuracy of poly-
nomial solvers. We focus on improving the numerical accuracy of the basis selection
method in [6] with respect to the permissible set and the equations of the template.

4.1 Permissible Selection

As discussed in 3, the permissible set is the set of monomials where the optimal basis
can be selected from. In [6], it is suggested to choose the permissible set as large as
possible and it is usually chosen as last few monomials (with grevlex order). In general,
larger permissible set will gives better accuracy since it gives high freedom in choosing
the optimal basis. However, for some problems, it is possible to obtain slightly better
numerical accuracy with smaller set of permissible as indicated by the local minima in
Figure 1 (Right) . However, it is not clear how the size of permissible set will affect
the overall numerical accuracy of the final solvers. On the other hand, it should also
be noted that the larger the permissible set is, we need in theory more equations for the
template to be solvable. This is related to the fact that we need at least m = |P|+|R|−r
equations to yield the system in (6). Therefore, to generate slimmer solvers, one step
to go is to select a compact set of permissibles while keeping the solvers numerically
stable.

Choosing the optimal permissible set of size K is a combinatorial problem, and it is
difficult to fully access the optimality of such sets with respect to numerical accuracy.
Our approach here is to start with a large set of permissible. We then run the solvers as in
[6] with basis selection for random problem examples. We collect for each run the basis
selected for the specific problem in B = {B1, . . . ,Bi, . . . ,BN}, where N is number of
random runs. In this way, we have information of what monomials are selected as basis.
Typically, in our experiments, we find no unique optimal set of monomials among the
permissibles, which are selected by all the random problems. One criterion for selecting
a smaller permissible set of size K is to choose the most selected K monomials. The
drawback of this is that such monomials as a set might have never been selected as basis
in any random runs. To avoid such cases, we formulate this as a optimization problem.
Essentially, a subset P∗ of P would retain numerical accuracy if it is a superset of
as many as basis sets as possible. Therefore, for optimal P∗ of size K, we have the
following:

Problem 2. Given a set P and B = {B1, . . . ,Bi, . . . ,BN} where Bi ⊆ P for i =
{1, . . . N}, find P∗ ⊆ P ,

max
P∗

N∑

i=1

δ(Bi ⊆ P∗),

s.t. |P∗| = K, (8)

where δ(.) is 1 for true boolean expression and 0 otherwise.

This is a hard problem itself. However, since |P| is generally small for most minimal
problems, we can solve it with branch and bound in reasonable time.
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4.2 Equation Removal

In all previous solvers applying single elimination, the equations in the template are
expanded with redundancy. This will both affect the speed and the overall numerical
accuracy of the solvers. This is because all previous methods involve steps of gener-
ating upper triangular form of partial or full template, with LU or QR factorization or
Gauss-Jordan elimination. For large template with many equations, this step is slow and
might be numerically unstable. For [6–8], the multiplication monomials are manually
tuned for different minimal problems. Both [18] and [20] investigated the possibility of
automatic removing equations while keeping the solvers numerical stable. They showed
that one can remove equations along with corresponding monomials without losing nu-
merical stability and even gain better numerical performance with single precision for
certain minimal problem.

In additional to numerical stability, we here try to optimize the numerical accuracy
by automatically removing equations. To achieve this, we apply a simple greedy search
on what equations to remove while keeping the numerical accuracy of solvers as good
as possible. Given a redundant set of equations, we try to find the best equation to
remove and then iterate until no equations can be removed i.e. when removing any of
the equations makes the template unsolvable. Specifically, we first remove a candidate
equation from the original template. We then measure the mean log10-errors of the
resulting template on a random set of problem examples (as training data). After running
through all equations, we remove the equation without which gives the lowest errors.
Generally, we can use any polynomial solver to evaluate the errors at each removal step.
We have chosen the solver with basis selection based on column pivoting [8] since it
generally gives better numerical accuracy.

By exploiting the fact that the excessive monomials do not contribute to the construc-
tion of the action matrix, we can remove certain equations without any local search and
maintain the numerically stability of template. Specifically, when expanding the equa-
tions, there can be some excessive monomials that appear only in one of the equations.
We call these excessive monomials as singular excessive monomials. For the first elim-
ination in (4), if an equation contains singular monomials, removing it will not hurt the
overall numerical condition of the LU or QR with proper pivoting. Therefore, all equa-
tions containing singular excessive can be safely removed. One can always apply this
trimming step with each local search step to speed up the removal process.

It might be also good to start with more equations which might introduce better
numerical conditioning for the first elimination in (4). We then rely on our equation re-
moval step to select equations to improve the overall numerical accuracy. For monomial
removal, we have not exploited the numerical routines to remove columns as in [20].
Here, we simply remove columns that become all zeros after certain equations are re-
moved.

4.3 Optimization Scheme

Given the tools introduced in the previous sections, we should be able to optimize the
polynomial solvers by finding the best combination of permissible set and equations
for a specific problem. This is a difficult combinatorial problem. Therefore, as a first
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attempt, we here first optimize the permissible set by fixing the set of equations. We se-
lect the optimal permissible sets of different sizes on the original template (no equation
removal). Then we apply greedy search to remove equations with these optimal per-
missible sets. All these training are done with a fixed set of random problem examples.
By investigating the error distributions of all these solvers, the size of template (num-
ber of equations, number of monomials), we will be able to choose these optimized
solvers with trade-off in accuracy and speed. Generally, we have the following steps for
optimizing polynomial solver for a minimal problem:

Input: Expanded coefficient matrix Cexp, initial permissible set P , a training set of problem
examples T and threshold parameter ε :

1. Perform permissible selection to choose P∗
K for r ≤ K ≤ |P| as in Problem 2.

2. For each P∗
K , perform equation removal, intialize Cslim = Cexp,

(a) Remove equation(s) containing singular excessive monomials
(b) For each remaining rows i in Cslim, evaluate the average errors of the solver with

Cslim/i on a random subset of T
(c) Update Cslim by removing the row i∗ that gives lowest mean error
(d) Go back to (a) if the lowest average error in (c) is less than ε or a predefined number of

iterations is reached.

Note here if the solver fail, we set the error to be infinite. Therefore, if we choose ε
to be large enough, it will be similar to using solvability as removal criterion in [18].

5 Experimental Validation

In this section, we apply our method on different minimal geometry problems in com-
puter vision. The first two problems are the estimation of fundamental or essential
matrix with radial distortion for uncalibrated or calibrated cameras [8, 19]. The third
problem is three-point stitching with radial distortion [5, 15, 20]. All these problems
has been studied before and were shown to be challenging to obtain numerically stable
solvers. We compare our method with previous methods with respect to both numerical
accuracy as well as the size of template. The state-of-the-art method is the column-
pivoting basis selection [7] which is also the building block of our method. We also
compare with other two methods [18, 20] with template reduction procedures. In our
implementation of a general solver with column-pivoting basis selection, we have used
QR factorization to perform all the elimination steps. Our method involves a training
stage where we perform equation removal and permissible selection on a fixed set of
random problem examples. For all the comparisons, we test the resulting solvers on a
independent set of random problems.

5.1 Nine-Point Uncalibrated Radial Distortion

The problem of estimating fundamental matrix with radial distortion is studied by [19].
Numerically stable solutions were provided by [8, 18]. The minimal case for this prob-
lem is 9-point correspondences. In general, there are 10 equations and 10 unknowns.
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Fig. 2. Nine-point uncalibrated cameras with radial distortion. Left: Effects of permissible selec-
tion and equation removal on numerical accuracy of the polynomials solver. BS - basis selection
with column-pivoting [6] , AG - automatic generator [18]), CO - permissible selection with com-
binatorial optimization, ER0 - ours equation removal without removing equations with singular
excessives, ER - same as ER0 but with extra removal on singular excessive equations. Right:
Effects of removing equations with fixed permissible (a) ER - degree 5, 393 × 390 template and
(b) ER - degree 6, 680 × 595 template.

By linear elimination, one can reduced the system to 4 equations and 4 unknowns [19].
The reduced system has 24 solutions. In [18], the equations are first expanded to 497
equations which are then reduced to 179 equations and 203 monomials. There is no
basis selection in this method and the basis set is chosen from the output of Macaulay2,
which is of size 24. On the other hand, in [8], a fine-tuned template of 393 equations and
390 monomials are used. In this case, we use the template in [8] as our starting point.
We call this as the original template. For the set of permissible monomials, we choose
also exactly the same set as in [8] which is of size 69. We note that further increasing
the set of permissible makes the template unsolvable.

Selecting Permissibles. Following the steps in Section 4.1, we first run the solver for
393 equations and 390 monomials, and with the set of permissible of size 69 on 5000
random problem examples. First of all, we notice that there are monomials that are
never selected as basis by any problem examples. Ideally, we can easily remove these
monomials from the permissible set. However, we need to force {x1, x2, x3, x4, 1} to
be in the permissible set even if they are never selected. This is because without these
monomials we can not extract the solutions of the unknowns {x1, x2, x3, x4} with the
method in [7]1. Therefore, excluding {x1, x2, x3, x4, 1}, we are able to remove 8 mono-
mials that are never selected from the permissible set. To this end, we have the possible
permissible set of size 61. We then continue to solve the problem in (8) with varying
K. We manage to solve the problem for K up to 27 with branch and bound. We can
see the effects of permissible selection in Figure 2 (Right, blue - solid), the solver is
still stable using only smallest permissible set of size 32 (we force the 5 monomials to

1 Note that in general, this is not required for action matrix method e.g. see [9].
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Fig. 3. Histogram (left) and quantiles (right) of log10 (errors) of different solvers for the uncal-
ibrated radial distortion problem BS - [6], AG - [18] and ER - equation removal (ours) with
different initial templates.

be included) which is better than without basis selection (Figure 1). The improvement
gained by permissible selection is more significant for permissible set of smaller size.
We also note that permissible selection alone fails to improve the accuracy of the solver
consistently.

Removing Equations. We first study the interplay between equation removal and per-
missible selection. To do this, we perform equation removal on the template with the
optimal permissible sets of different sizes from branch and bound. We can see that by
performing several steps of equation removal (10 steps in this case), one get consistent
improvement of solvers for different optimal permissible sets (ER0 in Figure 2). This
suggests that one need to combine permissible selection and equation removal to get
compact and numerical stable solvers. We also show that removing equations contain-
ing singular excessive monomials have little effect on the numerical stability (ER in
Figure 2). Therefore, we can always apply this to speed up the removal process.

To further understand the mechanism of removing equations, we fix the permissible
to be the large set of size 69. We work with both template T1 (393×390) and the further
expanded template T2 (680×595 up to degree 6). We then proceed to remove equations
using local search described in Section 4.2. For each removal step, we evaluate the mean
log-errors on 100 random samples and we remove the equation without which gives the
best numerical accuracy. We can see that the greedy search improves both templates at
the beginning, and the templates get worse when more equations are removed (Figure
2,right)2 . Ideally, by optimization, the large template should be converge to better tem-
plate with smaller size. This is because the nature of greedy optimization as well as the
randomness involved in the training data. Nevertheless, we can see that by removing
equations using the greedy search, we can improve significantly the numerical behavior
of T2. Note that the initial mean log10(errors) of T2 (Figure 1, left, degree 6) is around
−10.10. We can reduce the size T2 to 585 × 572 (local minima in Figure 2, right) while

2 The initial errors (see Figure 1 Left) are omitted for better visualization.
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in the meantime improve the accuracy to −11.15. This is even slightly better than the
best template reduced from T1 (356 × 367). This indicates that one could improve nu-
merical accuracy with large template if one carefully optimize the set of equations. We
also show the distribution of test errors for solvers producing the lowest errors from
our training comparing to state of the art in Figure 3. We can see that both our opti-
mized solvers improve over [6] on accuracy. From the iteration of optimization, one get
a spectrum of solvers which can be chosen with preference to speed or accuracy.

5.2 Six-Point Calibrated Radial Distortion

For estimation of essential matrix for calibrated cameras with radial distortion, the min-
imal case is 6 points [19]. This minimal problem consist of 16 equations in 9 unknowns.
It can be reduced to 11 equations in 4 unknown with linear elimination, which has 52
solutions. In [18], a solver with template of 238 equations and 290 monomials is auto-
matically generated. While in [8], a template with 320 equation and 363 monomials is
used after fine tuning the degree of monomials multiplied with. For this problem, we
do not find the the tuning parameter for the smaller template (320 by 363). Therefore,
we work with a larger template reported in the paper (356 by 378, with monomials up
to degree eight).
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Fig. 4. Six-point uncalibrated cameras with radial distortion. Effects of permissible selection and
equation removal. BS - [6], CO - permissible selection with combinatorial optimization, ER - 5
steps of equation removal with permissibles from CO.

We notice in Figure (4) that the initial template (356 by 378) is fairly unstable com-
pared to the one reported in [8]. Here we perform first permissible selection on the
template. We observe that reducing the permissible size hurts the numerical accuracy
even with permissible selection. The equation removal step gain consistent improve-
ment on all permissible sizes. We illustrate this example here to show that the local
method can be applied to numerically unstable template and still gives improvements.
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Fig. 5. Performance of different polynomials solvers on three-point stitching problem. Left: log10
(errors) with respect to number of equations. Original - 90 × 132 template as in [5], ICCV’11-
optimization with sequential equation and monomial removal [20] , ER - our equation removal
and PS - permissible selection. Right: (best view in colors) Quantile for the log10(errors).

5.3 Three-Point Stitching

For cameras with common focal point, we can solve for the radial distortion and focal
length (assuming also the same). The minimal case for this problem is 3 point corre-
spondences [15]. A numerically stable solver based on action matrix method was pro-
posed in [5]. The polynomial system is 2 equations in 2 unknowns with 18 solutions.
By multiplying the equations with monomials up to degree eight, the expanded template
consist of 90 equations in 132 monomials. For this problem, a truncation technique [7]
is also applied to obtain numerical solver. It is essential a way to gain numerical stability
by allowing false solutions. Specifically. instead of 18 (number of solutions), the size of
the basis r is chosen to 25. In this case, the size of permissible set is also 25. To further
improve numerical stability and speed, in [20], a reduction procedure is performed on
the same template which is trimmed down to 54 equation in 77 monomials. The smaller
template tends to give more stable solvers that are also faster.

Removing Equations. For original solver in [5], the permissible set used was of the
same size of the basis (both are 25). Therefore, we do equation removal without per-
missible selection. We will explore in the next section on possible ways for permissible
selection. We can see that one can actually remove fairly many equations and also gain
numerical accuracy compared to the original template. Note that our optimized template
is also smaller (48 × 77 for the smallest one) than the one in [20] with slightly better
numerical accuracy (mean log-errors -10.56 v.s. -10.27). For fair comparison, similar
to [20], we only modify the publicly available solver from [5] with corresponding equa-
tions and monomials removed.

For the solver in [5], it turns out the choice for dimension of the basis also affects the
numerical accuracy. We studied this by running solvers for different pairs of |P| = 25
and r. We find that the best combination of |P | and r is using 25 permissible with
r = 22. It is shown that by simply reducing r, we gain almost one order of improvement
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on accuracy (Figure 5 , green - dash line) . Note that this is a local search itself and
there might exist better combination. We leave this as future research direction. We can
further reduce the size of the template by removing equations. In this case, the smallest
and actually also the best template we get is of 53 equations in 93 monomials. The
equation removal step again improves the numerical accuracy of the solver further.

Permissible Selection. Given that we have a working solver with |P | > r, (|P| =
25 and r = 22), we can investigate the potential of permissible selection. By solving
Problem (2) with K = 22, 23, 24, we find that having a large permissible set is always
better for this problem. It is here of interest to see what numerical accuracy can we get
with smallest set of permissible monomials. Using 22 permissible selected by branch
and bound and equation removal step, the resulting solver (Figure 5, red - dotted line) is
not as good as the best solver of size 53 with 25 permissibles and r = 22. It is a slightly
slimmer solver (52× 84) with trade-off in increased errors.

6 Conclusions

Previous state-of-the-art has given us methods for making the coefficient matrix as com-
pact as possible for improving the speed of the algorithm. Other results exploit a larger
set of so called permissible monomials from which the numerical linear algebra rou-
tine can choose the basis for the quotient ring. In this paper we have made several
observations on the stability of polynomial equation solving using the so called action
matrix method. First it is shown that adding more equations can improve numerical
accuracy, but it only does so up to a point. Adding too many equations can actually de-
crease numerical accuracy. Secondly it is shown that the choice of so called permissible
monomials also affects the numerical precision.

We present optimization algorithms that exploit these observations. Thus we are able
to produce solvers that range from very compact, while still retaining good numerical
accuracy to solvers that involve larger set of multiplication monomials and larger set
of permissible monomials to optimize for numerical accuracy. Our method is easy to
implement and is general for different problems. Therefore, it can serve as an initial
tool for improving minimal problem involving large templates.

There are several interesting avenues of future research. First, the interplay between
numerical linear algebra routines used and the choice of multiplication monomials and
permissible monomials should be better understood. Second, the increased understand-
ing of the mechanisms for numerical accuracy could open up for further improvements.
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