
RABAC: Role-Centric

Attribute-Based Access Control

Xin Jin1, Ravi Sandhu1, and Ram Krishnan2

1 Institute for Cyber Security & Department of Computer Science
2 Institute for Cyber Security & Dept. of Elect. and Computer Engg.

University of Texas at San Antonio
xjin@cs.utsa.edu, {ravi.sandhu,ram.krishnan}@utsa.edu

Abstract. Role-based access control (RBAC) is a commercially dom-
inant model, standardized by the National Institute of Standards and
Technology (NIST). Although RBAC provides compelling benefits for
security management it has several known deficiencies such as role explo-
sion, wherein multiple closely related roles are required (e.g., attending-
doctor role is separately defined for each patient). Numerous extensions
to RBAC have been proposed to overcome these shortcomings. Recently
NIST announced an initiative to unify and standardize these extensions
by integrating roles with attributes, and identified three approaches: use
attributes to dynamically assign users to roles, treat roles as just another
attribute, and constrain the permissions of a role via attributes. The first
two approaches have been previously studied. This paper presents a for-
mal model for the third approach for the first time in the literature. We
propose the novel role-centric attribute-based access control (RABAC)
model which extends the NIST RBAC model with permission filtering
policies. Unlike prior proposals addressing the role-explosion problem,
RABAC does not fundamentally modify the role concept and integrates
seamlessly with the NIST RBAC model. We also define an XACML pro-
file for RABAC based on the existing XACML profile for RBAC.

Keywords: NIST-RBAC, attribute, XACML, access control.

1 Introduction and Motivation

Role-based access control (RBAC) [12,26] is a commercially successful and widely
used access control model. Access permissions are assigned to roles and roles are
assigned to users. Roles can be created, modified or disabled with evolving sys-
tem requirements. Since the first formalizations [26] it has been recognized that
traditional formulations of RBAC are inefficient in handling fine grained access
control. RBAC can accommodate fine grained authorizations by dramatically
increasing the number of distinct roles with slightly different sets of permissions.
However, this solution incurs significant cost of correctly assigning permissions
to large numbers of roles. For instance, consider the familiar doctor-patient prob-
lem. In a hospital, a doctor is only allowed to view the record of his own patients.
In the NIST RBAC model [12], a doctor role needs to be defined for each patient.

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2012, LNCS 7531, pp. 84–96, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

RABAC: Role-Centric Attribute-Based Access Control 85

Thus, the number of roles will be dramatically increased while they share mostly
the same permissions. Anecdotal information indicates that in practice organi-
zations work around these limitations in ad hoc ways. The research community
has also proposed several ad hoc extensions to RBAC (see section 2).

Recently Kuhn et al [23] announced a NIST initiative to unify and standardize
various RBAC extensions by integrating roles with attributes, thereby combining
the benefits of RBAC and attribute-based access control (ABAC) to synergize
the advantages of each. An informal review of ABAC concepts is provided in
Karp et al [22]. Even with the relative immaturity of ABAC formal models the
NIST approach is a promising avenue for injecting the benefits of ABAC into
RBAC and vice versa. We note that there are access control proposals that
go beyond attributes such as [14,21]. However, we are motivated by the NIST
ongoing initiative in extending RBAC through attributes, so models which go
beyond ABAC are beyond our scope.

Kuhn et al [23] identify three alternatives for integrating attributes into RBAC
as follows.

– Dynamic Roles. The first option uses user and context attributes to dy-
namically assign roles to users. It is similar to attribute-based user-role as-
signment [4]. This does help with automated user-role assignment to the
myriad roles arising from role explosion, but does not address the corre-
sponding role-permission assignment explosion (which has been considered
in a recent model [19]). Context attributes have been studied in the literature
[9,10,11].

– Attribute Centric. In this option roles are simply another attribute of
users [7,20]. There is no permission-role assignment relationship. This method
largely discards the advantages of RBAC which are well demonstrated and
mature [15].

– Role Centric. The general idea in the third option is that the maximum
permissions available in each session are determined by the roles activated,
which can be further reduced based upon attributes. However, Kuhn et al
[23] do not elaborate on this option or provide details about this approach.
Moreover, to our knowledge, there are no published formal models in the
literature corresponding to this option.

Our central contribution is to develop a formal model for the role-centric ap-
proach for the first time. We propose the role-centric attribute-based access
control (RABAC) model which extends the NIST RBAC model with permis-
sion filtering policies. RABAC is a more convenient term otherwise identical to
“RBAC-A, role-centric” in [23]. RABAC overcomes role explosion without fun-
damentally modifying RBAC. In particular, RABAC integrates seamlessly with
the NIST RBAC model thereby offering a path for practical deployment. We
also establish feasibility of implementation by providing an XACML profile for
RABAC based on the existing standard XACML profile for the NIST RBAC
model.

The rest of this paper is as follows. Section 2 discusses related work. Section 3
develops RABAC along with its formal definition and functional specifications.

86 X. Jin, R. Sandhu, and R. Krishnan

Section 4 defines the XACML profile for RABAC and presents implementation
example. Section 5 concludes the paper.

2 Related Work

The role explosion problem, wherein multiple closely related roles need to be de-
fined to achieve fine-grained access control, has been recognized since the early
days of RBAC, predating publication of the NIST RBAC model [12]. There has
been considerable previous work on extending RBAC to avoid role explosion.
Giuri [18] introduced the concepts of parameterized privileges and role templates
to restrict a role to access a subset of objects based on the instantiated parame-
ters. Other similar proposals include parameterized role [3,17], conditional role
[6], object sensitive role [13] and attributed role [28]. The above proposals change
the fundamental process of role-permission assignment as permissions assigned
to roles can only be determined when a role is instantiated or activated. There
is a lack of accompanying administrative models for these extensions in such
context and they do not fit into the existing administration models such as [25].
Compared with roles in the NIST RBAC model, these extensions increase the
complexity of role mining and engineering, which is the costliest component of
RBAC [16].

Numerous other extensions of RBAC have been proposed [15]. We briefly
mention a few here. TrustBAC [8] incorporated the advantages of both RBAC
and credential based access control models. But only user attribute trust level
is considered. A family of extended RBAC models called role and organization
based access control (ROBAC) models were proposed and formalized in [29].
However, it is not designed for access control within the same organization.
Kumar et al [24] extended RBAC by introducing the notions of role context and
context filters. However, context filters are applied only during the process of
defining roles.

3 RABAC Model

In this section, we present the RABAC model as an extension of the NIST RBAC
model. The model is first discussed informally and then formally defined in two
parts similar to NIST RBAC model: reference model and functional specification.

3.1 Model Overview

The RABAC model is informally depicted in figure 1. It fully incorporates
the NIST RBAC model and adds the following new elements: user attributes
(UATT), object attributes (OATT) and permission filtering policy (PFP). We
give a brief overview of these new elements below.

RABAC: Role-Centric Attribute-Based Access Control 87

Fig. 1. RABAC Model

Attributes are functions which take certain entities and return values for de-
fined properties of that entity (user or object).1 Each user and object is associ-
ated with a finite set of attributes. Examples of user attributes are Department,
Title and Specialization. Examples of object attributes are Type and Status.
The range of each attribute is represented by a finite set of atomic values. For
example, the range of Department is a set of all department names in the or-
ganization. Additionally we allow attributes to be set-valued. For instance, a
set-valued Department attribute would allow a user to belong to multiple de-
partments. Each attribute can either be atomic or set-valued from its declared
range. Every attribute must be declared to be either atomic or set-valued.

The Permission Filtering Policy (PFP), as suggested by its name, con-
strains the available set of permissions based on user and object attributes. It is
depicted conceptually in figure 2. The avail session perm function, as defined by
NIST RBAC model, gives the permission set associated with the roles activated
in a given session. In RABAC the avail session perm function represents the
maximum permission set available in a session. These permission sets are fur-
ther constrained by filtering policy. The security architect specifies a set of filter
functions {F1, F2, F3 . . . Fn} for this purpose. Each filter function is a boolean
expression based on user and object attributes. The TargetF ilter function maps
each object to a subset of the filter functions. This mapping is based on the at-
tributes of the object via attribute expressions called conditions which determine
whether or not each filter function is applicable. The applicable filter functions
are invoked one by one against each of the permissions in avail session perm. If
any of the functions return FALSE, the permission is blocked and removed from
the available permission set for this session. At the end of this process, we get the
final available permission set. It should be noted that this description specifies
the net result. Various optimizations can be used so long as the net result is as
indicated.

With the newly defined PFP component, we are able to modify the logical
approach for defining packages of functional components in the NIST RBAC
model [12] as shown in figure 3. RABAC adds the dashed rectangle at the last

1 More generally, attributes can be associated with other entities including sessions,
environment, system, etc. User and object attributes suffice for purpose of RABAC.

88 X. Jin, R. Sandhu, and R. Krishnan

Fig. 2. Permission Filtering Process

Fig. 3. Methodology for Creating Functional Packages

stage. This indicates that PFP can be integrated into each of the RBAC model
components independently.

3.2 RABAC Reference Model

The basic sets and functions in the NIST RBAC model are shown in table 1.
These sets and functions will also apply to RABAC. We define additional sets
and functions for RABAC in table 2. UATT is a set of attribute functions for the
existing users (i.e., USERS). Each attribute function in UATT maps a user to a
specific value. This could be atomic or set valued as determined by the type of
the attribute (as specified by attT ype). We specify similar sets and functions for
objects. The notation used here for attributes is adapted from [20]. FILTER is a
set of boolean functions defined by the security architects. The Fi are applied to
sessions to constrain permissions associated with that session (discussed below).

The permission filtering process is configured in three steps. As illustrated in
the first part of table 3, security architects firstly define each filter function Fi

in terms of user and object attributes by means of the language LFilter (defined
below). Security architects also need to select a subset of the filter functions that
apply to an object. This is done by the TargetF ilter function which requires
specification of a boolean condition based on object attributes for each filter
function Fi. As shown in the second part of table 3, there are n such conditions,
one for each Fi. Each condition is defined using the language LCondition (defined
below). For an object, the TargetF ilter function is illustrated in the third part of

RABAC: Role-Centric Attribute-Based Access Control 89

Table 1. NIST RBAC Sets and Functions used in RABAC

– USERS, ROLES, OPS, and OBS (users, roles, operations, and objects);
– PRMS = 2 (OPS × OBS), the set of permissions;
– SESSIONS, the set of sessions;
– user sessions(u: USERS)→ 2SESSIONS, the mapping of user u onto a set of sessions;
– avail session perms(s: SESSIONS) → 2PRMS, the permissions available to a user

in a session.
– PA ⊆ PRMS × ROLES, a many-to-many mapping permission-to-role assignment;
– assigned permissions(r: ROLES) → 2PRMS, the mapping of role r onto a set of

permissions;

Table 2. Additional Sets and Functions of RABAC

– UATT and OATT represent finite sets of user and object attribute functions re-
spectively.

– For each att in UATT ∪ OATT, Range(att) represents the attribute’s range, a
finite set of atomic values.

– attType: UATT ∪ OATT → {set, atomic}. Specifies attributes as set or atomic
valued.

– Each attribute function maps elements in USERS and OBS to atomic or set values.

∀ua ∈ UATT. ua : USERS →
{
Range(ua) if attType(ua) = atomic

2Range(ua) if attType(ua) = set

∀oa ∈ OATT. oa : OBS →
{
Range(oa) if attType(oa) = atomic

2Range(oa) if attType(oa) = set

– FILTER = {F1, F2, F3, . . . Fn} is a finite set of boolean functions.
For each Fi ∈ FILTER. Fi: SESSIONS × OPS × OBS→ {T, F}.

table 3. It evaluates each conditioni based on the object’s attributes to determine
whether or not the filter function Fi is applicable. Thus it selects a subset of the
filter functions applicable for any specific object.

The languages LFilter and LCondition are defined by adopting the common
policy language (CPL) from [20] as shown in table 4. CPL defines the logical
structure but is not a complete language. It is required to specify the non-
terminal symbols set and atomic to build complete instances of CPL. LFilter,
the language used to specify each filter function Fi, is an instance of CPL where
set and atomic are as follows.

set::= setua (sessionowner(se)) | setoa(obs) | ConsSet
atomic::= atomicua (sessionowner(se)) | atomicoa(obs) | ConsAtomic
setua ∈ {ua | ua ∈ UATT ∧ attType(ua) = set }
atomicua ∈ {ua | ua ∈ UATT ∧ attType(ua)= atomic }

90 X. Jin, R. Sandhu, and R. Krishnan

Table 3. Permission Filtering for RABAC

1. Permission filtering policy.
Language LFilter is used to specify each filter function Fi(se:SESSIONS, ops:OPS,
obs:OBS) in FILTER, where se, ops and obs are formal parameters.

2. Conditions.
For each Fi ∈ FILTER there is a conditioni which is a boolean expression specified
using language LCondition.

3. TargetFilter is a function which maps each object to its applicable filter functions
as a set. It is illustrated with the pseudo code shown as follows:
TargetFilter(obs:OBS)
{

filter := {};
condition1: filter := filter ∪ F1;
condition2: filter := filter ∪ F2;
. . .
conditionn: filter := filter ∪ Fn;
return filter;

}
Where F1, F2 . . . Fn ∈ FILTER and obs is formal parameter.

Table 4. Common Policy Language

ϕ ::= ϕ ∧ ϕ|ϕ ∨ ϕ|(ϕ)|¬ϕ| ∃ x ∈ set.ϕ|∀ x ∈ set.ϕ| set setcompare set | atomic ∈ set |
atomic atomiccompare atomic

setcompare ::=⊂ | ⊆ | �
atomiccompare ::= < | = | ≤

setoa ∈ {oa | oa ∈ OATT ∧ attType(oa) = set }
atomicoa ∈ {oa | oa ∈ OATT ∧ attType(oa) = atomic }

ConsSet and ConsAtomic are constant sets and atomic values. se and obs are
formal parameters of each filtering function. LFilter use the attributes of the
involved user and object. Thereby, LFilter is able to constrain permissions dy-
namically based on various relationships between user and object attributes. We
define the sessionowner function to return the owner of a session as follows.

sessionowner(se:SESSIONS) = u such that se∈user sessions(u)
In the above definition, user sessions(u: USERS) is already defined in the NIST
RBAC model to return the sessions for a given user. LCondition, the language
for specifying conditions, is an instance of CPL where set and atomic are as
follows.

set::= setoa(obs) | ConsSet
atomic::= atomicoa(obs) | ConsAtomic

Each condition can only refer to the attributes of the object obs being accessed.
setoa and atomicoa are the same as in LFilter.

RABAC: Role-Centric Attribute-Based Access Control 91

3.3 Functional Specification

Our definitions of functional specifications for RABAC are based on those al-
ready defined in NIST RBAC model. The key extensions of this model focus
on access decisions. Thus, we redefine the CheckAccess function from NIST
RBAC and define a new function called FilteredSessionPerm. We specify
these functions in table 5. Function FilteredSessionPerm returns final avail-
able permissions for each specific session. Function CheckAccess is used to
check each request (ops, obs).

Table 5. Functional Specifications

Functions Updates

FilteredSessionPerm perset = avail session perm(se);
(se: SESSIONS) For each (ops, obs) ∈ perset do

if TargetFilter(obs) = {} break;
For each function ∈ TargetFilter(obs) do

if ¬function(se, ops, obs)
perset = perset \ {(ops, obs)}; break;

return perset;

CheckAccess result = ((ops, obs)∈FilteredSessionPerm(se));
(se: SESSIONS,
ops: OPS,
obs: OBS,
result: BOOLEAN)

4 XACML Profile for RABAC

XACML [1] is a standard language for specifying attribute based access control
policy. Because of its reputation, considerable work has been done for XACML
in implementing RBAC as well as its administration model [27]. XACML profile
for RBAC [5] has been defined to guide implementing RBAC via XACML. For
the purpose of demonstrating implementation feasibility of RABAC, we show
that RABAC can be easily implemented in XACML. Specifically, we propose a
XACML profile for RABAC based on that for RBAC. We then give a specific
implementation example for this profile.

4.1 Proposed Profile

The standard XACML RBAC profile is limited to core and hierarchical RBAC.
Our RABAC profile is similarly limited. We will only discuss those components
of the standard XACML RBAC profile that need to be changed for RABAC.
The RABAC profile is guided by the following.

– Permission Filtering Policies (PFP) are stored in a separate file from per-
mission and role policy files for ease of administration.

92 X. Jin, R. Sandhu, and R. Krishnan

Fig. 4. Part of Proposed XACML Profile for RABAC

– The result of role policy and PFP policy may be different. We need policy
combination algorithm which gives deny if and only if PFP returns deny
(Note that only positive permissions are defined for role policy in NIST
RBAC model). Otherwise, the final result is permit.

– The result from different filter functions upon the same group of objects
should be deny-override. Thereby if any one of them returns false, the final
result for PFP will be false.

In light of these observations, we design an extension where the PDP (Policy
Decision Point) loads one more kind of policy files for PFP components in ad-
dition to the role policy file as shown in figure 4. The implementation for role
and permission policy set remains the same. To implement PFP, a TargetF ilter
<PolicySet> should be defined for each condition in the TargetF ilter func-
tion defined in the model. Conditions in TargetF ilter are implemented with
target tag in XACML policy. Each TargetF ilter <PolicySet> contains policy
references to actual filter function <Policy>. Each reference represents a fil-
ter function defined in the model. The role policy and PFP policy may return
different results. Since PFP is used only to reduce permissions there should not
be PFPs that evaluate to permit. Thus, the role policy returns permit while the
PFP policy may return two kinds of result NotApplicable (no policy specified) or
Deny (not allowed). We can determine that policy combining algorithm should
be deny-override. The request is with the same format as that in XACML profile
for RBAC except that the XACML subject is associated with multiple attributes
in addition to role.

RABAC: Role-Centric Attribute-Based Access Control 93

Table 6. RABAC Configuration for Doctor-Patient Problem

1. Basic sets and function
UATT={doctorof, uproj} OATT={type, recordof, oproj}
attType(doctorof)= attType(uproj) = attType(oproj)= set
attType(type)= attType(recordof)= atomic
Range(uproj) = Range(oproj)={proj1, proj2, proj3 . . . }
Range(type)= {PatientRecord, AuthorizedDoc . . .}
Range(doctorof)= Patient
Patient is all patients maintained by the hospital, Patient⊆U.
Range(recordof)= U
FILTER= {FPatient, FAuthorized}
2. Permission filtering policy
FPatient(se: SESSIONS, o: OBS, read)
{

recordof(o)∈doctorof(sessionowner(se));
}
FAuthorized(se: SESSION, o: OBS, read)
{

(∃ proj1 ∈ oproj(o). ∃ proj2 ∈ uproj(sessionowner(se)).proj1=proj2)∧
(8:00≤time(sessionowner(se)) ∧ time(sessionowner(se)) ≤ 17:00) ∧
device(sessionowner(se)) ∈ { set of hospital certified devices }

}
TargetFilter(o: OBS)
{

filter = {};
case type(o) = PatientRecord: filter = filter ∪ FPatient;
case type(o) = AuthorizedDoc: filter = filter ∪ FAuthorized;
return filter;

}

4.2 Example

We show the usage of our model in the doctor-patient problem in collaborative
hospitals. The scenario is: Doctor, Patient and V isitDoc are roles in each hospi-
tal. Doctor are allowed to read their Patients’ record at any time. V isitDoc are
only allowed to read authorized documents which are revealed for collaboration
purpose with other hospitals. The request will only be approved during working
hours made from any hospital certified devices. In addition, visiting doctors from
other hospital are only allowed to view authorized documents pertaining to the
projects they participate in. We present the configuration in RABAC in table 6.
The elements are to be added to original RBAC solution. In traditional RBAC, a
V isitDoc role for each collaborative project should be defined. As new projects
are created and accomplished, V isitDoc roles have to be created and deleted.
In addition, roles for each project are only different in the permissions regarding
the specific projects. In our solution, a general V isitDoc role is defined to be
able to read all authorized projects documents. Then simple filtering policy can
be specified in a straightforward manner (shown below). Thus, the role needed

94 X. Jin, R. Sandhu, and R. Krishnan

to be defined in traditional RBAC is the same as the number of projects while
only one is needed in RABAC. Note that if the hospital requirements changes,
e.g. a visit doc can read all authorized documents in his department, the role-
permission and user-role relationship need to be changed in RBAC while such
change is not needed in RABAC. Rather we need to change the filtering policy
in RABAC, which in this case would simply delete the corresponding filtering
policy.

Following the above RABAC XACML profile we have implemented the fore-
mentioned doctor-patient problem based on SUN’s XACML implementation
[2]. As per the standard RBAC XACML profile the role policy is straight-
forward. The TargetFilter <PolicySet> defines a policy for filtering access on
PatientRecord and AuthorizedDoc. We take the PatientRecord as an example.
The target is all patient records and there is a reference to the corresponding fil-
ter function<Policy>. This policy defines a deny rule for reading patient records
and the rule takes effect if resource (i.e., patient record) owner does not belong
to the doctorof attribute value of a subject. One technical problem with this
implementation is that string-not-equal is not natively embedded into XACML
standard. Thus, we need to define this function which is straightforward and not
explicitly shown here. An abbreviated portion of the XACML code for FPatien-
dRecord is shown below (role policy is the same as RBAC XACML profile and
policy file for FAuthorized is similar).

XACML Code for PFP in Example

1 <Policy PolicyId="PFPPatiendRecord" RuleCombiningAlgId="deny-overrides">
2 <Target></Any Subject>
3 <Resources><!--Any PatientRecord--></Resources> </Any Action>
4 </Target>
5 <Rule RuleId="ReadRule" Effect="Deny">
6 <Target><Any Subject Resource/>
7 <Actions><Action><ActionMatch MatchId="string-equal">
8 <AttributeValue DataType="string">read</AttributeValue>
9 <ActionAttributeDesignator DataType="string"

10 AttributeId="action:action-id"/>
11 </ActionMatch></Action></Actions> </Target>
12 <Condition FunctionId="string-not-equal">
13 <Apply FunctionId="string-one-and-only">
14 <SubjectAttributeDesignator DataType="string"
15 AttributeId="doctorof"/></Apply>
16 <Apply FunctionId="string-one-and-only">
17 <ResourceAttributeDesignator DataType="string"
18 AttributeId="owner"/></Apply>
19 </Condition>
20 </Rule>
21 </Policy>

5 Conclusion and Future Work

In this paper, we proposed RABAC, a novel extension to the NIST RBAC model
in an effort to address the role explosion problem of RBAC without modifying
significant components of RBAC model and retaining the static relationships
between roles and permissions. It is the first model to integrate roles and at-
tributes using the role centric approach identified by Kuhn et al [23]. RABAC

RABAC: Role-Centric Attribute-Based Access Control 95

integrates roles and attributes in a flexible and reliable manner. In particular, we
define an independent component called the permission filtering policy (PFP)
adding to the existing components of the NIST RBAC model. We also extend
the functional specification of the NIST RBAC model and XACML profile for
RBAC. Our solution essentially retains the administration convenience of RBAC
while ensuring flexibility and scalability without role explosion.

There are several interesting directions for future work. Formal analysis of
tradeoffs between roles and attributes may provide practically useful insights
and results. The language CPL, which is used for specifying the filtering function
as well as conditions in TargetF ilter functions, can be extended to leverage the
power of XACML as these functions can be expressed through XACML policy
files.

Acknowledgment. The authors are partially supported by grants from AFOSR
MURI and the State of Texas Emerging Technology Fund.

References

1. OASIS, Extensible access control markup language (XACML), v2.0 (2005).
2. Sun’s XACML implementation,

http://sunxacml.sourceforge.net/index.html
3. Abdallah, A.E., Khayat, E.J.: A Formal Model for Parameterized Role-Based Ac-

cess Control. In: Formal Aspects in Security and Trust (2004)
4. Al-Kahtani, M.A., Sandhu, R.: A model for attribute-based user-role assignment.

In: ACSAC (2002)
5. Anderson, A.: XACML profile for role based access control (RBAC). Technical

Report Draft 1, OASIS (February 2004)
6. Bao, Y., Song, J., Wang, D., Shen, D., Yu, G.: A Role and Context Based Access

Control Model with UML. In: ICYCS (2008)
7. Chadwick, D.W., Otenko, A., Ball, E.: Implementing Role Based Access Controls

Using X.509 Attribute Certificates. IEEE Internet Computing (2003)
8. Chakraborty, S., Ray, I.: TrustBAC: integrating trust relationships into the RBAC

model for access control in open systems. In: SACMAT (2006)
9. Cirio, L., Cruz, I.F., Tamassia, R.: A Role and Attribute Based Access Control

System Using Semantic Web Technologies. In: Meersman, R., Tari, Z. (eds.) OTM-
WS 2007, Part II. LNCS, vol. 4806, pp. 1256–1266. Springer, Heidelberg (2007)

10. Covington, M.J., Long, W., Srinivasan, S., Dev, A.K., Ahamad, M., Abowd, G.D.:
Securing context-aware applications using environment roles. In: SACMAT (2001)

11. Covington, M.J., Sastry, M.R.: A Contextual Attribute-Based Access Control
Model. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS,
vol. 4278, pp. 1996–2006. Springer, Heidelberg (2006)

12. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Richard Kuhn, D., Chandramouli, R.:
Proposed NIST standard for role-based access control. ACM Trans. on Infor. and
Sys. Sec. (2001)

13. Fischer, J., Marino, D., Majumdar, R., Millstein, T.: Fine-Grained Access Con-
trol with Object-Sensitive Roles. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS,
vol. 5653, pp. 173–194. Springer, Heidelberg (2009)

http://sunxacml.sourceforge.net/index.html

96 X. Jin, R. Sandhu, and R. Krishnan

14. Fong, P.W.L.: Relationship-based access control: protection model and policy lan-
guage. In: CODASPY (2011)

15. Fuchs, L., Pernul, G., Sandhu, R.S.: Roles in information security-A survey and
classification of the research area. Computers & Security (2011)

16. Gallagher, M.P., O’Connor, A.C., Kropp, B.: The economic impact of role-based
access control. In: Planning report 02-1, NIST, (March 2002)

17. Ge, M., Osborn, S.L.: A design for parameterized roles. In: DBSec (2004)
18. Giuri, L., Iglio, P.: Role templates for content-based access control. In: Proc. of the

Second ACM Workshop on RBAC. ACM (1997)
19. Huang, J., Nicol, D., Bobba, R., Huh, J.H.: A Framework Integrating Attribute-

based Policies into RBAC. In: SACMAT (2012)
20. Jin, X., Krishnan, R., Sandhu, R.: A Unified Attribute-Based Access Control Model

Covering DAC, MAC and RBAC. In: DBSec (2012)
21. Kalam, A.A.E., Benferhat, S., Miege, A., Baida, R.E., Cuppens, F., Saurel, C.,

Balbiani, P., Deswarte, Y., Trouessin, G.: Organization based access control. In:
POLICY (2003)

22. Karp, A.H., Haury, H., Davis, M.H.: From ABAC to ZBAC: the evolution of access
control models, In: Tech. Report, HP Labs (2009)

23. Richard Kuhn, D., Coyne, E.J., Weil, T.R.: Adding Attributes to Role-Based Ac-
cess Control. IEEE Computer 43(6), 79–81 (2010)

24. Kumar, A., Karnik, N., Chafle, G.: Context sensitivity in role-based access control.
SIGOPS Oper. Syst. Rev. 36(3), 53–66 (2002)

25. Sandhu, R., Bhamidipati, V., Munawer, Q.: The ARBAC97 model for role-based
administration of roles. ACM Trans. on Info. and Sys. Sec. (1999)

26. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Computer 29(2), 38–47 (1996)

27. Xu, M., Wijesekera, D., Zhang, X., Cooray, D.: Towards Session-Aware RBAC
Administration and Enforcement with XACML. In: POLICY (2009)

28. Yong, J., Bertino, E., Toleman, M., Roberts, D.: Extended RBAC with role at-
tributes. In: 10th Pacific Asia Conf. on Info. Sys. (2006)

29. Zhang, Z., Zhang, X., Sandhu, R.: ROBAC: Scalable role and organization based
access control models. In: IEEE TrustCol (2006)

	RABAC: Role-Centric Attribute-Based Access Control
	Introduction and Motivation
	Related Work
	RABAC Model
	Model Overview
	RABAC Reference Model
	Functional Specification

	XACML Profile for RABAC
	Proposed Profile
	Example

	Conclusion and Future Work
	References

