

Lecture Notes in Computer Science 7531
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Igor Kotenko Victor Skormin (Eds.)

Computer
Network Security
6th International Conference on Mathematical
Methods, Models and Architectures for
Computer Network Security, MMM-ACNS 2012
St. Petersburg, Russia, October 17-19, 2012
Proceedings

13

Volume Editors

Igor Kotenko
St. Petersburg Institute for Informatics and Automation
Russian Academy of Science
39, 14-th Liniya
St. Petersburg, 199178, Russia
E-mail: ivkote@comsec.spb.ru

Victor Skormin
Binghamton University (SUNY)
Binghamton, NY 13902, USA
E-mail: vskormin@binghmaton.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-33703-1 e-ISBN 978-3-642-33704-8
DOI 10.1007/978-3-642-33704-8
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012947925

CR Subject Classification (1998): C.2.0, K.6.5, K.4.4, E.3, D.4.6, C.2.3-4, H.2.7-8,
C.5.3, J.1

LNCS Sublibrary: SL 5 – Computer Communication Networks and Telecommuni-
cations

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains papers presented at the 6th International Conference on
Mathematical Methods, Models and Architectures for Computer Network Secu-
rity (MMM-ACNS 2012) held in St. Petersburg, Russia, during October 17–19,
2012. The conference was organized by the St. Petersburg Institute for Infor-
matics and Automation of the Russian Academy of Sciences (SPIIRAS) in co-
operation with Binghamton University (SUNY).

The previous international conferences “Mathematical Methods, Models and
Architectures for Computer Networks Security” (MMM-ACNS 2001, MMM-
ACNS 2003, MMM-ACNS 2005, MMM-ACNS 2007, and MMM-ACNS 2010),
organized by SPIIRAS and Binghamton University (SUNY) and supported by
the European Office of Aerospace Research and Development USAF, the US Of-
fice of Naval Research Global, and the Russian Foundation for Basic Research,
were successful. These conferences demonstrated the high interest of the interna-
tional scientific community in the theoretical and practical aspects of computer
network security.

MMM-ACNS 2012 provided the next international forum for sharing original
research results among specialists in fundamental and applied problems of com-
puter network security. A total of 44 papers from 12 countries were submitted
to MMM-ACNS 2012. Fourteen papers were selected as regular and 8 as short
presentations (32% of acceptance for full papers).

Seven technical sessions were organized, namely: applied cryptography and
security protocols; access control and information protection; security policies;
security event and information management; intrusion prevention, detection,
and response; anti-malware techniques; and security modeling and cloud secu-
rity. The MMM-ACNS 2012 program was enriched by invited papers presented
by four distinguished invited speakers: Ben Livshits (Microsoft Research and
University of Washington, USA), Fabio Martinelli (Institute of Informatics and
Telematics, National Research Council, Italy), Angelos Stavrou (Mason Univer-
sity, USA), and Bhavani Thuraisingham (University of Texas at Dallas, USA).

The success of the conference was assured by the team effort of sponsors, orga-
nizers, reviewers, and participants. We would like to acknowledge the contribution
of the individual Program Committee members and thank the paper reviewers.

Our sincere gratitude goes to the participants of the conference and all au-
thors of the submitted papers. We are grateful to our sponsors: European Office
of Aerospace Research and Development (EOARD) of the US Air Force and the
US Office of Naval Research Global (ONRGlobal).

We wish to express our gratitude to Springer’s LNCS team managed by Alfred
Hofmann for their help and cooperation.

October 2012 Igor Kotenko
Victor Skormin

Organization

General Chairs

Rafael M. Yusupov St. Petersburg Institute for Informatics and
Automation of the Russian Academy
of Sciences (SPIIRAS), Russia

Robert L. Herklotz US Air Force Office of Scientific Research, USA

Program Committee Co-chairs

Igor Kotenko St. Petersburg Institute for Informatics and
Automation of the Russian Academy of
Sciences (SPIIRAS), Russia

Victor Skormin Binghamton University, USA

Program Committee

Fabrizio Baiardi University of Pisa, Italy
Cataldo Basile Politecnico di Torino, Italy
Julien Bourgeois University of Franche-Comte, France
Mariano Ceccato Fondazione Bruno Kessler, Italy
David Chadwick University of Kent, UK
Shiu-Kai Chin Syracuse University, USA
Christian Collberg University of Arizona, USA
Miguel Pupo Correia Instituto Superior Técnico, Portugal
Bruno Crispo University of Trento, Italy
Frédéric Cuppens Télécom Bretagne, France
Dipankar Dasgupta University of Memphis, USA
Changyu Dong University of Strathclyde, UK
Dennis Gamayunov Moscow State University, Russia
Dieter Gollmann Technical University of Hamburg-Harburg,

Germany
Stefanos Gritzalis University of the Aegean, Greece
Alexander Grusho Moscow State University, Russia
Ming-Yuh Huang Northwest Security Institute, USA
Andrew Hutchison T-Systems, South Africa
Sushil Jajodia George Mason University, USA
Angelos Keromytis Columbia University, USA
Alexey Kirichenko F-Secure, Finland
Victor Korneev Federal Enterprise “R&D Institute “Kvant”,

Russia
Hanno Langweg Gjøvik University College, Norway
Pavel Laskov University of Tübingen, Germany

VIII Organization

Peeter Laud Cybernetica AS and University of Tartu,
Estonia

Ben Livshits Microsoft Research and University of
Washington, USA

Javier Lopez University of Malaga, Spain
Antonio Maña University of Malaga, Spain
Fabio Martinelli Institute of Informatics and Telematics,

National Research Council, Italy
Gregorio Martinez University of Murcia, Spain
Fabio Massacci University of Trento, Italy
Catherine Meadows Naval Research Laboratory, USA
Stig Mjølsnes Norwegian University of Science and

Technology, Norway
Nikolay Moldovyan SPIIRAS, Russia
Wojciech Molisz Gdansk University of Technology, Poland
Greg Morrisett Harvard University, USA
Haris Mouratidis University of East London, UK
Evgenia Novikova SPIIRAS, Russia
Vladimir Oleshchuk University of Agder, Norway
Ludovic Pietre-Cambacedes EDF, France
Bart Preneel Katholieke Universiteit Leuven, Belgium
Roland Rieke Fraunhofer Institute for Secure Information

Technology SIT, Germany
Luigi Romano University of Naples Parthenope, Italy
Andrzej Rucinski University of New Hampshire, USA
Peter Ryan University of Luxembourg, Luxembourg
Andrei Sabelfeld Chalmers University of Technology, Sweden
Ahmad-Reza Sadeghi TU Darmstadt and Fraunhofer Institute for

Secure Information Technology SIT,
Germany

Igor Saenko SPIIRAS, Russia
Francoise Sailhan CNAM, France
Pierangela Samarati University of Milan, Italy
Ravi Sandhu George Mason University and NSD Security,

USA
Fred Schneider Cornell University, USA
Michael Smirnov Fraunhofer FOKUS, Germany
Angelos Stavrou Mason University, USA
Nadia Tawbi Laval University, Canada
Bhavani Thuraisingham University of Texas at Dallas, USA
Bill Tsoumas Athens University of Economics and Business,

Greece
Shambhu Upadhyaya University at Buffalo, USA
Paulo Verissimo University of Lisbon, Portugal
Peter Zegzhda St. Petersburg Polytechnical University, Russia

Organization IX

Reviewers

Fabrizio Baiardi University of Pisa, Italy
Cataldo Basile Politecnico di Torino, Italy
Luciano Bello Chalmers University of Technology, Sweden
Julien Bourgeois University of Franche-Comté, France
Mariano Ceccato Fondazione Bruno Kessler, Italy
David Chadwick University of Kent, UK
Shiu-Kai Chin Syracuse University, USA
Christian Collberg University of Arizona, USA
Miguel Pupo Correia Instituto Superior Técnico, Portugal
Frédéric Cuppens Télécom Bretagne, France
Changyu Dong University of Strathclyde, UK
Dennis Gamayunov Moscow State University, Russia
Dieter Gollmann Technical University of Hamburg-Harburg,

Germany
Stefanos Gritzalis University of the Aegean, Greece
Alexander Grusho Moscow State University, Russia
Ming-Yuh Huang Northwest Security Institute, USA
Andrew Hutchison T-Systems, South Africa
Sushil Jajodia George Mason University, USA
Angelos Keromytis Columbia University, USA
Alexey Kirichenko F-Secure, Finland
Victor Korneev Federal Enterprise “R&D Institute “Kvant”,

Russia
Hanno Langweg Gjøvik University College, Norway
Pavel Laskov University of Tübingen, Germany
Peeter Laud Cybernetica AS and University of Tartu,

Estonia
Ben Livshits Microsoft Research and University of

Washington, USA
Javier Lopez University of Malaga, Spain
Antonio Maña University of Malaga, Spain
Fabio Martinelli Institute of Informatics and Telematics,

National Research Council, Italy
Gregorio Martinez University of Murcia, Spain
Fabio Massacci University of Trento, Italy
Catherine Meadows Naval Research Laboratory, USA
Stig Mjølsnes Norwegian University of Science and

Technology, Norway
Nikolay Moldovyan SPIIRAS, Russia
Wojciech Molisz Gdansk University of Technology, Poland
Greg Morrisett Harvard University, USA
Haris Mouratidis University of East London, UK
Evgenia Novikova SPIIRAS, Russia
Vladimir Oleshchuk University of Agder, Norway

X Organization

Ludovic Pietre-Cambacedes EDF, France
Bart Preneel Katholieke Universiteit Leuven, Belgium
Willard Rafnsson Chalmers University of Technology, Sweden
Roland Rieke Fraunhofer Institute for Secure Information

Technology SIT, Germany
Luigi Romano University of Naples Parthenope, Italy
Andrzej Rucinski University of New Hampshire, USA
Peter Ryan University of Luxembourg, Luxembourg
Andrei Sabelfeld Chalmers University of Technology, Sweden
Ahmad-Reza Sadeghi TU Darmstadt and Fraunhofer Institute for

Secure Information Technology SIT,
Germany

Igor Saenko SPIIRAS, Russia
Francoise Sailhan CNAM, France
Pierangela Samarati University of Milan, Italy
Ravi Sandhu George Mason University and NSD Security,

USA
Fred Schneider Cornell University, USA
Michael Smirnov Fraunhofer FOKUS, Germany
Angelos Stavrou Mason University, USA
Nadia Tawbi Laval University, Canada
Bhavani Thuraisingham University of Texas at Dallas, USA
Bill Tsoumas Athens University of Economics and Business,

Greece
Shambhu Upadhyaya University at Buffalo, USA
Paulo Verissimo University of Lisbon, Portugal
Peter Zegzhda St. Petersburg Polytechnical University, Russia

Table of Contents

Invited Papers

Finding Malware on a Web Scale . 1
Benjamin Livshits

Exposing Security Risks for Commercial Mobile Devices 3
Zhaohui Wang, Ryan Johnson, Rahul Murmuria, and
Angelos Stavrou

From Qualitative to Quantitative Enforcement of Security Policy 22
Fabio Martinelli, Ilaria Matteucci, and Charles Morisset

Design and Implementation of a Cloud-Based Assured Information
Sharing System . 36

Tyrone Cadenhead, Murat Kantarcioglu, Vaibhav Khadilkar, and
Bhavani Thuraisingham

Applied Cryptography and Security Protocols

Optimization of Key Distribution Protocols Based on Extractors for
Noisy Channels within Active Adversaries . 51

Victor Yakovlev, Valery Korzhik, Mihail Bakaev, and
Guillermo Morales-Luna

A Vulnerability in the UMTS and LTE Authentication and Key
Agreement Protocols . 65

Joe-Kai Tsay and Stig F. Mjølsnes

Blind 384-bit Digital Signature Scheme . 77
Alexandr Moldovyan, Nikolay Moldovyan, and Evgenia Novikova

Access Control and Information Protection

RABAC: Role-Centric Attribute-Based Access Control 84
Xin Jin, Ravi Sandhu, and Ram Krishnan

Trust-Aware RBAC . 97
Vladimir Oleshchuk

Alternative Mechanisms for Information Security . 108
Alexander Grusho, Nick Grusho, and Elena Timonina

XII Table of Contents

Security Policies

Enforcing Information Flow Policies by a Three-Valued Analysis 114
Josée Desharnais, Erwanne P. Kanyabwero, and Nadia Tawbi

Towards the Orchestration of Secured Services under Non-disclosure
Policies . 130

Tigran Avanesov, Yannick Chevalier, Michaël Rusinowitch, and
Mathieu Turuani

An Approach for Network Information Flow Analysis for Systems of
Embedded Components . 146

Andrey Chechulin, Igor Kotenko, and Vasily Desnitsky

Security Event and Information Management

Individual Countermeasure Selection Based on the Return On Response
Investment Index . 156

Gustavo Gonzalez Granadillo, Hervé Débar, Grégoire Jacob,
Chrystel Gaber, and Mohammed Achemlal

Security and Reliability Requirements for Advanced Security Event
Management . 171

Roland Rieke, Luigi Coppolino, Andrew Hutchison, Elsa Prieto, and
Chrystel Gaber

Model-Based Security Event Management . 181
Julian Schütte, Roland Rieke, and Timo Winkelvos

Intrusion Prevention, Detection, and Response

Using Behavioral Modeling and Customized Normalcy Profiles as
Protection against Targeted Cyber-Attacks . 191

Andrey Dolgikh, Tomas Nykodym, Victor Skormin, and
Zachary Birnbaum

Limitation of Honeypot/Honeynet Databases to Enhance Alert
Correlation . 203

Yosra Ben Mustapha, Hervé Débar, and Grégoire Jacob

Stochastic Model of Interaction between Botnets and Distributed
Computer Defense Systems . 218

Dmitry P. Zegzhda and Tatiana V. Stepanova

Table of Contents XIII

Anti-malware Techniques

Malware Characterization Using Behavioral Components 226
Chaitanya Yavvari, Arnur Tokhtabayev, Huzefa Rangwala, and
Angelos Stavrou

MADAM: A Multi-level Anomaly Detector for Android Malware 240
Gianluca Dini, Fabio Martinelli, Andrea Saracino, and
Daniele Sgandurra

Using Low-Level Dynamic Attributes for Malware Detection Based on
Data Mining Methods . 254

Dmitry Komashinskiy and Igor Kotenko

Security Modeling and Cloud Security

Configuration-Based Approach to Embedded Device Security 270
Vasily Desnitsky, Igor Kotenko, and Andrey Chechulin

A Study of Entropy Sources in Cloud Computers: Random Number
Generation on Cloud Hosts . 286

Brendan Kerrigan and Yu Chen

Security Modeling of Grid Systems Using Petri Nets 299
Peter D. Zegzhda, Dmitry P. Zegzhda, Maxim O. Kalinin, and
Artem S. Konoplev

Using Graph Theory for Cloud System Security Modeling 309
Peter D. Zegzhda, Dmitry P. Zegzhda, and Alexey V. Nikolskiy

Author Index . 319

Finding Malware on a Web Scale

Benjamin Livshits

Microsoft Research

In recent years, attacks that exploit vulnerabilities in browsers and their asso-
ciated plugins have increased significantly. These attacks are often written in
JavaScript and millions of URLs contain such malicious content.

Over the last several years, we have created a series of techniques designed
to detect and prevent malicious software or malware. These techniques focus on
detecting malware that infects web pages. Much of this research has been done
in close collaboration with a major search engine, Bing, which is interested in
making sure it does not present malicious results to its users, independently of the
user’s browser, location, or operating system. As such, detection needs to be as
general and wide-reaching as possible. While some of the techniques summarized
below can be deployed within a web browser, our primary deployment model
involves crawling the web in an effort to find and blacklist malicious pages.

In the rest of this paper, we will summarize three related projects: Nozzle,
Zozzle, and Rozzle. Nozzle is a runtime malware detector. Zozzle is a a mostly
static malware detector. Finally, Rozzle is a de-cloacking technique that amplifies
both.

1 Nozzle: Runtime Heap Spray Detector

Nozzle [3] is a runtime monitoring approach that detects attempts by attackers
to spray the heap. Nozzle uses lightweight emulation techniques to detect the
presence of objects that contain executable code. To reduce false positives, we
developed a notion of global “heap health”.

The Nozzle lightweight emulator scans heap allocated object data to identify
valid x86 code sequences, disassembling the code and building a control flow
graph. Because the attack jump target cannot be precisely controlled, the em-
ulator follows control flow to identify basic blocks that are likely to be reached
through jumps from multiple offsets into the object.

We have developed a novel approach to mitigate this problem using global
heap health metrics, which effectively distinguishes benign allocation behavior
from malicious attacks. Fortunately, an inherent property of heap spraying at-
tacks is the fact such attacks affect the heap globally. Consequently, Nozzle
exploits this property to drastically reduce the false positive rate.

2 Zozzle: Mostly Static JavaScript Malware Detector

Zozzle [1] is a low-overhead solution for detecting and preventing JavaScript
malware that is fast enough to be deployed in the browser.

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2012, LNCS 7531, pp. 1–2, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 B. Livshits

Our approach uses Bayesian classification of hierarchical features of the
JavaScript abstract syntax tree to identify syntax elements that are highly pre-
dictive of malware.

Our experimental evaluation shows that Zozzle is able to detect JavaScript
malware through mostly static code analysis effectively. Zozzle has an extremely
low false positive rate of 0.0003, which is less that one in quarter million. De-
spite this high accuracy, the Zozzle classifier is very fast, with a throughput at
over 1 MB of JavaScript code per second.

3 Rozzle: Multi-execution Approach for Revealing
Cloaking JavaScript Malware

While static and runtime methods for malware detection been proposed in the
literature, both on the client side, for just-in-time in-browser detection, as well
as offline, crawler-based malware discovery, these approaches encounter the same
fundamental limitation. Web-based malware tends to be environment-specific,
targeting a particular browser, often attacking specific versions of installed
plugins.

This targeting occurs because the malware exploits vulnerabilities in specific
plugins and fail otherwise. As a result, a fundamental limitation for detecting
a piece of malware is that malware is triggered infrequently, only showing itself
when the right environment is present. In fact, we observe that using current
fingerprinting techniques, just about any piece of existing malware may be made
virtually undetectable with the current generation of malware scanners.

Rozzle [2] is a JavaScript multi-execution virtual machine, a way to explore
multiple execution paths within a single execution so that environment-specific
malware will reveal itself. Using large-scale experiments, we show that Rozzle
increases the detection rate for offline runtime detection by almost seven times.

In addition, Rozzle triples the effectiveness of online runtime detection. We
show that Rozzle incurs virtually no runtime overhead and allows us to replace
multiple VMs running different browser configurations with a single Rozzle-
enabled browser, reducing the hardware requirements, network bandwidth, and
power consumption.

References

Curtsinger, C., Livshits, B., Zorn, B., Seifert, C.: Zozzle: Low-overhead mostly static
JavaScript malware detection. In: Proceedings of the Usenix Security Symposium
(August 2011)

Kolbitsch, C., Livshits, B., Zorn, B., Seifert, C.: Rozzle: De-cloaking internet malware.
In: IEEE Symposium on Security and Privacy (May 2012)

Ratanaworabhan, P., Livshits, B., Zorn, B.: Nozzle: A defense against heap-spraying
code injection attacks. In: Proceedings of the Usenix Security Symposium (August
2009)

Exposing Security Risks for Commercial Mobile

Devices

Zhaohui Wang, Ryan Johnson, Rahul Murmuria, and Angelos Stavrou

Department of Computer Science
George Mason University, Fairfax VA 22030, USA

Abstract. Recent advances in the hardware capabilities of mobile hand-
held devices have fostered the development of open source operating
systems and a wealth of applications for mobile phones and tablet de-
vices. This new generation of smart devices, including iPhone and Google
Android, are powerful enough to accomplish most of the user tasks pre-
viously requiring a personal computer. Moreover, mobile devices have
access to Personally Identifiable Information (PII) from a full suite of
sensors such as GPS, camera, microphone and others.

In this paper, we discuss the security threats that stem from these new
smart device capabilities and the online application markets for mobile
devices. These threats include malware, data exfiltration, exploitation
through USB, and user and data tracking. We present our ongoing re-
search efforts to defend or mitigate the impact of attacks against mobile
devices. Our approaches involve analyzing the source code and binaries
of mobile applications, kernel-level and data encryption, and controlling
the communication mechanisms for synchronizing the user contents with
computers and other phones including updates or new version of the
operating system or applications over USB. We also explain the emerg-
ing challenges in dealing with these security issues when the end-goal
is to deploy security-enhanced smart phones into military and tactical
scenarios.

1 Introduction

The need for smaller, faster, portable devices and the ever increasing use of tech-
nology in our everyday life has driven the hardware manufacturers towards hand-
held mobile devices that can offer a wide-range of functionality with affordable
cost. Newly developed smart gadget devices produced by Apple, Google, Sam-
sung, HTC are powerful enough to accomplish most of the tasks that previously
required a personal computer. To make matters worse, unlike most desktop or
laptop computers, they are almost always connected to the network. This newly
acquired computing power gave a rise to plethora of applications that attempt
to leverage the new hardware. These include but are not limited to Internet
browsing, email, messaging, social networking, and GPS navigation.

Unfortunately, although powerful and ubiquitous, researchers and practition-
ers have only recently been looking into the potential threats that stem from

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2012, LNCS 7531, pp. 3–21, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

4 Z. Wang et al.

Fig. 1. Overall Security Architecture for Android Devices: the primary design tenet is
to prevent Data exfiltration or loss from unauthorized communications and malicious
or badly designed mobile applications. A secondary goal was to produce a system that
is transparent with small operating footprint in terms of power, CPU, and memory.

device and application attacks on mobile devices. In this paper, we describe the
rationale behind some of our efforts [1,3,2] to secure the hardware and software
on Android devices used in adversarial environments. Our efforts are data-centric
and is multi-pronged as depicted in Figure 1. One of our primary goals is to pro-
vide transparent government grade data-at-rest encryption. An Encrypted File
System (EncFS) for Android that employees NIST validated crypto algorithms
was employed to meet this need.

On the other hand, we wanted to protect information that enters or leaves
the mobile device and to prevent unauthorized data leaks. To achieve that, we
employ cryptographic communications to all the allowed paths including the
USB communications and Internet connections. Finally, to prevent information
leakage from untrusted applications, we developed offline security software test-
ing algorithms for Android applications that enable us to weed-out potentially
unwanted program functionality that can be construed as malicious depending
on the mission requirements.

All the above solutions, and especially encryption, however, come at a poten-
tially significant performance cost depending on the device we apply them on. In
general, on mobile devices resources, including battery and processing power are
severely constrained so it is important to maintain a small operational footprint.

Exposing Security Risks for Commercial Mobile Devices 5

Throughout this paper, we show that our proposed solutions as depicted in the
overall architecture 1 are offering a reliable and secure platform for deployment
of missing critical Android applications even when deployed in hostile or any
other high risk environments.

2 Background and Related Work

This section provide some background information on the different research so-
lutions that have been proposed over the last few years and illustrates the diffi-
culties to provide an overarching approach to protecting Android mobile devices
against a wide-range of attacks.

Mobile OS Attacks and Defenses: The emerging threats brought by smart
gadget devices and defense approaches are also well studied by the research com-
munity. The presentation “Understanding Android’s Security Framework” [4]
presents a high-level overview of the mechanisms required to develop secure ap-
plications within the Android development framework. The tutorial contains the
basics of building an Android application. However, the described interfaces must
be carefully secured to defend against general malfeasance. They showed how
Android’s security model aims to provide mechanisms for requisite protection of
applications and critical smart phone functionality and present a number of best
practices for secure application development within the environment. However,
authors in [5] showed that this is not enough and that new semantically rich and
application-centric policies have to be defined and enforced for Android. More-
over, in [6] the authors show how to establish trust and measure the integrity
of application on mobile phone systems. TaintDroid [7] addresses the security
issues with dynamic information flow and privacy on mobile handheld devices by
tracking application behavior to determine when privacy-sensitive information
is leaked. This includes location, phone numbers and even SIM card identifiers,
and to notify users in realtime. Their findings suggest that Android, and other
phone operating systems, need to do more to monitor what third-party applica-
tions are doing when running in smart phones. Felt et al. [8] performed testing
of Android 2.2.1 in order to identify the Android API calls, intents, and content
providers which require a permission.

Battery-Borne Deny-of-Service: Racic and Kim et al. [9,10] studied malware
that aims to deplete the power resources on the mobile devices. The provided
solutions involve changes in the GSM telephony infrastructure. Their work shows
that attacks were mainly carried out through the MMS/SMS interfaces on the
device. In addition, in [11] the authors show that applications can simply overuse
the WiFi, Bluetooth or display of the device and eventually cause a denial of
service attack. VirusMeter [12] models the power consumption and detects the
malware based on power abnormality. However, the use of linear regression model
with static weights for devices’ relative rate of battery consumption is a non-
scalable approach [13].

Mobile Malware and Rootkits: Given the popularity of mobile application
and their strong coupling relation with PII (Personal Identifiable Information),

6 Z. Wang et al.

the spreading of mobile malware is becoming an alarming threat to military
personnel as well as civilians. The evolution of mobile malware created a need
to systematically characterize them from various aspects including their instal-
lation methods, activation mechanisms as well as the nature of carried malicious
payloads given a nearly two years time window [14]. Zhou et al. [15] developed a
program to analyze the bytecode of an Android application to create behavioral
footprints on Android application and then use heuristics to detect classes of
malware.

Cloaker [16] is a non-persistent rootkit that does not alter any part of the
host operating system (OS) code or data, thereby achieving immunity to all
existing rootkit detection techniques which perform integrity, behavior and sig-
nature checks of the host OS. Cloaker leverages the ARM architecture design
to remain hidden from current deployed rootkit detection techniques, therefore
it is architecture specific but OS independent. Bickford et al. [17] uses three
example rootkits to show that smart phones are just as vulnerable to rootkits
as desktop operating systems. However, the ubiquity of smart phones and the
unique interfaces that they expose, such as voice, GPS and battery, make the
social consequences of rootkits particularly devastating.

Code Injection: Buffer overflows also plague mobile devices. The presentation
on hacking Windows Mobile [18] at Xcon 2005 talked shell code development
advice as well as sample code. Recent emerging threats show that such exploita-
tions are targeting web browsers and other potentially exploitable software like
adobe pdf view application in the mobile OSes. Android platform also exposed
multiple vulnerabilities for code injection attacks such as CVE-2011-3874 etc.
Bojinov et al. proposed a mechanism of executable ASLR that requires no kernel
modifications for defending remote code injection attacks for mobile devices [19].

Static Analysis and Execution: There is a plethora of research on static and
dynamic analysis of programs with more notable symbolic execution [20]. Most
of the analysis programs focus primarily on determining if an Android applica-
tion requests the correct set of permissions based on the Android API calls that
the applications perform [8]. In addition, static analysis programs usually require
access to the source code of the Android application. One of these static analysis
programs that executes on source code [21] focuses specifically on certain types
of behaviors, vulnerabilities, and limited analysis of the permissions. Vidas et
al. [22] created a static analysis tool which detects when an Android application
requests permissions that it does note need as well as needed but absent per-
missions from the AndroidManifest.xml file of and Android application. They
also developed a plugin for Eclipse which informs developers when they request
unneeded permissions based on the application’s functionality. They developed a
mapping based on the documentation of the Android API. This documentation
for the Android API is incomplete, so their mapping of Android API calls is
also incomplete. Blasnig et al. [23] use the Android emulator that comes with
the Android SDK to perform dynamic analysis on Android application and use
a tool to simulate user interaction. The tool also performs some static analysis
by disassembling the Android application and identifying certain functionality.

Exposing Security Risks for Commercial Mobile Devices 7

The random-input generation helps to traverse various paths through the code,
although using symbolic execution would inform the random-input generator as
exactly what inputs would be needed to reach a particular branch of code that
has interesting behavior. Moreover, Burguera et al. [24] also use a sandbox to
perform dynamic analysis of Android applications and use a behavior-based ap-
proach to classify malware by examining the system calls of that the application
makes.

3 Motivation

In this section, we discuss the problems and weaknesses we found while re-
searching commodity mobile systems which leads to our proposed solution in
next section.

3.1 Open USB Communication

Traditionally, a smart phone device is connected to the host as a peripheral
USB device. Being lack of intelligence and computation power, the device is
more prone to be taken over by a compromised computer or abused as malware
propagation medium. However, the potential attack surface is much wider: the
USB creates a bidirectional communication channel, ideally permitting exploits
to traverse both directions. Most USB devices are dumb storage medium or only
has limited 8bit computation ability such as keyboard. However, new generation
phones are equipped more advanced CPUs with complete operating systems
which make them as powerful as a traditional desktop system. These recent
hardware advancements enables such USB peripherals to perform attacks that
are far beyond their ancestors with no chips in terms of computational and
software capabilities. Additionally, unlike desktop computers and servers that
do not move their physical location, the mobility nature of the smartphones
empowers them to potentially communicate to an even larger number of un-
infected devices across a wider range of administrative domains. For example, a
smart phone left unattended for a few minutes can be completely subverted and
become an point of infection to other devices and computers. Lastly, because
USB-borne attacks have not been seen before, there are no defenses in place to
prevent them from taking place or even detect them.

Currently, USB connections are inherently trusted by the users. When USB
protocol was designed decade ago, the physical proximity of the device and the
desktop system attributed to such assumed trust based on the fact that, in most
cases, the same user owns both systems. However, Wang et. al demonstrated
this trust can be easily abused by a malicious adversary [1]. For instance, an
unsuspected user connects the smart phone device to the desktop computer to
synchronize the two devices including her contact list, media content, calendar
and to charge its battery. There are several communication setup steps happen-
ing in the systems but all of these are performed completely transparently to the
user or with minimal user interaction: the simple press of a mouse click upon

8 Z. Wang et al.

connecting the USB cable. To make matters worse, the usb host(a desktop com-
puter in most of the case) is completely unaware of the type of the device that
is connected to the USB port. The usb peripherals can arbitrarily report itself
as any usb device given the crafted usb id. This observation can be exploited
by a sophisticated adversary who already gained access of the smartphone to
launch attacks against the desktop system. Furthermore, there are no mecha-
nisms to authenticate the validity of the device that attempts to communicate
with the host in current USB protocol. The lack of authentication allows the
connecting peripheral device to disguise and report itself as any type of USB
device it want to be, abusing the ubiquitous nature operating system. While the
open-medium problem for bluetooth and WiFi has been address in protocol de-
sign phrase so that the communication are protected, the USB communication
implying a closed-medium do still has the open-medium problem given that the
two parties of the communication can not authenticate each other. Our goal is
protecting the devices as well as the host from such attacks by applying access
control mechanisms on the USB protocol. We refer the USB host as the host
system or host side while the USB device as gadget or just device side in the
following sections of this paper.

3.2 Lack of Protection for Data at Rest

The recent surge in popularity of smart handheld devices, including smart-
phones and tablets, has given rise to new challenges in protection of Personal
Identifiable Information (PII). Handheld devices are being manufactured all over
the world and millions of devices are being sold every month to the consumer
market with increasing expectation for growth and device diversity. The price
for each unit ranges from free to eight hundred dollars with or without cellu-
lar services. In addition, new smartphone devices are constantly released to the
market which results the precipitation of the old models within months of their
launch. With the rich set of sensors integrated with these devices such as GPS,
bluetooth and WiFi, the data collected and generated are extraordinarily sensi-
tive to user’s privacy. Indeed, modern mobile devices store PII for applications
that span from daily emails to SMS, and from social sharings to location his-
tory increasing the concerns of the end user’s privacy. Smartphones are therefore
data-centric, where the cheap price of the hardware and the significance of the
data stored on the device challenge the traditional security provisions. Due to
high churn of new devices it is compelling to create new security solutions that
are hardware-agnostic. Therefore, there is a clear need and demand for PII data
to be protected in the case of loss, theft, or capture of the hardware.

While the application sandboxing protects application-specific data from be-
ing accessed by other applications on the phone, sensitive data may be inten-
tionally exfiltrated by malicious code via one of the communication channels
such as USB, WiFi, Bluetooth, NFC, cellular network etc. It also can be leaked
accidentally due to improper placement, resale or disposal of the device and
its storage media (e.g. removable sdcard). Moreover, by simply capturing the
smartphones physically, adversaries have access to confidential or even classified

Exposing Security Risks for Commercial Mobile Devices 9

data if the owners are the government officials or military personnels. There
is no government standard to regulate and guide the use of smart devices yet.
Given the cheap price and rapid evolution of the hardware, the data on the
devices are more critical and can cause devastating consequences if not well pro-
tected. To protect the secrecy of the data through its entire lifetime, we must
have robust techniques such as encryption to store and delete data while keeping
confidentiality.

We assume that an adversary is already in control of the device or the bare
storage media in our threat model, . The memory-borne attacks and defences are
not discussed in this paper and addressed by related researches in Section 2 and
discussed later. A robust data encryption infrastructure provided by the operat-
ing system can help preserve the confidentiality of all data on the smartphone,
given that the adversary cannot obtain the cryptographic key. Furthermore,
by destroying the cryptographic key on the smartphone we can make the data
practically irrecoverable. Our encryption filesystem protects the static data on
storage in complimentary to dynamic information flow leaking [7]. Having es-
tablished a threat model and listed our assumptions, we detail the steps to build
encryption filesystem on Android in the following sections.

3.3 Missing Fine-Grain Application Auditing and Regulation

Permission Model on Android platform created debated situation in both in-
dustry and academic community. Is such permission model really capable of
regulating the applications on mobile operating system and protecting average
user’s data?There are a couple of studies showing that such permission model,
as scatter throughout the whole Android API, failed the aforementioned design
goal. In particular, mobile malwares have made their way to bypass such per-
mission model by using other existing applications’ capabilities to delegate the
malicious behavior. In another work, good app with legit permissions can be-
have bad. Furthermore, malicious app can also utilizing reflection [25] to evade
the permission checking system. Moreover, current permission system is a bipo-
lar system: the user can either grant all or deny all permissions asked by an
application. Such inflexible approach impeded the advanced user to fine-grain
auditing and regulating the behavior of the application. We believe that a proper
static and dynamic analysis infrastructure will assist both smartphone users and
application developers to understand the applications’ footprint on filesystems,
network and other subsystems. The analysis results can lead to malware discov-
ery and better application design.

4 Proposed Solutions

In previous section, we exposed the missing component in commodity mobile
systems. We address those problems by proposing our solutions to tackle them
in this section.

10 Z. Wang et al.

4.1 USBSec: Authentication for USB Communication

We outline the design principles we follow and the detailed design of two types
of USBSec, a passcode approach and a public key based approach.

Design Principles. Our principle is using easiest engineering, modify mini-
mum set of USB protocol, to achieve reasonable security enhancement including
identity authentication, connection authorization. Our design philosophies for
both USBSec I and USBSec II are outlined as follows:

– The authentication is device driver agnostic. There are a variety of differ-
ent USB host controllers and USB peripheral controllers in the consumer’s
market. The design does not depend on any specific device or device driver
to accomplish our goal. The authentication logic happens at USB protocol
level so that any host controller driver or peripheral controller should have
such USB authentication capability when a modified OS kernel with USBSec
loads up.

– No USB hardware modification. Although the modification is at USB proto-
col level, the hardware signalling and interrupts remain intact. Only operat-
ing system software level changes make the deployment process of USBSec
time and cost efficient.

– Our design is backward compatible. All existing USB hardware can be used
as normal if the peripheral are not listed as USBSec required. The host
selectively activates USBSec by configuration listed device vendorID and
productsID, when it initiates the USB connection. This is critical to those
non-programmable devices which implements USB protocol in the hardware,
i.e. USB keyboard and mouse. Our modification to USB enumeration process
is compatible with all standard USB devices. In another word, standard USB
handshake proceeds if the peripheral device is not listed as authentication
required.

– The authentication is per device. In the case of a composite USB gadget
device, multiple interfaces are available for communication with the host
at the same time. The per-device authentication design guarantees that no
interface can performance potential malicious action until the authentication
of the device is finished.

Implementation. We have implemented a fully working prototype of USB-
Sec I and USBSec II. Our evaluation platform consists of a Dell PowerEdge
1950 server equipped with two Quad-Core Intel Xeon E5430 processors, 16GB
RAM as the host; a HTC Nexus One phone and a Motorola Droid phone as
the devices. We evaluated USBSec on both devices to show that our design and
implementation are not tied to specific hardware controller. The host has the
Intel 631xESB/632xESB/3100 chipset as the USB host controller. The devices
have the msm 72k OTG controller integrated in QSD8250 SoC with a 1 GHz
CPU and ISP1301 USB OTG controller integrated in the OMAP 3430 SoC with
a 600 MHz CPU respectively. Both devices run a 2.6.32 based android kernel

Exposing Security Risks for Commercial Mobile Devices 11

The host send Get Device
Descriptor setup request

The host setup kernel data
structures of the device

descriptor

The host continues
enumerate all the interfaces

Interrupt notifying the host
that a device connected

USB Host USB
Peripheral

a) Standard USB Handshake b) USBSec I Handshake c) USBSec II Handshake

Get Device Descriptor

Get Configuration

Mass-
storag

e, USB
ether

etc.

Speed
, Vend

orID,

Produ
ctID, S

erial N
o.,

Manuf
acture

Get Interface Descriptor

USB I
nterfac

e Clas
s,

Subcla
ss, Pro

tocol

The host sets up endpoints
for every interface

USB data transfer starts

The peripheral
identifies itself

The peripheral supply
the configuration, can
be dynamically changed

in smart gadget

The peripheral specify
interface information

Get Device Descriptor
with shared secret

Get Configuration

Mass-
storag

e, USB
ether

etc.

Speed
, Vend

orID,

Produ
ctID, S

erial N
o.,

Manuf
acture

Get Interface Descriptor

USB I
nterfac

e Clas
s,

Subcla
ss, Pro

tocol

USB Host USB
Peripheral

Get Device Descriptor

Get Configuration

Mass-
storag

e, USB
ether

etc.

Speed
, Vend

orID,

Produ
ctID, S

erial N
o.,

Manuf
acture

Get Interface Descriptor

USB I
nterfac

e Clas
s,

Subcla
ss, Pro

tocol

USB Host USB
Peripheral

Interrupt notifying the host
that a device connected

The host send Get Device
Descriptor setup request, with pre-

shared password

The peripheral validate the
password, if success,

continue handshake; if fail,
no response will send

The host validate the device based
on the VendorID,ProductID and

Serial Number. Handshake stops if
not recongized

Interrupt notifying the host
that a device connected

RSA Public Key The peripheral validate the
public key with the private
key, if success, continues
handshake; if failure, no
response will send

The host send the public key for
authentication before requesting

the device descriptor

Fig. 2. USB Handshake Diagrams

with respect of different SoC support. The host is running Ubuntu 10.04 with a
2.6.32 kernel. Although we have user-space programs to set the necessary con-
figuration for USBSec, all USBSec processing logic are implemented tightly with
the existing USB stack in the Linux kernel. For instance, in USBSec I, the shared
passcode is configured via /proc filesystem by user-space utility, both on the host
and the device. Similarly in USBSec II, the keys are generated by openssl suite
version 0.9.8k program and stored in file system. We wrote the user-space dae-
mon program to load the keys when system boots up and pass it to kernel data
structures. Unlike USBSec I, the passcode can be changed at system runtime,
the keys in USBSec II only loads at system bootstrapping and only have corre-
sponding kernel memory footprint at runtime. In another word, reconfiguration
of the keys requires the system reboot. Specifically, our user-space daemon pro-
gram will decode the PEM format of the public and private keys to DER(binary)
format using Base64 decoding algorithms and pass it to pre-allocated data struc-
tures in kernel. The kernel is responsible to do the Diffie-Hellman key exchange
using asymmetric crypto primitives to establish the session keys. However, in
mainstream kernel, there is no RSA functionality support yet. We merged the
existing RSA kernel implementation [26] with our additional modification to
accept the DER binary format keys as input in the gadget kernel to achieve
in kernel RSA cipher support. The key size is selected as 1024 bits to tradeoff
moderate cryptographic security with performance.

We performed experiments in order to quantify the performances and compare
it with traditional USB connection scheme. We measure the connection setup
time of USBSec I and USBSec II against standard USB. The start of connection
time is define as the time that the host receives the interrupt from USB receptacle
notifying the kernel that a device is being connected. The end of connection

12 Z. Wang et al.

time is defined as the time that the host finishes learning the device descriptor
and starts requesting the configuration information. Both of them are indicated
by a kernel log entry. This time interval includes all our authentication and
validation extensions to USB stack. Figure 3 shows our experiments result of
USBSec extensions to USB protocol on the two different devices. The analysis
result of the data can be highlighted as follows:

– Our USBSec extension only incurs very small amount overhead in connection
time and do not affect users’ experience. Both of the devices complete the
handshake within 2 seconds.

– Handshake takes different amount of time on difference devices, due to dif-
ferent USB controller model. The results reveal that Nexus One takes less
time accomplishing the USB handshake than Droid, even in standard USB
protocol. USB peripheral controller hardware and the device driver cause
the difference.

– Major CPU frequency also plays a key role in the Diffie-Hellman key ex-
change to establish asymmetric keys. The worst case scenarios reveal that
the 1 GHz Nexus One performs faster than the 600 MHz Droid for the same
amount of iterations, 256 times in our case.

USB Connection Time(ms) Standard USBSec I USBSec II
Best Case Worst Case Best Case Worst Case

Nexus One 254.6ms 343.1 346.7ms 471.1ms 578.9ms

Moto Droid 322.0ms 1373.8ms 1378.2 1744.0ms 1908.6ms

Fig. 3. USBSec Connection Time

Discussion. Linux kernel uses a single bit to disable/enable a USB device on the
USB bus [27], providing a basic authorization mechanism. In depth, the kernel
will set the device descriptor to ”n/a (unauthorized)” and disable it by removing
the device configuration information. However, the this scheme has fundamental
flaws. First of all, all wired USB devices are authorized by default. In addition
, such authorization happens only after the device being connected to the host
and the host already enumerated all the interfaces in the devices on the USB bus.
It requires a human-interactive operation to explicitly de-authorize the device
afterwards. The malicious program running on the device has more than enough
time to compromise the host during this gap. Furthermore, this scheme can only
authorize the device on the host. From the device’s point of view, there is no
mechanism to authenticate the identity of the host. For example, a smartphone
containing sensitive information can not defend itself from being connected to an
unidentified host. Moreover, experiments show that when the user disconnect a
deauthorized USB device, the kernel panics at usb disable endpoint function and
the system become unusable. Further kernel code investigation reveals that even
when the same device being connected to the host again, it will be authorized
by default.

Exposing Security Risks for Commercial Mobile Devices 13

SELinux applies security policies labeling to files, and AppArmor applies the
policies to path names. None of them take considerations for devices inside the
kernel.

USB 3.0 is planned to allow for device-initiated communications towards the
host, which will make the things more complicated for implementing the authen-
tication scheme in the USB stack. However, we believe with moderate engineer-
ing effort, the device-initiated communication can also be authenticated by our
approach.

Implementation is crucial to the security strength in any crypto system. It
has been conclusively shown that textbook RSA is insecure [28,29]. Secure RSA
requires that padding scheme must be used before encryption and signing. US-
BSec II’s in kernel RSA implements padding functionality to the basic RSA
operations to encrypt(), decrypt(), sign() and verify() methods.

For passive devices that only have USB hardware implementation but no
CPU(e.g. storage device, keyboard), full mutual authentication can not be ac-
complished due to the limitation of computation capability at the device. Nev-
ertheless, we can authenticate the device and logical driver information by the
serial number after the first packets exchange, and prompt the user at the host
to allow or deny the connection. Such allowance or rejection can be temporary
or permanent. In most of the cases, it’s difficult to spoof the serial number infor-
mation in such passive devices. End user’s knowledge and approval help secure
the connectivity.

Limitation. Like any password based approach, USBSec I is facing brute force
attacks. The adversary can exhaust the password space and defeat USBSec I if
gained control of the kernel of either side of the USB communication. The second
limitation is USBSec I authentication use serial number information specifically
tied to the hardware as the gadget side identity. Any hardware or new inventory
change will need corresponding updates to the authorized devices whitelist on
the host side.

Bear in mind that we are protecting unauthorized access, USBSec is defeated
if the host or the device is already being compromised and spoofs the iden-
tity. Because at that time, the trusted chain is broken and authentication is
useless.

4.2 EncFS for Android

EncFS is selected as the basis for our encryption filesystem.
EncFS is composed of three major components : kernel FUSE library sup-

port, user space libfuse, and EncFS binaries. In addition, to make an encryption
file-system work on Android, a modified bootstrapping and user login was also
integrated into the Android operating system.

EncFS uses standard OpenSSL cryptographic libraries in userspace as cryp-
tographic primitives. This gives us various advantages over using a kernel-based
cryptographic library. Some of the features of our solution verses other in-kernel
encryption approaches [30,31] can be summarized as follows:

14 Z. Wang et al.

Fig. 4. Abstraction of Encryption Filesystem on Android

– By using EncFS our system is backward and forward compatible with ex-
isting and future Android versions. Since libfuse and libc are stable across
different versions of Android and multiple hardware vendors, only minimal
engineering efforts if any are needed to make EncFS work on other variations
of Android-based smart devices.

– EncFS leverages OpenSSL FIPS suite as the crypto service engine. The
OpenSSL libraries, namely libcrypto and libssl, implement cryptographic
algorithms that are validated with government FIPS 140-2 Level:1 stan-
dard [32].

– In addition, our approach supports different underlying file-systems trans-
parently, including yaffs2, ext4 and vfat.

To build EncFS for Android, we created a package with the components de-
scribed below. It is required the phone has root access at installation time in
order to accommodate the kernel with FUSE support, system binaries and java
framework patches for integrated login. Once installed, EncFS does not need
processes or applications to run as root, in order to encrypt the data. The ap-
plications work transparently without knowing underlying changes.

Kernel FUSE Support: FUSE module provides a bridge to the actual ker-
nel interfaces in general. However, the Android Linux kernel does not support
FUSE file-systems in early versions. Such minimal kernel configuration reduces
fileystem and memory footprints on mobile devices and also eliminate redundant
functionalities that are not required by Android. For instance, most Android de-
vices, including the Nexus S which we use, do not come with the FUSE modules
enabled in the kernel in off-the-shelf state. We obtain the kernel source code
from Google’s Android Open Source Project (AOSP) and enabled the kernel
FUSE modules necessary for libfuse to run. We then flash our device with this
customized kernel.

Libfuse: As the required supportive library for all FUSE-based file-systems,
libfuse is not officially included or supported in the Android system. Moreover,
the Bionic C library in Android is a trimmed version of C libarary and missing
glue layer code for interfacing VFS (Virtual FileSystem in Linux) and FUSE.

Exposing Security Risks for Commercial Mobile Devices 15

We patched the Bionic C library with missing header files (statvfs) and corre-
sponding data structures that are required for libfuse version 2.8.5.

EncFS: By building the EncFS executables for the ARM architecture, we cre-
ated the binaries that would enable us config and manage the EncFS filesystem.
In addition to libfuse, EncFS also depends on the boost library which is a widely
adopted C++ library[33], librlog for logging[34] and libcrypto/libssl for crypto-
graphic primitives. We patched boost library version 1.45 which is the current-
to-date version as of this development and built it against Android Bionic C
library. The librlog is versioned at 1.4.

EncFS supports two block cipher algorithms: AES and Blowfish. AES runs
as a 16 byte block cipher while Blowfish runs as a 8 byte block cipher. Both
algorithms support key lengths of 128 to 256 bits and block sizes of 64 to 4096
bytes. Since AES is selected as standard block cipher by US government, our
experiments focus on AES only.

Depending on whether we built them as static or shared libraries, we push
the binaries onto the system binaries locations on the phone. Figure 5 illustrate
the overall layout of EncFS.

User Interface: Normally, the Android framework loads the user interface by
unpacking the applications and other files from /system and /data partitions.
The /data partition contains all the user-installed applications and all the user-
specific data. In our system configuration for EncFS, this /data partition keeps
only a skeleton of the minimal folders to make system bootstrapping. We store
the encrypted data in a separate directory and mount it over /data mountpoint
when the user supplies the password.

In addition, we modified the Android Launcher application to accept this
password, which is the key for the encrypted version of the /data partition. If
the password provided by the user is valid, EncFS mounts the encrypted data
partition on /data mountpoint. If such mount is performed successfully, the
Launcher will call a dedicated native program installed by us to soft reinitialize
the Android Dalvik environment and the user is presented with his encrypted
userdata partition decrypted and loaded into the memory transparently.

To avoid brute-force attacks against the password, the user has a limited
number of login attempts. If the failure attempts accumulates to a predefined
threshold value (10 in our case), the Launcher program will erase all the en-
crypted data using secure deleting mechanisms. Although we implemented a
program to perform multi-pass secure wipe of the partition, destroying the key
alone is adequate as we will be left with a partition full of encrypted data which
cannot be decrypted.

Implementation and Performance. Please refer to our full paper [2] for
performance details and optimizations.

16 Z. Wang et al.

hobbit_stat charge

User Application

EncFS

EncFSctlEncFSmount

libfuse

Lib Bionic C

YAFFS2

USER SPACE

KERNEL SPACE

Existing module New module Patched

VFAT
(for SDcard)

EXT4

VFS

MTD/eMMC Block Device Driver

librloglibcrypto&libssl libboost_filesystem

FUSE kernel
module

Fig. 5. The operational layout of the Encrypted File System (EncFS)

4.3 Application Analysis

Static analysis serves as a useful method to examine the possible behavior
that a program can exhibit. However, static analysis is constrained to certain
functionality due to its inherent limitations of not actually executing the code
[35]. Static analysis, however, is susceptible to false positives, false negatives, and
obfuscation [36,37]. The precision of the analysis increases when the analysis
program better understands the semantics of the code and is able to observe
the state of the program. When using dynamic analysis, test inputs need to be
randomly generated, come from a pre-generated set, or be input by an active
entity. Dynamic analysis may or may not get complete coverage of the code, but
all the instructions executed will be reachable and the program’s true behavior
can be observed.

To get as close as possible to complete coverage of the code, the analysis envi-
ronment has to be able to force the control flow of the program into all potential
paths. For instance, as each conditional statement is encountered, either the val-
ues of the variables would need to be changed at runtime to obtain the desired

Exposing Security Risks for Commercial Mobile Devices 17

outcome, determined a priori by symbolic analysis, or be forced by controlling
the jump to a particular branch independent of the outcome of the boolean
condition being evaluated. This type of execution approach [38,39] stresses the
program by entering as many branches as possible to make the program exhibit
different types of behavior.

The impetus behind this approach is to maximize the coverage of code, as
opposed to examining the behavior of the program exhibited by a more limited
number of execution traces. This is important because malware can contain
very specific conditions that must be met in order for it to display malicious
behavior [40]. In certain instances, the behavior is triggered by certain events
such as specific times, dates, host names, local IP addresses, the presence of a file,
and other factors. In addition, a program may restrain its malicious functionality
when it determines that it is being debugged, running in an emulator, or some
other type of controlled execution environment [41].

We have developed a set of tools, that runs on a computer and performs
concrete execution of an Android application while abstracting certain details
from the execution of the application. This abstraction allows the program to
automate the analysis of as many paths as possible through the application
without requiring any user input. Due to the abstraction, automation is achieved,
but the precision of the analysis is reduced. The abstraction is necessary due
to not running the application on an Android-enabled phone and the absence
of the Android API in disassembled applications. The program only requires an
Android Package file (APK) which is the compressed format used to encapsulate
an entire Android application into a single file.

Our Android program analysis framework is able to disassemble Android
application package files to obtain Dalvik bytecode. Execution of the Dalvik
bytecode is possible because we created a Java implementation for each Dalvik
bytecode instruction. After using apktool, the disassembled application will be
missing the code for the Android API since this code is resident on all Android-
enabled phones. Therefore, calls to the Android API are not actually executed
unless they are specifically handled by our program which only occurs for a very
small set of simple API calls. These were manually coded into our program after
examining the specification and exhibited functionality for each handled API
call. In addition, we also leverage the Java API since the program runs inside
the JVM by creating a wrapper around certain Java API calls.

The values of primitive data types and objects used as parameters to Android
API calls to be examined and extracted. These parameters depend on the specific
execution path taken through the program. The values of the primitive data
types within an object that are used as a parameter to an API call can also be
examined. This enables a more through understanding of the program’s behavior,
and allows hard-coded values in the application to be operated on and extracted.
The precision of the analysis is limited due to the lack of user interaction, user
input, and Android API which will prevent certain values and objects from being
available.

18 Z. Wang et al.

The program allows all Dalvik instructions, method calls, and API calls to be
hooked for analysis and monitoring. Currently, the programmonitors and records
very specific behavior (e.g., commands issued, execution of binaries, use of Java
reflection, loading of libraries, network events, files accessed, exhaustive list of
methods called, control flow, and the use of dynamic class-loading), although this
can be further expanded to anything of interest. The use of Java reflection is
recorded because it can help to obfuscate the actual method being called unless
the parameters are examined to see exactly which method of what class is being
called. Reflection also obviates the use of visibility modifiers in Java [25].

Limitations. Our approach can be computationally expensive depending on the
structure and size of the program being analyzed. Each if conditional statement
that occurs outside of a loop exponentially raises the number of iterations that
must be executed to cover all possible paths within an application. Loops that
are nested to a high degree significantly affect the performance of the program
due to the large number of iterations through the code, especially when many if
conditional statements occur within each loop. An attacker could purposefully
plant various computationally expensive activities throughout the program to
purposefully slow the analysis of the application. There are approaches to make
a trade-off between analysis time and analysis precision. There are the options to
limit the number of iterations through a loop, prevent nesting beyond a certain
number of loops, limit recursion, or use a timer that sets a maximum time that
can elapse to indicate that a path should end.

5 Conclusions

In this paper, we discuss the security threats that arise from new smart device
capabilities and brave new world of Android applications deliver over the network
to the device. Some of these threats span many known research ares including
data exfiltration, exploitation through USB, and user and data tracking.

To address some of these threats, we detail our ongoing research efforts to
defend or mitigate the impact of attacks against mobile devices. To that end, we
presented data-centric a framework to secure Android devices against attacks
that attempt to infiltrate or exfiltrate data, corrupt the operations of the device
or perform unwanted functionality. Our approach is multi-pronged and focuses
on hardening the device by enabling Kernel-level network and data encryption,
and controlling the communication mechanisms for synchronizing the user con-
tents with computers and other phones. We verified our approach by testing a
large number of Android applications with our program to exhibit its function-
ality and viability. The framework allows complete automation of the testing
process, so that no user input is required. Given the constant improvements in
both hardware and software, we believe that our framework provides a good and
adaptable solution for mobile device security.

Exposing Security Risks for Commercial Mobile Devices 19

References

1. Wang, Z., Stavrou, A.: Exploiting smart-phone usb connectivity for fun and profit.
In: ACSAC 2010: Annual Computer Security Applications Conference (2010)

2. Wang, Z., Murmuria, R., Stavrou, A.: Implementing & optimizing an encryption
file system on android. In: SERE 2012: 6th International Conference on Software
Security and Reliability, SERE 2012 (2012)

3. Wang, Z., Johnson, R., Stavrou, A.: Attestation & authentication for usb commu-
nications. In: IEEE International Conference on Mobile Data Management, IEEE
MDM 2012 (2012)

4. Enck, W., McDaniel, P.: Understanding android’s security framework. In: CCS
2008: Proceedings of the 15th ACM Conference on Computer and Communications
Security, pp. 552–561. ACM, New York (2008)

5. Ongtang, M., Mclaughlin, S., Enck, W., Mcdaniel, P.: Semantically rich
application-centric security in android. In: ACSAC 2009: Annual Computer Se-
curity Applications Conference (2009)

6. Muthukumaran, D., Sawani, A., Schiffman, J., Jung, B.M., Jaeger, T.: Measuring
integrity on mobile phone systems. In: SACMAT 2008: Proceedings of the 13th
ACM Symposium on Access Control Models and Technologies, pp. 155–164. ACM,
New York (2008)

7. Enck, W., Gilbert, P., gon Chun, B., Jung, L.P.C.J., McDaniel, P., Sheth, A.N.:
Taintdroid: An information-flow tracking system for realtime privacy monitoring
on smartphones. In: OSDI 2010: Proceedings of the 9th Symposium on Operating
Systems Design and Implementation, pp. 255–270. ACM, New York (2010)

8. Felt, A.P., Chin, E., Hanna, S., Song, D., Wagner, D.: Android permissions de-
mystified. In: Chen, Y., Danezis, G., Shmatikov, V. (eds.) ACM Conference on
Computer and Communications Security, pp. 627–638. ACM (2011)

9. Radmilo Racic, D.M., Chen, H.: Exploiting mms vulnerabilities to stealthily ex-
haust mobile phone’s battery. In: SecureComm 2006, pp. 1–10 (2006)

10. Kim, H., Smith, J., Shin, K.G.: Detecting energy-greedy anomalies and mobile mal-
ware variants. In: MobiSys 2008: Proceeding of the 6th International Conference on
Mobile Systems, Applications, and Services, pp. 239–252. ACM, New York (2008)

11. Moyers, B.R., Dunning, J.P., Marchany, R.C., Tront, J.G.: Effects of wi-fi and blue-
tooth battery exhaustion attacks on mobile devices. In: HICSS 2010: Proceedings
of the 2010 43rd Hawaii International Conference on System Sciences, pp. 1–9.
IEEE Computer Society, Washington, DC (2010)

12. Liu, L., Yan, G., Zhang, X., Chen, S.: Virusmeter: Preventing your cellphone from
spies. In: RAID 2009: Proceedings of the 12th International Symposium on Recent
Advances in Intrusion Detection, pp. 244–264. Springer, Heidelberg (2009)

13. Nash, D.C., Martin, T.L., Ha, D.S., Hsiao, M.S.: Towards an intrusion detection
system for battery exhaustion attacks on mobile computing devices. In: PER-
COMW 2005: Proceedings of the Third IEEE International Conference on Per-
vasive Computing and Communications Workshops, pp. 141–145. IEEE Computer
Society, Washington, DC (2005)

14. Zhou, Y., Jiang, X.: Dissecting android malware: Characterization and evolution.
In: IEEE Symposium on Security and Privacy, pp. 95–109. IEEE Computer Society
(2012)

15. Zhou, Y., Wang, Z., Zhou, W., Jiang, X.: Hey, you, get off of my market: De-
tecting malicious apps in official and alternative android markets. In: Proceedings
of the 19th Annual Network and Distributed System Security Symposium, NDSS
(February 2012)

20 Z. Wang et al.

16. David, F.M., Chan, E.M., Carlyle, J.C., Campbell, R.H.: Cloaker: Hardware sup-
ported rootkit concealment. In: SP 2008: Proceedings of the 2008 IEEE Symposium
on Security and Privacy, pp. 296–310. IEEE Computer Society, Washington, DC
(2008)

17. Bickford, J., O’Hare, R., Baliga, A., Ganapathy, V., Iftode, L.: Rootkits on smart
phones: attacks, implications and opportunities. In: HotMobile 2010: Proceedings
of the Eleventh Workshop on Mobile Computing Systems & Applications, pp. 49–
54. ACM, New York (2010)

18. Phrack: Hacking windows ce,
http://www.phrack.org/issues.html?issue=63&id=6

19. Bojinov, H., Boneh, D., Cannings, T.R., Malchev, I.: Address space random-
ization for mobile devices. In: Fourth ACM Conference on Wireless Network
Security (WISEC 2011), pp. 127–138 (2011), http://www.odysci.com/article/
1010113016076341

20. King, J.C.: Symbolic execution and program testing. Commun. ACM 19(7), 385–
394 (1976)

21. Enck, W., Octeau, D., McDaniel, P., Chaudhuri, S.: A Study of Android Applica-
tion Security. In: Proceedings of the 20th USENIX Security Symposium (August
2011)

22. Vidas, T., Christin, N., Cranor, L.: Curbing Android permission creep. In: Proceed-
ings of the Web 2.0 Security and Privacy 2011 Workshop (W2SP 2011), Oakland,
CA (May 2011)

23. Bläsing, T., Batyuk, L., Schmidt, A.D., Camtepe, S., Albayrak, S.: An android
application sandbox system for suspicious software detection. In: 2010 5th Interna-
tional Conference on Malicious and Unwanted Software (MALWARE), pp. 55–62
(October 2010)

24. Burguera, I., Zurutuza, U., Nadjm-Tehrani, S.: Crowdroid: behavior-based malware
detection system for android. In: Proceedings of the 1st ACMWorkshop on Security
and Privacy in Smartphones and Mobile Devices, SPSM 2011, pp. 15–26. ACM,
New York (2011)

25. Richmond, M., Noble, J.: Reflections on remote reflection. In: Proceedings of the
24th Australasian Conference on Computer Science, ACSC 2001, pp. 163–170.
IEEE Computer Society, Washington, DC (2001)

26. Linux: Rsa kernel patch, http://lwn.net/Articles/228892/
27. Community, L.O.S.: Linux usb authorization, http://lxr.linux.no/linux+

v2.6.32.24/Documentation/usb/authorization.txt

28. Boneh, D., Cryptosystem, T.R., Rivest, I.R., Shamir, A., Adleman, L., Rst, W.:
Twenty years of attacks on the rsa cryptosystem. Notices of the AMS 46, 203–213
(1999)

29. Bellare, M., Rogaway, P.: Optimal Asymmetric Encryption. In: De Santis, A. (ed.)
EUROCRYPT 1994. LNCS, vol. 950, pp. 92–111. Springer, Heidelberg (1995)

30. Team, G.A.: Android honeycomb encryption, http://source.android.com/tech/
encryption/android crypto implementation.html

31. Whispercore: Whispercore android device encryption,
http://whispersys.com/whispercore.html

32. Project, O.: Openssl fips 140-2 security policy
33. Boost: Boost c++ library, http://www.boost.org/
34. Librlog: Librlog, http://www.arg0.net/rlog
35. Sharif, M.I., Lanzi, A., Giffin, J.T., Lee, W.: Impeding malware analysis using

conditional code obfuscation. In: NDSS, The Internet Society (2008)

http://www.phrack.org/issues.html?issue=63&id=6
http://www.odysci.com/article/1010113016076341
http://www.odysci.com/article/1010113016076341
http://lwn.net/Articles/228892/
http://lxr.linux.no/linux+v2.6.32.24/Documentation/usb/authorization.txt
http://lxr.linux.no/linux+v2.6.32.24/Documentation/usb/authorization.txt
http://source.android.com/tech/encryption/android_crypto_implementation.html
http://source.android.com/tech/encryption/android_crypto_implementation.html
http://whispersys.com/whispercore.html
http://www.boost.org/
http://www.arg0.net/rlog

Exposing Security Risks for Commercial Mobile Devices 21

36. Chess, B., McGraw, G.: Static analysis for security. IEEE Security and Pri-
vacy 2(6), 76–79 (2004)

37. Moser, A., Kruegel, C., Kirda, E.: Limits of static analysis for malware detection.
In: Computer Security Applications Conference, ACSAC, Twenty-Third Annual,
421–430 (December 2007)

38. Wilhelm, J., Chiueh, T.-c.: A Forced Sampled Execution Approach to Kernel
Rootkit Identification. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007.
LNCS, vol. 4637, pp. 219–235. Springer, Heidelberg (2007)

39. Lu, S., Zhou, P., Liu, W., Zhou, Y., Torrellas, J.: Pathexpander: Architectural
support for increasing the path coverage of dynamic bug detection. In: Proceedings
of the 39th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO (2006)

40. Brumley, D., Hartwig, C., Liang, Z., Newsome, J., Song, D., Yin, H.: Automati-
cally Identifying Trigger-based Behavior in Malware. In: Botnet Analysis. Springer
Publications (2007)

41. Moser, A., Kruegel, C., Kirda, E.: Exploring multiple execution paths for malware
analysis. In: SP 2007: Proceedings of the 2007 IEEE Symposium on Security and
Privacy, pp. 231–245. IEEE Computer Society, Washington, DC (2007)

From Qualitative to Quantitative Enforcement

of Security Policy

Fabio Martinelli, Ilaria Matteucci, and Charles Morisset

IIT-CNR, Security Group
Via Giuseppe Moruzzi 1, 56124 Pisa, Italy

firstname.lastname@iit.cnr.it

Abstract. The problem of enforcing a security policy has been partic-
ularly well studied over the last decade, following Schneider’s seminal
work on security automata. We first present in this paper this problem
through its qualitative aspect, where one tries to specify and to define a
“good” runtime monitor. In particular, we recall that under some condi-
tions, a monitor can be automatically synthesized, using partial model
checking. We then introduce some of the quantitative challenges of run-
time enforcement, which focus on the problem of defining what does it
mean for a monitor to be better than another one, and we sketch several
directions that could be explored to tackle this issue.

1 Introduction

In the last years, the security of the systems is one of the main topics to be
addressed in computer science. Indeed the amount of information and sensible
data that circulate on the Internet and the number of different devices through
which it is possible to share information has been growing up till a saturation
point. Nowadays, basically each of us is daily equipped with a computer, i.e.,
our smart-phone. This situation is even more dangerous than previously since
the kind of users is wider, and likely less skilled on average. Furthermore, the
kind of attacks one can perform is wider since now smart-phones can be used
for both work and leisure activities, thus exposing ourselves to an increase of
possibilities of private behavior leakage.

This makes more urgent, if possible, the necessity of developing mechanisms
for enforcing security policies to be satisfied by our computers and personal
devices in order to guarantee the secrecy, the confidentiality and the integrity
of our (private) information. For these reasons, a lot of work has been done on
the enforcement of security policies on systems and devices, in order to prevent
damages to users.

The problem of monitoring a system such that it always satisfies a security
policy is a well-studied problem. From a formal perspective, since Schneider’s
seminal work [32], there has been a lot of effort into characterizing what kind of
policy can be monitored and enforced at runtime. This leads to the clear identi-
fication of basic concepts, such as security policy, target (or monitored system),

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2012, LNCS 7531, pp. 22–35, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

From Qualitative to Quantitative Enforcement of Security Policy 23

execution traces, enforcement mechanisms, etc. This strand of work initially con-
sidered only the blocking of the system in case of wrong executions; It has then
been refined by considering several approaches for the correction of execution
traces by the enforcement mechanisms. The kind of security policies that can
be enforced with these models have been extensively studied leading to precise
characterization of what can be enforced with a certain class of enforcement
mechanisms and under which conditions.

One research strand that was also developed is the adoption of formalisms
such as process algebras to better define the interactions between the target and
the enforcement mechanism as well as the enforcement capabilities, due to the
well studied semantical composition frameworks developed for these formal mod-
els. For instance, it is possible to formalize the behavior of a security automata
through process algebra operators. By using the techniques and solutions devel-
oped for process algebras and also by adopting concepts developed in temporal
logic, it is possibly to study the problem of automatically synthesizing enforce-
ment mechanisms for targets (and parts of targets) and policies expressed in
temporal logic. The techniques developed using process algebras, partial model
checking and satisfiability techniques for logic allow one also to create mecha-
nisms that enforce global security policies on a system, by only considering the
target as a subcomponent of this system, thus enabling the possibility to project
global security policies onto local ones.

The previous research work seems to be mainly focused on what we call qual-
itative enforcement, i.e., finding a “good” enforcement mechanism for a security
policy, if possible. We can also consider the more challenging problem, that we
are going to name here quantitative enforcement, that amounts to find the “best”
enforcement mechanism for a security policy and a target, in accordance to some
quantitative criteria suc as cost or precision of enforcement.

On the one hand quantitative enforcement could be seen as an optimization
problem to find the best among all good enforcement mechanisms. On the other
hand, when a good enforcement mechanism does not exist, for all possible target
behaviors, maybe it could be considered as a way to trade-off between security
and usability in order to find the best possible enforcement mechanism.

We give here some ideas on how “quantities” can be used in the ambit of
enforcement of security policies:

– cost of enforcement (i.e. not all security mechanisms/decisions come for free);
– uncertainty (i.e. systems evolving in a real setting are prone to uncertain

parameters, that must be taken into account);
– optimization (i.e. it is not sufficient to define a “good” enforcement mecha-

nisms, we might wish to find the “best” one).

We believe the problem of quantitative enforcement is a complex one, that is
only being recently considered, and we do not aim in this paper at providing
a complete solution, but rather identifying some of the key aspects that need
to be considered and fostering this research strand. As a matter of fact, this
kind of problems is particularly relevant since information systems are perva-
sive, used in many circumstances and under several, often conflicting operation

24 F. Martinelli, I. Matteucci, and C. Morisset

criteria, of which security is a major one, although not the unique. Thus, we
need to embed decision making processes in the loop for security management.
Understanding and measuring how the system can cope with “wrong”/”good”
decisions is therefore crucial.

The rest of this paper is organized as follows: in Section 2, we present the prob-
lem of runtime enforcement, andwe show how to define a controller from a security
automaton. In Section 3, we show that under some conditions, such a controller
can be synthesized automatically. In Section 4, we describe several quantitative
dimensions of the runtime enforcement problem. In Section 5, we present some
related work, after which we conclude and describe some future directions.

2 Enforcing Security Policies

In the following we first recall some notions about enforcement mechanisms and
security automata. Then we present four process algebra controller operators
whose behavior mimics the enforcement strategy of security automata. It is worth
noticing that, thanks to the power and the flexibility of process algebra, it is
possible to define several controller operators able to enforce security policies in
different way (see e.g. [24,23]). Furthermore, the usage of process algebra allows
us to exploit well-known mechanisms as partial model checking and satisfiability
in order to automatically obtain such controller programs.

2.1 Enforcement Mechanisms and Security Automata

According to [32], an enforcement mechanism is a mechanism that works by
monitoring a target system, that is the system we want to check, and terminating
any execution that is about to violate the security policy being enforced. The
class EM (Execution Monitoring) includes security kernels, reference monitors,
and other operating systems and hardware-based enforcement mechanisms.

Starting from the generic definition of enforcement mechanisms [32], a security
automaton is a triple (Q, q0, δ), where Q is a set of states, q0 is the initial one
and δ : Act×Q → Q, where Act is a set of actions, is the transition function. A
security automaton processes a sequence a1a2 . . . of actions. At each step only
one action is considered and for each action we calculate the global state Q′

that is the set of possible states for the current action. In other words, if the
automaton is checking the action ai, then Q′ =

⋃
q∈Q′ δ(ai, q). If the automaton

can make a transition on a given action, i.e., Q′ is not empty, then the target
is allowed to perform that step. The state of the automaton changes according
to the transition rules. Otherwise, the target execution is terminated. Thus, at
every step, it verifies if the action is in the set of the possible actions or not.

This basic definition is used and extended in [6,7], where several possible
behaviors of security automata are defined. To compare the power of different
enforcement mechanisms, the following two abstract principles are given [7]:

– Soundness: An enforcement mechanism must ensure that all observable
outputs always obey the policy in question;

From Qualitative to Quantitative Enforcement of Security Policy 25

– Transparency: An enforcement mechanism must preserve the semantics of
executions that already obey the policy in question.

2.2 From Security Automata to Process Algebra Controller
Operators

Referring to [6,7], in this section we recall the semantics of security automata
truncation, suppression, insertion, edit and we describe some process algebra
operators that model their behavior.

The execution of each different kind of security automaton K, with K ∈
{T, S, I, E}, is specified by a labelled operational semantics.

The automata behaviors differ from one another due their transition functions
δ, and these differences account for the variations in their expressive power. The
exact specification of δ is part of the definition of each automaton. Roughly
speaking, the suppression truncation automaton is able to halt the execution of
the target whenever it tries to perform an action that is going to violate the
policy. In addition to the truncation automaton functionalities, the suppression
automaton is able to hide some actions, the insertion is able to add some actions
before a possible malicious action that can be recovered later on in the execution
trace, and, the edit automaton groups all these functionalities.

In [26], we have proposed four controller operators by showing their behavior
through semantics rules. Each operator mimics one of the security automata.
For the sake of space, we only recall here the result for the truncation automata
and for the edit automata.

Truncation automaton. The operational semantics of a truncation automaton is
given by:

if σ = a;σ′ and δ(a, q) = q′

(σ, q)
a−→T (σ′, q′) (T-Step)

otherwise
(σ, q)

τ−→T (·, q) (T-Stop)

We write E for the controller program and F for the target. We work, without
loss of generality, under the additional assumption that E and F never perform
the internal action τ since truncation automata do not consider internal action.
We define the controller operators �T as follows:

E
a→ E′ F a→ F ′

E �T F
a→ E′ �T F ′

This operator models the truncation automaton that is similar to Schneider’s
automaton (when considering only deterministic automata, e.g. see [6,7]). Its
semantics rule states that if E and F perform the same action, then such action
is allowed.

26 F. Martinelli, I. Matteucci, and C. Morisset

Hence, given a truncation automaton (Q, q0, δ) and the current state q, we
define the controller Eq as follows:

Eq =
∑

a∈Act

{
a.Eq′ if δ(a, q) = q′

0 otherwise

Each sequence of actions that is an output of a truncation automaton (Q, q0, δ)
is also derivable from Eq �T F and vice-versa.

Edit automaton. An edit automaton is defined by a 5-tuple (Q, q0, δ, γ, ω), where
γ : Act×Q→ Act×Q specifies the insertion of a finite sequence of actions into
the program’s actions sequence and ω : Act × Q → {−,+} indicates whether
or not the action in question should be suppressed (-) or emitted (+). ω and δ
have the same domain, while the domain of γ is disjoint from the domain of δ,
in order to have a deterministic automaton. Its operational semantics is given
by:

if σ = a;σ′ and δ(a, q) = q′ and ω(a, q) = +

(σ, q)
a−→E (σ′, q′) (E-StepA)

if σ = a;σ′ and δ(a, q) = q′ and ω(a, q) = −

(σ, q)
τ−→E (σ′, q′) (E-StepS)

if σ = a;σ′ and γ(a, q) = (b, q′)

(σ, q)
b−→E (σ, q′) (E-Ins)

otherwise
(σ, q)

τ−→E (·, q) (E-Stop)

In order to both insert and suppress actions, we define the controller operator
�E as the union of the rules of the �S and �I , defined as follows.

E
a→ E′ F

a→ F ′

E �E F
a→ E′ �E F ′

E
−a−→ E′ F

a→ F ′

E �E F
τ→ E′ �E F ′

E � a→ E′ E
+a.b−→ E′ F

a−→ F ′

E �E F
b−→ E′ �E F

This operator combines the power of all the different automata, i.e., truncation,
suppression, and insertion automata. Hence, given an edit automaton (Q, q0, δ, γ,
ω) and the current state q, we define the controller Eq,γ,ω as follows:

Eq,γ,ω =
∑

a∈Act

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a.Eq′,γ,ω if δ(a, q) = q′ and ω(a, q) = +

−a.Eq′,γ,ω if δ(a, q) = q′ and ω(a, q) = −
+a.b.Eq′,γ,ω if γ(a, q) = (b, q′)
0 otherwise

From Qualitative to Quantitative Enforcement of Security Policy 27

Each sequence of actions that is an output of an edit automaton (Q, q0, δ, γ, ω)
is also derivable from Eq,γ,ω �E F and vice-versa.

The usage of process algebra controller operators for enforcing security policies
provides several advantages in terms of compositional reasoning. Indeed, by using
this technique we are able to limit the control to possibly un-trusted components
of a given system. Other approaches deal with the problem of monitoring the
possible untrusted component to enjoy a given property, by treating it as the
whole system of interest. However, often the system does not need to be entirely
checked (or it is simply not convenient to check it as a whole). Some components
could be trusted and one would like to have a method to control only un-trusted
ones (e.g. downloaded applets). Similarly, it could not be possible to build a
monitor for a whole distributed architecture, while it could be possible to have
it for some of its components. Furthermore, our approach can exploit well-know
results enabling us to automatically synthesize a controller program for each
controller operator (Section 3).

3 Synthesis of Controller Operator

The problem of synthesis, first addressed by Merlin and Bochman in [28], occurs
when one deals with a system in which there are some unspecified components,
e.g., a not completely implemented software. When considering a partially speci-
fied system, onemaywonder if there exists an implementation that can be plugged
into the system, replacing the unspecified one, by satisfying some properties of the
whole system. Hence, given a system S, the problem can be formulated as:

∃E S‖E |= φ

where φ is a logic formula representing the property to be satisfied.
The problem of the synthesis of secure systems is slightly different. Let us con-

sider a system that we want to secure. We can study it as a partially specified
system, hereafter referred as open system [22]. The unspecified part is a compo-
nent whose behavior is not known a priori, and we want the system to be secure,
whatever the behavior of the unspecified components is. With S the system, F
the unspecified component, S‖F the partially specified system, we require that:

∀F S‖F |= φ

where, again, φ is a logic formula representing the property.
Since it is not always possible to check all possible behavior of the component

F , we develop mechanisms that guarantee the system to work properly by forcing
the desired behavior of the unspecified component in such a way that the system
satisfies the required formula. Hence, we wonder if there exists an implementation
that, by monitoring the behavior of the unspecified component F , guarantees
the system to satisfy the required security property:

∃E ∀F S‖(E � F) |= φ

where � is a symbol denoting the fact that E monitors the behavior of F .

28 F. Martinelli, I. Matteucci, and C. Morisset

In particular, we want to solve the synthesis problem for each controller op-
erators �K defined above. Hence, we want to solve the following problems

∃E ∀F (S‖E �K F) |= φ (1)

for each K ∈ {T, S, I, E}.
First of all we apply the partial model checking function [1] to evaluate the

formula φ by the behavior of S. In this way we obtain a new formula φ′ =
φ//S

and we only have to monitor the target F . The formula φ′ represents
the necessary and sufficient conditions that E �K F has to satisfy in order to
guarantee the security of the system. Indeed, the problem we have to solve is
reduced to the following one:

∃E ∀F (E �K F) |= φ′ (2)

It is worth noticing that we are going to enforce safety properties. Hence, let us
consider a subclass of equational μ-calculus formulas that we call Frμ, which
consists of equational μ-calculus formulas without the diamond modality. This
set of formulas is closed under the partial model checking function and, according
to [11], if two processes have a similar behavior, they satisfy the same formulas
belonging to Frμ. According to the semantics of �K operators, for every K ∈
{T, S, I, E}, E �K F is simulated by E modulo a relabelling function depending
on K. Hence whatever controller operators �K is chosen to enforce a given safety
property, it is possible to find a solution for the problem in Formula 2 by solving
the following satisfiability problem:

∃E E |= φ′
K (3)

where φ′
K is the formula φ′ modulo the relabelling function of the controller opera-

tor �K. According to satisfiability results of μ-calculus formulas [33], it is possible
to find a controller program E that models the formula φ′

K. Furthermore, using a
finitary axiom system, proposed by Walukiewicz in [34], it is possible to automat-
ically synthesize E according to the Walukiewicz satisfiability procedure.

4 Quantitative Reasoning

In the previous section, we have presented a qualitative approach to the problem
of runtime enforcement, that is, an approach to address the question of whether,
given a property, it is possible to define a “good” controller, and if so, how to
automatically synthesize it.

In this section, we focus on the quantitative aspects of runtime enforcement,
that is, we try to define what does it mean for a controller to be “better” than
another one, and if there a “best” one. There are several dimensions associated
with the notion of quantitative enforcement, and we present in the rest of this
section a non-exhaustive list:

– Calculating how much can a monitor be non-secure and/or non transparent
(Section 4.2);

From Qualitative to Quantitative Enforcement of Security Policy 29

– Taking into account how likely the target will behave in the future
(Section 4.3);

– Calculating how much a particular enforcement strategy can cost
(Section 4.4);

– Calculating how much the system can gain or lose from executing a trace
(Section 4.5).

When dealing with quantitative aspects, it is important to distinguish between
the decision process and the actual implementation of the security controller.
In other words, in an analogous way as it is done in XACML [30], we wish to
distinguish between the decision point and the enforcement point. Hence, we
introduce in Section 4.1 the concept of selector, which is a function indicating
at each step what decision should be made, and we show how to build a security
controller from such a function.

4.1 Trace Selector

As we have already said in Section 2.2, a security automaton, such as an edit-
automaton, consists of a security state and several transition functions, each
function being responsible for a particular aspect of the trace manipulation (in-
serting, accepting, suppressing, stopping). Hence, an edit automaton models at
the same time how should each action input by the target be treated, and how
the global controller evolves.

Hence, it is worth observing that a security controller needs to make a decision,
and that some usual techniques in decision theory can be used in order to help
this process. In order to embody the decision making, we first introduce a set
D of atomic decisions, such that each decision represents an action the security
controller can do at each step. For instance, we could model the truncation
automaton by defining D = {acc, stop}, meaning that at each step, the security
controller can only either accept the input or stop.

At first glance, we could define a selector as a function taking an action and
returning a decision. Many access control systems can be defined in this way,
such as the Role-Based Access Control (RBAC) [16] model, where an action is
simply a request for access from a user over a resource, and the selector accepts
it if the user has a sufficient role, and denies it otherwise.

However, in general, the decision for a single action can change according to
the actions previously executed by the target. For instance, in the Chinese Wall
model [9], a user can a priori access a resource from any company, unless she
has accessed in the past a resource from another company in the same conflict-
of-interest class. We therefore specify a selector as function F : Act∗×Act→ D,
such that F (σ, a) stands for the decision made by the selector F for the action
a knowing that the past trace is σ.

Clearly, making a security decision is not enough, this decision must also
be enforced. There are many different ways to implement such enforcement,
that usually depend on the constraints of the concrete system: process
algebra, security automaton, turing machine, etc. For instance, given the set

30 F. Martinelli, I. Matteucci, and C. Morisset

Dedit = {acc, sup, ins(b), stop}, a selector F : Act∗ ×Act→ D, and a past trace
σ we can define the security controller EF,σ as:

EF,σ =
∑

a∈Act

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

a.EF,a.σ if F (σ, a) = acc

−a.EF,a.σ if F (σ, a) = sup

+a.b.EF,a.σ if F (σ, a) = ins(b)

0 otherwise

In general, an important aspect of a security controller is the global impact it
has over the entire trace input by the target. Hence, instead of characterizing all
possible enforcement mechanisms, we only consider that there exists a semantical
function sem : Act∗ × D∗ → Act∗, such that sem(σ, d1d2 . . . dk) stands for the
trace σ over which each decision di has been sequentially enforced. For instance,
given the set D = {acc, stop}, we could define:

sem(ε, τ) = ε

sem(σ, ε) = ε

sem(a.σ, d.τ) =

{
a.sem(σ, τ) if d = acc

ε otherwise.

Finally, given a set D, a selector F and a semantics function sem, we can define
the abstract monitor corresponding to this selector (we assume that D and sem
are fixed for a given context), that is, the function MF : Act∗ → Act∗ defined
by first obtaining the decision trace for σ according to F and then by applying
the semantical function sem on this decision trace.

4.2 Inexact Enforcement

As we said in the Introduction, traditional, qualitative enforcement consists in
finding a “good” enforcement mechanism, whenever possible. In this section, we
try to address the problem of when it is not possible to find a good enforcement
mechanism, and therefore the next best choice must be taken.

In order to quantify the non-correctness of a monitor, given a monitorM and a
property φ, we have introduced in [15] the set C〈M,φ〉, which represents all traces
for which the monitor outputs a non-secure trace. Similarly, the quantification of
the non-transparency is done using the set T〈M,φ〉, which represents the secure
traces that the monitor does not output as they are. More formally, we have:

C〈M,φ〉 = {σ ∈ Act∗ | ¬φ(M(σ))} T〈M,φ〉 = {σ ∈ Act∗ | φ(σ) ∧M(σ) �= σ}.

When M enforces exactly (i.e., soundly and transparently) φ, we clearly have
C〈M,φ〉 = T〈M,φ〉 = ∅. Conversely, since an n-safety property cannot be enforced
exactly using a selector, at least one of these two sets is necessarily non empty.

These two sets enable us to compare two monitors: we can say that a monitor
M1 is better than a monitor M2 for a property φ if C〈M1,φ〉 ⊆ C〈M2,φ〉 and
T〈M1,φ〉 ⊆ T〈M2,φ〉. However, there are clearly many incomparable monitors,

From Qualitative to Quantitative Enforcement of Security Policy 31

and more complex criteria can be used in order to define an ordering relationship
over monitors, such as the probability and/or the utility of each trace, the cost
of enforcement, etc.

4.3 Probabilistic Future

A runtime enforcement mechanism makes decisions at runtime and therefore
should not have any knowledge about the future behavior of the target. This is
a particularly important problem to enforce non-safety property: if executing an
action requires the a posteriori fulfilment of an obligation, and if the monitor
cannot be sure that the obligation will be indeed fulfilled, then accepting the
action might lead to stay in a non-secure state.

However, in some systems, the controller can use some predictive information
about the future, usually by analyzing past behavior of users. A typical example
of such information is that of trust [25,18]: if we know that the user is trusted to
fulfil the obligation with a high probability, then the trace selector might choose
to output the action, even though the current output would violate the policy.

We have proposed in [15] the concept of n-selector, which extend that of
selector by taking, in addition to the past trace and the current action, the
next n steps of the trace. In other words, an n-selector indicates which decision
to make when the future is also known. Clearly, it is in general unrealistic to
expect to have the exact n future steps, however, in some cases, we can have a
probability distribution over the future traces.

It becomes then possible to define a selector in the following way: for each pos-
sible future trace of length n, we apply the n-selector, and we weight the returned
decision by the probability of that trace; the final decision process then consists in
composing all the weighted decision. This composition could be done following tra-
ditional access control decision composition (e.g., [31,10]), for instance by including
quantitative logical aspects, such as those provided by Subjective Logic [17]. An
interesting approach in this regard is that of dealing with fuzzy decisions [12].

4.4 Cost of Enforcement

A characteristic aspect of qualitative enforcement is that it only focuses on the
correctness of a trace, and whether it is possible or not to enforce correctly a
policy. A typical consequence of this approach is that when the target tries to
violate the security policy, then the policy does not specify what are the best
actions in order to “fix” the trace. This is particularly true for systems with an
expressive editing power, such as insertion or suppression. A recent approach [8]
tries to address this question by studying the difference between the input and
the output trace, and, roughly speaking, states that if two input traces are
similar, then the two corresponding output traces must also be similar.

Another way to address the problem of finding the best editing strategy is to
associate each trace modification with a cost. For instance, inserting a new action
can be associated with the cost of creating such operation, deleting an action
can be associated with the absence of gain of executing this action, stopping the
system can be associated with a loss of usability, etc.

32 F. Martinelli, I. Matteucci, and C. Morisset

Hence, given a cost domain (e.g., the set of positive real numbers R+), we
associate each decision and each action with a cost. The cost of editing a whole
trace is then simply the sum of all atomic costs.

We presented such as cost model in [14], which allowed us to specify the cost
associated with a monitor, and in particular to set a cost limit that a monitor is
not allowed to cross. It is therefore possible to specify the best editing strategy by
associating particular costs with some actions. For instance, by setting the accep-
tance cost to a minimum, we showed that it is always the best strategy to accept a
correct action, which means that transparency can be obtained as a side-effect of
a cost model. Similarly, by associating an infinite cost with the suppression cost
of a particular action, we can model the concept of uncontrollable action [5], that
is, an action that has to be accepted, such as the tick of a clock.

Finally, defining a cost model leads to the definition of a partial ordering over
monitors: a monitor M1 is “better” than a monitor M2 if, and only if, the cost
of M1 for each trace is less than the cost of M2. Furthermore, by considering a
probability distribution over traces, such as described in the previous section, we
have provided a way to calculate the expected cost of a monitor, by weighting
the cost of each trace by its probability.

4.5 Trace Reward/Utility

The cost model presented in the previous section characterizes the idea that
each atomic action over a trace comes with a cost. Following several recent
approaches [19,29,27], it is also possible to adopt a more global point of view,
where we consider the utility, positive or negative, of a whole trace. This trace
utility can be given by a function Q : Act∗ → V, where V is a value domain.

Note that the main intuitive difference between the cost domain of the previous
sectionand suchvaluedomain is that the costdomain is expected tobeonlypositive
(a negative cost is somehow counter-intuitive), while a value can be either positive
or negative. For instance, a non-secure trace canbe associatedwith a negative value
(for instance, the fine of violating the policy), while a secure trace can be associated
with a positive value (the gain of the system when executing this trace).

In this setting, defining the best monitor consists in optimizing the value of
the overall system. We have modelled in [27] an access control mechanism as a
Markov Decision Process, where the utility value is defined through the reward
function, associated with each state of the system. We have defined for each deci-
sion of the monitor its semantical effect over the state, thus allowing the system
to know exactly which state can be reached by which actions. Finally, the opti-
mal decision process can be specified, and can take the probability distribution
of traces into account.

5 Related Work

In this section we present some of the related work on controller theory and
security enforcement. Starting from Schneider’s seminal work [32], Ligatti et al.
have defined in [6,7] four different kind of security automata which deal with

From Qualitative to Quantitative Enforcement of Security Policy 33

finite sequences of actions: truncation, suppression, insertion and edit automata.
A modelling of these security automata through process algebra operators is
presented in [26], enabling the compositionality of the approach with the usage
of partial model checking and allowing for the application of existing results on
process algebras to the analysis, verification and synthesis of secure systems.

In [4] a mixed approach to access control is proposed to enforce both safety and
liveness properties: security critical code is enclosed in policy framings, in par-
ticular safety framings and liveness framings, which enforce respectively safety
and liveness properties of execution histories. This is however a static analysis
that over-approximates behavior history expressions. This approach efficiently
combines static analysis and run-time checking: a program with policy framings
is compiled into an equivalent one without framings, but instrumented with local
checks. The static analysis determines which checks are needed and where they
must be inserted to obtain a program respecting the given security requirements.
The execution monitor is essentially a finite-state automaton associated with the
relevant security policies.

In [13], the authors present the enforcement strategy of Gate Automata. It
is able not only to halt the execution of the target if something goes wrong but
is also able to add and suppress actions for correcting the target behavior when
possible according to some trust measure whose management is integrated into
the enforcement strategy.

In all previous works, the synthesis problem is not addressed. The synthesis
of controllers is a framework addressed also in other research areas (e.g. [3,35]).
Many other approaches to the controller synthesize problem are based on game
theory (e.g. [2,20,21]). Indeed, different kinds of automata are used to model
properties that must be enforced. Games are defined on the automata in order
to find the structure able to satisfy the given properties.

6 Conclusion and Future Directions

We have presented in this paper two different aspects of runtime enforcement
of security policies: how to qualitatively synthesize a controller, and a range of
quantitative properties can be expressed over a controller. The next logical step
is therefore to study how to synthesize a controller in a quantitative way, that
is, how to ensure that the synthesized controller will respect some quantitative
properties. A promising way to do so is to adopt partial model checking tech-
niques for probabilistic process algebras and temporal logics, in order to integrate
quantitative elements.

Another interesting lead is to reconsider traditional approaches about the
definition of what kind of policies can be enforced in a given context by also
including some notions of costs, precision, etc. For instance, we could wish to
distinguish policies that can only be enforced with an infinite cost from those
that can be enforced with a finite cost. Similarly, it might be useful to define
the class of policies for which the enforcement would cost more than the gain
provided by such enforcement.

34 F. Martinelli, I. Matteucci, and C. Morisset

Acknowledgments. This work has been partially supported by the EU projects
NESSoS and CONNECT.

References

1. Andersen, H.R.: Partial model checking. In: LICS 1995: Proceedings of the 10th
Annual IEEE Symposium on Logic in Computer Science, p. 398. IEEE Computer
Society (1995)

2. Arnold, A., Vincent, A., Walukiewicz, I.: Games for synthesis of controllers with
partial observation. Theoretical Computer Science 303(1), 7–34 (2003)

3. Badouel, E., Caillaud, B., Darondeau, P.: Distributing finite automata through
petri net synthesis. Journal on Formal Aspects of Computing 13, 447–470 (2002)

4. Bartoletti, M., Degano, P., Ferrari, G.-L.: Checking Risky Events Is Enough for
Local Policies. In: Coppo, M., Lodi, E., Pinna, G.M. (eds.) ICTCS 2005. LNCS,
vol. 3701, pp. 97–112. Springer, Heidelberg (2005)

5. Basin, D., Jugé, V., Klaedtke, F., Zălinescu, E.: Enforceable Security Policies Re-
visited. In: Degano, P., Guttman, J.D. (eds.) Principles of Security and Trust.
LNCS, vol. 7215, pp. 309–328. Springer, Heidelberg (2012)

6. Bauer, L., Ligatti, J., Walker, D.: More enforceable security policies. In: Proceed-
ings of the FLoC 2002 Workshop on Foundations of Computer Security, July 25-26,
pp. 95–104. DIKU Technical Report, Copenhagen (2002)

7. Bauer, L., Ligatti, J., Walker, D.: Edit automata: Enforcement mechanisms for run-
time security policies. International Journal of Information Security 4(1-2) (2005)

8. Bielova, N., Massacci, F.: Predictability of Enforcement. In: Erlingsson, Ú.,
Wieringa, R., Zannone, N. (eds.) ESSoS 2011. LNCS, vol. 6542, pp. 73–86. Springer,
Heidelberg (2011)

9. Brewer, D.F.C., Nash, M.J.: The Chinese Wall Security Policy. In: Proceedings of
the IEEE Symposium on Security and Privacy, pp. 329–339 (May 1989)

10. Bruns, G., Huth, M.: Access-control policies via Belnap logic: Effective and efficient
composition and analysis. In: Proceedings of the CSF 2008, pp. 163–176. IEEE
Computer Society (2008)

11. Bruns, G., Sutherland, I.: Model Checking and Fault Tolerance. In: Johnson, M.
(ed.) AMAST 1997. LNCS, vol. 1349, pp. 45–59. Springer, Heidelberg (1997)

12. Cheng, P.-C., Rohatgi, P., Keser, C., Karger, P.A., Wagner, G.M., Reninger, A.S.:
Fuzzy multi-level security: An experiment on quantified risk-adaptive access con-
trol. In: Proceedings of Security and Privacy 2007, pp. 222–230. IEEE (2007)

13. Costa, G., Matteucci, I.: Gate automata-driven run-time enforcement. Computers
& Mathematics with Applications 63(2), 518–524 (2012)

14. Drábik, P., Martinelli, F., Morisset, C.: Cost-aware runtime enforcement of security
policies. In: Proceedings of the Security and Trust Management 2012. LNCS (to
appear, 2012)

15. Drábik, P., Martinelli, F., Morisset, C.: A quantitative approach for the inexact
enforcement of security policies. In: Proceedings of the Information Security Con-
ference 2012. LNCS (to appear, 2012)

16. Ferraiolo, D.F., Kuhn, D.R.: Role-based access control. In: Proceedings of the 15th
National Computer Security Conference, pp. 554–563 (1992)

17. Jøsang, A.: Conditional reasoning with subjective logic. Multiple-Valued Logic and
Soft Computing 15(1), 5–38 (2009)

From Qualitative to Quantitative Enforcement of Security Policy 35

18. Krautsevich, L., Lazouski, A., Martinelli, F., Mori, P., Yautsiukhin, A.: Usage
Control, Risk and Trust. In: Katsikas, S., Lopez, J., Soriano, M. (eds.) TrustBus
2010. LNCS, vol. 6264, pp. 1–12. Springer, Heidelberg (2010)

19. Krautsevich, L., Martinelli, F., Morisset, C., Yautsiukhin, A.: Risk-Based Auto-
delegation for Probabilistic Availability. In: Garcia-Alfaro, J., Navarro-Arribas, G.,
Cuppens-Boulahia, N., de Capitani di Vimercati, S. (eds.) DPM 2011 and SETOP
2011. LNCS, vol. 7122, pp. 206–220. Springer, Heidelberg (2012)

20. Kupferman, O., Madhusudan, P., Thiagarajan, P.S., Vardi, M.Y.: Open Sys-
tems in Reactive Environments: Control and Synthesis. In: Palamidessi, C.
(ed.) CONCUR 2000. LNCS, vol. 1877, p. 92. Springer, Heidelberg (2000),
citeseer.ist.psu.edu/kupferman00open.html

21. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed
systems (extended abstract), http://citeseer.ist.psu.edu/302111.html

22. Martinelli, F.: Analysis of security protocols as open systems. Theoretical Com-
puter Science 290(1), 1057–1106 (2003)

23. Martinelli, F., Matteucci, I.: A framework for automatic generation of security
controller. STVR Journal (2010)

24. Martinelli, F., Matteucci, I.: Partial model checking, process algebra operators and
satisfiability procedures for (automatically) enforcing security properties. Techni-
cal report, IIT-CNR. Presented at the International Workshop on Foundations of
Computer Security, FCS 2005 (2005)

25. Martinelli, F.: Towards an Integrated Formal Analysis for Security and Trust. In:
Steffen, M., Zavattaro, G. (eds.) FMOODS 2005. LNCS, vol. 3535, pp. 115–130.
Springer, Heidelberg (2005)

26. Martinelli, F., Matteucci, I.: Through modeling to synthesis of security automata.
Electr. Notes Theor. Comput. Sci. 179, 31–46 (2007)

27. Martinelli, F., Morisset, C.: Quantitative access control with partially-observable
markov decision processes. In: Proceedings of CODASPY 2012, pp. 169–180. ACM,
New York (2012), http://doi.acm.org/10.1145/2133601.2133623

28. Merlin, P., Bochmann, G.V.: On the Construction of Submodule Specification and
Communication Protocols. ACM Transactions on Programming Languages and
Systems 5, 1–25 (1983)

29. Molloy, I., Dickens, L., Morisset, C., Cheng, P.-C., Lobo, J., Russo, A.: Risk-based
security decisions under uncertainty. In: Proceedings of CODASPY 2012, pp. 157–
168. ACM, New York (2012), http://doi.acm.org/10.1145/2133601.2133622

30. Moses, T.: eXtensible Access Control Markup Language TC v2.0 (XACML)
(February 2005), http://docs.oasis-open.org/xacml/2.0/access control-

xacml-2.0-core-spec-os.pdf
31. Ni, Q., Bertino, E., Lobo, J.: D-algebra for composing access control policy deci-

sions. In: Li, W., Susilo, W., Tupakula, U.K., Safavi-Naini, R., Varadharajan, V.
(eds.) ASIACCS, pp. 298–309. ACM (2009)

32. Schneider, F.B.: Enforceable security policies. ACM Transactions on Information
and System Security 3(1), 30–50 (2000)

33. Street, R.S., Emerson, E.A.: An automata theoretic procedure for the propositional
μ-calculus. Information and Computation 81(3), 249–264 (1989)

34. Walukiewicz, I.: A Complete Deductive System for the μ-Calculus. Ph.D. thesis,
Institute of Informatics, Warsaw University (June 1993)

35. Wong-Toi, H., Dill, D.L.: Synthesizing Processes and Schedulers from Temporal
Specifications. In: Clarke, E., Kurshan, R.P. (eds.) CAV 1990. LNCS, vol. 531, pp.
272–281. Springer, Heidelberg (1991)

citeseer.ist.psu.edu/kupferman00open.html
http://citeseer.ist.psu.edu/302111.html
http://doi.acm.org/10.1145/2133601.2133623
http://doi.acm.org/10.1145/2133601.2133622
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf

Design and Implementation of a Cloud-Based

Assured Information Sharing System

Tyrone Cadenhead�, Murat Kantarcioglu,
Vaibhav Khadilkar, and Bhavani Thuraisingham

Department of Computer Science,
The University of Texas at Dallas, Richardson, TX 75083
{thc071000,muratk,vvk072000,bxt043000}@utdallas.edu

http://www.utdallas.edu

Abstract. The advent of cloud computing and the continuing move-
ment toward software as a service (SaaS) paradigms have posed an in-
creasing need for assured information sharing (AIS) as a service in the
cloud. This paper describes the first of its kind assured information shar-
ing system that operates in a cloud. The idea is for each organization to
store their data and the information sharing policies in a cloud. The in-
formation is shared according to the policies. We describe a cloud-based
information sharing framework that utilizes Semantic Web technologies;
our framework consists of a policy engine that reasons about the policies
for information sharing purposes and a secure data engine that stores
and queries data in the cloud. We also describe the operation of our
system with example policies.

Keywords: Assured Information Sharing, Cloud Computing, Resource
Description Framework, Policies.

1 Introduction

The cloud computing paradigm enables the sharing of large amounts of data
securely and efficiently. Furthermore, the advent of cloud computing and the
continuing movement toward software as a service (SaaS) paradigms have posed
an increasing need for assured information sharing (AIS) as a service in the cloud.
In order to satisfy the cloud-centric assured information sharing (AIS) needs of
coalition organizations, there is a critical need to develop an AIS framework that
operates in the cloud. To our knowledge, no such system currently exists. In an
earlier paper [1], we described the design of a system called CAISS: a Cloud-
centric Assured Information Sharing System (CAISS) that utilizes the technol-
ogy components we have designed in-house as well as open source tools. CAISS
consists of two components: a cloud-centric policy manager that enforces policies
specified in RDF (resource description framework) [2] and a cloud-centric data

� This material is based upon work supported by The Air Force Office of Scientific
Research under Award No. FA-9550-08-1-0260. We thank Dr. Robert Herklotz for
his support.

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2012, LNCS 7531, pp. 36–50, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.utdallas.edu

Cloud-Based Assured Information Sharing System 37

manager that will store and manage data also specified in RDF. This RDF data
manager is essentially a query engine for SPARQL (SPARQL Protocol and RDF
Query Language) [4], a language widely used by the Semantic Web community
to query RDF data. RDF is a Semantic Web language that is considerably more
expressive than XML- (extensible Markup Language) based policy languages or
specifying and reasoning about policies. Furthermore, our policy manager and
data manager will have seamless integration since they both manage RDF data.

While many of the ideas in our previous paper were in the concept stages,
in this paper, we describe the detailed design and implementation of CAISS.
We have developed a comprehensive AIS framework that seamlessly operates
in the cloud. Our framework contains a three layer architecture that consists
of a user interface layer, a policy engine layer and a data connection layer that
integrates multiple data sources in the cloud. To our knowledge this is the first
of its kind AIS framework that operates in the cloud. We describe the detailed
design and implementation of our system in Section 2. In particular, the system
architecture, operations, modules and usage are discussed. We then provide a
description of the novel features of our implementation in section 3. The paper
is concluded in Section 4 with a discussion of future work.

2 Architecture

Our system architecture consists of three layers (see Fig. 1). At the front-end,
we have a user interface; the middle layer consists of our policy engine logic; and
at the backend, we have our data stores. We will first give an overview of the
configuration of our framework. Then we will define each of the layers in our
architecture.

2.1 RDF Framework Configuration

Our policy engine framework is driven by RDF configuration documents (see
Fig. 2), which encode the logic of the user interface layouts and customizable
parameters, the policy engines and their usage, and the mappings of derefer-
enceable uniform resource identifiers(URI) to the data stores using the available
data connections. Our policy engine framework can be used as a key enabler in
augmenting security for RDBMS’s, as well as cloud-based systems. RDBMS’s are
developed with atomicity, concurrency and durability in mind, but are normally
shipped with limited support for access control. A cloud storage layer allows
the agencies to store and scale policies with finer levels of control over RDF
resources. The cloud was developed with scalability and availability in mind,
but security considerations were neglected. Our policy engine can be configured
to complement policies in a RDBMS system with an entry point for supporting
security policies over cloud-based back-ends.

A loosely coupled system also provides easy configuration and flexibility to
our RDF policy engine framework. Each component is abstracted from the oth-
ers by employing RDF documents consisting of an agency’s preferences for a

38 T. Cadenhead et al.

Fig. 1. Architecture

policy or data connection to a data store. Furthermore, a loosely coupled web
front-end promotes easier maintenance and reusability of the policy framework,
since an adapter pattern abstracts the mapping of the web interfaces (and com-
munications) to the other layers. An abstraction hides the actual implementation
and intricacies of the policy engine manager and data managers from the agen-
cies. This therefore allows agencies to specify their policies in any representation
languages, such as XML, RDF or Rei [3]; an adapter hides the translation of
high-level policy specification to policy implementation.

2.2 User Interface Layer

To enable a one-to-one interaction between a user and our policy framework,
a web-based user interface is built on top of the policy layer. Rich client and
open source web technologies simplify the interactions between users, web pages
and the underlying policy and data layers. This integration has many advan-
tages. The policy framework operates in a distributed environment and has a
greater geographical spread; therefore, agencies and users have mobility. The
web interface requires users to create an account (also a registration) and choose
unique credentials, which will then be used by the users to identify them to the
policy framework. A form-based authentication pattern, as well as a challenge-
response test distinguishes legitimate users from robots (which may pose as
normal users). The legitimate users are presented with a querying screen that

Cloud-Based Assured Information Sharing System 39

Fig. 2. Framework Overview

allows them to compose SPARQL queries once they have been authenticated.
Note that SPARQL [4] is a query language for RDF and is used for retrieving
data from triple stores. The input SPARQL queries are validated at the user
interface layer and then sent to our policy engine layer, which in turn returns a
resultant RDF graph that is then displayed on a web page.

User Registration
The User Registration presents the user the opportunity to register with the
system using a web registration form. The registration form captures the user’s
name, password and other metadata about the user. Metadata could be an
agency that the user is a part of, or data that is used for mapping the user’s
credentials to a role, which is to be performed by the user.

The following RDF graph displays contents from a user configuration file. The
final triple in the RDF graph contains a dereferenceable URI to another RDF
graph, which then contains a list of dereferenceable URIs of the actual resources
that the user is allowed to query.

users

<http://policy.org/agency/pol#users>

pol:user <http://policy.org/agency/pol#user1> .

user details and resources

<http://policy.org/agency/pol#user1>

40 T. Cadenhead et al.

pol:name "user1" ;

pol:passwd "_:b1" ;

pol:organization <http://policy.org/agency/pol#Agency1> ;

pol:resourcelist <http://example/users/resources/user1> .

Agency Registration
The Agency Registration comprises a sequence of web pages, each being a child
page of the previous one. The process commences with an agency registering in-
formation to describe itself. First, an agency registers important metadata about
itself. This metadata is captured as an RDF document, which can be used to
introduce one agency to another, and therefore, should be self-describing. Some
example triples in this metadata could assert an agency’s name, address, indus-
try, affiliations, etc. Second, an agency records its resources. A RDF resource
has a unique URI, which is a dereferenceable URI to an agency’s RDF resources
at a datastore, which contains both the sensitive and non-sensitive data for the
agency; this is the information that is normally stored in a relational database,
but is now migrated to the cloud. Third, an agency defines the policies for its
resources. An agency may choose among the various policies that are supported
at the policy engine layer. Examples of policies are access control, redaction,
information sharing, etc. Fourth, an agency describes various policy rules for
a policy. Note that an agency may use access control to protect its resources;
however, the agency may need more than one rule for a particular policy choice.
For example, one access control rule may specify a positive authorization, while
another may specify a negative authorization on the same resource. Finally, an
agency specifies queries. It is a very popular technique to write policy rules as
views (i.e., SPARQL queries) over a data store. An agency may specify in its
policy rule configuration document that queries are be materialized or that they
be non-materialized. A materialized query may speed up the policy execution,
while a non-materialized query refreshes the result set in real-time. Note that
there is a correspondence between the web pages at the agency registration and
the RDF documents in Fig. 2.

2.3 Policy Engines

An agile environment pushes policy designers to constantly fine-tune or extend
their policies to rapidly adapt to ever-changing conditions, thus ensuring that
data integrating and data combinations do not violate data confidentiality, espe-
cially when quick actions are critical (e.g., in intelligence). To meet this demand,
our policy engine layer supports many policy engines, while the cloud supports
many policy configuration documents.

The Policy Engine Layer first evaluates the user queries against the stored
data resources (which can be traditional data, or provenance metadata). A data
resource is characterized by a URI which connects to an actual RDF graph in the
data storage layer. The policy layer uses a factory object to create the underlying
policies. The factory exposes a policy through a consistent interface, thus making

Cloud-Based Assured Information Sharing System 41

it easy to extend our policy engine to support other types of policies in the future.
We currently support access control, redaction, and information sharing policies.
To support traditional policies, we use SPARQL queries to define views over
the data resources, where a view can be associated with positive and negative
authorizations or a target RDF graph in a subgraph replacement procedure. An
important metadata is provenance, which records the history of a piece of data
item. However, provenance takes on a directed acyclic graph (DAG) structure [5],
and as such requires its own policies. Therefore, we support the use of regular
expression SPARQL queries for access control policies [6], as well as redaction
policies [7]. We have also implemented information sharing policies over data
and provenance that allow cooperating agencies to share information based on
mutual agreements [8].

A policy engine takes as input a user’s credential and a dereferenceable URI.
It then evaluates the underlying logic of a policy before returning a new RDF
graph (or model) to the user interface layer. The dereferenceable URI points to
a configuration document, which itself contains other dereferenceable URIs to
the policies about an agency’s resource and to the agency’s resource at the data
layer. An agency’s resource is an RDF document, with triples at one or more
classification levels. For example, an entire RDF document would be classified
as sensitive in case it contains intelligence information, or some subset of triples
may have actual intelligence information. An agency therefore requires more
than one type of policy to achieve fine-grain control over its resources. A policy
is therefore defined by an interface, which allows the implementation of the logic
of each policy. By migrating its policies to the cloud, an agency overcomes the
restriction on the number of policy definitions previously possible. The following
subsections summarize various policy types. In the subsections below, we discuss
the details of the policy engine layer. This layer comprises many policy types,
for example, access control, redaction, information sharing, to name a few. We
will also motivate the need for a flexible policy engine by discussing each of these
policy types in turn.

Access Control Policy Engine
An access control policy authorizes a set of users to perform a set of actions on a
set of resources within an environment. Unless authorized through one or more
access control policies, users have no access to any resource of the system. There
are different kinds of access control policies, which can be grouped into three
main classes [9]. These policies differ by the constraints they place on the sets
of users, actions and objects (access control models often refer to resources as
objects). These classes are (1) RBAC, which restricts access based on roles; (2)
discretionary access control (DAC), which controls access based on the identity
of the user; and (3) mandatory access control (MAC), which controls access
based on mandated regulations determined by a central authority.

Policies based on RBAC are often used to simplify the management of policy
mappings, which is a common feature in the three classes of access control poli-
cies. Policy creation and manageability are important in getting finer levels of

42 T. Cadenhead et al.

access control over the shared resources. We use the convention that a permis-
sion is a unique pair of (action, resource). Given n resources, m users and a set
of only two actions (read, write), we have a maximum of 2× n possible permis-
sions. This gives m× (2× n) = c1n mappings. A further improvement of RBAC
is the case where there is at least one role with two or more users assigned to
it, from a possible set of r roles. Therefore, we have r× (2× n) = c2n mappings
and we also assume that c2 ≤ c1. However, even with this simplification, the
number of policies needed to achieve finer levels of access control in a dynamic
and agile community may be intractable. Our cloud-centric policy framework
addresses this by providing the agencies the ability to support and scale their
access control policies to meet their ever-growing security needs.

Redaction Policy Engine
A redaction policy identifies and removes sensitive information from a document
before releasing it to a user. Unlike access control policies, which restrict access,
redaction policies encourage sharing of information, by ensuring that sensitive or
proprietary information is removed (or obscured) before providing the final RDF
graph (referred to as a redacted graph) to a user’s query. Redaction policies rely
on a transformation operation in order to circumvent any identifying or sensitive
information. The redaction policy engines currently supported rely on a graph
transformation technique that is based on a graph grammar approach (which is
presented in [10,11]. Basically, there are two steps to applying a redaction policy
over a directed labeled RDF graph: (i) Identify a resource (or subgraph) in the
original RDF graph that we want to protect. This can be done with a graph
query (i.e., a query equipped with regular expressions). (ii) Apply a redaction
policy to this identified resource in the form of a graph transformation rule. An
implementation of this graph transformation is used in [7] for redacting prove-
nance graphs.

Information Sharing Policy Engine
An information sharing policy allows agencies to determine the context in which
their resources are shared or combined with resources from other agencies. An
information sharing policy engine has logic for processing a query requesting
information on two or more RDF graphs simultaneously. We illustrate this using
the following SPARQL query.

SELECT B FROM NAMED uri1 FROM NAMED uri2 WHERE P,

where P is a graph pattern, B is a tuple of variables appearing in P and uri1 and
uri2 are dereferenceable URIs for two resources, R1 and R2. Resources R1 and R2
may be from the same agency, in case an agency strictly requires a partitioning
of its resources based on confidentiality concerns or they could belong to two
agencies, Agency 1 and Agency 2 respectively. Therefore, each of these resources
may define individual information sharing policy rules. We define an operator
�, so that an information sharing policy is now evaluated over uri1 � uri2. The
operator � can be implemented as a graph operation over a RDF graph. Note

Cloud-Based Assured Information Sharing System 43

that, �, could be one of the following operators: ∩, ∪ or − and can also be
applied to an original RDF graph or to previous one, which resulted from the
operator, �. In order to execute the operator, �, we define a graph recursively
as follows.

– ε is a graph.
– The set of graphs are closed under intersection (∩), union (∪) and set differ-

ence (−). Let G1 and G2 be two graphs, then G1∪G2, G1∩G2 and G1−G2

are graphs, such that if t ∈ G1 ∪ G2 then t ∈ G1 or t ∈ G2; if t ∈ G1 ∩ G2

then t ∈ G1 and t ∈ G2; or if t ∈ G1 −G2 then t ∈ G1 and t /∈ G2.

The following RDF graph lists triples from a combined policy configuration
document containing policies with embedded logic for sharing two resources, R1
and R2, which belong to two agencies, Agency 1 and Agency 2 respectively.

entity

<http://policy.org/entity/pol#Combined1_1_1>

pol:owner <http://policy.org/entity/pol#Agency1>;

pol:rule <http://policy.org/entity/pol#Cprule1_1_1_1> .

mappings

<http://policy.org/entity/pol#Cprule1_1_1_1>

pol:agency<http://policy.org/entity/pol#Agency2>;

pol:operator "UNION" ;

pol:type "combined1" .

This policy works at the level of the agencies. For example, Agency 1 shares all
its resources as a union with all of Agency 2 resources. The policy type allows
an agency to have modes of sharing. For example, a type combined1 provides
sharing at the agency level, while another policy type, combined2, could offer a
finer level of control in determining how Agency 1 shares each of its resources
with a classification of a resource for Agency 2. In other words, information
sharing policies can incorporate contextual information about an agency and
metadata about each of its resources at the resource level. The following shows
two policy types for our information sharing policies:

1. combined1 ∀r1 ∈ Agency1, ∀r2 ∈ Agency2, use r1∪r2. This policy states
that Agency 1 shares all its resources with Agency 2 as a union of the
resources.

2. combined2 let r11, r12, . . . , r1n ∈ Agency1, use r11 ∪ r2, r12 ∩ r2, ∀r2 ∈
Agency2. This policy offers a finer level of control.

Provenance Policy Engines
Sometimes the relationships among the triples in an RDF graph need be taken
into consideration, when defining policies. The three policy types discussed so
far fail to address the cases where sensitive information is implicit in the various
paths within an RDF graph. We will explore other policy engines in this section.

44 T. Cadenhead et al.

The focus will be on the definition of policy engines tailored to the execution of
access control and redaction policies over a provenance graph, but is applicable
to information policies as well. We will base the logic of these policy engines
on [6], which discusses an access control policy language for provenance and [7],
which discusses how to perform redaction over provenance. We will first give an
example of a provenance graph and the type of provenance information which
may exist in an example provenance graph. Then we will present brief definitions
of some of the theory behind executing policies over a provenance graph.

Fig. 3 shows an intelligence example as a provenance graph using a RDF
representation that outlines a flow of a document through a server located in
some unfriendly territory (or at another agency posing a potential threat). This
document was given to a journalist. Also, the final report can be traced back
to a CIA agent. The contents of this provenance graph could serve to evaluate
the trustworthiness of the servers (i.e., processes in the example graph) from
which the document originated. This example provenance graph also shows the
base skeleton of the actual provenance, which is usually annotated with RDF
triples indicating contextual information, e.g., time and location. Note that a
RDF graph is composed of triples (subject, predicate, object). In this example,
the predicates (i.e., arcs) are labeled with the OPM abstract predicate [12] labels
and these predicates make up a vocabulary.

The information embedded in the graph in Fig. 3 represents a directed RDF
graph. A provenance path in Fig. 3 is defined as follows:

Definition 1. (Provenance Path) Given a provenance graph, a provenance path

(s ρ o) is a path s(
ρ→)o that is defined over the provenance vocabulary V using

regular expressions.

Definition 2. (Regular Expressions) Let Σ be an alphabet of terms in V , then
the set RE(Σ) of regular expressions is inductively defined by:

– ∀x ∈ Σ, x ∈ RE(Σ);
– Σ ∈ RE(Σ);
– ε ∈ RE(Σ);
– If A ∈ RE(Σ) and B ∈ RE(Σ) then:

A|B,A/B,A∗, A+, A? ∈ RE(Σ).

The symbols | and / are interpreted as logical OR and composition respectively.
Our intention is to define paths between two nodes by edges equipped with

* for paths of arbitrary length, including length 0 or + for paths that have at

least length 1. Therefore, for two nodes x, y and predicate name p, x(
p→)∗y and

x(
p→)+y are paths in G.
A SPARQL query extended with regular expressions [13] can define a resource

(or subgraph) of the provenance graph in Fig. 3 as follows:

Example 1. (Provenance Path Query)

Select ?x

{ ex:PubRpt1 arq:OnPath("([opm:WasGeneratedBy]/

[opm:WasTriggeredBy]/[ex:location])" ?x). }

Cloud-Based Assured Information Sharing System 45

Fig. 3. Provenance Graph

This query would return the location as a binding to the variable x and could be
used to pinpoint the origin of a compromise (and leakage) of the original report.
This could also serve to alert policy designers to add appropriate policies for
reports and servers in their respective agencies.

Policy Sequence
The execution of the policies over an agency’s resource results in a policy se-
quence. In particular, a protected resource could employ the services of multiple
policy engines and policy types. Each policy type produces a new subgraph of
its input RDF graph. It is important to note that the effect of a policy is directly
dependent on the RDF graph it receives as input, and furthermore, the effect
may be different from the original effect the policy was intended to achieve. A
sequence takes the original input graph through a series of transformations until
a final RDF graph is returned to the user. Note that the success of a policy rule
(which is implemented as a SPARQL query) returning a particular set of RDF
triples is dependent on the transformation step at which the rule was applied in
a policy sequence. We illustrate this using the following SPARQL query:

CONSTRUCT G WHERE P,

G is a newly constructed graph, which contains a set of triples that satisfy
condition P in the input graph. A policy protecting the following RDF triples,

<http://cs.utdallas.edu/semanticweb/Prov-AC/agency#Agent_1>

foaf:name "John Brown";

foaf:projectHomepage <http://www.agency1.gov/> .

46 T. Cadenhead et al.

will fail if either the name or project home page triple was earlier removed or al-
tered by a previous policy rule. A policy precedence feature in the framework helps
an agency determine the ordering of its policies. In the user interface layer, an
agency configures the ordering of its policies. The policy sequence is then stored in
a RDF sequence file (using the “rdf:seq” feature of the RDF specification). When
a query is evaluated, the policy framework will in turn invoke each policy in the
intended order.

Rule Sequence
In a similar way, a policy may be implemented using a set of rules. For example,
to fully redact a shared resource, an agency may need a separate rule to redact
each sensitive triple in an RDF graph. Each rule is triggered when a triple (or set
of triples) meet some specified criteria in the input graph. Note that each rule
transforms the current state of a shared resource. Therefore, each sequencing of
the rules will impact the final graph.

2.4 Data Layer

At the Data Layer is a connection factory, which acts as a facade, for creating
connection objects. These connection objects expose the same properties (func-
tionally) as public methods to the policy designer. This makes it easier for the
policy designer to concentrate on the policy engine design. The policy designer
makes a call to an RDF Policy Factory, which returns an RDF model object.
This RDF model object is backed by a connection store, which can be a local
connection, a relational database connection or a cloud connection. During the
registration process, an agency is given an opportunity to decide where it wants
to store its resources and configuration documents. It is recommended that the
smaller configuration documents be stored locally on disk (or in a local database)
to enable quick access to them. Local connections also consume lower bandwidth,
offer real-time access and enable development before deployment. However, an
agency may decide to store them in a private cloud (or on a remote database
server) to take advantage of the added protection there.

The connection factory also enables agencies to store their resources in any
cloud infrastructure. For example an agency’s resources could reside in a private
cloud, or a community cloud or a public cloud. A private cloud deployment pro-
vides more control, in that agencies could house their own cloud. A community
cloud is provisioned for exclusive access by a specific community, thus serving
the common interest of cooperating agencies. A public cloud is open to the pub-
lic and thus susceptible to more vulnerability due to the loss of control over the
data uploaded onto the public cloud. Agencies may choose to use a mixture of
connections and also employ more than one deployment simultaneously (e.g., a
hybrid cloud model).

3 Features of Our Policy Engine Framework

In the subsections below, we present some novel features of our policy engine
framework.

Cloud-Based Assured Information Sharing System 47

3.1 Policy Reciprocity

Policy Reciprocity enables agencies to specify policies when knowledge of the
other agencies, their resources or policy specifications are available. This is made
possible via the registration process, where agencies make metadata available
about themselves, their resources and associated policies. The following discus-
sion provides scenarios for policy reciprocity.

Agency1 wishes to share its resources if Agency2 also shares its resources
with it. Current access control and redaction policies do not provide for this
reciprocity. Our framework provides information sharing policies, which allow
agents to define policies based on reciprocity and mutual interest amongst co-
operating agencies.

We present two sample information sharing policies below:

1. ∀r1 ∈ Agency1, ∀r2 ∈ Agency2, use r1∪r2.
This policy states that Agency1 shares all its resources with any resource of
Agency2 as a union of the resources (i.e., � ∈ {∪}).

2. let r11, r12, . . . , r1n ∈ Agency1, use r11 ∪ r2, r12 ∩ r2, ∀r2 ∈ Agency2.
This policy offers a finer level of control and defines the combined operator,
� ∈ {∩, ∪}.

Conditional Policies
A consequence of policy reciprocity is allowing the use of conditional sharing
policies. For example, Agency1 shares its resources with Agency2 if Agency2
does not share Agency1’s resources with Agency3. We present a sample infor-
mation sharing policy below:

1. ∀r1 ∈ Agency1, ∀r2 ∈ Agency2, Agency1 defines r1∩r2. If ∀r3 ∈ Agency3,
then
– Agency2 does not define any sharing policy of the form r1∩r3,
– or Agency2 does not define any sharing policy of the form r1 ⊆ r2 �r3,

where � ∈ {∪,∩}.

Policy Symmetry
Another consequence of policy reciprocity is to have symmetry in the sharing
of policies. For example, Agency1 shares its resources with Agency2 with a
combined operator, �, if Agency2 also shares its resources with Agency1 using
the same combined operator, �. We present a sample information sharing policy
below:

1. ∀r1 ∈ Agency1, ∀r2 ∈ Agency2, Agency1 uses r1∪r2 if Agency2 also uses
r2∪r1.

3.2 Develop and Scale Policies

To enable freedom of maneuverability across the information environment and
to deliver the power of information to ensure mission success, an agency should

48 T. Cadenhead et al.

be able to rapidly develop policies and deploy them as needed. We next discuss
the features that are available to an agency during and after development of its
policies.

Policy Development
Agency1 wishes to simulate a live environment and create test scenarios to vi-
sualize the results of each policy configuration. Our policy framework provides
three configurations: (i) a standalone version for development and testing; (ii)
a version backed by a relational database; and (iii) a cloud-based version that
achieves high availability and scalability while maintaining low setup and oper-
ation costs.

Sequencing Effects
Agency1 wishes to vary the result set to a user’s query based on the user’s cre-
dentials. The policy sequence feature can be used to configure different outcomes
by permuting the policies and their respective rules.

Rapid Elasticity
Agency1 identifies recent security vulnerabilities in its existing policy configu-
rations and wishes to extend (or grow) its existing policy set with support for
policies at a finer granularity. Our policy engine provides a policy interface that
should be implemented by all policies; therefore, we can add newer types of
policies as needed. In addition, our policy engine gives an agency rapid elastic-
ity, whereby the capabilities available by our policy framework appear unlimited.

Location Independence
Agency1 wishes to store its resources closer to where it is consumed, but with
little or no change at the policy layer. Our policy engine provides location inde-
pendence whereby the policy engine has no control or knowledge over the exact
location of the resources, but may be able to access the resources through a spec-
ified location using the connection manager. Note that an agency’s resources can
be in any cloud, geographically. The ability to locate any resource by a derefer-
enceable URI offers much flexibility.

Deployment Models
Agency1 can take advantage of different deployment models. For example, a
private cloud, a hybrid cloud, a community or a public cloud. The connection
manager allows an agency to choose among a list of connection types based on
different risk factors and objectives in protecting its data confidentiality.

3.3 Justification of Resources

Provenance makes available an explanation about why information was manipu-
lated and a trace to the source of the information manipulation. This establishes
trust among agencies, thus facilitating partnerships for common goals.

Cloud-Based Assured Information Sharing System 49

Agency1 asks Agency2 for a justification of resource R2. The current commer-
cial access control policies are mainly designed to protect single data items, while
current redaction policies are designed for redacting text and images. Our policy
engine allows agents to define policies over provenance; therefore, Agency2 can
provide the provenance of R2 to Agency1, but protect it by using access control
or redaction policies.

3.4 Policy Specification and Enforcement

Our architectural design supports a high level specification of policies, thus sep-
arating the business rules from a specific policy implementation.

Agency1 wishes to express its policies in a high-level language (e.g., XACML),
and would prefer not learning RDF or any of its variations. The framework ex-
poses a web interface layer between the users and the policy engine layer, whereby
the users can specify their policies independent of the actual implementation of
the policy. A suitable adapter, also known as a data translator, will translate
each high-level policy specification into the appropriate RDF representation used
by the appropriate policy, which protects an agency’s resources.

Policies may be specified using more expressive languages than RDF, by ex-
tending RDF with a formal vocabulary, in particular a sub-language of OWL.
OWL has a formal semantics that are based on description logics, a decidable
fragment of first order logic. Thus, by supporting an adapter pattern, our frame-
work is extended to handle semantic policies specified in OWL and high-level
policies can be translated into a suitable sub-language of OWL using existing or
custom-built translators.

4 Summary and Directions

This paper has described the design and implementation of the first of its kind
AIS framework that operates in the cloud. As stated earlier, the idea is for
each organization to store their data and the information sharing policies in a
cloud. The information is shared according to the policies. We described a cloud-
based information sharing framework that utilizes semantic web technologies.
Our framework consists of a policy engine that reasons about the policies for
information sharing purposes and a secure data engine that stores and queries
data in the cloud. We also described the operation of our system with example
policies.

Our framework is flexible so that additional data sources and cloud can be
added. Furthermore, by using RDF for a policy engine, we can add more so-
phisticated policies for information sharing. This is one of the major strengths
of our system. Future directions include specifying and reasoning about
more sophisticated policies as well as testing our system in a real-world
environment.

50 T. Cadenhead et al.

References

1. Thuraisingham, B., Khadilkar, V., Rachapalli, J., Cadenhead, T., Kantarcioglu, M.,
Hamlen, K., Khan, L., Husain, F.: Cloud-Centric Assured Information Sharing. In:
Chau, M., Wang, G.A., Yue, W.T., Chen, H. (eds.) PAISI 2012. LNCS, vol. 7299,
pp. 1–26. Springer, Heidelberg (2012)

2. Klyne, G., Carroll, J., McBride, B.: Resource description framework (RDF): Con-
cepts and abstract syntax. W3C recommendation (2004)

3. Kagal, L.: Rei. HP LabsLabs (2002),
http://www.hpl.hp.com/techreports/2002/HPL-2002-270.html

4. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. W3C Rec-
ommendation (January 2008)

5. Braun, U., Shinnar, A., Seltzer, M.: Securing provenance. In: Proceedings of the
3rd Conference on Hot Topics in Security, p. 4 (2008)

6. Cadenhead, T., Khadilkar, V., Kantarcioglu, M., Thuraisingham, B.: A language
for Provenance Access Control. In: Proceedings of the First ACM Conference on
Data and Application Security and Privacy, pp. 133–144 (2011)

7. Cadenhead, T., Khadilkar, V., Kantarcioglu, M., Thuraisingham, B.: Transforming
Provenance Using Redaction. In: Proceedings of the 16th ACM Symposium on
Access Control Models and Technologies, pp. 93–102 (2011)

8. Cadenhead, T., Khadilkar, V., Kantarcioglu, M., Thuraisingham, B.: A cloud-based
RDF policy engine for assured information sharing. In: Proceedings of the 17th
ACM Symposium on Access Control Models and Technologies, pp. 113–116 (2012)

9. Samarati, P., de Capitani di Vimercati, S.: Access Control: Policies, Models, and
Mechanisms. In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171,
pp. 137–196. Springer, Heidelberg (2001)

10. Ehrig, H.: Fundamentals of algebraic graph transformation. Springer-Verlag New
York Inc. (2006)

11. Rozenberg, G.: Handbook of graph grammars and computing by graph transfor-
mation: Foundations. World Scientific (2003)

12. Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska,
N., Miles, S., Missier, P., Myers, J., et al.: The open provenance model core speci-
fication (v1. 1). Future Generation Computer Systems, 743–756 (2011)

13. Harris, S., Seaborne, A.: SPARQL 1.1 query language. W3C Working Draft (2010)

http://www.hpl.hp.com/techreports/2002/HPL-2002-270.html

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2012, LNCS 7531, pp. 51–64, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Optimization of Key Distribution Protocols Based on
Extractors for Noisy Channels within Active Adversaries

Victor Yakovlev1, Valery Korzhik1, Mihail Bakaev1, and Guillermo Morales-Luna2

1 Department of Information Security of Telecommunication Systems,
State University of Telecommunication, St. Petersburg, Russia

viyak@bk.ru, val-korzhik@yandex.ru
2 Computer Science, Cinvestav-IPN, Mexico City, Mexico

gmorales@cs.cinvestav.mx

Abstract. We consider the information-theoretic secure key distribution problem
(KDP) over noisy binary symmetric channels with public discussion and in the
presence of an active adversary. There are several versions of such protocols
proposed by Maurer, Wolf, Renner, Dodis, Reyzin et al. We describe two new
versions of KDP for the same channel model and with the use of extractors as a
mean of privacy amplification but with the goal to maximize the key rate under
an optimization of the protocol parameters. There are two novelties in solution of
KDP: we get the extractor’s seed directly from the distributed initial strings and
we prove the main results in terms of explicit estimates without the use of the
uncertain symbols O, Ω, Θ. Both asymptotic and non-asymptotic cases are
presented. It is shown that the extractors can be superior to conventional hashing
for very large lengths of initially distributed strings.

Keywords: Active adversary, cryptography, extractors, key distribution, privacy
amplification.

1 Introduction

Advances in the design of quantum computers [1] as well as in the design of super-
fast multiprocessor conventional computers pose a threat to some conceptually secure
cryptosystems. Hence the perfect one-time pad ciphers proposed by Shannon [2] is
quite requested. But the use of perfect ciphers requires the key lengths to be
proportional to the length of the messages [3]. This defect can be solved with the use
of key distribution over communication channels protected from eavesdropping.
There are several approaches in order to remove (or at least to control) keys
eavesdropping:

─ quantum cryptography [4],
─ methods based on fluctuation of radio wave channels [5,6],
─ the use of Wyner’s wire-tap channel concept [7-9],
─ key generation by hashing of random string initially distributed over noisy

channels [10-20].
─ key generation based on the extension of the secure sketch and fuzzy extractors

technique [21-25].

52 V. Yakovlev et al.

In the current paper, we follow the last two approaches. The most advanced results
under the condition of an active adversary were obtained by Maurer and Wolf. They
proposed several key distribution protocols [11-16] and made a performance
comparison of asymptotic and non-asymptotic key rates for a given level of key
security. A similar concept is considered in [19]. The last approach proposed at [21,
22] is now intensively developed. In [23] the key distribution protocol (KDP) has
been significantly improved. The most effective solutions (in the sense of a
minimization of the entropy loss and the number of rounds for interactive KDP) were
presented at [24,25].

The main feature of the KDPs presented in the current paper is their exact
constructability. This means that we find the optimal parameters and estimate
efficiency without the use of such uncertain symbols as O, Ω, Θ and not necessarily
asymptotically. Since it is a very hard problem to find exact constructive solutions for
KDP in a general case, we restrict our consideration to the following conditions:

─ the key distribution is performed only if the legal uses are able to get initially
distributed binary i.i.d. strings over noisy channels, the eavesdropper is able to
intercept these strings also over noisy channels but with different parameters

─ the public discussion (in order to reconcile the keys between legal users) is
executed on noiseless channel in presence of an active adversary.

─ key authentication should be performed non-interactively allowing to share the
secret key between more than two legal users.

The contributions of the current paper are the following:

1. We consider a modified - and a new -KDP based on extractors, different

to previous ones because the extractor’s seed is not transmitted over the public
discussion channel but it is formed from initially distributed strings.

2. A maximization criterion is chosen as the key rate (defined as the ratio of the key
length and the length of the initially distributed string) rather than the entropy loss
used in [23-25]. We claim that such criterion is more practical.

3. We prove an asymptotic behavior of the key rates for new protocols allowing to
compare their potential efficiency with the potential efficiency of former protocols.

The outline of this paper is the following: In Section 2 we describe the model of key
distribution based on noisy wire-tap channels in the presence of an active adversary
and we introduce the main criteria for the KDP efficiency. In section 3 we describe
the αext -protocol, and we propose the new βext-protocol without transmission of the
extractor’s seed on the public discussion channel and their main features. Conclusions
are at section 4. The authentication and extraction procedures appear in the Appendix.

2 Key Distribution Model and Main Criteria for Efficiency

Let us consider the model of key distribution among two legal users, Alice (A) and
Bob (B), in the presence of an active adversary, Eve (E), assuming that initially the

extα extβ

 Optimization of Key Distribution Protocols Based on Extractors 53

legal users do not share secret keys. The key distribution protocol (KDP) consists of
two phases: initialization phase and key generation phase.

In the KDP initialization phase, A, B, and E receive random binary i.i.d. sequences

of length k: , , , respectively, such that for each

i, the probabilities and are

fixed. One method to provide legal users A, B with such sequences X, Y is to generate
a truly random sequence by some third party, say source S, and then

to transmit it to the legal users A and B over noisy channels (source model [12]). We
will assume that A and B receive the sequences X, Y over binary symmetric channels
(BSC) without memory with error probabilities , ,

while the adversary E receives the sequence Z over a BSC with error probability
. It is easy to see that if the original sequence S is truly random then

the same property holds for the sequences X, Y and Z. Here it is natural to assume that
the adversary is unable to intervene the transmission from S to A and B.

The key generation phase consists of an information exchange over a public one-
way channel (POWC) from A to B with the goal to share a secret and reliable final
key. After executing the string reconciliation, the legal users A and B perform a
privacy amplification procedure based on extraction with a goal to get the coinciding
secret keys КA and KB respectively. The adversary E can receive all information
transmitted over the POWC and E can change or replace this information.

Let us define the following parameters of the KDP characterization:
l: the key length (the number of bits contained in the keys strings К A and KB),
I(KA, U): the amount of Shannon’s information in possession of the adversary E about

the final key KA ,(KB) after receiving all acceptable, for E, information U,
including the sequence Z and the other messages transmitted over the POWC,

Pe = Pr(КА ≠ KB): the probability of legal users key disagreement,
Pf : the probability of false rejection of the KDP (when A or B falsely believe that E

has intervened the POWC),
Pd: the probability of deception false information provided by E during information

transmission over POWC (it can result in an opportunity to fix a key between any
legal user and E, although leaving this legal user on the belief that he (she) has
shared a key with his (her) legal partner).

Rk: key distribution rate (the ratio of the key length l and the lengths of and),

 . (1)

It is reasonable to impose the following conditions on KDP:

 l= , (2)

, (3)

, , , (4)

X = xi{ }i=1

k { }k

iiyY 1== { }k

iizZ 1== {0,1}k∈

)yxPr(p iim ≠= p
w
= min{Pr(x

i
≠ z

i
),Pr(y

i
≠ z

i
)}

{ }k

iisS 1== {0,1}k∈

)sxPr(iiA ≠=π)syPr(iiB ≠=π

)szPr(iiE ≠=π

Xk Yk

k

l
Rk =

reql

adm
A IUKI ≤);(

adm
ee PP ≤ adm

ff PP ≤ adm
dd PP ≤

54 V. Yakovlev et al.

where lreq denotes the required key length and the superscript adm stands for
admissible parameter value. The efficiency of the KDP will be estimated by the key
rate Rk given (2)-(4). We select the most efficient KDP making Rk to reach its largest
value. Since the inequalities (3)-(4) may hold randomly, let us add the requirement

 , (5)

where is the probability that at least one of the inequalities (3)-(4) does not hold.

3 The New Key Distribution Protocols and Their Optimization

Two key distribution protocols in the presence of an active adversary have been
proposed by Maurer and Wolf in [15]: the UH-protocol, in which the privacy
amplification procedure was executed using hash functions and the EX-protocol,
based on extractions. (In [21, 24, 25], the KDP using secure sketch, fuzzy extractor
and robust fuzzy extractor techniques have been investigated more profoundly).

Initially we consider a modified EX-protocol called αext –protocol. A difference
between the original and the modified protocols is determined by two factors.

1. We consider protocols under the condition , or

equivalently under the condition , . This condition requires

to send the check symbols from A to B in order to conciliate Хk and Yk.
2. Instead of the authentication algorithm “request-response” [15], we use non-

interactive algorithm based on special authentication codes (AC) [12] (see
Appendix B) because it allows the users to provide authentication even when
the sequences Хk and Yk do not coincide completely and the number of legal
users are greater than 2. By the same reason, the authentication algorithm and
the number of substrings of the original strings Хk and Yk are changed.

Before executing the αext-protocol, A and B divide their sequences Хk, Yk, into

 and of respective lengths k1, k2. The αext –protocol proceeds as:

1. The user А forms the string of check symbols of length r1 to the string

using a (k1+r1, k1)–error correcting code С1 (agreed by the users in

advance).
2. The user A generates a truly random binary sequence (which will be used

as an extractor seed) of length u.
3. The user А forms the authenticator w to the message using for that an

AC based on error correcting (n0, k0 = r1+u, d)- code and the sequence .

4. А sends to В the pair over a POWC appended with the authenticator w.

5. The user В verifies the authenticity of the message through the

known (n0, k0)-AC and his string (see Appendix). If authenticity is

confirmed, then B goes to the next step. Otherwise he rejects the KDP.

adm
risk riskP P≤

adm
riskP

00 ≠≠ ВА ,ππ EВА , πππ <
0>mp mw pp >

21

21 , kk XX 21

21 , kk YY

1
1
rС

1

1
kX

γ

) ,С(r γ1
1

2

2
kX

) ,С(r γ1
1

) ,С(r γ1
1

2

2
kY

 Optimization of Key Distribution Protocols Based on Extractors 55

6. The user В corrects the error in string through the check symbols string

. We denote by the string after error correction.

7. In order to get the keys and , A and B execute a privacy amplification

procedure based on extractors (see Appendix A): ,.

We propose also a new βext -protocol that differs from the αext –protocol in the
following: After the execution of the initialization phase, both users A and B have got
the strings that can in fact be used to form the seed for extractor function for privacy
amplification. Hence, we do not require to send a truly random sequence over

POWC, and the sequence’s length used before for authentication of the seed can be

shortened. Therefore we may expect that the length of substring is increased (if the
total length of the string X is fixed). But such conclusion is not so apparent because we
have to extract the seed as a segment of the string X. (It is worth to note that although

 is not uniformly distributed from the adversary’s point of view this fact has no
relevance for strong extractors). Let us describe the βext –protocol in detail.

In the above setup, the users A and B divide initially the strings Хk, Yk into three

disjoint parts , , and , , , with k1 + k2 + k3 = k.

1. The user A forms the length r1 string of check symbols of the string

using the error correcting -code С1, agreed in advance.

2. The user A forms the length r2 check string to the string using the

error correcting -code С2, agreed in advance.

3. The user A forms the authenticator w of the message using an AC

and his substring .

4. The user A sends to B the pair over a POWC appended with w.

5. The user B verifies the authenticity of the message using an AC

and his substring . If it is confirmed then he goes to the next step.
Otherwise he rejects the KDP.

6. The user B corrects errors on strings , using the check strings

and . Denote by , the strings , after error corrections.

7. The users A and B take their substrings , , where k3=u, as the seeds

in their extractors.

8. Both users A and B form the keys as , .

Performance evaluation of KDPs and their optimization
In order to compare the performance of KDP based on extraction and KDP based on
conventional hashing, (see [19]), and also to compare non-asymptotic and asymptotic
results we have proven the following lemma.

1

1
kY

1
1
rС 1

1

~kY 1

1
kY

AK BK

KA = Eext (X1,γ)

KB = Eext (Y1,γ)

γ
2k

1X

γ

1

1
kX 2

2
kX 3

3
kX 1

1
kY 2

2
kY 3

3
kY

1
1
rC 1

1
kX

) ,(111 krk +
2

2
rC 3

3
kX

) ,(323 krk +
) ,(21

21
rr CC

2

2
kX

) ,(21
21
rr CC

);(21
21
rr CC

2

2
kY

1

1
kY 3

3
kY 1

1
rC

2
2
rC 1

1

~kY 3

3

~ kY 1

1
kY 3

3
kY

3

3
kX 3

3

~ kY
uγ

)X,X(EK extA 31=)Y
~

,Y
~

(EK extB 31=

56 V. Yakovlev et al.

Lemma 1. If the statistical distance among the output of the extractor generating the
length key and an uniform distribution is at most , then the amount of the
Shannon′s information concerning the key got by any adversary is bounded by

(It can be easily proved with the use of Markov inequality).
It follows from lemma 1 that a requirement, regarding the amount of Shannon’s

information on the key leaking to an adversary, of the form

holds if . This fact results in the following requirement to the extractor’s
statistical distance:

. (6)

Let us prove a theorem for the both αext and βext-protocols. We will assume that for
the αext, and βext-protocols a modified Trevisan extraction is used [26,27], where the
number of random bits u is determined by equation (A6), see Appendix A.

Theorem 1. Let us assume that the users A, B and the adversary E have binary
strings Xk, Yk and Zk, respectively after execution of the initialization phase over the
wire-tape channel, , , ,

. Then A and B are able to form a common key of length l satisfying the

requirements (3)-(4) after the execution of the αext - or βext-protocols if the lengths
 of parts on which were divided the substrings Xk, Yk for αext -protocol or the

parts of lengths on which were divided the substrings Xk, Yk for βext-

protocol satisfy the relations listed below:

(7)

 (8)

where is the modified Gallager’s function for BSC [28], r1 is the number of

check symbols of the -error correcting code ,

,
 (9)

is the number of extractor random symbols, c is a parameter under optimization,
 is the min entropy,

l ε

εl)/Z;I(K ukl 2≤Γ

admukl I)Г/Z;K(I ≤
adm2l Iε =

2adm

2

I

l
ε
=

()m i ip p x y= ≠))();(min(iiiiw zypzxpp ≠≠= 0≥mp

mw pp >

21 k,k

321 ,, kkk

k
1
=
−log Pe

adm

E (Rc1
)

forαext and βext − protocols ,

adm
1 1 risk 2

log 3log() 3
(/ 2) ext extadm

l
k H lc r P u for and protocols

I l
α β∞⋅ = + − + + + −

1()cE R

1 1 1(,)k r k+ 1C

⋅

=
2adm

1
2adm

1

)l/I(

k
log

cln

)l/I(

k
log

u
2

2

)p,pmax(logH ww −−=∞ 1

 Optimization of Key Distribution Protocols Based on Extractors 57

,
(10)

 (11)

, (12)

where

 (13)

and r2 being the number of check symbols of the -error correcting code

 that is found similarly as in eq's (7), d is the minimal Hamming distance of the

code ,

 (14)

The key rate is then determined as follows:

, .
 (15)

Proof. Let the bounds of the KDP parameters meet exactly all requirements (3), (4).
Initially we prove the relation (7).
Let be a binary linear error correcting code and let be a string consisting of

r1 check symbols, then is the code rate. It has been proved in [28] that if

the information symbols are transmitted on the BSC with the error probability ,

whereas the check symbols are transmitted on the noiseless channel, then the average
error probability of decoding on the ensemble of all -codes meets the

following modified Gallager’s bound

, (16)

where is Gallager’s function for BSC with the error probability

 (17)

 (18)

Letting in (16), we get (7),

In order to prove (8) we note the following.

0k)
k

d
g(k 2

2
1

2
2 =

−

2
22

1

(1) ,
k

k i

w

i adm
m m f

i

k
p p P

i

−

=Δ +

− =

22

0 0

(1) (1)
w w i

k d ji d i j adm
w w m m d

i j

d k d
p p p p P

i j

Δ Δ −
− −−

= =

−
− ⋅ − =

1
0

1 2

,ext

ext

u r for the protocol
k

r r for the protocol

α
β

+ −
= + −

)k,rk(33 2+

2C

2C

3

0 ,ext

ext

for the protocol
k

u for the protocol

α
β

−
= −

1 2
ext

c

l
R

k kmaxα =
+ 21 kuk

l
R max

c
ext ++
=β

1C 1
1
rC

1
1

1 1
c

k
R

k r
=

+

mp

1 1 1(,)k r r+

1 1()
1 2 ck E R

eP −≤
)(

1с
RE mp

1
1 0

(0,1)
1

(2 1)
() max () c

c
c

R
E R E

Rρ

ρρ
∈

 −= −

))1((log)1()(1

1

1

1

20
ρρρρρ ++ −++−= mm ppE

1 1()
1 2 ck E Radm

e eP P −= =

58 V. Yakovlev et al.

Under the condition that the adversary gets the sequence over a BSC with

error probability the conditional minimal entropy is

= .

Since the adversary receives also the check block , in line with corollary 2 in

[15] the following inequality results:

, (19)

that does not hold with the probability .

Using proposition 10 in [27] (see also (A5) in Appendix) and (19) we may write
, where . Let us assume that is

chosen in such a way, that , resulting thus the condition (6). Hence,

. (20)

Assuming , (8) holds eventually from (20).

The value u in (9) is the number of the extractor random symbols. In order to find it, we
can use the results of [27] and substitute (A4) into (A6) and then substitute ε from (6).

A solution of the equation system (7)-(8) allows to find the parameters k1,r1, given
a fixed c. It will be shown in the sequel that the key rate can be maximized by a
proper selection of the parameter с.

In order to find let us assume that the probabilities Pf and Pd have equal values

 , . It is easy to see that

 (21)

 (22)

where are the parameters of error correcting codes used in the AC [29].

Recall that for the AC (see Appendix B) we have where is the length

of the error correcting ()-code with minimum distance d. For the αext-protocol

, while for the βext-protocol , where is the number of check

symbols in the -code C2. This gives relation (13) for the parameter .

Using the Varshamov-Gilbert inequality connecting and taking into account

that we get

 (23)

1kZ

wp
))p(,pmax(logk)Z|X(Hk)Z|X(H ww

kk −−== ∞∞ 111
11

∞Hk1

1

1
rС

srHkC ZXH rkk −−≥ ∞∞ 11111),|(111

s
riscP −≤ 2

/32τε ≤ 1 13log k H 3lc l r s uτ ∞= + − + + + + admI

/3 22 log()
2

adm
t I

l
=

2

1 13log k H 3 3log
2

admI
lc l r s u

l∞

+ − + + + + =

sadm
riskrisk PP −== 2

2k
adm

f fP P= adm
d dP P=

0

0

2
0 2

1

2
(1) ,

w

n
n iadm i

f m m
i

n
P p p

i
−

=Δ +

= −

00 2

0 0

2
(1) (1) ,

w w i
n d jadm i d i j

d w w m m
i j

d n d
P p p p p

i j

Δ Δ −
− −−

= =

− = − ⋅ −

dkn ,, 00

02 2nk = 0n

00 , kn

urk += 10 210 rrk += 2r

) ,(323 krk + 0k
d,k,n 00

02 2nk =

0
2

2 2
2

1 k)
k

d
g(k =

−

 Optimization of Key Distribution Protocols Based on Extractors 59

By solving the equation system (21)-(23), which is equivalently to the system (10)-
(12), we find the parameters k2, d.

In line with the above protocols, we have that for the αext-protocol, and for

the βext –protocol . This fact proves (14).

The value r2 is calculated by (17)-(18), for -code C2 in which it is

necessary to let , .

Then relation (15) is apparent from the protocols description. The KDP rates can
be maximized by a selection of extractor parameter c. □

Remark. If the solution of system (7)-(14) is not unique then it is reasonable to select
any of them by maximizing the key rate.

Three corollaries follow easily from theorem 1.

Corollary 1. If the key length is given and the rate of the error correction code

satisfies inequality , then .

Corollary 2. As the key length , then the following relation holds

 (24)

The following corollary allows to compare the key rates of the αext -, βext –protocols
with the key rates of the α -, β- protocols, obtained in [19].

Corollary 3. If , then and .

In Fig. 1 we plot the key rates versus the length l for both αext -, and βext -protocols

with typical parameters pm = 0.01 and 0.001, pw = 0.2, and the requirements Iadm =
, .

The optimization of c has been performed for every value of l. For comparison

purposes the dependences and , obtained in [19] are shown also in the

figure (see α- and β-protocols).

Fig. 1. The key rates versus key lengths for different requirements imposed to KDPs and four
types of KDP (αext, βext. and α, β)

03 =k

uk =3

) ,(323 krk +

1 3k k u= = 1 2 2r r , , adm
m e ep p P P= = =

l cR
3/2≥cR

ext
RR

ext αβ ≥

∞→l

)p(g

)p(g)p(H
RR

m

mw
extext 21+

−== ∞
βα

0=mp αα RR
ext
≥

ext
R Rβ β≥

kR

3010− 510adm adm adm adm
e d f riskP P P P −= = = =

)(lRα)(lRβ

.

0.12

0.14

0.16

0.18

0.2

l

R

3 .10
6 4 .10

6

01,0=mp

α

β

2 .10
6

1 .10
6

extα

extβ

.

0.14

0.16

0.18

0.2

0.22

0.24

0.26

l

R

3 .10
6

4 .10
6

2 .10
6

1 .10
6

001,0=mp

α

β

extα
extβ

60 V. Yakovlev et al.

The following claim can be drawn after an examination of the obtained dependences.
The protocols using extractors have greater key rate than the α- and β-protocols

under sufficiently large l and small pm. Then more specifically the αext- is better than
the α- protocol when with pm=0.01 and the βext- protocol is better than the
β- protocol when and pm=0.001 (under the requirements stated in our

investigations). The key length for which the αext- and βext-protocols are superior to the
α- and β-protocols essentially depends on the error probabilities in the communication
channels. The βext- protocol is superior to the αext -protocol, although these protocols
have the same asymptotic key rate. Also, protocols with extractors are always
superior to the protocols with hashing, as .

Thus we may claim that the new β-, βext -KDP in which the number of hash
function or extractor’s seed are not transmitted over public channel but they are
formed from initially distributed strings have larger key distribution rates under some
conditions than the key rates for α-, αext -protocols which are in turn modified
protocols initially proposed in [15].

4 Conclusion

In the current paper, an investigation of key distribution protocols based on noisy
channels started in [19] has been continued in such a way that extractors were used
instead of hash-functions in the privacy amplification procedure. The main goal was
to prove extractor-based protocols efficiency on the criterion of key rate
maximization. The relations are not necessary asymptotic and they are constructive
because in contrast to other papers they do not include uncertain symbols.

It has been proposed new βext-protocol that differs from those known before [15]
because the extractor’s seed is not transmitted over the POWC and, instead, it is
generated from random sequences obtained by legal user after the execution of the
initialization phase. We proved that the use of extractors in the αext - and βext-protocols
increases the rate, in comparison with hashing-based protocols only for very large key
length l (typically) and for some specified values of the error

probabilities both in the main and in the wire-tap channels.
We get also asymptotic estimates for the key rates of proposed protocols allowing

to compare a potential efficiency of the considered early protocols.

References

1. Knill, E.: Bulding Quantum Computers, 2007 IEEE Int. Symp. on Informational Theory.
IEEE Information Theory Society Newsletter 58(4), 32–35 (2008)

2. Shannon, C.E.: Communication theory of secrecy systems. Bell System Technical
Journal 28(4), 656–715 (1949)

3. Hellman, M.E.: An extension of the Shannon theory approach to cryptography. IEEE
Transactions on Information Theory 23(2), 289–294 (1977)

4. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin
tossing. In: Proc. Int. Conf. on Computers, Systems & Signal Processing (1984)

5105 ⋅>l
6105,3 ⋅>l

0mp =

5 610 10l = −

 Optimization of Key Distribution Protocols Based on Extractors 61

5. Aono, T., Higuchi, K., Ohira, T., Komiyama, B., Sasaoka, H.: Wireless secret key
generation exploiting reactance-domain scalar response of multipath fading channels.
IEEE Transactions on Antennas and Propagation 53(11), 3776–3784 (2005)

6. Yakovlev, V., Korzhik, V., Kovajkin, Y., Morales-Luna, G.: Secret Key Agreement Over
Multipath Channels Exploiting a Variable-Directional Antenna. Int. Jour. Adv. Computer
Science & Applications 3(1), 172–178 (2012)

7. Wyner, A.: Wire-tap channel concept. Bell System Technical Journal 54, 1355–1387
(1975)

8. Korjik, V., Yakovlev, V.: Non-asymptotic estimates for efficiency of code jamming in a
wire-tap channel. Problems of Information Transmission 17, 223–22 (1981)

9. Korjik, V., Yakovlev, V.: Capacity of communication channel with inner random coding.
Problems of Information Transmission 28, 317–325 (1992)

10. Bennett, C.H., Brassard, G., Crepeau, C., Maurer, U.M.: Generalized privacy
amplification. IEEE Transactions on Information Theory 41(6), 1915–1923 (1995)

11. Maurer, U.M.: Secret key agreement by public discussion from common information.
IEEE Transactions on Information Theory 39(3), 733–742 (1993)

12. Maurer, U.M.: Information-Theoretically Secure Secret-Key Agreement by NOT
Authenticated Public Discussion. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS,
vol. 1233, pp. 209–225. Springer, Heidelberg (1997)

13. Maurer, U.M.: Protocols for Secret Key Agreement by Public Discussion Based on
Common Information. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 461–
470. Springer, Heidelberg (1993)

14. Maurer, U.M., Wolf, S.: Privacy Amplification Secure against Active Adversaries. In:
Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 307–321. Springer,
Heidelberg (1997)

15. Maurer, U.M., Wolf, S.: Secret-key agreement over unauthenticated public channels iii:
Privacy amplification. IEEE Trans. Information Theory 49(4), 839–851 (2003)

16. Maurer, U.M., Wolf, S.: Towards Characterizing when Information-Theoretic Secret Key
Agreement is Possible. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS,
vol. 1163, pp. 196–209. Springer, Heidelberg (1996)

17. Korzhik, V., Yakovlev, V., Sinuk, A.: Achieveability of the Key-Capacity in a Scenario of
Key Sharing by Public Discussion and in the Presence of Passive Eavesdropper. In:
Gorodetsky, V., Popyack, L.J., Skormin, V.A. (eds.) MMM-ACNS 2003. LNCS,
vol. 2776, pp. 308–315. Springer, Heidelberg (2003)

18. Korzhik, V., Yakovlev, V., Sinuk, A.: Key Distribution Protocol Based on Noisy Channel
and Error Detecting Codes. In: Gorodetski, V.I., Skormin, V.A., Popyack, L.J. (eds.)
MMM-ACNS 2001. LNCS, vol. 2052, pp. 242–250. Springer, Heidelberg (2001)

19. Yakovlev, V., Korzhik, V., Morales-Luna, G.: Key Distribution Protocols Based on Noisy
Channel in Presence of Active Adversary: Conventional and New Versions with Parameter
Optimization. IEEE Transaction on Information Theory 54(6), 2535–2549 (2008)

20. Yakovlev, V., Korzhik, V., Morales-Luna, G.: Non-asymptotic Performance Evalua-tion of
Key Distribution Protocols Based on Noisy Channels in Presence of Active Adversary. In:
Proc. X Spanish Meet. Cryptology and Information Security, Salamanca, pp. 63–68 (2008)

21. Renner, R., Wolf, S.: Unconditional Authenticity and Privacy from an Arbitrarily Weak
Secret. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 78–95. Springer,
Heidelberg (2003)

22. Renner, R., Wolf, S.: The Exact Price for Unconditionally Secure Asymmetric
Cryptography. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS,
vol. 3027, pp. 109–125. Springer, Heidelberg (2004)

62 V. Yakovlev et al.

23. Dodis, Y., Katz, J., Reyzi
Agreement from Close Se
232–250. Springer, Heide

24. Kanukurthi, B., Reyzin, L
In: Joux, A. (ed.) EUR
Heidelberg (2009)

25. Chandran, N., Kanukurt
asymptotically optimal
http://eprint.iacr.org/2010

26. Trevisan, L.: Constructio
of the 31 Annual ACM Sy

27. Raz, R., Reingold, O., Va
in trevisan’s extractors. J.

28. Korjik, V., Morales-Luna
Main Channel. In: Davida
Springer, Heidelberg (200

29. Korjik, V., Yakovlev, V.
Keyless Authentication
Mathematical Methods, M
vol. 1, pp. 115–126 (2007

Appendix

A. Extractors
The literature on the subjec
results which are very neces

Let us recall the notions
Two probability distribu

their statistical difference

A map

distribution variable X on

distributed variable on

extractor output t

sequence can be seen as
The extractor E(X, Г) ha

random sequence, is the

sequences, u is the length o
statistical distance betwee
distribution on the output se

A mapping

for any probability distribu

entropy and

d

{ } { }k , ,:E 1010 ×

Γ {
),X(E Γ

Γ

η

{ } {k ,:E 10 ×

η≥∞)X(H

in, L., Smith, A.: Robust Fuzzy Extractors and Authenticated
ecrets. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117,
elberg (2006)
L.: Key Agreement from Close Secrets over Unsecured Chann
ROCRYPT 2009. LNCS, vol. 5479, pp. 206–223. Sprin

thi, B., Ostrovsky, R., Reyzin, L.: Privacy amplifcation w
l entropy loss. Cryptology ePrint Archive (20
0/
on of extractors using pseudo-random generator. In: Proceedi
ymposium on Theory of Computing, Atlanta, pp. 141–148 (19
adhan, S.P.: Extracting all the randomness and reducing the e
 Comput. Syst. Sci. 65(1), 97–128 (2002)
a, G., Balakirsky, V.: Privacy Amplification Theorem for No
a, G.I., Frankel, Y. (eds.) ISC 2001. LNCS, vol. 2200, pp. 18–
01)
, Chesnokov, R., Morales-Luna, G.: Performance Evaluation
Based on Noisy Channel. In: International Conference

Models and Architectures for Computer Network Security. CC
7)

ct of extractors is quite extensive. But we quote only so
ssary for an understanding of the main part of the paper
connected with extractor and strong extractor.

utions P, Q, defined on the same set X, are called ε-clos

 does not exceed ε.

is an -extractor if for any probabi

such that min entropy and for uniform

, the statistical difference probability distribution

to an uniform distribution on is at most ε. T

a seed of the extractor.
as parameters (k, , u, l, ε), where k is the length of in

e bound of min entropy () on the set of in

of the seed γ, l is the length of the output sequence, ε is
en the output probability distribution and the unifo
et.

 is called a strong extractor

ution random variable X on the set having minim

for uniformly distributed random variable on the

∈

−=
Xx

XX xQxPQ Pdif)()(
2

1
),(

} { }lu ,10→),(εη
{ }k ,10 η≥∞)X(H

{ }u ,10

Γ { }l ,10

η
kH (X) η∞ ≥

{ } { }lu , , 1010 →),X(E Γ
{ }k ,10

Key
, pp.

nels.
nger,

with
010),

ings
999)
error

oisy
–26.

n of
e of
CIS,

ome
.

se if

ility

mly

n of

The

nput

nput

the
orm

 if

mal

set

)

 Optimization of Key Distribution Protocols Based on Extractors 63

 the probability distribution of the concatenated variables (◦) is close

to an uniform distribution on . More specifically

. (A1)

This means that the strong extractor provides the closeness of probability distribution
for the concatenation of the output extractor sequence and the seed sequence to an
uniform distribution.

In the current paper we consider only extractors based on the construction
proposed by Trevisan and improved later [26], [27].

We are not going to use the estimates based on the O-operator and therefore let us
find a more accurate estimate for the length of the seed. In order to design the
Trevisan’s extractor it is necessary to realize three components:

1. The linear error -code W with minimal code distance dw, where

,ν- integer. It is proposed to take this code as a concatenation of the
Reed-Solomon and the Adamar codes.

2. Combinatorial block design scheme. (Balance incomplete block design,
BIBD). This is a family of sets S = {S1, S2, … Sl} holding the following
properties:

, , (A2)

where с is some constant (с>1). This means that a family consists of l sets or blocks,
each consisting of ν elements taken from the set of integer {1,2,…,u}, while the
number of elements contained simultaneously in any pair of blocks satisfies of last
relation in (А2). Such construction is defined as a (v, с)-weak scheme.

3. Boolean function f with ν arguments , such that

, where is a codeword of the code W. The

W-code length is chosen in [27, p.106] according to the condition,

 (A3)

Since w is the output of Boolean function with v arguments, should be equal to .
Obviously the condition (A3) holds if

, (A4)

where is the “ceiling” of x (the least integer greater or equal than x).

The characterization of strong extractor is determined by the following statements:

(Proposition 10 in [27]). If S ={S1,…,Sl } (with) is a weak (v,c)-design for

 (A5)

then is a strong -extractor.

{ }u ,10 Γ),X(E Γ

{ } ul, +10

((,),)u u ldis Ext X V ε+Γ Γ ≤

) ,~(kn
ν2~ =n

[]u , ,Si 21⊆ ν=iS −≤
<ij

SS
lcji)1(2

νaaa , , 21
waaaf =) , ,(21 ν w −),~(k n

n~

)O(logk/n~log ε=

n~ v2

=

ε
k

logv

 x

γ⊂iS

,l/)u)/llog()X(H(с k 33 −−−= ∞ ε

{ } { } { }luk , , ,:E 101010 →×)),X(H(k ε∞

64 V. Yakovlev et al.

(Lemma 15 in [27]). For every v,l N and c>1, there exists a weak (v,c)-design S
={S1,…,Sl} () with

.
 (A6)

Moreover, such a family can be found in polynomial time poly(l,u).

B. Authentication Based on Noisy Channels
In [12] a special type of codes (AC) has been proposed for an authentication on noisy
channels.

They can be characterized by two probabilities [29]:

– the probability of false removal of the message although adversary E does not

intervene at all;

– the probability of the deception of false message, i.e. the probability of the event

that E is a forged message and this fact was not detected by B.

It has been proved [12] that , do not depend on ordinary minimum code

distance of the code V but on the so called minimum asymmetric semidistance

 that is determined by the minimal number of differences between 0 and 1

symbols in any pair of distinct code words of V.

Theorem [29]. Let V be an -AC with constant Hamming weight τ for all

non-zero codewords and with asymmetric semidistance . Then the probabilities

, for authentication procedure on noisy wire-tap channel with parameters ,

 can be upper bounded as follows:

,
(A7)

.
(A8)

It is a very hard problem to find for any linear code. But there exists a simple

method proposed in [12] to design the code V with known , given the linear

-code with known ordinary minimum code distance d.

Namely, let us substitute the symbol 1 with the symbol pair 10 and the symbol 0
with 01 in .Then evidently the parameters of the code V are:

 (A9)

We have proved in [29] that the length of the authenticator approaches zero as the
block length tends to infinity.

∈
γ⊂iS

v
lnc

v
u ⋅

=

fP

dP

fP dP

01d

(,)a an k

01d

fP dP
mp

wp

+Δ=

−−

≤
τ

ττ
1

1
wi

i
m

i
mf)p(p

i
P

Δ

=

−Δ

=

−−− −

 −
⋅−

≤

w w

i

i

j

jd
m

j
m

id
w

i
wd)p(p

j

d
)p(p

i

d
P

0 0

0101 0101 11 ττ

01d

01d

0 0(,)n k V
~

V ′

.n d,d ,kk ,2n n 0010a0a ==== τ

A Vulnerability in the UMTS and LTE

Authentication and Key Agreement Protocols

Joe-Kai Tsay and Stig F. Mjølsnes

Department of Telematics
Norwegian University of Sciences and Technology, NTNU

{joe.k.tsay,sfm}@item.ntnu.no

Abstract. We report on a deficiency in the specifications of the Authen-
tication and Key Agreement (AKA) protocols of the Universal Mobile
Telecommunications System (UMTS) and Long-Term Evolution (LTE)
as well as the specification of the GSM Subscriber Identity Authentica-
tion protocol, which are all maintained by the 3rd Generation
Partnership Program (3GPP), an international consortium of telecom-
munications standards bodies. The flaw, although found using the com-
putational prover CryptoVerif, is of symbolic nature and could be
exploited by both an outside and an inside attacker in order to violate
entity authentication properties. An inside attacker may impersonate an
honest user during a run of the protocol and apply the session key to use
subsequent wireless services on behalf of the honest user.

Keywords: Applied Cryptography, Vulnerability Assessment, Security
Protocols, Authentication, Mobile Network Security, LTE, UMTS.

1 Introduction

The Global System for Mobile communication (GSM) and UMTS mobile net-
works are a worldwide success with now about 6 billion supscriptions [17], and
still growing. New mobile systems are rolled out, including the 3GPP recent de-
velopments named ’Long Term Evolution’ (LTE) and ’System Architecture Evo-
lution’ (SAE), which have become a forerunner for the fourth generation (4G)
generation mobile communication system. The new system is called ’Evolved
Packet System (EPS), emphasizing the all-IP packet switching design through-
out the system onto the user’s mobile terminal. 1 As more and more people
take advantage of the accelerated internet access through their mobile phones,
the recent international concern about securing the cyberspace and critical in-
frastructures certainly must include mobile networks. There is a multitude of
security issues in such large networked systems. Here we will focus on the mo-
bile terminal access security by means of an authentication and key agreement
protocol. Weaknesses in this protocol may not only lead to revenue loss to mobile
operators but might also facilitate cyber crime.

1 Although EPS is the proper technical term for this new 3GPP mobile system
generation of SAE/LTE, we will use the most well-known name LTE.

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2012, LNCS 7531, pp. 65–76, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

66 J.-K. Tsay and S.F. Mjølsnes

The LTE AKA protocol is based on the Universal Mobile Telecommunications
System (UMTS) AKA protocol, which is widely used today for third generation
(3G) wireless networks, and which itself is the successor of the GSM Subscriber
Identity Authentication (SIA) protocol. With the persistent spread of these mo-
bile network systems, these authentication protocols have become some of the
most widely used security protocols today. While there exist formal analyses of
UMTS AKA in the Symbolic Model of security (also called the Dolev-Yao model
and inspired by [15]), this is in fact the first analysis of LTE AKA to date.

We report on an intermediate result of an ongoing analysis [19] of UMTS
AKA and LTE AKA with the tool CryptoVerif [14] that can prove the security
of protocols directly in the computational model. We discover a previously un-
detected flaw in the specifications of both UMTS AKA and LTE AKA. We note
that the specifications of the GSM SIA protocol [9,8] suffer, strictly speaking,
from the same vulnerability (cf. Section 3.3). The vulnerability can be exploited
by both outside and inside attackers in order to break authentication of a user
to a serving network. Furthermore, inside attackers may impersonate an honest
user and use wireless services on his behalf without the user being present on the
network at that time. We reported the vulnerability to the 3GPP where the issue
is currently under investigation. We have not tested current implementations for
susceptibility to these attacks (cf. Section 3.1). We propose a simple correction
to UMTS/LTE AKA and are working on CryptoVerif proofs of correspondence
(i.e. authentication) and secrecy properties for the session key.

Related Work. Annex B of the 3GPP technical report in [1] documents a
formal analysis of the UMTS AKA protocol using a BAN logic variant. The
analysis verifies authentication and secrecy properties. The flaw that we present
here is not detected in [1] because strong assumptions (the prerequisites on
SN’s side) are used which already eliminate the weakness in the protocol. The
GSM SIA protocol does not provide authentication of the access network to the
user and the interoperability of the GSM and UMTS systems perpetuates this
attack possibility, reported in [18]. Our analysis is not directed to the problems of
interoperability between LTE/UMTS/GSM. A redirection attack on the UMTS
AKA is reported in [20], which exploits the observation that the user is not
able to authenticate the identity of the serving network because this is not
included in the authentication vector provided by the home network. The new
LTE AKA specification is designed to fix this weakness. A recent paper focuses
on the privacy properties of the UMTS AKA protocol [10]. They use the tool
ProVerif [12] for a formal analysis, and the paper describes an attack that enables
the adversary to track a user. This is done by exploiting different error messages
that are returned by UMTS AKA. The analysis models the UMTS AKA as a
simplified two-party protocol between a user and the core network. However, by
reducing UMTS AKA to a two-party protocol, the weakness uncovered in the
present work is concealed.

A Vulnerability in the UMTS and LTE AKA Protocols 67

Structure of This Work. In Section 2, we will give an overview of the Mobile
Network architecture and give a description of the UMTS AKA and LTE AKA
protocols. In Section 3, we describe the flaw we found in the specifications of
UMTS and LTE AKA and its consequences, where we discuss the relevance of
the flaw for GSM SIA in Section 3.3. We conclude in Section 4.

2 UMTS and LTE Authentication and Key Agreement

2.1 Overview of the Mobile Network Architecture

For both UMTS and LTE the basic network architectures are very similar. In
comparison to UMTS, the network elements used for LTE are upgraded and
mostly renamed. However, they fulfill the analogous tasks in both cases. In or-
der to avoid unnecessary confusion over terminology, we give a unified description
of the network architectures of UMTS and LTE at the level of detail necessary
for understanding our analysis and the vulnerability presented below. Basically,
the mobile network architecture comprises three parts, that is, the user’s mobile
equipment U , the Radio Access Network (RAN), and the Core Network (CN).
The user equipment consists of the mobile equipment and a tamper-resistant chip
card, the Universal Subscriber Identity Module (USIM). The USIM is issued by
a mobile operator to a subscriber and contains the International Mobile Sub-
scriber Identity (IMSI), the permanent key of the subscription shared between
subscriber and operator, and the cryptographic algorithms for the authentica-
tion protocol. In the following, we will use the terms user, subscriber and user
equipment interchangeably. Each mobile operator runs an Authentication Center
(AuC) server within its core network that contains the security related infor-
mation of all the subscribers of the operator and generates temporary security
credentials to be used by a user and a core network to establish authentication
guarantees and set up session keys. The core network is divided into a serving
network S and a home network H , where the latter contains and maintains the
AuC and the serving network is responsible for the communication to the user
equipment through the radio access network.

The serving network and the home network do not necessarily belong to the
same security domain, i.e. they may be controlled by different mobile operators.
A subscriber U1 of a mobile operator OP1 with home network H1 may roam
into the domain of mobile operator OP2’s radio access network maintained by
serving network S2. If OP1 has a roaming agreement with OP2, then U1 will
be able to access the mobile network through S2’s radio access network. In this
case, the connections between S2 and H1 are called inter-domain connections.

2.2 The UMTS & LTE AKA Protocols

Figure 1 shows the message sequence diagram description of the authentication
and key agreement protocol in a unified way for UMTS and LTE on a similar
level of detail as depicted in [3,7]. The protocol is executed between user U , vis-
ited serving network S and U ’s home network H . U and H share the long-term

68 J.-K. Tsay and S.F. Mjølsnes

U
IMSI , K

S
SNid

H
{IMSI i,Ki}i

user id request

user id response
IMSI auth data request

IMSI ,SNid

new RAND

MAC ← f1,K (SQNH ‖RAND)

XRES ← f2,K (RAND)

CK ← f3,K (RAND)

IK ← f4,K (RAND)

AUTN ← SQNH ‖MAC

generate Skey

auth data response
RAND ,AUTN ,XRES ,Skeyuser auth request

RAND ,AUTN

MAC
?
= f1,K (SQNH ‖RAND)

check(SQNU, SQNH)

RES ← f2,K (RAND)

compute Skey

user auth response
RES

RES
?
= XRES

Fig. 1. The UMTS/LTE Authentication and Key Agreement Protocol. The session key
in UMTS is Skey ← CK ‖IK , and in LTE it is Skey := KASME ← KDF (SQNH ‖CK ‖
IK ‖SNid).

key K0 and a set of algorithms f1, . . . , f4 and, in the case of LTE, also a key
derivation function KDF . The functions f1, f2 are so called message authentica-
tion functions, and f3, f4 are so called key generating functions2. Moreover, U
maintains a counter SQNU and H a counter SQNH for U .

A protocol run starts with S sending a user id request and U responding
with its IMSI 3. Next follows the authentication data transfer, in which S sends
an authentication data request to H , that consists of U ’s IMSI and S’s iden-
tifier SNid , and H answers with an authentication data response. H chooses a
fresh nonce RAND and computes, with the key K and its sequence number
SQNH , the so-called message authentication code MAC , the expected response
XRES , the cipher key CK , the integrity key IK , and the authentication token
AUTN as depicted in Figure 1, where ‖ denotes concatenation. The main dif-
ference between the UMTS AKA and LTE AKA is the session key Skey . In
LTE AKA, the session key is computed over the identifier of S (cf. caption of

2 We choose to do without the anonymity key, i.e. f5 ≡ 0, which is an option in the
specifications. We also omit the AMF constant.

3 In fact, U may alternatively respond with a temporary mobile subscriber identity
(TMSI), which reduces but does not fully avoid the use of the IMSI .

A Vulnerability in the UMTS and LTE AKA Protocols 69

Figure 1). There is also the option that H sends S multiple authentication vec-
tors (RANDi,AUTN i,XRES i, Skey i) for i = 1, . . . , n at once in order to reduce
the traffic between S and H but we will not focus on the use of this option.

In the user authentication request, S forwards only RAND and AUTN to
U . From the received RAND, AUTN , the user U extracts SQNH , computes the
expected message authentication code XMAC and compares it toMAC contained
in AUTN . If they are equal then U performs a check on the sequence numbers
SQNH and SQNU

4. If either of this two checks fail, then U sends some error
messages to S (in fact, the error messages may be different, therefore allowing the
linkability attack of [10]). Otherwise U computes the response RES and sends
it to S. Finally, S compares the response received from U with the expected
response received from H ; if they are equal then the UMTS/LTE AKA run was
successfully completed.

Intuitively, the UMTS/LTE AKA establishes the session key Skey between
U and S, therefore, Skey must satisfy some secrecy property. Furthermore, the
protocol aims to authenticate U to S. Both properties require S to trust H to
provide a correct authentication data response. The sequence numbers allow to
detect possible replays of authentication tokens. The UMTS/LTE AKA protocol,
as depicted in Figure 1, does not offer authentication of S to U . This known
weakness has been described in [20]. User U may at most know that H generated
the received nonce and authentication token for some service network.

Following the UMTS/LTE AKA, serving network S and user U need to nego-
tiate the cryptographic algorithms (security mode) used to protect subsequent
wireless communication between S and U . Note that these algorithms are, in
particular for inter-domain connections, not pre-determined. The messages of
this negotiation are protected by (keys derived from) Skey . This is especially
relevant for the case of LTE, where Skey is generated over S’s identifier SNid . In
LTE, by receiving the NAS security mode command directly following the user
authentication response, U should be able to authenticate S, as this message
constitutes a key confirmation of the session key KASME . According to [7], the
NAS security mode command from S to U has following form.

S −→ U : eKSI ,UE sec capabilities , ciphering algo, integrity algo,NAS -MAC

where NAS-MAC is a message authentication code under a key derived from
KASME over the rest of the message, which consists of non-secret components.
We denote by LTE AKA+1 the LTE AKA protocol together with this NAS
security mode command message.

3 Attacking and Correcting UMTS & LTE AKA

Here we present a weakness found in the authentication protocol specifications
of both UMTS and LTE AKA with the help of the tool CryptoVerif [13]. Al-
though CryptoVerif has semantics in the computational model, the flaw in the

4 Checking and increasing the sequence numbers can be different for UMTS and LTE.

70 J.-K. Tsay and S.F. Mjølsnes

protocols is of symbolic nature. Unlike other provers that work in the symbolic
model, CryptoVerif does not output attack traces; instead we found the attack
by interpreting the last game in a sequence of game transformations performed
by CryptoVerif. It is the same flaw that is present in the specifications of both
UMTS AKA and LTE AKA. Although UMTS AKA has previously been for-
mally analyzed [10,1], none of the previous analyses have detected this flaw.
How GSM SIA is affected by the flaw is discussed in Section 3.3.

3.1 Communication Security between S and H

It is obvious that the communication between S and H needs to be protected in
some way, otherwise, e.g. if there is no confidentially protection, the exchanged
session key(s) are sent in the clear. The specifications of the AKA protocols in
[7] and [3] mention little about the security protection of the authentication data
transfer.

However, for UMTS and LTE, the specifications [5,6] detail the protection of
IP-based communication between network elements. Here a distinction is made
between inter-domain communication, where standardized solutions are neces-
sary, and intra-domain communication, where the communicating parties are
controlled by the same mobile operator. For inter-domain connections over IP-
based networks, [5,6] mandate the protection of the communication between
network elements using IPsec. For intra-domain connections over IP-based net-
works (i.e. communication over Zb interfaces), [5,6] state that the protection
of communication is regarded as an internal issue of each domain operator.
In particular, the use of IPsec for intra-domain communication between S
and H is optional, even though the communication may involve long distance
signaling.

Furthermore, in the case of UMTS, the communication between S and H can
also be carried out on the global Signaling System No. 7 network instead of an
IP-based network. The specification [4] details the protection for such commu-
nication between S and H using Mobile Application Part security (MAPsec). In
comparison to IPsec, Mapsec protects messages on the application layer.

Both IPsec and MAPsec should, according to [5] and [4], offer following pro-
tection: data integrity, data origin authentication, anti-replay protection, and
confidentiality. In addition, IPsec should offer limited protection against traffic
flow analysis. Nonetheless, the attack presented below does not violate any of
these properties. We found it while assuming that the messages sent between S
and H are encrypted and then integrity protected through a message authenti-
cation code by long-term keys shared between S and H. The encrypt-then-mac
scheme is indeed the principle used in both IPsec and MAPsec.

3.2 Session-Mixup Attack against Authentication Data Response

We consider, as usual, an adversary who is in full control of the messages sent
between instances of the roles of user U , serving network S, and home network

A Vulnerability in the UMTS and LTE AKA Protocols 71

H . We assume that H acts as a trusted third party. When S sends an authenti-
cation data request to H for authentication parameters of U , the authentication
data response by H to S is bound to U as it includes message components that
are generated under the long-term key shared between H and U . However, S
cannot verify this (even though we assume authenticated encryption of the mes-
sages between H and S), as S does not know the key shared between the user
equipments and H . There should certainly be some mechanism for S to associate
an authentication response to the correct U if there is no attacker around. But as
such a mechanism is not specified in the AKA protocols, we do not model them
as part of the message parts that are protected by the authenticated encryption.
We present a scenario in which an inside attacker may take advantage of this
and we omit, due to space restrictions, the outside attack scenario5.

An Inside Attack. In this scenario we consider an attacker A who is a sub-
scriber U of H . Say U ′ is another subscriber of H who is honest. If A knows
the IMSI ′ of U ′, which A can learn either by listening on the network or by
deploying a device called imsi catcher, then A can execute the attack that is
depicted in Figure 2 without U ′ even being present. In this attack scenario, A
does not need to be able to intercept messages sent over the base stations. The
attacker sends out two user identity responses: IMSI ′ and his own subscriber
identity IMSI . Then S will run two concurrent AKA sessions, one for U and
one for U ′, and sends two authentication data requests to H . When H sends
the authentication data responses for S and U , then adversary A redirects this
message such that it is mistaken by S as the response by H for S and U ′, while A
blocks the authentication data response that H generated for S and U ′. Notice
that this session mixup can be created by the attacker without breaking any
cryptographic primitive and does generally not violate the specifications. Next
the attacker redirects the messages sent by S intended for U ′ to U . So U cor-
rectly receives the user authentication request containing message components
that were generated by H for U (and S). Therefore, attacker A, who is registered
as U , can generate the correct response and relay it to to S such that S believes
that the response was generated by U ′. The other session that S opened for U ′ is
halted by A; it cannot be completed because A does not know the keys that U ′

shares with H . Anyhow, A can impersonate U ′ to S. Furthermore, the attacker
and S share a session key; it was in fact generated by H for U and S. At the
same time, S believes that this session key was generated by H for S and U ′.
Therefore, the attacker is able to execute subsequent communication steps and
use the derived keys to use the wireless service provided by S on behalf of U ′.
6 S will bill H for the service that attacker A received on U ′ behalf, and H will
bill U ′.

5 Which can, however, be easily derived from the inside attack.
6 The attack is not fended off by the use of TMSIs. And the attacker’s job is simplified
in practice if multiple authentication vectors are sent at once.

72 J.-K. Tsay and S.F. Mjølsnes

A
registered

as U

A
knowing

IMSI of U ′

A

S

start session
with U

start session
with U ′

finish session
with U

H

session for
U & S

session for
U ′ & S

stop

Fig. 2. Message flow of an inside attack against UMTS and LTE AKA (not showing
the user id request). The attacker impersonates honest user U ′ to S and shares the
session key(s) with S, without U ′ being involved.

3.3 The GSM Subscriber Identity Authentication Protocol

The GSM SIA protocol [9,8] is the 2G predecessor of UMTS AKA. It suffers from
the same design flaw as UMTS and LTE AKA: there is no proper binding of
the response sent by the home network (called Authentication Vector Response)
to the corresponding request. Therefore, the attack of Figure 2 could also be
deployed against GSM SIA. However, the case of GSM SIA is different: The
specifications [9,8] are only concerned about adversaries that attack the radio
path, i.e. the connection between user equipment and base stations, while com-
pletely neglecting other connections. It does not violate the GSM specifications
if there is no protection of the authentication vector response or if the session
key is transmitted in the clear by the home network. An attacker that is able
to listen on the connections within the core network may not need to resort to
the session-mixup attack to successfully violate GSM security as he may easily
obtain the session keys. However, GSM operators that would like to protect the
connection between home and serving networks, e.g. with MAPsec, need to be
extremely careful so that message parts that prevent a session-mixup attack are
sufficiently protected.

3.4 Possible Corrections

The UMTS/LTE AKA (and GSM SIA) protocols can easily be safeguarded if S is
enabled to determine, even under active attacks, for which user IMSI a response
by H was generated. We present two approaches to correcting the UMTS/LTE
AKA (from which the analogous corrections of the GSM ISA can be immediately
derived).

A Vulnerability in the UMTS and LTE AKA Protocols 73

The AKA protocol can be protected against active attackers when it is slightly
modified by computing and adding a value f(IMSI , X) to the authentication
data response, where f(.) is some function, which S is able to compute and
which satisfies some injectivity properties (e.g. f may be a hash function), and
X some value known to S. Therefore, the authentication data transfer between
H and S for U is changed to

S −→ H : {{IMSI , SNid}}Ksh

H −→ S : {{f(IMSI , X),RAND,AUTN ,XRES , Skey}}Ksh

where {{.}}Ksh
represents authenticated encryption under a long-term key Ksh

shared between S and H . For instance one could choose f(IMSI , X) ≡ IMSI .
As an alternative fix, S could generate a fresh request identifier nS , e.g. a fresh

nonce, and include it in the authentication data request for U . The correspond-
ing response must then include a function g (computable by S and with some
injectivity properties) over this nonce and possibly some other data X known
to S. In that case, the authentication data transfer should be modified to the
challenge-response exchange

S −→ H : {{nS, IMSI , SNid}}Ksh

H −→ S : {{g(nS, X),RAND,AUTN ,XRES , Skey}}Ksh

where {{.}}Ksh
represents again authenticated encryption under a long-term key

Ksh shared between S and H . For instance, g(., X) could be the identity on
nonces.

3.5 Feasibility of Real-World Attacks

Our attacks against the specifications of UMTS and LTE AKA work even if mes-
sages between S and H are encrypted as well as integrity protected by a message
authentication code, which is what IPsec and MAPsec are doing. Although the
UMTS and LTE AKA protocols are flawed, there are various scenarios in which
real-world implementations of UMTS/LTE AKA could be immune to our at-
tacks.

IPsec protects the TCP layer data. This alone does not prevent the attacks
above (because IPsec would typically use the same session key for authentication
data requests for both U and U ′). But if, in addition to using IPsec, S uses
different ports to send its requests to H , then the port numbers are appended
to the sender/receiver addresses and become part of the protected TCP data.
Therefore, they could be used by S to assign the responses by H correctly to
each user. However, the specifications for UMTS and LTE do not detail how
concurrent IPsec sessions are managed. We note that the AKA protocol is also
likely run on top IPsec and other protocols, e.g. the diameter protocol [16]. If such
protocols handle sessions properly and the used session identifier are protected
by IPsec, then the session-mixup attack is fended off.

74 J.-K. Tsay and S.F. Mjølsnes

Likewise, MAPsec can also be used in combination with a certain way of
managing sessions that prevents our attacks. In [2], which is the implementation
(stage-3) specification for MAP, the use of an invoke ID is mentioned that is
part of the authentication data request and the corresponding response and
needs to be unique for each serving network. If a serving network S uses a
separate invoke ID for each request, then S could assign each response correctly
to the corresponding request and our attacks would no work. But again, the
specifications are not detailed enough on how the invoke id is used in concurrent
sessions, and using the same invoke ID for several sessions is not ruled out.

Whether actual implementations of UMTS/LTE AKA follow the strategy
of combining IPsec or MAPsec with using unique ports, invoke IDs or session
IDs for concurrent authentication data requests is unknown to us. While this
seems to be a very natural way to implement session handling with IPsec and
MAPsec, it does not seem to be required by the specifications, and therefore
some implementations of UMTS/LTE AKA may indeed be vulnerable in the
real-world.

Furthermore, for intra-domain connections (and in the GSM case), operators
can implement their proprietary solutions instead of using IPsec or MAPsec.
Therefore, such systems may currently be vulnerable to our session mix-up attack
as well, even if the implementations were guided by [5,4] and offer the list of
secrutiy properties that we restated in Section 3.1.

4 Conclusions and Future Work

We present a flaw in the specifications of the UMTS and LTE AKA (and
GSM SIA) protocols with rather serious consequences. An inside attacker may
authenticate as another honest subscriber to a serving network, and use the
wireless services on his behalf. We suggest corrections to the protocols and we
are in the process of using the tool CryptoVerif in order to verify entity au-
thentication and key secrecy properties for the corrected UMTS and LTE AKA
protocols [19].

We question whether it is prudent practice to make the security of the UMTS
and LTE AKA protocols implicitly reliant on a specific way how IPsec or MAPsec
(or other protocols on top which the AKAs are executed) should be implemented.
Instead we believe that it would be preferable to strengthen the AKA proto-
cols directly by making the binding of the home network’s authentication data
response for an intended user explicit in the specifications of the UMTS and
LTE AKAs. Even if it turns out that real-world implementations of UMTS and
LTE AKA that use IPsec or MAPsec are immune against our attack, we are
convinced that the uncovered flaw still provides a valuable lesson to network
domain operators who would like to protect their core networks’ communication
with proprietary solutions (e.g., in the case of GSM, or for IP-based intra-domain
connections in the case of UMTS and LTE).

For future work, we are interested in exploring, ideally in cooperation with
3GPP and mobile network operators, to what extend real-world systems are

A Vulnerability in the UMTS and LTE AKA Protocols 75

vulnerable to our attack. We would also like to expand our analysis scenarios of
the protocol execution that are not covered in the present work, e.g. the scenarios
that are related to the use of TMSIs and sequence numbers.

Acknowledgements. We thank Valtteri Niemi and Steve Babbage for helpful
discussions.

References

1. 3GPP TS 33.102. 3G Security; Formal Analysis of the 3G Authentication Protocol,
http://www.3gpp.org/ftp/Specs/html-info/33902.html

2. 3GPP TS 29.002. Digital cellular telecommunications system (Phase 2+); Univer-
sal Mobile Telecommunications System (UMTS); Mobile Application Part (MAP)
specification, http://www.3gpp.org/ftp/Specs/html-info/29002.html

3. 3GPP TS 33.102. LTE; 3G Security; Security Architecture,
http://www.3gpp.org/ftp/Specs/html-info/33102.html

4. 3GPP TS 33.200. 3G Security; Network Domain Security (NDS); Mobile Appli-
cation Part (MAP) application layer security, http://www.3gpp.org/ftp/Specs/
html-info/33200.html

5. 3GPP TS 33.210. LTE; 3G Security; Network Domain Security (NDS); IP network
layer security, http://www.3gpp.org/ftp/Specs/html-info/33210.html

6. 3GPP TS 33.310. LTE; Network Domain Security (NDS); Authentication Frame-
work (AF), http://www.3gpp.org/ftp/Specs/html-info/33310.html

7. 3GPP TS 33.401. LTE; 3GPP System Architecture Evolution (SAE); Security
Architecture, http://www.3gpp.org/ftp/Specs/html-info/33401.html

8. 3GPP TS 42.009. Digital cellular telecommunications system (Phase 2+); Security
Aspects, http://www.3gpp.org/ftp/Specs/html-info/42009.html

9. 3GPP TS 43.020. Digital cellular telecommunications system (Phase 2+); Se-
curity related network functions, http://www.3gpp.org/ftp/Specs/html-info/

43020.html

10. Arapinis, M., Mancini, L.I., Ritter, E., Ryan, M.: Formal Analysis of UMTS Pri-
vacy. CoRR, abs/1109.2066 (2011), http://arxiv.org/abs/1109.2066

11. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.
In: 14th IEEE Computer Security Foundations Workshop (CSFW-14), Cape Bre-
ton, Nova Scotia, Canada, pp. 82–96. IEEE Computer Society (June 2001)

12. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.
In: 14th IEEE Computer Security Foundations Workshop (CSFW-14), Cape Bre-
ton, Nova Scotia, Canada, pp. 82–96. IEEE Computer Society (June 2001)

13. Blanchet, B.: A Computationally Sound Mechanized Prover for Security Protocols.
In: IEEE Symposium on Security and Privacy, Oakland, California, pp. 140–154
(May 2006)

14. Blanchet, B.: A Computationally Sound Mechanized Prover for Security Protocols.
IEEE Transactions on Dependable and Secure Computing 5(4), 193–207 (2006);
Special issue IEEE Symposium on Security and Privacy 2006

15. Dolev, D., Yao, A.: On the security of public-key protocols. IEEE Transactions on
Information Theory 2(29), 198–208 (1983)

16. IETF. Diameter Base Protocol RFC 3588 (September 2003),
http://www.ietf.org/rfc/rfc3588.txt

http://www.3gpp.org/ftp/Specs/html-info/33902.html
http://www.3gpp.org/ftp/Specs/html-info/29002.html
http://www.3gpp.org/ftp/Specs/html-info/33102.html
http://www.3gpp.org/ftp/Specs/html-info/33200.html
http://www.3gpp.org/ftp/Specs/html-info/33200.html
http://www.3gpp.org/ftp/Specs/html-info/33210.html
http://www.3gpp.org/ftp/Specs/html-info/33310.html
http://www.3gpp.org/ftp/Specs/html-info/33401.html
http://www.3gpp.org/ftp/Specs/html-info/42009.html
http://www.3gpp.org/ftp/Specs/html-info/43020.html
http://www.3gpp.org/ftp/Specs/html-info/43020.html
http://arxiv.org/abs/1109.2066
http://www.ietf.org/rfc/rfc3588.txt

76 J.-K. Tsay and S.F. Mjølsnes

17. International Telecom Union. ICT Indication Database (2011),
http://www.itu.int/ITU-D/ict/statistics/

18. Meyer, U., Wetzel, S.: A man-in-the-middle attack on UMTS. In: Proceedings of
the 3rd ACM Workshop on Wireless Security (WiSe 2004), Philadelphia, PA, USA,
pp. 90–97 (2004)

19. Mjølsnes, S.F., Tsay, J.-K.: Compuational Security Analysis of the UMTS and LTE
Authentication and Key Agreement Protocols. CoRR, abs/1203.3866 (2012)

20. Zhang, M., Fang, Y.: Security analysis and enhancements of 3GPP authentication
and key agreement protocol. IEEE Transactions on Wireless Communications 4(2),
734–742 (2005)

http://www.itu.int/ITU-D/ict/statistics/

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2012, LNCS 7531, pp. 77–83, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Blind 384-bit Digital Signature Scheme

Alexandr Moldovyan1, Nikolay Moldovyan1, and Evgenia Novikova2

1 Laboratory of Cryptology, St. Petersburg Institute for Informatics and Automation (SPIIRAS),
39, 14th Liniya, Saint-Petersburg, Russia

nmold@mail.ru
2 Laboratory of Computer Security Problems, St. Petersburg Institute for Informatics

and Automation (SPIIRAS), 39, 14th Liniya, Saint-Petersburg, Russia
novikova@comsec.spb.ru

Abstract. The blind digital signature protocols play important role in e-
commerce applications. In this paper the new blind digital signature scheme with
384-bit signature length is proposed. The latter is achieved by using finite sub-
group of the multiplicative group of the finite ring of residues modulo n, where n
is a product of two large primes. It is shown that proposed signature satisfies
unlinkability and unforgeability properties.

Keywords: blind digital signature scheme, two-dimension-cyclicity group, difficult
problem, factorization problem, discrete logarithm problem.

1 Introduction

In electronic voting systems and e-commerce requirement of the user anonymity is one
of the most important requirements. Blind digital signatures are one of the crypto-
graphic tools that can provide anonymity for users. The technology of the blind signa-
ture was first proposed by Chaum [1]. The properties of the blind signatures are : i) the
signer cannot read the document during process of signature generation; ii) the signer
cannot correlate the signed document with author of the message. There exist different
implementations of the blind signature protocol based on discrete logarithm problem
and factorization problem [2-6]. Known digital signature schemes based on discrete
logarithm problem produce 4L-bit signature in case of L-bit security (i.e. the breaking
of such schemes demands implementation of the 2L operations of multiplications
modulo p.), while factorization-based digital signature schemes usually produce suffi-
ciently signature with sufficiently greater length [1, 7]. Recently new approach for
constructing efficient short signatures based on factorization problem was proposed
[8, 9] however the used verification procedure is based on the two-level exponentiation
operation and does not suits well to constructing the blind signature schemes. Short
signatures are needed in environments with space and bandwidth constraints, for ex-
ample, mobile environments. In this paper a new protocol of short 3L-bit blind signa-
ture scheme based on factorization problem is proposed. The shortening of the signa-
ture length is achieved by using subgroup of multiplicative group of a finite ring of
residues modulo a composite number n that is difficult for factoring, like the RSA

78 A. Moldovyan, N. Moldovyan, and E. Novikova

modulus. The specific feature of the used subgroup is its two-dimension cyclic struc-
ture. In paper [10] the digital signature schemes defined over finite n-dimension cyclic
groups are described, however implementation of the blind signature protocols with
short signatures has not been considered.

The rest of the paper is organized as follows. In the next section the procedure of
the two-dimension cyclic group construction is described. In the section 2 the brief
description of the used hard problem is given, the description of the proposed blind
signature scheme and its correctness is given in section 3 and 4, respectively.

2 The Used Hard Problem

To construct the blind signature protocol with signature length of 384 bits computa-

tions in the subgroup of multiplicative group *
nR of finite ring Rn are used, where n is

the product of the two strong primes q and p of the length |q| ≈ |p| ≈ 1232 bits. Param-
eters q and p are the secret values and have specific structure: p = Npr

2 + 1 and
q = Nqr

2 + 1, where Np and Nq are two large even numbers, containing a big prime

factor, and r is a 128-bit prime. It could be shown that the multiplicative group *
nR of

a ring Rn is generated by the basis that consists of two elements. This assertion fol-
lows from the fact that the value of the generalized Euler phi function L(n) is smaller
than the value of the Euler phi function for the same number n:

 ϕ(n) = (q − 1)(p − 1) = GCD(q − 1, p − 1)LCM(q − 1,p − 1) =

 = GCD(q − 1, p − 1)L(n) ≥ r2L(n),

where GCD denotes to the greatest common divisor, LCM denotes to the least com-
mon multiple.

In the proposed DSS scheme we use the primary subgroup Γ of r2 order of the

group *
nR . It is generated by the two basis elements α and β of the order r, for which

we have { }, 1, 2,...,i j i j rα ≠ β ∀ ∈ . All elements of the subgroup Γ except identity

element have order r. The following procedure to generate basis elements α and β is
proposed.

1. Choose the random positive integer b that is greater than 1 and less than n.
2. Compute values γ = L(n)/r and z = bγ mod n.
3. If z ≠ 1 holds, then take z as α (or β) otherwise repeat steps 1-3.

The correctness of the proposed procedure is easy to prove. Indeed, if z ≠ 1 holds for
the generated number z than the equation z = bL(n)/r mod p also holds, and therefore
according to the generalized Fermat theorem zr ≡ bL(n) ≡ 1 mod n, i.e. the order of the
number z equals r. (It is known that if zr ≡ 1 mod n holds the order of z divides num-
ber r. Since the number r is prime divisor of the value L(n) then r is the order of some
numbers modulo n). When implementing twice this procedure the two random num-
bers of an order r modulo n could be obtained. The probability that these two numbers

 Blind 384-bit Digital Signature Scheme 79

belong to one cyclic subgroup is determined by ratio of quantity of non-identity ele-
ments of the cyclic prime order r subgroup to the quantity of all r order elements con-

taining in the group *
nR . Consider that the group *

nR contains a primary subgroup of

an order r2 generated by two elements of an order of r then this primary subgroup has
r2 − 1 elements of an order of r [10]. Therefore the mentioned above probability
equals to r/(r2 − 1) ≈ 1/r ≈ 2−128. This probability can be reduced to the value of ≈ 2−256
if when generating numbers α and β the following modified procedure is used.

1. Choose the random positive integer b that is greater than 1 and less than n.
2. Compute values γ = L(n)/r2 and z = bγ mod n.
3. If z ≠ 1 and α′ = zr mod n ≠ 1 (or β′ = zr mod n ≠ 1) hold, then take α′r mod n (or

β′r mod n) as α (or β) otherwise repeat steps 1 to 3.

The probability reduction is achieved because number of the order r2 is generated
firstly, afterwards it is raised to the power r and then the computed value is taken as α
(or β). Since generated numbers α′ and β′ of the order r2 belong to different cyclic
subgroups 2p

Γ the numbers α and β also belong to different cyclic subgroups. Then

the probability 2
' 'Pr(,)

p
α β ∈Γ that numbers α′ and β′ belong to one cyclic subgroup

equals to ratio of the quantity of the elements of the order r2 lying in one cyclic sub-

group to the quantity of all r2-order elements containing in *
nR . Considering the exist-

ence of the primary subgroup in *
nR generated by two basis elements of order r2, and

using the formulas [10] for evaluating the quantity of elements of the given order in
primary groups, it is possible to receive the following estimation of the probability:

2
' ' 256

2 2 2

(1) 1
Pr(,) 2

(1)p

r r

r r r
−−α β ∈Γ = ≈ ≈

−
,

where the size of the value r is |r|=128 bits.
Thus, the second procedure for generation of the random numbers α и β is prefera-

ble as it allows reducing probability that two generated elements belong to the same
cyclic subgroup in 2128 times. Due to the insignificance of the probability it is possible
to neglect it and therefore omit resource consuming procedure of check if the generat-
ed numbers α и β belong to the same cyclic subgroup.

The security of the proposed blind DSS protocol is based on the difficulty of Dis-
crete Logarithm Problem (DLP) modulo a composite hard factorisable number n. It is
similar to the randomized DSS based on the difficulty of the DLP in finite groups
with multi-dimension cyclicity [10]. If attacker wants to forge the signature of the
legal user it is enough to calculate x and w using values of the public key y, α and β.

We consider two variants of the practical application of the designed protocol. In
the first variant the compound number is the part of the public key, and every user
generates its own unique value n, the devisors of which are the secret key of the user.
In the second variant n is the secret parameter and is produced by Trusty Center that
deletes secret devisors immediately after generation of parameter n. In the second

80 A. Moldovyan, N. Moldovyan, and E. Novikova

variant the length of public key is shorter however the change of parameter n will
cause regeneration of all public keys. In the rest of the paper we consider the usage of
the first variant of the protocol. The secret key is presented by the tuple (p, q, x, w),
where p, q – divisors of the n and x, w – random 128 bit numbers (x < r, w < r). The
public key is presented by tuple (n, r, α, β, y), where element y is calculated as fol-
lows modx wy n= α β .

3 The Proposed Protocol of Blind Signature

The basic idea of the blind signature protocols is that the person that signs some elec-
tronic message M doesn't know the content of the message M. Thus there are two
requirements to the protocol 1) the signer can’t get access to the content of the signing
message; 2) later after the signature generation the signer can’t link signed message to
its author. The last requirement is known as the requirement of anonymity
(untracability). The existing variants of blind signature protocol are constructed using
known cryptographic algorithms that use following hard problems: 1) factorization
problem of numbers of a type of n = pq, where p and q – two strong primes; 2) dis-
crete logarithm problem modulo prime p; 3) discrete logarithm on the elliptic curve.
The proposed protocol is based on difficulty of the finding discrete logarithm modulo
a composite integer.

The blind signature protocol is constructed on the basis of the simple signature
generation procedure. The basic DSS is described below.

The Basic DSS Generation Procedure

1. The signer generates pair of random numbers k and t (1 < k < r и 1 < t < r) and

then computes parameter modk tR n= α β .

2. Then the signer calculates the values H = FH(M) and E = F′H(R||M) mod r, where
FH and F′H are some specified secure hash-functions having size 256 and 128 bits,
respectively; M – message to be signed.

3. The signer calculates rest elements of the signature S and U as follows:
S = (k + xE) mod r and U = (t + wE) mod r.

The result of the described procedure is the 384-bit digital signature presented by the
triple of the 128-bit numbers (E, S, U). The description of the proposed blind protocol
is presented below. We denote user who wants to sign messages and initiates the pro-
tocol as requester while the signing entity is denoted as signer.

The Blind DSS generation Procedure

1. The signer generates random one-time disposable secret key that consists of pair
of numbers k and t (1 < k < r and 1 < t < r), then computes modk tR n= α β and

sends the value R to the requester.
2. The requester calculates H = FH(M). Then he generates the triple of the random

“blinding” parameters ε, μ and τ that lie in the interval (1, q) and calculate

 Blind 384-bit Digital Signature Scheme 81

modR H R y n
ε μ τα= , (||) mod HE F R M r′= and 1() modE E r−= ε +μ . If E = 0,

then requester repeats the procedure from generation of the blinding parameters.
The value E is the first element of the blind signature to the message M. The re-
quester sends E to the signer.

3. The signer computes the rest elements of the blind signature S and U as follows:

S = (k + x E) mod r, U = (t + w E) mod r, then he sends them to the requester.

4. The requester “unblinds” parameters S and U , computing thus the second and

third elements of the signature S and U, respectively: modS S r= ε + τ and

modU U r= ε .

The result of the described procedure is the 384-bit digital signature presented by the
triple of the 128-bit numbers (E, S, U). The signature verification procedure doesn’t
depend on what type of signature generation (usual or “blind”) was used. This corre-
sponds to the requirement of the indistiguishability of the signature generation proce-
dure type. The signature verification procedure includes the following steps.

1. Compute the values () HF M H= , modE S UR Hy n−= α β and

 ,) mod(HE F M R r′= .

2. Compare values E and E. If E=E holds, then the digital signature is valid.

It is easy to notice that according to the equations used on the step 3 of the protocol

the elements of the generated blind signature (,),E S U satisfy equation

modS UEyR n−= α β .

4 Discussion of the Correctness, Anonymity, and Security

The correctness of the developed blind DSS can be proven by substitution of correctly

created values of signature elements (,),E S U in the signature verification procedure.

This substitution gives the following:

 () ()

mod mod mod

() mod mod

, ,

E S U E

U

S U E S U

E S

R Hy n Hy n Hy y n

H y y n H y n R

F M R F M R E

R

E

− −ε +μ ε +τ ε −ε μ ε τ ε

ε− ε μ τ μ τ

= α β = α β = α α β =

= α β α = α =

′ ′= = =

Since for digital signature (E, S, U) produced in accordance with blind signature pro-

tocol the equation E=E holds, then signature (E, S, U) passes verification procedure.
It is easy to show that signature produced in accordance with the usual signature pro-
tocol described above also satisfies verification equation.

82 A. Moldovyan, N. Moldovyan, and E. Novikova

It is necessary to show that proposed protocol of the blind signature also provides
anonymity of the user (requester) if the signer formed blind signatures to numerous
electronic messages and send them to different users. Indeed the original signature
elements (E, S, U) to some document M can be bind to any “blind” signature elements

using blinding parameters ε, μ and τ, computed as follows: / modU U rε = ,
rUSUS mod/−=τ and / modUE U E rμ = − . Since the values of blinding parame-

ters in protocol are determined randomly the signer has no assumption on requester
identity for given generated signature (E, S, U).

It’s worth noticing that every signature (E, S, U) generated according to the usual signa-
ture generation procedure can be interpreted as blind signature. Indeed, from the signature

verification equation modE S UR Hy n−= α β follows / modE S UR R H y n−= = α β . The

latter directly shows the possibility of such interpretation. Due to this possibility any two
signatures can be linked by three random values as blind signature and usual valid signa-
ture calculated on the basis of this blind signature are generated to some message. This
fact proves that malefactor can’t use previously generated blind signatures to form new
valid signature, because if such possibility exists then according to the described interpre-
tation it would be possible to produce valid signature knowing certain number of valid
signatures.

Thus the security of the proposed blind signature scheme is determined by security
of the basic usual digital signature scheme DSS and security analysis of it is reduced
to the security analysis of basic DSS, which can be performed as follows. Since in the
proposed DSS the randomization parameter R is generated before the has value
E = F′H(R||M) mod r is computed it is possible to apply the technique [11,12] for the
formal proof of the randomized DSS security. That technique is based on the possibil-
ity to force the forgery program to use the same value of the signature randomization

parameter modk tR H n= α β to produce two different signatures. In the formal securi-

ty proof it is supposed that two copies of the forgery program are executed on to dif-
ferent computers using the same sequence of random bits that are used to make choic-
es at various points in the work of the programs. For one of the programs the hash
function F′H is suddenly changed for F′′H one gets two different hash values computed

using the same value modk tR H n= α β : (),HE F R M′= and (),HE F R M′′ ′′= . For

the proposed DSS the forgery programs yield the output signatures (, ,)E S U and

(, ,)E S U′′ ′′ ′′ such that

mod mod ,
S S U U

E S U E S U E E E ER Hy Hy n y n
′′ ′′− −

′′ ′′ ′′− − ′′ ′′− −= α β = α β = α β

i.e. the forgery algorithm can be applied to solve the DLP modulo n. Taking into ac-
count the reductionist security proof for blind signature protocol the latter has the
same order of the security as the difficulty of the DLP modulo n which is not less than
difficulty of factoring n [3] and in the case of 2464-bit value of n it has the order of
the 2128 multiplications mod n.

 Blind 384-bit Digital Signature Scheme 83

5 Conclusions

In this paper we proposed new 384-bit blind signature scheme possessing 128-bit
security which is based on difficulty of the discrete logarithm problem modulo a
composite number such that factoring it is hard. Due to reducibility of the mentioned
discrete logarithm problem to both the factorization problem and the discrete loga-
rithm problem modulo prime number it is possible to state that the described
cryptoscheme is based in a certain sense on the factorization problem. Further work
includes performance analysis of the proposed scheme. The described approach uses
the public key with specific structure that allows shortening of the signature length in
the blind signature protocol. However the proposed approach can be adopted for con-
structing usual and blind multisignature schemes with short signature. Further study
of this problem represents an interesting independent task.

References

1. Chaum, D.: Blind signature for untraceable payments. In: Advances in Cryptology
(CRYPTO 1982), pp. 199–203. Plenum Press, New York (1983)

2. Tahat, N.M.F., Shatnawi, S.M.A., Ismail, E.S.: A New Partially Blind Signature Based on
Factoring and Discrete Logarithms. J. of Mathematics and Statistics 4(2), 124–129 (2008)

3. Menezes, A.J., Van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography,
p. 780 . CRC Press, Boca Raton (1997)

4. Boldyreva, A.: Efficient Threshold Signature, Multisignature and Blind Signature Schemes
Based on the Gap-Diffi-Hellman-Group Signature Scheme. LNCS, vol. 2139, pp. 31–46,
Springer, Heidelberg (2003)

5. Camenisch, J.L., Piveteau, J.-M., Stadler, M.A.: Blind Signatures Based on the
Discrete Logarithm Problem. In: De Santis, A. (ed.) EUROCRYPT 1994. LNCS, vol. 950,
pp. 428–432. Springer, Heidelberg (1995)

6. Moldovyan, N.A., Moldovyan, A.A.: Blind Collective Signature Protocol Based on
Discrete Logarithm Problem. J. of Network Security 11(2), 106–113 (2010)

7. Moldovyan, N.A.: Blind Signature Protocols from Digital Signature Standards. Int. J. of
Network Security 13(1), 22–30 (2011)

8. Takagi, T.: A fast RSA-type public-key primitive modulo pkq using hensel lifting. IEICE
Transactions E87-A(1), 94–101 (2004)

9. Moldovyan, N.A.: An approach to shorten digital signature length. Computer Science
Journal of Moldova 14(3(42), 390–396 (2006)

10. Moldovyan, N.A.: Short Signatures from Difficulty of Factorization Problem. Int. J. of
Network Security 8(1), 90–95 (2009)

11. Moldovyan, N.A.: Fast Signatures Based on Non-Cyclic Finite Groups. Quasigroups and
Related Systems 18, 83–94 (2010)

12. Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind Signatures.
Journal of Cryptology 13, 361–396 (2000)

13. Koblitz, N., Menezes, A.J.: Another Look at Provable Security. J. Cryptology 20, 3–38
(2007)

RABAC: Role-Centric

Attribute-Based Access Control

Xin Jin1, Ravi Sandhu1, and Ram Krishnan2

1 Institute for Cyber Security & Department of Computer Science
2 Institute for Cyber Security & Dept. of Elect. and Computer Engg.

University of Texas at San Antonio
xjin@cs.utsa.edu, {ravi.sandhu,ram.krishnan}@utsa.edu

Abstract. Role-based access control (RBAC) is a commercially dom-
inant model, standardized by the National Institute of Standards and
Technology (NIST). Although RBAC provides compelling benefits for
security management it has several known deficiencies such as role explo-
sion, wherein multiple closely related roles are required (e.g., attending-
doctor role is separately defined for each patient). Numerous extensions
to RBAC have been proposed to overcome these shortcomings. Recently
NIST announced an initiative to unify and standardize these extensions
by integrating roles with attributes, and identified three approaches: use
attributes to dynamically assign users to roles, treat roles as just another
attribute, and constrain the permissions of a role via attributes. The first
two approaches have been previously studied. This paper presents a for-
mal model for the third approach for the first time in the literature. We
propose the novel role-centric attribute-based access control (RABAC)
model which extends the NIST RBAC model with permission filtering
policies. Unlike prior proposals addressing the role-explosion problem,
RABAC does not fundamentally modify the role concept and integrates
seamlessly with the NIST RBAC model. We also define an XACML pro-
file for RABAC based on the existing XACML profile for RBAC.

Keywords: NIST-RBAC, attribute, XACML, access control.

1 Introduction and Motivation

Role-based access control (RBAC) [12,26] is a commercially successful and widely
used access control model. Access permissions are assigned to roles and roles are
assigned to users. Roles can be created, modified or disabled with evolving sys-
tem requirements. Since the first formalizations [26] it has been recognized that
traditional formulations of RBAC are inefficient in handling fine grained access
control. RBAC can accommodate fine grained authorizations by dramatically
increasing the number of distinct roles with slightly different sets of permissions.
However, this solution incurs significant cost of correctly assigning permissions
to large numbers of roles. For instance, consider the familiar doctor-patient prob-
lem. In a hospital, a doctor is only allowed to view the record of his own patients.
In the NIST RBAC model [12], a doctor role needs to be defined for each patient.

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2012, LNCS 7531, pp. 84–96, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

RABAC: Role-Centric Attribute-Based Access Control 85

Thus, the number of roles will be dramatically increased while they share mostly
the same permissions. Anecdotal information indicates that in practice organi-
zations work around these limitations in ad hoc ways. The research community
has also proposed several ad hoc extensions to RBAC (see section 2).

Recently Kuhn et al [23] announced a NIST initiative to unify and standardize
various RBAC extensions by integrating roles with attributes, thereby combining
the benefits of RBAC and attribute-based access control (ABAC) to synergize
the advantages of each. An informal review of ABAC concepts is provided in
Karp et al [22]. Even with the relative immaturity of ABAC formal models the
NIST approach is a promising avenue for injecting the benefits of ABAC into
RBAC and vice versa. We note that there are access control proposals that
go beyond attributes such as [14,21]. However, we are motivated by the NIST
ongoing initiative in extending RBAC through attributes, so models which go
beyond ABAC are beyond our scope.

Kuhn et al [23] identify three alternatives for integrating attributes into RBAC
as follows.

– Dynamic Roles. The first option uses user and context attributes to dy-
namically assign roles to users. It is similar to attribute-based user-role as-
signment [4]. This does help with automated user-role assignment to the
myriad roles arising from role explosion, but does not address the corre-
sponding role-permission assignment explosion (which has been considered
in a recent model [19]). Context attributes have been studied in the literature
[9,10,11].

– Attribute Centric. In this option roles are simply another attribute of
users [7,20]. There is no permission-role assignment relationship. This method
largely discards the advantages of RBAC which are well demonstrated and
mature [15].

– Role Centric. The general idea in the third option is that the maximum
permissions available in each session are determined by the roles activated,
which can be further reduced based upon attributes. However, Kuhn et al
[23] do not elaborate on this option or provide details about this approach.
Moreover, to our knowledge, there are no published formal models in the
literature corresponding to this option.

Our central contribution is to develop a formal model for the role-centric ap-
proach for the first time. We propose the role-centric attribute-based access
control (RABAC) model which extends the NIST RBAC model with permis-
sion filtering policies. RABAC is a more convenient term otherwise identical to
“RBAC-A, role-centric” in [23]. RABAC overcomes role explosion without fun-
damentally modifying RBAC. In particular, RABAC integrates seamlessly with
the NIST RBAC model thereby offering a path for practical deployment. We
also establish feasibility of implementation by providing an XACML profile for
RABAC based on the existing standard XACML profile for the NIST RBAC
model.

The rest of this paper is as follows. Section 2 discusses related work. Section 3
develops RABAC along with its formal definition and functional specifications.

86 X. Jin, R. Sandhu, and R. Krishnan

Section 4 defines the XACML profile for RABAC and presents implementation
example. Section 5 concludes the paper.

2 Related Work

The role explosion problem, wherein multiple closely related roles need to be de-
fined to achieve fine-grained access control, has been recognized since the early
days of RBAC, predating publication of the NIST RBAC model [12]. There has
been considerable previous work on extending RBAC to avoid role explosion.
Giuri [18] introduced the concepts of parameterized privileges and role templates
to restrict a role to access a subset of objects based on the instantiated parame-
ters. Other similar proposals include parameterized role [3,17], conditional role
[6], object sensitive role [13] and attributed role [28]. The above proposals change
the fundamental process of role-permission assignment as permissions assigned
to roles can only be determined when a role is instantiated or activated. There
is a lack of accompanying administrative models for these extensions in such
context and they do not fit into the existing administration models such as [25].
Compared with roles in the NIST RBAC model, these extensions increase the
complexity of role mining and engineering, which is the costliest component of
RBAC [16].

Numerous other extensions of RBAC have been proposed [15]. We briefly
mention a few here. TrustBAC [8] incorporated the advantages of both RBAC
and credential based access control models. But only user attribute trust level
is considered. A family of extended RBAC models called role and organization
based access control (ROBAC) models were proposed and formalized in [29].
However, it is not designed for access control within the same organization.
Kumar et al [24] extended RBAC by introducing the notions of role context and
context filters. However, context filters are applied only during the process of
defining roles.

3 RABAC Model

In this section, we present the RABAC model as an extension of the NIST RBAC
model. The model is first discussed informally and then formally defined in two
parts similar to NIST RBAC model: reference model and functional specification.

3.1 Model Overview

The RABAC model is informally depicted in figure 1. It fully incorporates
the NIST RBAC model and adds the following new elements: user attributes
(UATT), object attributes (OATT) and permission filtering policy (PFP). We
give a brief overview of these new elements below.

RABAC: Role-Centric Attribute-Based Access Control 87

Fig. 1. RABAC Model

Attributes are functions which take certain entities and return values for de-
fined properties of that entity (user or object).1 Each user and object is associ-
ated with a finite set of attributes. Examples of user attributes are Department,
Title and Specialization. Examples of object attributes are Type and Status.
The range of each attribute is represented by a finite set of atomic values. For
example, the range of Department is a set of all department names in the or-
ganization. Additionally we allow attributes to be set-valued. For instance, a
set-valued Department attribute would allow a user to belong to multiple de-
partments. Each attribute can either be atomic or set-valued from its declared
range. Every attribute must be declared to be either atomic or set-valued.

The Permission Filtering Policy (PFP), as suggested by its name, con-
strains the available set of permissions based on user and object attributes. It is
depicted conceptually in figure 2. The avail session perm function, as defined by
NIST RBAC model, gives the permission set associated with the roles activated
in a given session. In RABAC the avail session perm function represents the
maximum permission set available in a session. These permission sets are fur-
ther constrained by filtering policy. The security architect specifies a set of filter
functions {F1, F2, F3 . . . Fn} for this purpose. Each filter function is a boolean
expression based on user and object attributes. The TargetF ilter function maps
each object to a subset of the filter functions. This mapping is based on the at-
tributes of the object via attribute expressions called conditions which determine
whether or not each filter function is applicable. The applicable filter functions
are invoked one by one against each of the permissions in avail session perm. If
any of the functions return FALSE, the permission is blocked and removed from
the available permission set for this session. At the end of this process, we get the
final available permission set. It should be noted that this description specifies
the net result. Various optimizations can be used so long as the net result is as
indicated.

With the newly defined PFP component, we are able to modify the logical
approach for defining packages of functional components in the NIST RBAC
model [12] as shown in figure 3. RABAC adds the dashed rectangle at the last

1 More generally, attributes can be associated with other entities including sessions,
environment, system, etc. User and object attributes suffice for purpose of RABAC.

88 X. Jin, R. Sandhu, and R. Krishnan

Fig. 2. Permission Filtering Process

Fig. 3. Methodology for Creating Functional Packages

stage. This indicates that PFP can be integrated into each of the RBAC model
components independently.

3.2 RABAC Reference Model

The basic sets and functions in the NIST RBAC model are shown in table 1.
These sets and functions will also apply to RABAC. We define additional sets
and functions for RABAC in table 2. UATT is a set of attribute functions for the
existing users (i.e., USERS). Each attribute function in UATT maps a user to a
specific value. This could be atomic or set valued as determined by the type of
the attribute (as specified by attT ype). We specify similar sets and functions for
objects. The notation used here for attributes is adapted from [20]. FILTER is a
set of boolean functions defined by the security architects. The Fi are applied to
sessions to constrain permissions associated with that session (discussed below).

The permission filtering process is configured in three steps. As illustrated in
the first part of table 3, security architects firstly define each filter function Fi

in terms of user and object attributes by means of the language LFilter (defined
below). Security architects also need to select a subset of the filter functions that
apply to an object. This is done by the TargetF ilter function which requires
specification of a boolean condition based on object attributes for each filter
function Fi. As shown in the second part of table 3, there are n such conditions,
one for each Fi. Each condition is defined using the language LCondition (defined
below). For an object, the TargetF ilter function is illustrated in the third part of

RABAC: Role-Centric Attribute-Based Access Control 89

Table 1. NIST RBAC Sets and Functions used in RABAC

– USERS, ROLES, OPS, and OBS (users, roles, operations, and objects);
– PRMS = 2 (OPS × OBS), the set of permissions;
– SESSIONS, the set of sessions;
– user sessions(u: USERS)→ 2SESSIONS, the mapping of user u onto a set of sessions;
– avail session perms(s: SESSIONS) → 2PRMS, the permissions available to a user

in a session.
– PA ⊆ PRMS × ROLES, a many-to-many mapping permission-to-role assignment;
– assigned permissions(r: ROLES) → 2PRMS, the mapping of role r onto a set of

permissions;

Table 2. Additional Sets and Functions of RABAC

– UATT and OATT represent finite sets of user and object attribute functions re-
spectively.

– For each att in UATT ∪ OATT, Range(att) represents the attribute’s range, a
finite set of atomic values.

– attType: UATT ∪ OATT → {set, atomic}. Specifies attributes as set or atomic
valued.

– Each attribute function maps elements in USERS and OBS to atomic or set values.

∀ua ∈ UATT. ua : USERS →
{
Range(ua) if attType(ua) = atomic

2Range(ua) if attType(ua) = set

∀oa ∈ OATT. oa : OBS →
{
Range(oa) if attType(oa) = atomic

2Range(oa) if attType(oa) = set

– FILTER = {F1, F2, F3, . . . Fn} is a finite set of boolean functions.
For each Fi ∈ FILTER. Fi: SESSIONS × OPS × OBS→ {T, F}.

table 3. It evaluates each conditioni based on the object’s attributes to determine
whether or not the filter function Fi is applicable. Thus it selects a subset of the
filter functions applicable for any specific object.

The languages LFilter and LCondition are defined by adopting the common
policy language (CPL) from [20] as shown in table 4. CPL defines the logical
structure but is not a complete language. It is required to specify the non-
terminal symbols set and atomic to build complete instances of CPL. LFilter,
the language used to specify each filter function Fi, is an instance of CPL where
set and atomic are as follows.

set::= setua (sessionowner(se)) | setoa(obs) | ConsSet
atomic::= atomicua (sessionowner(se)) | atomicoa(obs) | ConsAtomic
setua ∈ {ua | ua ∈ UATT ∧ attType(ua) = set }
atomicua ∈ {ua | ua ∈ UATT ∧ attType(ua)= atomic }

90 X. Jin, R. Sandhu, and R. Krishnan

Table 3. Permission Filtering for RABAC

1. Permission filtering policy.
Language LFilter is used to specify each filter function Fi(se:SESSIONS, ops:OPS,
obs:OBS) in FILTER, where se, ops and obs are formal parameters.

2. Conditions.
For each Fi ∈ FILTER there is a conditioni which is a boolean expression specified
using language LCondition.

3. TargetFilter is a function which maps each object to its applicable filter functions
as a set. It is illustrated with the pseudo code shown as follows:
TargetFilter(obs:OBS)
{

filter := {};
condition1: filter := filter ∪ F1;
condition2: filter := filter ∪ F2;
. . .
conditionn: filter := filter ∪ Fn;
return filter;

}
Where F1, F2 . . . Fn ∈ FILTER and obs is formal parameter.

Table 4. Common Policy Language

ϕ ::= ϕ ∧ ϕ|ϕ ∨ ϕ|(ϕ)|¬ϕ| ∃ x ∈ set.ϕ|∀ x ∈ set.ϕ| set setcompare set | atomic ∈ set |
atomic atomiccompare atomic

setcompare ::=⊂ | ⊆ | �
atomiccompare ::= < | = | ≤

setoa ∈ {oa | oa ∈ OATT ∧ attType(oa) = set }
atomicoa ∈ {oa | oa ∈ OATT ∧ attType(oa) = atomic }

ConsSet and ConsAtomic are constant sets and atomic values. se and obs are
formal parameters of each filtering function. LFilter use the attributes of the
involved user and object. Thereby, LFilter is able to constrain permissions dy-
namically based on various relationships between user and object attributes. We
define the sessionowner function to return the owner of a session as follows.

sessionowner(se:SESSIONS) = u such that se∈user sessions(u)
In the above definition, user sessions(u: USERS) is already defined in the NIST
RBAC model to return the sessions for a given user. LCondition, the language
for specifying conditions, is an instance of CPL where set and atomic are as
follows.

set::= setoa(obs) | ConsSet
atomic::= atomicoa(obs) | ConsAtomic

Each condition can only refer to the attributes of the object obs being accessed.
setoa and atomicoa are the same as in LFilter.

RABAC: Role-Centric Attribute-Based Access Control 91

3.3 Functional Specification

Our definitions of functional specifications for RABAC are based on those al-
ready defined in NIST RBAC model. The key extensions of this model focus
on access decisions. Thus, we redefine the CheckAccess function from NIST
RBAC and define a new function called FilteredSessionPerm. We specify
these functions in table 5. Function FilteredSessionPerm returns final avail-
able permissions for each specific session. Function CheckAccess is used to
check each request (ops, obs).

Table 5. Functional Specifications

Functions Updates

FilteredSessionPerm perset = avail session perm(se);
(se: SESSIONS) For each (ops, obs) ∈ perset do

if TargetFilter(obs) = {} break;
For each function ∈ TargetFilter(obs) do

if ¬function(se, ops, obs)
perset = perset \ {(ops, obs)}; break;

return perset;

CheckAccess result = ((ops, obs)∈FilteredSessionPerm(se));
(se: SESSIONS,
ops: OPS,
obs: OBS,
result: BOOLEAN)

4 XACML Profile for RABAC

XACML [1] is a standard language for specifying attribute based access control
policy. Because of its reputation, considerable work has been done for XACML
in implementing RBAC as well as its administration model [27]. XACML profile
for RBAC [5] has been defined to guide implementing RBAC via XACML. For
the purpose of demonstrating implementation feasibility of RABAC, we show
that RABAC can be easily implemented in XACML. Specifically, we propose a
XACML profile for RABAC based on that for RBAC. We then give a specific
implementation example for this profile.

4.1 Proposed Profile

The standard XACML RBAC profile is limited to core and hierarchical RBAC.
Our RABAC profile is similarly limited. We will only discuss those components
of the standard XACML RBAC profile that need to be changed for RABAC.
The RABAC profile is guided by the following.

– Permission Filtering Policies (PFP) are stored in a separate file from per-
mission and role policy files for ease of administration.

92 X. Jin, R. Sandhu, and R. Krishnan

Fig. 4. Part of Proposed XACML Profile for RABAC

– The result of role policy and PFP policy may be different. We need policy
combination algorithm which gives deny if and only if PFP returns deny
(Note that only positive permissions are defined for role policy in NIST
RBAC model). Otherwise, the final result is permit.

– The result from different filter functions upon the same group of objects
should be deny-override. Thereby if any one of them returns false, the final
result for PFP will be false.

In light of these observations, we design an extension where the PDP (Policy
Decision Point) loads one more kind of policy files for PFP components in ad-
dition to the role policy file as shown in figure 4. The implementation for role
and permission policy set remains the same. To implement PFP, a TargetF ilter
<PolicySet> should be defined for each condition in the TargetF ilter func-
tion defined in the model. Conditions in TargetF ilter are implemented with
target tag in XACML policy. Each TargetF ilter <PolicySet> contains policy
references to actual filter function <Policy>. Each reference represents a fil-
ter function defined in the model. The role policy and PFP policy may return
different results. Since PFP is used only to reduce permissions there should not
be PFPs that evaluate to permit. Thus, the role policy returns permit while the
PFP policy may return two kinds of result NotApplicable (no policy specified) or
Deny (not allowed). We can determine that policy combining algorithm should
be deny-override. The request is with the same format as that in XACML profile
for RBAC except that the XACML subject is associated with multiple attributes
in addition to role.

RABAC: Role-Centric Attribute-Based Access Control 93

Table 6. RABAC Configuration for Doctor-Patient Problem

1. Basic sets and function
UATT={doctorof, uproj} OATT={type, recordof, oproj}
attType(doctorof)= attType(uproj) = attType(oproj)= set
attType(type)= attType(recordof)= atomic
Range(uproj) = Range(oproj)={proj1, proj2, proj3 . . . }
Range(type)= {PatientRecord, AuthorizedDoc . . .}
Range(doctorof)= Patient
Patient is all patients maintained by the hospital, Patient⊆U.
Range(recordof)= U
FILTER= {FPatient, FAuthorized}
2. Permission filtering policy
FPatient(se: SESSIONS, o: OBS, read)
{

recordof(o)∈doctorof(sessionowner(se));
}
FAuthorized(se: SESSION, o: OBS, read)
{

(∃ proj1 ∈ oproj(o). ∃ proj2 ∈ uproj(sessionowner(se)).proj1=proj2)∧
(8:00≤time(sessionowner(se)) ∧ time(sessionowner(se)) ≤ 17:00) ∧
device(sessionowner(se)) ∈ { set of hospital certified devices }

}
TargetFilter(o: OBS)
{

filter = {};
case type(o) = PatientRecord: filter = filter ∪ FPatient;
case type(o) = AuthorizedDoc: filter = filter ∪ FAuthorized;
return filter;

}

4.2 Example

We show the usage of our model in the doctor-patient problem in collaborative
hospitals. The scenario is: Doctor, Patient and V isitDoc are roles in each hospi-
tal. Doctor are allowed to read their Patients’ record at any time. V isitDoc are
only allowed to read authorized documents which are revealed for collaboration
purpose with other hospitals. The request will only be approved during working
hours made from any hospital certified devices. In addition, visiting doctors from
other hospital are only allowed to view authorized documents pertaining to the
projects they participate in. We present the configuration in RABAC in table 6.
The elements are to be added to original RBAC solution. In traditional RBAC, a
V isitDoc role for each collaborative project should be defined. As new projects
are created and accomplished, V isitDoc roles have to be created and deleted.
In addition, roles for each project are only different in the permissions regarding
the specific projects. In our solution, a general V isitDoc role is defined to be
able to read all authorized projects documents. Then simple filtering policy can
be specified in a straightforward manner (shown below). Thus, the role needed

94 X. Jin, R. Sandhu, and R. Krishnan

to be defined in traditional RBAC is the same as the number of projects while
only one is needed in RABAC. Note that if the hospital requirements changes,
e.g. a visit doc can read all authorized documents in his department, the role-
permission and user-role relationship need to be changed in RBAC while such
change is not needed in RABAC. Rather we need to change the filtering policy
in RABAC, which in this case would simply delete the corresponding filtering
policy.

Following the above RABAC XACML profile we have implemented the fore-
mentioned doctor-patient problem based on SUN’s XACML implementation
[2]. As per the standard RBAC XACML profile the role policy is straight-
forward. The TargetFilter <PolicySet> defines a policy for filtering access on
PatientRecord and AuthorizedDoc. We take the PatientRecord as an example.
The target is all patient records and there is a reference to the corresponding fil-
ter function<Policy>. This policy defines a deny rule for reading patient records
and the rule takes effect if resource (i.e., patient record) owner does not belong
to the doctorof attribute value of a subject. One technical problem with this
implementation is that string-not-equal is not natively embedded into XACML
standard. Thus, we need to define this function which is straightforward and not
explicitly shown here. An abbreviated portion of the XACML code for FPatien-
dRecord is shown below (role policy is the same as RBAC XACML profile and
policy file for FAuthorized is similar).

XACML Code for PFP in Example

1 <Policy PolicyId="PFPPatiendRecord" RuleCombiningAlgId="deny-overrides">
2 <Target></Any Subject>
3 <Resources><!--Any PatientRecord--></Resources> </Any Action>
4 </Target>
5 <Rule RuleId="ReadRule" Effect="Deny">
6 <Target><Any Subject Resource/>
7 <Actions><Action><ActionMatch MatchId="string-equal">
8 <AttributeValue DataType="string">read</AttributeValue>
9 <ActionAttributeDesignator DataType="string"

10 AttributeId="action:action-id"/>
11 </ActionMatch></Action></Actions> </Target>
12 <Condition FunctionId="string-not-equal">
13 <Apply FunctionId="string-one-and-only">
14 <SubjectAttributeDesignator DataType="string"
15 AttributeId="doctorof"/></Apply>
16 <Apply FunctionId="string-one-and-only">
17 <ResourceAttributeDesignator DataType="string"
18 AttributeId="owner"/></Apply>
19 </Condition>
20 </Rule>
21 </Policy>

5 Conclusion and Future Work

In this paper, we proposed RABAC, a novel extension to the NIST RBAC model
in an effort to address the role explosion problem of RBAC without modifying
significant components of RBAC model and retaining the static relationships
between roles and permissions. It is the first model to integrate roles and at-
tributes using the role centric approach identified by Kuhn et al [23]. RABAC

RABAC: Role-Centric Attribute-Based Access Control 95

integrates roles and attributes in a flexible and reliable manner. In particular, we
define an independent component called the permission filtering policy (PFP)
adding to the existing components of the NIST RBAC model. We also extend
the functional specification of the NIST RBAC model and XACML profile for
RBAC. Our solution essentially retains the administration convenience of RBAC
while ensuring flexibility and scalability without role explosion.

There are several interesting directions for future work. Formal analysis of
tradeoffs between roles and attributes may provide practically useful insights
and results. The language CPL, which is used for specifying the filtering function
as well as conditions in TargetF ilter functions, can be extended to leverage the
power of XACML as these functions can be expressed through XACML policy
files.

Acknowledgment. The authors are partially supported by grants from AFOSR
MURI and the State of Texas Emerging Technology Fund.

References

1. OASIS, Extensible access control markup language (XACML), v2.0 (2005).
2. Sun’s XACML implementation,

http://sunxacml.sourceforge.net/index.html
3. Abdallah, A.E., Khayat, E.J.: A Formal Model for Parameterized Role-Based Ac-

cess Control. In: Formal Aspects in Security and Trust (2004)
4. Al-Kahtani, M.A., Sandhu, R.: A model for attribute-based user-role assignment.

In: ACSAC (2002)
5. Anderson, A.: XACML profile for role based access control (RBAC). Technical

Report Draft 1, OASIS (February 2004)
6. Bao, Y., Song, J., Wang, D., Shen, D., Yu, G.: A Role and Context Based Access

Control Model with UML. In: ICYCS (2008)
7. Chadwick, D.W., Otenko, A., Ball, E.: Implementing Role Based Access Controls

Using X.509 Attribute Certificates. IEEE Internet Computing (2003)
8. Chakraborty, S., Ray, I.: TrustBAC: integrating trust relationships into the RBAC

model for access control in open systems. In: SACMAT (2006)
9. Cirio, L., Cruz, I.F., Tamassia, R.: A Role and Attribute Based Access Control

System Using Semantic Web Technologies. In: Meersman, R., Tari, Z. (eds.) OTM-
WS 2007, Part II. LNCS, vol. 4806, pp. 1256–1266. Springer, Heidelberg (2007)

10. Covington, M.J., Long, W., Srinivasan, S., Dev, A.K., Ahamad, M., Abowd, G.D.:
Securing context-aware applications using environment roles. In: SACMAT (2001)

11. Covington, M.J., Sastry, M.R.: A Contextual Attribute-Based Access Control
Model. In: Meersman, R., Tari, Z., Herrero, P. (eds.) OTM 2006 Workshops. LNCS,
vol. 4278, pp. 1996–2006. Springer, Heidelberg (2006)

12. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Richard Kuhn, D., Chandramouli, R.:
Proposed NIST standard for role-based access control. ACM Trans. on Infor. and
Sys. Sec. (2001)

13. Fischer, J., Marino, D., Majumdar, R., Millstein, T.: Fine-Grained Access Con-
trol with Object-Sensitive Roles. In: Drossopoulou, S. (ed.) ECOOP 2009. LNCS,
vol. 5653, pp. 173–194. Springer, Heidelberg (2009)

http://sunxacml.sourceforge.net/index.html

96 X. Jin, R. Sandhu, and R. Krishnan

14. Fong, P.W.L.: Relationship-based access control: protection model and policy lan-
guage. In: CODASPY (2011)

15. Fuchs, L., Pernul, G., Sandhu, R.S.: Roles in information security-A survey and
classification of the research area. Computers & Security (2011)

16. Gallagher, M.P., O’Connor, A.C., Kropp, B.: The economic impact of role-based
access control. In: Planning report 02-1, NIST, (March 2002)

17. Ge, M., Osborn, S.L.: A design for parameterized roles. In: DBSec (2004)
18. Giuri, L., Iglio, P.: Role templates for content-based access control. In: Proc. of the

Second ACM Workshop on RBAC. ACM (1997)
19. Huang, J., Nicol, D., Bobba, R., Huh, J.H.: A Framework Integrating Attribute-

based Policies into RBAC. In: SACMAT (2012)
20. Jin, X., Krishnan, R., Sandhu, R.: A Unified Attribute-Based Access Control Model

Covering DAC, MAC and RBAC. In: DBSec (2012)
21. Kalam, A.A.E., Benferhat, S., Miege, A., Baida, R.E., Cuppens, F., Saurel, C.,

Balbiani, P., Deswarte, Y., Trouessin, G.: Organization based access control. In:
POLICY (2003)

22. Karp, A.H., Haury, H., Davis, M.H.: From ABAC to ZBAC: the evolution of access
control models, In: Tech. Report, HP Labs (2009)

23. Richard Kuhn, D., Coyne, E.J., Weil, T.R.: Adding Attributes to Role-Based Ac-
cess Control. IEEE Computer 43(6), 79–81 (2010)

24. Kumar, A., Karnik, N., Chafle, G.: Context sensitivity in role-based access control.
SIGOPS Oper. Syst. Rev. 36(3), 53–66 (2002)

25. Sandhu, R., Bhamidipati, V., Munawer, Q.: The ARBAC97 model for role-based
administration of roles. ACM Trans. on Info. and Sys. Sec. (1999)

26. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Computer 29(2), 38–47 (1996)

27. Xu, M., Wijesekera, D., Zhang, X., Cooray, D.: Towards Session-Aware RBAC
Administration and Enforcement with XACML. In: POLICY (2009)

28. Yong, J., Bertino, E., Toleman, M., Roberts, D.: Extended RBAC with role at-
tributes. In: 10th Pacific Asia Conf. on Info. Sys. (2006)

29. Zhang, Z., Zhang, X., Sandhu, R.: ROBAC: Scalable role and organization based
access control models. In: IEEE TrustCol (2006)

Trust-Aware RBAC

Vladimir Oleshchuk

Department of ICT, University of Agder
PB 509, N-4898 Grimstad, Norway

vladimir.oleshchuk@uia.no

Abstract. In this paper we propose a trust-aware enhancement of RBAC
(TA-RBAC) that takes trustworthiness of users into consideration explic-
itly before granting access. We assume that each role in the framework is
associated with an expression that describe trustworthiness of subjects re-
quired to be able to activate the role, and each subject (user) has assigned
trustworthiness level in the system. By adding trustworthiness constraints
to roles we enhance system, for example, with more flexible ability to del-
egate roles, to control reading/updating of objects by denying such oper-
ations to those subjects that violate trustworthiness requirements.

1 Introduction

Over the years, Role-Based Access Control (RBAC) has established itself as a
generalized approach for handling access control in computer systems and differs
from traditional identity based access control models in that it takes advantage
of the concept of role relations [11, 10]. For these models, access to data and
resources are based on the organizational activities and responsibilities, or roles,
which users possess in a system. In RBAC, a user’s ability to access computer
resources (objects) is determined by the user’s association with roles and by these
roles’ permissions to perform operations on objects. Usually roles correspond to
different job functions within an organization. Job functions are associated sets
of permissions, which can be seen as expression of trustworthiness of role holder
within an organization.

Different access control models to support various organizational security poli-
cies have been proposed over the years. The first model that supported integrity
protection of resources was Biba Model developed by Kenneth J. Biba in 1977
[5]. This model describes a set of access control rules designed to ensure data
integrity. The idea is that subjects on lower integrity levels are not permitted
to modify (corrupt) objects on higher integrity levels (known as ”no write up”
rule). Correspondently, subjects on higher integrity levels can be corrupted by
accessing objects on lower integrity levels (known as ”no read down” rule). This
model can be considered as one of the first models dealing with trustworthi-
ness (also implicitly). According to [6], ”integrity refers to the trustworthiness
of data or resources, and it is usually phrased in terms of preventing improper
or unauthorized change”.

Bell-LaPadula model was proposed to support protection of confidentiality
[3]. This model describes access rules to protect confidentiality of resources.

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2012, LNCS 7531, pp. 97–107, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

98 V. Oleshchuk

Assuming that subjects are assigned clearance levels and objects are assigned
classification levels the model’s rule support no write down and no read up rules.
However these rules also prevent effective communication.

Role Based Access Control (RBAC) Model has been found to be quite useful
and has drawn a lot of research interest over the last fifteen years. It was recently
defined as NIST/ANSI Standard [2]. Traditional RBAC considers user to role as
well as role to permission assignments to be static in nature with respect to space
and time. However it was observed that the context-aware access should play a
more active role in access decision process. For example, in mobile applications,
spatial context plays an increasingly important role both in defining and en-
forcing more elaborated security policies since in many applications locations of
participants should directly influence access control decisions [1, 7, 9, 17–19, 22].

In recent years some new extensions of RBAC that use notion of trust have
being proposed [4, 8, 24, 25]. Trust-aware access control models are more suitable
for decentralized, multi-centric systems with dynamic population of users where
traditional access models do not work well. One of the benefit of trust awareness
(not considered yet in existing extensions of RBAC) is an ability to provide
history-based solutions.

In this paper we propose to enhance the discrete trust paradigm with more
elaborated multi-level trust paradigm based on notion of opinion from subjective
logic. In this new trust-enhanced model, trust levels of subjects (human users
or software agents acting on users behalf), roles and objects (data, programs,
processes) are expressed as opinions about their trustworthiness determined by
history of interactions between subjects (users) and objects. We define such
opinions in the framework of subjective logic [14, 15].

The rest of the paper is organized as follows. In Section 2 we provide brief
review of related work. We introduce notation and notions of subjective logic
in Section 3. Then we present our trust-enhanced RBAC model in Section 4.
Finally, Section 5 concludes the paper.

2 Related Work

Recent years many context-aware extensions of RBAC were proposed. Most of
them considered specifically access wth respect of time and location.

In [17, 18], authors extend the RBAC model by specifying spatial restric-
tions on permissions assigned to roles which enables a role to have permissions
assigned to it dependent on the location. Spatial constraints on permissions as-
signed to a role can be beneficial when specifying the access control policy in
mobile environments where the location from which a user wnats to access ser-
vices is a key security parameter [19]. Authors have extended the RBAC model,
and introduced a formal model that allows specifying spatial constraints on per-
missions associated with roles in different locations. In [9] authors propose a
spatially-aware RBAC model called GEO-RBAC. In the proposed approach au-
thors propose the notion of spatial roles which are defined as roles with spatial
extents defining the boundaries of the space in which the role can be used by the

Trust-Aware RBAC 99

users. In this approach roles are activated based on the position of the user. An-
other location aware RBAC model has been proposed in [22]. Authors show how
the different components of the core RBAC model are related to location, how
existing operations need to be modified and what new operations are needed.
They left elaboration of role hierarchies and separation of duty constraints for fu-
ture work. Several authors have also proposed models that combine both spatial
and temporal aspects [7, 1].

However, relatively recently some authors started to consider trust as a new
context parameter. This is motivated by desire to expand RBAC models to meet
security challenges posed by new application paradigms were existing models
found to be inadequate (for example, for open and decentralized systems or
mobile and pervasive systems). In [4] authors motivation was to provide ac-
cess control model for Web services. They propose an extended, trust-enhanced
version of XML-based RBAC (X-RBAC) framework that incorporates context-
based access control. In the framework, the authors rely on certification provided
by trusted third party assigning levels of trust to users. In [8] authors propose
a trust based access control model called TrustBAC by extending the conven-
tional RBAC model with the notion of trust levels. Users are assigned to trust
levels instead of roles based on a number of factors like user credentials, user
behavior history, user recommendation etc. Trust levels are numbers between
−1 and +1 and which computes by the trust evaluation module. In [24] authors
propose a trust-based RBAC model for pervasive computing systems where they
adapt trust model they proposed earlier [23] to evaluate trustworthiness. Needs
for delegation arise in many applications. Trustworthy delegation that does not
violate security policies by allowing access only to trustworthy delegatee was
considered in [25]. In [20] authors propose a framework that combines strenths
of RBAC systhems and trust-management systems to deal with access control in
decenralized collabarative systems. The trustworthness of subjects is determined
on the base of their certified attributes.

3 Measurement of Trust: Subjective Logic

In this section, we show how to express the levels of trustworthiness in the
framework of subjective logic. Following [14, 15] we first define the term opinion,
denoted ω, that expresses opinion about level of trustworthiness.

Let t, d and u be such that t + d + u = 1 and t, d, u ∈ [0, 1]. Then a triple
ω = {t, d, u} is called an opinion, where components t, d and u represent levels
of trust, distrust and uncertainty respectively. The levels of trustworthiness are
expressed by opinions. Varying these parameters, we can express different levels
of trustworthiness. Expressing trustworthiness using three values instead of just
one trust level provides a more adequate trust model of real world with uncer-
tainties. These parameters are not treated equally when different opinions are
combined.

The subjective logic defines a set of logical operators for combining opinions
including conjunction, recommendation, and consensus. For more details related
to subjective logic the reader is recommended to consult [14–16].

100 V. Oleshchuk

Let ωA =
{
tA, dA, uA

}
denote an opinion about trustworthiness of entity A.

Let ωA
p =

{
tAp , d

A
p , u

A
p

}
denote an opinion of entity A about consequences for

security of an action p. In context of this paper, A can be an RBAC system itself
or a user, and an action p may be ”activate role r”. Assume that an entity A
has an opinion ωA

p =
{
tAp , d

A
p , u

A
p

}
about potential security threat of p, and an

opinion ωA
q =

{
tAq , d

A
q , u

A
q

}
about potential security threat q. Then A’s opinion

about consequences for security of both actions, denoted as p∧ q , can be found
(according to [14]) as following:

ωA
p∧q = ωA

p ∧ ωA
q =

{
tAp∧q, d

A
p∧q, u

A
p∧q

}
where

tAp∧q = tAp t
A
q

dAp∧q = dAp + dAq − dAp d
A
q

uA
p∧q = tAp u

A
q + uA

p t
A
q + uA

p u
A
q

Let A and B be two entities (RBAC systems or users). If A is a RBAC system
itself, it has opinions about trustworthiness of its own users but not about users
in other RBAC systems (in a federated system). Then ωA

B =
{
tAB, d

A
B , u

A
B

}
de-

notes an opinion of A entity about trustworthiness of recommendations given
by B. Assume B gives its recommendation to A about trustworthiness of action
p in the form of its opinion ωB

p . Assuming that an entity A does not have any

direct opinion ωA
p about p it will try to deduce some indirect opinion about trust-

worthiness of p, denoted ωAB
p , based on recommendation given by B. For this

purpose the recommendation operator ⊗ is used (according to [14]) as follows:

ωAB
p = ωA

B ⊗ ωB
p =

{
tAB
p , dAB

p , uAB
p

}
where

tAB
p = tABt

B
p

dAB
p = tABd

B
p

uAB
p = dAB + uA

B + tABu
B
p

In context of this work there is a need to combine independent opinions about
trustworthiness of the same action. According to [16], ”The consensus opinion
of two possibly conflicting argument opinions is an opinion that reflects both
argument opinions in a fair and equal way”. Adjusting reasoning from [16] we
can argue applicability of the consensus operator (defined below).

Let A and B be two entities that represent entities such as the system or
users. Let ωA = {tA, dA, uA} and ωB = {tB, dB, uB} be two opinions of A
and B about the same action (object, user). In the case when there are several
independent opinions about the same action, subjective logic suggests to use
a consensus operator ⊕ to combine these independent opinions. According to
subjective logic, the combined consensus opinion ω based on ωA and ωB is
defined as follows:

ω = ωA ⊕ ωB

Trust-Aware RBAC 101

where
t = (tAuB + tBuA)/(uA + uB − uAuB)

d =
(
dAuB + dBuA

)
/
(
uA + uB − uAuB

)
r

u =
(
uAuB

)
/
(
uA + uB − uAuB

)
We define odering relation on opinions in the following way. We assume that
opinion ωA is more trustworthy than opinion ωB, denoted ωA � ωB, if tA > tB.
If tA = tB, then higher distrust value means lower corresponding uncertainty
value. Assuming that decreasing uncertainty may contribute equally to both
trust and distrust values, we choose opinions with higher uncertainty (and with
equal trust values tA and tB) be more trustworthy. Formally, if tA = tB then
ωA � ωB if uA > uB .

In the following section we describe how trustworthiness expressed as opinions
can be integrated into traditional RBAC model.

4 Trust-Aware RBAC (TA-RBAC)

Informally, we assume that there is a set of roles ROLES that may be assigned
to users from USERS. Each user u may have many roles assigned at the same
time. Each role r from ROLES is associated with a pair {ωl, ωh}. It means that
trustworthiness of a user u who are able to activate r cannot be lower than ωl

and higher than ωh respectively.
In this section we propose a trust-aware RBAC (TA-RBAC) model that is

an extension of traditional RBAC model [2]. Since the time of introduction of
RBAC, various context-aware models were proposed (see Section 2). However
some important features dictated by current and future real-world applications
such as, for example, handling access request in proximity of specific devices [21]
or taking history of behavior or actions are still not well-developed. This is the
motivation behind the proposed extension.

Informally, in the proposed extension of RBAC each role r from ROLES
has assigned requirements on trustworthiness of users u from USERS that are
permitted to activate this role. It means that to have role assigned to u is not
enough - it is also necessary verify that the current level of trustworthiness of u
satisfies trustworthiness requirements assigned to the role r. This is an additional
constraint (requirement) that may be used to take into account behavior history
of u such as what roles u has activated in the past, for which purposes, from
which location, when, etc. Dynamically changing trustworthiness constraints of
roles provides additional constraints on ability of u to activate assigned roles,
for example, in case of trust-aware separation of duties (explained in Subsection
4.3).

The proposed TA-RBAC model consists of the following five basic compo-
nents: USERS, ROLES, PRMS, SESSIONS and TRW representing the set
of users, roles, permissions, sessions and opinions respectively, where TRW is
a set of possible opinions about trustworthiness of users and roles. Users from
USERS are considered to be either humans, devices or processes operating on

102 V. Oleshchuk

behalf of other users that can access resources (services) to perform some actions.
ROLES describes a collection of roles defined as a set of permissions that may
be guarded by trustworthiness constraints to control accessibility to resources
(objects). PRMS is a set of permissions to access resources/services to per-
form a specific action if trustworthiness of the user satisfies trust requirements.
Elements of TRW is specified by means of subjective logic opinions.

4.1 Core Model

The model defines several functions and relations on the sets USERS, ROLES,
PRMS, SESSIONS, TRI needed for specification and implementation of TA-
RBAC. The user assignment relation UA represents the assignment of a user
from USERS to roles from ROLES. The permission assignment relation PA
represents the assignment of permissions to roles based on trustworthiness of
both users and services. Definition below gives formal descriptions of some im-
portant functions and relations.

Definition 1. TA-RBAC core model consists of the following components:

– USERS, ROLES, PRMS, SESSIONS and TRW , represent the finite
sets of users, roles, permissions, sessions, and opinions respectively;

– PRMS = REQUESTS × SERV ICES where REQUESTS denotes all
action requests users can send to services denoted as SERV ICES;

– TRW represents trustworthiness in form of subjective logic opinions (in-
cluding complete trust (1, 0, 0), complete distrust (0, 1, 0) and complete un-
certainty (0, 0, 1));

– UA ⊆ USERS ×ROLES , the relation that associates users with roles;
– TRI ⊆ TRW × TRW represents the set of trustworthiness intervals, where

(ω1, ω2) ∈ TRI means ω1 � ω2 or ω1 = ω2;
– UT ⊆ USERS×TRW defines assignment of trustworthiness level to users;
– assigned trust (u : USERS)→ TRW , the function mapping a user u into

an opinion. Formally, trustworthiness of user u can be found as
assigned trust (u) = {ω|(u, ω) ∈ UT };

– RT ⊆ ROLES × TRI defines assignment of trustworthiness level to roles;
– role trust constr(r : ROLES) → TRI, the function that maps a role r

to trustworthiness interval from TRI. Formally, trustworthiness constraints
associated with r can be found as role trust constr(r) = {t|(r, t) ∈ RT }.

– assigned users(r : ROLES)→ 2USERS , the mapping of a role onto a set of
users. Formally, users assigned to role r can be found as assigned users(r) =
{u ∈ USERS|(u, r) ∈ UA} ;

– assigned roles(u : USERS)→ 2ROLES , the mapping of a user u onto a set of
roles. Formally, roles assigned to a user u can be found as assigned roles(u) =
{r ∈ ROLES|(u, r) ∈ UA};

– PA ⊆ ROLES×PRMS , the relation that defines what permissions PRMS
of a role r from ROLES are available to a user with trustworthiness level
suitable to activate r. That is (r, p) ∈ PA means that if user u has assigned
role r she can utilize permission p = (req, srv) to access service srv when
trustworthiness of u satisfies trust requirement of r.

Trust-Aware RBAC 103

– assigned perms(r : ROLES, t : TRW) → 2PRMS describes permissions
assigned to role r when trustworthiness of a user u activating r satisfies
trust requirements of r. Formally, assigned perms(r) = {p|(r, p) ∈ PA};

– user sessions(u : USERS) → 2SESSIONS, associate a user u with set of
sessions;

– session roles(s : SESSIONS) → 2ROLES, the mapping of session s to a
set of roles;

– avail session perms(s : SESSIONS, t : TRI)→ 2PRMS , the permissions
available in a session s when trust requirements satisfies t.
Formally, avail session perms(s, t) =

⋃
r∈session roles(s)

assigned perms(r, t)

– auth user(r : ROLES, t : TRI)→ USERS identifies users assigned to role
r satisfying t.

– auth user(r1, r2, : ROLES) → USERS identifies users assigned to at
least roles r1, r2, ..., rk;

– auth user(s : SESSIONS; r1, r2, : ROLES)→ USERS identifies users
that are authorized to activate simultaneously roles r1, r2, ...rk within a ses-
sion s.

We assume that each user u assigned an initial trust level, init trust : USERS →
TRW , and each role r from ROLES has assigned trustworthiness constraints as[
ωl, ωh

]
from TRI where ωl denotes the lowest trust level that a user umust have

to be able activate r; ωh denotes a trustworthiness level that user activating r
must not exceed (in cases when it is not essential ωh = (1, 0, 0), meaning highest
possible trustworthiness).

4.2 Role Hierarchies

In order to extend the core TA-RBAC to Hierarchical TA-RBAC we need to de-
fine hierarchies and inheritance for roles in presence of trust describing how roles
inherit permissions from their junior roles. Definition below formally introduces
our solution.

Definition 2. Relation RH, defines as RH ⊆ ROLES ×ROLES, is a partial
order on roles, with respect to trustworthiness, called dominance relation, denoted
as � , where ri � rj for ri, rj ∈ ROLES means that ri inherits permissions of rj.
Let role trust constr(rj) = (ωl

j , ω
h
j) and role trust constr(ri) = (ωl

i, ω
h
i) . We

saying that role ri inherits permissions of role rj with trustworthiness constraints
for user assigned to ri computed as following: (ωl

j ⊕ ωl
i, ω

r
j ⊕ ωr

i).

The use of the consensus operator can be argued that trustworthiness constraints
(ωl

i, ω
h
i) and (ωl

j , ω
h
j) can be seen as independent opinions on trustworthiness

constraints of rj .
The reason for use of the consensus operator is as following. There are two

independent sets of trustworthiness constraints of ri: 1) the trusworthiness con-
straints on ri independant of hierarchies, and 2) trustworthiness constraints
derived from constraints of the inherited role rj . In case of two independent

104 V. Oleshchuk

opinions the consensus operator usually applied to find a combined opnions that
constitutes the new constraints. The user assigned to ri have to satisfy native
constraints of ri to use its permissions. However when the user wants to use
inherited permissions of rj , she must satisfy constraints that are consensus be-
tween constraints of ri and rj . A user assigned directly to rj have to satisfy
native constraints of rj in order to activate its permissions.

4.3 Separation of Duties

The efficiency of RBAC to enforce the principle of least privilege is partly due to
ability to enforce Separation of Duties (SoD) principle. However by constraining
ability of users to activate some combination of roles reduce system’s usability,
for example, in small organizations where number of users are small with respect
to number of roles.

The trust-awareness may provide better flexibility by for example putting less
constraints on highly trustful users. However, that means that the notion of SoD
needs to be re-defined. We defines both Trust-aware Static SoD (TSSoD) and
Trust-aware Dynamic SoD (TDSoD), where requirement to trustworthiness of a
user who activates (partly) mutually exclusive roles increases. That is, two roles
with assigned permissions may be partly mutually exclusive if system requires
higher level of trustworthiness comparing to requirements when only each role
will be activated separately.

We define trust-aware separation of duty SoD property as following set. Let
S = {(r, ω), ...} where r ∈ ROLES, ω ∈ TRW and ω informally represents
opinion of the RBAC system on how security sensitive activation of r is. When a
user u activates a set of roles r1, r2, ..., rk such that from {(ri, ωi)|i = 1, ..., k} ⊆
S the requirements to trustworthiness of the user will be computed as ω1 ∧
... ∧ ωk. Informally, it means that more trustworthy users are able to activate
simultaneously more roles from S.

Formally, TSSoD can be defined as following.

Definition 3. TSSoD ∈ 2ROLES×TRW is a set of pairs (r, ω) where is a role,
ω is a trustworthiness, with the property that no user can be assigned to subset
of roles from TSSoD such that conjuction of opinions ωi of assigned roles will
exceed initial trustworthiness of that user. Formally, {(ri, ωi)|i = 1, 2, ..., k} ⊆
TSSoD ∧ ∀u ∈ auth user(ri |i = 1, ..., k)⇒ user trw(u)� ∧i=1,2,...,kωi

Formally, TDSoD can be defined as following.

Definition 4. TDSoD ∈ 2ROLES×TRW is a collection of pairs (r, ω) where r
is a role, ω is a trustworthiness, with the property that no user can activate
a subset of roles from TDSoD such that conjunction of opinions ωi of roles
activated within a session will exceed initial trustworthiness of that activating
user. Formally: {(ri, ωi) |i = 1, 2, ..., k} ⊆ TDSoD ∧ s ∈ user sessions(u) ⇒
∀u ∈ auth user(s, ri |i = 1, ..., k)⇒ user trw(u)� ∧i=1,2,...,kωi

The reason of using conjunction operator is as following. Since opinion about
security implications (potential security threats) of activation role ri is ωi the

Trust-Aware RBAC 105

opinion about security implications of activation simultaniosly a set of such roles
can be computed as a conjunction of coresponding opinions.

4.4 Delegation

Many authors have studied role delegation in RBAC [27, 26, 25]. In this work
we propose to control the ability to delegate roles by taking into considera-
tion trustworthiness of delegatee and trustworthiness constraints of delegated
role. The idea is that a user with high degree of trustworthiness can delegate
role with relatively high trustworthiness requirements to less trustful user (since
combination of role constraints and user trustworthiness can decrease required
trustworthiness and therefore make it available for less trustful user). Delegation
is not a part of standart RBAC and it may result in security violation. However
it may provide better usability.

Suppose that a user u wants to delegate her role r to another user u′ (that has
not this role assigned). One way to do this is to add the instance of r called r′ (r′

is a new instance of r which may differs from r by trustworthiness constraints)
to u′ by adding r′ to the list of assigned roles assigned to u′. That is

assigned role(u′) = assigned role(u′) ∪ {r′, (ωl
r′ , ω

h
r′)},

where the trustworthiness requirements (ωl
r′ , ω

h
r′) on this delegated role r′ will

be computed as combination of trustworthiness of u and constraints of r as
following (since it can be seen as a recommendation of r by u to u′) as following:

ωl
r′ = ωu ⊗ ωl

r

ωh
r′ = ωu ⊗ ωh

r

where ωu denotes trustworthiness of u. The use the recommendation operator
in this case because we consider delegation of role r by u to u′ as a recom-
mendation of u to the system to assign r to u′. The system uses trusworthiness
of u as trustworthiness of u’s recommendations and computes trustworthiness
constraints for r′ by taking into consideration of trustworthiness of u.

5 Conclusion

In this work we propose a novel trust-aware RBAC model (TA-RBAC). Our
approach integrates trustworthiness levels expressed as opinions in subjective
logic with traditional RBAC model. We have defined trust-aware role inheri-
tance which is essential for defining Hierarchical trust-aware RBAC. By using
subjective logic operations for combining independent opinions we define static
and dynamic trust-aware SoD. We use recommendation operator to define trust-
aware role delegation.

106 V. Oleshchuk

References

1. Aich, S., Sural, S., Majumdar, A.: STARBAC: Spatiotemporal Role Based Access
Control. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part II. LNCS, vol. 4804,
pp. 1567–1582. Springer, Heidelberg (2007)

2. ANSI/INCITS 359-2004. Role Based Access Control. InterNational Committee for
Information Technology Standards (formerly NCITS) / 03-Feb-2004 / 56 pages

3. Bell, D.E., LaPadula, L.J.: Secure Computer Systems: Mathematical Foundations.
MITRE Corporation (1973)

4. Bhatti, R., Bertino, E., Ghafoor, A.: A Trust-Based Context-Aware Access Control
Model for Web-Services, Distributed and Parallel Databases (2005)

5. Biba, K.J.: Integrity Considerations for Secure Computer Systems, MTR-3153,
The Mitre Corporation (April 1977)

6. Bishop, M.: Computer Security: Art and Science. Addison Wesley, Boston (2003)
7. Chandran, S.M., Joshi, J.B.D.: LoT-RBAC: A Location and Time-Based RBAC

Model. In: Ngu, A.H.H., Kitsuregawa, M., Neuhold, E.J., Chung, J.-Y., Sheng,
Q.Z. (eds.) WISE 2005. LNCS, vol. 3806, pp. 361–375. Springer, Heidelberg (2005)

8. Chakraborty, S., Ray, I.: TrustBAC: integrating trust relationships into the
RBAC model for access control in open systems. In: Proceedings of the Eleventh
ACM Symposium on Access Control Models and Technologies (SACMAT 2006),
pp. 49–58. ACM, New York (2006)

9. Damiani, M.L., Bertino, E., Catania, B., Perlasca, P.: Geo-RBAC: A spatially
aware RBAC. ACM Trans. Inf. Syst. Secur. 10, 1–42

10. Ferraiolo, D.F., Kuhn, D.R., Chandramouli, R.: Role-Based Access Control. Artech
House (2003)

11. Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.: Proposed
NIST standard for role-based access control. ACM Transactions on Information
and System Security (TISSEC) 4(3), 224–274 (2001)

12. Ferreira, A., Chadwick, D., Farinha, P., Correia, R., Zao, G., Chilro, R., Antunes,
L.: How to securely break into RBAC: The BTG-RBAC model. In: Annual Com-
puter Security Applications Conference, ACSAC 2009, pp. 23–31 (December 2009)

13. Ferreira, A., Cruz-Correia, R., Antunes, L., Farinha, P., Oliveira-Palhares, E.,
Chadwick, D., Costa-Pereira, A.: How to break access control in a controlled man-
ner. In: 19th IEEE International Symposium on Computer-Based Medical Systems
CBMS 2006, pp. 847–854 (2006)

14. Jøsang, A.: An Algebra for Assessing Trust in Certification Chains. In: Kochmar,
J. (ed.) Proceedings of the Networks and Distributed Systems Security, NDSS 1999
(1999)

15. Jøsang, A.: A Logic of Uncertain Probabilities, International Journal of Uncer-
tainty. Fuzziness and Knowledge-Based Systems 9(3), 279–311 (2001)

16. Jøsang, A.: The Consensus Operator for Combining Beliefs. Artificial Intelligence
Journal 142(1-2), 157–170 (2002)

17. Hansen, F., Oleshchuk, V.: Spatial role-based access control model for wireless
networks. In: IEEE Vehicular Technology Conference VTC 2003, vol. 3, pp. 2093–
2097 (2003)

18. Hansen, F., Oleshchuk, V.: SRBAC: A spatial role-based access control model for
mobile systems. In: Proceedings of the Seventh Nordic Workshop on Secure IT
Systems (Nordsec 2003), October 15-17, pp. 129–141 (2003)

Trust-Aware RBAC 107

19. Hansen, F., Oleshchuk, V.: Location-based security framework for use of handheld
devices in medical information systems. In: Fourth Annual IEEE International
Conference on Pervasive Computing and Communications, PerCom Workshops
2006, March 13-17, pp. 564–569 (2006)

20. Li, N., Mitchell, J.C., Winsborough, W.H.: Design of a role-based trust manage-
ment framework. In: Proceedings of the 2002 IEEE Symposium on Security and
Privacy, pp. 114–130. IEEE Computer Society Press (2002)

21. Oleshchuk, V., Fensli, R.: Remote patient monitoring within a future 5G infras-
tructure. Wireless Personal Communications 57, 431–439

22. Ray, I., Kumar, M., Yu, L.: LRBAC: A Location-Aware Role-Based Access Control
Model. In: Bagchi, A., Atluri, V. (eds.) ICISS 2006. LNCS, vol. 4332, pp. 147–161.
Springer, Heidelberg (2006)

23. Ray, I., Ray, I., Chakraborty, S.: An interoperable context sensitive model of trust.
Journal of Intelligent Information Systems 32(1), 75–104 (2009)

24. Toahchoodee, M., Abdunabi, R., Ray, I., Ray, I.: A Trust-Based Access Control
Model for Pervasive Computing Applications. In: Gudes, E., Vaidya, J. (eds.) Data
and Applications Security XXIII. LNCS, vol. 5645, pp. 307–314. Springer, Heidel-
berg (2009)

25. Toahchoodee, M., Xie, X., Ray, I.: Towards Trustworthy Delegation in Role-Based
Access Control Model. In: Proceedings of the 12th International Conference on
Information Security, Pisa, Italy, September 07-09 (2009)

26. Wainer, J., Kumar, A.: A fine-grained, controllable, user-to-user delegation method
in RBAC. In: Proceedings of the Tenth ACM Symposium on Access Control Models
and Technologies (SACMAT 2005), pp. 59–66. ACM, New York (2005)

27. Zhang, X., Oh, S., Sandhu, R.: PBDM: a flexible delegation model in RBAC.
In: Proceedings of the Eighth ACM Symposium on Access Control Models and
Technologies (SACMAT 2003), pp. 149–157. ACM, New York (2003)

Alternative Mechanisms

for Information Security

Alexander Grusho, Nick Grusho, and Elena Timonina

Institute of Informatics Problems, RAS,
Vavilova str. 44, 119333 Moscow, Russia

{grusho,eltimon}@yandex.ru, info@itake.ru

Abstract. The usage of doubtful data for information protection is con-
sidered. It is shown that by means of unauthenticity it is possible to pro-
tect confidentiality, integrity and availability. The basic methods of usage
of unauthenticity are mentioned. We introduce the mathematical models
and present estimations of quality for information protection with help
of injection of unreliable information.

Keywords: information protection, unauthenticity of the information,
intellectual noise.

1 Introduction

The method of deception of the opponent at the expense of provision to it false
information is known since antique times, as for cryptography went in throughout
thousands years. However the cryptography became a science, when C.Shannon
defined how to evaluate that ciphers are good. Authors of this paper didn’t
find scientific works devoted to an estimation of quality of privacy and integrity
protection by means of adding of doubtful information. In this paper ideas for
quality estimations of information protection are offered when using doubtful
information. In the first model of the section 2 the estimation of quality of privacy
protection of information has numerical character and can be expressed through
a distance between true distribution of a choice of a decision and distribution of
a choice of the decision in case of adding of doubtful information. For example
the Kullback-Leibler’s distance [1] between these measure can be used. However
the parameter λ of our model can also be chosen as the numerical characteristic
of quality.

The analyst developing privacy protection by means of implementation of
doubtful information, can calculate distance in this model and compare to the
given threshold. If the distance is more than threshold, the analyst makes the
decision that the implementation method of doubtful information can be read
rather resistant. If the distance is less than threshold, the quantity of doubtful
information for privacy protection should be increased.

The second model developed in section 2 allows to construct an asymptotic
estimation of quality of information protection by means of adding of doubtful
data as probabilities of acceptance of the false decision.

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2012, LNCS 7531, pp. 108–113, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Alternative Mechanisms for Information Security 109

The second model in the section 2 is similar to models which are used in
artificial intelligence with applications to sociology [3].

Information protection, as a rule, is used for protection of confidentiality, in-
tegrity and availability. Numerous literature is devoted to methods of protection
of information (see, for example, [2]). However the necessity of new methods for
information protection is evident.

Examples of nonconventional methods of protection are considered in the pa-
per and the simplest estimations of the quality of these methods are carried out.
In the description of methods of protection of confidentiality it is necessary to
rise from level of representation of information to level of work with information.

The information circulates in a standard cycle:

information gathering - information analysis - decision-making by results of the
analysis - implementation of decisions

Value of the information is defined by its utility for the analysis and decision-
making. True information and correct analysis provide, as a rule, the correct
decision, which helps to achieve the target object. If the information is doubtful,
the confidence in correct results of the analysis doesn’t present, then the decision,
based on results of the analysis, maybe wrong, i.e. will not lead to the target
object in view.

The main idea of the work is to add doubtful information to protect confiden-
tiality and integrity and also estimate the quality of such protection. Of course
it is not simple to generate necessary doubtful information because we should
use special algorithms and sometimes artificial intellect [4].

Let’s consider applications of unauthenticity of the information for protection
of confidentiality and integrity. It is possible to use these methods to protect
availability also.

2 Model of Unauthenticity for Confidentiality Protection

The next models give a base for numerical estimations of quality of data confiden-
tiality protection. An analyst can defined different thresholds for these numerical
estimations. These thresholds give formal definition of what we want of privacy:

– the false decision is more preferable;
– identical arguments pro’s and con’s the correct and false decision;
– impossibility of the proof of unauthenticity of the information used for the

decision.

Let X be a set of decisions, P0 be a distribution of probabilities on X for a choice
of decisions by results of the true information analysis, P1 be a distribution of
probabilities on X for a choice of decisions on the basis of the false information
analysis. Then the distribution of probabilities on X

P = λP0 + (1− λ)P1,

110 A. Grusho, N. Grusho, and E. Timonina

where 0 ≤ λ ≤ 1, is the simplest model for a choice of decision on the basis of
doubtful or incomplete information.

To introduce the artificial unauthenticity means to choose P1 and λ. It is
clear that P1 should be different from P0. But it may be far away from an
aprior information on sense of the decision. Then λ produces likelihood for the
emulation of true decision. Thus unauthenticity of the information is the absence
of confidence in its correctness.

Let Y be a set of elementary fragments of the initial information, y be the
concrete information for analysis carrying out, P (x|y) be conditional probability
of decision-making x under condition of use for this decision of the initial data
y, Q(y) be probability of reception of the initial information y. We will assume
that it is possible to use the following formula of a total probability

P (x) =
∑
y∈Y

Q(y)P (x|y).

Protection of confidentiality of the correct decision is realized through granting
to the adversary of unreliable information. Let Q0 and Q1 be distributions of a
choice of the initial information y ∈ Y in true and false cases accordingly. If for
receiving true distribution of the decision the formula is fair

P0(x) =
∑
y∈Y

Q0(y)P (x|y),

and for the false decision the formula is fair

P1(x) =
∑
y∈Y

Q1(y)P (x|y),

then according to our model about probability of a choice of the decision the
formula is fair

P (x) =
∑
y∈Y

(λQ0(y) + (1− λ)Q1(y))P (x|y).

From here simple communication between artificial adding of unauthenticity and
decision distortion follows. The problem of protection of confidentiality of the
information consists in the fact that the legal analyst knew and used Q0(y), and
the analyst of the adversary for decision-making used distribution Q(y), which
in our model is in the formula

Q(y) = λQ0(y) + (1− λ)Q1(y)

at the unknown right side of the equation.
For achievement of demanded effect of security it is possible to transfer or

store more information. Let y1, ..., yn be fragments of information, where the
fragment yi is true (i is known to a legal analyst as a key), other information is
received according to distribution Q1.

Alternative Mechanisms for Information Security 111

Thereby the massive of the received data corresponds to a choice from distri-
bution Q′, where distribution

Q′ =
1

n
Q0 +

n− 1

n
Q1.

The adversary by data y1, ..., yn in our model can restore no more than distribu-
tion Q′. Thus expression Q′ through Q0 and Q1 isn’t known to him and Q0 �= Q′.
Then the adversary chooses the decision according to distribution

P ′ =
1

n
P0 +

n− 1

n
P1.

Thus given representation isn’t known to the adversary. The more P0 differs
from P ′ the better confidentiality of the true data is protected.

Thus, artificial unauthenticity of the information can protect confidentiality
of the authentic data.

We investigate the problem with the help of following simple model. We sup-
pose that all sets are finite, |X | = N , |Y | = M . For each y ∈ Y the number
of admissible solutions Xy ⊆ X is fixed. Let’s consider for simplicity that for
all y ∈ Y we have |Xy| = m. Let the true data y0 are received not randomly
and define a set of admissible decisions Xy0 . All other solutions x ∈ X \ Xy0

are inadmissible for the true data. For protection of confidentiality of the true
data y1, ..., yn randomly get out from Y , which define sets Xy1 , ..., Xyn which are
subsets of X .

We offer the elementary reasonable decision rule. Let’s use the finiteness of
considered scheme and we will calculate frequencies of occurrence ν(x) of sep-
arate decisions in X , which integrally met in Xy0 , Xy1, ..., Xyn . We accept the
decision x̃, which occurs the maximal number of times.

Let’s specify determination of randomness in our model at getting of artificial
data. Assume that for each y ∈ Y the choice of Xy is random and equiprobable
in X . It is equivalently to random and equiprobable sampling of a row of length
of N from 0 and 1, containing exactly m units. Then the chosen data represent
a random matrix from N columns and n rows. It is convenient to consider the
asymptotical case of the problem if N → ∞, n → ∞,M >> n + N . Thus
naturally to believe that the probability of a repeated choice of y is negligible. It
means that it is possible to consider that all rows of a matrix are equiprobable
and independent from each other. For simplicity we will work in conditions when
maxx∈X ν(x) is reached in one point. It is possible to prove that with probability
tending to one there is only one point x ∈ X that satisfy argmaxx∈X ν(x) when

N = o
(
(mn)

1
3

)
.

It is apparent that the defined probability measure is invariant for renumber-
ing of columns. At the considered restrictions it means that distribution of a
place of the single maximum of maxx∈X ν(x) is equiprobable. Then asymptoti-
cally

P

(
argmax

x∈X
ν(x) /∈ Xy0

)
= 1− m

N
.

112 A. Grusho, N. Grusho, and E. Timonina

It means that at m = o(N) with the probability aspires to 1, the decision which
is accepted by the opponent will be unacceptable for the true data. Thus the
legal analyst makes the decision, using a key - an arrangement of the true input
data.

3 Model of Unauthenticity for Integrity Protection

The method of integrity control on the base of steganography is offered in this
section.

Let the legal message be inserted in some legal container by means of a method
of steganography [5]. The receiver gets the message from the container, and
throws the container away. Let the method of steganography depend on a key
known to the sender and to the receiver.

It means that the adversary has no trustworthy information about the place
of the message in the container. Then the adversary is compelled to bring dis-
tortions randomly. It will damage the container with high probability. Container
distortions allow to reveal possible infringements of integrity of the true message
and to request its repeated transfer. Even, if the adversary repeatedly deforms
new transfer, it with a high probability deforms other signs on the true message.
Then by voting method the true message can be restored.

For some methods of a steganography we define estimations of quality of
integrity control. Namely, mathematical expectation E of number of distorted
letters in the hidden information message can be used for such estimation of
quality. It is possible to consider even more difficult parameter for estimation of
quality. It is probability of not distortion of the hidden message.

Let’s give estimation of E for LSB method of steganography. Let the probabil-
ity of distortion of one bit in case of attack on integrity is equal to p, probability
to use place i for transmission of the hidden message we will designate q. Then
E = npq, where n is the length of the text in which the hidden message is em-
bedded. Thus, it is possible to evaluate simply quality of integrity protection
when LSB method is used.

4 Methods of Inserting of Unauthenticity into
Information

To bring unauthenticity into information it is possible to present any information
object in the form of a set of variables. The concrete information represents a set
of values of these variables. Information gathering represents reading of values of
these variables. Ways of inserting of unauthenticity into the data are following:

– distortion or change of values of variables;
– liquidation of variables (absence of corresponding values in the transferred

data);
– creation of a false variable (occurrence of values of a false variable creates

discrepancy of the initial data more often).

Alternative Mechanisms for Information Security 113

For example, for identification of the hostile code in computer system the pro-
tection program should identify some events. If any of these events are absent,
the program cannot accept the true decision on presence of a hostile code.

Doubtful information creation can sometimes represent a challenge. In partic-
ular, it is required, when the false information object should look quite plausibly,
i.e. satisfy to a number of the logic restrictions connected with correct informa-
tion. For example, if testing of programs needs true data and it is forbidden,
hence, creation of the plausible data for testing is necessary.

The greatest obstacle in doubtful information creation is the process of accu-
mulation of the information. In the process of accumulation the quantity of logic
restrictions on the data increases. Then the probability of revealing of unauthen-
ticity of the information also increases. However this problem dares by means of
creation of models of information objects (for example, UML - models [6]).

5 Conclusion

The purpose of the work is to build models and create estimations of quality
of nonconventional methods for information protection, such as unauthenticity
creation. Doubtful information is widely used for the military purposes, however
these methods also can be applied effectively in competitive struggle and for
solution of other problems. Nonconventional methods allow to expand a set of
protected objects. For example, when using unreliable information it is simpler
to build protection for information processes. As shown in the paper, there are
new mathematical models of information security.

Acknowledgements. Work is supported by Russian Foundation for Basic Re-
search, the grant 10-01-00480.

References

1. Prokhorov, Y.V., Rozanov, Y.: A Probability theory: Science (1973) (in Russian)
2. Pieprzyk, J., Hardjono, T., Seberry, J.: Fundamentals of Computer Secyrity.

Springer (2003)
3. Mikheenkova, M.A.: About principles of the formalized qualitative analysis of soci-

ological data. J. Information Technologies and Computing Systems 4 (2009)
4. Grusho, A.A., Timonina, E.E.: Intellectual noise. J. Problems of Information Pro-

tection Computer Systems 1 (2000)
5. Grusho, A.A., Grusho, N.A., Timonina, E.E.: Some of application steganography

and security of steganographic scemes. J. Problems of Information Protection Com-
puter Systems 2 (2007)

6. Turmoils, G., Yakobson, A., Rambo, J.: UML. Classics CS. 2 izd./lanes with English:
Under the general edition of prof. S. Orlova - SPb.: Peter (2006)

Enforcing Information Flow Policies

by a Three-Valued Analysis

Josée Desharnais, Erwanne P. Kanyabwero, and Nadia Tawbi

Department of Computer Science and Software Engineering, Université Laval,
{josee.desharnais,nadia.tawbi}@ift.ulaval.ca,

erwamme-pamela.kanyabwero.1@ulaval.ca

Abstract. This paper presents an approach to enforce information flow
policies using a three-valued type-based analysis on a core imperative
language. Our analysis aims first at reducing false positives generated
by static analysis, and second at preparing for instrumentation. False
positives arise in the analysis of real computing systems when some in-
formation is missing at compile time, for example the name of a file,
and consequently, its security level. The key idea of our approach is to
distinguish between negative and may responses. Instead of rejecting in
the latter cases, we type instructions with an additional type, unknown,
indicating uncertainty, possibly preparing for a light instrumentation.
During the static analysis step, the may responses are identified and an-
notated with the unknown security type, while the positive and negative
responses are treated as is usually done. This work is done in prepara-
tion of a hybrid security enforcement mechanismWe prove that our type
system is sound by showing that it satisfies non-interference. The novelty
is the handling of three security types, but we also treat variables and
channels in a special way. Programs interact via communication chan-
nels. Secrecy levels are associated to channels rather than to variables
whose security levels change according to the information they store.

1 Introduction

Secure information flow analysis is a technique used to prevent misuse of data.
This is done by restricting how data are transmitted among variables or other
entities in a program, according to their security classes.

Our objective is to combine static and dynamic analysis. We design a three-
valued type system to statically check non-interference for a simple imperative
programming language. To the usual main security levels, public (or Low) and
private (or High), we add a third value, Unknown, that captures the possibility
that we may not know before execution whether the information is public or
private. Standard two-valued analysis has no choice but to be pessimistic with
uncertainty and hence generate false positive alarms. If uncertainty arises in the
analysis, we tag the instruction in cause: in a second step, instrumentation at
every such point together with dynamic analysis will allow us to head to a more
precise result than purely static approaches. We get reduced false alarms, while
introducing a light runtime overhead by instrumenting only when necessary.

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2012, LNCS 7531, pp. 114–129, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Enforcing Information Flow Policies by a Three-Valued Analysis 115

The goal of a security analysis is to ensure non-interference, that is, to pre-
vent inadvertent information leaks from private channels to public channels.
More precisely, in our case, the goal is to ensure that 1) a well-typed program
satisfies non-interference, 2) a program not satisfying non-interference is rejected
3) a program that may satisfy non-interference is detected and sent to the instru-
mentation step. Furthermore, we consider that programs have interaction with
an external environment through communication channels, i.e., objects through
which a program can get information from users (printing screen, file, network,
etc.). In contrast with the work of Volpano et al. [1], variables are not necessar-
ily channels, they are local and hence their security type is allowed to change
throughout the program. This is similar to flow-sensitive typing approaches like
the one of Hunt and Sands, or Russo and Sabelfeld [2,3]. Our approach distin-
guishes clearly communication channels, through which the program interacts
and which have a priori security levels, from variables, used locally. Therefore,
our definition of non-interference applies to communication channels: someone
observing the final information contained in communication channels cannot de-
duce anything about the initial content of the channels of higher security level.

We aim at protecting against two types of flows, as explained in [4]: explicit
flow occurs when the content of a variable is directly transferred to another
variable, whereas implicit flow happens when the content assigned to a variable
depends on another variable, i.e., the guard of a conditional structure.

The rest of this paper is organized as follows. After describing in Section 2
the programming language used, we present the type system ensuring that in-
formation will not be leaked improperly, in Section 3. The soundness of the type
system is proved in Section 4. We compare our work to similar approaches in
the literature in Section 5. We conclude in Section 6.

2 Programming Language

We illustrate our approach on a simple imperative programming language, a
variant of the one presented by Smith [5], which we adapt to deal with 3-valued
security levels.

2.1 Syntax

Let Var be a set of identifiers for variables, and C a set of communication channel
names. Throughout the paper, we use generically the following notation: vari-
ables are x ∈ Var, and there are two types of constants: n ∈ N and nch ∈ C. The
syntax is as follows:

(instructions) p ::= e | c
(expressions) e ::= x | n | nch | e1 op e2
(commands) c ::= skip | x := e | c1; c2

if e then c1 else c2 end | while e do c end |
receivec x1 from x2 |
receiven x1 from x2 |
send x1 to x2

116 J. Desharnais, E.P. Kanyabwero, and N. Tawbi

Instructions are either expressions or commands. Values are integers (we use zero
for false and nonzero for true), or channel names. op stands for arithmetic or
logic binary operators on integers and comparison operators on channel names.
Commands are mostly the standard instructions of imperative programs.

We suppose that two programs can only communicate through channels (which
can be, for example, files, network channels, keyboards, computer screens, etc.).
We assume that the program has access to a pointer indicating the next element
to be read in a channel and that the send to a channel would append an informa-
tion in order for it to be read in a first-in-first-out order. When an information
is read in a channel it does not disappear, only the read pointer is updated,
the observable content of a channel remains as it was before. Our programming
language is sequential; we do not claim to treat concurrency and communicating
processes as it is treated in [6,7]. We consider that external processes can only
read and write to public channels. The instructions related to accessing channels
deserve further explanations.

– receivec x1 from x2: stands for “receive content”. It represents an instruc-
tion that reads a value from a channel with name x2 and assigns its content
to x1.

– receiven x1 from x2: stands for “receive name”. Instead of getting data
from the channel, we receive another channel name, which might be used
further in the program. This variable has to be treated like a channel.

– send x1 to x2: used to output on a channel with name x2 the content of the
variable x1.

The need for two different receive commands is a direct consequence of our
choice to distinguish variables from channels. It will be clearer when we explain
the typing of commands, but observe that this allows, for example, to receive a
private name of channel through a public channel 1: the information can have a
security level different from its origin’s. This is not possible when variables are
observable.

2.2 Semantics

The behavior of the program follows the structural operational semantics shown
in Table 1. An instruction p is executed under a memory map μ : Var→ N ∪ C.
Hence the semantics specifies how configurations 〈p, μ〉 evolve, either to a value,
another configuration, or a memory. Evaluation of expressions under a memory
involves no “side effects” that would change the state of memory. In contrast,
the role of commands is to be executed and change the state. Thus we have
two evaluation rules: 〈e, μ〉 leads to a value resulting from the evaluation of
expression e on memory μ; this transition is designated by →e, 〈c, μ〉 leads to a
memory produced by the execution of command c on memory μ; this transition
is designated by →.

skip leaves the memory state unchanged. The assignment x := e results in a
memory identical to μ, except that its value at x is now the evaluation of e.

1 But not the converse, to avoid implicit flow leaks.

Enforcing Information Flow Policies by a Three-Valued Analysis 117

Table 1. Structural operational semantics

(VAL) 〈v, μ〉 →e v,

(VAR) 〈x, μ〉 →e μ(x),

(OP)
〈e1, μ〉 →e v1 〈e2, μ〉 →e v2 v1 op v2 = n

〈e1 op e2, μ〉 →e n

(SKIP) 〈skip, μ〉 → μ

(ASSIGN)
〈e, μ〉 →e v

〈x := e, μ〉 → μ[x �→ v]

(RECEIVE-VAL)
x2 ∈ dom(μ) read(μ(x2)) = n

〈receivec x1 from x2, μ〉 → μ[x1 �→ n]

(RECEIVE-NAME)
x2 ∈ dom(μ) read(μ(x2)) = nch

〈receiven x1 from x2, μ〉 → μ[x1 �→ nch]

(SEND)
x1 ∈ dom(μ)

〈send x1 to x2, μ〉 → μ, update(μ(x2), μ(x1))

(COND)
〈e, μ〉 →e n n �= 0

〈if e then c1 else c2 end, μ〉 → 〈c1, μ〉

〈e, μ〉 →e n n = 0

〈if e then c1 else c2 end, μ〉 → 〈c2, μ〉

(LOOP)
〈e, μ〉 →e n n = 0

〈while e do c end, μ〉 → μ

〈e, μ〉 →e n n �= 0

〈while e do c end, μ〉 → 〈c;while e then c end, μ〉

(SEQUENCE)
〈c1, μ〉 → μ′

〈c1; c2, μ〉 → 〈c2, μ′〉

receivec x1 from x2 and receiven x1 from x2 are semantically evaluated
similarly. Information from the channel x2 is read and assigned to the variable x1.
The distinctive feature of the rule RECEIVE-VAL is that the result of evaluation
is an integer variable, while for the rule RECEIVE-NAME, the result is a channel
name. Here, we introduce a generic function read(channel) that represents the
action of getting information from a channel (eg. get a line from a file, input

118 J. Desharnais, E.P. Kanyabwero, and N. Tawbi

from the keyboard, etc.). The content of a channel remains the same after both
kind of receive.

send x1 to x2 updates the channel x2 with the value of the variable x1. This
is done by the generic function update(channel, information), which represents
the action of updating the channel with some information. Note that the content
of the variable x2, that is, the name of the channel, does not change; hence μ
stays the same. The content of the channel is updated after a send.

A conditional statement if e then c1 else c2 end evaluates to c1 or c2 de-
pending whether e evaluates to true (nonzero) or false (zero).

For the loop rule, if the boolean condition evaluates to false, the loop is not
entered and the memory remains the same; if the condition evaluates to true,
the body c is executed followed sequentially by the re-execution of the while
instruction.

If c1 transforms memory μ into μ′, then c1; c2 amounts to the execution of c2
on μ′.

3 Security Type System

We now present the security type system that we use to check whether a program,
written in the language described above, either satisfies non-interference, may
satisfy it or does not satisfy it. The security types are defined as follows:

(data types) τ ::= L | U | H
(instruction types) ρ ::= τ val | τ chan | τ cmd

We consider a set of three security levels SL = {L,U,H}. This set is extended
to a lattice (SL,�) using the following order: L � U � H (we use freely the
usual symbols � and �). It is with respect to this order that the supremum �
and infimum � over security types are defined. We lift this order to instruction
types and maps in the trivial way and assume these operation return ⊥ when
applied to instructions of different types, e.g., H chan � H val = ⊥. We also
need the following weaker relation �, defined as:

x �� y iff x = H and y = L.

This relation can be interpreted as “maybe �”: it is used to ensure that rejection
of a program will only occur if there is a flow from H to L; it will be explained
later on.

A label is added to the type of an instruction in order to indicate whether the
information is an integer value, a channel name or a command. When typing a
program, security types are assigned to variables, channels and commands – and
to the context of execution. The meaning of types is as follows. A variable of
type τ val has a content of security type τ ; a channel of type τ chan can store
information of type τ or lower (indeed, a private channel must have the possibility
to contain or receive both private and public information). The security typing
of commands is standard, but has a slightly different meaning: a command of
type τ cmd is guaranteed to only allow flows into channels whose security types

Enforcing Information Flow Policies by a Three-Valued Analysis 119

are τ or higher. Hence, if a command is of type L cmd then it may contain a
flow to a channel of type L chan.

Our type system has two interesting properties: simple security applying to
expressions and confinement applying to commands [5]. Simple security says
that an expression e of type τ val or τ chan contains only variables of level τ or
lower. Simple security ensures that the type of a variable is consistent with the
principle stated in the precedent paragraph. Confinement says that a command
c of type τ cmd executed under a context of type pc allows flows only to channels
of level τ � pc or higher, in order to avoid a flow from a channel to another of
lower security (H to L for example). Those two properties are used to prove
non-interference.

Our typing rules are shown in Table 2. A typing judgment has the form Γ, pc �
p : ρ, Γ ′, where Γ and Γ ′ are typing environments, mapping variables to a type of
the form τ val or τ chan, representing their security level; pc is the security type
of the context. The program is typed with a context of type L; according to the
security types of conditions, some blocks of instructions are typed with a higer
context, as will be explained later. The typing judgment can be read as: within
an initial typing environment Γ and a security type context pc, the command
p has type ρ, yielding a final environment Γ ′. When the typing environment
stays unchanged, Γ ′ is omitted. Since the type of channels is constant, there is
a particular typing environment for channel constants, named TypeOf Channel
that is given before the analysis. In the rules, α stands for either the label val
or chan, depending on the context.

There are three operators on typing environments that we need to define:
Γ † [x �→ ρ], Γ � Γ ′ and Γ . The former is a standard update, where the image
of x is set to ρ, no matter if x is in the original domain of Γ or not. For the
conditional rule, we need to perform a union of environments where common
value variables must be given, as security type, the supremum of the two types,
and where channel variables are given type U if they differ. More precisely, we
extend � to environments as follows: dom(Γ � Γ ′) = dom(Γ) ∪ dom(Γ ′), and

Γ � Γ ′(x) =

⎧⎪⎪⎨
⎪⎪⎩

Γ (x) if x ∈ dom(Γ) \ dom(Γ ′)
Γ ′(x) if x ∈ dom(Γ ′) \ dom(Γ)
U if Γ (x) = τ chan �= τ ′ chan = Γ ′(x)

Γ (x) � Γ ′(x) otherwise.

Note that Γ � Γ ′(x) can return ⊥ if Γ and Γ ′ are incompatible on variable x,
for example if Γ (x) is a value, and Γ ′(x) is a channel (this can only happen if
Γ and Γ ′ come from different branches of an if command).

The last operator on typing environment that we need to define relates to
instrumentation. We introduce a special variable instr whose type (maintained
in the typing environment map) tells whether or not the program needs instru-
mentation. If the image of instr is U or H then instrumentation is needed and
L otherwise. Initially, Γ (instr) = L. Its value is updated to U or H through
the supremum operator in rule RECEIVE-NAME S and through an operator
denoted by “ ”, in rule SEND S, defined as follows:

120 J. Desharnais, E.P. Kanyabwero, and N. Tawbi

Table 2. Typing rules

(CHAN S)
TypeOf Channel(nch) = τ

Γ, pc � nch : τ chan
(INT S) Γ, pc � n : L val

(OP S)
Γ, pc � e1 : τ1 α, Γ, pc � e2 : τ2 α

Γ, pc � e1 op e2 : (τ1 � τ2) val
(VAR S)

Γ (x) = τ α

Γ, pc � x : τ α

(SKIP S) Γ, pc � skip : H cmd

(ASSIGN

-VAL S)
Γ, pc � e : τ val

Γ, pc � x := e : (τ � pc) cmd, Γ † [x �→ (τ � pc) val]

(ASSIGN

-CHAN S)
Γ, pc � e : τ chan pc � τ

Γ, pc � x := e : τ cmd, Γ � [instr �→ τ � pc] † [x �→ τ chan]

(RECEIVE-
VAL S)

Γ (x2) = τ chan

Γ, pc � recc x1 from x2 : (τ � pc) cmd, Γ † [x1 �→ (τ � pc) val]

(RECEIVE-
NAME S)

Γ (x2) = τ chan pc � τ

Γ, pc � recn x1 from x2 :τ cmd, Γ � [instr �→ τ � pc] † [x1 �→ U chan]

(SEND S)

Γ (x1) = τ1 α,

Γ (x2) = τ chan, (τ1 � pc) � τ

Γ, pc � send x1 to x2 : τ cmd, Γ

(COND S) Γ, pc � e :τ0 val

Γ, (pc � τ0) � c1 : τ1 cmd, Γ ′

Γ, (pc � τ0) � c2 : τ2 cmd, Γ ′′ Γ ′ � Γ ′′ � ⊥
Γ, pc � if e then c1 else c2 end : (τ1 � τ2) cmd, Γ ′ � Γ ′′

(LOOP1 S)
Γ, pc � e :τ0 val Γ, (pc � τ0) � c : τ cmd, Γ ′ Γ = Γ � Γ ′ � ⊥

Γ, pc � while e do c end : τ cmd Γ � Γ ′

(LOOP2 S)

Γ, pc � e :τ0 val Γ, (pc � τ0)� c : τ cmd, Γ ′ Γ �= Γ � Γ ′ � ⊥
Γ � Γ ′, (pc � τ0)� while edo c end : τ ′ cmd, Γ ′′

Γ, pc � while e do c end : τ ′ cmd, Γ ′′

(SEQUENCE S)
Γ, pc � c1 : τ1 cmd, Γ ′ Γ ′, pc � c2 : τ2 cmd, Γ ′′

Γ, pc � c1; c2 : (τ1 � τ2) cmd, Γ ′′

Γ = Γ † [instr �→ U] whenever (τ1 � pc) = τ = U or (τ1 � pc) �� τ .

Before explaining each rule in details, let us give more explanation on �, which
occurs in rule SEND S, for example. As said earlier, this relation is used to
ensure that rejection of a program will only occur if there is a flow from H
to L; During type analysis, we distinguish between safe flow programs and

Enforcing Information Flow Policies by a Three-Valued Analysis 121

uncertain ones. For example, flows from U to H or L to U are secure because
no matter what the types of uncertain variables actually are at runtime (L or
H), the flows will always be secure. However, depending on the actual type of
the U variable at runtime, a flow like U to L or U to U may be secure or not.
A conservative analysis would reject a program with such flows but ours will
tag the program as needing instrumentation and will carry on the type analysis.
Consider the typing rule of the send instruction: the sending of x1 on channel
x2 is accepted by the type system if (τ1 � pc) � τ , where τ1 (resp. τ) is the
type of x1 (resp. x). This implies, by definition of �, that if, for example, x1 has
an H content – or if the context is high – while x2 is an L channel, then the
rule cannot be applied, and consequently, the program will be rejected. Let us
see how it works in other cases. Suppose that (τ1 � pc) � τ and (τ1 � pc) � τ
but ¬((τ1 � pc) = τ = U); then the image of instr under Γ is unchanged. This
means that the flow from x1 to x2 is safe without any doubt. However, in all
remaining cases, i.e., H to U , U to L and U to U , there is a risk of information
leakage, and hence Γ (instr) = U indicating a need for instrumentation. The
reason why we use a particular relation � instead of � is to allow the typing
to progress until the end in case of uncertainty. If we had used the usual order
relation �, flows from H to U and U to L would have been rejected, even if
there is a possibility that the variable of type U turns out to be a secure one.
Handling this uncertainty is the main contribution of this paper and allows to
reduce the number of false positive.

In related work, there are subtyping judgements of the form ρ1 ⊆ ρ2 or ρ1 ≤ ρ2
[5,1]. For instance, given two security types τ and τ ′, if τ ⊆ τ ′ then any data of
type τ can be treated as data of type τ ′. Similarly, if a command assigns contents
only to variables of level H or higher then, a fortiori, it assigns only to variables
L or higher; thus we would have H cmd ⊆ L cmd. In our work, we integrated
those requirements directly in the typing rules. Instead of using type coercions,
we assign a fixed type to the instruction according to the more general type.
For two expressions e1 and e2 of type τ1 and τ2 respectively, e1 op e2 is typed
τ1 � τ2. For two commands c and c′ typed τ and τ ′, the composition through
sequencing or conditionals is typed τ � τ ′.

We now comment each of the typing rules. CHAN S assigns types to channel
constants, while VAR S assigns types to variables. We assume that all integers
have security type L and skip has type H cmd, the lowest security type of
expressions and commands, respectively. OP S assigns to the result the least
upper bound of operands types.

ASSIGN-VAL S and RECEIVE-VAL S update the environment by mapping
the modified variable to (τ �pc) val. This way if we are in a block of instructions
that need to be private (i.e., pc = H) then the modified variable will have type
H . This is typically to prevent implicit flows in while and if statements when
the condition is of type H .

ASSIGN-CHAN S and RECEIVE-NAME S both modify a channel variable;
in the first case, the type of the channel is known, in the latter, it is not, and
hence the variable is given type U . In both cases, the typing is done under the

122 J. Desharnais, E.P. Kanyabwero, and N. Tawbi

if private

then x := lowValue

end
send x to lowChan

if private

then c := publicChan

else c := privanteChan

end
send lowValue to c;

if public

then c := publicChan

else c := privateChan end
send highValue to c;
send c to lowChan;

Fig. 1. Treating value and channel variables in different branches of the if construct

condition pc � τ and generates instrumentation if pc � τ � U . Indeed, if the
source (e in one case, x2 in the other) is of type U or H , instrumentation must
be performed to insert a test that will check if the actual type of x1 is L: if it
is the case, no send can be allowed on this channel, to avoid a downward flow
(and hence the channel should be marked as unsecure in the dynamic analysis).
In summary, there are three cases: if pc �� τ , that is, pc = H and τ = L, the
program is rejected; otherwise the program is accepted and instrumented except
if pc = L = τ . The case for assignation is illustrated by the second program of
Fig. 1 (which uses a rule for if that we will explain later). In the last line, an
information of low content is sent to c, but this cannot be allowed, as it would
reveal information on our private condition: the sending cannot be blocked at
that point; the flag must be lifted earlier, and this is when c is set to public
while the context is high (because of the condition). We choose to reject such a
clear flaw, which happens exactly when pc �� τ (see the end of this section for a
sketch on how instrumentation will handle the case pc = U).

For the rule RECEIVE-VAL S, x1 is given the supremum of the type of chan-
nel x2 and pc, since it receives the content of x2 under the context type pc.
Note that RECEIVE-VAL S gives to the variable x1 a (τ � pc) val type while
RECEIVE-NAME S assigns a U chan type.

For reasons explained earlier, SEND S requires that the channel to which
x1 is sent must have a “maybe higher” (or equal) type than both x1 and the
context. Hence, the channel x2, to which the content of x1 is sent must satisfy
(τ1 � pc) � τ ; it assigns to the send instruction the type of channel x2.

The rule COND S requires to type the branches c1 and c2 under the type
context pc � τ0. This prevents downward flows from the guard to the branches.
A typical example of this situation is the first program of Fig. 1. Since x is
typed under a high context (because of the private guard), it will obtain type
H , and hence the program will be rejected, because x cannot be sent on the
public channel. The typing environment produced, as stated by rule COND S, is
computed using the operator �. We now explain why � is defined differently on
channel variables and value variables. If Γ and Γ ′, the environments associated
to the two branches of the if command, differ on a value variable, we choose to
be pessimistic, and assign the supremum of the two security types. A user who
prefers to obtain fewer false positive could assign type U to this variable, and
leave the final decision to dynamic analysis. In the case of channel variables, we
do not have the choice because the channel name can be private if it comes from a
private source but its content can be public (and vice versa), as illustrated by the
last program of Fig. 1. The last line should make the program rejected because

Enforcing Information Flow Policies by a Three-Valued Analysis 123

Eval. & updates in 1st iteration . . . in 2nd . . . in 3rd
1. receivec h

from private; h �→ H
2. e, x1, x2, x3 := 0; e, x1, x2, x3 �→ L val
3. while e < 5 do e < 5 : L val
4. send x3 to public; [L � L � L, pc � L = L], instr �→ L ok ok
5. x3 := x2; x3 �→ L val - x3 �→ H val
6. x2 := x1; x2 �→ L val x2 �→ H val -
7. x1 := h; x1 �→ H val - -
8. e := e+ 1 - - -
9. end

Fig. 2. The while construct needs iterative analysis

the else branch makes c a private information, hence we could conclude that the
right typing for c when typing the if command is H but the penultimate line
send highValue to c; would require that c be typed as L so that the program
be rejected. Hence we must type c as U , justifying the definition of �.

SEQUENCE S assigns to the command the greatest lower bound of the two
sequential instructions types. Note that c1 may update the typing environment
from which c2 is typed.

Our type analysis is flow-sensitive, thus we have to analyse the while con-
struct in an iterative way. To illustrate this fact, consider the program on the
left-hand side of Fig. 2. In this example, it is only on the fourth iteration that
we can detect a security flaw, when x3 finally enters the body of the while with
a private content and when it is sent to a public channel. The corresponding
typing computation is illustrated informally on the right-hand side of the fig-
ure. The need for iterative typing analysis is treated through two rules. The
first rule, LOOP1 S, is the stopping condition: typing command c under Γ does
not increase the type of any variable and hence no matter how many times c is
repeated, the types of variables cannot be increased. Otherwise, in LOOP2 S,
if the environment is modified, we iterate using the supremum of the produced
environment and the original one. We claim that this process terminates because
there is a finite number of variables in c, and because the operation � between
the original and the produced type environment is monotonic. Indeed, variables’
types are monotonically modified with respect to � for value variable, and with
respect to the following order for channel variables: L→ H → U .

We now present an example illustrating the typing of a program that needs
instrumentation. Consider the program of Fig. 3. The RECEIVE-NAME S rule
assigns to x the security type unknown U chan since we are receiving a channel
name; moreover, since we receive from a private channel, instrumentation is
called (to block channel x if it happens to be of low type). Another call for
instrumentation is illustrated in this example, as there is an explicit flow at
instruction 4 from h, whose type is H , to x, whose type is unknown.

We conclude this section by sketching out how instrumentation will be imple-
mented and discussing when false positive arise.

124 J. Desharnais, E.P. Kanyabwero, and N. Tawbi

Evaluations & updates
1. receivec h from private; h �→ H val
2. if public then [pc � τ0 = L implies that branches context is L]
3. receiven x from private; [pc = L], x �→ U chan, instr �→ U
4. send h to x [pc = L, H � pc � U], instr �→ U
5. end

Fig. 3. A program generating unknown security values and calling for instrumentation

x := 0;
if public

then x := highValue end;
send x to lowChan.

c := highChannel

if private
then c := lowChan

end.

Fig. 4. False positives: uncertainty generated by if and assignation

False positives. Let us discuss the generation of false positives, that is, cases when
we reject a program that is not potentially flawed. A reject can happen from the
application of one of three rules: ASSIGN-CHAN S , RECEIVE-NAME S and
SEND S, when pc �� τ , or τ1 �pc �� τ . This is only possible for the pair of values
(H,L), for which H �� L. If any of pc, τ1 or τ is unknown (of type U), there will
be no rejection, only instrumentation. According to our rules, type L can only
be assigned if it is the true type of the variable, but H can be the result of a
supremum taken in rule COND S or LOOP S. False positive can consequently
occur from typing an if or while command whose guard prevent a bad branch
to be taken; an example would be the first program of Fig. 4. If public is
always false, the program is safe but SEND S will reject it; this is because of
the supremum taken in COND S. A user who does not want false positive at all
could change the settings in order that H val � L val = U val instead of H val.
The other situation where a false positive can occur is related to assignation and
reception of a channel name. Consider the second program of Fig. 4. If private is
always false or if c is never used later on in the program, this program is harmless
but still rejected. Here again, there is a way to avoid the false positive, it would
be to introduce a fourth security type, B, that would mark c as unsecure and
would be tested by SEND S – this is future work. In summary, the false positive
cases that we detect happen in all other static analysis work, where they are
considered reasonable, but we do suggest ways to circumvent them.

Instrumentation. When the type analysis concludes that some instrumentation
of the program is needed, the program will be modified in two ways. Tests will be
inserted before each problematic instruction, to check if it can be safely executed;
to do so, we need to update, at runtime, the type of modified variables as well as
the type of the context, and hence the program must be modified in consequence.
Of course, we have access to the map TypeOf Channel, defined a priori. We will
store the variables types in a map, TypeOf Var, the security type of the context
in a stack, Ctxt. We push the type of a condition in Ctxt at the beginning of a
conditional or a loop and we pop a type context after each end.

Enforcing Information Flow Policies by a Three-Valued Analysis 125

1. receivec h from private;
add 1. Update(TypeOf Var, h, (TypeOf Channel(private) � top(Ctxt)) val);
2. if public then
add 2. push(L � top(Ctxt),Ctxt) 〈because public : L val〉
3. receiven x from private;
add 3. Update(TypeOf Var, x,TypeOf Channel(x));

if TypeOf Var(x) = L ∧ (TypeOf Var(private) � top(Ctxt) = H)
then unsecure(x) = true else unsecure(x) = false;

add 4. if (TypeOf Var(h) �� TypeOf Channel(x)) ∨ unsecure(x) then alert
4. else send h to x end
5. end;
add 5. pop(Ctxt)

Fig. 5. Projected instrumentation of the program of Fig. 3

In our type system there are three rules that can call for instrumentation;
these “calls” happen when the variable instr is assigned the value U or H . This
occurs in the ASSIGN-CHAN S rule, the RECEIVE-NAME S rule and in the
SEND S. We will implement the type inference algorithm so as to uniquely iden-
tify statements either by labels or by the line number where they appear. The
inference algorithm will save the identifier of the statement needing instrumen-
tation, the types, variables, expressions and statements involved in the current
statement. The instrumentation step will insert a test before each statement
needing instrumentation. As an example, instrumenting the program of Fig. 3
will result into the one of Fig. 5. Update(M,x, v) is a function that updates the
mapM with the association x �→ v, and push, pop and top are the usual functions
on stacks. Note that the receiven instruction marks variable x as unsecure and
this information is tested when we get to the send instruction on line add 4.
Hence, if a public variable was received on a private channel on line 3, then
an alert would be sent – and some action must be taken to prevent the leak
of information, like aborting the program or ignoring the sending. This sketch
consists in a first approach. We think it is possible to make this instrumentation
lighter if we use a data flow analysis. For instance, instead of inserting the test
before a send we could insert it after a receiven statement, if we know that the
channel will be used in a send and that it could yield an illegal flow. We plan
to completely specify the instrumentation in our next step for this work.

4 Type System Soundness

In this section, we present the proof that our type system is sound, i.e., well-
typed programs satisfy non-interference. Note that we only need to prove non-
interference in case the program is typed without need of instrumentation, that
is, when the type of instr is L. If the type of instr is U , non-interference will
be guaranteed by instrumentation.

The soundness proof is inspired by the one sketched in [1]. We start by showing
that our type system has the two properties listed earlier: simple security and
confinement. We recall that α is to replace val or chan.

126 J. Desharnais, E.P. Kanyabwero, and N. Tawbi

Lemma 1. (Simple security) Given Γ, pc � e : τ α, then for every variable x in
e, such that Γ (x) = τ ′ α, we have τ ′ � τ .

The proof is by induction and is omitted for lack of space.

Lemma 2. (Confinement) Let Γ, Γ ′ be typing environments, pc be a context type
and c a command. Assume that Γ, pc � c : τ cmd, Γ ′ with Γ ′(instr) = L, then
for every variable x modified in c, such that Γ ′(x) = τ ′ α, we have τ ′ � τ � pc.
via the send command, we have τ ′′ � pc.

We say that a variable x is modified in a command c if a value is assigned to x
in c. The proof is omitted for lack of space. The following lemmas can be proved
by usual induction on the structure of commands.

Lemma 3 ([1]). Let μ and μ′ be memories and c be a command. If 〈c, μ〉 →
μ′, x ∈ dom(μ) and x is not modified in c, then μ(x) = μ′(x).

Non-interference essentially means that a variation of program input associated
with a given security level does not cause variation of output of lower security
level. This policy allows to manipulate and modify private data, as long as visible
output does not improperly reveal information about that private data. Input
data enter the program through the receive instructions, while output data are
accessible through send instruction. Consequently, we define a relation ∼τ on
memories of programs that characterizes the observational power of an attacker
on input and output data through communication channels.

Definition 1. (Channel equality) Two channels nch1 and nch2 are equal, writ-
ten nch1 =ch nch2 if content(nch1) = content(nch2), where content(ch) is the
sequence of data of channel ch.

Intuitively, nch1 =ch nch2 means that the channels contain exactly the same
information; thus, two equal channels remain equal after the same update.

Definition 2. (τ-equivalence) Two memories μ and ν are τ-equivalent, written
μ ∼τ ν, if ∀x ∈ dom(μ) ∩ dom(ν) : (Γ (x) = τ ′ chan ∧ τ ′ � τ)⇒ μ(x) =ch ν(x).

Since we consider only one observable class of security L, we use ∼L in the
following, observing that this can be generalized to more classes. The relation
∼L associates two memories that are indistinguishable to an attacker who only
has public (L) access privileges.

Even though our interest is on channels, because they are the only way of
communicating with a program, we need to ensure that local integer variables
of type L that are equally initialized in two memories L-equivalent remain equal
through program execution. Indeed, the content of a local variable can be trans-
ferred to an observable channel. This is formalized by the following lemma:

Lemma 4 ([1]). Given memories μ ∼L ν, if for every integer variable x of
type L val, μ and ν agree on the value of x, written μ ∼val

L ν, then after program
execution that produces the memories μ′ and ν′, we have μ′ ∼val

L ν′.

Enforcing Information Flow Policies by a Three-Valued Analysis 127

The proof is omitted; it is clear that variables can only be modified with a content
coming from either equal channels (by ∼L), or initially equal variables.

Non-interference is formalized as follows, a variant of the definition of [5]:

Definition 3. (Non-interference) A program P satisfies non-interference if, for
any memories μ ∼L ν such that μ ∼ val

L ν, the memories μ′ and ν′ produced by
running P on μ and ν are also L-equivalent (if both runs terminate successfully).

In this definition we consider that two runs of P would get exactly the same
external processes writings on public channels. On the other hand, we do not
treat the issue of the leak of information sensitive to termination. This issue is
discussed in [8], thus we leave the non-interference definition as it was classically
defined. Now let us state and prove the soundness theorem. The proof is omitted.

Theorem 1. (Soundness theorem) Let P be a well-typed program under envi-
ronment Γ , without need of instrumentation, and two L-equivalent memories μ
and ν, i.e., μ ∼L ν, that agree on integer variables of type L. If P runs success-
fully on both μ and ν producing the memories μ′ and ν′, then μ′ ∼L ν′.

5 Related Work

Securing flow information has been widely studied since the late seventies. Den-
ning and Denning [9] introduced secure information-flow by static analysis, based
on control and data flow analysis. They defined implicit and explicit flow and
devised static analysis and dynamic analysis based on lightly instrumenting the
target program. Many static approaches have been devised based on type sys-
tems, they addressed languages with different levels of expressivity.

Smith [10] and Volpano and Smith [1] devised a type based analysis for an
imperative language. Pottier and Simonet treat in [11] the functional language
ML, supporting references, exceptions and polymorphism. In [12] Myers stati-
cally enforces information flow policy in JFlow, an extension of Java that adds
level security annotations to variables, making information flow checking more
precise and flexible. JFlow supports objects, subclassing, dynamic type tests, ac-
cess control, and exceptions. Banerjee and Naumann devised a type based anal-
ysis in[13] that ensures secure flow information. They treat the object-oriented
language Java. Barthe and al. in [14] and Terauchi and Aiken in [15] investigated
logical-formulation of non-interference, enabling the use of theorem-proving or
model-checking based techniques. In [16] Sabelfeld and Sands extend type sys-
tem approaches to support higher order functions and non determinism. If the
program is well typed according to the type system, then it satisfies the security
property. We mention some studies on other notions of non-interference, possi-
bilistic and probabilistic non-interference, which treat information flow security
for concurrent programs, see [17,18,19,20].

Purely static approaches suffer from a large number of false positives, leading
to reject programs that may be flow information secure. An analysis has been
proposed to take into account data flow information [2], this approach is called

128 J. Desharnais, E.P. Kanyabwero, and N. Tawbi

flow sensitive type approach. Combining static and dynamic approaches has
been proposed by Russo and Sabelfeld in [3], where the authors prove that this
approach reject less safe programs. Their approach is based on calling static
analysis during execution.

Similarly to [2] and [3] our approach is flow sensitive, it differs in that we
distinguish between variables in live memory and channels. We consider that
programs interact with their environment through information flow via channels
and that the security level is associated to an information according to its source,
the channels from which this value is computed. We propose a three valued
typing analysis aiming at the distinction between the cases where the analysis
is uncertain due to lack of information and the cases where it is certain. Rather
than calling static analysis during execution, our approach prepare for a light
instrumentation of the code only when there is a need for it.

6 Conclusion

Ensuring secure information flow within sensitive systems has been studied ex-
tensively. In general, the key idea in type-based approaches is that if a program
is well typed according to its typing rules, then it is secure according to given
security properties.

We define a sound type system that captures lack of information in a program
at compile-time. Our type system is flow-sensitive, variables are assigned the
security levels of the values they store. We make a clear distinction between
local variables and channels through which the program communicates. This
makes our analysis more realistic.

Our main contribution is the handling of a three-valued security typing. The
program is considered well typed, ill typed or uncertain. In the first case, the
program can safely be executed, in the second case the program is rejected and
need modifications, while in the third case instrumentation is to be used in
order to guarantee the satisfaction of non-interference. This approach allows to
eliminate false positives due to conservative static analysis approximations and
to introduce run-time overhead only when it is necessary. We obtain fewer false
positives than purely static approaches because we send some usually rejected
programs to instrumentation.

Future work includes the extension of our type analysis to make it a complete
security hybrid analysis, using data-flow analysis and code instrumentation. In
short, we will insert tests before the instructions that were detected as possibly
faulty during the type analysis.

Acknowledgements. The authors wish to thank the first referee whose ar-
guments were really helpful and valuable in producing the final version of this
paper.

Enforcing Information Flow Policies by a Three-Valued Analysis 129

References

1. Volpano, D., Irvine, C., Smith, G.: A sound type system for secure ow analysis.
Journal of Computer Security 4(2-3), 167–187 (1996)

2. Hunt, S., Sands, D.: On flow-sensitive security types. In: Proceedings of the ACM
Symposium on Principles of Programming Languages (January 2006)

3. Russo, A., Sabelfeld, A.: Dynamic vs. static flow-sensitive security analysis. In:
Proceedings of the IEEE Computer Security Foundations Symposium (2010)

4. Denning, D.E.: A lattice model of secure information flow. Communications of the
ACM 19, 236–243 (1976)

5. Smith, G.: Principles of secure information flow analysis. In: Malware Detection,
vol. 27, pp. 291–307. Springer (2007)

6. O’Neill, K.R., Clarkson, M.R., Chong, S.: Information-flow security for interactive
programs. In: Proceedings of the IEEE Computer Security Foundations Workshop
(July 2006)

7. Kobayashi, N.: Type-based information flow analysis for the pi-calculus. Acta In-
formatica 42(4-5), 291–347 (2005)

8. Askarov, A., Hunt, S., Sabelfeld, A., Sands, D.: Termination-Insensitive Noninter-
ference Leaks More Than Just a Bit. In: Jajodia, S., Lopez, J. (eds.) ESORICS
2008. LNCS, vol. 5283, pp. 333–348. Springer, Heidelberg (2008)

9. Denning, D.E., Denning, P.J.: Certi cation of programs for secure information flow.
Communications of the ACM 20, 504–513 (1977)

10. Smith, G.: A new type system for secure information flow. In: Proceedings of the
IEEE Workshop on Computer Security Foundations, pp. 115–125 (2001)

11. Pottier, F., Simonet, V.: Information flow inference for ML. ACM Transactions on
Programming Languages and Systems 25, 117–158 (2003)

12. Myers, A.C.: J ow: Practical mostly-static information flow control. In: Proceedings
of the ACM Symposium on Principles of Programming Languages (1999)

13. Banerjee, A., Naumann, D.A.: Secure information flow and pointer con nement in
a java-like language. In: Proceedings of the IEEE Computer Security Foundations
Workshop (2002)

14. Barthe, G., D’Argenio, P.R., Rezk, T.: Secure information flow by self-composition.
In: Proceedings of the IEEE Workshop on Computer Security Foundations (2004)

15. Terauchi, T., Aiken, A.: Secure Information Flow as a Safety Problem. In: Hankin,
C., Siveroni, I. (eds.) SAS 2005. LNCS, vol. 3672, pp. 352–367. Springer, Heidelberg
(2005)

16. Sabelfeld, A., Sands, D.: A per model of secure information flow in sequential
programs. Higher-Order and Symbolic Computation 14(1), 59–91 (2001)

17. Barthe, G., Prensa Nieto, L.: Secure information flow for a concurrent language
with scheduling. Journal of Computer Security 15, 647–689 (2007)

18. Sabelfeld, A., Sands, D.: Probabilistic noninterference for multi-threaded programs.
In: Proceedings of the IEEE Workshop on Computer Security Foundations (2000)

19. Smith, G.: Probabilistic noninterference through weak probabilistic bisimulation.
In: Proceedings of the IEEE Computer Security Foundations Workshop (June-July
2003)

20. Smith, G.: Improved typings for probabilistic noninterference in a multi-threaded
language. Journal of Computer Security 14(6), 591–623 (2006)

Towards the Orchestration of Secured Services

under Non-disclosure Policies�

Tigran Avanesov1,2,3, Yannick Chevalier2,
Michaël Rusinowitch1, and Mathieu Turuani1

1 INRIA Nancy Grand Est,
615 allée du jardin botanique, 54000 Vandœuvre-lés-Nancy, France

{rusi,turuani}@inria.fr
2 IRIT, Université de Toulouse,

118 route de Narbonne, F-31062 Toulouse, France
ychevali@irit.fr

3 SnT, Université du Luxebmourg,
6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg, Luxembourg

tigran.avanesov@uni.lu

Abstract. The problem of finding a mediator to compose secured ser-
vices has been reduced in our former work to the problem of solving
deducibility constraints similar to those employed for cryptographic pro-
tocol analysis. We extend in this paper the mediator synthesis procedure
by a construction for expressing that some data is not accessible to the
mediator. Then we give a decision procedure for verifying that a medi-
ator satisfying this non-disclosure policy can be effectively synthesized.
This procedure has been implemented in CL-AtSe, our protocol anal-
ysis tool. The procedure extends constraint solving for cryptographic
protocol analysis in a significative way as it is able to handle negative
deducibility constraints without restriction. In particular it applies to all
subterm convergent theories and therefore covers several interesting the-
ories in formal security analysis including encryption, hashing, signature
and pairing.

Keywords: Web services, Orchestration, security policy, separation of
duty, deducibility constraints, cryptographic protocols.

1 Introduction

1.1 Context

Trust and security management in distributed frameworks is known to be a
non-trivial critical issue. It is particularly challenging in Service Oriented Ar-
chitecture where services can be discovered and composed in a dynamic way.
Implemented solutions should meet the seemingly antinomic goals of openness
and flexibility on one hand and compliance with data privacy and other reg-
ulations on the other hand. We have demonstrated in previous works [7,25,2]

� This work is supported by FP7 AVANTSSAR [5] and FP7 NESSoS [22] projects.

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2012, LNCS 7531, pp. 130–145, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Towards the Orchestration of Secured Services under Non-disclosure Policies 131

that functional agility can be achieved for services with a message-level secu-
rity policy by providing an automated service synthesis algorithm. It resolves a
system of deducibility constraints by synthesizing a mediator that may adapt,
compose and analyze messages exchanged between client services and having the
functionalities specified by a goal service. It is complete as long as the security
policies only apply to the participants in the orchestration. But once the poli-
cies also concern the synthesized service or the eligibility of the communication
participants, the cited method losses the completenes as an approach to sove
the problem. However security policies often deals with such kind of require-
ments. For instance an organisation may not be trusted to efficiently protect the
customer’s data against attackers even though it is well-meaning. In this case
a client would require that the mediator synthesized to interact with this orga-
nization must not have direct access to her private data, which is an effective
protection even in case of total compromise. Also it is not possible to specify
that the mediator enforces e.g. dynamic separation of duty, i.e., restrictions on
the possible participants at some step. The non-deducibility constraints help to
express such types of policies.

Since checking whether a solution computed by our previous algorithm sat-
isfies the non-deducibility constraints is not complete, we propose in this paper
to solve during the automated synthesis of the mediator both deducibility and
non-deducibility constraints. The former are employed to specify a mediator that
satisfies the functional requirements and the security policy on the messages ex-
changed by the participants whereas the latter are employed to enforce a security
policy on the mediator and the participants to the orchestration.

Original contribution. We have previously proposed decision procedures [7,25,2]
for generating a mediator from a high-level specification with deducibility con-
straints of a goal service. In this paper we extend the formalism to include
non-deducibility constraints in the specification of the mediator and provide a
decision procedure synthesizing a mediator for the resulting constraint systems.

Related works. In order to understand and anticipate potential flaws in complex
composition scenarios, several approaches have been proposed for the formal
specification and analysis of secure services [11,9]. Among the works dedicated
to trust in multi-agent systems, the models closest to ours are [13,16] in which
one can express that an agent trusts another agent in doing or forbearing of do-
ing an action that leads to some goal. To our knowledge no work has previously
considered the automatic orchestration of security services with policies alto-
gether as ours. However there are some interesting related attempts to analyze
security protocols and trust management [18,12]. In [18] the author uniformly
models security protocols and access control based on trust management. The
work introduces an elegant approach to model automated trust negotiation.
We also consider an integrated framework for protocols and policies but in our
case i) policies can be explicitly negative such as non-disclosure policies and
separation-of-duty ii) we propose a decision procedure for the related trust ne-
gotiation problem iii) we do not consider indistinguishability properties. In [12]

132 T. Avanesov et al.

security protocols are combined with authorization logics that can be expressed
with acyclic Horn clauses. The authors encode the derivation of authorization
predicates (for a service) as subprotocols and can reuse in that way the con-
straint solving algorithm from [20] to obtain a decision procedure. In our case
we consider more general intruder theories (subterm convergent ones) but fo-
cus on negation. We conjecture that our approach applies to their authorization
policies too.

Our decision procedure for general (negative and positive) constraints extends
[8] where negative constraints are limited to have ground terms in right-hand
sides, and the deduction system is Dolev-Yao system [10], a special instance of
the subterm deduction systems we consider here. In [15] the authors study a
class of contract signing protocols where some very specific Dolev-Yao negative
constraints are implicitly handled.

Finally one should note that the non deducibility constraints we consider tell
that some data cannot be disclosed globally but they cannot express finer-grained
privacy or information leakage notions relying on probability such as for instance
differential privacy.

Paper organization. In Subsection 1.2 we introduce a motivating banking appli-
cation and sketch our approach to obtain a mediator service. To our knowledge
this application is out of the scope of alternative automatic methods. In Section
2 we present our formal setting. A deduction system (Subsection 2.2) describes
the abilities of the mediator to process the messages. The mediator synthesis
problem is reduced to the resolution of constraints that are defined in Subsec-
tion 2. In Section 3 we recall the class of subterm deduction systems and their
properties. These systems have nice properties that allow us to decide in Sec-
tion 4 the satisfiability of deducibility constraints even with negation. Finally
we conclude in Section 5.

1.2 Synthesis of a Loan Origination Process (LOP)

We illustrate how negative constraints are needed to express elaborated policies
such as Separation of Duty by a classical loan origination process example. Our
goal is to synthesize a mediator that selects two bank clerks satisfying the Sep-
aration of Duty policy to manage the client request. Such a problem is solved
automatically by the decision procedure proved in the following sections. Let us
walk through the specification of the different parts of the orchestration problem.

Formal setting. Data are represented by first-order terms defined on a signature
that comprises binary symbols for symmetric and assymetric encryptions (resp.

{| |} , { }), signature ({ }sig), and pairing (pair). Given a public key k we write

inv (k) its associated private key. For example {a}siginv(k) is the signature of a by

the owner of public key k. For readability we write a.b.c a term pair (a, pair (b, c)).
The binary symbol rel expresses that two agents are related and is used for
defining a Separation of Duty policy. A unary symbol g is employed to designate
participants identity in the “relatives” database.

Towards the Orchestration of Secured Services under Non-disclosure Policies 133

Client and clerks. The client and the clerks are specified by services with a se-
curity policy, specifying the cryptographic protections and the data and security
tokens, and a business logic that specify the sequence in which the operations
may be invoked. These are compiled into a sequence of protected messages (de-
picted in Fig. 1 and 2 and explained in the following paragraphs) each service is
willing to follow during the orchestration.

Client C wants to ask for a loan from a service P , but for this he needs to
get an approval from two banking clerks. He declares his intention by sending
to mediator M a signed by him message containing service name P and the
identity of the client g(C). The mediator should send back the names of two
clerks A and B who will evaluate his request. The client then sends to each
clerk a request containing amount Amnt, his name C and a fresh key Nk which
should be used to encrypt decisions. Each request is encrypted with a public key
of the corresponding clerk (pk(A) or pk(B)). Then the mediator must furnish
the decisions (Ra and Rb) of two clerks each encrypted with the proposed key
Nk and also their signatures. Finally, the client uses these tokens to ask his loan
from P , where pk(P) is a public key of P .

Clerk A receives a request to participate in a LOP which is conducted by
mediator M . If he accepts, he returns his identity and public key. Then Clerk
receives the client’s request for a loan to evaluate: amount Amnt, client’s name C
and a temporary keyK for encrypting his decision. The last is sent back together
with a signature certifying the authenticity of this decision on the given request.

The client’s non-disclosure policy is given in Fig. 2 and is self-explanatory:
the mediator should not know the amount of the loan and should not be able to
know the decisions of clerks.

Let us explain the services’ non-disclosure policy. The Clerk’s decision (its last
message) should be unforgeable, thus, it should not be known by the Mediator
before it was sent by the Clerk (first non-disclosure constraint of Fig. 1). The
role clerk played by A can be used by the mediator only if the constraint �g(A)
is satisfied, showing that A is not a relative with any other actor of the protocol,
as client and the other clerk (second non-disclosure constraint of Fig. 1).

Goal service. In contrast with the other services and clients, the goal service is
only described in terms of possible operations and available initial data.

Initial data. Beside his private/public keys and the public keys of potential
partners (e.g. pk (P)) the goal service has access to a relational database
rel(g(a), g(c)), rel(g(b), g(c)), . . . for storing known existing relations between
agents to be checked against conflict of interests.

Deduction rules. The access to the database as well as the possible operations on
messages are modeled by a set of deduction rules (formally defined later). We
anticipate on the rest of this paper, and present the rules specific to this case
study grouped into composition and decomposition rules in Fig. 3. In fact,
these rules represent Dolev-Yao deduction system for symmetric/assymetric
encryption, signature and pairing augmented with two rules for querying rel
database.

134 T. Avanesov et al.

Clerk’s (A) communications:1

∗ ⇒ A : request.M
A ⇒ M : g(A).pk (A)
M ⇒ A : {Amnt.C.K}pk(A)

A ⇒ M : m1(A,RespA, K,C,Amnt)

Non-disclosure constraints:

1. M cannot deduce the last message
before it is sent by A.

2. M cannot deduce g(A) before the
second message is sent by A.

Fig. 1. Clerk’s communications and
non-disclosure constraints

Client’s (C) communications:1

C ⇒ M : {g(C).loan.P}sig
inv(pk(C))

M ⇒ C : A.B
C ⇒ M : m2(A,Amnt).m2(B,Amnt)
M ⇒ C : m3(A,Ra).m3(B,Rb)
C ⇒ P : m4(pk (P) , A,B,Ra, Rb)

Non-disclosure constraints:

1. M cannot deduce the amount Amnt.
2. M cannot deduce A’s decision Ra.
3. M cannot deduce B’s decision Rb.

Fig. 2. Client’s Communications and
non-disclosure constraints

Composition rules Decomposition rules

x, y → pair (x, y) pair (x, y) → x
pair (x, y) → y x, rel(x, y) → y

x, y → {|x|}y y, {|x|}y → x y, rel(x, y) → x
x, y → {x}y inv (y) , {x}y → x

x, inv (y) → {x}siginv(y) y, {x}siginv(y) → x

Fig. 3. Deduction system for the LOP example

Mediator synthesis problem. In order to communicate with the services (here
the client, the clerks and the service P), a mediator has to satisfy a sequence of
constraints expressing that (i) each message m expected by a service (denoted
?m) can be deduced from all the previously sent messages m′ (denoted !m′)
and the initial knowledge and (ii) each message w that should not be known or
disclosed (denoted �w and called negative constraint) is not deducible.

The orchestration problem consists in finding a satisfying interleaving of the
constraints imposed by each service. For instance, clerk’s and client’s constraints
extracted from Fig. 1 and Fig. 2 are:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Client(C)
Δ
= !M {g(C).loan.P}siginv(KC) ?MA.B !Mm2(A,Amnt).m2(B,Amnt)

?Mm3(A,Ra).m3(B,Rb) �MAmnt �MRA �MRB

!Pm4(pk (P) , A,B,Ra, Rb)

Clerk(A)
Δ
= ?request.M �Mg(A) !Mg(A). pk (A) ?M {Amnt.C.K}pk(A)

�Mm1(A,RespA,K,C,Amnt) !Mm1(A,RespA,K,C,Amnt)

If it exists our procedure outputs a solution which can be translated automat-
ically into a mediator. Note, for example, that without the negative constraint
�g(A) a synthesized mediator might accept any clerk identity and that could
violate the Separation of Duty policy.

Towards the Orchestration of Secured Services under Non-disclosure Policies 135

2 Derivations and Constraint Systems

In our setting messages are terms generated or obtained according to some el-
ementary rules called deduction rules. A derivation is a sequence of deduction
rules applied by a mediator to build new messages. The goal of the synthesis is
specified by a constraint system, i.e. a sequence of terms labelled by symbols !,?
or �, respectively sent, received, or unknown at some step of the process.

2.1 Terms and Substitutions

Let X be a set of variables, F be a set of function symbols and C a set of constants.
The set of terms T is the minimal set containing X , C and if t1, . . . , tk ∈ T then
f(t1, . . . , tk) ∈ T for any f ∈ F with arity k. The set of subterms of a term t
is denoted Sub(t) and is the minimal set containing t such that f(t1, . . . , tn) ∈
Sub(t) implies t1, . . . , tn ∈ Sub(t) for f ∈ F . We denote Var(t) the set X∩Sub(t).
A term t is ground is Var(t) = ∅. We denote Tg the set of ground terms.

A substitution σ is an idempotent mapping from X to T . It is ground if it
is a mapping from X to Tg. The application of a substitution σ on a term t is
denoted tσ and is equal to the term t where all variables x have been replaced
by the term xσ. We say that a substitution σ is injective on a set of terms T , iff
for all p, q ∈ T pσ = qσ implies p = q. The domain of σ (denoted by dom (σ)) is
set: {x ∈ X : xσ �= x}. The image of σ is img (σ) = {xσ : x ∈ dom (σ)}. Given
two substitutions σ, δ, the substitution σδ has for domain dom(σ)∪dom (δ) and
is defined by xσδ = (xσ)δ. If dom(σ)∩dom (δ) = ∅ we write σ∪ δ instead of σδ.

A unification system U is a finite set of equations {pi =? qi}1≤i≤n where
pi, qi ∈ T . A substitution σ is an unifier of U or equivalently satisfies U iff for
all i = 1, . . . , n, piσ = qiσ. Any satisfiable unification system U admits a most
general unifier mgu (U), unique modulo variable renaming, and such that for
any unifier σ of U there exists a substitution τ such that σ = mgu (U) τ . Wlog
we assume in the rest of this paper that Var(img (mgu (U))) ⊆ Var(U), i.e., the
most general unifier does not introduce new variables.

A sequence s is indexed by [1, . . . , n] with n ∈ N. We write |s| the length of s, ∅
the empty sequence, s[i] the ith element of s, s[m : n] the sequence s[m], . . . , s[n]
and s, s′ the concatenation of two sequences s and s′. We write e ∈ s and E ⊆ s
for, respectively, ∃i : s[i] = e and ∀e ∈ E, e ∈ s.

2.2 Deduction Systems

The new values created by the mediator are constants in a subset Cmed of C.
We assume that both Cmed and C \ Cmed are infinite. Given l1, . . . , ln, r ∈ T ,
1 We have employed the following abbreviations for messages:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m1(A,Resp,K, Ct, S) = {h(A.S.Ct.Resp)}siginv(pk(A)) .{|Resp|}K
m2(A,S) = {S.C.Nk}pk(A)

m3(A,R) = m1(A,R,Nk, C,Amnt)
m4(K0, A,B,R1, R2) = {Amnt.C.A.R1.B.R2}K0

.m3(A,R1).m3(B,R2)

136 T. Avanesov et al.

the notation l1, . . . , ln → r denotes a deduction rule if Var(r) ⊆
⋃n

i=1 Var(li).
A deduction is a ground instance of a deduction rule. A deduction system is a
set of deduction rules that contains a finite set of deduction rules in addition to
all nonce creation rules → n (one for every n ∈ Cmed) and all reception rules
?t (one for every t ∈ T). All rules but the reception rules are called standard
rules. The deduction system describes the abilities of the mediator to process
the messages. In the rest of this section we fix an arbitrary deduction system D.
We denote by l ∗→ r any rule and l → r any standard rule.

2.3 Derivations and Localizations

A derivation is a sequence of deductions, including receptions of messages from
available services, performed by the mediator. Given a sequence of deductions
E = (li ∗→ ri)i=1,...,m we denote RE (i) the set {rj : j ≤ i}.
Definition 1 (Derivation). A sequence of deductions D = (li ∗→ ri)i=1,...,m

is a derivation if for any i ∈ {1, . . . ,m}, li ⊆ RD (i− 1).

Given a derivationD we define NextD(i) = min({|D|+ 1}∪{j : j > i and D[j] =
?tj}). The explicit knowledge of the mediator is the set of terms it has already
deduced, and its implicit knowledge is the set of terms it can deduce. If the former
is K we denote the latter Der(K). A derivation D is a proof of s ∈ Der(K) if
?r ∈ D implies r ∈ K, and D[|D|] = l ∗→ t. Thus, we have:
Der(K) = {t : ∃D derivation s.t. ?r ∈ D implies r ∈ K, and D[|D|] = l → t}

2.4 Constraint Systems

Definition 2 (Constraint system). A constraint system S is a sequence of
constraints where each constraint has one of three forms (where t is a term):

1. ?t, denoting a message reception by an available service or a client,
2. !t, denoting a message emission by an available service or a client,
3. �t, a negative constraint, denoting that the mediator must not be able to

deduce t at this point;

and that satisfies the following properties for any 1 ≤ i ≤ |S|:

Origination: if S[i] =!ti then Var(ti) ⊆
⋃

j<i Var({tj : S[j] =?tj});
Determination: if S[i] = �ti then Var(ti) ⊆

⋃
j Var({tj : S[j] =?tj}).

Origination means that every unknown in a service’s state originates from pre-
vious input by the mediator. Determination means that negative constraints are
on messages determined by a service’s state at the end of its execution.

In the rest of this paper S (and decorations thereof) denotes a constraint
system. An index i is a send (resp. a receive) index if S[i] =!t (resp. S[i] =?t)
for some term t. If i1, . . . , ik is the sequence of all send (resp. receive) indices
in S we denote Out(S) (resp. In(S)) the sequence S[i1], . . . ,S[ik]. We note that
the origination and determination properties imply Var(S) = Var(In(S)). Given
1 ≤ i ≤ |S| we denote prevS(i) to be max({0} ∪ {j : j ≤ i and S[j] =!tj}).

Towards the Orchestration of Secured Services under Non-disclosure Policies 137

Definition 3 (Solution of a constraint system). A ground substitution σ
is a solution of S, and we denote σ |= S, if dom(σ) = Var(S) and

1. if S[i] =?t then tσ ∈ Der({tjσ : j ≤ prevS(i) and S[j] =!tj})
2. if S[i] = �t then tσ /∈ Der({tjσ : j ≤ prevS(i) and S[j] =!tj})

Definition 4 (Compliant derivations). Let σ be a ground substitution with
dom (σ) = Var(S). A derivation D is (S, σ)-compliant if there exists a strictly in-
creasing bijective mapping α from the send indices of S to the set {j : D[j] =?r}
such that S[i] =!t implies D[α(i)] =?tσ.

An example of (S, σ)-compliant derivation is shown in Figure 4. Since a sequence
of receptions is a derivation, we note that for every ground substitution σ with
dom (σ) = Var(In(S)) there exists at least one compliant derivation D.

Fig. 4. A constraint system and a compliant derivation

Definition 5 (Proof of a solution). Let σ be a ground substitution. A deriva-
tion D is a proof of σ |= S, and we denote D, σ, α � S, if:

1. D is (S, σ)-compliant with the mapping α and
2. if S[i] =?t there is j < NextD(α(prevS(i))) such that D[i] = l ∗→ tσ and
3. if S[i] = �t then tσ /∈ Der({tjσ : j ≤ prevS(i) and S[j] =!tj}).

In Figure 4, if σ is a solution of S and, for example, t1σ = r2, t2σ /∈ Der(∅),
t4σ = r4, t6σ /∈ Der({r3, r6}) and t7σ = r8 then D is a proof of σ |= S.

Let us prove that if σ |= S then there is a proof D, σ, α � S.

Definition 6 (Maximal derivation). Let T be a finite set of terms and σ be
a ground substitution with dom(σ) = Var(T). A derivation D is (T, σ)-maximal
iff for every t ∈ Sub(T), tσ ∈ Der(RD (i)) implies tσ ∈ RD (NextD(i)− 1).

First we prove that maximal derivations are natural proof candidates of σ |= S.

Lemma 1. Let σ be a ground substitution with dom(σ) = Var(S) and D be a
(S, σ)-compliant (Sub(S), σ)-maximal derivation. Then σ |= S iff for all i

– if S[i] =?t then there exists j < NextD(α(prevS(i))) : D[j] = l ∗→ tσ and
– if S[i] = �t then for all j < NextD(α(prevS(i))) : D[j] �= l ∗→ tσ.

In the next lemma we show that any (T, σ)-maximal derivation D may be ex-
tended into a (T ′, σ′)-maximal derivation for an arbitrary extension T ′, σ′ of T, σ
by adding into D only standard deductions.

138 T. Avanesov et al.

Lemma 2. Let σ be a ground substitution with dom (σ) = Var(S). Let T1, T2

be two sets of terms such that T1 ⊆ T2, and σ1, σ2 be two substitutions such
that dom(σ1) = Var(T1) and dom (σ2) = Var(T2) \ Var(T1). If D is a (T1, σ1)-
maximal (S, σ)-compliant derivation in which no term is deduced twice by a
standard rule, then there exists a (T2, σ1∪σ2)-maximal (S, σ)-compliant deriva-
tion D′ in which no term is deduced twice by a standard rule such that every
deduction whose right-hand side is in Sub(T1)σ1 occurs in D′ iff it occurs in D.

Proof. Let i1, . . . , ik be the indices of the non-standard rules in D, let D[ij] =?tij ,
and let for 0 ≤ j ≤ k Dj = D[ij+1 : ij+1−1] with i0 = 0 and ik+1 = |D|+1. That
is, D = D0, !ti1 , D1, !ti2 , D2, . . .!tik , Dk. Noting that dom (σ1)∩ dom (σ2) = ∅ let
σ′ = σ1 ∪ σ2.

For each t ∈ Sub(T2) such that tσ′ ∈ Der(ti1 , . . . , tik) let it be minimal such
that tσ′ ∈ Der(ti1 , . . . , tit), and let E0

t be a proof of this fact, and Et be a sequence
of standard deductions obtained by removing every non-standard deduction from
E0

t .
For 0 ≤ j ≤ k letD′

j be the sequence of standard deduction stepsDj , Es1 , . . . , Esp

for all sm ∈ Sub(T2)σ
′ \ Sub(T1)σ

′ such that ism = j in which every rule of
Es1 , . . . , Esp that deduces a term previously deduced in the sequence or for some
m ≤ j deduced in D′

m or in D[im] is removed.
Let D′ = D′

0, ?ti1 , D
′
1, . . . , ?tik , D

′
k. We have deleted in each E0

t only deduc-
tions whose right-hand side occurs before in D′, and thus D′ is a derivation.
Since the D′

i contains only standard deductions, we can see that D′ is (S, σ)-
compliant.

Since D is (T1, σ1)-maximal and no term is deduced twice in D we note that,
for t ∈ T1, no standard deduction of tσ1 from a sequence Dj is deleted. Fur-
thermore we note that standard deductions of terms T2σ2 that are also in T1σ1

are deleted by construction and by the maximality of D. Thus a deduction whose
right-hand side is in Sub(T1)σ1 is in D′ iff it occurs in D.

By construction D′ is (T2, σ
′)-maximal and no term is deduced twice by stan-

dard deductions.

Taking T1 = ∅, T2 = Sub(S), and σ2 = σ, Lemma 2 implies that for every
substitution σ of domain Var(S) there exists a (S, σ)-compliant (Sub(S), σ)-
maximal derivation D. By Lemma 1 if σ |= S then D is a proof of σ |= S. Since
the converse is trivial, it suffices to search proofs maximal wrt T ⊇ Sub(S).

3 Subterm Deduction System

3.1 Definition and Main Property

We say that a deduction system is a subterm deduction system whenever each
deduction rule which is not a nonce creation or a message reception is either:

1. x1, . . . , xn → f(x1, . . . , xn) for a function symbol f ;
2. l1, . . . , ln → r for some terms l1, . . . , ln, r such that r ∈

⋃n
i=1 Sub(li).

Towards the Orchestration of Secured Services under Non-disclosure Policies 139

A composition rule is either a message reception, a nonce creation, or a rule of
the first type. A deduction rule is otherwise a decomposition rule. Reachability
problemsfor deduction systems with a convergent equational theory are reducible
to the satisfiability of a constraint system in the empty theory for a deduction
system in our setting [17,14]. If furthermore the equational theory is subterm [6]
the reduction is to a subterm deduction system as just defined above.

Now we show that if D, σ, α � S, a term s ∈ Sub(D) is either the instance of
a non-variable subterm of Out(S) or deduced by a standard composition.

Lemma 3. Let σ be a ground substitution such that σ |= S. If D is a proof of
σ |= S such that no term is deduced twice in D by standard rules and s is a term
such that s ∈ Sub(D) and s /∈ (Sub(Out(S)) \ X)σ then there exists an index i
in D such that D[i] = l → s is a composition rule and s /∈ Sub(RD (i − 1)).

Proof. First we note that by definition of subterm deduction systems for any
decomposition rule l → r we have a) r ∈ Sub(l), and b) for any composition rule
l→ r we have l ⊂ Sub(r) and Sub(r) \ Sub(l) = {r}.

Let D be a proof of σ |= S, and let i be minimal such that D[i] = lr ∗→ r with
s ∈ Sub(r). Since lr ⊆ RD (i− 1), the minimality of i implies s ∈ Sub(r)\Sub(lr).

Thus by a) D[i] cannot be a decomposition.
If D[i] =?r then by the (S, σ)-compliance of D we have S[α−1(i)] =!t with

tσ = r. We have s ∈ Sub(r) = Sub(tσ) = Sub(t)σ ∪ Sub(Var(t)σ).
If s ∈ (Sub(Out(S)) \ X)σ we are done, otherwise there exists y ∈ Var(t)

with s ∈ Sub(yσ). By the origination property, there exists k < α−1(i) such that
S[k] =?t′ with y ∈ Var(t′). Since D, σ, α � S and k < α−1(i) there exists j < i
such that D[j] = lj → t′σ. The minimality of i is contradicted by s ∈ Sub(t′σ).

Therefore, D[i] = lr → r is a standard composition rule. As a consequence,
Sub(r) \ Sub(lr) = {r}. Since s ∈ Sub(r) \ Sub(lr), we finally obtain s = r.

3.2 Locality

Subterm deduction systems are not necessarily local in the sense of [19]. How-
ever we prove in this subsection that given σ, there exists a finite extension T
of Sub(S) and an extension σ′ of σ of domain Var(T) and a (T, σ′)-maximal
derivation D in which every deduction relevant to the proof of σ |= S is liftable
into a deduction between terms in T . Let us first precise the above statements.

Definition 7 (Localization set). A set of terms T localizes a derivation D =
(li ∗→ ri)1≤i≤m for a substitution σ of domain Var(T) if for every 1 ≤ i ≤ m if
D[i] is a standard rule and there exists t ∈ Sub(T) \ X such that tσ = ri, there
exists t1, . . . , tn ∈ Sub(T) such that {t1σ, . . . , tnσ} ⊆ RD (i− 1) and t1, . . . , tn →
t is the instance of a standard deduction rule.

First, we prove that for subterm deduction systems, every proof D of σ |= S is
localized by a set T of DAG size linear in the DAG size of S.
Lemma 4. If σ is a ground substitution such that σ |= S there exists T ⊇
Sub(S) of size linear in |Sub(S)|, a substitution τ of domain Var(T) \ Var(S)
and a (T, σ∪τ)-maximal and (S, σ)-compliant derivation localized by T for σ∪τ .

140 T. Avanesov et al.

Proof. By Lemma 2 applied with T1 = ∅, T2 = Sub(S), σ1 = ∅, σ2 = σ, and D0

the (S, σ)-compliant derivation that has no standard deductions, there exists a
(Sub(S), σ)-maximal (S, σ)-compliant derivation D in which no term is deduced
twice by a standard deduction. From now on we let T0 = Sub(S).

Let {li → ri}1≤i≤n be the set of decompositions inD, and {(Li → Ri, τi)}1≤i≤n

be a set of decomposition rules and ground substitutions such that for all 1 ≤ i ≤ n
we have Liτi → Riτi = li → ri. Since no term inD is deduced twice by a standard
deduction, by Lemma 3 we have n ≤ |Sub(Out(S))|.

Modulo variable renaming we may assume that i �= j implies dom(τi) ∩
dom (τj) = ∅, and thus that τ =

⋃n
i=1 τi is defined on T1 =

⋃n
i=1(Sub(Li) ∪

Sub(Ri)). Note that the size of T1 is bounded by M × |Sub(Out(S))|, where M
is the maximal size of a decomposition rule belonging to the deduction system.

Let T = T0 ∪ T1 and, noting that these substitutions are defined on non-
intersecting domains, let σ′ = σ ∪ τ . By construction |T | ≤ (M + 1)× |Sub(S)|.

By Lemma 2 there exists a (S, σ)-compliant derivation D′ which is (T, σ′)-
maximal and such that every deduction of a term in T0σ that occurs in D also
occurs in D′ and no term is deduced twice in D′ by a standard deduction.

Let l → r be a deduction in D′ which does not appear in D. Since D is
(T0, σ)-maximal we have r /∈ Sub(T0)σ, and thus r /∈ Sub(Out(S))σ. Since no
term is deduced twice in D′ by Lemma 3 this deduction must be a composition.

Let us prove D′ is (T, σ′)-localized. By definition of composition rules, every
composition that deduces a term tσ′ with t ∈ Sub(T) \ Var(T) has a left-hand
side t1σ

′, . . . , tkσ′ with t1, . . . , tk ∈ Sub(T) and t1, . . . , tk → t is an instance of a
composition rule. By the preceding paragraph every decomposition in D′ occurs
in D and thus by construction has its left-hand side in T1σ

′ which was previously
built inD and is an instance of some Li → Ri such that Sub(Li∪{Ri}) ⊆ T1 ⊆ T .

Thus every deduction whose right-hand side is in (Sub(T) \Var(T))σ′ has its
left-hand side in Sub(T)σ′, and thus D′ is localized by T for σ′.

We prove now that to solve constraint systems one can first guess equalities
between terms in T and then solve constraint systems without variables. The
guess of equalities is correct wrt a solution σ if terms in T that have the same
instance by σ are syntactically equal. We characterize these guesses as follows.

Definition 8 (One-to-one localizations). A set of terms T one-to-one local-
izes a derivation D for a ground substitution σ if σ is injective on Sub(T) and
T localizes D for σ.

In Lemma 7 we prove that once equalities between variables are correctly guessed
there exists a one-to-one localization of a maximal proof D.

Lemma 5. Let T be a set of terms such that T = Sub(T), σ be a ground sub-
stitution defined on Var(T), U = {p =? q : p, q ∈ T ∧ pσ = qσ} be a unification
system and θ be its most general idempotent unifier with Var(img (θ)) ⊆ Var(U).
Then for any term t, tθσ = tσ.

Lemma 6. Let U be a unification system and θ = mgu (U) an idempotent
most general unifier with Var(img (θ)) ⊆ Var(U). Then ∀p ∈ Sub(img (θ))
∃q ∈ Sub(U) : p = qθ.

Towards the Orchestration of Secured Services under Non-disclosure Policies 141

Lemma 7. If σ is a ground substitution such that σ |= S then there exists a
set of terms T , a substitution τ of domain Var(T) \Var(S), a substitution θ and
a (Sθ, σ)-compliant derivation D such that σ ∪ τ = θ(σ ∪ τ), Sub(Sθ) ⊆ T , and:

1. D is (T, σ ∪ τ)-maximal and one-to-one localized by T for σ ∪ τ
2. T and θ are of size linear in |Sub(S)|

Proof. Under the same assumptions, by Lemma 4, there exists T0 ⊇ Sub(S) of
size linear in |Sub(S)| and τ of domain Var(T0) \ Var(S) such that there exists
a (T0, σ∪ τ)-maximal and (S, σ)-compliant derivation D which is localized by T0

for the same substitution σ′ = σ ∪ τ .
Let U = {t =? t

′ : t, t′ ∈ Sub(T0) and tσ′ = t′σ′}. The unification system U
has a unifier σ′ and thus has a most general solution θ. By Lemma 5, σ′ = θσ′.

Let T = Sub(T0)θ.
Since Sub(S) ⊆ T0 we have Sub(Sθ) ⊆ Sub(T0θ). Since θ is a most general

unifier of U and Sub(U) = Sub(T0) we have Sub(T0θ) = Sub(T0)θ by Lemma 6.
This implies (i) Sub(Sθ) ⊆ T , (ii) θ is of linear size on |Sub(T0)| and thus on
|Sub(S)|, and (iii) T is of linear size on |Sub(S)|. Moreover, as σ′ = θσ′ we
have Sub(T)σ′ = Sub(T0)σ

′ and thus from D is (T0, σ
′)-maximal follows D is

(T, σ′)-maximal.
Assume there exists t, t′ ∈ Sub(T) such that tσ′ = t′σ′ but t �= t′. Since

T = Sub(T0θ) there exists t0, t
′
0 ∈ Sub(T0) such that t0θ �= t′0θ but t0θσ

′ = t′0θσ′.
From σ′ = θσ′ we have an existence of t0, t

′
0 ∈ Sub(T0) such that t0θ �= t′0θ but

t0σ
′ = t′0σ

′. This contradicts the fact that θ satisfies U .
Finally, fromD is (S, σ)-compliant and σ = θσ we haveD is (Sθ, σ)-compliant.

3.3 Milestone Sequence

In addition to retrace the deduction steps performed in D we want to track
which terms relevant to S are deduced in T , and in which order.

Definition 9 (Milestone sequence). Let T be a set of terms and σ be a
ground substitution. We say that T is the (T, σ)-milestone sequence of a deriva-
tion D = (li → ri)1≤i≤m if T = t1, . . . , tn is a sequence of maximal length in
which each ti is either of the form → t or of the form ?t, with t ∈ Sub(T) and
there exists a strictly increasing function α : {1, . . . , n} → {1, . . . ,m} such that
for every 1 ≤ i ≤ n we have:

1. if T [i] =?t then D[α(i)] =?tσ;
2. if T [i] =→ t then D[α(i)] = li → tσ is a standard deduction rule;

Lemma 8. Let σ |= S, T ⊇ Sub(S) and σ′ be an extension of σ on Var(T).
Let D be (T, σ′)-maximal derivation one-to-one localized by T for σ′. Let T be
a (T, σ′)-milestone sequence. Then for any i for any x ∈ Var(T [i]) there exists
j < i such that T [j] =→ x.

Proof. If x ∈ Var(T [i]) then there exists corresponding deduction D[j] that
deduces term T [i]σ′. Then by Lemma 3 there exists k < j such that D[j] deduces

142 T. Avanesov et al.

by a standard rule xσ′. From the injectivity of σ follows that x is the only term
of Sub(T) having σ′ image equal xσ′. Thus, by definition of milestone sequence,
there exists m < i such that T [m] =→ x.

4 Deciding Constraint Systems

From now we suppose that the considered subterm deduction system con-
tains a rule x1, x2 → f(x1, x2), where f is a function symbol with arity 2 that
does not occur in any other rule.

Theorem 1. Let σ such that σ |= S, T such that T ⊇ Sub(S) and σ′ an exten-
sion of σ on Var(T). Let D be a (T, σ′)-maximal derivation one-to-one localized
by T for σ′ in which no term is deduced twice by a standard rule.

Then there exists a solution τ of S of size polynomial in |Sub(T)|.

Proof (sketch, for formal proof see [4]). Let T be a (T, σ′)-milestone sequence
for D.

We prove the existence of a ground substitution τ ′, set of terms T ′ ⊇ T and a
derivation D′ which is (S, τ)-compliant, (T ′, τ)-maximal (where τ = τ ′|Var(S) is
of a linear size on Sub(T)) and is one-to-one localized by T ′ with τ ′ such that its
(T, τ ′)-milestone sequence coincides with the T . Having this proved, by Lemma 1
we can show that τ |= S.

Let X be such subset of Var(T) whose σ′-instance are not derivable from the
empty knowledge. We define T ′ by adding to T one fresh variable x̄ per each
variable x of X.

We define a ground substitution τ ′ for any y ∈ X̄ ∪ (Var(T) \X) as a fresh
nonce; and for any x ∈ X, we put, thanks to Lemma 8, xτ ′ = f(tx, x̄)τ

′, where
tx is the last term received (?tx) before the first occurence of → x in T .

We can see that xτ is of polynomial size on |Sub(S)| for any x ∈ Var(T).
By such construction, and particulary since τ ′ is injective on Var(T), we can

show that τ ′ is also injective on Sub(T ′).
Then we construct a (S, τ)-compliant derivation D′ localized by T ′ with τ ′.

First |X̄ | rules of D′ are generations of nonces (X̄)τ ′. Then, for each element
!t (resp. → t) of T we add !tτ ′ (resp. a rule that deduces tτ ′; we can do it since
T origins from D which is one-to-one localized by T) in D′. Moreover, D′ is
one-to-one localized since τ ′ is injective on Sub(T ′).

We can show that D′ is (T ′, τ ′)-maximal, i.e. for any t ∈ Sub(T ′) if tτ ′ ∈
Der(RD′ (i)) then tτ ′ ∈ RD′ (NextD′(i)− 1).

Suppose by contradition, there exists t not satisfying the maximality condition
for minimal possible i. If t is a variable not in X̄, then, by construction of τ ′

we could also derive tσ′ from the corresponding point of D and thus → t should
have been in T and tτ ′ must be deduced in a “good” (w.r.t. maximality) position
in D′. Note that case of t ∈ X̄ is trivial.

If t is not a variable, we can consider derivation E proving that tτ ′ is derivable
from D′[1 : i]. Then, doing a replacement of term xτ ′ by xσ′ (for each variable
x) in E, we obtain a proof that tσ′ can be derived from D[1 : (i− |X̄ |)].

Towards the Orchestration of Secured Services under Non-disclosure Policies 143

Summing up, since Sub(S) ⊆ T ′, and τ ′ is injective on Sub(T ′), we have that
by construction of D′, for any term t ∈ Sub(S), tσ′ is deduced before j-th non-
standard rule of D (resp. deduced in D) if and only if tτ ′ is deduced before j-th
non-standard rule of D′ (resp. deduced in D′). Therefore, since σ |= S and D is
(S, σ)-compliant and (Sub(S), σ)-maximal and since D′ is (S, τ)-compliant and
(Sub(S), τ)-maximal we may use twice Lemma 1 and obtain that τ satisfies S.

Corollary 1. Let S be a constraint system. S is satisfiable, if and only if there
exists a solution σ′ of S with polynomial size w.r.t. |Sub(S)|.

Proof. (⇐) is trivial, since σ′ |= S. Consider (⇒). Let σ |= S. By Lemma 7 there
exists a set of terms T , a substitution θ both with the size linear in |Sub(S)| and
an extension γ of σ and (T, γ)-maximal (Sθ, σ)-compliant derivation D one-to-
one localized by T for γ. We also have γ = θγ (which implies σ = θσ). Thus σ
satisfies Sθ.

From the same lemma we have Sub(Sθ) ⊆ T . By Theorem 1 there exists a
substitution τ of size polynomial in |Sub(T)| (and consequently, polynomial in
|Sub(S)|) such that τ |= Sθ. From this we have θτ |= S. Moreover, since both θ
and τ are of polynomial size on |Sub(S)|, σ′ = θτ is also of polynomial size on
|Sub(S)| and σ′ |= S.

From the previous result we can directly derive an NP decision procedure
for constraint systems satisfiability: guess a substitution of polynomial size in
|Sub(S)| and check whether it satisfies S in polynomial time (see e.g. [1]). We
also recall that the problem of solving a system of deducibility constraints is
NP -complete [21,23] and since the considered in this paper problem is more
general, we conclude its NP -completeness.

5 Conclusion

We have obtained the first NP -decision procedure for deducibility constraints
with negation and we have applied it to the synthesis of mediators subject to
non-disclosure policies. It has been implemented as an extension of CL-AtSe [24]
for the Dolev-Yao deduction system. On the Loan Origination case study, the
prototype generates directly the expected orchestration. Without negative con-
straints undesired solutions in which the mediator impersonates the clerks were
found. More details about the implementation and tested specifications can be
found at http://cassis.loria.fr/Cl-Atse.

As in [1,6] our definition of subterm deduction systems can be extended to
allow ground terms in right-hand sides of decomposition rules even when they
are not subterms of left-hand sides and the decidability result remains valid
with minor adaptation of the proof. A more challenging extension would be to
consider general constraints (as in [3]) with negation.

The full version of proofs presented in the paper can be found in [4].

http://cassis.loria.fr/Cl-Atse

144 T. Avanesov et al.

References

1. Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational
theories. Theoretical Computer Science 367(1-2), 2–32 (2006)

2. Avanesov, T., Chevalier, Y., Mekki, M.A., Rusinowitch, M.: Web Services Veri-
fication and Prudent Implementation. In: Garcia-Alfaro, J., Navarro-Arribas, G.,
Cuppens-Boulahia, N., de Capitani di Vimercati, S. (eds.) DPM 2011 and SETOP
2011. LNCS, vol. 7122, pp. 173–189. Springer, Heidelberg (2012)

3. Avanesov, T., Chevalier, Y., Rusinowitch, M., Turuani, M.: Satisfiability of general
intruder constraints with and without a set constructor. CoRR, abs/1103.0220
(2011)

4. Avanesov, T., Chevalier, Y., Rusinowitch, M., Turuani, M.: Intruder deducibility
constraints with negation. Decidability and application to secured service composi-
tions. INRIA Research Report (July 2012), http://hal.inria.fr/hal-00719011

5. Automated Validation of Trust and Security of Service-Oriented Architectures,
AVANTSSAR project, http://www.avantssar.eu

6. Baudet, M.: Deciding security of protocols against off-line guessing attacks. In:
Proceedings of CCS 2005 Conference, pp. 16–25. ACM (2005)

7. Chevalier, Y., Mekki, M.A., Rusinowitch, M.: Automatic composition of services
with security policies. In: Proceedings of SERVICES I 2008, SERVICES 2008. pp.
529–537. IEEE, Washington, DC (2008)

8. Corin, R., Etalle, S., Saptawijaya, A.: A logic for constraint-based security protocol
analysis. In: IEEE Symposium on Security and Privacy (S&P), Berkeley, California,
USA, May 21-24, pp. 155–168. IEEE Computer Society (2006)

9. Costa, G., Degano, P., Martinelli, F.: Secure service orchestration in open networks.
Journal of Systems Architecture - Embedded Systems Design 57(3), 231–239 (2011)

10. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions on
Information Theory 29(2), 198–208 (1983)

11. Armando, A., Arsac, W., Avanesov, T., Barletta, M., Calvi, A., Cappai, A., Car-
bone, R., Chevalier, Y., Compagna, L., Cuéllar, J., Erzse, G., Frau, S., Minea,
M., Mödersheim, S., von Oheimb, D., Pellegrino, G., Ponta, S.E., Rocchetto, M.,
Rusinowitch, M., Torabi Dashti, M., Turuani, M., Viganò, L.: The AVANTSSAR
Platform for the Automated Validation of Trust and Security of Service-Oriented
Architectures. In: Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214,
pp. 267–282. Springer, Heidelberg (2012)

12. Frau, S., Torabi Dashti, M.: Integrated specification and verification of security
protocols and policies. In: 24th IEEE Computer Security Foundations Symposium,
CSF 2011, Cernay-la-Ville, France, June 27-29, pp. 18–32 (2011)

13. Herzig, A., Lorini, E., Hübner, J.F., Vercouter, L.: A logic of trust and reputation.
Logic Journal of IGPL 18(1), 214–244 (2010)

14. Kourjieh, M.: Logical Analysis and Verification of Cryptographic Protocols. Thèse
de doctorat, Université Paul Sabatier, Toulouse, France, (Décembre 2009)

15. Kourjhler, D., Ksters, R., Truderung, T.: Infinite state amc-model checking for
cryptographic protocols. In: Symposium on Logic in Computer Science, pp. 181–
192 (2007)

16. Lorini, E., Demolombe, R.: Trust and Norms in the Context of Computer Security:
A Logical Formalization. In: van der Meyden, R., van der Torre, L. (eds.) DEON
2008. LNCS (LNAI), vol. 5076, pp. 50–64. Springer, Heidelberg (2008)

http://hal.inria.fr/hal-00719011
http://www.avantssar.eu

Towards the Orchestration of Secured Services under Non-disclosure Policies 145

17. Lynch, C., Meadows, C.: On the relative soundness of the free algebra model
for public key encryption. In: Proceedings of the 2007 FCS-ARSPA Work-
shop. ENTCS, vol. 125, pp. 43–54 (2005), http://profs.sci.univr.it/∼vigano/

fcs-arspa07/fcs-arspa07.pdf

18. Martinelli, F.: Towards an Integrated Formal Analysis for Security and Trust. In:
Steffen, M., Zavattaro, G. (eds.) FMOODS 2005. LNCS, vol. 3535, pp. 115–130.
Springer, Heidelberg (2005)

19. McAllester, D.A.: Automatic recognition of tractability in inference relations. Jour-
nal of the ACM 40, 284–303 (1993)

20. Millen, J., Shmatikov, V.: Constraint solving for bounded-process cryptographic
protocol analysis. In: Proceedings of the 8th ACM Conference on Computer and
Communications Security, CCS 2001, pp. 166–175. ACM, New York (2001)

21. Millen, J.K., Shmatikov, V.: Constraint solving for bounded-process cryptographic
protocol analysis. In: Proceedings of the ACM Conference on Computer and Com-
munications Security CCS 2001, pp. 166–175 (2001)

22. Network of Excellence on Engineering Secure Future Internet Software Services
and Systems, NESSoS project, http://www.nessos-project.eu

23. Rusinowitch, M., Turuani, M.: Protocol insecurity with finite number of sessions
is NP-complete. In: Proceedings of CSFW 2001, pp. 174–190. IEEE Computer
Society Press (2001)

24. Turuani, M.: The CL-Atse Protocol Analyser. In: Pfenning, F. (ed.) RTA 2006.
LNCS, vol. 4098, pp. 277–286. Springer, Heidelberg (2006)

25. Chevalier, Y., Mekki, M.A., Rusinowitch, M.: Orchestration under Security Con-
straints. In: Aichernig, B.K., de Boer, F.S., Bonsangue, M.M. (eds.) FMCO 2010.
LNCS, vol. 6957, pp. 23–44. Springer, Heidelberg (2011)

http://profs.sci.univr.it/~vigano/fcs-arspa07/fcs-arspa07.pdf
http://profs.sci.univr.it/~vigano/fcs-arspa07/fcs-arspa07.pdf
http://www.nessos-project.eu

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2012, LNCS 7531, pp. 146–155, 2012.
© Springer-Verlag Berlin Heidelberg 2012

An Approach for Network Information Flow Analysis
for Systems of Embedded Components

Andrey Chechulin, Igor Kotenko, and Vasily Desnitsky

St. Petersburg Institute for Informatics and Automation (SPIIRAS)
39, 14 Linija, St. Petersburg, Russia

{chechulin,ivkote,desnitsky}@comsec.spb.ru

Abstract. Systems (devices) with embedded components operate in a potentially
hostile environment and have strong recourse limitations. The development of
security-enhanced embedded components is a complicated task owning to differ-
ent types of threats and attacks that may affect the device, and because the secu-
rity in embedded devices is commonly provided as an additional feature at the
final stages of the development process, or even neglected. In the paper we con-
sider an approach to analysis of network information flows in systems containing
embedded components. This approach helps to the system engineer to evaluate
the embedded system from security point of view and to correct the architecture
of future system on early stages of the development.

Keywords: information flows, embedded devices, model checking, topology
analysis.

1 Introduction

The paper encompasses the analysis of security issues of the systems which include
embedded devices. Such systems are notable for autonomy of separate devices in-
cluded in the system and for constrains of the resources of the device and their conse-
quently week efficiency [1-4].

The notion of the information flow is very important for information security as it
describes how information spreads and who accesses it in the systems with embedded
components. The standard method to protect confidential data is to control access to
it: only entities with specific privileges can access files or objects containing confi-
dential data. But this approach does not consider the covert channels emerging when
the information is propagated in the information system either through the program
execution or through the hardware processing. The usage of the information flows
help to track the information spread. Information flow security is based on the con-
cept of the non-interference that formalizes the relationships between components of
the system [5]. A noninterference security policy specifies which components, or
domains, may not interfere with each other; it determines where component u inter-
feres with a component v if v can observe the effects of u’s execution. This means that
no secret data could be obtained by observing “public” behavior of the system. The
non-interference model mainly focuses on the events and system actions and their

 An Approach for Network Information Flow Analysis 147

impact on the secrecy of the confidential data. D. Oheimb [6] proposes the notions of
nonleakage and noninfluence. Nonleakage focuses primarily on the secret state of the
system while noninfluence is the combination of the nonleakage and noninterference.

B. Lampson [7] defines three types of channels which can cause unsafe infor-
mation flows. The first one is the legitimate channels that are intended for infor-
mation transfer when legitimate system operation is implemented. Another type of the
channels is the storage channel designed to store information. The last type of the
channels consists of so-called covert channels that emerge as the result of the side-
effects of legitimate mechanisms. The aim of information flow analysis is to reveal
the existence of such channels in the information system.

The interference concept is the basis for the security analysis of information flows,
producing security rules and requirements to the information exchange. In general,
information flow analysis of a security-critical system can be done in either of two
ways: (1) Dynamically, by tracking how information actually flows through the system
when it is in operation. This is often easy to implement, by inserting sensors and moni-
tors into the system, but has the disadvantage that even if no insecure flows have been
observed to date we can never be certain that no security problems will arise in future;
(2) Statically, by analyzing the structure of the system itself. This has the advantage of
providing absolute guarantees about all of the system’s potential behaviors, but it is
often computationally expensive and produces “false-positives”, i.e. alerts about poten-
tial information flows identified statically that never actually occur dynamically.

The essential idea of static information flow analysis is to allow an information se-
curity evaluator to see where classified data could propagate when the system is in
operation. This is usually done by selecting some point in the system to be a source of
high-security data, and then using a connectivity graph model of the system to trace
possible pathways for this data. This is sometimes referred to as “taint analysis” and is
helpful in evaluating a system’s weak points and mechanisms for protecting data con-
fidentiality and integrity. The primary disadvantages of the approach are that it is
computationally expensive for large system models and tends to overapproximate the
possible data flow pathways, resulting in false-positive results that can waste an secu-
rity evaluator’s time (although this is preferable to underestimating potential data
flow, which could result in security-critical pathways being overlooked).

Security-critical information flow analysis can be applied at various levels, includ-
ing: (1) schematic diagrams of electronic circuitry (hardware flows); (2) data flow
models of computer software (software flows); and (3) entire communication network
layouts (network flows). Data flow analysis of computer software has been explored
extensively [8-10], but similar analyses for embedded system hardware and network
designs have received relatively little attention.

The approach proposed in the paper determines a way of simultaneous use of com-
bination of particular algorithms and techniques implementing various methods for
information flow analysis. The goal of this approach is to achieve high security level
by analyzing the architecture and implementation of the system with embedded com-
ponents. The main difference of the offered approach from the already suggested ones
is the integration of these functionalities in one component to achieve better results.
The approach novelty consists also in the way of applying the existing methods for
different layers of information flow model. The paper is focused mainly on network
information flows analysis. It is performed in SecFutur project [11].

148 A. Chechulin, I. Kotenko, and V. Desnitsky

The rest of this paper is organized as follows. Section 2 is devoted to related work
analysis. Section 3 presents suggested methodology for information flow analysis on
the network layer. In section 4 we show how suggested methodology could be applied
to a real use-case. Finally, section 6 presents some conclusions and future work.

2 Related Work

While many techniques exist to track information flows through software, little work
has been done in the analysis of the network information flow security. The notion of
the information flow is widely used when estimating routing capacity, assessing net-
work efficiency or constructing networks [12-14]. Though this research is not directly
related to the information flow non-interference in the network it could be useful
when modelling and constructing information flows. The information flow between
nodes is usually represented as directed acyclic graphs, where each node corresponds
to a point-to point communication host, and edges reflect information flows. The
topological analysis can be applied to reveal covert channels [15]. A number of pa-
pers is devoted to the detection mechanisms of covert channels which are based on
the network protocol features [16-17].

V. Shnayder [18] examines the opportunities for applying language based security
techniques, in particular information flow tracking, to the sensor network domain.
D.P.Grushka [19] presents a formal model for the analysis of information flows in
networks. It is based on the timed process algebra [20], which can express also net-
work properties. The presented calculus allows modelling of two types of communi-
cations (via fast networks, for example local buses, and via shared networks with
limited throughput, for example optical networks with wave length-division multi-
plexing) and modelling of complex networks combining both types of communica-
tions. This approach enables to formalize the notion of “network timing attacks”, to
reveal timing covert channels attack and to modify the system in order to eliminate
timing attacks.

Network security policies can be used for description of the information flows al-
lowed or prohibited in the system. Thus, their analysis can be helpful in the analysis
of information flows in the network. There are different approaches for analysis and
verification of the security policies, the most of them are based on theorem proving
and model checking, though special-purpose techniques developed for verification of
the specific policy rules also exist. There are many works in detecting misconfigura-
tion in network access control devices such as firewalls, routers [21-23].

Other works present general models for analysing network configuration. R.Bush
and T.Griffin [24] suggest a formal model of the VPN, which uses BGP to propagate
routing information for all VPNs implemented within a provider’s backbone and a
tunneling technology, such as MPLS, to isolate traffic. In particular authors focus on
integrity constraints that must be maintained by providers in order to ensure that intra-
VPN connectivity is achieved, and that disjoint VPNs are isolated.

Al Shaer et al. [25] present a model of the network based on the state machine
where the packet header and location determine the state. The transitions in this
model are determined by the packet header information, the packet location, and the

 An Approach for Network Information Flow Analysis 149

policy semantics for the devices. The semantics of access control policies is encoded
with Boolean functions using binary decision diagrams [26].

R.Bryant [27] uses tree logic and symbolic model checking to investigate all future
and past states of the packet in the network computation and to verify network reach-
ability and security requirements. The author demonstrates the effectiveness of the
model through the provability of soundness and completeness of the configuration
reachability as well as discovering number of security violation examples such as
backdoors and broken IPSec tunnels. The proposed model is implemented in a tool
called ConfigChecker [28].

3 Approaches for Information Flow Analysis

In this paper two main approaches to network information flow analysis are supported
– topological and policy based. Topological analysis takes as input the directed graph
and evaluates different path from security point of view. Policy based approach works
with policies, which describe information flows in the formal format, and tries to find
contradictions between them. Let us consider these approaches in more detail.

3.1 Topological Information Flow Analysis Principles

Simple topological analysis techniques, based on the conventional graph theory, can
be of significant help to an information security evaluator. In particular, given a mod-
el of a security-critical system as a directed graph of nodes (vertices) and arcs (edges),
the following kinds of analyses can be helpful when trying to evaluate the system’s
security characteristics with respect to the potential information flows.

1. Identifying all components that lie between two selected points in the graph,
typically between a high-security information source and a low-security sink. An
information security evaluator can use this kind of analysis to identify the “security
perimeter” or “security-critical region” within the system, in order to quickly elimi-
nate those components that have no security significance [15]. Components that do
not appear between the source and sink cannot play a role in the security argument
and do not need to be analyzed further.

2. Most importantly, finding all data flow paths between two selected points in a
graph, typically between a high-security information source and a low-security data
sink. This provides an information security evaluator with a set of pathways worthy of
close inspection, to determine whether or not they are allowable in the context of the
intended security behavior of the system. Unfortunately, finding all paths between
two points in a graph cannot be done efficiently for large graphs because it subsumes
the problem of finding the longest path, which is known to be NP-complete. There-
fore, a divide-and-conquer strategy must be employed to analyze large systems.

Of these techniques, the one that is most commonly helpful to an information secu-
rity evaluator is the last, i.e., finding all the possible information flow paths between
a selected high-security data source and a low-security data sink. Once the paths have
been found, the information security evaluator can then inspect each of them to

150 A. Chechulin, I. Kotenko, and V. Desnitsky

determine whether or not they pose a threat to system security. For each such path
there is a number of possible outcomes from this assessment. In increasing order of
usefulness these are as follows: (1) The path was one expected by the information
security evaluator, helping confirm the anticipated normal behavior of the system;
(2) The path was one expected by the information security evaluator, but represents
an undesirable property of the system, thus confirming that the system has a known
problem; (3) The path was one not expected by the information security evaluator but,
upon close inspection, proves to be a valid one for the system, thus helping the evalu-
ator understand the system’s ‘normal’ behavior; (4) The path was one not expected by
the information security evaluator and, upon close analysis, proves to be an undesira-
ble one, thus revealing a previously-unknown security problem.

However, for non-trivial system models the number of paths generated can be very
high, with many of them being false-positives, making this process highly tedious and
thus error-prone. One way of reducing the number of false positives is to introduce
some simple static semantics into the model. One approach for doing this is to associ-
ate known system operating modes with the possible data flows through components
[15]. This allows a mode-specific path analysis to be performed in which impossible
paths, where data travels through components in contradictory modes, can be imme-
diately eliminated. Another possibility is to group pathways together so that several
can be assessed at once.

3.2 Information Flows Analysis Based on Security Policies

There are two approaches to perform network analysis for information flows: static
and dynamic approach.

The main objective of the static approach is to check conformity of the formally
described physical and logical connections between network elements to the policy
flow model. It can be checking the presence of strong encryption, checking the pres-
ence of mutual authentication, checking network flow policies for collisions, etc.

The dynamic approach in turn is targeted to check real data flows detected in the
network flows for conformity to the policy flow model. Information about real con-
nections in the network can be collected from the following elements: connections at
the network level (TCP sessions); connections at the application level (VPN tunnels,
etc.); by assigning labels to the data and tracing them.

For information flow analysis on the network level the Flow Security Language
(FSL) is proposed. Flows are specified in this language using the following parame-
ters: users, end nodes, nodes through which the flow passes, the direction of the flow,
and the type of data that it transfers.

For verification of the policy rules describing information flows the Model check-
ing approach is used [30-31].

The essence of model checking is to iterate states in which the system can transfer.
The state is changed according to the emerging information flow. The sequence of
steps in the iteration depends on the conditions that are formulated in the linear tem-
poral logic language and define the correct state of the system. A state of the system is
determined by a set of variables, while a change of the state is caused by internal pro-

 An Approach for Network Information Flow Analysis 151

cesses. The process, which should be carried out in the next time point is chosen ran-
domly. The system considers all possible sequences of steps and signals on the poten-
tial incorrect states. After that, the user receives “route”, i.e. a sequence of steps lead-
ing to the incorrect system’s state.

The main inputs for the proposed approach are: (1) description of filtering rules
(policies) for information flows; (2) configuration of the network containing embed-
ded devices; (3) description of rule`s anomalies.

At the first stage, the input data containing the description of policies and anoma-
lies are transformed to the internal format of the verification system. Then, at the
second stage, the common model for rules verification is formed by means of the
finite state machine. This model is initialized with the input data in the internal for-
mat. Anomalies in the model are represented as formal statements. For the model
checking approach these statements are correction properties, which violation will
transfer the system into an incorrect state. At the third stage, the common model for
rules verification is checked by special software tools implementing the model check-
ing approach. In the process of verification all incorrect states of the system are iden-
tified. At the final stage of the verification all results are interpreted. If anomalies are
detected, then a description of the situation (containing an information flow specifica-
tion) is created.

Special software tools that implement the model checking method can be used to
verify the rules of security policy of information flows, for instance, SPIN [32],
SMV [33], MOCHA [34], etc. In the verification process these tools allow identifying
all the conflicts between rules for the information flow control. We use the software
tool SPIN and the specification language PROMELA for policies verification.
PROMELA (a PROcess MEta LAnguage) is a high level language used in SPIN
which allows specifying systems descriptions. The main entities such as information
flow control rules, information flows, anomalies, etc. are described as data structures
in this language. This structure allows storing all rule’s parameters: description of the
action which defines the rule for information flows (allow, deny), the name of the
rule, the type of the transmitting data, the parameters of the source point (user, node,
interface), the parameters of the destination point (user, node, interface), and the rule
status (enabled, disabled).

The policy structure contains the policy name, the policy type and the set of rules.
Data exchange between processes in the PROMELA language occurs through message
channels. For linear temporal logic formulas in PROMELA language a special keyword
assert (formal approval) is used. In the process of verification each violation of these
formal statements is identified and an example showing how the system goes to an in-
correct state is constructed. Thus, all the rules that can cause the anomalies are identi-
fied. Information flow policies and rules are created during initialization. Further main
processes, such as information flow generation process (generateInformationFlow),
information flow control process (informationFlowManager) and anomaly detecting
process (detectFilteringConflicts), are started. After the entire range of hosts, users,
interfaces, and types of flows are processed, the verification is completed. The results of
verification activity are all violations of formal statements, i.e. detected rule’s
anomalies.

152 A. Chechulin, I. Kotenko, and V. Desnitsky

4 Case Study and Experiments

As use case example the Smart Metering Devices Network was chosen. The Smart
Metering Devices Network is an advanced metering infrastructure consisting of several
trusted meters, database servers, client applications and communication infrastructure.
Its purpose is to measure energy consumption of households and to facilitate the as-
signment of consumption data to customers for billing purposes. It supports different
user roles in a way which reflects the typical organization of the parties involved in the
business, thereby providing intuitive functions for its users, who are able to interact
with the components of the system via local and remote interfaces.

We implemented a software prototype which allows us to experiment with verifi-
cation of network information flows for this case study.

The examples of specification of information flow control rules for Metering De-
vice case study are shown in Listing 1 and Listing 2.

Listing 1. Main data structures.

typedef FilteringRule {

 bool action = true; /*true – allow, false – deny*/

 mtype ruleName;

 mtype = {any, manufacturer, calibrator, technician,

 TSN_administrator, operator_TRM, Operator _OAB,

 operator_administrator, customer };

 chan sourceUser = [1] of {mtype};

 chan destinationUser = [1] of {mtype};

 mtype = {any, operatorPC, TSNPC, RemotePC, OCSS, TSNS,

 Gateway, GPT, TSMC, TSM, TS };

 chan sourceNode = [1] of {mtype};

 chan destinationNode = [1] of {mtype};

 mtype = {any, TSMLI, TSMCLI, TSMNI, TSMCNI, SSI, GI, PCI, DBI };

 chan sourceInterface = [1] of {mtype};

 chan destinationInterface = [1] of {mtype};

 mtype = {any, Customer_account_data, Privacy_non_relevant_data,

 Privacy_relevant_consumption_data,

 Manufacturer_certificate, Calibration_certificate,

 Administrator_user_account_data, Operator_user_account_data,

 Installation_certificate, Deinstallation_certificate,

 Communication_configuration, Functional_settings,

 Security_settings, Event_records, Trusted_records, Time,

 Installed_software_and_related_resources};

 chan dataType = [1] of {mtype};

 mtype = {Enabled, Disabled};

 chan en = [1] of {mtype};

}

 An Approach for Network Information Flow Analysis 153

Listing 2. Specification of information flows.

/***********MODEL INITIALIZATION**************/

mtype = {filtering_rule_1, filtering_rule_2, filtering_rule_3, …};

proctype initModel () {

/***Creation rules***/

 FilteringRule fRule1;

 FilteringRule fRule2;

/***Init rules***/

 fRule1.ruleName = filtering_rule_1;

 fRule1.sourceUser! TSN_administrator;

 fRule1.sourceNode! TSNS;

 fRule1.sourceInterface! any;

 fRule1.destinationUser! any;

 fRule1.destinationNode! TSMC;

 fRule1.destinationInterface! any;

 fRule1.dataType! Communication_configuration;

 fRule1.action = true;

 fRule1.en!Enabled;

 fRule2.ruleName = filtering_rule_2;

 fRule2.sourceUser! any;

 fRule2.sourceNode! TSMC;

 fRule2.sourceInterface! any;

 fRule2.destinationUser! any;

 fRule2.destinationNode! OCSS;

 fRule2.destinationInterface! any;

 fRule2.dataType! Privacy_relevant_consumption_data;

 fRule2.action = true;

 fRule2.en!Enabled;

Listing 1 specifies the main data structures: action, user, interface, node and flow types.
Listing 1 shows a description of two information flows. The first defines flow which
initiated by TSN (Trusted Sensor Network) administrator from TSNS (Trusted Sensor
Network Admin Server) node and which goes to TSMC (Trusted Sensor Module
Collector) node and consists management information. Second flow consists of
measures and goes from TSMC (Trusted Sensor Module Collector) to OCSS
(Operator Collector Storage Server).

The experiments conducted showed that the proposed approach can detect all
anomalies in information flow control rules, but can be used effectively only having
some limited number of rules. Adding temporal characteristics to the rules have not
changed significantly the time of verification.

5 Conclusion

Several approaches were analyzed and implemented to perform the analysis of infor-
mation flows on network layer. For all of them the state-of-the-art was studied, and the
approaches for information flow analysis, which are applicable to testing processes,

154 A. Chechulin, I. Kotenko, and V. Desnitsky

were analyzed. The smart metering device use case was elaborated. This paper is main-
ly devoted to theoretical aspects of information flow analysis. A deeper practical appli-
cation of these approaches requires additional series of experiments.

We compared our approach with existing ones and found that it allows us to
achieve more complex evaluation of information flow security in contrast to separated
approaches. In future work it is planned to perform series of experiments for other use
cases. Also we are going to elaborate the software prototype which will contain all
described approaches to information flow analysis including hardware and software
flows analysis.

Acknowledgements. This research is being supported by grant of the Russian Foun-
dation of Basic Research (project #10-01-00826-a), Program of fundamental research
of the Department for Nanotechnologies and Informational Technologies of the Rus-
sian Academy of Sciences (contract #2.2), State contract #11.519.11.4008 and partly
funded by the EU as part of the SecFutur and MASSIF projects.

References

1. Desnitsky, V., Kotenko, I., Chechulin, A.: An Abstract Model for Embedded Systems and
Intruders. In: Proceedings of the Work in Progress Session Held in Connection with the
19th Euromicro International Conference on Parallel, Distributed and Network-Based
Processing (PDP 2011), pp. 25–26. SEA-Publications, SEA-SR-29 (2011)

2. Desnitsky, V., Chechulin, A.: Model of the Process for Secure Embedded Systems
Development. High Availability Systems (2), 97–101 (2011) (in Russian)

3. Kotenko, I., Desnitsky, V., Chechulin, A.: Investigation of Technologies for Secure
Embedded Systems Design in European Union Project SecFutur. Information Security
Inside (3), 68–75 (2011) (in Russian)

4. Desnitsky, V., Kotenko, I., Chechulin, A.: Constructing and Testing Secure Embedded
Systems. In: Selected Proceedings of XII Saint-Petersburg International Conference
“Regional informatics-2010” (“RI-2010”), pp. 115–121. St. Petersburg (2011) (in Russian)

5. Rushby, J.: Noninterference, Transitivity, and Channel-control Security Policies, SRI
International. Tech. Rep. CSL-92-02 (1992)

6. von Oheimb, D.: Information Flow Control Revisited: Noninfluence = Noninterference +
Nonleakage. In: Samarati, P., Ryan, P.Y.A., Gollmann, D., Molva, R. (eds.) ESORICS
2004. LNCS, vol. 3193, pp. 225–243. Springer, Heidelberg (2004)

7. Lampson, B.: A note on the confinement problem. Communications of ACM 16(10),
613–615 (1973)

8. Pistoia, M., Chandra, S., Fink, S., Yahav, E.: A Survey of Static Analysis Methods For
Identifying Security Vulnerabilities in Software Systems. IBM Systems Journal 46(2),
265–288 (2007)

9. Hedin, D., Sabelfeld, A.: A Perspective on Information-Flow. Summer school Control
Tools for Analysis and Verification of Software Safety and Security, Marktoberdorf,
Germany (2011)

10. Sabelfeld, A., Myers, A.C.: Language-based Information-flow Security. IEEE Journal on
Selected Areas in Communications 21(1), 5–19 (2003)

11. SecFutur project website, http://secfutur.eu
12. Ahlswede, R., Cai, N., Li, S.-Y.R., Yeung, R.W.: Network Information Flow. IEEE

Transactions on Information Theory IT-46(4), 1204–1216 (2000)

 An Approach for Network Information Flow Analysis 155

13. Sprintson, A., El Rouayheb, S., Georghiades, C.: A New Construction Method for
Networks from Matroids. In: Proceedings of the 2009 IEEE International Conference on
Symposium on Information Theory (ISIT 2009), Seoul (2009)

14. Agaskar, A., He, T., Tong, L.: Distributed Detection of Multi-hop Information Flows with
Fusion Capacity Constraints. IEEE Transactions on Signal Processing 58(6), 3373–3383
(2010)

15. Rae, A., Fidge, C.: Information Flow Analysis for Fail-Secure Devices. The Computer
Journal 48(1), 17–26 (2005)

16. Cabuk, S., Brodley, C.E., Shields, C.: IP Covert Channel Detection. ACM Transactions on
Information and System Security (2008)

17. Berk, V., Giani, A., Cybenko, G.: Detection of Covert Channel Encoding in Network
Packet Delays. Technical Report TR536 (2005)

18. Shnayder, V.: Opportunities for Language Based Information Flow Security in Sensor
Networks (2004)

19. Gruska, D.P.: Network Information Flow. Fundamentae Informaticae 72(1-3), 167–180
(2006)

20. Gruska, D.P., Maggiolo-Schettini, A.: Process Algebra for Network Communication.
Fundamenta Informaticae 45(4), 359–378 (2001)

21. Al-Shaer, E., Hamed, H., Boutaba, R., Hasan, M.: Conflict Classification and Analysis of
Distributed Firewall Policies. IEEE Journal on Selected Areas in Communications
(JSAC) 23(10) (2005)

22. Al-Shaer, E., El-Atawy, A., Samak, T.: Automated Pseudo-live Testing of Firewall
Configuration Enforcement. IEEE Journal on Selected Areas in Communications 27(3),
302–314 (2009)

23. Feamster, N., Balakrishnan, H.: Detecting BGP Configuration Faults with Static Analysis.
NSDI (2005)

24. Bush, R., Griffin, T.: Integrity for virtual private routed networks. IEEE INFOCOM
2003 2, 1467–1476 (2003)

25. Al-Shaer, E., Marrero, W., El-Atawy, A., El-Badawi, K.: Network Configuration in A
Box: Towards End-to-End Verification of Network Reachability and Security. In: 17th
IEEE International Conference on Network Protocols (ICNP 2009), pp. 123–132 (2009)

26. Emerson, E.A.: Temporal and Modal Logic. In: Handbook of Theoretical Computer
Science, ch. 16, vol. B, pp. 995–1072. MIT Press (1990)

27. Bryant, R.: Graph-based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers C-35(8), 677–691 (1986)

28. ConfigChecker,
http://www.arc.cdm.depaul.edu/projects/ConfigChecker

29. McComb, T., Wildman, L.: User guide for SIFA v.1.0. Technical report (2006)
30. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press (2008)
31. Kotenko, I., Polubelova, O.: Verification of Security Policy Filtering Rules by Model

Checking. In: Proceedings of IEEE Fourth International Workshop on Intelligent Data
Acquisition and Advanced Computing Systems: Technology and Applications (IDAACS
2011), pp. 706–710 (2011)

32. Holzmann, G.: The Spin Model Checker Primer and Reference Manual. Addison-Wesley
(2003)

33. McMillan, K.: The SMV System,
http://www.cs.cmu.edu/_modelcheck/smv.html

34. Alur, R., Anand, H., Grosu, R., Ivancic, F., et al.: Mocha User Manual. Jmocha Version 2.0,
http://embedded.eecs.berkeley.edu/research/mocha/doc/j-doc/

Individual Countermeasure Selection Based

on the Return On Response Investment Index

Gustavo Gonzalez Granadillo1, Hervé Débar1, Grégoire Jacob1,
Chrystel Gaber2, and Mohammed Achemlal2

1 Telecom Sudparis, SAMOVAR UMR 5157
9 rue Charles Fourier, 91011 EVRY, France

{gustavo.gonzalez granadillo,herve.debar,

gregoire.jacob}@telecom-sudparis.eu
2 Orange Labs, Caen, France

{chrsytel.gaber,mohammed.achemlal}@orange.com

Abstract. As the number of attacks, and thus the number of alerts re-
ceived by Security Information and Event Management Systems (SIEMs)
increases, the need for appropriate treatment of these alerts has become
essential. The new generation of SIEMs focuses on the response ability to
automate the process of selecting and deploying countermeasures. How-
ever, current response systems select and deploy security measures with-
out performing a comprehensive impact analysis of attacks and response
scenarios. This paper addresses this limitation by proposing a model
for the automated selection of optimal security countermeasures. In ad-
dition, the paper compares previous mathematical models and studies
their limitations, which lead to the creation of a new model that evalu-
ates, ranks and selects optimal countermeasures. The model relies on the
optimization of cost sensitive metrics based on the Return On Response
Investment (RORI) index. The optimization compares the expected im-
pact of the attacks when doing nothing with the expected impact after
applying countermeasures. A case study of a real infrastructure is de-
ployed at the end of the document to show the applicability of the model
over a Mobile Money Transfer Service.

Keywords: Impact Analysis, Countermeasure Selection, Risk Mitiga-
tion, Return On Response Investment, Mobile Money Transfer Service.

1 Introduction

Current Security Information and Event Management systems (SIEMs) consti-
tute the central platform of modern security operating centres. They gather
events from various sensors (intrusion detection systems, anti-virus, firewalls,
etc.), correlate these events, and deliver synthetic views for threat handling and
security reporting.

Research in SIEM technologies has traditionally focused on providing a com-
prehensive interpretation of threats, in particular to evaluate their importance

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2012, LNCS 7531, pp. 156–170, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Individual Countermeasure Selection Based on the RORI Index 157

and prioritize responses accordingly. However, in many cases, threat responses
still require humans to carry out the analysis and decision tasks e.g., under-
standing the threats, defining the appropriate countermeasures and deploying
them. This is a slow and costly process, requiring a high level of expertise, and
remaining error-prone nonetheless. Thus, recent research in SIEM technology
has focused on the ability to automate the process of selecting and deploying
countermeasures.

The authors of [1, 2] have proposed automatic response mechanisms, such as
the adaptation of security policies, to overcome the limitations of static or man-
ual response. Although these approaches improve the reaction process (making
it faster and/or more efficient), they remain limited since these solutions do
not analyse the impact of the countermeasures selected to mitigate the attacks.
In this paper, we propose a novel and systematic process to select the optimal
countermeasure from a pool of candidates, by ranking them based on a trade-off
between their efficiency in stopping the attack and their ability to preserve, at
the same time, the best service to normal users.

In order to quantitatively analyse the impact of the attack, our model con-
siders two aspects of security policies related to threat responses: firstly, the
cumulative long term security policies changes due to previous attacks; and sec-
ondly, the fact that security policies may need to be automatically adapted to
the current context.

Taking into account previous quantitative models [3–11] this paper proposes
a model to select the countermeasure that provides the highest benefit to the
organization. It adjusts the proposal made in [10,11] for the use of cost-sensitive
metrics to evaluate the impact of each security countermeasure, which allows
the system to select the one that provides the maximal RORI index.

The rest of the document is structured as follows: Section 2 introduces the
state of the art on impact analysis. Section 3 describes the proposed model to
assess countermeasures. Based on the previous assessment, Section 4 explains
the process for selecting appropriate countermeasures. Section 5 provides a case
study to clearly identify the applicability of the model. Related works are pre-
sented in Section 6. Finally, conclusions and perspectives for future work are
presented in Section 7.

2 State of the Art on Impact Analysis

Several authors have proposed cost sensitive metrics to balance intrusion damage
and response costs, and to guarantee the choice of the most appropriate response
without sacrificing the system functionalities. Table 1 describes these models.

The simplest and most used approach for evaluating financial consequences
of business investments, decisions and/or actions is the Return On Investment
(ROI) metric. ROI compares the benefits versus the costs obtained for a given
investment [3, 4].

The Return On Attack (ROA) has been defined in [5], as the gain the attacker
expects from a successful attack over the losses that he sustains due to the

158 G. Gonzalez Granadillo et al.

adoption of security measures by his target. Authors state that the effectiveness
of security technology investments could be degraded due to context changes
without affecting the ROI index. Additionally, ROI alone is unable to catch the
different impacts that solutions have on attackers’ behaviours.

The Return On Security Investment (ROSI) metric, has been proposed in [6,7],
as a metric that compares the differences between the damages of Information
Security incidents (with and without countermeasures) against the cost of the
solution. Authors agree that even though the expected damage and mitigation
metrics are inaccurate, if the method for determining ROSI produces repeatable
and consistent results, the model can be useful for comparing security solutions
based on relative values.

More recently, The Return On Response Investement (RORI) has been intro-
duced in [10,11] as a service dependency model for cost sensitive response based
on a financial comparison of the response alternatives. The RORI index considers
not only response collateral damages but also response effects on intrusions.

Table 1. Summary of Cost Sensitive Models

Models Return On In-
vestment (ROI)
[3, 4]

Return On Attack
(ROA) [5]

Return On Secu-
rity Investment
(ROSI) [6–9]

Return On Re-
sponse Investment
(RORI) [10,11]

Main Focus Security Solution

Cost (SecCost),

Effectiveness

Attack Gain (Att Gain),

Attack Cost (Att Cost),

Losses due to Security

(SecLoss)

Security Investment

(SecInv), Benefits and

Cost

Collateral Damage (CD),

Operational Costs (OC) and

Response Costs(RC)

Formula
Benefit−SecCost

SecCost
Att Gain

Att Cost+SecLoss
Returns−SecInv

SecInv
Losses−RC−OC

CD+OC

Optimal Solution Highest ROI value Lowest ROA value Highest ROSI value Highest RORI value

Characteristics Evaluate financial

consequences of

business investments

Evaluate the impact of

security solutions based

on the attack’s behaviour

Compare the difference

between damages of IT

incidents (with and

without countermeasures)

against the solution cost

Determine the benefit

obtained in a particular

threat scenario that

applies a given

countermeasure

Constraints - It cannot be used

to evaluate the fact

of doing nothing

- Difficult to be

accurate while predicting

attacker’s behaviour

- It does not consider

collateral damage nor

operational costs

- It does not consider

attacker’s behaviour

- Unable to evaluate

the solution’s impact

due to attacker’s

behaviour

- It does not consider

security solution cost

- It cannot be used to

evaluate the fact of doing

nothing

- It is not defined to

evaluate the fact of doing

nothing

- It does not

consider collateral

damage nor

operational costs

- It cannot be used to

evaluate the fact of doing

nothing

- Unable to evaluate the

solution’s impact due to

attacker’s behaviour

- It is not normalized

to the size of the

infrastructure

3 Countermeasure Selection Model

Our solution considers the approach proposed by Kheir et al. [10,11], where au-
thors evaluate the Return On Response Investment (RORI) through the formula
depicted in Equation 1.

RORI =
[ICb−RC]−OC

CD +OC
(1)

Where,

– ICb is the expected intrusion impact in the absence of security measures. It
measures the damage cost due to intrusions or attacks.

Individual Countermeasure Selection Based on the RORI Index 159

– RC is the combined impact for both intrusion and response. RC represents
the sum of the expected intrusion impacts after a response is enacted and
the cost that is added by the selected response.

– OC is the operational cost that includes response set-up and deployment
costs such as manpower and over provisioning.

– CD is the response collateral damage which represents the cost that is added
by the security measure.

3.1 Constraints

The deployment of the Return-On-Response-Investment (RORI) index into real
world scenarios has presented the following shortcomings:

1. The absolute value of parameters such as ICb and RC are difficult to esti-
mate, whereas a ratio of these parameters is easier to determine, which in
turn reduces errors of magnitude.

2. The RORI index is not defined when no countermeasure is selected. Since
the operational cost (OC) is associated to the security measure, the RORI
index will lead to an indetermination when no solution is enacted.

3. The RORI index is not normalized with the size and complexity of the
infrastructure.

3.2 Improved RORI

We propose an improvement of the RORI index by taking into account not only
the countermeasure cost and its associated risk mitigation, but also the infras-
tructure value and the expected losses that may occur as a consequence of an
intrusion or attack. The improved RORI index handles the choice of applying no
countermeasure to compare with the results obtained by the implementation of
security solutions (individuals and/or combined countermeasures), and provides
a response that is relative to the size of the infrastructure. The improved Return
on Response Investment (RORI) index is calculated according to Equation 2.

RORI =
(ALE ×RM)−ARC

ARC +AIV
× 100 (2)

Where,

– ALE is the Annual Loss Expectancy and refers to the impact cost obtained
in the absence of security measures. ALE is expressed in currency per year
(e.g., $/year) and will depend directly on the attack’s severity and likelihood.

– RM refers to the Risk Mitigation level associated to a particular solution.
RM takes values between zero and one hundred (0 ≤ RM ≤ 100). In the
absence of countermeasures, RM equals 0%.

– ARC is the Annual Response Cost that is incurred by implementing a new
security action. ARC = OC+CD from Equation 1. ARC is always greater
than or equal to zero (ARC ≥ 0), and it is expressed in currency per year
(e.g., $/year).

160 G. Gonzalez Granadillo et al.

– AIV is the Annual Infrastructure Value (e.g., Cost of equipment, Services for
regular operations, etc.) that is expected from the system, regardless of the
implemented countermeasures. ARC is greater than zero (AIV > 0), and it
is expressed in currency per year (e.g., $/year).

3.3 Improvements

– The ICb−RC parameters are substituted by ALE×RM which can be used
more easily to evaluate response goodness of single and combined solutions,
while reducing error magnitude.

– The AIV parameter also provides a response relative to the size of the in-
frastructure. AIV is correlated to the Annual Loss Expectancy (ALE) of
the system, and allows to compare the RORI results of different systems
regardless of their size.

– The introduction of the Annual Infrastructure Value (AIV) parameter han-
dles the case of selecting no countermeasure, which results into a value of
zero, meaning that no gain is expected if no solution is implemented.

3.4 Sensitivity Analysis

RORI is a relative index that indicates the percentage of benefit perceived if
a given countermeasure is implemented. When analysing the investment in in-
formation security, we should not expect an increase in the profits, instead, we
should expect a mitigation of the risk to which the organization is exposed.

RORI ranges from −ARC
ARC+AIV (in its lower bound) to ALE

AIV (in its upper bound).
A positive RORI means that we expect to diminish the risk up to certain level
and therefore it is convenient to apply the security solution. For instance, a
RORI of 50% means that we expect to mitigate half of the risk to which the
organization is exposed. However, when evaluating the option of doing nothing
(no countermeasure is evaluated to react against an attack), we should expect
0% of mitigation.

The worst scenario (the countermeasure cost is higher than the benefits it
provides) will have ALE × RM << ARC, therefore RORI → −ARC

ARC+AIV . The
best scenario (perfect mitigation) will have RM=1, ARC=0, therefore RORI =
ALE
AIV . If the expected benefit is equal to the countermeasure cost, RORI will
tend to zero. However, if the expected benefit is lower than the countermeasure
cost, RORI will attain a negative value. Only in those cases where the benefit
is higher than the cost of implementing a security measure, RORI will attain a
positive value.

In order to evaluate the effects on the RORI results, we conducted a series
of sensitivity analyses where two variables were changed while the others kept
their base case values. The results obtained are described as follows:

– If ARC is orders of magnitude below AIV (ARC & AIV), then the impact of
ARC on the RORI is very weak. In this case, ARC+AIV ∼= AIV , therefore
RORI ∼=

(
ALE×RM

AIV

)
. However, if ARC is orders of magnitude above AIV

Individual Countermeasure Selection Based on the RORI Index 161

(ARC � AIV), then the impact of ARC on the RORI index is very strong.

In this case, ARC +AIV ∼= ARC, therefore RORI ∼= (ALE×RM)−ARC
ARC .

– If ALE is orders of magnitude below AIV (ALE & AIV), then ALE nega-
tively impacts the RORI index, since ALE × RM ∼= 0, therefore RORI ∼=

−ARC
ARC+AIV . However, if ALE is orders of magnitude above AIV (ALE �
AIV), then the RORI index is positively impacted. In this case, AIV ∼= 0,

therefore RORI ∼= (ALE×RM)−ARC
ARC .

– If ALE is orders of magnitude below ARC (ALE & ARC), then ALE
negatively impacts the RORI index, since ALE ∼= 0, therefore RORI ∼=

−ARC
ARC+AIV . However, if ALE is orders of magnitude above ARC (ALE �
ARC), then the RORI index is positively impacted. In this case, ARC ∼= 0,
therefore RORI ∼= ALE×RM

AIV .
– If RM increases compared to the AIV, ALE and ARC values, the RORI

index will depend on the magnitude of the ALE metric compared to ARC
and AIV. In this case, ALE × RM ∼= ALE, therefore RORI ∼= ALE−ARC

ARC+AIV ,
making the solution more attractive as the ALE increases.

Table 2 summarizes the results from the sensitivity analysis.

Table 2. RORI Sensitivity Analysis

Parameters Conclusions
ALE vs AIV The impact of the ALE parameter over RORI increases as the AIV decreases.

The higher the aiv, the less attractive the solution. As a result, a benefit
(ALE × RM) that is far greater than the infrastructure value (AIV) is
always preferable.

ALE vs RM The impact of ALE over RORI increases as the RM increases. The higher
the ALE and RM values, the more attractive the solution. Thus, the ideal
solution should provide the highest benefit to the system.

ALE vs ARC The impact of ALE over RORI increases as the ARC decreases. The lower
the annual response cost, the higher the RORI results. Consequently, a
countermeasure that is far less expensive than the benefits it provides
is preferable.

RM vs ARC The impact of ARC over the RORI index decreases as the RM increases. A
countermeasure that costs more than the benefits it provides should be
discarded. Thus, the ideal solution should have the highest risk mitigation
value and the lower response cost.

RM vs AIV The impact of the AIV over RORI decreases as the RM increases. The
higher the RM and the lower the AIV, the more attractive the solution.
Consequently, the ideal solution should have the highest risk mitigation
and the lowest infrastructure value.

AIV vs ARC The impact of ARC over RORI increases according to its relative significance
compared to the AIV parameter. As a result, an alternative that is far less
expensive than the infrastructure value is preferable.

4 Countermeasure Selection Process

The process for selecting optimal countermeasures is performed in two steps:
The RORI Calculation and The Countermeasure Evaluation. This section details
each part of the model.

162 G. Gonzalez Granadillo et al.

4.1 RORI Calculation

The Return On Response Investment metric proposed in Section 3 is used as a
quantitative approach to evaluate and rank a set of countermeasures, which al-
lows to select the one that best mitigate the effects of a given attack. The input
parameters for the RORI calculation are of two types: fixed parameters (e.g.,
ALE, AIV), which depend on the intrusion or attack; and variable parameters
(e.g., RM, ARC), which depend on the countermeasure.

Fixed Parameters

– The Annual Loss Expectancy (ALE), which refers to the Impact Cost that is
produced in the absence of countermeasures. The ALE metric is calculated
by multiplying the Single Loss expectancy (SLE) and the Annual Rate of
Occurrence (ARO). For this, it is necessary to estimate the severity and
likelihood of the attack. The severity of a security incident refers to the
impact level produced over an asset. The impact can be measured by loss of
system functionality, problems of availability, inability to meet the business
goal, monetary losses, etc. The severity ranges from insignificant through to
grave according to Lockstep [12], who proposes a corresponding single loss
expectancy for each category. The likelihood is an estimation of the frequency
or probability that a threat will exploit a given vulnerability. Lockstep [12]
proposes six levels of likelihood, from negligible to extreme along with its
corresponding numeric values.

– The Annual Infrastructure Value (AIV), which corresponds to the fixed costs
that are expected to have on the system regardless of the implemented coun-
termeasure (e.g., equipment purchase, costs of electricity, maintenance, etc).
This is a one time investment and remains constant on the evaluation of all
the different countermeasures. For this, it is necessary to divide the purchase
value into the lifetime of the security equipment and consider depreciations
and similar factors, in order to determine the exact cost per year.

Variable Parameters

– The Risk Mitigation (RM), which considers the percentage of reduction of
the total incident cost that is given from the implementation of a security
measure. Following the Norman’s methodology [13], the risk of an attack (R)
is determined as the product of its vulnerability (V), likelihood or probability
(P), and severity or consequence (C), (i.e., R = V × P × C). A risk can be
mitigated by decreasing the vulnerability, probability, and/or consequence.
Therefore, the risk mitigation value (RM) is calculated as the risk reduction
percentage that results from the application of a given countermeasure. For
instance, if the risk of a given attack before countermeasure is R1 = 10 ×
7 × 7 = 490 and the resulting risk after the application of a particular
countermeasure is R2 = 7×6×6 = 252, then RM = 100−(R2×100

R1
) = 51, 43%

– The Annual Response Cost (ARC), which refers to the costs associated to
a given countermeasure. It includes direct costs (e.g., implementation, con-
sulting and support services during the deployment, maintenance, audits,

Individual Countermeasure Selection Based on the RORI Index 163

analysis, etc) and indirect costs (e.g., consequences that may originate the
adoption of a particular countermeasure to a legitimate user).

4.2 Countermeasure Evaluation

The countermeasure evaluation process initiates by selecting the first counter-
measure on the list and calculating its RORI index. The obtained RORI is
compared with the one by default, as depicted in Figure 1.

Fig. 1. Countermeasure Evaluation Flowchart

We set up a default RORI value equal to zero (RM and ARC parameters equal
0, since no countermeasure is implemented). If the resulting RORI is different
to the one by default, the system checks if the current RORI is greater to the
default value, in such a case, the countermeasure becomes the selected one, and
it overrides the default RORI value. However, if the resulting RORI value is
lower than the one by default, the system checks for another countermeasure to
evaluate and the default RORI remains unchanged.

If the resulting RORI is equal to the default value, the system checks for
the annual response cost (ARC) and selects the one with the lowest cost value

164 G. Gonzalez Granadillo et al.

(it is always preferred to implement a security solution that costs the least and
provides the highest benefit). It may happen that, when comparing the costs
of two countermeasures, they are exactly the same. In such a case, the system
keeps the current RORI value as the default one and checks for another solution
to evaluate.

The process is repeated to evaluate the second countermeasure on the list,
then the third, and so on, until no countermeasure is left. The system selects
the last countermeasure taken as default, since it is the one that provides the
highest RORI index.

4.3 Limitations of the RORI-Based Countermeasure Selection

The evaluation and selection of countermeasures depends on the appropriate
estimation of the infrastructure value, attack impact and the definition of the
security policies needed to mitigate the attack. Such definition should include
the costs and benefits associated to a particular security policy in a given attack
scenario.

The main limitation of the RORI-based model is the accuracy in the esti-
mation of the different parameters that compose the formula. Estimating the
Annual Loss Expectancy of an attack to occur on a given system and the Risk
Mitigation level of a particular countermeasure is difficult and requires a con-
siderable effort. An objective estimation of these two factors is rather infeasible,
since it requires predictions of an event that has not yet occur.

In addition, the RORI model presented in this paper does not consider interde-
pendence among countermeasures (i.e., how the application of a countermeasure
affects the effectiveness of others), nor it discusses the restrictions and/or con-
flicts that may originate with the implementation of the selected countermeasure
(e.g., partially or totally restrictive countermeasures).

Finally, the model limits the action of only one countermeasure over a given
attack and does not discuss neither the effects that one or multiple countermea-
sures may have on several risks nor the effects of applying multiple countermea-
sures at a time (subject under study).

5 Case Study: Mobile Money Transfer Service (MMTS)

The MMTS case study responds to the needs of improving the security infras-
tructure of a Mobile Money Transfer Service. The data related to this use case, as
well as all numeric values used to estimate costs and benefits have been provided
and validated by France Telecom - Orange Group.

5.1 Use Case Description

The MMTS is a system where virtual money, called mMoney is used to carry
out several transactions e.g., Bill payments, salary payments, mobile recharge,
merchant payments, national and international money transfers, etc. Figure 2
describes this scenario.

Individual Countermeasure Selection Based on the RORI Index 165

The account management server keeps all the information regarding the user’s
behaviour. The log server registers data that are relevant to analyse abnormal
activities such as: failed authentication, request for PIN modification, transaction
request, etc. The data warehouse contains historical data about accounts which
are useful to analyse customer’s behaviour and detect frauds.

Fig. 2. Mobile Money Transfer Scenario

5.2 Account Takeover Attack

Alice is a user of the Mobile Money Transfer System (MMTS), who only utilizes
it two or three times per month in order to pay some bills (e.g., electricity,
telephone). Bob (attacker), after a couple of attempts to get authenticated using
Alice’s credentials, gains access to Alice’s MMTS account. He then performs
transactions, such as purchasing items and transferring money to a bank account
under his control. As a result, the system detects the anomalous behaviour from
the logs: For the past two hours, the user Alice, who has always had a regular
behaviour (no more than 3 accesses to the system per month), has already used
the MMTS several times within a day to carry out some transactions.

An account takeover is a password-based attack that exploits vulnerabilities
on the user’s side (e.g., social engineering, key-loggers, etc.) and steals the mobile
user account to perform transactions in favour of the attacker. An increment on
the number of transactions performed in a period of time, or a raise in the
amount of money being transferred for a particular user, as compared to the
normal behaviour of that user is interpreted as an account takeover attack (an
attacker performs some transactions on the MMTS platform using the credentials
of a legitimate user).

In agreement with France Telecom - Orange Group, an account takeover at-
tack has an estimated “Minor” severity level1 (equivalent to 100 €) and a “High”
likelihood1 (once per moth, equivalent to 12). The Annual Loss Expectancy
(ALE) for this attack is expected to be 1200 €, and the Annual Infrastruc-
ture Value (AIV) is calculated as the value of all the Policy Enforcement Points

1 The estimated values for the severity and likelihood of an attack may vary from one
country to another and depend greatly on the standard of living of each country.

166 G. Gonzalez Granadillo et al.

(PEP) that are needed to be deployed in the preliminary phase of the system
architecture. Table 3 lists the PEP for this scenario and summarizes information
regarding their type, costs and mitigated threats. AIV corresponds to the an-
nual cost of purchasing, licensing, implementing and/or maintaining a security
equipment in the MMTS Infrastructure.

Table 3. Security Equipments for a Mobile Money Transfer Service

PEP Type AIV Threats that mitigate
T1 T2 T3 T4 T5 T6 T7 T8

E1 Intrust HIDS 800� � � �
E2 Tripwire HIDS 250� � � �
E3 Verisys HIDS 400� � � �
E4 Snort NIDS 400� � � � � � � � �
E5 NetCrunch Net. Monitoring 1500� � � � � � � � �
E6 FreeNATS Net. Monitoring 500� � � � � � � � �
E7 Comodo Firewall 300� � � � � � �
E8 Endian Firewall 150� � � � � � �
E9 Cisco SA 500 series IPS 1000� � � � � � � � �
E10 Kaspersky Antivirus 300� � �
E11 OS update OS Hardening 500� � � �
E12 Software Token Auth. Method 400� � � � � � � �

T1 Trafficking Collection T2 Hiding User Identity T3 Scams
T4 Account Takeover T5 Employee Complicity T6 Denial of Service
T7 Money Creation/Destruction T8 Other threats (e.g. malwares, virus)

From the list of equipments proposed in Table 3, we select 1 NIDS (Snort), 1
network monitor (FreeNATS), 1 Firewall (Comodo), 1 IPS (Cisco SA 500 Series),
and a stronger authentication method (software token) as the security solutions
to be deployed in a regular system architecture for a Mobile Money Transfer
Service, since a combination of all of them provide a wider and more complete
coverage of the different threats to which the system is exposed. The AIV is
therefore estimated as 2600€(the cost of all the selected solutions).

5.3 Countermeasure Selection for an Account Takeover Attack

In order to react to an intrusion attempt it is necessary to change/update access
control policies or implement new mitigation strategies. Table 4 shows the differ-
ent countermeasures that are proposed to react to an account takeover attack.
The second column gives a detailed description of the proposed countermeasures,
the third column indicates the Policy Enforcement Point (PEP) that will imple-
ment the countermeasure. Columns fourth and fifth of the table detail the risk
mitigation percentage (RM) associated to each countermeasure and the annual
response cost (ARC) respectively. These figures have been provided by France
Telecom - Orange Group. The RORI index shown in the last column is calcu-
lated using Equation 2, and it is used to rank the different solutions according
to their expected benefit.

From the list of proposed countermeasures, the first alternative (C1) is to
accept the risk by doing nothing. This action does not require any modifications

Individual Countermeasure Selection Based on the RORI Index 167

Table 4. Security Measures for an Account Takeover Attack

Countermeasures Description PEP RM ARC RORI
C1 Do nothing Accept the risk - 0% 0� 0,00%
C2 Deny Transaction User is unable to perform any

transaction
E7 72% 60� 30,34%

C3 Deactivate user account Temporal deactivation (e.g.,
24hrs, 48hrs, 72hrs)

E9 68% 55� 28,66%

C4 Reduce trans. amount Up to 25�, 50�, 100� E4 60% 50� 25,77%
C5 Reduce trans. number 1 per day, 3 per day, 5 per day E4 53% 30� 22,81%
C6 Activate alert mode Set alert mode and send report E4 42% 25� 18,25%
C7 Keep account under
surveillance

Monitor the user behaviour for 24,
48, 72 hours

E6 42% 40� 17,58%

C8 Activate multi-factor
authentication

Request for two or more
authentication methods

E12 77% 50� 32,75%

C9 Deactivate mult.trans.
requests

The system treats one transaction
at a time

E9 64% 20� 28,55%

and therefore the risk remains the same. C1 is totally restrictive and its associ-
ated cost is 0, since no countermeasure is implemented. As a result, the RORI
index for C1 is 0,00%.

The second and third options suggest to avoid the attack either by denying
the transaction (C2), or by deactivating temporarily the user account (C3). As
a result, the attack is greatly reduced (70− 75%). The RORI index for C2 and
C3 is 30,34% and 28,66% respectively. Since the RORI index of C2 is greater
than the one by default, C2 becomes the default countermeasure.

Alternatives four and five propose to reduce the transaction amount (C4)
or to reduce the number of transactions per day (C5), as part of a strategy to
prevent attackers from stealing large amount of money from their victims without
deactivating the user account. As a result, the attack is mitigated 53−60%. The
RORI index for C4 and C5 is estimated to be 25,77% and 22,81% respectively.
The default countermeasure remains unchanged since the RORI index for C4
and C5 is lower than the one by default.

Countermeasures six and seven recommend to activate the alert mode (C6),or
to keep the user account under surveillance (C7) e.g., for a period of 24, 48 or 72
hours. Both countermeasures have a risk mitigation value of 42% and a RORI
index of 18,25% and 17,58% respectively. The default countermeasure remains
unchanged since the RORI results for these two countermeasures are lower than
the one by default.

The rest of the countermeasures (C8, C9) recommend to activate additional
authentication methods (e.g., two-factor authentication request) and to deacti-
vate multiple transaction requests. By implementing these solutions, the risk is
expected to be mitigated 64− 77%. As a result, the RORI index for C8 and C9
is 32,75% and 28,55% respectively.

Since C8 has an index greater than the default RORI, the system proposes
to activate the multiple-factor authentication option from the software token
PEP in order to guarantee the appropriate authentication of users in the MMTS
infrastructure. Alternative C8 becomes therefore the selected countermeasure
for an account takeover attack in the MMTS System.

168 G. Gonzalez Granadillo et al.

6 Related Work

Most of the existing work in the selection of appropriate countermeasures only
concentrates in models that use qualitative analysis or evaluate a single solu-
tion for a single attack. Cavusoglu et al. [15], for instance, propose a model to
evaluate security investments decisions that uses an attack tree approach based
on the game theory. However, the model only considers the implementation of
countermeasures in a single attack scenario. Our solution can be adapted to
multiple attack scenarios.

Duan and Cleand-Huang consider in [16] heuristic methods and genetic algo-
rithm approaches for the process of selecting a set of countermeasures. However,
due to complexity of the search space, the heuristic approach is neither optimal,
nor complete. The main drawbacks of the genetic algorithm approach is the
difficulty to measure accurately the best portion of each countermeasure to be
combined and it uses the Net Present Value (NPV) as the only metric for com-
parison. Our solution uses ALE instead of NPV, since this latter is not enough to
compare among several investments and it is more useful to analyse long period
investments. Countermeasures in our model are proposed to be implemented for
short period of times (from the moment an intrusion is detected until the system
returns to its normal operation).

Furthermore, Neubauer et al. [17] propose the use of efficient safeguard port-
folios that are evaluated according to several objectives (e.g., image value, mon-
etary value, accept cost, setup time, etc). However, a moderator is needed to
advice during the process, calculations mainly rely on the annual loss expectancy
metric, and uncertain outcomes from complex environments are not considered
by the tool. Our model does not require a moderator during the evaluation pro-
cess and utilizes not only the annual loss expectancy but also the operational
cost, countermeasure cost and risk mitigation level to evaluate response collateral
damages and response effects on attacks.

Bisterilli et al. [18] present a qualitative approach for the selection of security
countermeasures using defense trees (an extension of attack trees) and pref-
erences over countermeasures using conditional preference networks (CP-net).
However, the conditions for the countermeasure selection are based on expert
knowledge, the approach is static and qualitative (no mathematical method is
used to evaluate and select the countermeasures), and it does not consider at-
tacks as uncertain variables. Our solution proposes a quantitative model (based
on the RORI index) that does not rely on expert knowledge for the selection of
appropriate countermeasures.

Zonouz et. al. [19] propose a Response and Recovery Engine (RRE) that uses
a tree graph approach to analyse events and select countermeasures based on
boolean logic. RRE models a game scenario with two players (an offensive and a
defensive), and chooses response actions by solving partially observable competi-
tive Markov decision process that comes from the attack response trees. However,
this approach does not consider the benefits and costs associated to a given re-
sponse action, nor it evaluates quantitatively the different countermeasures to
select the one that provides the highest benefit to the organization.

Individual Countermeasure Selection Based on the RORI Index 169

More recently, Bedi et al. [20] describe an approach that uses an algorithm for
generating optimal set of countermeasures. However, this approach is proposed
to be implemented only during the design phase of software development life
cycle; it does not consider unidentified threats; and the impact of countermea-
sures is not considered in the analysis and selection process. Our solution can
be implemented in real time deployments and considers the impact of counter-
measures (cost, risk mitigation level) not only during the design phase, but also
during the evaluation and selection process.

7 Conclusions and Future Work

In this paper we introduced a quantitative approach to select optimal security
countermeasures based on the Return On Response Investment (RORI) index,
making it possible to evaluate response collateral damages and response effects
on intrusions.

Our solution is split into two steps: the calculation of the Return on Response
Investment (RORI) index, which evaluates the expected losses that result for a
particular attack versus the benefits that can be obtained if a countermeasure
is implemented; and the process of selection and ranking of individual counter-
measures. Within the process, the countermeasure with the highest RORI index
is selected as the one that provides the highest benefit to the organization. The
RORI index takes into account not only the cost and the risk mitigation value
associated to a particular solution, but also the losses and operational cost of
the infrastructure.

A case study from a Mobile Money Transfer Service is provided to show the
applicability of our model and the operations required to evaluate and select the
security policies that offer the highest benefit on the system. Future work will
focus on managing the conflicts that can be originated from the selected counter-
measures (e.g., the implementation of mutually exclusive security policies) and
will study the effect of combining two or more security solutions for single and
multiple attack scenarios.

Acknowledgements. The work in this paper has been sponsored by the EC
Framework Programme as part of the ICT MASSIF project (grant no. 257644).

References

1. Debar, H., Thomas, Y., Cuppens, F., Cuppens-Boulahia, N.: Enabling Automated
Threat Response through the Use of Dynamic Security Policy. Journal in Computer
Virology 3(3), 195–210 (2007)

2. Riveiro de Azevedo, R., Galvao Dantas, E., Freitas, F., Rodriguez, C., Siqueira de
Almeida, M., Campos Veras, W., Santos, R.: An Automatic Ontology-Based Mul-
tiagent System for Intrusion Detection in Computing Environments. International
Journal for Informatics (IJI) 3(1) (2010)

3. Jeffrey, M.: Return on Investment Analysis for e-Business Projects. In: Bidgoli, H.
(ed.) Internet Encyclopedia, 1st edn., vol. 3, pp. 211–236 (2004)

170 G. Gonzalez Granadillo et al.

4. Schmidt, M.: Return on Investment (ROI): Meaning and Use. Encyclopedia of
Business Terms and Methods (2011), http://www.solutionmatrix.com/return-
on-investment.html

5. Cremonini, M., Martini, P.: Evaluating Information Security Investment from At-
tackers Perspective: the Return-On-Attack (ROA). In: Proceedings of the 4th
Workshop on the Economics on Information Security (2005)

6. Brocke, J., Strauch, G., Buddendick, C.: Return on Security Investment - Design
Principles of Measurement System Based on Capital Budgeting. In: The 6th In-
ternational Conference of Information Systems Technology and its Applications
(ISTA), vol. 107, pp. 21–32 (2007)

7. Sonnenreich, W., Albanese, J., Stout, B.: Return On Security Investment (ROSI)
A Practical Quantitative Model. Journal of Research and Practice in Information
Technology 38(1) (2006)

8. Stakhanova, N., Basu, S., Wong, J.: A Cost-Sensitive Model for Preemptive Intru-
sion Response Systems. In: Proceedings of the 21st International Conference on
Advanced Networking and Applications (2007)

9. Kim, D., Lee, T., In, H.: Effective Security Safeguard Selection Process for Re-
turn on Security Investment. In: IEEE Asia-Pacific Services Computing Conference
(2008)

10. Kheir, N., Cuppens-Boulahia, N., Cuppens, F., Debar, H.: A Service Depen-
dency Model for Cost-Sensitive Intrusion Response. In: Gritzalis, D., Preneel, B.,
Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp. 626–642. Springer,
Heidelberg (2010)

11. Kheir, N.: Response policies and countermeasures: Management of service de-
pendencies and intrusion and reaction impacts, PhD Thesis, Ecole Nationale Su-
perieure des Telecommunications de Bretagne (2010)

12. Lockstep Consulting.: A Guide for Government Agencies Calculating ROSI (2004),
http://lockstep.com.au/library/return_on_investment

13. Norman, T.: Risk Analysis and Security Countermeasure Selection. CRC Press,
Taylor & Francis Group (2010)

14. Pukkawanna, S., Visoottiviseth, V., Pongpaibool, P.: Lightweight Detection of DoS
Attacks. In: 15th International Conference on Networks (ICON), pp. 72–82 (2007)

15. Cavusoglu, H., Mishra, B., Raghunathan, S.: A Model for Evaluating IT Security
Investment. Communications of the AMC 47(7), 87–92 (2004)

16. Duan, C., Cleland-Huang, J.: Automated Safeguard Selection Strategies, CTI Re-
search Symposium (2006)

17. Neubauer, T., Stummer, C., Weippl, E.: Workshop-based Multiobjective Security
Safeguard Selection. In: First International Conference on Availability, Reliability
and Security (ARES), pp. 1–8 (2006)

18. Bistarelli, S., Fioravanti, F., Peretti, P.: Using CP-nets as a guide for countermea-
sure selection. In: ACM Symposium on Applied Computing, pp. 300–3048 (2007)

19. Zonouz, A., Khurana, H., Sanders, W., Yardley, T.: A Game-Theoretic Intrusion
Response and Recovery Engine. In: International Conference on Dependable Sys-
tems and Networks (2009)

20. Bedi, P., Gandotra, V., Singhal, A., Narang, H., Sharma, S.: Optimal Counter-
measures Identification Method: A New Approach in Secure Software Engineering.
European Journal of Scientific Research 55(4), 527–537 (2011)

http://www.solutionmatrix.com/return-on-investment.html
http://www.solutionmatrix.com/return-on-investment.html
http://lockstep.com.au/library/return_on_investment

Security and Reliability Requirements for Advanced
Security Event Management

Roland Rieke1, Luigi Coppolino2, Andrew Hutchison3,
Elsa Prieto4, and Chrystel Gaber5

1 Fraunhofer Institute SIT, Darmstadt, Germany
2 Epsilon S.r.l., Naples, Italy

3 T-Systems, South Africa
4 Atos Research & Innovation

5 Orange Labs - France Telecom

Abstract. This paper addresses security information management in complex
application scenarios. Security Information and Event Management (SIEM) sys-
tems collect and examine security related events, with the goal of providing a
unified view of the monitored systems’ security status. While various SIEMs are
in production, there is scope to extend the capability and resilience of these sys-
tems. The use of SIEM technology in four disparate scenario areas is used in this
paper as a catalyst for the development and articulation of Security and Reliabil-
ity requirements for advanced security event management. The scenarios relate to
infrastructure management for a large real-time sporting event, a mobile money
payment system, a managed services environment and a cyber-physical dam con-
trol system. The diversity of the scenarios enables elaboration of a comprehensive
set of Security and Reliability requirements which can be used in the development
of future SIEM systems.

Keywords: security requirements, security information and event management,
SIEM, architecting trustworthy systems.

1 Introduction

Security information and event management (SIEM) systems provide important secu-
rity services. They collect and analyse data from different sources, such as sensors,
firewalls, routers or servers, and provide decision support based on anticipated impact
analysis. This enables timeous response to (or prevention of) attacks as well as im-
pact mitigation by adaptive configuration of countermeasures. However, there are also
a number of constraints for current commercial solutions. These constraints include the
inability of systems to consider events from a multiple organisations or the ability to
provide high degree of trustworthiness or resilience in the event collection environment.

The project MASSIF [3], a large-scale integrating project co-funded by the European
Commission, addresses these challenges with respect to four industrial domains: (i) the
management of the Olympic Games information technology (IT) infrastructure [12]; (ii)
a mobile phone based money transfer service, facing high-level threats such as money
laundering; (iii) managed IT outsource services for large distributed enterprises; and
(iv) an IT system supporting a critical infrastructure (dam) [4].

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2012, LNCS 7531, pp. 171–180, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

172 R. Rieke et al.

In undertaking the development of next-generation SIEM concepts and constructs,
it became clear that the Security and Reliability of the SIEM itself are critical to the
successful deployment of SIEM in a particular environment. With this in mind, we set
about analysing each of the mentioned scenarios in some detail, to create an explicit list
of Security and Reliability requirements. The intention is that these requirements can be
used to guide and assess SIEM development, and ensure that these important attributes
are incorporated.

2 Large Scale Scenarios in Four Industrial Domains

In this section, four deployment scenarios for SIEM technology are introduced. The
elements of the scenario which can benefit from further SIEM development are also
outlined in each case. From the introduction of the scenarios and their unique character-
istics, a set of consolidated requirements for a next-generation SIEM can be compiled.

2.1 Scenario 1: SIEM Technologies Used in the Olympic Games

The Olympic Games is one of the largest and most high profile sporting events that takes
place, and there is a large technical infrastructure to support many aspects of the games
both asynchronously and in real-time. SIEM infrastructure is used with the Olympic
Games systems, to protect the games IT infrastructure from any undesired and/or un-
controlled phenomena which could impact any part of the result chain and associated
services. The nature of this kind of event presents a big challenge to SIEM infrastruc-
tures, for example the next London 2012 games cater for 79 days of competition, 26
sports, 94 venues, 17.000 athletes, 20.000 journalists, 70.000 volunteers, 4.000 IT team
members, 900 servers, 1,000 network and security devices and more than 10,000 com-
puters deployed. One of the new challenges will be the amount of data generated from
the results systems, representing 30% more than in the Beijing Olympics in order to
provide real-time information to fans, commentators and broadcasters world wide. The
intensity and complexity of this kind of sporting event presents a big challenge to SIEM
infrastructure, mainly, due to two very characteristic features: the number of security
event types (about 20,000), and the volume of generated events to be handled (around
11,000,000 alerts per day). However, the most critical aspect that a SIEM system faces
in the Olympic Games is that those security events must be processed and reacted upon
in real-time.

Advanced SIEM System Contribution. The Olympic Games scenario is valuable to
demonstrate the enhancement on scalability, processing enormous amounts of gen-
erated data events in real-time. Furthermore the scenario can contribute to validate
the cross-layer correlation of events (service, application, infrastructure) from multi-
ple sources.

2.2 Scenario 2: Mobile Money Transfer Service

Use of Mobile Phones to effect payment is a widely used service, particularly in devel-
oping markets where banking systems may not be as dense or available as in developed

Security and Reliability Requirements for Advanced Security Event Management 173

countries. Characteristics and challenges of authentication, confidentiality, integrity and
mobility all have to be considered in this scenario.

From a SIEM perspective, mobile money transfer is an interesting and challenging
scenario for the unique attributes that the scenario presents. Indeed, this scenario is quite
complex because it requires to analyze past and present data and to extract information
from raw events. It is also very sensitive to the performance of detection as the rate of
false positives and true negatives should be optimised. Finally, all this should be done
while keeping the service scalable and secure. The service allows end users to convert
cash to “electronic money” (and vice versa) at merchants, who act as distributors and act
as channel users. The electronic money can be used to pay purchases at the merchants’
or for bills such as electricity. Furthermore the electronic money can also be transferred
between the end users. End users access the service with their mobile phones and dis-
tributors can access the service either via mobile phone or directly on the Internet. Both
means of access are handled by front-end servers that then access the back-end servers
containing the transactions etc.

Advanced SIEM System Contribution. Like any other money transfer service, the
service is exposed to the risk of money laundering and other types of fraud. The money
laundering risk implies misuse through disguising illegally obtained funds to make them
seem legal, and more generally the fraud risk implies any intentional deception made
for financial gain. In addition, any money transfer service that has part of its infrastruc-
ture exposed via the Internet and/or the end user can access the service using electronic
means (a mobile device such as a phone or a pad in this use case), has an increased
exposure to fraud, via both attacks against the service infrastructure itself and the abuse
of normal service functionality. The objective of including this scenario is to achieve
greater protection and transactional integration of SIEM protection through next gen-
eration SIEM services. The ultimate intention is to protect the money transfer service
against fraud both by detection and application of relevant counter-measures.

2.3 Scenario 3: Managed Enterprise Service Infrastructures

The use of managed services by businesses is an increasingly used model, whereby ele-
ments of IT and infrastructure are “outsourced” to specialist service providers. In some
instances, services are provided by an outsourcer via shared platforms, giving customers
economies of scale. In other instances, managed services are performed by a provider
on the infrastructure belonging to a customer. Mixed approaches are also possible, and
an extrapolation of this can be viewed as occurring when such services are provided in
a “cloud based” mode. Provision of Security Information and Event Management ser-
vices for customers is a valuable complement to the management which an outsourcer
or service provider can deliver. The purpose of including a managed enterprise service
infrastructure scenario was to consider just such cases: where the services of large en-
terprises are managed, and a SIEM service is used to collect, inspect and react to large
scale security events from member systems and devices.

Advanced SIEM System Contribution. There are a number of limitations of SIEM
systems, encountered by managed security service providers, that are not adequately
addressed by current SIEM solutions. For this reason, such a SIEM deployment is

174 R. Rieke et al.

interesting to consider when looking at next-generation SIEM requirements. Some of
the issues that can be identified in particular are: (i) insufficient resilience of the SIEM
infrastructure itself to withstand large scale attacks; (ii) inadequate trustworthiness of
source data within the SIEM; and (iii) inadequate disaster recovery capabilities of SIEM
systems. Solutions to the limitations that current SIEM systems present will improve
the resilience and business continuity capabilities of large companies, through enabling
managed service providers to detect and address security events more proactively. It
is considered that work on next-generation SIEM systems could address some of the
identified problems through the following focus areas:

1. Providing guidelines on the minimum requirements for event data to enable suc-
cessful event correlation.

2. Providing guidelines on the impact of the unavailability of certain event data on
successful event correlation and management.

3. Guaranteeing the trustworthiness of event sources.
4. Improving correlation modelling for better analysis of complex environments (and

for better automated correlation processing in complex environments).
5. Improving the resilience and business continuity capabilities for large enterprises.

2.4 Scenario 4: Critical Infrastructure Process Control (Dam)

The features of dam infrastructures are strictly related to the aims they are conceived
for. Dams are mostly used for water supply, hydroelectric power generation, irrigation,
water activities and wildlife habitat granting. Dams represent fundamental assets for
the economy and the safety of a country, such as they are counted among critical infras-
tructures. So, monitoring of a dam is essential since an accident would have dramatic
consequences. The amount of parameters to be monitored to assess the safety of a dam
and foresee possible failures or anomalies is enormous, and this huge data flow must
be analyzed under real time constraints. Each of these parameters is measured using
different sensors, such as inclinometers and tiltmeters, crackmeters, jointmeters, earth
pressure cells, turbidimeters, and thermometers. In addition to the above mentioned pa-
rameters measured by the sensors, other components are necessary for the full control
of dam. Some essential elements are: data collectors, human machine interaction inter-
faces, data storing units, command and data gateways and signal buses. In other cases
there is the need also to integrate different subsystems existing.

Advanced SIEM System Contribution. The current SIEM solutions hardly facilitate
the introduction of new technologies to improve the efficiency of the security event de-
tection. At the same time, they usually lack in the capability to support heterogeneous
systems and technologies. Introducing SIEMs to jointly manage all different aspects
related to the security in the monitoring of a dam can be a very powerful mechanism to
increase the overall security of such critical infrastructures. However, currently avail-
able SIEMs solutions are focused on the management of digital and information secu-
rity related events and are designed specifically for this type of applications. This may
make complex or even impossible the development of applications targeting security of
critical infrastructures in a wider sense. For instance, creating an application capable
of correlating network and host events that may indicate a cyber-attack with suspicious

Security and Reliability Requirements for Advanced Security Event Management 175

activities detected by the dam surveillance system may greatly improve the security
of the whole monitoring process but may introduce some implementation difficulties.
SIEMs are not designed to deal with this kind of scenarios and so, encompassing se-
curity events coming from different application domains within the same application
may be troublesome. In particular, the current technologies usually neglect the possibil-
ity to correlate physical and logical events, which can improve the effectiveness of the
detection process.

In order to secure the dam control system, today recognized as a critical infrastruc-
ture and hence of public interest, regulations must be considered. Indeed, any activity of
the dam operators strictly follows well-known rigid procedures. For example, the open-
ing of a gate without alerting the control center is not admitted. Unfortunately, the cur-
rent SIEM technologies insufficiently exploit regularities characterizing dam systems.
In particular, procedures could be encoded in patterns and they could be exploited for
detecting anomalies in control system. All this information could contribute to make
the security system aware of the context in order to correctly interpret the meaning of
some evidences. Introducing such features in a SIEM solution moves the focus of the
analysis from a system level view to the business process model of the system.

3 Consolidated Guidelines for Next Generation SIEM

Based on the four scenarios described, and the diverse set of circumstances that they
cover between them, a set of consolidated recommendations, to guide the design and
development of next generation SIEM platforms, is identified and grouped in five topics.

3.1 Guidelines Concerning Advanced Security Services

Besides issues like dependability, redundancy and fault tolerance, analysis of the four
scenarios considered reveals the need for enhanced security-related features of future
SIEM platforms. These features go beyond what is currently supported by existing so-
lutions. Overall a lack of capability to model incidents at an abstract level is perceived.
From the scenarios investigated, and the current SIEM limitations observed, the follow-
ing guidelines have been identified for next-generation SIEMs with respect to security:

Correlation Across Layers of Security Events. Advanced SIEM systems needs to
support enhanced correlation across layers, from network and security devices as
well as from the service infrastructure such as correlation of physical and logical
event sources. This is due to the variety of systems issuing inputs that can give in-
sights to security only when combined. An example is the off-site monitoring and
the on-site management of the dam’s configuration.

Multi-level Security Event Modelling. Multi-level security event modelling will en-
able provision of more holistic solutions to protect the respective infrastructures.
The Olympic Games Scenario stipulates that it would be of interest to understand
the effects of technical events on the user or process level of the system.

Analysis of Malicious Behaviour Using Attack Graphs. Many of the security issues
mentioned in this document originate from complex malicious actions or patterns
of actions (e.g., the laundering of money in the mobile money transfer scenario or
the misuse case of Low and Slow attacks in the Olympic Games infrastructure).

176 R. Rieke et al.

Predictive Security Monitoring. Predictive security monitoring allows to counter neg-
ative future actions, proactively. There is a crucial demand for early warning capa-
bilities. Moreover, the limitations with regards to the Managed Enterprise Service
point to the fact that dealing with unknown or unpredictable behaviour patterns is
not sufficient in current SIEM solutions.

Modeling of the Events and Their Relation to Other, Possibly External, Knowledge.
A basic precondition of prediction and simulation as well as of attack analysis is
the proper representation of the security requirements and any relevant information
about the system as well as any knowledge about the actual and possible behaviour.
When reasoning under incomplete information it is not only decisive to properly
gather and describe the information available, but it is also required to develop
novel methods based on discernibility, probability or plausibility in order to reason
about uncertainty.

Securing the Evidence Progressed by the SIEM Components. The misuse case of a
sensor compromise, showing that it is vital to be able to trust the information that is
received, when using events from sensors like those deployed to monitor the dam
or other critical infrastructures.

3.2 Guidelines Concerning Event Processing

Similar to the limitations noted for security, recommendations for event processing are
also made, based on limitations in current SIEM implementations. The guidelines for a
next generation event correlation engine are as follows:

Real-Time. The system must process input data at a high rate and provide meaningful
results with soft real-time requirements.

Scalability and Elasticity. The engine should be capable of handling high input rate
and should optimize the quantity of resources required based on the actual load.
In other words, the system should monitor both input loads and vital parameters,
such as CPU utilization, in order to adjust the amount of resources, i.e., provision
more resources during peak load times and decommission them during valley load
periods.

Handling Streaming and Stored Data. The engine should allow processing and cor-
relation both of streams of events and stored relations (i.e., information stored in a
database).

Multiple-Sources. The engine should be able to aggregate, abstract and correlate het-
erogeneous events from multiple sources at different levels of the system stack.

Pre-defined Correlation Rules and Rule Augmentation Capability. The engine
should be shipped with a set of predefined correlation rules to identify well-known
attacks. However, it should also support easy and intuitive creation of user-defined
rules.

3.3 Guidelines Concerning Advanced SIEM Trustworthiness

Trustworthiness is the ability to provide a service in a way it is expected in terms of
safety, security, reliability, availability, and timeliness. The analysis of the input sce-
narios has resulted in the following guidelines, to improve the general resilience and
trustworthiness aspects of a next generation SIEM:

Security and Reliability Requirements for Advanced Security Event Management 177

Resilience of the Infrastructure. The infrastructure should be highly resilient under
attack, concurrent component failures, and unpredictable network operation condi-
tions.

Security of Event Flows. The event flows should be protected, from the collection
points through their distribution, processing and archival.

Protection of the Nodes. The designed mechanisms should offer flexible and incre-
mental solutions for node resilience, providing for seamless deployment of nec-
essary functions and protocols. These mechanisms should take into consideration
particular aspects of the infrastructure, such as edge-side and core-side node
implementations.

Timeliness of the Infrastructure. The infrastructure should provide for (near) real-
time collection, transmission and processing of events, and ensure the correspond-
ing reliable and timeliness generation of alarms and countermeasures when needed.
Similarly, features for forensic support should adhere to the following guidelines:

Data Authenticity. Security event data contents, as well as additional/added informa-
tion related to data origin and destination, must be the reliably stored.

Fault and Intrusion-Tolerant Stable Storage. The stable storage system on which
data for forensic use will persist must be tolerant both to faults and to intrusions.

Least Persistence Principle. With respect to sensitive data, only information which is
actually needed should be retained to stable storage (much of the data could be
processed in real-time and potentially discarded).

Privacy of Forensic Records. Forensic evidence related to security breaches should
be made available only to authorized parties.

3.4 Guidelines Concerning Compiler Technologies

In terms of data acquisition functionality, it has been noted that next generation SIEM
systems should exhibit efficient implementation and/or support for various Features
relating to data collection and parsing. Specific guidelines are as follows:

Heterogeneity Support. The data acquisition element must have the ability to deal
with a large number of highly heterogeneous data feeds.

High Degree of Adaptability. Seamless integration of new types of security tools/
probes should be possible, to improve the capabilities of the SIEM on an ongo-
ing basis.

Peak Handling. The volume of events, to be collected and processed per unit of time,
can occasionally increase, resulting in load peaks. The data collection layer should
be able to handle such peaks and propagate relevant events to the SIEM core plat-
form without loss of information.

High Degree of Expressiveness. The parsing logic, and related Languages, must al-
low effective processing of virtually any type of security relevant event.

Support for Fast and Reliable Development. Simple Development and configuration
techniques and tools must be available. These will make it possible to implement,
deploy, and integrate new parsers and collectors in a relatively short time and at a
relatively low cost.

178 R. Rieke et al.

Generality and Platform Independence. The parsing/processing logic (and code)
should as far as possible be decoupled from the specific characteristics of the data
format and related technologies.

Distributed Processing. Whenever possible (and feasible), the data collection and pars-
ing layer should implement parsing, filtering, and correlation functions at the edges
and/or at intermediate nodes, i.e. nodes located along the path to the core SIEM
correlation engine.

3.5 Guidelines Concerning Legal Aspects

In terms of legal considerations, SIEM systems themselves need to be viewed as data
processing entities with consideration being given to issues like data retention, data
privacy and so on. From the scenarios considered, the following guidelines in terms of
legal aspects have been identified:

Data Retention. Data must be retained for a period of time not more than that nec-
essary to the activities for which they were collected. If the data are required for
detection and suppression of crime they can be stored for a longer period of time.

Cross-Border Data Transmission. It must be possible to limit the transmission of
data outside of certain borders. It should be possible to process data within such
a border. If personal data must be transferred to another country, it must be ensured
that the level of data protection in the country of destination is adequate.

Minimum and Appropriate Security Measures. Considering state of the art technol-
ogy, a minimum (but sufficient) set of measures must be taken to preserve integrity,
confidentiality, and availability of personal data. More sensitive data require in-
creased security measures.

Data Minimization and Anonymization. Only data strictly needed for security guar-
antee must be kept, while unnecessary details must be deleted or made anonymous.

4 Related Work

The development of new security relevant systems requires the integration of a secu-
rity engineering process in the earliest stages of the development life-cycle. This is
specifically important in the development of systems, where security is the enabling
technology, as in advanced SIEM systems. There are several common approaches to
security requirements engineering that may be taken. An overview of such processes is
given in [5] and also in [9]. A comprehensive concept for an overall security require-
ments engineering process is described in detail in [8]. The authors propose a 9 step
approach called SQUARE (Security Quality Engineering Methodology). A similar ap-
proach based on the integration of Common Criteria (ISO/IEC 15408) called SREP (Se-
curity Requirements Engineering Process) is described in [10]. In [6], different kinds of
security requirements are identified and informal guidelines are listed that have proven
useful when eliciting concrete security requirements. The author emphasises that there
has to be a clear distinction between security requirements and security mechanisms.
In [7], Hatebur et al. describe a security engineering process based on security problem

Security and Reliability Requirements for Advanced Security Event Management 179

frames and concretised security problem frames. The two kinds of frames constitute
patterns for analysing security problems and associated solution approaches. [7] specif-
ically addresses accountability by logging.

Though all of the above mentioned approaches may lead to a sufficient level of se-
curity for the designed architecture, there is no obvious means by which they can be
compared regarding the security requirements that they fulfil. In this paper, we address
the first step in every security engineering procces, namely the identification of artifacts,
such as functional descriptions, dependencies and information flows, the identification
of use cases and misuse cases, and stakeholders’ information on assets, safety and se-
curity requirements. Additionally, we consider state-of-the-art information on existing
SIEM systems and challenges identified by other work such as the following:

Security information and event management technology provides log management
and compliance reporting as well as real-time monitoring and incident management for
security events from networks, systems, and applications. A concise overview of current
SIEM systems functionalities is presented in [11]. In [1], current threats are identified
and advanced monitoring techniques such as file integrity monitoring, database activity
monitoring, application monitoring, identity monitoring, and user activity monitoring
are discussed. In [2], some challenges with respect to collecting and analyzing a multi-
gigabit network stream are outlined. SIEM systems manage security events but are not
primarily concerned with the trustworthiness of the event sources. Compared to tradi-
tional IT systems, securing SCADA systems (e.g., in the dam scenario) poses unique
challenges. In order to understand these challenges and potential dangers, [13] provides
a taxonomy of possible cyber attacks – including cyber-induced cyber-physical attacks
on SCADA systems.

5 Conclusion and Future Work

This paper has described requirements in terms of security and reliability for advanced
security information and event management. The approach used to identify require-
ments is scenario-driven: scenarios relating to a real-time, high profile sporting event
infrastructure; a mobile payment system; an enterprise service provider deployment and
a cyber-physical environment has been used as catalyst for requirements identification
and elaboration.

Based on the key elements and attributes of each scenario, guidelines for security,
event processing, trustworthiness, and compiler technologies in next-generation SIEM
systems have been elaborated. To consolidate the approach, a conceptual model show-
ing the progression from business process / application / infrastructure to elements of
SIEM design and implementation has been introduced. It is considered to be quite
unique and beneficial to have such a comprehensive and rigorous set of scenarios to
draw upon, and studying and analysing the scenarios presented provides a sound foun-
dation from which to make recommendations for next-generation SIEM systems.

We cannot necessarily claim that the set of recommendations is “complete”, but by
developing (and ultimately testing) the proposed items against such a diverse set of
scenarios, there is a high probability of addressing a wide range of SIEM requirements.
The benefit of multiple scenarios is that associated characteristics which include diverse

180 R. Rieke et al.

requirements including mobility, scalability, real-time processing, potentially hostile
device environments and so on. In this light, the security and reliability requirements
are considered to be applicable to a wide range of advanced security event management
contexts.

Acknowledgements. The authors developed this work in the context of the project
MASSIF (ID 257475) being co-funded by the European Commission within FP7.

References

1. Monitoring up the Stack: Adding Value to SIEM. White paper, Securosis L.L.C.,
Phoenix, AZ (November 2010), https://securosis.com/research/publication/
monitoring-up-the-stack-adding-value-to-siem

2. Applied Network Security Analysis: Moving from Data to Information. White paper,
Securosis L.L.C., Phoenix, AZ (December 2011),
https://securosis.com/research/publication/applied-network-security-
analysis-moving-from-data-to-information

3. Project MASSIF website (2012), http://www.massif-project.eu/
4. Coppolino, L., D’Antonio, S., Formicola, V., Romano, L.: Integration of a System for Crit-

ical Infrastructure Protection with the OSSIM SIEM Platform: A dam case study. In: Flam-
mini, F., Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 199–212.
Springer, Heidelberg (2011)

5. Fabian, B., Gürses, S., Heisel, M., Santen, T., Schmidt, H.: A comparison of security require-
ments engineering methods. Requirements Engineering 15(1), 7–40 (2010)

6. Firesmith, D.: Engineering security requirements. Journal of Object Technology 2(1), 53–68
(2003)

7. Hatebur, D., Heisel, M., Schmidt, H.: Analysis and component-based realization of se-
curity requirements. In: Proceedings of the International Conference on Availability,
Reliability and Security (AReS), pp. 195–203. IEEE Computer Society Press (2008),
http://www.ieee.org/

8. Mead, N.R., Hough, E.D.: Security requirements engineering for software systems: Case
studies in support of software engineering education. In: CSEET 2006: Proceedings of the
19th Conference on Software Engineering Education & Training, pp. 149–158. IEEE Com-
puter Society Press, Washington (2006)

9. Mellado, D., Blanco, C., Sánchez, L.E., Fernández-Medina, E.: A systematic review of se-
curity requirements engineering. Computer Standards & Interfaces 32(4), 153–165 (2010)

10. Mellado, D., Fernández-Medina, E., Piattini, M.: A common criteria based security require-
ments engineering process for the development of secure information systems. Comput.
Stand. Interfaces 29(2), 244–253 (2007)

11. Nicolett, M., Kavanagh, K.M.: Magic Quadrant for Security Information and Event Manage-
ment. Gartner Reasearch (May 2010)

12. Prieto, E., Diaz, R., Romano, L., Rieke, R., Achemlal, M.: MASSIF: A promising solution to
enhance olympic games IT security. In: International Conference on Global Security, Safety
and Sustainability (ICGS3 2011) (2011)

13. Zhu, B., Joseph, A., Sastry, S.: Taxonomy of Cyber Attacks on SCADA Systems. In: Pro-
ceedings of CPSCom 2011: The 4th IEEE International Conference on Cyber, Physical and
Social Computing, Dalian, China (2011)

https://securosis.com/research/publication/monitoring-up-the-stack-adding-value-to-siem
https://securosis.com/research/publication/monitoring-up-the-stack-adding-value-to-siem
https://securosis.com/research/publication/applied-network-security-analysis-moving-from-data-to-information
https://securosis.com/research/publication/applied-network-security-analysis-moving-from-data-to-information
http://www.massif-project.eu/
http://www.ieee.org/

Model-Based Security Event Management

Julian Schütte1, Roland Rieke2, and Timo Winkelvos2

1 Fraunhofer Institution AISEC, Munich, Germany
2 Fraunhofer Institute SIT, Darmstadt, Germany

Abstract. With the growing size and complexity of current ICT infras-
tructures, it becomes increasingly challenging to gain an overview of po-
tential security breaches. Security Information and Event Management
systems which aim at collecting, aggregating and processing security-
relevant information are therefore on the rise. However, the event model
of current systems mostly describes network events and their correlation,
but is not linked to a comprehensive security model, including system
state, security and compliance requirements, countermeasures, and af-
fected assets. In this paper we introduce a comprehensive semantic model
for security event management. Besides the description of security inci-
dents, the model further allows to add conditions over the system state,
define countermeasures, and link to external security models.

Keywords: security strategy metamodel, security information and event
management, complex event processing.

1 Introduction

Today, more and more critical assets are managed by complex ICT infrastruc-
tures such as in SCADA systems or heterogeneous and large-scale company
networks. Many of these systems are subject to attacks on a daily basis, ranging
from mostly harmless drive-by attacks in the form of automated and unsighted
scans to targeted insider attacks.

While traditional Security Information and Event Management (SIEM) so-
lutions focus on the mere detection of incidents and usually work at a specific
level of abstraction, support for multi-layer correlation and explanation of secu-
rity implications is scarce. Thus, the relation of any results of these systems to
certain security properties or requirements is uncertain. It is hardly possible to
derive the consequences of detected incidents on a system scale or process level.
Furthermore, it remains a challenge to include information from sensors that go
beyond the traditional network and security scanners, especially if these sensors
are specific to the domain the system.

Therefore, it is evident that organizations need to broaden their IT moni-
toring concepts, and incorporate technologies that are designed to look at the
application layer and provide detection of application level attacks in near real
time [1].

The aim of this work is to enable techniques for interrelating information of
different levels of abstraction and of different domains in order to infer more

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2012, LNCS 7531, pp. 181–190, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

182 J. Schütte, R. Rieke, and T. Winkelvos

valuable statements about threats in a monitored system. We introduce a mod-
eling approach that facilitates the definition of security probes on different levels
of detail, allows to refer to security threats and requirements and enables to
integrate a variety of information sources into a thorough information security
monitoring.

Current SIEM engines, based on Complex Event Processing (CEP), suffer
from mainly three weaknesses, which we try to address in this paper:

First, when incidents are described in a proprietary event processing language,
without any semantics linked to the incident definition, it becomes hard for users
to understand the actual implications of an incident. Incident definitions are thus
more complex, error-prone and harder to maintain.

Second, as the definition of incidents does not follow a formal model, it is not
possible to extend it by additional information, such as models of the possible
security implications, affected assets, possible remedies, etc.

Third, without such a formal model, it is highly complex to include and correlate
additional information from field sensors into the existing incident definitions.

Our approach is therefore to reduce the complexity of security probes by
means of an Security Strategy Meta Model (SSMM), abstracting from the event
processing language. The SSMM allows users to define security monitors at an
abstract, less technical layer which is independent from the underlying CEP
engine and can be linked to further information, describing possible counter-
measures or violated security requirements.

This paper is organized as follows. In Section 2, we reference related work
and point out the requirements for the SSMM. In Section 3, we introduce the
details of the model and put it into relation to further existing models describing
security and infrastructure-specific aspects. Section 4 demonstrates the approach
by example of a misuse case and Section 5 concludes the paper and sketches
future work.

2 Motivation and Related Work

In this section we first point out what the deficits of existing SIEM solutions are,
and derive a list of requirements for an advanced model-driven security event
management system.

2.1 State of the Art

The most important types of current threats are identified in [1]; and advanced
monitoring techniques such as file integrity monitoring, database activity moni-
toring, application monitoring, identity monitoring, and user activity monitoring
are discussed. In [2], some challenges with respect to collecting and analyzing a
multi-gigabit network stream are outlined.

The event and knowledge representations of traditional SIEM solutions show
where current limitations of these systems are located, when it comes to a com-
prehensive analysis of security properties. The existing solutions are very specific
and explicitly designed to solve a certain type of problem:

Model-Based Security Event Management 183

Akab [5] is a SIEM appliance which is mainly focused at monitoring network
events. It is based on the proprietary Akevent format and stores collected events
persistently in a database. Prelude [9] is an open source SIEM framework which
relies on the open IDMEF [10] event format. Using the LUA language, developers
can write their own correlation modules. The open source SIEM engine OSSIM
[4] aims at detecting security events at network (i.e., IP) layer. Consequently,
its event format contains attributes like IP address, protocol, port number, and
severity of an incident. In [8] it is shown how OSSIM can be extended to allow
for safety analysis by correlating information which is produced by the secu-
rity devices adopted in a dam network scenario, with information produced by
safety sensor devices. New OSSIM plugins had to be developed and new cor-
relation rules are needed to implement this approach to combined security and
safety analysis at runtime. All of these engines have in common that they rely on
an event representation syntax, but do not foster a comprehensive event model
which links aspects like detection, correlation, reaction, and impact explanation.
Moreover, due to the lack of a clear semantics, such event representations cannot
serve as a basis for thorough analysis of indicators, which is required to handle
potentially huge indicator models. Zabbix, another open source solution focuses
mainly at aggregating potentially security-relevant incidents in a common mon-
itoring dashboard and allows users to define simple triggers, e.g. in order to set
up notifications.

Among the most mature commercial products are ArcSight ESM and IBM
Tivoli Security Information and Event Manager [7]. Their main strength is to
relate incidents to compliance catalogs and corporate policies, but the observed
events are also predefined by technical attributes such as source and destination
host, severity, user account, and others [16]. The RSA Archer Threat Monitor
maintains a catalog of assets and links it to security-relevant information such
as known vulnerabilities, patch levels, etc. Archer itself does however neither
collect nor aggregate this information. A common format is the Common Event
Format (CEF) [6], also used by ArcSight, for example, but it specifies only the
syntax for event representation but does not provide any semantics.

The Engineering Knowledge Base (EKB) [17] is an ontology relating sensor
values and combining runtime with development time models to analyze indus-
trial automation systems and is used to define SPARQL or SWRL queries over
sensor definitions. As we have a similar goal of finding inconsistencies, we believe
that an approach like the EKB could help defining which inconsistencies to look
for in event streams, and thus, which measurement points might indicate viola-
tions of the security requirements. Other approaches of interest to this end are
the modeling concepts in [14], where business, application, physical, and techni-
cal information is merged and related, as well as concepts to use event-triggered
rules for sensing and responding to business situations in [18].

2.2 Requirements

Our aim is to overcome the contextual restrictions of existing solutions with
their predefined and closed models and rather provide an extensible model that

184 J. Schütte, R. Rieke, and T. Winkelvos

comprises all parts of the security monitoring and decision support process: (i)
detecting threatening events; (ii) putting them in context of the current system
state; (iii) explaining their potential impact with respect to some security- or
compliance model; and (iv) taking appropriate actions. Thus, we establish the
rationale for the SSMM through a list of requirements that state a set of required
properties of the meta-model. In Section 3, we will define the language and
processes from which to form a model, which satisfies these requirements.

Requirement 1 (Abstract from event processing languages). As system
operators are not necessarily experts in security monitoring, or SIEM solutions,
the model should abstract from the specific event processing languages and vendor
specific incident definitions.

Requirement 2 (Correlation across layers and incidents). The SIEM en-
gine must be backed by a comprehensive model which allows to correlate incoming
events “vertically” and “horizontally”.

Requirement 3 (Inclusion of context information). Although most cur-
rent SIEM solutions lack the possibility of correlating alarms with additional
context events, it might be necessary in many cases to take additional context
information into account.

Requirement 4 (Model reactions to incidents). While most SIEM only
focus at reporting security incidents, the SSMM should include different ways to
handle the incident.

Requirement 5 (Retro-traceability of security requirements). It must
be possible to automatically link security incident events to a security model that
provides additional information about the actual impact of an incident, such as
the violated security requirements, concerned assets, and possible countermea-
sures.

3 The Security Strategy Meta Model

In this section, we introduce the actual Security Strategy Meta Model (SSMM)
whose purpose is to describe in a simple and semantically concise way how
security incidents should be detected and handled. In the following, we use the
term Security Strategy Model for a concrete instance of the SSMM.

An Security Directive is the root concept of the SSMM and combines
the semantically modeled concepts, which are translated into specific queries and
processed by the SIEM engine at runtime. Thus, addressing Requirement 1,
a Security Directive provides an abstraction from specific event processing
languages.

There are two main ways to specify an Security Directive: one is to solely
use the structure of the SSMM, but directly formulate queries for specific CEP
engines and databases. The other is to describe the Security Directive exclusively
using the meta-model. Each Security Directive is structured as follows:

Model-Based Security Event Management 185

• on (EventStreamProperty)
• if (Condition)
• do (Action)
• why (SecurityPertinence)

Requirement 2 is addressed by the on part, which models security-relevant event
patterns by means of an EventStreamProperty concept.

Whenever an event pattern is detected, the condition denoted by the if part
is checked and if it evaluates to true, a security indicident has been detected and
requires for a reaction. This allows for inclusion of context and state information,
and thereby addresses Requirement 3.

Reactions are modeled by the do part (addressing Requirement 4) and refer
to an executable Action, whereas the model distinguishes between internal and
external actions. Internal actions update the knowledge base, i.e., they can add
facts to the domain model or meta data model, as well as they can be used to set
system state parameters which can be used in subsequent condition evaluations.
External actions, in contrast, refer to loadable plugins which can be used to
notify users, write to a database, or take counteractive measures by reconfiguring
a firewall, for example.

The why part addresses Requirement 5 and refers to an explanation of the
incident and may help users to estimate the potential impact and the indicent’s
relation to the security model. It will be reasonable to link the why property
either to some compliance catalog (e.g., ISO27004 [13]), or to a formal security
model (e.g., the Security Modelling Framework presented in [12]), so as to allow
for a quantification of security.

In this paper, we focus mainly on the recognition of security incidents, i.e. the
on and the if property of the Security Directive.

SecurityDirective

EventStreamProperty Condition
Action
Type

SecurityPertinence

Type

Extractor
Scope

Criterion
Decision

EventChannel
ChannelName
Fields

Function
Operator
InputParam
OutputParam

Term

AND OR AtomicTerm

on
if do

why

hasTerm

Fig. 1. Structure of a Security Directive

186 J. Schütte, R. Rieke, and T. Winkelvos

3.1 EventStreamProperty

An EventStreamProperty models patterns of events indicating a security in-
cident. anomalies, meaning a property of the behave as expected, or attack
signatures which are precise event patterns indicating a security incident. An
EventStreamProperty comprises the following elements:

• Extractor [1 .. n] Extractors extract attributes from event channels and
provide it for further processing.

• Criterion [1] There has to be exactly one Criterion, which triggers the
Security Directive. The Criterion specifies how the attributes extracted
from the event stream should be evaluated.

Extractor. Points to those attributes of an event channel that should be selected
from the stream.

• EventChannel [1] denotes the channel from which information is extracted
• Function [0 .. 1] denotes an optional function to be applied to the parameters

Criterion.

• Function [0 .. n] can be applied to to Parameters provided by one or more
Extractors (and with that, event channels)

• Makes use of provided values of Parameters
• Decision [1] The boolean parameter which indicates if the Criterion has

been positively evaluated. Must be provided by one of the functions above.

EventChannel. Identifies the event channel from which attributes should be
extracted. An EventChannel is defined by the following properties:

• ChannelName [1] is the identifier of the channel
• Fields [1 .. n] determine which attributes will be extracted from the event

channel and provided for further processing
• SchemaName [0 .. 1] identifies the schema of data of the event channel, if any.
• ChannelSensors [0 .. n] describe the sources of an event channel. This ad-

ditional information might be helpful when porting or reusing the Security
Directive.

Function. A function takes the extracted attributes from an event channel as
input, applies an operation to them and returns a value. This concept is where
the actual processing of event attributes is declared and is thus an essential part
of the model. At the moment, Function is predefined by a set of operators which
we expect to be used frequently when setting up Security Directives.

• InputParam [0 .. n] specifies input parameters. These can either be static
values (e.g., when using threshold functions) or refer to parameters provided
by the Extractor.

Model-Based Security Event Management 187

• Operator defines n-ary operators. By logical concatenation, complex opera-
tors can be defined and re-used for other Security Directives. At the moment,
we support the following operators:
• Arithmetics: +,−, ·, /,%(mod), ln, log, exp
• Comparison: >,<,>=, <=,==, �=
• Logical Concatenation: ∧,∨,¬
• Special Functions:

∗ corr(a, b, cor): Correlation (with specific cor or just + or -, the latter
meaning that values of a, b positively or negatively correlate).

∗ avg(parameter, scope): Average of Parameter over the time frame
defined by Scope.

∗ max(values), max(field, scope), min(values), min(field, scope)
∗ anomaly(norm, deviation) Defines an anomaly, meaning a deviation

from the normal behavior.
• OutputParam defines the output. In case of the Criterion’s Function, this

is always a boolean.

Scope. A Scope defines the window over which aggregate operators like sum,
avg, max, or min are applied to event channels. It has the following properties:

• Type refers to either number of events, or time in seconds
• Value denotes the actual number of events or second.

3.2 Condition

A Condition allows to match Security Directives only in certain system states
and is evaluated whenever a Criterion is positively asserted. It refers to a
boolean expression over Terms and when evaluated, returns a modal decision
(true/false), along with a set of Parameters, representing the results of specific
Queries.

• hasTerm Term [1] (AtomicTerm | AND | OR)
AND and OR represent the boolean operators and refer to two Terms again.

AtomicTerm. An AtomicTerm consists of a Query and a Criterion. The SSMM
includes different query types, each comprising the actual query string, the set
of parameters which the query provides to the SIEM engine, and a set of query-
specific meta information, such as a database name for an SQLQuery, for exam-
ple. Currently, the SSMM includes the following query types:

• SQLQuery Queries an SQL database. Besides the query string, database
name, account, and URL have to be provided.

• AMSECQuery Queries the Attack Modelling and Security Evaluation Compo-
nent [15]

• PSAQuery Queries the Predictive Security Analyser [19,11]

188 J. Schütte, R. Rieke, and T. Winkelvos

4 Modeling a Misuse Case

For illustrating the application of the model in a misuse case, we consider a hy-
pothetical but realistic attack in a SCADA system for monitoring a dam infras-
tructure, based upon the security requirements that were derived in the project
MASSIF [3] from the Terni hydroelectric complex, located about 150 Km in
the north of Rome: the attacker, one of the workers at the dam system, steals
the administrator password for the dam control station. He then uses his own
legitimate RFID badge to enter the dam control station room and logs into the
control system using the stolen administrator password. With the administra-
tion console under his control, he installs a software that intercepts and drops
all control messages from the power plant. In the following, he sabotages the
discharge sensor so that it would not indicate an increased discharge through
the penstocks. Finally, he opens the discharge gates so water flows uncontrolled
through the penstocks and the turbine starts to produce energy.

Listing 1.1. Security Directive to monitor the correlation of current and throughput
Se cu r i t y D i r e c t i v e Name=Manipulat ionSensorsSabotage {
: on [: d i s cha rgeCur r en tCor r e l a t i on

: hasExtrac tor [
: hasEventChannel [rd f : type : Di schargeLeve l ;

: h a sF i e l d s " throughput " ;
: hasName "Discharge Level in Penstock "
: hasChannelSensors : d i schargeSens]

: hasExtrac tor [
: hasEventChannel [rd f : type : PowerInduct ionLevel ;

: h a sF i e l d s " current " ;
: hasName "Power Induct ion Level "
: hasChannelSensors : cur rentSens]

: h a sCr i t e r i on [: hasFunct ion [: hasOperator : c o r r e l a t e
: hasParam1 " throughput " ;
: hasParam2 " current " ;
: outputParam " c o r r e l a t i o n "] ;

: hasFunct ion [: hasOperator : l t
: hasParam1 " c o r r e l a t i o n " ;
: hasParam2 0 . 3 ;
: hasOuputParam " th r e sho ld"] ;

: hasDec i s ion " th r e sho ld"]]

: i f [r d f : type : SQLCondition ;
: hasQuery ="SELECT Role , Employer FROM Phys i ca lPresenceTab le" ;
: ha sCr i t e r i on [: hasFunct ion [: hasOperator "==";

: hasParam1 "Role " ;
: hasParam2 "\"Admin\""]] ;

: dbInfo [: ipAdress "192 . 168 . 178 . 54" ; : portNumber=31337]]

: do [. . . l e f t out f o r the sake o f b r ev i ty . . .]

: why [. . . l e f t out f o r the sake o f b r ev i ty . . .]
}

Listing 1.2. Generated EPL Query
SELECT sou r c e IP ? ,

avg (c a s t (t r a f f i c ? , f l o a t)) AS a v gT r a f f i c
FROM Sys logChanne l . win : t ime (30 sec)
HAVING ca s t (a v gT r a f f i c ? , f l o a t)>42

Model-Based Security Event Management 189

Due to the compromise of the water flow sensors, the dam control station
does not indicate the increased flow through the penstocks. Furthermore, as
requests from the power plant have been blocked by the malicious software,
requests from the power plant to stop the discharge are ignored and the turbine
continues to produce power in an uncontrolled way. This can lead to a situation
called islanding, in which a part of the electric grid is separated from the rest of
the grid, resulting in severe damage of the turbine and the grid infrastructure.

The following listing shows how this attack could be detected by correlating
measurements across different layers. The security directive correlates sensor
values from the water flow through the penstocks with the produced current
at the turbine. As in normal operation, the values should always be positively
correlated, the security directive detects the attack described above whenever
the correlation falls below a threshold of 0.3.

This scenario mainly served as a guideline for our prototype implementation.
We wrote the model as an OWL2 ontology, which is parsed by our prototype
engine and compiled into queries for the Esper CEP engine (c.f. Listing 1.2).
Whenever an incident is detected, the SIEM prototype links back the detected
event pattern to the incident model, so users receive a semantic description of the
incident, which they can use as a starting point for a more detailled inspection.

5 Conclusion

In this paper we introduced a model-based approach to the definition of event
driven security incident detection and handling. The model supports security
monitoring by correlating events from different layers. Detected complex events
can be matched against the current system state, where we intend to support
different components representing the network infrastructure, as well as compo-
nents providing attack and vulnerability information, and a predictive security
analyser. Some of these components are currently developed within the MASSIF
project. Furthermore, the model includes references to actions to be taken when
an incident has been detected. In order to put incidents into the context of high-
level security requirements, e.g. from compliance catalogs, the model comprises
a SecurityPertinence link. We deem the strength of this model-based approach
as threefold:

First, the model is comprehensive and brings together all parts of security
monitoring which are to date covered by different systems: detection (IDS),
reporting (SIEM), handling (like an IRS), and explaining (GRC) of security
incidents. So, the model will support an integration of these existing systems
into one coherent monitoring solution.

Second, the model abstracts from specific event formats, sensors, or query
languages and thereby allows a mapping to different underlying event engines.

Third, representing Security Directives in a semantic model supports a separa-
tion of concerns, where a system administrator might provide details on the net-
work infrastructure, the compliance department might provide a list of high-level
requirements, and a security officer will combine them in a Security Directive
definition, for example.

190 J. Schütte, R. Rieke, and T. Winkelvos

Our future work aims at extending the existing prototype, integrate it with
an IF-MAP server and linking it to specific compliance catalogs, in order to test
its practical usefulnes.

Acknowledgments. This work has been developed in the context of the project
MASSIF (ID 257475), co-funded by the European Commission within the Sev-
enth Framework Programme.

References

1. Monitoring up the Stack: Adding Value to SIEM. White paper, Securosis L.L.C.,
Phoenix, AZ (2010)

2. Applied Network Security Analysis: Moving from Data to Information. White pa-
per, Securosis L.L.C., Phoenix, AZ (2011)

3. Project MASSIF website (2012), http://www.massif-project.eu/
4. AlienValult: AlienVault Unified SIEM (2010), http://www.alienvault.com/
5. Araknos: Akab2 (July 2012), http://www.araknos.it/en/prodotti/akab2.html
6. ArcSight Inc.: Common event format: Event interoperability standard (August

2006), http://www.arcsight.com/collateral/CEFstandards.pdf
7. Buecker, A., Amado, J., Druker, D., Lorenz, C., Muehlenbrock, F., Tan, R.: IT

Security Compliance Management Design Guide with IBM Tivoli Security Infor-
mation and Event Manager. IBM Redbooks (July 2010) ISBN 0-7384-3446-9

8. Coppolino, L., D’Antonio, S., Formicola, V., Romano, L.: Integration of a System
for Critical Infrastructure Protection with the OSSIM SIEM Platform: A dam case
study. In: Flammini, F., Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS,
vol. 6894, pp. 199–212. Springer, Heidelberg (2011)

9. CS: Prelude SIEM (July 2012), http://www.prelude-technologies.com
10. Debar, H., Curry, D., Feinstein, B.: The Intrusion Detection Message Exchange

Format (IDMEF). RFC 4765 (Experimental) (March 2007)
11. Eichler, J., Rieke, R.: Model-based Situational Security Analysis. In: Proc. of the

6th Int’l Workshop on Models@run.time at the 14th Int’l Conf. on Model Driven
Engineering Languages and Systems (MODELS 2011), Wellington, New Zealand,
CEUR Workshop Proceedings, vol. 794, pp. 25–36. IEEE Computer Society (2011)

12. Gürgens, S., Ochsenschläger, P., Rudolph, C.: On a formal framework for security
properties. Computer Standards & Interfaces 27, 457–466 (2005)

13. Iec, I.: ISO/IEC 27004:2009 - Information technology - Security techniques - Infor-
mation security management - Measurement. ISOIEC (2009)

14. Innerhofer-Oberperfler, F., Breu, R.: Using an enterprise architecture for it risk
management. In: Proc. of the ISSA Conf. from Insight to Foresight (2006)

15. Kotenko, I., et al.: Analytical attack modeling. Tech. Rep. Deliverable D4.3.1,
MASSIF Project (2011)

16. Lieberman Software: Common event format configuration guide (January 2010)
17. Melik-Merkumians, M., Moser, T., Schatten, A., Zoitl, A., Biffl, S.: Knowledge-

based runtime failure detection for industrial automation systems. In: Workshop
Models@run.time. pp. 108–119. CEUR (2010)

18. Schiefer, J., Rozsnyai, S., Rauscher, C., Saurer, G.: Event-driven rules for sensing
and responding to business situations. In: Int’l Conf. on Distributed Event-Based
Systems (DEBS), pp. 198–205 (2007)

19. Verissimo, P., et al.: Massif architecture document. Tech. Rep. Deliverable D2.1.1,
MASSIF Project (2011)

http://www.massif-project.eu/
http://www.alienvault.com/
http://www.araknos.it/en/prodotti/akab2.html
http://www.arcsight.com/collateral/CEFstandards.pdf
http://www.prelude-technologies.com

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2012, LNCS 7531, pp. 191–202, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Using Behavioral Modeling and Customized Normalcy
Profiles as Protection against Targeted Cyber-Attacks

Andrey Dolgikh, Tomas Nykodym, Victor Skormin, and Zachary Birnbaum

Binghamton University, Binghamton, NY, USA
{adolgik1,tnykody1,vskormin}@binghamton.edu

Abstract. Targeted cyber-attacks present significant threat to modern compu-
ting systems. Modern industrial control systems (SCADA) or military networks
are example of high value targets with potentially severe implications in case of
successful attack. Anomaly detection can provide solution to targeted attacks as
attack is likely to introduce some distortion to observable system activity. Most
of the anomaly detection has been done on the level of sequences of system
calls and is known to have problems with high false alarm rates. In this paper,
we show that better results can be obtained by performing behavioral analysis
on higher semantic level. We observe that many critical computer systems serve
a specific purpose and are expected to run strictly limited sets of software. We
model this behavior by creating customized normalcy profile of this system and
evaluate how well does anomaly based detection work in this scenario.

Keywords: Behavior Based IDS, Automatic Signature Generation.

1 Introduction

Modern malware demonstrates features of high precision weapons: information at-
tacks perpetrated by malicious codes can be employed to conduct espionage, and as in
the case of the Stuxnet worm, even industrial sabotage [1], [2]. Consequently, Intru-
sion Detection is a very active area of research that continues evolving as the malware
techniques are being improved to overcome existing defenses. However, the most
popular malware detection schemes are still dominated by the binary signature-based
approach. Although it has many practical advantages, this technology can be evaded
by using automatic tools like code packers and metamorphic engines, and leads to a
dead end due to exponentially growing database of binary signatures. In addition, it is
inherently incapable of addressing targeted, zero-day malware attacks not represented
by a binary sample in a database.

Behavioral analysis offers a more promising approach to malware detection
since behavioral signatures are more obfuscation resilient than the binary ones.
Indeed, changing behavior while preserving the desired (malicious) functions of a
program is much harder than changing only the binary structure. More importantly, to
achieve its goal, malware usually has to perform some system operations (e.g. registry

192 A. Dolgikh et al.

manipulation). Since system operations can be easily observed and they are difficult
to obfuscate or hide, malicious programs are more likely to expose themselves to
behavioral detection. Consequently, while database of specific behavioral signatures
is still to be utilized, its size and rate of increase are incomparably lower than those in
the case of binary signatures. However, the behavioral detector has to be able to dis-
tinguish malicious operations from benign ones (i.e. executed by a benign program)
which is often difficult. Moreover, maliciousness of an executed functionality can
often be determined only by its context or environment. Therefore, the challenge of
behavioral detection is in devising a good model of behavior which is descriptive
enough to allow for discrimination of benign versus malicious programs and which
can be tuned to the target environment.

In principle, there are two kinds of behavior detection mechanisms: misuse
detection and anomaly detection. Misuse detection looks for specific behavioral
patterns known to be malicious, while the anomaly based approach responds to
unusual (unexpected) behavior. The advantage of anomaly based detection is in its
ability to protect against previously unseen threats; however, it usually suffers
from a high false positive rate. Misuse detection is usually more reliable in terms
of detection performance (fewer false positives and often no false negatives) but it
has two major drawbacks. First, defining a set of malicious patterns (signatures) is
a time consuming and error prone task that calls for periodic updating, similarly to
how binary signatures are used today. Second, it cannot detect any malicious code
that does not expose known malicious behavior patterns and thus its capabilities to
detect a zero day attack are very limited. Consequently, it seems logical to
combine both detection mechanisms thus resulting in a highly dependable IDS
technology.

In this paper we describe a mechanism capable of automatic discovery of
behavioral profiles for computer programs applicable to both malicious and benign
behaviors.

First, we discuss the formalization aspects of behavioral signatures representing
functionalities, either benign or malicious, in the inclusive and obfuscation resili-
ent form. Then we address the approach enabling the functionality extraction from
a Kernel Object Access Graph capturing how kernel objects (objects managed by
operating system, e.g. files, processes) are manipulated. Then we discuss the
formation of a database containing the functionalities pertaining to the particular
network environment that in combination with their frequencies of execution
constitutes a customized normalcy profile. The resultant IDS would perform an
ongoing task of functionality detection and assess the deviation of the observed
network behavior from the earlier established normalcy profile. Finally, the im-
plementation results of the particular components of the described system will be
presented.

The described technology is expected to be instrumental in the detection of
targeted information attacks against high value targets such as banks, power plants,
government installations, etc.

 Using Behavioral Modeling and Customized Normalcy Profiles 193

2 Approach

The problem of detecting of unknown behavior can be split in two phases:
During the off-line phase, we observe the stream of the system level events for a

time period sufficient to cover the majority of application cases. This accumulated
data is used to build a behavioral model of the known behavior of the system.
The assembly of the behavioral model can be done off-line with extensive use of
computing resources.

During the on-line phase, we match observed stream of events with models of
known behavior. If the stream deviates from the behavior predicted by the model we
declare the anomaly. In order to be practical, this step should be performed with low
overhead.

In this paper we will focus on the process of assembling behavioral model from the
continuous stream of the system calls.

This intention is not new, many attempts were made to create models of normal
and malicious behavior. Different types of mechanisms: finite automata, context free
languages, Markov models etc. were utilized to monitor data dependencies and sys-
tem call dependencies on order to grasp the complex relationship between system
calls and data they operate on. In our view, limited success of these efforts is attribut-
ed to the fact that they typically lead to elusive and unstable models which only re-
motely reflect the behavior of the program. In this paper we introduce a behavior
modeling approach operating on the highest level of behavioral semantics, the level
where behavior could be directly associated with the specific goals of the software
developer.

3 Behavioral Representation

The behavior refers to the actions performed by the program with respect to its envi-
ronment. The environment of any program in a computer system is controlled and
managed by operating system kernel. Windows OS organizes the environment using
OS objects: file, memory section, thread, mutex, etc. For a program to sense or modi-
fy the environment a request to kernel must be issued. The request to OS is issued by
invoking a system call with desired parameters.

For example, system call ZwOpenKey has the following parameters: KeyHandle,
DesiredAccess, ObjectAttributes.

KeyHandle is a handle to the opened key. Generally, a handle is a context
specific reference/tag to the OS managed object. It allows referencing the same object
in a sequence of system calls. DeasiredAccess is the value that determines the
requested access to the object. ObjectAttributes is a structure that specifies the
object name and other attributes. Unlike handles, the names are system wide object
identifiers.

194 A. Dolgikh et al.

Handles and object names are especially important for observing the behavior
since handles and names directly correspond to some OS objects. Additionally, equal
handles or names provide clear indication that system calls were issued for the same
OS object.

Monitoring system calls along with parameters provides system-wide view on be-
havior. In order to reason about the behavior and especially about anomalous changes
in the behavior we suggest such a model that allows us to capture the normal structure
of operations over OS objects.

Formally, the model is a vertex-edge labeled graph which is constructed from the
stream of system calls,

 Gm=(V, E, Fv, Fe), (1)

where
V – set of vertices,
E – set of edges,
Fv - mapping from V to set of system calls S.
Fe - mapping from E to set of data links D.

It is worth noting that the set of system calls S is small and well known. On the other
hand elements of D represent all possible values of parameters of system calls. There-
fore the set of data links D is unknown beforehand and very extensive. Fortunately,
this does not pose a difficult problem since majority of the important parameters take
values from the small subset of D.

The graph Gm can be built from the stream of system calls according to the follow-
ing rules:

1. Labeled vertex vs is added to Gm for each issued system call s.
2. Labeled edge ed from vi to vj is added when vi and vj share the same data d and one

of the following:
(a) vi has d as the output and vj takes d as the input
(b) vi was registered before vj

For example, calls S1, S2 in (Figure 1. a) have a common parameter C. In the result-
ing graph (Figure 1. b) nodes corresponding to calls S1, S2 are connected with the
directed edge C. Nodes S2, S3 are connected with an edge labeled C.

The described process transforms the stream of system calls into a stream of
graphs. Due to the high volume of system calls these graphs usually grow to unman-
ageable sizes, primarily due to repetitive/cyclic actions. On the other hand, repetitive
occurrences of a single system call or some graph substructure do not provide
additional dependency information. Therefore it is beneficial to somehow detect and
eliminate repetitive structures (Figure 2).

 Using Behavioral Modeling and Customized Normalcy Profiles 195

Fig. 1. Links in the graph

Fig. 2. Graph compression

There are several graph compression (frequent subgraph detection) algorithms
suggested in [3, 4]. These algorithms were developed for problems quite different
from system call graph compression. The frequent substructures search algorithm
from [3] does not scale up to graphs with tens of thousands of nodes. The algorithm
described in [4] is more efficient but still too "expensive" for large number of nodes.
In addition, the semantics of graph compression described in these papers cannot be
directly applied to system call graphs.

196 A. Dolgikh et al.

Graphs featured in Figure 3 represent overwhelming majority of the system calls
graph types observed. Although these graphs are simple in nature, they result in a
very heavy performance penalty for general graph compression algorithms. As one
may see, they have a very simple structure reflecting repetitive operations over one or
two OS objects. Most of huge system call graphs are generated by simple cycles,
therefore such traces need to be effectively recognized and eliminated.

For system call graph matching we generally do not care how many times some
substructure is repeated. It gives us an opportunity to relax compression accuracy and
have irrelevant data disappear. In particular, we replace linear repetitive parts of the
graph with one representative component.

Fig. 3. Typical system call graphs

Lossy graph compression adapted to system call graphs allows for much faster al-
gorithm and better compression of the graph.

4 Algorithm

Our graph compression algorithm is based on Graphitour algorithm which was
introduced in [5]. This algorithm proved to be useful in the domain of biological and
genetic data processing [6]. It is not the fastest algorithm known to date [7] but it has
certain properties that we exploit to our benefit.

 Using Behavioral Modeling and Customized Normalcy Profiles 197

We will proceed with brief explanation of the algorithm followed by an example of
application of the algorithm to graph compression. The pseudo code for Graphitour
algorithm is presented in Table 1.

Table 1. Graphitour graph compression algorithm

1 Input: initial graph G
2 Initialize: empty graph grammar, empty edge lexicon;
3 Build edge lexicon: make a single tour of the graph,
 register the type of each edge according to the edge label
 and types of its end nodes; collect type statistics;
4 Loop:
5 Loop through nodes
 Delete all except one leaf nodes of each type
5 Loop through edge types
6 For a sub-graph induced by each edge type solve an
 instance of maximum cardinality matching problem,
 which yields a number and list of edges
 that could be abstracted;
7 Pick an edge type which corresponds to the highest count;
8 Introduce a new hyper-node for the chosen edge type
 into the graph grammar;
9 Loop through edge occurrences of a chosen type in the graph;
10 Substitute an occurrence of the edge type with a hyper-
node;
11 Loop through all edges incident to the end nodes of an
edge;
12 Substitute edges and introduce
 new edge types into edge lexicon;
13 Until no compression possible;
14 Output: compressed graph & induced graph grammar;

The major stages of the work of the algorithm are illustrated in Figure 4.

Fig. 4. Application of Graphitour algorithm to the graph with self-similarities

198 A. Dolgikh et al.

The algorithm first searches for frequent types of edges (lines 5-6) according to
max-matching algorithm. The edge A-B induces the largest matching of size 2
(dashed ovals) for the graph featured in Figure 4. The selected edges are contracted
and algorithm stores the rule for the applied operation. It could be seen that in later
stages previously contracted nodes may participate in new contractions. These succes-
sive contractions increase the database of rules which in turn can be unwound into the
most frequent patterns occurring in the graph. Unwound rules are featured in the
results section of the picture.

Application of Graphitour to typical system call graph is featured in Figure 5. One
may notice that after several steps Graphitour collapsed repetitive elements and con-
verted the linear sequence of complex graphs into a trivial sequence of nodes which
can be further reduced by removing excessive nodes. Linear parts as featured in Fig-
ure 5 stage V can be further analyzed/compressed with application of grammar-based
compression as described in [8].

Fig. 5. Progress of Graphitour Algorithm Over System Calls Graph

 Using Behavioral Modeling and Customized Normalcy Profiles 199

5 Verification of the Procedure

The described procedure was evaluated on execution traces obtained from several
benign and malicious programs running on Windows XP. System call traces were
recorded from our driver which intercepted system calls with their arguments by
hooking into the SSDT table. Since we wanted to evaluate our approach in general
conditions without any prior knowledge about the importance of individual system
calls for security, we intercepted all of the calls referenced by the service table, except
a few for which we could not find the correct specification of input arguments. We
used our driver to obtain execution traces from several malicious and benign
applications.

Malicious programs were obtained from the Offensive Computing website [9] and
include malware samples of different types and from several families. Benign pro-
grams were selected to represent a typical user setup. We joined the obtained samples
into three testing traces so that each trace consisted of several malware types and
several benign programs.

Since we monitored all of the system calls, the size of execution traces grew rapid-
ly with time, quickly exceeding 10GB for large traces. Therefore we used traces ob-
tained only for a limited amount of time, ranging from 1 minute to 20 minutes in the
case of longest execution trace. Currently, the compression was applied to the entire
graph that could have over hundred thousand nodes. In the future, some incremental,
real time compression schemes could be used allowing the processing of much longer
traces. The results could be seen in Table 2.

Table 2. Testing/validation of the functionality extraction procedure

Trace

Number of
system calls

Number of unique graph
components

Number of detected
functionalities

Number of malicious func-
tionalities detected

1 6927937 1047 341 23

2 3704217 862 307 21

3 20719 217 49 9

Two functionalities extracted from the real system call data by the application of
the described procedure can be seen in Figure 6. Component #169 on the left repre-
sents typical interaction with Windows registry. Component #171 corresponds to
remote thread injection functionality. Such functionality is rarely used by legitimate
software. And it is no surprise that it was obtained from the data containing malware
execution traces.

6 Normalcy Representation

Rules mined by the Graphitour algorithm over substantially large dataset of system
calls representing execution of legitimate software result in a set of functionalities that

200 A. Dolgikh et al.

can be perceived as signatures of normal behavior. It is important that the described
procedure operates without the involvement of human operator, i.e. the functionalities
are extracted automatically.

Fig. 6. Functionalities extracted from "real" system call data

The availability of behavior models, i.e. legitimate or malicious functionalities
marks the completion of the off-line phase of the modeling effort. The on-line phase
calls for the most efficient technology for the functionality detection. We have shown
previously that Colored Petri nets (CPN) present a very efficient tool for performing
this task [10]. Translation from Graphitour rules (essentially graphs) into CPNs is
relatively straightforward. Each node of the rule-graph corresponds to a place in CPN.
Incoming edges of the nodes are fused into transitions. Guard expressions of transi-
tions are obtained from edge link types (see Fig. 7).

A set of CPNs obtained from Graphitour mining results that cover all possible le-
gitimate activities for a local network facilitates the anomaly detection. In stable set-
ting this makes our detector more reliable and efficient than SUMMARIZE-MINE
mechanism described in [11].

 Using Behavioral Modeling and Customized Normalcy Profiles 201

Fig. 7. Translation of Graphitour rules into CPN

The customized normalcy profile is perceived as a set of automatically extracted
functionalities, accompanied by the frequencies of their execution. Unlike a public
network providing services to a wide community of users, network of a "high value
facility" is expected to demonstrate a very rigid set of functionalities and their fre-
quencies. The detection of unseen earlier, not necessarily malicious activity, and/or
mere changes in the execution frequencies of the functionalities would indicate an
attack. Figure 8 illustrates the described IDS concept.

Fig. 8. IDS utilizing a customized normalcy profile

networked computers implementing
a fixed set of legitimate programs

Sy
st

em
 c

al
l

da
ta

Functionality extraction

Frequency,
executions/minute

A B C D E
Extracted functionalities

Frequency,
executions/minute

A B D E
Extracted functionalities

XC

Customized normalcy profile Abnormal profile indicative
of attack

202 A. Dolgikh et al.

The implementation of the described approach includes the development and peri-
odic updating of the normalcy profile, and the on-going tasks of the functionality
extraction, detection of known malicious functionalities, and the anomaly detection in
network operation.

Acknowledgement. This research is funded by the Air Force Office of Scientific
Research (AFOSR). The authors are grateful to Dr. Robert Herklotz of AFOSR for
supporting this effort.

Literature

1. Percoco, N., Ilyas, J.: Malware Freakshow 2010: White paper for Black Hat USA (2010)
2. Falliere, N., Murchu, L., Chien, E.: W32.Stuxnet Dossier: Symantec security response

version 1.4 (2011)
3. Cook, D.J., Holder, L.B.: Graph-based data mining. IEEE Intelligent Systems and their

Applications 15(2), 32–41 (2000)
4. Inokuchi, A., Washio, T., Motoda, H.: An Apriori-Based Algorithm for Mining Frequent

Substructures from Graph Data. In: Zighed, D.A., Komorowski, J., Żytkow, J.M. (eds.)
PKDD 2000. LNCS (LNAI), vol. 1910, pp. 13–23. Springer, Heidelberg (2000)

5. Peshkin, L.: Structure induction by lossless graph compression. In: Data Compression
Conference, DCC, pp. 53–62 (2007)

6. Hayashida, M., Akutsu, T.: Comparing Biological Networks via Graph Compression. In:
Symposium on Optimization and Systems Biology (2009)

7. Choi, Y., Szpankowski, W.: Compression of Graphical Structures: Fundamental Limits,
Algorithms, and Experiments. IEEE Transactions on Information Theory (2012)

8. Maruyama, S., Sakamoto, H., Takeda, M.: An Online Algorithm for Lightweight
Grammar-Based Compression. Algorithms 5(2), 214–235 (2012)

9. Offensive Computing, http://offensivecomputing.net/ (accessed, November
2011)

10. Dolgikh, A., Nykodym, T., Skormin, V., Antonakos, J.: Colored Petri nets as the enabling
technology in intrusion detection systems. In: Military Communications Conference,
MILCOM 2011, pp. 1297–1301 (2011)

11. Chen, C., Lin, C.X., Fredrikson, M., Christodorescu, M., Yan, X.: Mining graph
patterns efficiently via randomized summaries. In: Proceedings VLDB Endow, vol. 2(1),
pp. 742–753 (2009)

Limitation of Honeypot/Honeynet Databases

to Enhance Alert Correlation

Yosra Ben Mustapha, Hervé Débar, and Grégoire Jacob

Telecom Sudparis, SAMOVAR UMR 5157
9 rue Charles Fourier, 91011 EVRY, France

{Yosra.ben mustapha,Herve.Debar,Gregoire.Jacob}@telecom-sudparis.eu

Abstract. In SIEM environments, security analysts process massive
amount of alerts often imprecise. Alert correlation has been designed
to efficiently analyze this large volume of alerts. However, a major lim-
itation of existing correlation techniques is that they focus on the local
knowledge of alerts and ignore the global view of the threat landscape.
In this paper, we introduce an alert enrichment strategy that aims at
improving the local domain knowledge about the event with relevant
global information about the threat in order to enhance the security
event correlation process.

Today, the most prominent sources of information about the global
threat landscape are the large honeypot/honeynet infrastructures which
allow us to gather more in-depth insights on the modus operandi of at-
tackers by looking at the threat dynamics. In this paper, we explore four
honeypot databases that collect information about malware propagation
and security information about web-based server profile. We evaluate the
use of these databases to correlate local alerts with global knowledge.
Our experiments show that the information stored in current honeypot
databases suffers from several limitations related to: the interaction level
of honeypots that influences their coverage and their analysis of the at-
tacker’s activities, collection of raw data which may include imprecise or
voluminous information, the lack of standardization in the information
representation which hinder cross-references between different databases,
the lack of documentation describing the available information.

1 Introduction

Security Information and Event Management (SIEM) systems provide security
analysts with large amount of heterogeneous alerts. Managing and analyzing such
tremendous number of alerts is a challenging task for security administrator, in
particular, because these events often lack precise and concise information [1].

Alert Correlation approaches have been developed to improve the accuracy of
alerts and attack understanding [2]. In addition, it provides a better description
of the observed threat phenomena. Existing correlation techniques such as [1–9]
apply to local alert datasets. The view over the local alert dataset is limited by
functional and structural boundaries of the monitored system. Local correlation

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2012, LNCS 7531, pp. 203–217, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

204 Y.B. Mustapha, H. Débar, and G. Jacob

does not provide methods to determine if the alerts, locally detected, are part
of a more global threat phenomena.

In this context, the honeypot technology is a valuable instrumentation tech-
nique to automatically collect and learn information about server-based exploits
and global threat phenomena. Recent work, [10–12], has shown the usefulness of
gathering experimental data to model and better understand the threats due to
attackers. The deployment of honeypots in several locations of the IP space has
underlined the fact that different blocks of addresses are attacked differently. It
is thus extremely important to have in-depth information about these threats in
order to study the causality links with local detected attacks.

In this paper, we describe a novel cross-view correlation approach capable of
analyzing causality relationships between local alerts detected in the monitored
system level and the global threat phenomena observed by honeypot sensor
deployment. This approach is beneficial to reassess the attack severity and to
re-evaluate the attack impact. In fact, analyzing information about the global
threat phenomena attributed to the locally detected alerts apprise us of severity
of the global threat phenomena, its propagation strategy, its capabilities, etc.
Our approach takes advantage of the data collected by four honeypot databases
to enrich our knowledge about alerts. We explore and evaluate these databases
in order to enhance the detection report in the alert and the knowledge about
the global threat landscape and correlate it with local reported alerts. The two
first databases contain information about Internet malware activity obtained
through the deployment of distributed honeypot sensors. The second and third
databases provide information about web-related threats by analysing security
evolution of suspicious web-based servers and domains.

Our experiments show that honeypot databases, in particular those we ex-
plore, suffer from several limitation in the context of alert correlation which will
be detailed in Section 4.

2 State of the Art

2.1 Honeypots and Honeynet

A honeypot, as defined in [13] and [14], consists in an environment where vul-
nerabilities have been deliberately introduced in order to observe attacks and
intrusions and to facilitate in-depth analysis of attackers strategies. It provides
its operators with intelligence about threats and network exploits.
Honeypots sensors interact with attackers in different ways, classified according
to three types of interaction level as listed in [15]:

1. low-interaction honeypot: It emulates the presence of different network ser-
vices on a host rather than a complete system.

2. high-interaction honeypot: Unlike low-interactionhoneypot, ahigh-interaction
honeypot emulates a complete real system. It usually runs a full implementa-
tion of an Operating System and installed applications. It is able to ensure a
real environment with which the attacker will interact. This technique gathers

Limitation of Honeypot/Honeynet Databases to Alert Correlation 205

Table 1. Honeypot interaction levels

Interaction level Advantages Disadvantages Examples Collected Information

Low-interaction
honeypot

– simple implementation
– easy to use and main-

tain
– low risk of penetration

– emulate specific services
– lower interaction performance
– no real interaction
– limited scope of attacker’s activity
– detection of known attacks
– detectable by advanced attackers
– capture only activity that directly

interact with them

Specter, Hon-
eyD

– limited to the level of emu-
lation

– time and date of the attack
– protocol
– source and destination IP

address
– source and destination

ports

High-interaction
honeypot

– full implementation of
an Operating System

– real interaction with
attacker

– complex implementation and main-
taining

– time-consuming to design
– increased risk
– capture only activity that directly

interact with them

Honeynet

– valuable information about
the attacker’s behaviour

– possible information about
zero-day attacks

Medium-
interaction honey-
pot

– simulated services are
more complicated

– low risk of penetration
– better interaction per-

formance

– do not emulate a complete real Op-
erating System

– capture only activity that directly
interact with them

nepenthes,
mwcollect,
honeytrap

– information about more
complex attacks

more details about the modus-operandi of attackers. Honeynet is an example
of high-interaction honeypot.

3. medium-interaction honeypot: It is a more sophisticated honeypot than low-
interaction one but it is still not emulating a complete operating system like
high-interaction honeypots. It emulated more complicated services.

In Table 1, we summarize the pros and cons of these honeypot technologies
and we give examples of each category and more details about the information
collected by them.

A common drawback of honeypots is that their field of view is limited and
they only gather attacker’s activity which interacts with them.

A recent evolution of honeypot research field is proposed in [16] and integrates
different tools such as ScriptGen [17], Argos [18] and Nepenthes [19]. In [16],
authors propose a distributed system of honeypots in order to gather more details
about attacker’s activity againt several victim machines and networks.

In [11], authors demonstrate how honeypot databases offer significant data to
study malware propagation and to get a deeper understanding of their evolution.

2.2 Alert Correlation Techniques

Alert Correlation is usually defined as an approach that aims at discovering
various relationships between individual alerts. The main categories of Alert Cor-
relation techniques are similarity-based, knowledge-based divided into scenario-
based and rule-based approaches, and model-based correlation approaches.

Similarity-based : this technique aim at clustering alerts which have the closest
similarity values between alert attributes. Most considered attributes are
source and destination IP address and ports as well as timestamp. Distance-
based function and probabilistic function, as proposed in [6], are computed
to evaluate similarities between alerts. Unless these functions are useful to
cluster similar alerts which are most likely linked to a common root cause,
they are not useful to evaluate to causality links between alerts.

206 Y.B. Mustapha, H. Débar, and G. Jacob

Knowledge-based : this technique is based on a priori knowledge on malicious
activities and attacks scenarios and exploits. It requires not only expertise
rules and heuristics to correlate heterogeneous alerts but also a consistent in-
formation related to alerts. We distinguish between two main sub-categories
of knowledge-based techniques:

– Scenario-based : a single alert reflects often to an elementary step of an
attack scenario. Consequently, various attack scenario templates are re-
quired to correlate those alerts. Modelling language such as LAMBDA
(Language to Model a Database for Detection of Attacks), [20] and
AdeLe (Attack Description Language) have been used for attack scenar-
ios specification. Furthermore, attack scenarios recognition techniques
were developed like statistical Granger Causality Test, chronicles for-
malism and other machine learning techniques to enlarge the set of sce-
narios.

– Rule-based : known as prerequisites and consequences, this technique is
designed to correlate alerts following their causality relationships. It is a
specific technique that serves for scenario-based alert correlation. But, it
does not require a prior knowledge of attack scenarios. Rule-based alert
correlation approaches take advantage of the JIGSAW attack description
language [4] to model the capabilities of an attack and its steps. These
latter are constructed once the capabilities are satisfied. Hence, if some
alerts are missed, the attack steps reconstruction remains incomplete.
This limitation was addressed by the MIRADOR correlation method
which does not require full satisfaction of all capabilities, [5].

These aforementioned alert correlation techniques are essentially based on
the information contained in the alert itself and on static databases includ-
ing information about vulnerabilities such as the Common Vulnerabilities
and Exposure CVE database, National Vulnerability Database, Open Source
Vulnerability Database, etc.

Model-based : this approach aims at supporting alert correlation at analysing
security alerts with a view on the relevant context. M2D2, [7], was the first
attempt to offer a formal representation of sensor capabilities in order to
decide whether an alert was false positive or not. This was enhanced by the
proposed data model M4D4 [8, 9], which covers contextual and topology in-
formation. This model is a shared model that is developed in order to process
in a cooperative way while correlating alerts. It represents the different rela-
tionships among system entities and components to facilitate the correlation
process by a cooperative analysis of heterogeneous information.

3 Proposed Approach: Cross-View Alert Correlation

As described in 2.2, within traditional alert correlation particularly knowledge-
based approaches, security administrator deal with a limited view of raw alerts
environment and concentrate on the analysis of the victim-side knowledge re-
lated to these alerts. In fact, alerts are sometimes incomplete and do not include

Limitation of Honeypot/Honeynet Databases to Alert Correlation 207

sufficient knowledge about the global attack sequence. Linking local alerts to
global phenomena in the threat landscape makes this knowledge available. Hon-
eypot sensors interact with attackers following different level as mentioned in 2.1
to learn more about their propagation strategies, their source characterization,
etc. We explore this information (refer to section 4.2) about threat landscape
and propose a cross-view alert correlation.

Our novel approach aims at automatically linking local alerts to a more global
threat phenomenon by enriching the set of locally observed alerts. It also ensures
an effective attack impact re-evaluation by analyzing the knowledge about the
attacker capabilities and the global threat phenomena which is attributed to
the local detected alerts. Cross-View correlation support also response decision
process in selecting a more appropriate countermeasure. In fact, understanding
the attackers’ modus-operandi and the global threat phenomena that affects our
monitored network is necessary to identify better mitigation strategy.

3.1 Information Sources

The proposed cross-view correlation performs on heterogeneous security-related
information gathered from two different views: local view and global view.

The local view includes analyzers such as Intrusion Detection Systems (IDS),
Firewalls, etc, are deployed to report traces of malicious activity affecting the net-
work and other security related information. For instance, IDSs monitor the ac-
tivity of the network for the occurrence of malicious activities and generate alerts
triggered by their signatures. From the alerts, we can retrieve the timestamp of
the malicious activity, the source and target IP address, used port, etc.

The global view includes honeypot data are widely deployed to provide re-
searchers with in-depth information about the hacking community and cyber
threats. As we described in 2.1, the primary goal of a honeypot is the study
of the attacker behaviour while interacting with the sensor. The data collected
through honeypot sensor includes information about malware behaviour, propa-
gation vectors used by malware, the propagation strategy, relationships between
exploits, attacker’s location, source and destination characterization, origin and
relevance of zero-day attacks, etc [15, 16].

3.2 Alert Enrichement Process

In the context of cross-view alert correlation, we enrich our local knowledge
about alerts with information about the global threat landscape. Hence, it is
essential to define an alert enrichment strategy that improve the alert-related
knowledge, especially with appropriate external information related to the oc-
currence of the exploit. Figure 1 describes an overview of the alert enrichment
process. As shown in figure 1, we first collect information respecting appropriate
enrichment features that are detailed later. For instance, based on the originat-
ing source of the observed alert, we collect global knowledge about the tracked
server and evaluate its security profile and evolution over time. After the enrich-
ment is performed, we categorize the collected information following the defined

208 Y.B. Mustapha, H. Débar, and G. Jacob

Fig. 1. Alert Enrichment Process

categories presented later and propose a filtering process which is composed of
three types of filters: Temporal, Semantic and configuration filters. Each filter
perform on a corresponding category of information.

The result of the enrichment process is an Er alert which append the infor-
mation reported basically in the elementary alert with additional information
about the security state of the source, threats reported on it which is able to
perform tracked attack and in-depth description about these exploits. We then
analyse the relationship that may exist between the threat which has been re-
ported on the specific server and the locally reported alerts. This analysis require
sometimes a bigger picture about data collected in the first step of enrichment.

The Er alert is then processed to request for more general information based on
a generalization strategy of the enrichment feature. For instance, to analyze the
environment of the originating source of the local threat, it is possible to request
information about its localization, the class of its IP address (class A, B or C).

Local Cross-View Enrichment Features. It is essential to analyze local alert
features that must be considered in the enrichment process since we manipulate
information from two different views: the local view and the global view.

At the local victim-side, Intrusion Detection Systems (IDS)s monitor the activ-
ity of the network for the occurrence of malicious activities and generate alerts of
detected malicious activity including elementary information about the infection.
Following the Intrusion Detection Message Exchange Format (IDMEF) [21], the
alert is composed of several aggregate classes. Source, DetectTime and Classifica-
tion classes are convenient features that must be considered first when querying
honeypot datasets. These features construct a primary bridge to more accurate
global information about the detected threat. Hereafter, we detail the informa-
tion gained by analyzing collected objects when applying these features.

Source class includes the IP address of the originating source of the detected
threat. As mentioned in paragraph 2.1, honeypot databases log information re-
lated to the source IP address of malicious activity. Thus, alert’s source charac-
terization will be considered during the enrichment process.

Limitation of Honeypot/Honeynet Databases to Alert Correlation 209

Fig. 2. Filtering Processes

DetectTime represent the time when the attack was detected by the local an-
alyzer. In honeypot databases, captured activities are usually timestamped and
allow us to analyze the security evolution of the alert’s originating source within
a specific time window.
Classification represent the alert semantic. For instance, Intrusion Detection
Systems categorize alerts respecting a set of alert classification which inform us
about the alert’s type. This latter may be linked to the threat type detected by
honeypot sensors.

Information Categorization. The aforementioned enrichment features allow
us to gather huge amount of related information which sometimes does not
enhance our knowledge about the alert. Thus, we propose to categorize the
collected information aiming at simplifying the filtering processes.

We define three major categories:

Security Information: This category includes security-related information such
as md5, type of the threat, security states of the originating sources, exploited
vulnerabilities by the attacker, etc.
Temporal Information: When detecting a malicious activity, honeypots’ logged
information is timestamped. Honeypot datasets’ objects includes temporal at-
tributes about the detection and analysis time.
Contextual Information: This category includes generic type of information: spa-
tial information, whois information, generic information. This set of attributes
allows us to build a more general picture about the environment of the object
being analyzed.

Filtering Process. The objective of the enrichment process is to increase the
accuracy of the knowledge related to the alert. To fulfil this need, we set up 3
filters (as shown in figure 2). The objective of these filters is to eliminate data
which is less likely to link the local alert to the corresponding global threat phe-
nomena.
Temporal Filtering: Honeypot sensors track the activity of attackers and the
evolution of the threat landscape referring to a time settings. Honeypot datasets
include a timeline of events for each tracked source. This timeline is composed
of different timespans defined by the first and last time (resp. tfirst seen and
tlast seen) of the observed activity generated from tracked source. tfirst seen

and tlast seen are timestamps that are of the order of seconds. We denote by

210 Y.B. Mustapha, H. Débar, and G. Jacob

T thIPaddr = [tfirst seen, tlast seen] the timespan of an observed threat on a spe-
cific source. Within the defined cross-view correlation approach, it is important
to operate on timespans that are close to the DetectTime of the local alert.
Obviously, it is not significant to attribute local alerts to a global threat which
no longer exists. Therefore, we use sliding windows to avoid investigating the
correlation of local alerts with old reported global threats. We denote by α =
DetectTime −tlast seen the delay that exist between the last time of the last ac-
tivity observed on a source and the detection time of the local alert. We expect
α to be of the order of a day. The considered sliding window must satisfy this
condition.
Semantic Filtering: As local alerts are usually classified following the attack’s
objective, global threat phenomena is also assigned to specific type of attack ac-
tivity. By setting up a semantic filtering, we eliminate non-relevant global threat
phenomenon relatively to the classification of the local alert in order to keep only
those threats that are highly likely to have a causality relationship with the local
alert. The observed global threat is classified respecting a high level description
of the threat defined by a threat class. This classification is extremely helpful to
characterize threats and the modus operandi of attackers behind them. Honey-
pot datasets use their own set of threat classes to distinguish between detected
global threats. The semantic filtering is then able to immediately compare the
threat class against the alert type if the set of threat classes is based on the
same semantic of local alerts classification. Even though, the semantic filtering
has to consider intermediate cross-references in order to map these different sets
of threat classes and alert types.
Configuration Filtering: Cross-view correlation must take into account the
contextual knowledge of the monitored network. This knowledge is composed of
topological and cartographic data. It represents hosts’ characteristics, their in-
terconnections, software products, their vulnerabilities, etc. As mentioned in [9],
comparing the affected configuration of a vulnerability with the actual set of
products of a given host is valuable for alert correlation. In the context of cross-
view correlation, it is meaningful to compare global threat capabilities against
the weaknesses of the monitored system and network.

4 Experimental Results and Analysis

4.1 Local Information Source

Our analysis is conducted on real world alerts generated by a snort v2.8 NIDS
sensor running on our University Network for 4 months. The University Network
is composed of hundreds of machines. For the experiment, we use the latest ver-
sion of the signature rule-sets available at the time of the experiment procedure
which began on January 2012.

During these 4 months, snort generated 183170 alerts originating by 2499
unique IP address source. We summarize these alerts in Table 2, sorted by their
classification.

Limitation of Honeypot/Honeynet Databases to Alert Correlation 211

Table 2. Classification of local generated alerts

Classification Number of alerts
Total Number
of unique IP
sources

Number of filtered
alerts

Number of filtered
unique IP sources

attempted-recon 156338 2198 870 (0,5%) 132 (6%)

attempted-dos 1 1 1 (100%) 1 (100%)

attempted-user 1540 28 1540 (100%) 28 (100%)

misc-activity 839 174 23 (3%) 21 (12%)

trojan-activity 3 3 3 (100%) 3 (100%)

bad-unknown 22573 34 51 (0,2%) 9 (26,5%)

unclassified 1876 61 1876 (100%) 61 (100%)

Global 183170 2499 4364 (2,5%) 255 (10%)

Table 3. Summary of reported signatures, their vulnerabilities, protocols and ports

Classification Signature CVE Reference Protocol and Port N. of alerts

attempted-recon SNMP request tcp CVE-2002-0012/0014 TCP:80 3
SNMP AgentX/tcp request CVE-2002-0013 TCP:80, 31337 2
SCAN FIN/SCAN SYN FIN – TCP 860

attempted-dos DoS Teardrop attack CVE-1999-0015 UDP 1

attempted-user MS-SQL probe response overflow CVE-2003-0903
UDP:55989, 56538, 41376,
36845, 64439, 4974

1335

Web-Client Windows Media Player
directory traversal via Content-
Disposition

CVE-2003-0228 TCP:80 1

misc-activity ICMP PING CyberKit 2.2 Windows – ICMP 20
BAD-TRAFFIC tcp port 0 traffic – TCP:0 3

trojan-activity BACKDOOR typot trojan traffic – TCP:44086 3

bad-unknown ICMP Source Quench – ICMP 50
DNS SPOOF query response with
TTL of 1 min, and no authority

– UDP:53 1

Several alerts have been filtered. In fact, in order to increase the performance
of the enrichment process, we eliminate several alerts since snort IDS is known
by its high rate of false positive. Hereafter, we consider classifications for which
alerts have been filtered:
Attempted reconnaissance alerts are usually preliminary intrusion steps
aiming at collecting information about the network. Most of these alerts are,
in general [22], alerts for normal network activity. In fact, such alerts are more
significant if they are part of a global attack sequence. Therefore, we filter alerts
whose IP source address is not present in other alerts having different signature.
More than 99% of attempt-recon alerts have been filtered (ref. Table 2).
Misc-activity and Bad-unknown alerts include large number of ICMP alerts
which can be considered as a Usual False Positive referring to [23]. These alerts
are usually generated due to misconfigured hosts, topology of the network, nor-
mal activity of network services, etc. As shown in Table 2, more than 99% of
misc-activity and bad-unknown alerts have been filtered.

In the last line of the Table 2, we compute the number of alerts generated
by our Snort sensor and the number of corresponding unique IP source address.
We then aggregate the total number of filtered alerts, with its average referring
to the totality of alerts. Finally, we give the number of corresponding filtered IP
source address that will be considered during our experiments.

Table 3 shows a more detailed information about the exploited vulnerabilities
and the protocol involved in the detected malicious activity. Vulnerabilities are
identified by their CVE reference, [24]. Moreover, we represent most important
port numbers employed by attackers to infect the monitored network.

212 Y.B. Mustapha, H. Débar, and G. Jacob

4.2 Experiment Honeypot Databases

We explore four honeypot databases which include information about malware
characterization and security profile of suspicious web-based servers.

SGNET v1, [16], is a distributed honeypot deployment which benefits from
different tools, namely ScriptGen [17], Argos [18] and Nepenthes [19] aiming at
gathering proper view on Internet attacks and malware. It collects information
about the malware propagation strategies as well as information providing as
better understanding about global threat landscape. Recently, an enhanced work
of SGNET has been developed and called SGNET v2.

HARMUR v1, the Historical ARchive of Malicious URLs, [25], is a security
dataset that aims at exploring the dynamics of the security and contextual in-
formation associated to web-related threats. HARMUR extract several security
information tracked web-based servers where hosted suspicious domains. It is
possible to retrieve threats that was reported on the tracked server. Like SGNET,
HARMUR’s developers improve several functionalities of HARMUR and they
developed the HARMUR v2.

These honeypot databases has been developed initially within the WOMBAT
project. A public API called WAPI (Wombat API), [26], has been developed
in order to query information from advanced honeypot databases. Information
collected in these datasets is object oriented. The specification of the WAPI pro-
tocol relies on four different concepts: objects, attributes,methods and references.
Aggregation of these concepts offer information on a security object (e.g. an IP
address) that is generated by a set of different datasets (SGNET honeypots,
HARMUR web servers, ...).

4.3 Experimental Results and Evaluation

As explained in section 3, in our experiments, we perform the enrichment process
based on elementary characterization of the alert such as source address or port.
For instance, based on the IP address of the alert’s source, alert enrichment
process allows us to gather more details about potential root causes. Additional
features would be considered within the enrichment process such as the hash of
potentially detected malwares.

During our experiments, we check if the originating source reported in our
set of alerts has been analyzed by one of the honeypot sensors. We analyze
the security evolution of alert’s source and evaluate and quantify the threat
phenomena which infects the originating source of the local detected alert.

Table 4 summarizes statistical results computed during the alert enrichment
process. In this table, we represent the number of alert’s IP source address having
corresponding server object analyzed by one of the honeypot sensor. Indeed, the
primary step of the enrichment process is concentrated on the identification of
the set of alerts that are systematically enriched.

Based on the result shown in Table 4, we conclude that a high number of
alerts’ IP source address have not been analyzed by experiment honeypot sen-
sors. Thus, we conclude that several alerts will not be automatically enriched.

Limitation of Honeypot/Honeynet Databases to Alert Correlation 213

Table 4. Experimental Results using alert’s IP source address

Classification
Number of filtered
IP source address

SGNET v1 SGNET v2 HARMUR v1 HARMUR v2

attempted-recon 132 – – 1 (SNMP AgentX/TCP) –

attempted-dos 1 – – – –

attempted-user 28 – – – –

misc-activity 21 – – – –

trojan-activity 3 – – – –

bad-unknown 9 1 (DNS SPOOF) – – 1 (DNS SPOOF)

unclassified 61 – –
1 (tcp portscan) & 1 (tcp
portscan,tcp portsweep)

1 (tcp portscan)

Table 5. Analysis of identified IP source address objects from Table 4

Signature involved SNMP AgentX/TCP DNS SPOOF tcp portscan
tcp portscan &
tcp portsweep

tcp portscan

Number of alerts 1 1 4 203 & 103 1

Honeypot Dataset HARMUR v1 SGNET v1 HARMUR v2 HARMUR v1 HARMUR v1 HARMUR v2
Temporal Information:

first seen, last seen at-
tributes

unfilled unfilled unfilled unfilled unfilled unfilled

Security Information:
Number of hosted Do-
mains

41 – 1 1 2 1

Security current color
of hosted domains

28 green, 8 gray, 4
orange & 1 red

– 1 gray 1 green 2 orange 1 red

Number of correspond-
ing threat objects

25 no threat – no threat 4 1

Threats rating 14 unknown & 11 red – – – 4 unknown –

Type of the threat
Virus, Browser Ex-
ploit, Generic google
safebrowsing

– – – Virus –

Number of satisfied
content reference

missing – missing missing missing missing

number of filled help
attribute

13 – – – 4 –

information about af-
fected systems

Windows: 98, 95, XP,
Me, NT, 2003, 2000

– – –
Windows XP,
Vista, NT, Server
2003, 2000

–

Moreover, the examples in the experiment honeypot datasets which are linked
to the alerts are difficult to explore in the context of our cross-view alert correla-
tion. In Table 5, we detail the information gathered from each IP source address
object found in the datasets.
Enrichment: As shown in Table 4, the enrichment process operates on a small
set of originating sources. 5 IP source addresses out of 255 IP source addresses
has been identified in the experiment honeypot datasets. Due to this reduced
number of identified IP source addresses, the performance of the enrichment
process are highly reduced. Knowledge about the originating source of the local
alerts is not entirely enriched.
Categorization: Based on the sources identified in Table 4, we analyze the in-
formation gathered from each corresponding source object. Experiment honeyot
datasets set temporal attributes for each object that are composed of last seen,
first seen. Moreover, security information includes information about the threat
reported in each source, their types, their rating, a link to a more detailed de-
scription about the threat, the security color of the hosted domains in the source
(e.g. red color means that the domain is infected). In the case of the source iden-
tified in SGNET v1, all the attributes and references are missing.
Filtering: Temporal information is the principle input for temporal filtering.
Normally, this information is of the order of seconds which is a sufficient gran-
ularity in the context of our alert enrichment process. Due to the missing of
such information in the results, it does not allow the filtering process to be
completely performed. A part from this, threat type values (e.g. Virus, Browser

214 Y.B. Mustapha, H. Débar, and G. Jacob

Exploit, Generic google safebrowsing) listed in Table 5 do not offer a standard
representation of the threat type which avoid the semantic filtering to be auto-
matically executed. During our experiments, we identify several limitations to
deeply explore these honeypot datasets. Hereafter, we point out these limitations
on the deployment of such honeypot databases to enrich the alert knowledge in
the context of cross-view alert correlation.

4.4 Interpretations

Four major limitations have been identified during the experiments. Some lim-
itations are related to the characteristics of a honeypot sensor implementation.
In addition, we identify other limitations which are related to the design of a
honeypot datasets data representation.

Coverage Limitation. When requesting the corresponding object of a spe-
cific originating source of a local alerts, around 95% of locally detected alerts do
not have corresponding originating source reference in the explored databases (as
deduced from Table 4). The main cause of this result is explained by the interac-
tion level of the honeypot sensors. Despite honeypot sensors are able to interact
with attackers and emulate network protocols, they would be unable to cover
a large variety of activities like a real interaction between the attacker and the
system. For instance, Web-Client Windows Media Player directory traversal via
Content-Disposition attacks (cf. CVE from Table 3) require a high-interaction
level with the attacker and this is not always ensured. Such result makes chal-
lenging the correlation and enrichment process since we are then conducted to
set a generalization methodology. In fact, it is possible to gather information
about the network IP address range of an alert’s source.

Unfilled Attributes and References Limitation. During our enrichment
process, we identify the problem of unfilled attributes of datasets’ objects which
does not guarantee the automatic reasoning and the continuity of the collection
process. For instance, an important number of threats have unfilled attributes
such as the help attribute which contain details about the threat type, the vul-
nerabilities that can be exploited, etc. We conduct a statistical evaluation on
73699 threat objects from HARMUR datasets and we observe that over than
85% of these objects are not referenced to a content object. This latter includes
in-depth information related to the threat. This pitfall prevent us essentially from
applying semantic and configuration filters described in 3.2. Moreover, from Ta-
ble 5, due to the absence of temporal attributes, our temporal filtering is not
capable to accomplish the filtering process.

Lack of Standard Representation of Data. During our experiments, we
observe that information gathered about threats lacks a proper and standard
representation. Unfortunately, this limitation makes difficult qualitative evalua-
tion of the exploits and semantic filter. Within HARMUR threats object, each
object has a generic threat type as phishing page, virus, browser exploit, etc.

Limitation of Honeypot/Honeynet Databases to Alert Correlation 215

Such threat types do not provide clear understanding and in-depth details about
the exploit and construct an obstacle for semantic filtering. For instance, even
if honyepot datasets report a threat in a specific server, neither the threat type
representation nor the help attribute, allow us to identify if a causality relation-
ship exist between the locally detected alert and this global threat phenomena.

Cross-References Limitation. Since honeypot databases lack of cooperation
and coordination between them, it was a tedious task to request in-depth infor-
mation of mawlare infection reported in a specific web-based server from SGNET
that includes information about the malware characterization and behaviour. For
instance, it would be interesting to gather in-depth information about a threat
reported in HARMUR by requesting SGNET. In the context of our approach of
cross-view alert correlation and enrichment, it is required that we take advantage
of a complete global view of the threat phenomena such as the infected servers,
their security evolution over time, characterization and specificity of exploits.

5 Conclusions and Perspectives

This paper introduces an application of honeypot databases to enhance alert
correlation techniques. We expose a cross-view alert correlation that aims at
considering external security information collected through the deployment of
honeypot sensors in order to enrich the local knowledge of detected intrusions
with in-depth details about the security profile of the originating source, exploits
to which our network is exposed to, etc. We then analyze and explain experi-
mental results and limitations encountered when dealing with the explored hon-
eypot databases to ensure the cross-view alert correlation. Although honeypot
technologies are proved to be a valuable mean to analyze the threat ecosystem,
our experiments demonstrate several limitations of the deployment of current
honeypot databases to improve alert correlation. For instance, the lack of pre-
cise information and standard representation do not ensure correlation analysis
and automatic reasoning. This pitfall can be alleviated by conceiving a unified
and standardized framework for honeypot data storage and representation. As-
signing standard reference such as CVE to observed exploits and threats could
be of a great interest while exploring honeypot databases. These suggestions
would ensure that cross-view alert correlation is executed. It would also make the
navigation and the cross-references between these different honeypot databases
easier.

Honeypot techniques are still evolutionary and can be ameliorated to cover
additional security analysis application. In the context of our cross-view alert
correlation, it is important to ensure concise and complete information that offer
to the security analyst a good understanding of threat landscape ecosystem to
efficiently identify causality relationships between the local detected alerts and
observed threat phenomena in the global view.

216 Y.B. Mustapha, H. Débar, and G. Jacob

Acknowledgement. The research leading to these results has received funding
from the European Commission’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement no. 257495, ”Visual Analytic Representation of
Large Datasets for Enhancing Network Security (VIS-SENSE)”.

References

1. Ren, H., Stakhanova, N., Ghorbani, A.A.: An Online Adaptive Approach to Alert
Correlation. In: Kreibich, C., Jahnke, M. (eds.) DIMVA 2010. LNCS, vol. 6201,
pp. 153–172. Springer, Heidelberg (2010)

2. Chifflier, P., Tricaud, S.: Intrusion detection systems correlation: a weapon of mass
investigation (2008)

3. Cheung, S., Lindqvist, U., Fong, M.W.: Modeling multistep cyber attacks for sce-
nario recognition. In: DISCEX (1). IEEE Computer Society (2003)

4. Templeton, S.J., Levitt, K.: A requires/provides model for computer attacks. In:
Proceedings of New Security Paradigms Workshop, pp. 31–38. ACM Press (2000)

5. Cuppens, F.: Managing alerts in a multi-intrusion detection environment. In: Com-
puter Security Applications Conference (December 2001)

6. Valdes, A., Skinner, K.: Probabilistic Alert Correlation. In: Lee, W., Mé, L., Wespi,
A. (eds.) RAID 2001. LNCS, vol. 2212, pp. 54–68. Springer, Heidelberg (2001)

7. Morin, B., Mé, L., Debar, H., Ducassé, M.: M2D2: A Formal Data Model for IDS
Alert Correlation. In: Wespi, A., Vigna, G., Deri, L. (eds.) RAID 2002. LNCS,
vol. 2516, pp. 115–137. Springer, Heidelberg (2002)

8. Morin, B., Debar, H.: Correlation of Intrusion Symptoms: An Application of Chron-
icles. In: Vigna, G., Kruegel, C., Jonsson, E. (eds.) RAID 2003. LNCS, vol. 2820,
pp. 94–112. Springer, Heidelberg (2003)

9. Morin, B., Mé, L., Debar, H., Duccassé, M.: M4D4: a Logical Framework to Support
Alert Correlation in Intrusion Detection. Information Fusion 10, 285–299 (2009)

10. Comparetti, P.M., Maggi, F.: Using WOMBAT APIs on Real-World Tasks. In: The
second WOMBAT Workshop, pp. 67–81 (2009)

11. Leita, C., Bayer, U., Kirda, E.: Exploiting diverse observation perspectives to get
insights on the malware landscape. In: 40th Annual IEEE/IFIP International Con-
ference on Dependable Systems and Networks, DSN 2010 (June 2010)

12. Li, L., Sun, H., Zhang, Z.: The research and design of honeypot system applied
in the lan security. In: 2nd International Conference on Software Engineering and
Service Science (ICSESS). IEEE (2011)

13. Dagon, D., Qin, X., Gu, G., Lee, W., Grizzard, J.B., Levine, J.G., Owen, H.L.:
HoneyStat: Local Worm Detection Using Honeypots. In: Jonsson, E., Valdes, A.,
Almgren, M. (eds.) RAID 2004. LNCS, vol. 3224, pp. 39–58. Springer, Heidelberg
(2004)

14. Pouget, F., Dacier, M.: Honeypot-based Forensics. In: AusCERT Asia Pacific In-
formation Technology Security Conference (2004)

15. Mokube, I., Adams, M.: Honeypots: Concepts, Approaches, and Challenges. In:
ACMSE 2007,Winston-Salem, North Carolina, USA (March 2007)

16. Leita, C., Dacier, M.: SGNET: a worldwide deployable framework to support the
analysis of malware threat models. In: 7th European Dependable Computing Con-
ference, EDCC 2008 (May 2008)

Limitation of Honeypot/Honeynet Databases to Alert Correlation 217

17. Leita, C., Dacier, M., Massicotte, F.: Automatic Handling of Protocol Dependen-
cies and Reaction to 0-Day Attacks with ScriptGen Based Honeypots. In: Zamboni,
D., Kruegel, C. (eds.) RAID 2006. LNCS, vol. 4219, pp. 185–205. Springer, Hei-
delberg (2006)

18. Portokalidis, G., Slowinska, A., Bos, H.: Argos: an emulator for fingerprinting zero-
day attacks. In: ACM Sigops EuroSys (2006)

19. Baecher, P., Koetter, M., Holz, T., Dornseif, M., Freiling, F.C.: The Nepenthes
Platform: An Efficient Approach to Collect Malware. In: Zamboni, D., Kruegel, C.
(eds.) RAID 2006. LNCS, vol. 4219, pp. 165–184. Springer, Heidelberg (2006)

20. Cuppens, F., Ortalo, R.: LAMBDA: A Language to Model a Database for Detection
of Attacks. LNCS (2000)

21. Debar, H., Curry, D., Feinstein, B.: The Intrusion Detection Message Exchange
Format (IDMEF), http://tools.ietf.org/pdf/rfc4765.pdf

22. Remi-Omosowon, O.B.: Statistical analysis of snort alerts (2009)
23. Spathoulas, G.P., Katsikas, S.K.: Reducing false positives in intrusion detection

systems. Computer & Security 29, 35–44 (2010)
24. Common vulnerabilities and exposures, http://cve.mitre.org/cve/
25. Leita, C., Cova, M.: HARMUR: Storing and analyzing historic data on malicious

domains. In: Proceedings of the First Workshop on Building Analysis Datasets and
Gathering Experience Returns for Security (2011)

26. Zanero, S., Comparetti, P.M.: The WOMBAT API: querying a global network of
advanced honeypots. In: BlackHat DC (2010)

http://tools.ietf.org/pdf/rfc4765.pdf
http://cve.mitre.org/cve/

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2012, LNCS 7531, pp. 218–225, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Stochastic Model of Interaction between Botnets
and Distributed Computer Defense Systems

Dmitry P. Zegzhda and Tatiana V. Stepanova

Saint-Petersburg State Polytechnical University
{dmitry,stepanova}@ibks.ftk.spbstu.ru

Abstract. Nowadays one of the main means for computer attack organization
are botnets. One of botnets' goals is to break computer defense system and the
goal of defense system is to neutralize botnets, staying resistant to its targeted
attacks. There is lack of efficiency evaluation methods and models, which al-
low to compare how sustainable is defense system to targeted botnet attacks and
vice versa. Proposed model allows to predict the result of interaction between
botnet and defense system and can be used as base for building efficient distrib-
uted defense system, capable of protecting itself from botnet attacks.

Keywords: botnet, distributed defense system, efficiency evaluation, sustainability,
random graph.

1 Introduction

Malware authors tend to organize networks of malware agents, which work together;
such networks are called botnets. Modern botnets have sophisticated organization,
decentralized or hybrid architecture, utilize random graph, small world or scale free
topology [1]. These properties allow botnets to be highly resistant against neutraliza-
tion techniques, used by defense systems. Botnets also use methods (in addition to
botnets' payload), which aim at breaking defense system itself, thus helping botnets in
distribution and performing malicious actions. To protect themselves from such at-
tacks, defense systems also turn to distributed architecture. So, we can talk about nets
of cooperative defense agents (NCDA) and nets of cooperative malware agents
(NCMA), which represent similar threats to each other. To describe both of these net
types, term NCxA will be used. All threats could be divided into three groups as
follows:

1. Threats to confidentiality:
(a) detection the source of control commands;
(b) detection the source of new nodes creation;
(c) detection the recipient of the result;
(d) tracing internal data flow;
(e) nodes detection;
(f) disclosure of information about nodes in the net;

 Stochastic Model of Interaction between Botnets 219

(g) key information disclosure;
(h) transport protocol disclosure.

2. Threats to availability:
(a) system control loss;
(b) communication channel noise;
(c) communication channel block;
(d) violation of communication between agents.

3. Threats to integrity;
(a) net control loss (control still can be recovered);
(b) net control capture (control can't be recovered);
(c) illegal distribution of control commands;
(d) nodes blocking;
(e) net removal.

Due to the defense system specific, some items cannot be considered as threats
for them:

─ 1.b: detection of the source of new nodes creation. In defense system new nodes
usually aren’t created automatically, so even if the source of new nodes creation at
the particular moment is detected, it won’t affect later nodes creation process;

─ 1.e: nodes detection: botnet can treat all network nodes as nodes of distributed
defense system, and in case, when all network is protected, this assumption will be
correct.

Despite the fact, that defense systems also turn to distributed topologies, their topolo-
gies are more weak, comparing to botnets’: star or star of stars (Kaspersky Security
Network, ESET Live Grid, Panda Cloud Antivirus, etc.).

There are a lot of cases in which it is necessary to know, who will win in the "war"
between NCDA and NCDA:

─ when building the defense system;
─ when comparing particular defense system and botnet;
─ etc.

To be able to solve these problems, computer security experts need the model of in-
teraction between NCDA and NCMA, which takes as an input description of two nets
and as output gives the decision about winner.

2 Related Works

NCxAs are typically modeled by one of four types of models: imitation models, graph
models, game models and stochastic models. Graph models represent only static
states of modeled system. Imitation models give dynamic state representation, but
don’t allow to get analytical estimation of state parameters. Game models are rarely
used because of difficulties with setting payoff function. Stochastic models allow both
to represent dynamic system state and get both analytical and statistical estimations.

220 D.P. Zegzhda and T.V. Stepanova

There are several approaches that measure botnet and defense systems parameters
separately: in [1] it is proposed to measure botnet effectiveness due to the use of
botnet, but these metrics couldn't be adopted for the general defense system. These
approaches give detailed description for nets of cooperative agents, but don't consider
the controversy between antagonistic groups of agents.

There are also approaches that rectify described flaws and study interaction be-
tween cooperative and antagonistic teams of agents [2]. In these models estimations
are based on simulation mechanisms and don't give decision about the team win for
class of nets, but just for one specifically defined example. So, existing approaches
allow only to make an estimation about already existing net systems, when detailed
description of its mechanism is given, and cannot be used to verify an architecture or
structure of the new defense system, meant to be built.

Furthermore, there are approaches that develop a differential game model between
the botnet herder and the defender group for simultaneous moves. Both players are
strategic in their behavior, that is, they take actions that optimize their objective while
also considering the actions of their opponent [3]. These approaches utilize game
theory to model interactions between an attacker and a defender. But in this proposed
model the profit of attacker is treated only in commercial way, which is not suitable
for all botnets, because it is not always possible to estimate commercial value of in-
formation, collected by botnet. There are a couple of other papers, that also examine
botnets from commercial point of view: [4] models botnet related cybercrimes as a
result of profit-maximizing decision making from the economic prospectives of both
botnet masters and renters/attackers, [5] discusses the economics of botnet in detail.
Moreover, existing approaches to defense against botnets don't examine, whether
defense system itself could be knocked out by botnet.

3 NxCA Model

The model of interaction between NCDA and NCMA takes as input description of the
rival nets. NCxA state is represented by ∑ G, Г . G is the graph of agents G(A, E),
where A={Agenti} is the set of agents (graph vertices) and E is the set of graph edges
(connections between agents) or G(n, p), where n is the number of agents (graph
nodes) and p is probability of connection existence between any two nodes.

New agents appear with the growth of NCxA and create connections with existing
nodes. It represents installation of the defense system agent on other computers or
spreading bots over the network. Also, at any time any agent can "die" and appropri-
ate node and edge will be removed. It represents that fact, that agent was "killed" by
the rival agent or some other actions on LAN environment: computer shuts off, net-
work connection is lost, etc.

Г is composition of evolutionary operators: Г=Г1 Г2 Г3 Г4 Г5. Г1 represents
creation of the new node with probability pv, Г2 represents deletion of the node with
probability qv, Г3 represents creation of the new edge with probability pe, Г4 repre-
sents deletion of the edge with probability qe, Г5 represents node state transition.

 Stochastic Model of Interaction between Botnets 221

Not all nodes in NCxA are equal: some possess control functionality. There is sub-
net Master ⊆ A, which includes agents, which can control other agents, i.e. it can send
message to others, containing malicious or defense task to execute, depending on its
aim. Master nodes are also responsible for processing results of task execution.

Having the model for describing NCxA, it is possible to declare the model of inter-
action between NCDA and NCMA.

4 Stochastic Model of Interaction between NDCA and NMCA

In the opposition between two or more rivals there are two aspects: the power of
weapon (in our case: the power of mechanisms, used for breaking confidentiality,
availability and integrity) and the power of defense (in our case: the power of confi-
dentiality, availability and integrity protection).

Nowadays for assessment of botnets and defense systems dissimilar characteristics
are used. Defense systems are traditionally evaluated by false positive and false nega-
tive rates, networked distributed architecture of the system isn't taken into considera-
tion [6-7]. For botnets their architecture is taken into consideration, but the set of
characteristics is not full and cannot be adjusted for defense systems. Moreover, dif-
ferent characteristics are used to describe different usage types of botnets:

─ giant portion. Large number of nodes increases the likelihood of high-bandwidth
agents. Diurnal behaviour favors giant portion over total population;

─ diameter. Agents sending messages to each other and coordinating activities re-
quire efficient communications;

─ local transitivity. Agents maintaining state require redundancy to guard against
random loss. Highly transitive networks are most robust [8].

Firstly, NCxAs were estimated by the size of its population (number of agents). But
this characteristic doesn’t take into consideration connectivity of the net: there could
be a lot of alive agents, but without connections between them, NCxA won’t work
properly. After that, different graph characteristics were used to describe NCxAs:
giant portion size, graph diameter, local transitivity. But these characteristics don’t
take into consideration such parameters, which are also essential for NCxA to func-
tion properly, as:

─ deterministic time of message delivery;
─ connectivity to control center;
─ estimation of overhead expenses.

According to these facts, new characteristics were proposed, forming the model of
interaction between NCDA and NCMA. Proposed model of interaction between
NCDA and NCMA takes into consideration the power of defense and is based on four
main factors of NCxA sustainability:

1. Controllability – C t – the ability of NCxA to control its' nodes. Formally this
ability is probability of the fact, that message, sent in NCxA from one node to
another, will reach the destination in deterministic time t. Or, in other words,

222 D.P. Zegzhda and T.V. Stepanova

probability of the fact, that between any nodes there is path of the length lt, which
can be passed in time t: ∑ ∏ 1 , /n , (1)

where Mi is number of control centers, which can serve i-th agent, (1 ,) is prob-
ability of the fact, that the path between i-th node and control center exists, and mes-
sage along this path can be transferred within time t. This probability depends on
probabilities pv, qv, pe, qe, and can be calculated either analytically, if there is formal
model, which describe this dependence, or by Monte Carlo methods.

Controllability is the main parameter, which describes the net of agents in non-
hostile stable environment. But NCxA is believed to function in antagonistic envi-
ronment, which aims at deleting nodes of this NCxA and this impact cannot be pre-
vented with probability equals to 1. So, sustainable NCxA should stay controllable
even if part of its’ nodes is deleted and take measures to restore deleted or erased
nodes. This property we will declare as resiliency.

2. Resiliency – Rmax – is level of system instability, when is reached, takes system
controllability to 0: 0 (2)

where R= (qv, qe), Ct is controllability for fixed time t, 0 < R < Rmax.
Previous two parameters directly represent NCxA behaviour under conditions of

external purposeful influence. If NCxA implements any methods for protecting itself
from such attacks, following parameters should also be taken into consideration:

3. Operational constancy – acceleration of traffic amount change,:

R (3)

where V(R) is the amount of traffic and R is level of instability. This metric reflects
the NCxA impact on the normal operation of the local area network.

In addition to this we should consider that NCMA, as well as NCDA, is acting un-
der conditions of adding and deleting nodes, so it should be scalable enough and its
parameters, described above, will not significantly change after significant increasing
or decreasing number of nodes in the net.

4. Scalability – dispersion of controllability, resiliency and operational constancy for
NCxA of k to n nodes:

S = (σС(k,n)(t), σR(k,n), σV(k,n)(ndel)) (4)

This parameter describes the ability of NxCA to fulfill its functions correctly both for
small and big nets.

Also it is assumed that interaction between agents in NCxA is cryptographically
strong, that is MitM attacks are impossible. All listed characteristics should be treated
in combination. For instance, net with centralized architecture, which is often imple-
mented in defense systems, has the best rate of controllability equal to 1 – all nodes

 Stochastic Model of Interaction between Botnets 223

are controlled by one central node. But its resiliency is Rmax = 1/n, where n is number
of nodes in the net, because deleting central node leads to losing controllability. So, in
proposed model NCxA interaction is described with a vector: , , , , … , , , , (5)

where m is the number of opposing nets.

5 Modeling Interaction between NxCA with Centralized
Topology and NxCA with Random Topology

NCxA with centralized or hybrid architecture with small number of control nodes,
which is often used by defense systems, has good controllability level, but is extremely
non-resilient: if its’ control centers are taken down, all net become unsustainable. In
works, related to botnet architecture analysis, random architecture is said to be most
sustainable to external attacks. Similar architecture can be applied to defense systems.
To represent the interaction between NCxA with centralized topology and random
topology, the proposed model of interaction will be used. It is assumed, that first
NCxA has topology of classical random graph, so it can be described with Erdos-Renyi
model. Reliability of Erdos-Renyi graph is described by the following theorem [9]:

Theorem 1: Consider there is model G(n, p). Let p be p
, where n is number of

nodes in the net, p is probability that any two nodes have edge between them and с is con-
stant. If с > 1, then assumption that random graph is almost always connected is true. If с
< 1, then assumption that random graph is almost always non-connected is true.

Term “almost always” means that probability of some event seeks to 1, when n ∞.
Theorem 1 states that probability of saving graph connectivity, when edge removal

probability is q = 1 – p, seeks to 1. That is, if there is net of 1000 nodes, then nodes
can be deleted with probability close to 0,993, so that as a result, close to 1, interac-
tion between any two nodes will be possible.

This theorem implies the following statement:

Theorem 2: Consider there is model G(n, p). NxCA on the random graph G is almost

always controllable, if p
, с > 1.

The proof of Theorem 2 follows from declaration of controllability through connec-
tivity: ∑ ∏ 1 , /n. Therefore, if the net is almost always con-
nective (this follows from Theorem 1), it is also almost always controllable.

Also from Theorem 1 follows Theorem 3 [10]:

Theorem 3: Consider there is model G(n, p). Let

. Then, if c > 3, then for

n > 100 following assumption is correct:

, 1 1
 (6)

224 D.P. Zegzhda and T.V. Stepanova

This means, that if there is NxCA with the net of 1000 and probability of edge remov-

al is 1 1 0,98, probability of saving graph connectivity is

not less than 0,999.
Theorem 1 is also interesting because there is a harsh jump from “almost always

connectivity” to “almost always non-connectivity”. Function p
 acts as a fron-

tier, overcoming which means transition from connectivity to non-connectivity. Num-
ber of all edges can be calculated as C O n , probability of edge removal is 1-c ln n n⁄ . Then, the expected number of not removed edges is about n ln n
and this number is enough for maintaining graph connectivity.

So for random graph percentage of the edges, that can be removed, is RC n ln n /C . That follows from probability of the edge removal q 1 p.
NCxA with centralized architecture has controllability C(t) = 1 – all nodes are con-

trolled by one central node and resiliency Rmax = 1/n. So, according to proposed interaction
model, NCxA with random architecture is close to centralized by its controllability: C t ∑ , , n /n and has much better resiliency: R C nln n /C against R 1 n 1⁄ for nets with centralized architecture.

6 Conclusion

Botnets are now evolving and there is actual problem of developing effective defense
systems, which will be able to withstand targeted attacks, organized by botnets. But
nowadays there is no model, allowing to predict the result of opposition between bot-
net and defense system. The proposed model of NCxA solves this problem and allow
to compare different botnets and defense systems with each other. With the help of
proposed NCxA model it is possible to build defense system model, capable of pro-
tecting itself from botnet attacks.

References

1. Dagon, D., Gu, G., Zou, C., Grizzard, J., Dwivedi, S., Lee, W., Lipton, R.: A Taxonomy of
Botnet Structures. Botnet Detection 36 (2008)

2. Kotenko, I., Konovalov, A., Shorov, A.: Agent-based Modeling and Simulation of Botnets
and Botnet Defense. Conference on Cyber Conflict, pp. 21–24. CCD COE Publications,
Tallinn, Estonia (2010)

3. Bensoussan, A., Kantarcioglu, M., Hoe, S: A Game-Theoretical Approach for Finding Op-
timal Strategies in a Botnet Defense Model. In: Alpcan, T., Buttyán, L., Baras, J.S. (eds.)
GameSec 2010. LNCS, vol. 6442, pp. 135–148. Springer, Heidelberg (2010)

4. Li, Z., Liao, Q., Striegel, A.: Botnet Economics: Uncertainty Matters. In: The 7th Work-
shop on the Economics of Information Security (2008)

5. Namestnikov, Y.: The Economics of Botnets, http://www.viruslist.com/en/

downloads/pdf/ ynam botnets 0907en.pdf

 Stochastic Model of Interaction between Botnets 225

6. Bellaıche, M., Gregoire, J.C.: Measuring Defense Systems Against Flooding Attacks. In:
International Wireless Communications and Mobile Computing Conference IWCMC
2008, pp. 600–605 (2008)

7. Wu, Z., Dong, H., Liang, Y., McKay, R.I.: A Chromosome-based Evaluation Model for
Computer Defense Immune Systems. In: Proceedings of the IEEE Congress on Evolution-
ary Computation, Canberra, Australia, pp. 1363–1369 (2003)

8. Dagon, D., Gu, G., Zou, C., Grizzard, J., Dwivedi, S., Lee, W., Lipton, R.: A Taxonomy of
Botnets (2010)

9. Erdos, P., Renyi, A.: On random graphs. Publ. Math. Debrecen (1959)
10. Raygorodskyi, A.M.: Random Graph Models. In: MIPT Proceedings, T. 2, №4 (8), pp.

130-140 (2010)

Malware Characterization Using Behavioral

Components

Chaitanya Yavvari, Arnur Tokhtabayev,
Huzefa Rangwala, and Angelos Stavrou

Computer Science Department, George Mason University, Fairfax, VA, USA
{cyavvari,atokhtab,astavrou}@gmu.edu, rangwala@cs.gmu.edu

Abstract. Over the past years, we have experienced an increase in the
quantity and complexity of malware binaries. This change has been fu-
eled by the introduction of malware generation tools and reuse of differ-
ent malcode modules. Recent malware appears to be highly modular and
less functionally typified. A side-effect of this “composition” of compo-
nents across different malware types, a growing number of new malware
samples cannot be explicitly assigned to traditional classes defined by
Anti-Virus (AV) vendors. Indeed, by nature, clustering techniques cap-
ture dominant behavior that could be a manifestation of only one of the
malware component failing to reveal malware similarities that depend on
other, less dominant components and other evolutionary traits.

In this paper, we introduce a novel malware behavioral commonality
analysis scheme that takes into consideration component-wise grouping,
called behavioral mapping. Our effort attempts to shed light to malware
behavioral relationships and go beyond simply clustering the malware
into a family. To this end, we implemented a method for identifying soft
clusters and reveal shared malware components and traits. Using our
method, we demonstrate that a malware sample can belong to several
groups (clusters), implying sharing of its respective components with
other samples from the groups. We performed experiments with a large
corpus of real-world malware data-sets and identified that we can suc-
cessfully highlight malware component relationships across the existing
AV malware families and variants.

Keywords: Behavioral clustering, malware component analysis.

1 Introduction

The recent discoveries of sophisticated malware including Stuxnet [4] and Flame
[9] demonstrate the evolution of the mainstream malware techniques to stealthy,
precise cyber weapons aimed to disrupt critical infrastructure and exfiltrate sen-
sitive information. To avoid mainstream Anti-Viruses (AVs) and intrusion de-
tection systems, adversaries employ code obfuscation including polymorphism
and metamorphism techniques to enshroud their malware attacks. At the same
time, a new family of malware generator tools have gained popularity by offering

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2012, LNCS 7531, pp. 226–239, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Malware Characterization Using Behavioral Components 227

capabilities for customization. The use of malware “components” has become ev-
ident with the recent leaks of malware source code (e.g. SpyEye [6] and Zeus [16])
that pointed to a modular structure of the malware development process, incor-
porating independent components into a new malware build. This observation
indicates two implications: (i) modern malware should be viewed as a set of
functional components; (ii) the number and diversity of functionally distinct
components used in modern malware is rather limited.

Currently, the AV industry categorizes malware based on main malicious ac-
tivities such as virus, worm, spyware, fakeAV and adware. As a result, malware
samples were labeled and grouped based on one component, e.g., the one with
the most threatening behavior (Kaspersky AV) [10]. In an attempt to account
for expanding malware behavioral variety, several major AV companies adopted
more detailed, tree-based malware classification [11]. Unfortunately, even this
analysis is not adequate for labeling modern malware having multiple compo-
nents attributed to various fixed types defined by the classification tree. For
instance, bot frameworks offer a wide range of malicious functionality from self-
replication to keylogger and backdoor, which traditionally belong to different
malware types. Hence, MAEC project, the recent initiative of universal mal-
ware classification, proposes labeling and grouping malware based on the set of
individual behaviors (components) to avoid class members inconsistencies [12].

On the other hand, researchers have proposed several methods that leverage
various machine learning and clustering algorithms to group malware [8,2,15,1].
Although accurate when they come to single family, these methods fall short for
modular malware: they obtain hard (exact) clusters that imply that each sample
is attributed to one cluster (group). By nature, these clustering methods process
totality of samples behavior and capture only dominant behavior that could be
a manifestation of only one component. However, in practice, malware samples
may share components with relatively small behavioral trace (footprint). Typi-
cal clustering will not reveal smaller, but potentially equally important, shared
malicious components. Particularly, it may come short of exposing relationship
between older malware and newer mixed samples.

In this paper, we propose to address the challenge of grouping malware with
respect to components. In order to achieve component-oriented grouping, we
developed a novel approach for building soft clusters that expose behavioral
commonalities characterized as component traits. In our approach, a malware
sample is decomposed to identified behavioral components and thus it can belong
to several groups (clusters). Figure 1 illustrates the advantage of soft clustering
for component-based malware grouping conceptually. The figure depicts three
samples, each having two components. It could be seen that hard clustering
cannot properly group samples with respect to components - sample 1 and 3
share components with sample 2 but not with each other. This component-wise
orthogonality of samples 1 and 3 would render hard clusters to singletons (e.g. the
sample 1 and 2 are clustered together, but sample 3 is excluded). In contrast,
soft clustering allows for grouping samples appropriately as shown by dashed
regions based on their behavioral similarities.

228 C. Yavvari et al.

Fig. 1. Typical versus Component clustering. Typical clustering utilizes behavioral
commonalities across the totality of the malware sample creating “hard clusters” that
fail to capture smaller traits and behavioral sharing. On the other hand, “soft clusters”
are designed to reveal all behavioral similarities, however small.

At a high level, the main concept behind our approach is called behavioral
mapping, a process of rapid analysis of the commonalities between malware be-
havioral traces across large malware data sets. The behavioral map of a malware
sample is produced by projecting its observed runtime behavior to the runtime
behavior of another reference malware sample. The produced map is in essence a
feature space defined by the behavioral projections and serves as a visualization
mechanism for commonality sharing across analyzed samples. In our analysis,
we generate malware behavioral maps and use a set of feature spaces to form
soft clusters representing behavioral commonalities among samples.

In summary, this paper makes the following contributions:

1. Component-based malware grouping. We developed a novel approach
for component-oriented, behavior-basedmalware clustering.We leveragewhat
we call “soft clustering” to capture complex malware relationships with re-
spect to all observed behavioral commonalities.

2. Commonality analysis and visualization. We introduced a behavioral
mapping technique that allows for fast commonality identification, analy-
sis, and visualization. Also such a map forms a feature space for sample
clustering.

3. Evaluation and real malware relationship interpretation. We eval-
uated our system on substantial set of real-world malware - 1,727 unique
samples. The experiments demonstrated that existing approaches for mal-
ware classification based on dominant functionality, i.e., AV labels [11], does
not reveal real relationship between malware with respect to shared activ-
ity. Using our approach of “soft clusters”, we were able to reveal malware
relationships beyond basic family classification.

Malware Characterization Using Behavioral Components 229

2 Malware Soft Clustering Using Behavioral Mapping

2.1 Behavioral Mapping

Behavioral mapping is the process of analyzing the commonalities between mal-
ware behavioral traces. Behavioral traces are sequences of system events collected
from malware runtime observations. These traces are analyzed with the goal of
identifying the commonalities which are subsequences that are shared among
samples. These commonalities can lead to the exposure of shared components.

A behavioral mapping is produced in 3 steps: (i) Projection: Sequences
of malware traces are projected onto a reference in the given domain. The refer-
ence can be another sequence of a sample or a constructed sequence of interest
to the analyst. Projection is composed as a binary feature vector of length equal
to reference length. It represents common behavioral sequences between a ref-
erence sample and the projected sample. (ii) Soft Clustering: Samples are
clustered in the feature space defined by the projections on the reference. This
provides an ordering of the samples as well as grouping of samples according to
the similarity of their projections. (iii) Visualization: The behavioral map
is presented as a bitmap of projections, viewed as commonalties, represented
by rows and arranged according to clusters. Each row shows the shared behav-
ior(shaded rectangles) of one malware sample with respect to the reference. We
also visualize how much of the sample’s observed behavior(sample coverage) is
shared with the reference using an additional column on the map.

It is worth noting that this mapping approach can be used for analysis of
any kind of behavioral sequence data irrespective of the abstraction level. In
this work we chose to use only windows system events that could be monitored
via Event Tracing for Windows(ETW) facility. Common behavioral sequences
are identified by suffix tree based methods [18,5]. Inspection of behavioral maps
can reveal interesting properties about the shared behavior of samples and their
similarities.

2.2 Commonality Analysis via Iterative Behavioral Mapping

During the analysis of a corpus of malware samples, a single behavioral mapping
will not suffice to elicit all the components present in the sample set. In a single
mapping with one reference, all the samples similar to the reference or those that
share a significant commonality with the reference show up together in groups.
But, the rest of the samples which have low coverage remain mostly unexplored.
They may have components they share between themselves but not with the
reference. Therefore, these samples should be projected on to a new reference.

To address unexplored samples and identify all commonalities, we developed
an iterative behavior mapping scheme that leverages soft clustering approach
for commonality analysis and identification. To this end, samples are assigned to
clusters in a fuzzy fashion (i.e multiple cluster assignments for the commonalities
identified across multiple iterations). Such clusters represent commonalities that
can enable component identification, e.g. via additional semantic analysis. To

230 C. Yavvari et al.

Fig. 2. Flow chart of Iterative Behavioral Mapping

quantify the progress of commonality discovery in samples, we use the following
metrics for a given sample: (i) sample coverage - portion (%) of sample behavior
shared with the reference as defined by the projection; (ii) reference coverage -
portion (%) of reference behavior shared with the sample as defined by the pro-
jection. Figure 2 shows the flowchart of a procedure implementing our approach.
The formal representation of the procedure is given in Algorithm 1. In each
iteration, one of the samples from the pool of remaining samples is randomly
chosen as a next reference. Next, we generate projections for each sample with
respect to the selected reference. The generated projections are then ordered
according to the result of Hierarchical clustering. The order of samples is the
same as the leaves of the tree generated by hierarchical clustering. For ordering
the projections(step 3), we first generate a pairwise distance matrix for all the
projections. For this, we use a metric called sharedstringmetric(SSM) defined
between every pair of sample projections as follows:

SSM [A,B] = 1− 2 ∗ANDSimilarity(A,B)/(L(A) + L(B)) (1)

where L(A), L(B) are sum of lengths of all shared strings of A, B respectively
with reference.
ANDSimilarity(A,B) = sum of lengths of all strings jointly shared by A and
B with reference.

This metric captures the similarity of two projections with respect to a given
reference. It is computed by the AND operation on the corresponding projection
vectors both of which have the same length of the reference. Next, Hierarchical
Agglomerative Clustering (HAC) is used as a method of clustering the SSM
distance matrix. We used agglomerative nesting algorithm with wards linkage
method. Agglomerative algorithms start with each of n samples as a separate
cluster and iteratively merge the two nearest clusters in n− 1 steps to produce
a single hierarchical clustering. Wards linkage method is preferred over other
linkage methods because it achieved higher cophenetic correlation with the input
distance matrix in our experiments.

Malware Characterization Using Behavioral Components 231

Algorithm 1. Iterative Behavioral Mapping.

Inputs: S : samples
Ts : sample coverage threshold
Definitions: P : pool of remaining samples
R : List of references
Clji : j th cluster in i th iteration
Pri : set of projections of samples in the i th iteration
Coi: set of coverages of samples in the i th iteration
Coki: coverage of sample k in the i th iteration
Cci: set of cumulative coverages of samples in all iteration until ith
Ccki: cumulative coverage of sample k after i iterations
ri : reference in the i th iteration
si : i th malware sample
pki : projection of the k th sample in the i th iteration
Initialization :
P = S � initial pool is the whole set of samples
i = 1

1: procedure Iterative Projection(S, P, Ts) � To perform iterative projection
2:
3: while (|P | ≥ 2) do � sample pool size is at least 2
4: ri ←PICK REFERENCE(R,P, i)
5: P ← P − ri � remove reference from pool
6: ∀sk ∈ P : prki ←Project Sample(sk,ri) � projection of the k th sample on

the reference
7: Pri = {prki | ∀k = 1 to |P | } � all projections
8:
9: * cluster all projections *\
10: ClusterHAC(Pri) � generates hierarchical clustering of projections
11: for all sk ∈ P do
12: UPDATE COVERAGE(Ccki,Coki,prki) � update sample coverage
13: if Ccki ≥ Ts then
14: P ← P − sk
15: end if
16: end for
17: end while
18: i ← i+ 1
19: end procedure

In step 4, the dendrogram generated in step 3 is partitioned into separate
clusters. These clusters of projections essentially represent soft clusters of corre-
sponding samples. To partition the projections into separate clusters (step 4), we
use the Dynamic hybrid tree cut method [13] with minimum cluster size set to 1.
The dynamic hybrid tree cut method performs better than fixed height cutting
for partitioning a hierarchical clustering result into separate clusters because it
incorporates the tree structure information into the partitioning method. After
partitioning, samples within each cluster have comparable reference coverage as
seen on the reordered behavioral maps. But, consistent sample coverage is not
guaranteed (i.e projections look similar but samples themselves need not be simi-
lar). In the last step, we assess each sample’s coverage and remove highly covered
samples from further iterations. Based on the Threshold Ts set in Algorithm 1,
we eliminate samples that have accumulated coverage above the threshold. This
step reduces the pool size for the next iteration.

232 C. Yavvari et al.

3 Evaluation

We evaluated our approach on a real-world data set containing 1,727 samples
from seven families. Table 1 shows the distribution of samples in our sample set
according to their Kaspersky AV family labels. In section 3.1 we present two
use cases of behavioral mapping for analysing variants of a single family and
multiple families respectively. In Section 3.2 we present the evaluation of the
Iterative behavioral mapping scheme described in Section 2.2.

Table 1. Malware binaries distribution by Kaspersky Family

Distribution by Kaspersky Family

BackdoorSdBot 25
BackdoorSdBot-05 5
BackdoorXtoober 329
Trojan-SpyZbot 411
TrojanBuzus 392
TrojanMenti 205
TrojanRefroso 629

3.1 Behavioral Map Use Cases

Intra-family Mapping : In this experiment, we use behavioral mapping to
illustrate the properties of the variants of a given family. We call this intra-family
map because all samples belong to the same family. Figure 3 shows the Behav-
ioral Map for 92 samples of the Trojan Jorik Family (Kaspersky AV definition).
We randomly selected a sample which had label Trojan.Win32.Jorik.SpyEyes.pq
as a reference. The column adjacent to the projection represents Sample cover-
age. The projections are clustered into 7 clusters according to their similarities.

From the labels (on Y-axis), we can see that the Behavioral map reveals
clusters of samples that are consistent with Kaspersky AV labels(i.e samples
belonging to same variant are clustered together). We also observe that length
of shared behaviors is invariant across many samples. These are likely to be
caused by shared components. It can be observed from the map that several
components exclusively belong to certain variants. In Figure 3, we can see that
component marked C1 occurs in most samples except the Fraud variant and
component marked C2 is never present in the Gbot variant. From the column
showing sample coverages, we can observe that the samples with highest coverage
belong to the same variant as the reference (SpyEyes). From the low coverages of
other samples we can infer that they exhibit behaviors not shared with SpyEyes
variant.
Inter-family Mapping - Composite Reference : In this experiment, we
produce a behavioral map for a set of 337 samples representative of seven fam-
ilies. To analyze sample relationship across families we use composite reference
in mapping. The composite reference is constructed in a supervised manner by
randomly selecting a sample from each of the 6 families presented in the mapped
sample set. Figure 4 shows the produced behavioral map.

Malware Characterization Using Behavioral Components 233

Fraud
Fraud
Fraud
Fraud
Fraud
Fraud
Fraud
Fraud
Fraud
Fraud
Fraud
Fraud
Fraud
Fraud
Fraud
Fraud
Fraud
Fraud
Fraud
Fraud
Fraud
Fraud
Fraud
Fraud
Fraud
Fraud
Fraud
Fraud
Fraud
Fraud
Fraud

Shakblades
PoisonIvy

Tierry
Tierry
Buterat

SystemToolUpdate
SystemToolUpdate

SdBot
Lolbot

Xtoober
Fraud
Fraud
Birfost
Fraud

SpyEyes
SpyEyes
SpyEyes

Gbot
Gbot
Gbot
Gbot
Gbot
Gbot
Gbot
Gbot
Gbot
Gbot
Gbot
Gbot
Gbot
Gbot
Gbot
Gbot
Gbot
Gbot

IRCbot
Lolbot
IRCbot
Birfost
Birfost
IRCbot
Lolbot

Shakblades
Hamweq

Shakblades
Shakblades
Shakblades
Shakblades

Lolbot
Drefir
Birfost

PoisonIvy
IRCbot
Drefir

Hamweq
Hamweq
Lolbot
Banker
Birfost
Agent

1

11

21

31

41

51

61

71

81

91
C1 C2 COVERAGE

Fig. 3. Behavioral mapping of Jorik family variants

As indicated in Figure 4, some samples are highly covered by commonalties.
High sample coverage and high commonality density indicates that samples are
highly similar to the reference sample (e.g. cluster 4). High sample coverage, but
commonalities themselves are short and scattered across the projections may
indicate that these samples did not execute real malicious components exposing
only typical (normal) system activity (e.g. dll loading), which we treat as noise
from clustering perspective (e.g. cluster 11, 12). Low sample coverage indicates
that these samples do not share much of behavior with the reference and should
be projected onto another sample (e.g. cluster 6).

As depicted in Figure 4, the map provides significant visual and structural
information for inter-sample commonality analysis. While the gain from each
mapping of a sample set is subjective on the selected reference point, produc-
ing multiple mappings with various references or using the composite reference
technique would increase its value for an expert from an analytical standpoint.
In Figure 4, vertical lines separate the 6 individual behavior sequences. From
this perspective, it could be seen that samples in cluster #7 share commonalties
with various samples from various families. At the same time, samples in cluster

234 C. Yavvari et al.

12

11

10

9
8
7

6

5

4

3

2

1

I II III IV V VI COVERAGE

Fig. 4. Clustered commonality map with composite reference

#1 share almost entire observed behavior with the constituent sample reference
II, meaning that they belong to a single highly consistent family.

3.2 Commonality Analysis (Iterative clustering)

In this section we perform malware commonality analysis for 1727 sample set
using proposed Iterative Mapping method (Algorithm 1) 1. In the experiment, we
set coverage threshold Ts = 90%, which means that the algorithm must process
at least 90% of sample behavior. In spite of the high coverage threshold, the
algorithm took only 38 iterations and identified 303 commonalities(soft clusters).

In Figure 5, we present the result of entire iteration process for a subset of
samples (limited by visualization space). The x axis represents the concatenation
of all commonalities found across iterations in increasing order. The y axis shows
337 samples arranged in the order of the number of iterations required to uncover
sample behavior, i.e. achieve coverage threshold. The vertical partitions mark
the end of iterations. It can be seen that more commonalities are revealed in
the earlier iterations and the number of commonalities decreases in subsequent
iterations. The commonalities also occur in larger groups in earlier iterations

1 In this experiment, after the HAC based partitioning step in an iteration, we define
a sample S to belong to its iteration-level cluster, which is indexed by the pair
(Iteration, clusterId), if the sample coverage is significant (e.g., more than 10%). In
other words, the samples with insignificant coverage are not clustered in the current
iteration.

Malware Characterization Using Behavioral Components 235

337

331

321

311

301

291

281

271

261

251

241

231

221

211

201

191

181

171

161

151

141

131

121

111

101

91

81

71

61

51

41

31

21

11
1

1 2 3 4 5 6 7 8 10 11 14 16 17 19FAMILY

BackdoorSdBot TrojanRefroso TrojanBuzus TrojanMenti Trojan−SpyZbot BackdoorXtoober

Fig. 5. Commonalities Across All Iterations

due to the higher number of samples in the pool. This figure essentially provides
an approximate summary of the entire process across iterations. It also reveals
groups of samples that share commonalities and are covered together.

Figure 6 presents a heat map depicting commonality sharing (cluster com-
position) among samples of various malware families for the entire set of 1,727
malware samples. The columns of the heat map represent the commonalities
found across iterations. The rows divide each of the associated sample groups
according to the family labels. The intensity of the gray scale color represents
the purity of commonality sharing with respect to the malware families. If a cell
is colored black it means the total absence of the component in the correspond-
ing family. On the other hand, white indicates that the component is exclusive
to the family. Intermediate shades of grey indicate the various proportions of
families sharing the component. The same information is also presented by the
horizontal trace across the rows.

It can be observed that some commonalities are exclusive for particular fami-
lies, while others are shared across the families. This is indicative of the compo-
nent sharing nature of different families. For example, it can be seen that samples
from Trojan.win32.Refroso and Trojan.win32.Buzus families likely share some
components (manifested as commonalities) . At the same time, samples from Tro-
jan.win32.Refroso and Trojan-Spy-win32.Zbot families potentially share some
other components.

236 C. Yavvari et al.

Trojan.
Win32.
Refroso

Trojan.
Win32.
Buzus

Backdoor.
Win32.
SdBot

Backdoor.
Win32.
Xtoober

Trojan.
Win32.
Menti

Trojan−Spy.
Win32.
Zbot

Fig. 6. Inter-Family Commonality sharing

In Figure 7, we present the graph-based visualization of the clustering results.
It shows the structural relationship between samples from the commonality per-
spective. The graph shows two types of nodes: (i) samples and (ii) references
of maps over all iterations. The sample nodes are colored according to their
Kaspersky Antivirus label. The references are plotted in red. Semantically, the
graph shows cluster membership and members proximity with respect to shared
behavior (components). The samples that are grouped together are connected
to the same reference representing shared commonality. The distance between
references on the graph is proportional to SSM similarity described in 2.2 . The
distance between samples and the corresponding reference is proportional to
their coverage (high sample coverage means low distance).

For the sake of clarity, in Figure 7, we minimized the number of links by
considering only the most significant components. It could be seen that some
samples are all at the same distance to the reference and are homogeneously col-
ored. These samples are similar to each other and belong to the same Kaspersky
family. On the other hand other clusters have samples from different families,
this also shows the inter-family behavior sharing property. Also, these clusters
have samples at different distances from their respective references, this means
that they share commonalities of different degrees with respect to each other.

To conclude our findings, we evaluated performance of hard clustering with
behavioral maps. To build hard clusters we used only one map providing the suffi-
cient coverage of samples, in contrast to several maps contributing total coverage
as with soft clusters. To this end, samples that are not covered above minimum
coverage in any iteration remain unassigned and continue to be in the sample
pool for the next iteration. We observed there are many samples which were
not covered beyond threshold in any single iteration and therefore not assigned
to any hard cluster, however the same exact samples were almost completely
covered by soft clustering approach and as a result assigned to multiple groups.
This illustrates the problem with one-one (pairwise) comparison of samples for
clustering. Though there is a component sharing, the sharing behavior is not
captured by pairwise methods. This experiment shows that sample behavioral

Malware Characterization Using Behavioral Components 237

Fig. 7. Graph-based cluster visualization

sequences are indeed composed of distinct behavioral sub sequences (commonal-
ities), that are shared with other samples. All of these commonalities cannot be
extracted jointly in any single pairwise comparison. Finally, the iterative behav-
ioral mapping scheme avoids O(n2) comparisons between all samples to extract
these commonalities. It took only 38 mapping iterations to reveal commonalities
and group all of the 1727 malware samples while the vast majority of the samples
were analyzed and clustered during the first 10 iterations.

4 Related Work

There has been a great deal of research on development of dynamic malware
analysis techniques. Egele et al. [3] provide a detailed survey of various existing
dynamic malware analysis systems and a comparison of their analysis inputs
and capabilities. Jacob et al. [7] present a taxonomy of behavioral detection
methods according to the reasoning techniques deployed in them. While dynamic
malware analysis allows for extracting samples behavior, our work is dedicated
to processing the behavior.

Malware clustering in the behavioral domain was addressed in various publica-
tions [8], [2], [15], [1] and [14]. Most of the proposed approaches utilize standard
clustering algorithms and focused on selection of appropriate feature space and

238 C. Yavvari et al.

distance metric. By nature, such clustering approaches have a limitation called
“dominance” effect, as the result the hard clusters may not reveal smaller but
equally important malicious components.

Bayer et al. [2] , Rieck et al. [15] and Jang et al. [8] all work with behavioral
profiles generated by processing execution reports and generating feature sets.
These works focus on scalable clustering by incorporating suitable approxima-
tions. BitShred [8] performs feature hashing and co-clustering to reveal semantic
relationships between families. Their method requires preselected feature ex-
traction and operates on vector data. Also, due to co-clustering it could not be
applied to ordered sequence data for semantic analysis. Our system is feature
order sensitive and preserving, allowing for direct analysis of behavior data, such
as operation/function call sequences of dynamic length.

Rieck et al. [15] and Trinius et al. [17] extract behavioral profiles of mal-
ware samples from CWSandbox reports. They generate feature vectors based
on n-grams from these reports and perform clustering to find groupings(class
discovery) and classification(using SVM) to assign unknown malware to known
classes. Because our system is not n-gram feature space based, it is scalable for
use with any sequence data irrespective of the alphabet size. Trinius et al. [17]
visualize the CWSandbox reports in the form of treemapping and thread graphs,
they perform visual malware clustering by generating tree maps for samples and
evaluating against AV labels. Wagener et al. [19] and Bailey et al. [1] tackle
the problem of automated classification of malware based on behavioral analysis
using normalized compression distance(NCD) metrics. Ye. et al. [20] proposed
an ensemble method to generate consensus of multiple clusterings using static
features of unpacked malware.

5 Conclusions

Malware classification techniques are not new and there has been a lot of research
into placing malware samples into different families including work by AV ven-
dors. We focused on the problem of component oriented malware grouping. We
used our “soft clustering” approach to reveal component sharing across malware
samples that belong to different families according to traditional grouping. We
experimentally demonstrated that existing approach for malware grouping based
on dominant functionality and fixed classification tree, as used in AV industry,
does not reveal relationships between malware with respect to shared behav-
ior. We introduced behavioral mapping approach that iteratively builds a range
of features which form soft clusters representing shared component traits. Fur-
thermore, we used visualization for a set of samples to illustrate the structural
commonality distribution across AV families. Finally, our experiments show the
scalability and computational efficiency of our component analysis scheme on a
real set of 1727 malware samples.

Acknowledgements. This work was partially supported by DARPA Cy-
bergenome project through contract FA8750-10-C-169. The views expressed are

Malware Characterization Using Behavioral Components 239

those of the author and do not reflect the official policy or position of the De-
partment of Defense or the U.S. Government.

References

1. Bailey, M., Oberheide, J., Andersen, J., Mao, M., Jahanian, F., Nazario, J.: Auto-
mated Classification and Analysis of Internet Malware (2007)

2. Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable,
Behavior-Based Malware Clustering. In: NDSS (2009)

3. Egele, M., Scholte, T., Kirda, E., Kruegel, C.: A survey on automated dynamic
malware-analysis techniques and tools. ACM Comput. Surv. 44(2), 6:1–6:42 (2008)

4. Falliere, N., Murchu, L.O., Chien, E.: W32.stuxnet dossier, White paper (2011),
www.symantec.com

5. Gusfield, D.: Algorithms on Strings, Trees, and Sequences - Computer Science and
Computational Biology. Cambridge University Press (1997)

6. IOActive. Reversal and Analysis of Zeus and SpyEye Banking Trojans. Technical
report, IOActive (2012)

7. Jacob, G., Debar, H., Filiol, E.: Behavioral detection of malware: from a survey
towards an established taxonomy. Journal in Computer Virology 4, 251–266 (2008),
doi:10.1007/s11416-008-0086-0

8. Jang, J., Brumley, D., Venkataraman, S.: Bitshred: feature hashing malware for
scalable triage and semantic analysis. In: Proceedings of the 18th ACM Conference
on Computer and Communications Security, pp. 309–320. ACM (2011)

9. The flame: Questions and answers (May 2012), www.securelist.com
10. New malware classification system, www.securelist.com (accessed, June 2012)
11. Rules for naming detected objects, www.securelist.com (accessed, 2012)
12. Kirillov, I., Beck, D., Chase, P., Martin, R.: Malware attribute enumeration and

characterization
13. Langfelder, P., Zhang, B., Horvath, S.: Defining clusters from a hierarchical cluster

tree: the dynamic tree cut package for r. Bioinformatics 24(5), 719–720 (2008)
14. Li, P., Liu, L., Gao, D., Reiter, M.K.: On Challenges in Evaluating Malware Clus-

tering. In: Jha, S., Sommer, R., Kreibich, C. (eds.) RAID 2010. LNCS, vol. 6307,
pp. 238–255. Springer, Heidelberg (2010)

15. Rieck, K., Trinius, P., Willems, C., Holz, T.: Automatic analysis of malware behav-
ior using machine learning. Journal of Computer Security 19(4), 639–668 (2011)

16. RSA. The Current State of Cybercrime and What to Expect in 2012. Technical
report, RSA (2012)

17. Trinius, P., Holz, T., Gobel, J., Freiling, F.C.: Visual analysis of malware behav-
ior using treemaps and thread graphs. In: 2009 6th International Workshop on
Visualization for Cyber Security, 33–38 (2009)

18. Ukkonen, E.: Constructing suffix trees on-line in linear time. In: IFIP Congress
(1), pp. 484–492 (1992)

19. Wagener, G., State, R., Dulaunoy, A.: Malware behaviour analysis. Journal in
Computer Virology 4(4), 279–287 (2007)

20. Ye, Y., Li, T., Chen, Y., Jiang, Q.: Automatic malware categorization using cluster
ensemble. In: Proceedings of the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2010, pp. 95–104. ACM, New York
(2010)

www.symantec.com
www.securelist.com
www.securelist.com
www.securelist.com

MADAM: A Multi-level Anomaly Detector

for Android Malware�

Gianluca Dini1, Fabio Martinelli2, Andrea Saracino1,2, and Daniele Sgandurra2

1 Dipartimento di Ingegneria dell’Informazione
Università di Pisa, Pisa, Italy

firstname.lastname@iet.unipi.it
2 Istituto di Informatica e Telematica

Consiglio Nazionale delle Ricerche, Pisa, Italy
firstname.lastname@iit.cnr.it

Abstract. Currently, in the smartphone market, Android is the plat-
form with the highest share. Due to this popularity and also to its open
source nature, Android-based smartphones are now an ideal target for
attackers. Since the number of malware designed for Android devices is
increasing fast, Android users are looking for security solutions aimed at
preventing malicious actions from damaging their smartphones.

In this paper, we describe MADAM, a Multi-level Anomaly Detector
for Android Malware. MADAM concurrently monitors Android at the
kernel-level and user-level to detect real malware infections using ma-
chine learning techniques to distinguish between standard behaviors and
malicious ones. The first prototype of MADAM is able to detect several
real malware found in the wild. The device usability is not affected by
MADAM due to the low number of false positives generated after the
learning phase.

Keywords: Intrusion detection, Android, Security, Classification.

1 Introduction

In the last years, mobile devices, such as smartphones, tablets and PDAs, have
drastically changed by increasing the number and complexity of their capabil-
ities. Current mobile devices offer a larger amount of services and applications
than those offered by personal computers. At the same time, an increasing num-
ber of security threats targeting mobile devices has emerged. In fact, malicious
users and hackers are taking advantage of both the limited capabilities of mobile
devices and the lack of standard security mechanisms to design mobile-specific
malware that access sensitive data, steal the user’s phone credit, or deny ac-
cess to some device functionalities. In 2011, malware attacks increased by 155%
across all platforms [1]: in particular, Android is the platform with the highest
malware growth rate by the end of 2011.

� The research leading to these results has received funding from the EU FP7 under
grant n. 256980 (NESSoS) and under grant n- 257930 (Aniketos).

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2012, LNCS 7531, pp. 240–253, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

MADAM: A Multi-level Anomaly Detector for Android Malware 241

To mitigate these security threats, various mobile-specific Intrusion Detection
Systems (IDSes) have been recently proposed. Most of these IDSes are behavior-
based, i.e. they do not rely on a database of malicious code patterns, as in the
case of signature-based IDSes. A behavior-based (or anomaly-based) IDS is a
system that attempts to learn the normal behavior of a device. To this end, the
system is firstly trained by receiving as input a set of parameters that describes
the way the user normally behaves. Secondly, during the normal usage, the IDS
is able to recognize as suspicious any behavior that strongly differs from those
well-known, i.e. learnt during the first phase.

In this paper, we describe MADAM, a Multi-level Anomaly Detector for An-
droid Malware, which monitors Android both at the kernel-level and user-level
to detect real malware infections. MADAM exploits machine learning techniques
to distinguish between standard behaviors and malicious ones. A first prototype
of MADAM has been implemented for Android smartphones, but its theoretical
approach can be extended to other mobile operating systems (OS) as well. The
first set of results show that this approach works well with real malware and it
is usable since it has a very low false positive rate.

The main contributions of the paper are the following:

– We describe the design and implementation of MADAM, a host-based real-
time anomaly detector that exploits a multi-level view of the monitored
smartphone, which considers both OS events, namely the issued system calls,
and smartphone parameters, e.g. the user activity/idleness, to detect intru-
sion attempts.

– We show that a dataset with a small number of parameters (13 features), and
a relatively small number of elements, is effective in describing the smart-
phone behavior to a machine learning system; furthermore, MADAM can
self-adapt to new behaviors by including new elements in the training set
learnt at run-time.

– The framework has been implemented and tested on real devices (Samsung
Galaxy Nexus) to understand the users’ experience. The tests have been
performed with more than 50 popular applications and several user behaviors
to measure the false positives; on the average, a user receives less than 5 false
positives per day, and the overall performance overhead is acceptable, i.e. 3%
of memory consumption, 7% of CPU overhead and 5% of battery.

– To the best of our knowledge, MADAM is the first anomaly-based IDS for
Android that has been tested using real malware: furthermore, at the time of
the tests, some of the tested malware were zero-day-attacks and current off-
the-shelf security solutions were not able to detect them. The system shows
a detection rate of 93%, and in particular of 100% with rootkits.

– MADAM is able to detect unwanted outgoing SMSes stealthily sent by An-
droid malicious applications.

The rest of the paper is organized as follows. Section 2 lists some related work.
Section 3 describes the MADAM architecture and its current implementation.
Section 4 reports some preliminary tests and results. In Sect. 5 we discuss the

242 G. Dini et al.

features and the current limitations of the framework. Finally, Sect. 6 concludes
by discussing some future works.

2 Related Work

Crowdroid [2] is a machine learning-based framework that recognizes Trojan-
like malware on Android smartphones, by analyzing the number of times each
system call has been issued by an application during the execution of an action
that requires user interaction. A genuine application differs from its trojanized
version, since it issues different types and a different number of system calls.
Crowdroid builds a vector of m features (the Android system calls). Differently
from this approach, MADAM uses a global-monitoring approach that is able to
detect malware contained in unknown applications, i.e. not previously classified.
Furthermore, on Crowdroid only two trojanised applications have been tested,
whereas on MADAM we tested ten real malware. A similar approach is presented
in [3], which also considers the system call parameters to discern between normal
system calls and malicious ones.

Another IDS that relies on machine learning techniques is Andromaly [4],
which monitors both the smartphone and user’s behaviors by observing several
parameters, spanning from sensors activities to CPU usage. 88 features are used
to describe these behaviors; the features are then pre-processed by feature selec-
tion algorithms. The authors developed four malicious applications to evaluate
the ability to detect anomalies. Compared to Andromaly, MADAM uses a smaller
number of features (13), and has been tested on real malware found in the wild,
and shows better performance in terms of detection and, especially, of false posi-
tives rate. After the learning phase, the false positive rate of MADAM is 0.0001,
whereas that of [4], which uses a sampling method similar to that of MADAM
and with a comparable sampling rate (2 seconds), is 0.12. The detection rate of
MADAM is 93%, while that of [4] is 80%.

Other approaches only monitor misbehaviors on a limited number of func-
tionalities such as outgoing/incoming traffic [5], SMS, Bluetooth and IM [6], or
power consumption [7] and, therefore, their detection accuracy is higher of other
work but less general. [8] monitors smartphones to extract features that can be
used in a machine learning algorithm to detect anomalies. The framework in-
cludes a monitoring client, a Remote Anomaly Detection System (RADS) and
a visualization component. RADS is a web service that receives, from the mon-
itoring client, the monitored features and exploits this information, stored in
a database, to implement a machine learning algorithm. In MADAM, the de-
tection is performed locally and, more importantly, in real-time. [9] proposes a
behavior-based malware detection system (pBMDS) that correlates user’s inputs
with system calls to detect anomalous activities related to SMS/MMS sending.
MADAM is more general since it considers all the activities on a smartphone. A
further framework targeted at SMS/MMS monitoring is Proactive Group Behav-
ior Containment [10], which is aimed at containing malicious software spreading
in these messaging networks.

MADAM: A Multi-level Anomaly Detector for Android Malware 243

[11] and [12] propose Kirin security service for Android, which performs
lightweight certification of applications to mitigate malware at install time. Kirin
certification uses security rules that match undesirable properties in security
configuration bundled with applications. [13] performs static analysis on the ex-
ecutables to extract functions calls usage using readelf command. Hence, these
calls are compared with malware executables for classification. Finally, [14] sur-
veys some security solutions for mobile devices.

3 MADAM Approach

MADAM is a Multi-level Anomaly Detector for Android Malware that concur-
rently monitors Android at the kernel-level and user-level to detect real malware
infections using machine learning techniques to distinguish between standard
behaviors and malicious ones. In fact, the problem of anomaly detection can be
seen as a problem of binary classification, in which each normal behavior is clas-
sified as “Standard”, whereas abnormal ones are classified as “Suspicious”. Some
behavior-based IDSes rely on computational intelligence and machine learning
techniques, such as clustering [2], probability-based classifiers [4] [5], decision
trees [5] and others. Henceforth, we will use the generic term “classifier” for
these techniques.

Classifiers automatically learn how to classify a set of items. In the proposed
scenario they could be seen as a black-box whose input is a set of behaviors
and the output for each behavior is “Standard” or “Suspicious”. A classifier
understands how to correctly classify elements after the execution of a training
phase. This phase is critical, since it determines the accuracy of the classifier.
Hence, it is fundamental to provide the classifier with a good training set.

To build a good dataset for smartphones, i.e. one that represents a typical
smartphone behavior, MADAM considers elements that represents behaviors
both when the user is active and when she is idle. Moreover, our training set also
contains some malicious behaviors, which strongly differ from the standard ones.
Usually, the collected features come from several sources of events [4]: choosing
the right features to best represent the smartphone behaviors is a critical task,
since their number and correlation determine the quality of the training set [15].
As discussed in Sect. 3.1, MADAM considers two levels, the kernel-level and the
application-level.

3.1 Multi-level Detection

MADAM is a Multi-level Anomaly Detector for Android Malware that com-
bines features extracted from several levels to (i) provide a wider range of mon-
itored events and (ii) discover correlations among these events belonging to dis-
tinct levels. Currently, MADAM considers two levels, the kernel-level and the
application-level. At the first level, MADAM monitors system calls. In fact, we
believe that system calls are a good representative sample of the smartphone
behavior, since their usage is a monitor for user activity, files and memory ac-
cess, incoming/outgoing traffic, energy consumption and sensors status. More

244 G. Dini et al.

importantly, they can be used as monitors for intrusion attempts: this is based
upon the assumption that an attacker has to execute one (or several) system
calls to harm the system. At the second level, the extracted features consider
whether the user is idle or not, and the number of sent SMSes. A high-level view
of MADAM architecture is depicted in Fig. 1.

To extract features from these two levels, the framework includes two moni-
tors. The first one is a kernel-level monitor that intercepts all the critical system
calls, and that records the number of their occurrences during a period T . Hence,
if m is the number of monitored system calls, this monitor returns a vector of
dimension m at each period T .

Fig. 1. Functional Blocks of MADAM

The second monitor is at the application-level, and it can be split in two sub-
monitors that handle two different tasks: (i) to periodically measure the number
of SMS sent in a time interval; (ii) to monitor the user idleness. The user idleness
is a fundamental feature since the activity of the device is usually more intense
when the user is interacting with the device itself: hence, the number of issued
system calls depends upon the status of the device/user. Since after a very short
period of user inactivity the smartphone screen is turned off by the OS, the user
can be considered active either if the screen is on or a voice call is active [16].

The elements of the datasets are vectors with m+ 2 features, where m is the
number of monitored (critical) system calls and the last two features represent,
respectively, the device status (idle or active) and the number of sent SMSes.
A collector receives these features from all the monitors and then builds the
vectors. These vectors are stored in local files using a logger module so that they
can be used to build a training set, which is composed of t

T vectors, where t
is the total time spent collecting data and T is the logging interval (an input
parameter of the framework). A training set is then used to obtain a trained
classifier. This phase of data gathering, preprocessing and classifier training, is
called the Training Phase. In the Operative Phase, which is the phase where the
user actually uses the smartphone, each monitored vector is given as input to the

MADAM: A Multi-level Anomaly Detector for Android Malware 245

trained classifier and, if it is classified as suspicious, a notification is immediately
shown to the user.

3.2 Implementation

We have developed the framework on a Samsung Galaxy Nexus HSPA, with OS
Android Ice Cream Sandwich version 4.0.1, and Linux kernel version 3.0.1.
The lowest-level component of MADAM framework is the system call monitor,
which has been implemented as a Linux kernel module that hijacks the execution
of the monitored system calls: each system call is coupled with a counter that
is incremented before its execution. In the current implementation, this module
considers only a subset of all the available system calls on Android Linux, those
that are rather critical, in term of security, in the description of the system
behavior (see Sect. 4.1). The kernel module contains a task that periodically
(with a period of T) logs the actual value of the counters on a shared buffer with
the collector and then resets all the counters. The inclusion and execution of the
hijacking module requires the Super User (SU) permissions: since on the Android
production builds (the OS version installed on device by manufacturers) SU is
disabled, during the tests the devices required rooting, which is a procedure to
get root permissions.

The highest-level component of the framework includes an Android Applica-
tion in Java, which has been implemented using the Android SDK. The first
component of the Java Application is the MADAM collector, which periodi-
cally reads (i) the buffer shared with the kernel monitor, (ii) the user status
(idle/active), (iii) the number of SMSes sent in the period T . Since Android
only allows monitoring SMSes that are sent through the default SMS manager,
i.e. an application can send SMSes without the user being notified, to detect sent
SMSes MADAM exploits the Android system log file (LogCat), which contains
the output of a low level function that is called each time an SMS is being sent.
Furthermore, the Java application also includes two parallel tasks. The first one
is the application-level logger (Figure 1), which reads the vectors built by the
collector and logs them in a log file that results in a matrix with t

T rows. The
second task is the classifier that states if the vectors built by the collector are
good or suspicious. In the latter case, the classifier sends a notification to the
user and logs those vectors that have been classified as suspicious, for further
analysis. For classification we used Weka1 version 3.6.6, an open source library
in Java that includes several classification tools.

4 Experimental Results

In this section we describe in detail the tests which were performed both for
malware detection and false positives measurement.

1 http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/

246 G. Dini et al.

4.1 Training Set and Classifiers

To do so, we have logged the behavior (through system calls) of the phone during
the execution of normal actions performed by a user. In this logging phase we
have tried to ensure that the device has not been infected: we have installed only
popular applications from the official site (Google Play) having a high rating and
positive comments2.

After a first set of preliminary tests, we have noticed that the system calls
that best describe the device behavior are the following: open, ioctl, brk, read,
write, exit, close, sendto, sendmsg, recvfrom, recvmsg. We expected such a
result, since Android is a framework composed by several functional blocks that
communicate using the mechanisms provided by the underlying Linux kernel and
an increase in the smartphone activity causes directly a sharp increase in the
occurrences of these system calls, all of which concern buffer or file operations,
or communications between the framework components. This is why the change
in the number of occurrences of these system calls is generally related with the
user idleness. Hence, to build the training set, we consider as standard vectors
those with a low number of occurrences of these system calls and the user idle,
and those where the number of occurrences is high and the user is active.

In addition to the previous 12 features (11 system calls and user idleness),
the vectors used for classification also includes a further feature representing the
number of sent SMSes in the time interval T . In fact, monitoring SMS usage
is semantically difficult through system calls only and SMS messages can be
used to harm the user, stealing her credit. Moreover, SMSes are strongly related
with the user activity. In fact, in a normal usage, an SMS is sent after the user
has composed the message, which requires an active interaction. However, some
applications send or receive SMSes to provide some kind of services. Since, SMS is
a costly service, if compared to the amount of data that are sent with a message,
applications should avoid SMS as communication channel as much as possible,
and they should require that the user actively agrees with the sending of each
message. Applications that send SMS messages when the user is idle should be
considered suspicious. For all these reasons, we have logged several SMS sending
phases, which represent real-life usage scenarios, and we have added the resulting
vectors to the dataset.

Classifiers are not able to recognize a suspicious element if they are not trained
also with some elements that belong to the suspicious behavior class. As previ-
ously said, a suspicious behavior is one that strongly deviates from those known
to be good. Hence, we have manually defined some suspicious elements by creat-
ing both vectors with a high number of system call occurrences, when the user
is idle, and vectors with an extremely high number of system call invocations,
when the user is active. Figure 2 depicts some examples of standard and sus-
picious vectors. The picture depicts four sample vectors monitoring occurrences
for 11 system calls with T = 1 sec. The last number of each vector means 1 for
user active and 0 for user idle.

2 For a full list of tested applications see http://www.iit.cnr.it/node/15102

http://www.iit.cnr.it/node/15102

MADAM: A Multi-level Anomaly Detector for Android Malware 247

Fig. 2. Sample Vectors Monitoring Occurrences for System Calls and Idleness

More malicious vectors were derived from the ones that we have defined using
a data balancing method named SMOTE (Simple Minority Oversampling TEch-
nique), which creates new vectors from those provided by means of interpolation.
To represent malicious behaviors concerning SMS messages, we have manually
defined and added to the training set some vectors with a number of sent mes-
sages that is very high compared to the user activity. We would like to point
out that if classifiers are trained using such a dataset, which does not include
malicious vectors generated by real malware, then each malware, if detected, can
be considered as a zero-day-attack.

To increase the detection rate, our application runs in parallel two instances
of the same detection framework, with a different sampling period T . The first
instance is a short-term monitor with Tshort = 1 sec, whereas the second in-
stance constitutes a long-term monitor with Tlong = 60 sec (both values are
configurable at run-time). The cooperation of these two instances detects differ-
ent types of misbehaviors. The short-term monitor is more effective in detecting
“spiky” misbehaviors, i.e. with sudden, brief and sharp increase of the system
call occurrences. On the other hand, the long-term monitor is aimed at detect-
ing misbehaviors that distribute their action constantly in a long period of time,
such as spyware, i.e. whose effect is not immediate.

Hence, two different datasets were built and used to train two classifiers of
the same type. The classifier is a K-Nearest Neighbors (K-NN) [17] with K = 1
(1-NN). This classifier has very good performance and can easily adapt to a large
number of problems, requiring a small amount of computation time to classify
an element and a trivial update algorithm. We have also tested several other
classifiers on our dataset but the 1-NN outperforms them all.

4.2 Experiments Description

Figure 3 describes at a high level the sequence of steps performed during the
experiments.

During theTraining Phase, the classifiers are trained with the initial, manually-
defined, training set described in Sect. 4.1. The Learning Phase follows the train-
ing phase and it is used to learn behaviors that are specific of the user. This phase
has been used to obtain an estimate of the False Positive Rate (FPR) trend (see
Sect. 4.3), i.e. how the number of false positives decreases as they are used to pro-
gressively update the trained classifiers. During the Operative Phase, the trained

248 G. Dini et al.

Fig. 3. Experimental Phases

classifiers are used to perform anomaly detection. During this experiment, this
phase has been divided into two sub-phases: during FPR measuring the device
has been tested with clean applications to compute the number of false positives
raised per day; in Malware Testing trojanized applications have been installed on
the device to determine the detection accuracy of the MADAM classifiers. Since
the learning phase and FPR measurement greatly depend on the usage of the de-
vice, these tests were performed by three distinct users.

The next two sections describe the tests performed during the Operative
Phase.

4.3 False Positive Measurement

Anomaly-based IDS have been criticized since they are more likely to generate
false positives. False positives may strongly reduce the device usability, so we
have performed a critical analysis of their occurrence on our system.

FPR Trend. A first experiment has been performed to estimate the FPR trend,
i.e. how the number of false positives decreases as they are used to progressively
update the trained classifiers. The training set that we have manually defined
and given to the short-term classifier contained 900 standard vectors and 100 ma-
licious ones. The long-term classifier has been trained with 250 standard vectors
and 50 malicious ones. These datasets are relatively small and they represent
some standard and basic behaviors (for the standard vectors), such as phone
calling, SMS messages typing and sending, Internet browsing and gameplay of
the popular game Angry Birds. Soon after the first dataset had been manually
set up, and the classifier started, as we expected some false positives were raised
(see Tab. 1 for details). False positives are likely to occur when the user performs
a new behavior that strongly differs from those stored in the training set. Due
to both the high number and the diversity of applications available for Android,
unknown behaviors are likely to occur.

To reduce the occurrence of false positives, MADAM has to learn how the
user behaves in an initialization phase, which we call the learning phase, where
false positives are directly added to the classifier knowledge base without any user
intervention. During the tests, the average duration of a learning phase to obtain
a reasonable number of false positives is 30 minutes. However a new learning
phase can be initiated actively by the user when she wants to update the classifier

MADAM: A Multi-level Anomaly Detector for Android Malware 249

with the generated false positives, for example by a newly installed application
(if she considers that application trustworthy). During this experiment we have
updated the classifier in five steps: after ten minutes and then each hour for four
hours. More details on this experiment are reported in Tab. 1.

Table 1. Learning Phase

Time 10 min 60 min 120 min 180 min 240 min

Vectors 610 3050 3660 3660 3660

False Positives 156 55 23 10 5

FPR 0.26 0.015 0.0061 0.0028 0.0011

FPR Measurement. We used the training set obtained from this learning phase to
re-train the classifiers, and then we performed furthers experiments to estimate
the number of false positives raised in 24 hours. During these tests, one of the
smartphones has been equipped with more than 50 applications and heavily used
during the day. The other two smartphones have been set up, respectively, for
moderate and basic usage. As expected, these smartphones with the lowest usage
have raised a lower number of FP than the first one3. For this reason, here we
only focus on the tests performed on the heavily-used smartphone.

The test returned 15 false positives (FPR = 0.000171), 9 of which were raised
by the short-term classifier (FPR = 0.000104) and 6 by the long-term one
(FPR = 0.004167). We updated the classifiers with the collected false positives,
and then we reiterated the experiment for the following two days. Table 2 shows
these results: on the average, on the heavily-used smartphone less than ten false
positives are raised during 24 hours, with a descending trend.

Further tests have been performed using the non-trojanized version of some
applications used for malware detection, to check if they would raise false posi-
tives as well4. We installed a clean version of the web browser Opera and of the
Hamster Bomb game, while their trojanized versions were infected respectively
by OpFakeA and TGLoader. As expected, no intrusions were detected.

Table 2. False Positive Rate

Day Overall FPR Tshort FPR Tlong FPR

1 0.000171 0.000104 0.004167

2 0,000139 0.000116 0.00137

3 0.000114 0.00008102 0.00208

3 During these experiment the classifiers have not been updated with the false posi-
tives, which were added to the training set only at the end of the experiments.

4 These tests have been performed on some applications only because of the difficulty
of finding a clean and trustworthy version of all the trojanized applications, which
are only available on un-official markets.

250 G. Dini et al.

4.4 Malware Detection

We have tested MADAM with real Android malware hidden in trojanized appli-
cations: all the malware applications are taken from a repository5 that is updated
as soon as new threats are discovered. The tested malware belong to different
categories, e.g. Trojan, Rootkit and Spyware.

Table 3. One of the Malicious Vectors Monitored of OpFakeA Malware

open ioctl brk read write exit close sendto sendmsg recvfrom recvmsg idleness SMS Num

2246 25481 4341 47 16899 14416 12916 178 139 179 186 0 2

Each malware has been monitored as standalone to avoid cross malware detec-
tions. Furthermore, to reduce the likelihood that the suspicious vector has been
caused by a false positive, each malware has been tested three times, restoring
the device to a clean state after each test. Table 3 reports one of the vectors that
MADAM (the Tlong instance) classified as malicious during the infection of the
malware OpFakeA (see Tab. 4). The last two elements of the vector are the most
important: they mean that 2 SMS messages sending requests have been issued
in a time interval with no user activity, a behavior that should be considered
malicious for the SMS policies formerly discussed. After these tests, the dataset
has not been updated with the suspicious vectors, so that each detected malware
can be effectively considered as a zero-day-attack.

Table 4 shows the results of the three tests performed for each malware. The
table also specifies which instance of the system monitor, i.e. short-term (Tshort)
or long-term (Tlong), has detected the malware. This should give an idea of
which type of misbehavior is performed by the malware. Those malware that
have been detected by both classifiers are usually the most aggressive. We will
further discuss these results in Section 5.

4.5 Performance

In the performed tests, the MADAM’s impact on performance has not greatly
influenced the user experience. The users have not noticed any reduction in re-
sponsiveness or in general visual performance. The periodic services of MADAM
require an average of 7% of CPU overhead and of 3% MB of RAM space. The
native battery monitor of the Android settings reports that MADAM uses only
2-5% of the total smartphone battery.

5 Discussion

To the best of our knowledge, MADAM is the first real-time anomaly-based
malware detector developed for real devices, specific for Android, that is able

5 http://contagiominidump.blogspot.it/

http://contagiominidump.blogspot.it/

MADAM: A Multi-level Anomaly Detector for Android Malware 251

Table 4. Malware Detection Results

Malware Type Detection Rate T Description

Lena.B BootKit 100% Tshort Modifies files in the system partition.

Moghava Trojan 100% Tlong Modifies pictures stored on the device. Gradually
fills the SDCard memory.

TGLoader RootKit 100% Both Obtains root privileges, installs other malicious
applications, opens a backdoor.

OpFakeA Trojan 100% Tlong Sends SMS with SIM data, downloads applica-
tions and stores them on the SDcard.

NickySpyB Spyware 66% Both Record calls, stores them on the SDcard then
sends them with other user’s data to an external
server.

Gone in 60 sec Spyware 66% Tshort Sends user’s data to an external server.

KMin Trojan 100% Tlong Sends SMS to premium rate numbers

Lotoor Rootkit 100% Both Obtains root privileges and opens several back-
doors.

DroidDream Rootkit 100% Tlong Obtains root privileges and opens a backdoor.

Droid Kung Fu Rootkit 100% Both Sends device information to a remote server.

to detect real malware of different categories. The detection results and FPR
are better than those of previous anomaly-based detection systems for Android
([4], [2]).

The overall detection accuracy was of 100% for all malware, except for two
that were not detected in one of the tests. These malware (NickySpy and Gone

in 60 seconds) are spyware and their behavior is less aggressive compared to
that of the other monitored malware. NickySpy records all the calls on the
SDCard and then sends them via HTTP to an external server. The monitored
device behaviors during a normal call and during an eavesdropped one show
clear differences. However this misbehavior can be confused with the one in
which a heavy application, such a 3D videogame, is running and, hence, the
system can be deceived in such a situation.

Gone in 60 seconds is not a real malware but an application that a user
intentionally installs on the device and when it is started reads all the user
data, such as SMS messages and contacts, and sends them all to an external
server. Then, the applications is automatically uninstalled, all in no more than
60 seconds (hence the name). During the execution, the application displays
to the user a number that can be inserted on a website, hosted on the same
server where the data have been sent, to retrieve the data. The behavior of this
malware results more aggressive when there are much more data on the phone,
in the other cases its detection can result tricky.

It is important to underline that, differently from previous approaches, our
proposed framework is not based upon a per-application monitoring: instead, it
performs a global monitoring, i.e. it is oblivious of which application(s) generated
the event(s). This method can be more effective in identifying sudden behavior
changes: as an example, a method that could be used to trick per-application
controls is that of developing some applications, harmless if taken as standalone,
but that can cooperate to perform an attack. A proof-of-concept of these appli-
cations is presented in [4], where the malicious application, a video-game, looks

252 G. Dini et al.

harmless because it does not ask any dangerous Android permission. However,
after the installation, this application shares the permissions with another tro-
janized application that does not performs malicious operations, but that has
the permission to send both SMS and MMS. Then, the video-game starts to send
sensitive information about user’s contacts by means of SMS messages. Such an
attack should be identified more easily by means of a global monitoring system,
which considers all of the system calls issued in a time interval. Being a global
anomaly detector, MADAM is able to detect an intrusion attempt but it is not
able to detect the malicious source. However, its response can be used to trigger
further components able to track and stop the source of the malicious behavior.

A question that may arise is how the user is able to distinguish between a
false positive and a real intrusion. After the learning phase, occasional false pos-
itives become a rare event, so occasionally detection can be related with them.
In fact, all the tested malware, show aggressive behaviors that cause periodical
and multiple detections in a limited period of time. The only exception concerns
SMS-based malware, which should be handled with an ad hoc strategy. A pos-
sible extension to this framework can automatically handle the occasional false
positives, or can guide the user through a smart learning phase, to learn as much
as possible from her behavior in a short period of time. The same framework
can be used to trigger a new learning phase when a new trustworthy application
is installed.

6 Conclusions and Future Works

In this paper, we have presented MADAM, a framework that allows early de-
tection of intrusion attempts and malicious actions performed by real malware
for Android devices. The framework exploits a multi-level approach, i.e. that
combines features at the kernel-level and at the application level, and is based
upon machine learning techniques. The first set of results is encouraging: the
first prototype of MADAM for Android smartphone has managed to detect all
the 10 monitored real malware, with a negligible impact on the user experience
due to the few false positives issued per day. To the best of our knowledge, these
results are a noticeable improvement to solutions presented in previous work,
both for detection rate of real malware on current Android-based smartphones,
and occurrences of false positives.

Since the tests provided promising results, we are working on an extension of
this framework that combines the global monitoring approach with more specific
monitors that consider additional features. With this extension we would like to
create a database of expected behaviors that are related to high level actions,
suck as starting a phone call. This should increase the system accuracy and
allow the detection of a larger number of malware. Finally, whenever an alarm
is triggered by this architecture, a further extension requires the tracing of the
running applications to detect and stop the source of the attack.

MADAM: A Multi-level Anomaly Detector for Android Malware 253

References

1. Juniper Networks: 2011 Mobile Threats Report (February 2012)
2. Burguera, I., U.Z., Nadijm-Tehrani, S.: Crowdroid: Behavior-Based Malware De-

tection System for Android. In: SPSM 2011. ACM (October 2011)
3. Mutz, D., Valeur, F., Vigna, G.: Anomalous System Call Detection. ACM Trans-

actions on Information and System Security 9(1), 61–93 (2006)
4. Shabtai, A., Kanonov, U., Elovici, Y., Glezer, C., Weiss, Y.: Andromaly: a be-

havioral malware detection framework for android devices. Journal of Intelligent
Information Systems 38(1), 161–190 (2011)

5. Damopoulos, D., Menesidou, S.A., Kambourakis, G., Papadaki, M., Clarke, N.,
Gritzalis, S.: Evaluation of Anomaly-Based IDS for Mobile Devices Using Machine
Learning Classifiers. Security and Communications Networks 5(00), 1–9 (2011)

6. Bose, A., Shin, K.G.: Proactive Security For Mobile Messaging Networks. In: WiSe
2006 (September 2006)

7. Jacoby, G.A., Marchany, R., Davis IV, N.J.: How Mobile Host Batteries Can Im-
prove Network Security. IEEE Security and Privacy 4, 40–49 (2006)

8. Schmidt, A.-D., Peters, F., Lamour, F., Scheel, C., Çamtepe, S.A., Albayrak, S.:
Monitoring smartphones for anomaly detection. Mob. Netw. Appl. 14(1), 92–106
(2009)

9. Xie, L., Zhang, X., Seifert, J.-P., Zhu, S.: pBMDS: a behavior-based malware de-
tection system for cellphone devices. In: Proceedings of the Third ACM Conference
on Wireless Network Security, WISEC 2010, Hoboken, New Jersey, USA, March
22-24, pp. 37–48. ACM (2010)

10. Bose, A., Shin, K.G.: Proactive security for mobile messaging networks. In: WiSe
2006: Proceedings of the 5th ACM Workshop on Wireless Security, New York, NY,
USA, pp. 95–104. ACM (2006)

11. Enck, W., Ongtang, M., McDaniel, P.: On lightweight mobile phone application
certification. In: CCS 2009: Proceedings of the 16th ACM Conference on Computer
and Communications Security, New York, NY, USA, pp. 235–245. ACM (2009)

12. Ongtang, M., McLaughlin, S., Enck, W., McDaniel, P.: Semantically Rich
Application-Centric Security in Android. In: Annual Computer Security Appli-
cations Conference, ACSAC 2009. pp. 340–349 (December 2009)

13. Schmidt, A.-D., Bye, R., Schmidt, H.-G., Clausen, J.H., Kiraz, O., Yüksel, K.A.,
Çamtepe, S.A., Albayrak, S.: Static Analysis of Executables for Collaborative Mal-
ware Detection on Android. In: Proceedings of IEEE International Conference on
Communications, ICC 2009, Dresden, Germany, June 14-18, pp. 1–5. IEEE (2009)

14. La Polla, M., Martinelli, F., Sgandurra, D.: A survey on security for mobile devices.
IEEE Communications Surveys Tutorials (99), 1–26 (2012)

15. Kwak, N., Choi, C.H.: Input Feature Selection for Classification Problems. IEEE
Transactions on Neural Networks 13(1), 143–159 (2002)

16. Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., Estrin,
D.: Diversity in Smartphone Usage. In: MobiSys 2010. ACM (June 2010)

17. Cover, T.M., Hart, P.E.: Nearest Neighbor Pattern Classification. IEEE Transac-
tions on Information Theory IT-13(1), 21–27 (1967)

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2012, LNCS 7531, pp. 254–269, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Using Low-Level Dynamic Attributes
for Malware Detection Based on Data Mining Methods

Dmitry Komashinskiy and Igor Kotenko

St. Petersburg Institute for Informatics and Automation (SPIIRAS)
39, 14 Linija, St. Petersburg, Russia

{komashinskiy,ivkote}@comsec.spb.ru

Abstract. The modern methodologies of computer threats' detection traditionally
include heuristic approaches of detecting malicious programs (malware) and
their side effects. Usually these approaches are used in order to form some auxil-
iary classification and categorization systems which simplify procedures of
processing previously unseen data sets and revealing previously non-obvious
structural and behavioral dependencies for malware. Such systems have a num-
ber of issues caused by specificity of processes of their creation and functioning.
One of such issues is looking for feature sets whose use increases accuracy of
malware detection. The paper presents description and analysis of an approach
focusing on this issue. It is based on instantiating a number of classifiers learned
in a feature space representing low-level dynamic specificities of applications to
be analyzed.

Keywords: malware detection, data mining, dynamic attributes.

1 Introduction

The one of the most serious challenges in the information security domain is the task
to timely detect and counteract malicious software (malware). Roughly speaking, the
phenomenon of malware appeared first time twenty five years ago and nowadays it
posed a big problem for the whole informational society. We do not plan to go
through the detailed description on this statement and just want to mention several
numbers. At the very beginning of 2000 years research community and antivirus ven-
dors registered about 10 new instances [1] of malware each day. At this moment this
value is equal to several tens of thousands. In accordance with the public statistical
data of antivirus vendors [2] it is possible to perform an extrapolation and assume that
the total number of registered malware samples will approach important threshold
expressed by 100 million by the end of 2012 year. There is yet another important
aspect which must be taken into account. A couple of years ago the malware technol-
ogies were taken into use as armor for future local and global conflicts. There are two
well-known incidents related to Stuxnet [3] malware used for attacking some industri-
al units and Flamer [4] case which can be considered as an implementation of univer-
sal platform supporting total espionage and other potentially dangerous activities. We

 Using Low-Level Dynamic Attributes for Malware Detection 255

agree that anti-malware technologies are being developed and maintained very well
by responsible parties; however it is also visible that as a whole the malware problem
is far from its complete decision. Most likely this problem will remain with us next
decades and it is understandable that the malware detection and counteraction issue is
a science-capacious domain requiring applying of multi-model analysis approach.

The use of heuristic systems searching for malware is a one of the approaches to
prepare some practical solutions for its generic detection. As a rule, the essence of
these systems is based on extracting and formalizing some finite set of patterns which
are specific to some particular kinds of threats. At their initial phase of evolving, such
heuristic rules were formed manually and generalized some knowledge domains.
However, soon, with the growth of samples’ amounts and complexity, the task of
comprehensive manual analysis of each sample became more and more expensive.
This stipulated the interest of research community to alternative methods on data
analysis, including Data Mining approaches. Being initially formulated for the mal-
ware detection task in the middle of 1990 years by Kephart et al. [5], this direction
then got substantial impulse for comprehensive development by attempts to map al-
ready existing successful spam detection approaches to malware domain at the middle
of the first decade of 21-st century.

The global problem of heuristic malware detection approaches is in their insuffi-
cient accuracy, expressed in so-called False Positive (benign object is treated as mali-
cious) and False Negative (and vice versa) errors. This stipulates the main function of
these methods – basically they play a role of auxiliary automated means providing
malware experts with some kind of initial filters of incoming data stream and allow-
ing them to focus on questionable and suspicious objects.

The gradual realizing by society of the fact that the protection of information re-
sources is crucial and new promising technologies like cloud-based services are de-
veloped mitigate the problem of False Positives a bit. This causes an assumption that
in future the importance of heuristic malware detection systems will increase, while
the accuracy reserve exists and can be used in order to improve the state of False
Negative issues.

This assumption can be confirmed by the fact that last years a lot of auxiliary sys-
tems of objects’ and their origins’ validation and reputation scoring are introduced
and widely used by antivirus community and advanced users. Such measures allow
users to identify and decide on questionable situation on their own; however it does
not exclude the need to continue works on further improvements of the good old heu-
ristic malware detections.

There are many approaches to extract features reflecting different structural and be-
havioral characteristics of software applications. They are adopted successfully to re-
veal some aspects of malicious applications and can be used for constructing detection
systems both for already known and for previously unseen malicious files. Their suc-
cess is stipulated by one important factor. It is known fact that nowadays malware is a
massive, high-spread phenomenon causing appearance of tens thousands of new mali-
cious samples per day. Such huge volume of new data could not be reached without the
use of automated environments adopting protection techniques focused on preparing
new unique binary objects those analysis must be extremely difficult. However, these

256 D. Komashinskiy and I. Kotenko

protection techniques do not evolve so fast and they have own structural and behavior-
al specificities which become visible when the malware counteracting party continu-
ously analyzes big data blocks. This visibility makes generic detection of modern
malware possible when it comes to Data Mining. Therefore modern heuristic malware
detection systems are rather oriented on the search for protection patterns specific for
malicious objects than on looking for malicious behavior. These patterns potentially
can be observed both statically and dynamically.

The review of feature extraction approaches shows that the issue of using low-level
dynamic features based on instructions’ sequences was not elaborated (for instance, in
contrast to n-grams based approaches) and has significant potential to appear useful
for malware detection. The paper describes and analyses an approach to implement
qualitative heuristic system of malware detection based on Data Mining methods. The
essence of the approach is in using additional method to extract dynamic features
which can be adopted by malware detection systems. In particular, we investigate an
issue of extracting behavioral (blocks of machine code instructions) attributes of
malware delivered in portable executable format.

The paper's structure is as follows. “Related Works” section provides a brief de-
scription of activities done by the research community in the context of applying Data
Mining techniques for constructing malware detection and categorization systems. In
the section we mainly focus our attention on used features. The next “Approach de-
scription” section defines a generic application model we use, describes its instantia-
tion for our research and explains the approach we use for extracting feature space
items. Then “Experiments” section covers tools, sequence of practical steps we per-
formed, and presents their results. “Discussion” section provides analysis of the re-
sults, discusses visible advantages and disadvantages of the approach we present and
suggests some ways how to mitigate the latter ones. The paper ends with “Conclu-
sion” part emphasizing main points of the research.

2 Related Work

The real interest of the research community to the issues of using Data Mining meth-
ods appeared first time at the very beginning of the 21-st century. Initially its appear-
ance was stipulated by the need in the already mentioned systems of automatic
classification and categorization of the permanently increasing stream of new, previ-
ously unseen executable binaries and other file types. At the moment of realizing this
need the research community already had successful patterns of using Data Mining
techniques for detection co-called spam (junk) e-mails. This fact caused the beginning
of active research in the alternative, malware-specific domain.

However, it is important to pay attention to the fact that initially the methodology
of using these methods for malware detection was described in the middle of 1990th in
the research work of Kephart et al. [5] for Portable Executable format [6].

While looking for the best practices in the scope of this methodology it becomes
clear soon that the success of any approach to use Data Mining methods for malware
detection is defined by two main factors.

 Using Low-Level Dynamic Attributes for Malware Detection 257

• Such research must have enough amounts of well-formed malware samples
(other data items) which are to be used for forming learning and validation
data sets. Nowadays the most successful decision for the former (data
availability) factor is to use well recommended in research work data sets
which are available publicly, for instance [7] or data collected by antivirus
vendors and laboratories. Thus, the first issue is not too problematic at this
moment in our point of view and other discussion of the topic is out of the
paper’s boundaries.

• There is the need to choose a right way to extract features used for preparation
generic vector describing the objects of experimental data set (feature space).
This factor (feature extraction approach) is important at this moment and still
actively being discussed in this knowledge domain. Thus paper is devoted to
this question and further part of this section is devoted to description and brief
discussion of the already known features of file objects and their advantages
and disadvantages.

Fig. 1 presents the high-level structure of the whole features applicable for detection of
malware spreading in the form of separate file objects (files). It can be treated as an
aggregate of two distinctive feature groups. External features in respect to a file object
include, for example, WhoIs Web service data about file’s origin URI, diverse services
and catalogs keeping opinions on the object from user (for example, Facebook) and
expert (for instance, VirusTotal) communities etc. Internal features’ group of an object
consists of data extractable exceptionally from the object during its processing phase.

Fig. 1. High-level separation of file objects’ features

Fig. 2 shows detailed representation of internal features’ group structure. The fea-
tures are used in diverse malware detection methods, especially for PE32 file objects
analysis. It can be seen than the main criterion of separating the space of internal fea-
tures is defined by methods of their extraction, defining types of the detection
approaches (static and dynamic). The static group of methods is based on objects’
analysis without context of its processing by an interpretation environment and in-
cludes all statically extractable features while the dynamic group of detection methods
uses behavioral information about objects’ interaction with the environment presented
in form of so-called dynamic features.

There are different static features. They can be classified into a number of generic
groups:

• N-grams, or fixed-length byte sequences;
• Strings, or symbol sequences, whose content corresponds to a number of

predefined conditions;

258 D. Komashinskiy and I. Kotenko

Fig. 2. Detailed representation of internal features groups

• File headers content, including subgroups of generic headers, module
dependencies’ tables, resources and other data types;

• Opcode-level information about machine code located in a file object to be
analyzed;

• Data about instruction sequences (opcode, argument-level) included in a file
object;

• More sophisticated, high-level data on static blocks of instructions
(translation blocks, instructions’ chains, etc);

• Information about logically separated sets of instructions’ blocks (e.g.
separated functions);

• Data about interdependencies of separated blocks of machine code
(translation blocks, functions, etc).

The first research where n-grams were applied in order to extract features of malicious
code is the work of Kephart et al. [5], devoted to important at that time topic on detec-
tion infected boot sectors. The one of the fundamental researches dedicated to efficacy
of n-grams inspired approach to detect malicious PE32 files is the work of Shultz et al.
[1], where the authors applied the technique for extracting short byte sequences with
length equal 2 bytes. Further n-grams efficacy was touched many times by other re-
search groups. Kolter and Maloof [8] continue investigation on n-grams as features for
detection malicious PE32 files. They define n-grams lengths in range from 1 to 10 and
extract them from code sections of PE32 files. They report that optimal accuracy for n-
gram based malware detection models is observed with n-gram length equal to 4 and
feature set size equal to 500. Masud et al. [9-11] actively use n-grams to build generic
approach for malware detection by feature combining. Menahem et al. [12] adopt this
feature group for evaluating their hierarchical approach to combine classification

 Using Low-Level Dynamic Attributes for Malware Detection 259

methods for malware detection. Alazab et al. [13] and Santos et al. [14] use n-grams to
continue experiments with building heuristic malware detection systems. The main
advantages of the n-grams as features are their visibility and simplicity to extract. How-
ever, this group of features has significant disadvantages defined by their potentially
huge number that makes their processing very resource-consuming task and, corre-
spondingly, makes further feature selection steps problematic. Moreover, n-grams are
not applicable when it comes to a work with protected (packed, obfuscated) file objects
whose analysis is very difficult and requires removing of code / data protection levels.

Strings, also referred to as interpretable (readable) strings, can be considered as a
group of features which is semantically close to the aforementioned byte sequences
(n-grams). Their specificities are (1) variable lengths; (2) their symbols must conform
to some predefined diapason of values defining string alphabet and (3) availability of
terminal symbol indicating end of a string. Already mentioned research of Shultz et
al. [1] can be treated as a one of the first works which use string data as a source of
features for building malware detection system based on Data Mining methods. The
similar idea of using strings is adopted in signature-based malware detection by anti-
virus vendors. Kolter et al. [8] show that often the most valuable n-gram features for
malware detection process correspond to symbols sequences belonging to strings.
Nowadays due to some disadvantages the static string features are less significant, but
anyways they are still paid some attention. E.g., Lu et al. [15] use the string features
as one of the features’ groups for preparing combined classifiers scheme for malware
detection. The main advantages of string features are the same we mentioned for n-
grams plus theirs very high interpretability. However they inherit the same disad-
vantages we mentioned for n-grams.

Headers’ data of binary executables is substantial source of information for heuristic
malware detection systems. Shultz et al. [1] apply the data of import tables to prepare
features’ subset which informs about user-mode system functions used by applications.
Menahem et al. [12] use general PE32 headers’ values and import, export and re-
sources tables’ data in order to build multi-layer hierarchical classification system with
combining different features types. Perdisci et al. [16] take headers’ data to extract a
set of derivative features (entropy, data of executable PE32 sections and so forth).
Shahzad et al. [17] perform analysis of header ELF structures representing binaries’
structure for UNIX-originated operating systems. They show that using semantically
similar structural data for different platforms can provide some heuristic detection
mechanisms. The main advantages of this feature group are relative simplicity of their
extraction and interpretability. The proper usage of this data type allows to obtain an
initial state of an application being stored by an executable binary that in some sense
defines its further functionality. However the availability of advanced protection tech-
niques to hide real initial state of the process doesn’t allow applying this feature group
advantage comprehensively.

The groups of features extractable from an application (executable binary) at disas-
sembly level allow obtaining low-level information characterizing its static “behavior-
al” aspects in the form of CPU instructions and theirs blocks (sequences, functions).
Ye and Lee [18] use instructions’ appearance frequencies and static sequences of in-
structions at functions’ level. Masud et al. [9-11] adopt static chains of instructions’

260 D. Komashinskiy and I. Kotenko

representations which include semantic types of operations and arguments’ types.
Siddiqui et al. [19] suggest an approach to form instructions’ sequences’ descriptions
as raw opcode values chains. Alazab et al. [13] use static data about called isolated
functional code blocks of instructions (functions) in order to improve n-grams based
malware detection system. Kinable [20] proposes a way to use static data on interde-
pendencies of functional instruction blocks to prepare characterizing static code flow
graph which is used then as a data for measuring similarity with other graphs extracted
from other application. The groups of features are the most informative ones from the
whole set of static data. Their main pros are relatively easy extraction procedures
(which, for sure, more complex in comparison with n-grams extraction) and significant
semantic meaning. The cons of the feature group are similar to other static feature
groups – potentially huge amount of available data and shortcomings related to impos-
sibility to counteract typical code protection mechanisms.

Dynamic features used in Data Mining – inspired approaches of malware detection
are listed as follows:

• Information about external code used by an application during its execution
(usually API functions, in particular – functions and services of Operating Sys-
tem);

• Data about sequences of used external code (e.g. sequences of API calls);
• Information about input arguments for called functions and theirs return val-

ues;
• Low-level data on executed instructions – opcodes, operands, sequences etc;
• Data about changes of internal kernel structures of Operating System and ker-

nel events.

The one of our previous research works presents an approach to detect malware by
monitoring system kernel services being used by analyzed application for Windows
XP operating system [21]. Feature space was represented by numerical and nominal
features characterizing, for example, amount of particular calls and access type to
some specific systems resources correspondingly. In contrast to this research, Ye et al.
propose a classic way to use sequences of monitored API calls’ sequence as a source
of features for malware detection systems. Lanzi et al. [23] use so called “behavioral
n-grams” for forming feature space which is prepared by passing through the system
services call sequence of sliding window. The authors showed that the most efficient
lengths of the sliding window are 4, 3 and 2 (in decreasing order). It is notable, that
the call sequences were formed in accordance with system-centric approach oriented
on access monitoring to crucial system resources (files, registry keys and values etc).
Rieck et al. [24] adopt chains of symbols identifying semantics of monitored system
calls and their arguments. The feature extraction approach was based on sliding win-
dow method as well. Shahzad et al. [25] present approach to detect malware by moni-
toring kernel mode structures’ state and value associated with an application (internal
process structures) being monitored. The approach is applied for UNIX-originated
operating systems and in theory can be used for PE32 format and, correspondingly,
for Microsoft Windows as well. The author stated that it is enough to monitor kernel
structures at the very beginning of process’s life cycle to decide whether it is malware
or not.

 Using Low-Level Dynamic Attributes for Malware Detection 261

3 Approach Description

The essence of the approach we suggest is based on the representing of any executa-
ble binary object (software application or shared library) as a sequence (or set of se-
quences for multithreaded applications) of CPU instructions being executed during
application’s functioning. The task of sequence analysis for Data Mining approaches
usually requires some formal simplification method which is able to convert sequenc-
es (objects’ representations) to a finite set of features those values could characterize
any sequence (object), e.g. mentioned in “Related works” section so-named sliding
window approach. Thus in order to proceed with the next level of the approach de-
scription we have to introduce a formal model of software application, its instantiation
parameters and some basic practicalities on the feature space preparation process.

The formal model of a software application can be stated as following.
Let’s introduce alphabet as a finite set of symbols , … , : , … , ,

where | | – alphabet’s size and , 1 .
Execution thread is determined as an ordered finite set of symbols , … , of

alphabet with size , : , … , , , 1 .
An application is defined as a finite set of execution threads , , … , , : , , … , .
Let’s define a set of terminal symbols as a subset , … , of all set of alpha-

bet symbols, , 1 : .
The concept of terminal symbols’ chain is defined as an ordered finite set of al-

phabet symbols of size , , , … , , where only first and last symbols
belong to the set of terminal symbols :

С , 2 1 , 1

Then with some minor assumptions an execution thread can be represented as a
sequence of terminal symbol chain: , , … , , .

The model of application will is determined as a set , , , , in-
cluding collection of execution threads of size , collection (set) of alphabet
symbols of size and a subset of terminal symbols of size t, : , , , . (2)

Having the formal application model specified lets define terms of a feature (attrib-
ute), feature-based object description and feature space.

A feature is a function : , where is defined as a finite set of permissible
values of description and is a set of objects.

Assume there is a set of features: , , … , . Then the vector , , … , is a feature-based description of an object .
Then the set … is called as a feature space.
The task of malware detection can be characterized as follows. Assume there are a

set of feature descriptions and a set of class labels .

262 D. Komashinskiy and I. Kotenko

There is an unknown target dependency – function : , those values are
known only for the objects belonging to the set of learning
set , , … , , .

The task is to build algorithm (function) : , which is able to express maxi-
mal accurate conformance of an object to a single element in accordance
with the target function . Such task is usually solved with well-known set of Data
Mining methods known as supervised learning (classification) approaches.

Now, after posing formal definitions we can proceed with their instantiation val-
ues. The approach suggested in the paper uses the model of a software application
a common software application abstraction providing where each terminal symbol
chain is treated as a potential feature. This allows us to define feature space we use
and build Data Mining-inspired detection model. The instantiation assumptions are
following:

• An application includes single execution thread . Thus the size of the
execution threads’ set is 1. For the applied knowledge domain this
assumption can be explained so, that the initial life cycle phase of any
application includes only one, primary execution thread which is responsible
for execution Entry Point code (startup code);

• An alphabet is defined by instruction set of the CPU to be used for
executing an application (binary object). In order to minimize the potential
size of the alphabet it was decided to restrict symbol’s size with 2 bytes.
Thus, 2 ;

• A set of terminal symbols is defined by a subset of CPU instructions which
defines application’s execution flow (so called conditional and unconditional
control transfer instructions).

• All features have Boolean type: , . Each feature indicates
whether some particular chain of terminal symbols does exist in the object
description while class label defines whether the objects is malicious or not
(benign).

• Class labels set is defined as , .

There is one important practical aspect specific for the suggested approach. The group
of dynamic features we use is formed as a set of sequences of 16-bit size symbols
characterizing executed CPU instructions. In accordance with Intel documentation
[26,27], each instruction of IA-32 CPU is considered as a byte sequence including
obligatory opcode with length 1,3 . In order to instructions’ layouts we use 16-bit
representation of opcode, i.e. an opcode op of CPU instruction instr is a 2-byte struc-
ture with fields op[1] и op[2]:

• If length(instr.opcode) == 1 then op[1] = instr.opcode and op[2] = 0;
• If length(instr.opcode) == 1 and the opcode has so-called group extension [26]

then op[1] = instr.opcode and op[2] = (instr.modrm & 00111000);
• Otherwise op[1] = 0x0F, op[2] = instr.opcode. The main reason of this simpli-

fication is relative rarity use of such instructions in traditional user-mode appli-
cations and opportunity to reveal their usage under such simplification circum-
stances.

 Using Low-Level Dynamic Attributes for Malware Detection 263

The process of forming finite-length sequences of the symbols (terminal chains in
terms of the formal model stated above) was organized with help of the rule of form-
ing execution blocks restricted by conditional (for instance, JZ) and unconditional (for
example, RET, JMP) CPU control flow instructions. An example of representing the
typical code chain is shown in Fig. 3.

Fig. 3. An example of the dynamic feature representation process

We defined the following classification methods as base classifiers to be used in the
experimental part of the work: Naive Bayesian Classifier (NB), Decision Tree (DT)
and k Nearest Neighbors (kNN) [28]. The efficiency of using these classifiers is treated
in context of their instances’ accuracy for cases defined by different data sets and,
therefore, different features’ sets belonging to the feature group we discussed above.

4 Experiments

The experiments were performed with using the traditional data source [7] which is
widely used in many researches on the malware detection topics [8-11]. From the
whole dataset we picked a number of the following malware families: Bifrose [29],
Lmir [30], Magania [31], OnlineGames [32], Poison [33] and Vapsup [34]. The set of
benign files was extracted from several sources including sets of executable files from
Microsoft Windows and popular Internet service SourceForge [35]. The total amount
of files used during experiments was 13120 and 11958 malicious and benign files
correspondingly.

The extraction procedure of the initial set of features was performed with help of
several tools in semi-automatic way in specially prepared isolated environment. We
used Debugging Tools for Windows [36] with its Python wrapper package PyDbg
[37] and interactive disassembler IDA [38]. During the gathering of the data about
instructions’ chains we took into account the following restriction – the gathering
process was oriented on the instructions, located in the virtual address space region
where the object being analyzed was mapped in. This restriction excluded from con-
sideration the common instructions chains belonging to the OS user-mode shared
libraries. Moreover, the gathering process was limited by some additional conditions
including time of analysis, amount of already available data and appearance of com-
plex events (e.g. creating new threads, exceptions). These restrictions allowed to sub-
stantially simplify the gathering procedure logic, but made it possible to obtain only
start-up instructions’ sequences.

264 D. Komashinskiy and I. Kotenko

The obtained set of all available instruction chains’ descriptions was divided into
six separate subsets characterizing chosen malware families. In order to minimize
calculations complexity we weighted by Information Gain Ratio [39] each such data
subset and then selected top 500 features for the each one. Then these obtained short-
ened objects’ descriptions were used for learning by chosen base classification meth-
ods. Rapid Miner 5.2 [40] was used in order to learn malware detection models, vali-
date their accuracy and perform other necessary calculations. It includes both own
means of supporting Data Mining – related computations and well-known Weka
package which is traditionally used by research community for experiments on mal-
ware detection [8-11]. Fig. 4 depicts a fragment of the whole scheme of the experi-
ment we did with help of this environment. Data loader item (“Read AML” element)
passes obtained data to the data copy item (“Multiply” element). Then these copies
are sent to blocks of target base models (elements “DT”, “NB” and “KNN”).

Fig. 4. A fragment of experiment scheme in RapidMiner’s environment

Fig. 5 shows a fragment of decision tree built with use of data subset including
Poison [33] and clean samples. The string data is decision tree’s nodes which repre-
sent feature strings for instructions’ opcode sequences. Decision tree’s edges point
decision making conditions. For example, condition 0.500 corresponds
to existence of the feature (opcode sequence) in the object’s description.

Fig. 5. A fragment of a decision tree built for Poison malware family

 Using Low-Level Dynamic Attributes for Malware Detection 265

In accordance with the task posed for the experiments we obtained eighteen models
of malware detection based on chosen base classification methods. Each of them was
applied to all malware families’ subsets. The obtained models’ accuracy validation
was performed with so-called 10-fold cross validation procedure. Matthews Correla-
tion Coefficient [42] was used as a main accuracy indicator.

The obtained accuracy results are shown in Table 1 and Fig. 6.

Table 1. Results of experiments

 DT KNN NB
Bifrose 0.56971700 0.57091111 0.57269830
Lmir 0.46309339 0.47722767 0.47908319
Magania 0.72887724 0.73356166 0.74286805
OnlineGames 0.77920902 0.77905059 0.78047616
Poison 0.84038047 0.84271514 0.84736974
Vapsup 0.08217656 0.07928708 0.08633095

As it can be seen from the resulting table, in general case the most effective classi-

fication method is Naive Bayesian classifier. For proposed type of low-level dynamic
features it can be adopted for instantiation some basic heuristic malware detection
systems. However, it is visible that accuracy difference between the methods we used
during experiments is not significant.

Fig. 6. Graphical representation of experiments’ results

Fig. 6 shows that the proposed approach for dynamic features’ extracting does not
provide the same level of accuracy for different families of malware. It is most effec-
tive for Poison [33], OnlineGames [32] and Magania [31] malware families.

266 D. Komashinskiy and I. Kotenko

5 Discussion

The approach to extract behavioral (dynamic) features, evaluated in this paper, is
based on representing of a Portable Executable file object in a form of a set of
Boolean attributes. Each attribute characterizes availability in object’s code of
some specific CPU instruction sequence terminated by instructions of conditional or
unconditional execution flow transfer.

We have to stress, that modern code or executable binaries generation tools are so
diverse, that the approach cannot be considered as a “silver bullet” for detection of
malicious programs.

However, in some specific cases depending on particular malware generators, cus-
tom obfuscators and protectors, the approach can be used with high efficiency in the
context of the multi-model approach using a diverse set of features and data sets in
order to prepare combined malware detection model.

The approach provides efficient means for revealing origin-specific aspects where
under origin we assume some code generation tool (e.g. a unique protection tool) or a
unique source code package. The imagination of an application as a set of instruc-
tions’ chains adds new dimension of behavioral analysis requiring further deep
investigation.

Moreover, the approach to extract dynamic features has some principal practical
restrictions requiring more sophisticated implementation of raw data harvesting. In
order to obtain a trace of instructions per each file we mainly used mentioned above
debugging means. This causes harvesting environment’s safety issues and a need to
regularly revert it back to the initial state.

Usually malicious software uses a huge set of methods to detect whether an appli-
cation is being debugged and to counteract debuggers that causes raw data quality
related issues as well [43].

In our point of view, the first problem can be solved by using more safe and relia-
ble (however more vulnerable to some specific tricks) PE32 emulation means.

The extent of importance of the second issue has not been specified very well yet
and requires deeper look at problematic cases. However, in general case, while using
other types of features identifying more high-level file objects’ (applications)
specificities, we can expect the issue’s significance to decrease due to automatic
involvement into the set of valuable potentially malicious attributes some patterns of
preparing and performing such checks for debuggers.

During the thorough review of accuracy results for obtained models we realized
that the absence of significant differences between classification models per each
malware subset has the solid explanation. The overwhelming majority of features
used by all classification methods is specific for malicious samples only. Thus, the
used data sets including features extracted by proposed approach have a set of
features that can be used to distinguish malicious and benign applications without
building complex rules and models. This emphasizes strengths of the approach and
reserves a place for its usage in the global multi-model malware detection schemes.

 Using Low-Level Dynamic Attributes for Malware Detection 267

6 Conclusion

In the paper we have considered the issues of improving the quality for heuristic
malware detection means based on applying Data Mining techniques. The approach
presented in the paper specifies a way to represent low-level behavioral features
which can be useful to distinguish different malware families and benign application
of Portable Executable format (PE32). It can be adopted for other types of malicious
executable binaries as well.

The idea of the approach is based on representing any application to be analyzed as
a sequence of executed instructions. The sequence is considered as a main source of
features (attributes) which are necessary to represent an analyzed application in vector
form. In order to prepare the set of features, we suggested to defragment instructions’
sequence into blocks of instructions bordered with control instructions (instructions
changing execution flow). Instructions in our approach are presented by an alphabet
consisting of 16-bit symbols including the IA32 instruction set specific data.

The approach to extract behavioral features which characterize applications’ low-
level dynamic specificities allows us to reveal some groups of patterns specific for
malware and malware-intrinsic machine code protection tools (tricks). This fact
makes the approach applicable in the multi-model generic malware detection.

The future work will comprise research activities focused on formal definition of
the generic multi-model approach including already existing particular ways to detect
malicious software with Data Mining tools and its practical validation steps.

Acknowledgments. This research is being supported by grant of the Russian Founda-
tion of Basic Research (project #10-01-00826-a), Program of fundamental research of
the Department for Nanotechnologies and Informational Technologies of the Russian
Academy of Sciences (contract #3.2), State contract #11.519.11.4008 and partly fund-
ed by the EU as part of the SecFutur and MASSIF projects.

References

1. Schultz, M.G., Eskin, E., Zadok, E., Stolfo, S.J.: Data Mining Methods for Detection of
New Malicious Executables. In: Proceedings of the IEEE Symposium on Security and Pri-
vacy, pp. 38–49 (2001)

2. McAfee Labs blog: A Look at One Day of Malware Samples (October 2011),
http://blogs.mcafee.com/mcafee-labs/a-look-at-one-day-of-
malware-samples

3. Wikipedia: Stuxnet computer worm, http://en.wikipedia.org/wiki/Stuxnet
4. Wikipedia: Flame computer malware,

http://en.wikipedia.org/wiki/Flame_(malware)
5. Kephart, J.O., Sorkin, G.B., Arnold, W.C., Chess, D.M., Tesauro, G.J., White, S.R.: Bio-

logically inspired defenses against computer viruses. In: Proceedings of 14th International
Joint Conference on Artificial Intelligence, pp. 985–996 (1995)

268 D. Komashinskiy and I. Kotenko

6. Pietrek, M.: An In-Depth Look into the Win32 Portable Executable File Format. Microsoft
Developers’ Magazine (February, 2002), http://msdn.microsoft.com/en-
us/magazine/cc135800.aspx

7. VX Heavens, http://vxheavens.com
8. Kolter, J.Z., Maloof, M.A.: Learning to Detect Malicious Executables in the Wild. In: Pro-

ceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 470–478 (2004)

9. Masud, M.M., Khan, L.R., Thuraisingham, B.M.: Feature-Based Techniques for Auto-
Detection of Novel Email Worms. In: Proceedings of the 11th Pacific-Asia Conference on
Knowledge Discovery and Data Mining, pp. 205–216 (2007)

10. Masud, M.M., Khan, L.R., Thuraisingham, B.M.: A Hybrid Model to Detect Malicious
Executables. In: Proceedings of the IEEE International Conference on Communication, pp.
1443–1448 (2007)

11. Masud, M.M., Khan, L.R., Thuraisingham, B.M.: A scalable multi-level feature-extraction
technique to detect malicious executables. Information Systems Frontiers 10, 33–45 (2008)

12. Menahem, E., Shabtai, A., Rokach, L., Elovici, Y.: Improving Malware Detection by Ap-
plying Multi-Inducer Ensemble. Journal of Computational Statistics & Data Analy-
sis 53(4), 1483–1494 (2009)

13. Alazab, M., Layton, R., Venkataraman, S., Watters, P.: Malware Detection Based on
Structural and Behavioural Features of API Calls. In: Proceedings of International Cyber
Resilience Conference, pp. 1–10 (2010)

14. Santos, I., Penya, Y.K., Devesa, J., Bringas, P.G.: N-grams-based File Signatures for Mal-
ware Detection. In: Proceedings of the 11th International Conference on Enterprise Infor-
mation Systems, pp. 317–320 (2009)

15. Lu, Y.-B., Din, S.-C., Zheng, C.-F., Gao, B.-J.: Using Multi-Feature and Classifier Ensem-
bles to Improve Malware Detection. Journal of Chung Cheng Institute of Technolo-
gy 39(2), 57–72 (2010)

16. Perdisci, R., Lanzi, A., Lee, W.: McBoost: Boosting scalability in malware collection and
analysis using statistical classification of executables. In: Proceedings of the Computer Se-
curity Applications Conference, pp. 301–310 (2008)

17. Shahzad, F., Farooq, M.: ELF-Miner: Using Structural Knowledge and Data Mining
Methods to Detect New (Linux) Malicious Executables. Journal of Knowledge and Infor-
mation Systems 30(3), 589–612 (2012)

18. Ye, Y., Li, T.: Automatic Malware Categorization Using Cluster Ensemble. In: Proceed-
ings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 95–104 (2010)

19. Siddiqui, M., Wang, M., Lee, J.: Detecting Internet Worms Using Data Mining Tech-
niques. Journal of Systemics, Cybernetics and Informatics 6(6), 48–53 (2008)

20. Kinable, J.: Malware Detection through Call Graphs. Publications of Future Internet (FI)
Programme, Master’s Thesis. Aalto University, Department of Information and Computer
Science (2010)

21. Komashinskiy, D.V., Kotenko, I.V.: Using Data Mining methods for malware detection.
In: Information Fusion and Geographical Information Systems, pp. 343–359. Springer,
Heidelberg (2009)

22. Ye, Y., Li, T., Huang, K., Jiang, Q., Chen, Y.: Hierarchical associative classifier (HAC)
for malware detection from the large and imbalanced gray list. Journal of Intelligent In-
formation Systems 35(1), 1–20 (2010)

 Using Low-Level Dynamic Attributes for Malware Detection 269

23. Lanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M., Kirda, E.: AccessMiner: Using
System-Centric Models for Malware Protection. In: Proceedings of the 17th ACM Confer-
ence on Computer and Communication Security, pp. 399–412 (2010)

24. Rieck, K., Trinius, P., Willems, C., Holz, T.: Automatic Analysis of Malware Behavior us-
ing Machine Learning. Journal of Computer Security 19(4), 639–668 (2011)

25. Shahzad, F., Bhatti, S., Shahzad, M., Farooq, M.: In-Execution Malware Detection using
Task Structures of Linux Processes. In: Proceedings of the IEEE International Conference
on Communications ICC 2011, pp. 1–6 (2011)

26. Intel Corporation: IA-32 Intel Architecture Software Developer’s Manual, Volume 2A: In-
struction Set Reference, A-M. Intel Corporation (2006)

27. Intel Corporation: IA-32 Intel Architecture Software Developer’s Manual, Volume 2A: In-
struction Set Reference, N-Z. Intel Corporation (2006)

28. Caruana, R., Niculescu-Mizil, A.: An empirical comparison of supervised learning algo-
rithms. In: Proceedings of the 23rd International Conference on Machine Learning, pp.
161-168 (2006)

29. F-Secure: Bifrose malware family description, http://www.f-secure.com/v-
descs/backdoor_w32_bifrose_bge.shtml

30. Total Malware Info: Lmir malware family description,
http://www.totalmalwareinfo.com/rus/Trojan-PSW.Win32.Lmir.ko

31. F-Secure: Magania malware family description, http://www.f-secure.com/v-
descs/trojan-psw_w32_magania.shtml

32. F-Secure: OnlineGames malware family description, http://www.f-
secure.com/v-descs/trojan-psw_w32_onlinegames.shtml

33. Microsoft Security Portal: Poison malware family description,
http://www.microsoft.com/security/portal/Threat/Encyclopedia
/Entry.aspx?Name=TrojanDownloader:Win32/Poison.A

34. Microsoft Security Portal: Vapsup malware family description,
http://www.microsoft.com/security/portal/Threat/Encyclopedia
/Entry.aspx?name=Adware%3aWin32%2fVapsup

35. SourceForge: Find, Create and Publish Open Source software for free,
http://sourceforge.net

36. Microsoft: Download and Install Debugging Tools for Windows, http://msdn.
microsoft.com/en-us/windows/hardware/gg463009.aspx

37. GitHub: Open RCE, pydbg, a pure-python win32 debugger interface, https://
github.com/OpenRCE/pydbg

38. IDA: Interactive disassembler and debugger, http://www.idapro.ru/
39. Harris, E.: Information Gain Versus Gain Ratio: A Study of Split Method Biases. In:

Online Proceedings of 7th International Symposium on Artificial Intelligence and Mathe-
matics (2002)

40. I-Rapid: RapidMiner, http://rapid-i.com/content/view/181/190/
41. Weka 3: Data Mining Software in Java, http://www.cs.waikato.ac.nz/

ml/weka/
42. Matthews, B.W.: Comparison of the predicted and observed secondary structure of T4

phage lysozyme. Biochimica et Biophysica Acta 405(2), 442–451 (1975)
43. Ferrie, P.: The Ultimate Anti-Debugging Reference (May 2011), http://pferrie.

host22.com/papers/antidebug.pdf

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2012, LNCS 7531, pp. 270–285, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Configuration-Based Approach
to Embedded Device Security

Vasily Desnitsky, Igor Kotenko, and Andrey Chechulin

St. Petersburg Institute for Informatics and Automation (SPIIRAS),
39, 14 Linija, St. Petersburg, Russia

{desnitsky,ivkote,chechulin}@comsec.spb.ru

Abstract. Development of embedded devices is a challenging task because of
their varying, reactive and real-time nature. Conventionally embedded devices
are considered as a part of systems owned by some other entities and operated
in a potentially hostile environment. Embedded device development is an
extremely complicated problem due to various types of threats and attacks the
device subject to, and because the security in embedded devices is commonly
provided as an additional feature at the final stages of the development process,
or even neglected. In this paper we propose a new configuration model, which
facilitates the design of secure and resource consumption efficient embedded
devices. The model enables the search for the most effective combinations of
security building blocks in terms of consumption of device resources.

Keywords: embedded system security, security modeling, security building
blocks, configuration, resource efficiency, non-functional property.

1 Introduction

From a security viewpoint, embedded devices are basically systems owned by a
certain entity, used frequently as a part of systems owned by other entities and
operated in a potentially hostile environment. Development of security-enhanced
embedded devices is a complicated task owing to different types of threats and attacks
that may affect the device, and because the security in embedded devices is
commonly provided as an additional feature at the final stages of the development
process, or even neglected. The paper encompasses the analysis of security issues of
the systems which include embedded devices. Such systems are notable for autonomy
of separate devices included in the system and for constrains of the resources of the
device and their consequently weak efficiency [3, 7].

The approach proposed in the paper determines the way to combine particular
algorithms and techniques implementing various protection properties. The goal of
this approach is to achieve needed functional protection properties by choosing the
most efficient combination of security building blocks, considering non-functional,
resource-related properties of blocks and non-functional limitations of the device.

Importance of the objective of the paper is conditioned by occurrence and the
tendency to rapid increase in quantity of devices carrying out communications on the

 Configuration-Based Approach to Embedded Device Security 271

Internet and directed remotely by wireless protocols – so-called “Internet of Things”
[9]. Carrying out communications in non-controlled and potentially dangerous
environment, such systems are exposed both to specified and universal attacks [10].
Hence, the task of building the efficient defense mechanisms, aimed at counteraction
to such attacks carried out by potential intruder [13] is of high importance.

P. Koch et al. [5], A.J. Rae and L.P. Wildman [10] single out problems of user
identification, safe data storage inside the device, installed software resistance to
modification, secure access to the network, secure network connection, etc. as the key
problems in the field of embedded devices security. At that, modern mechanisms of
embedded systems security are oriented mainly at provision of defense against
definite threats. Thus, A.J. Rae and L.P. Wildman [10], D.G. Abraham et al. [1],
O. Kommerling and M. G. Kuhn [6] propose different classifications of threats and
intruders for embedded devices, proceeding from intruder’s abilities, his/her
competence, type of access to the device; they also uncover some methods of threat
prevention.

In order to prevent revealed threats in the embedded device design process
functional protection properties should be provided and can be covered by some
specific protection mechanisms in the form of security building blocks. However,
combination of particular blocks on the basis of solely functional protection properties
turns out to be ineffective because of significant resources limitations imposed by the
device and hence it leads to impossibility of obtained solutions deployment in practice.

The suggested configuration model is targeted on forming the integrated protection
for individual embedded devices. However, generally embedded devices function
within the bounds of some macro system and the functionality of the device and
related threats depend directly on the system, therefore, configuring should be
regarded as a part of design process for the whole system. Besides, the choice of
blocks for a group of devices interacting with each other should be conducted in
coordination.

Specificity of systems with embedded devices and the configuration problem
solved is at least twofold.

Firstly, we should underline the limited nature of the device resources and resulting
complexity in using traditional means applied conventionally to protect PCs and
servers. At that, the limited nature of the device resources arises due to both
technological and computational constraints and market demands on sufficiently
cheap and secure devices. Therefore, it brings the problem of achieving a sensible
trade-off between embedded device security, functionality and performance. Such
trade-off would allow support for the acceptable protection of the system, having
constraints on resource volumes for particular devices.

Secondly, we should take into account the specific sets of attacks that can be
targeted against the system with embedded devices. In addition to constraints on
resource volumes, embedded devices are often characterized by properties of mobility
and possibility to function in various environments with different kinds of intruders,
levels of trust and types of communications changing with time. Hence, depending on
a particular scenario the device can be a subject to various classes and types of attack
conducted by potential intruders [13] having specific goals, skills, resources and tools.
Depending on various scenarios of the system, possible changes in threats and
intruders demand taking them into account within the design process.

272 V. Desnitsky, I. Kotenko, and A. Chechulin

By a configuration we imply a set of security building blocks deployed on the
device and providing implementation of one or several protection functions. In
essence, configuration process represents a search for such a configuration that,
firstly, covers all demanded functional protection properties; secondly, satisfies the
constraints imposed on volumes of device resources being allocated for protection
functions fulfillment; and, thirdly, is optimal. A configuration meeting the first two
conditions is called an admissible one. The optimality is meant in accordance with
some optimality criterion set in the configuration process. As well, every
configuration, both admissible and optimal, has to satisfy platform compatibility
constraints, such as type and version of the mobile operating system of the device.

We took MARTE [14] as the basis for embedded devices analysis. MARTE
comprises specification series and ontological representation of embedded devices
and systems with the use of UML. In particular, in the present work we use
methodological base for definition and evaluation of software-hardware resources of
embedded devices and non-functional properties.

The rest of the paper is organized as follows. Section 2 of the paper is devoted to
representation of the configuration model structure. Section 3 exposes main principles
of embedded devices configuring on the basis of solving optimization problem. It also
considers the issues of non-functional properties’ modeling, configuration model
application and the analysis of incompatibility between security building blocks.
Section 4 is devoted to a case study. We consider the case study simulation
peculiarities and experiments on evaluation of the device resources’ consumption.
The possibilities of the configuration software prototype are demonstrated.

2 Core Conceptions of the Configuration Model

S. Ravi et al. [12] single out a number of embedded system design challenges, such as
processing Gap, battery Gap, tamper resistance, cost and others. As a rule, each
challenge is tackled individually with the help of specific approaches and solutions.
However, due to significant resource constraints of the devices, the design solutions
should be considered together in order to minimize total expenses on security
functions [2]. In other words, during evolution of the device, its functionality and
security functions, the chosen set of such design solutions should be reconsidered in
order to increase the performance in new conditions.

As a result, a new design challenge occurs to achieve a trade-off between “high-
security and high-performance” [2]. G. Gogniat et al. [2] suggest using reconfigurable
security primitives on the basis of reconfigurable data path in order to dynamically adapt
its architecture depending on the system and environment states as one of the ways to
achieve solution to this challenge. In fact, G. Gogniat et al. [2] suggest, firstly, to switch
from one protection mechanism to another, depending on runtime requirements, and,
secondly, to upgrade dynamically the protection mechanisms of the devices.

As opposed to [2], in this paper we suggest a design-time approach where
obtaining of the productively efficient solutions is based on choosing the design
solutions (namely, security building blocks), proceeding from non-functional resource
requirements to the device and optimality criteria to overcome "high-security and
high-performance" challenge.

 Configuration-Based Approach to Embedded Device Security 273

The proposed configuration model for embedded devices is grounded on the
component based approach to modeling and design, where protection is composed of
a collection of single software and software-hardware modules (security building
blocks), each of them being responsible for implementation of one or several security
requirements [8]. The advantage of this approach is a greater flexibility of the design
process, in particular, its directivity to requirements changes introduced at different
stages of the design process and resulting in revisions of some stages already
conducted. Another advantage of the component based approach is also the possibility
to carry out conflicts and inconsistencies analysis between particular security building
blocks.

As an example of practical application of the component based approach we chose
mobile operating system Google Android, which implies the process of application
development on the basis of reusable components, each of them being responsible for
execution of certain functions.

The modeling is conducted in terms of properties of the device and security
building blocks. In particular, security requirements to the device are formulated with
the help of functional protection properties, while device resources demanded by
security building blocks are set on the basis of non-functional properties.

Generally, the configuration process includes the analysis of properties and
available security building blocks as well as the choice of those ones that will
implement declared requirements in the effective, optimal way. The effectiveness is
evaluated in terms of some definite optimality criterion.

In essence, the configuration process assumes interaction between the target device
and the configuration consisting of a set of security building blocks (SBBs). The
blocks provide functional protection properties to the device, if one allocates needed
resources (Fig. 1).

Fig. 1. Interaction between a configuration and a device

At the conceptual level the following diagram exposes the core elements of the
configuration model (Fig. 2).

The diagram presents a stack based structure, where actions (or data) conducted (or
formed) in the design process are drawn up from below to the top. At the bottom level
the elements are responsible for getting the input data for the configuration process.
At the middle level there are the ones respond to extraction of relevant input data
from the specifications of the device and security building blocks. At the top leve
there are the elements presenting the core functions involved in the configuration
process on the basis of the lower levels.

274 V. Desnitsky, I. Kotenko, and A. Chechulin

Fig. 2. Structure of the configuration model

Taking into account specification of the device and peculiarities of its environment
the developer of the device forms threat model, describing goals of a potential
intruder trying to compromise the device and/or the services it provides. An attack
model is constructed on the basis of the threat model; for each threat it describes
possible attacks targeted on achievement of the goal, including description of actions
of the attack and resources needed for its fulfillment. Assaulted on counteraction of
the revealed attacks, the protection is formulated by means of security requirements.
Each requirement determines the necessity of carrying out one or several functional
protection properties. The examples for such properties are as follows: “integrity of
data stored on the device”, “authenticity of communication channel used for
connections with other devices”, “implementation of remote attestation for the
platform of the device”, etc.

In accordance with MARTE [14], a number of types of resources for embedded
devices are regarded, particularly computing, storage and communication resources.
Each resource is characterized by one or several metrics, numerical non-functional
properties, which makes it possible to get quantitative values for resource
consumption by each security building blocks running inside the device. The
examples of non-functional properties are “volume of device’s memory allocated for
execution of a security building block” (it could be measured in Mb) and “maximum
speed of the communication channel” (measured in Mb/sec). Non-functional
requirements are formed on the basis of worst-case resource consumption values
(WCRC values). For a specific non-functional property WCRC value is assigned as
the worst-case consumption value for the block.

WCRC values could be obtained experimentally on the basis of software based
modeling (simulation), in particular through comparison of two modes of the
application: unprotected application mode and one of applications protected by means
of the given security building block. Non-functional property values for constraints of
a device are identified reasoning from the specification of the device and its particular
characteristics assigned by the manufacturer as well as empirically through measuring
free volumes of the device resources.

At the design stage of the device, the analysis of incompatibilities between security
building blocks is conducted as well. In essence, it allows revealing potential
contradictions between them, which can become apparent under some specific
conditions during exploitation of the system.

 Configuration-Based Approach to Embedded Device Security 275

3 Configuration Model Development

A. Configuring by Optimization Problem Solving

The core element of the paper is the configuration process on the basis of solving the
optimization problem. The peculiarity of the process lies in the fact that the choice of
security building blocks is carried out not only starting from the required protection
functionality, but also taking into account non-functional, resource based properties of
the blocks to be deployed on the device.

Optimization problem allows finding the most effective configuration among the
set of all possible ones. Efficiency is regarded in terms of the most economical
consumption of some specific device resource or through minimizing an integral
metric dependent on a number of resources.

Following the classic understanding, the optimization problem assumes, first, an
objective function, which identified optimality criterion and, second, a set of constraints.

Objective function represents a mathematical expression (criterion expression)
containing variables for one or several non-functional properties. At that, the
expression is minimized in the set of admissible configurations.

We consider the following optimality criteria for the configurations:

• Minimal consumption of a resource allocated for the protection functions (e.g.
minimal consumption of memory used by the blocks of a configuration).

• Optimality on the basis of a “chain of properties”, i.e. the previous criterion
applied sequentially for a series of resources in an order according to their
significance.

• Other integral criteria relying not only on the resources consumed by
configurations, but also on their device constraints. For example, the following
formula declares a criterion that allows a device developer to detect a
configuration maximizing the minimal free amount over all the resources
(calculated in percent):

))}}(({max{min
Pr∈

i
opertiesNonFuncpi

ionconfiguratppercent ,

)(

 -)(
)(

pconstr

ppconstr
ppercent = ,

where p denotes a non-functional protection property numerically characterizing some
resource of the device; percent() function returns a normalized value of the property
in compliance with its constraint constr().

All the constraints on the objective function can be divided into three groups:

• Constraints on functional protection properties, binary ones determining whether
a particular security building block covers some protection function or not.

• Constraints on numerical values of non-functional properties characterizing
needs of the block in a specific resource formulated in the form of inequalities
with the use of WCRC values (e.g. memory consumed by the configuration
should not exceed a particular value).

276 V. Desnitsky, I. Kotenko, and A. Chechulin

• Compatibility constraints between a block and the device platform in the shape
of so-called platform compatibility properties. These constraints determine
presence or absence of any platform peculiarities, such as support for a specific
type operating system and its version, embedded CPU type [11], presence of
network wire and wireless interfaces like Ethernet, Bluetooth, etc.

Generally, the optimization problem solved is a multi-objective extreme task with the
identified set of constraints. Its formal settlement is formulated with the use of set-
theoretic presentation:

))ionconfigurat(properties_compat_platf(Constr

))ionconfigurat(properties_functional_non(Constr

))ionconfigurat(properties_functional(Constr

maxmin/))ionconfigurat(properties_functional_non(criterion_Opt →

Here by Opt_criterion we mean some optimization criterion being either minimized
or maximized. At that it depends on the constraints (Constr) of the properties of
configurations.

B. Modeling Non-functional Properties

Both functional protection properties and platform-compatibility properties are binary
ones, and their values are defined by choosing one of two predetermined values, while
non-functional properties demand more detailed consideration.

In this paper we are based on the definitions and methodological foundations
proposed by MARTE [14]. Thus, in accordance with MARTE, the measurable
quantitative non-functional properties are singled out.

At that, firstly, quantitative property is characterized by a set of Sample
Realizations that are determined (measured) for a property during runtime, while the
experimental measurements can be conducted on the real system or on the basis of
software modeling (simulation). In particular, for cyclic deterministic systems such
values might be obtained singly and “extrapolated” to the subsequent time cycles.

Secondly, a non-functional property is characterized by so-called Measure function
allowing juxtapose some numerical value to a set of gained values. Measure function
could be, for example, some mathematical function like max (maximization of set),
min (minimization), mean (averaging function).

For example, the procedure of getting the values of the non-functional property
“volume of consumed memory of the device” of some security building block might
be carried out the following way:

• Points in the software (time-points) to take measurements are chosen.
• Block’s action is initiated, measurements are taken.
• Maximization function producing required value is applied.

To obtain values of non-functional properties the security building blocks should run
in debugging mode with the use of profilers or measuring procedures could be built
into the application. In the last case it is reasonable to take into consideration the side-
effects of these procedures and possibly correct the obtained values.

 Configuration-Based Approach to Embedded Device Security 277

In accordance with MARTE, the following types of hardware resources and non-
functional properties corresponding to them are singled out:

1. Computing resource (HW_Computing package), its main characteristic being
opFrequencies property which defines interval for values of CPU frequency,
which it can function on [14]. The resource is also characterized by MIPS,
FLOPS values allowing estimate the number of operations that can be
conducted in a specific time gap.

2. Memory resource (HW_ProcessingMemory) which is characterized, in
particular, by the memory volume and the response time [14].

3. Storage resource (HW_StorageManager) which is characterized by the storage
volume.

4. Communication resource (HW_Communication) is characterized by the
channel bandwidth.

5. Energy resource (HP_Power), being spent in particular on the security
building blocks activity and on the heat dissipation. An energy resource is
characterized, firstly, by the capacity of the power source necessary for the
device activity (HW_PowerSupply), and, secondly, by the capacity of the
battery-driven resource which determines the duration of the autonomous work
of the device (HW_Battery) [14].

Beside resource properties, the so-called “external” properties stipulated by some
external requirements to the device functionality (such as, for example, blocks cost,
their physical characteristics like weight, size, etc.) could also be referred to non-
functional properties and serve as the basis for configuring.

C. Configuration Model Application

The configuration scenario is oriented at the embedded device developers and
encompasses search for the optimal configuration under some invariable constraints
on the volumes of device resources (Fig. 3).

Fig. 3. Configuration model application scenario

278 V. Desnitsky, I. Kotenko, and A. Chechulin

The scenario is formulated as “a choice of the most effective configurations on the
basis of properties of security building blocks and constraints of the device”.

Table 1 shows information on the configuration scenario, including roles, stages,
activities and conditions.

Table 1. Configuration scenario

Scenario A choice of the optimal configuration(s)
Roles involved Embedded device developer

Activity
Design and deduction of needed security
building blocks

Conditions

♦ Great number of basic functional
protection properties to be covered

♦ Huge amount of alternatives in
choosing blocks implementations

♦ Given non-functional (resource)
limitations of the device, which cannot
be violated

♦ Changing functional protection
properties (including adding new ones)
during Engineering Process

D. Analysis of Incompatibilities Between Blocks

Beside requirements to the rest part of the device a security building block can make
demands to other blocks as well. Thus, individually each block can give necessary
functionality, however requirements between particular blocks are not met. As a
whole, the paired incompatibility between blocks can be determined by means of a
square matrix (Table 2).

Here pairs {SBB1, SBB2} and {SBB1, SBB3} are compatible, whereas {SBB2,
SBB3} are incompatible. Generally, such matrix is prepared by security experts and
used by developers of the device to reveal conflicts appeared between the blocks. By
“blocks” here we mean not only SBBs granting some specific security functions to the
device, but also “engineering” (non-security oriented) blocks presenting business
functions such as data storage modules, communication blocks, etc. The main task is
to discover incompatibilities in the design process of the device.

Table 2. Table of compatibilities between security building blocks

Block compatibilities
Compatibility Block 1 Block 2 Block 3

Block 1 + + +
Block 2 + + –
Block 3 + – +

Fig. 4 depicts two types of incompatibility described below.
Generally, the design engineering process includes the following actions:

1. Specification on the basis of the expected business logic of the device, its
specification is carried out.

2. Configuring checking that each block is compatible with the device is
conducted on the stage of SBBs integration into the device. First, it should be

 Configuration-Based Approach to Embedded Device Security 279

verified that the device is capable to provide chosen blocks with all necessity
resources. Second, it should be checked that each block is compatible with
software/hardware platform of the device (operating system and its version,
sockets, etc. should be conformed).

Particularly, type 1 inconsistencies can arise due to the insufficient coordination
between business logic and specification of the device.

Type 2 inconsistencies represent the contradictions between protection functions
belonging to different blocks.

Fig. 4. Types of Incompatibility

Let us consider these incompatibility types:

1. Incompatibilities between the block and business functions of the device.
• Example. Let us regard a functional protection property “backup of customer

data stored on the device”. Assume in compliance with business requirements
to the device the volume of data stored on the device can reach 1 terabyte.
However, the corresponding backup-block available in the device allows
storing lesser amount of data only. Thus, such kind of incompatibility is a
conflict between a SBB and the business functions of the device being
represented by some other “system” blocks.

2. Inconsistencies between functional protection properties of several SBBs.
Here we regard logical incompatibility between SBBs, i.e. a contradiction
between functionality of SBBs.

• Example. Assume there are two SBBs, a backup-block (block 1) and a block
implementing secure guaranteed deletion of customer data after some specific
event happens (block 2). Inconsistency lays in the fact that block 2 works
appropriately only with special interaction with block 1. As a result such
inconsistency can be eliminated through conducting a specific scenario of SBBs
integration and checking correctness of their combined usage within the device.

We should be able to detect “potential conflicts” as well, i.e. such inconsistencies
between blocks that became apparent merely under some specific conditions.

280 V. Desnitsky, I. Kotenko, and A. Chechulin

4 Case Study

The goal of the case study we provide is to demonstrate applicability of the
configuration principles in practice. The case study represents, firstly, a demonstration
example and, secondly, a software prototype of the configuration mechanism. The
demonstration example contains software based simulation of some application
running on a device and its environment. Particularly, the example assumes carrying
out techniques that allow obtaining the values of non-functional properties for blocks
and the resource constraints of the device. In essence, the role of the case study is to
provide the configuration model with proof-of-the-concept and show a simplified
example that could be used by device developers as a pattern.

A device used in simulation process is a smart phone HTC Wildfire S on the basis
of Android 3.2 platform. The application running on the device is some sort of
network “messenger” communicating on Internet. The security goal is to protect it
against unauthorized modifications (Fig. 5).

Fig. 5. Demonstration Example

To simplify the experiment we are considering merely two functional protection
properties. The first one is formulated in terms of necessity of implementing a
function of continuous monitoring of the internal state of the application by means of
remote attestation [4]. The second property is confidentiality of critical business data
stored in the read-only memory.

A. Simulation

Simulation comprises implementation of the application, security building blocks
integrated into it and measuring functions for non-functional properties. Conducted
simulation and experiments have the following limitations and assumptions.

Because of weak maturity of profiling tools for Android platform non-functional
property measuring functions are built into the application and considered as a
business functions. We assume that execution of these functions does not influence
significantly the measurement results, i.e. we can neglect resource expenses on them.
Evaluation of the expenses of a device resource allocated for the support of a block is
carried out through measurement and comparison of non-functional properties for two
variants of the application, an unprotected program and one protected by the block. In

 Configuration-Based Approach to Embedded Device Security 281

the first case we determine resource expenses on the business functions, whereas the
second one allows us to get summarized expenses on both business functions and
security functions.

We are taking the following assumption as well. Since values of non-functional
properties are measured individually for each block, we consider the summarized
values for configurations are sums of the corresponding values for every block which
is a part of configuration. Meanwhile, in practice it is reasonable to consider such
mutual influences between blocks. For example, remote attestation block could check
not only business functions, but other blocks as well.

In simulation we are limited by three types of resources of the device as the
simplest ones for technical implementation and experiments: memory resource,
storage resource, and communication resource. Consequently, three non-functional
properties are regarded:

• Maximal amount of memory used by a block during its functioning.
• Minimal volume of read-only memory required for storing the block and

supporting its execution.
• Minimal bandwidth capacity of communication channel demanded by the block.

Analogously three non-functional constraints of the device are considered:

• The size of the device memory allocated for the blocks.
• Volume of the device storage allocated for the block support.
• Bandwidth the communication channel is able to provide to support

functioning of the blocks.

Table 3 summarizes data on techniques used in the experiments in order to compute
non-functional property values for each of resources.

Table 3. Analysis of non-functional properties

Resourc
es

Non-functional
properties

Techniques for gathering/measuring
values of non-functional properties

Values for blocks
Constraints of

device

Memory
resource

Volumes of
available /
required
memory in MB

Gathering /
measuring data in
runtime by means
of measuring
functions built in
the application

Deducing
through analysis
of device
specification

Storage
resource

Volumes of
available /
required storage
resource in MB

Immediate read of
file size attribute

Through
analysis
of device
specification

Commu-
nication
resource

Volume of
available /
required Network
connection
bandwidth

Analytically through
analysis of block
specification with
the object to send /
receive data within
established time gap

Through
analysis of
device
specification

282 V. Desnitsky, I. Kotenko, and A. Chechulin

For storage resource computation we regarded only the size of a software module
presenting the block. At that we did not took into account such costs as expenses on
memory virtualization (swapping) and ones on storing temporary or persistent
security relevant data connected to the block.

For the communication resource we assumed only synchronous communication. At
that, in the experiments we use the timeliness value, which is reasoned from the
internal security requirements of the remote attestation block and assigns a check time
gap for the data to be transmitted.

B. Results of Experiments

Conducted experiments assume modeling the work of two types of blocks supplied
with procedures of resource consumption measurement.

In conformity with the experiment conditions, the modeled application contains a
number of data structures regarded as critical in the movement of unauthorized
modifications. To make it simpler in technical implementation we consider data
structures of the same size, namely 400 instances of byte arrays, each one of 100
bytes. For the remote attestation block we suppose each data structure assumes
several admissible values regarded as correct ones. If some data holds a different
value, it means there is a violation in the application.

For each data structure a hash value (by means of MD5, SHA, etc.) is computed,
sent to the attesting entity side and subjected to verification. We assigned the check
time gap parameter equaled to 1 second (i.e. every second a set of signatures in the
form of hash values should be transmitted to the remote attesting entity).

According to the hash function bitness and applying math multiplication operation
we obtain that with the help of MD5 the volume of passed data makes up 400 * 128 =
51200 bit/sec, while for SHA-256 we get 102400 bit/sec (here we neglect overhead
data). For the resource constraints we suppose that data are transmitted with the use of
GPRS channel, and hence we let the minimal ensured speed of the channel equals to
32 Kbit/sec.

The consumption values obtained for each block are expressed in Table 4 and
Table 5.

Table 4. Resources consumed by remote attestation block

Remote attestation Memory resource
consumption (KB)

Storage resource
consumption (KB)

Communication resource
consumption (Kb/sec)

with the use of MD5
hash 128 bit

287 4 51,2

with the use of SHA-
256 hash 256 bit

359 4 102,40

Table 5. Resources consumed by symmetric encryption block

Symmetric encryption of
critical data

Memory resource
consumption (KB)

Storage resource
consumption

(KB)

Communication
resource consumption

(Kb/sec)

AES/128 based encryption 523 4 –
DES/56 based encryption 552 4 –

 Configuration-Based Approach to Embedded Device Security 283

Experimentally obtained values for non-functional resource related properties
allow providing each of the blocks available at the device developer with the series of
its resource consumption characteristics. As a result, choosing the appropriate
optimality criterion, the developer gains optimal combination of security building
blocks (these configurations appear to be optimal by construction).

At the great number of functional protection requirements and the number of
blocks available, procedures of developer’s manual complete enumeration of all
possible blocks turns out inefficient, in particular, due to its exponential complexity.
Carrying out automated configuration process with the use of the developed
configuration tool allows finding optimal configurations in the acceptable time period.
Thus experiments showed, for example, the configuration process with more than 100
variants blocks on the ordinary PC takes less than 1 second. Moreover, even with the
number of blocks increasing to 1000 and more (assumed theoretically) time expenses
turn out to be quite acceptable with configuring being anyway an element of the
design time process.

C. Implementation of the Configuration Model

The developed software prototype enables us to demonstrate the proposed
configuration approach and represents a software tool to configure distributed systems
with embedded devices. The objective of the tool is to facilitate the developers in
taking security-aware decisions at the design stage to provide necessary security and
admissible consumption of device hardware resources. The proper configuration
function allows for a given set of security blocks to reveal the optimal configuration
under specific constraints and optimality criterion. The tool enables the developers to
check optimality and admissibility of a configuration as well as determine what kind
of the resources is the most critical for a configuration and deduce non-functional
limitations for the device to apply a given configuration.

Fig. 6 depicts a fragment of graphical user interface of the configuration tool
implemented. In particular it exposes the main window providing the developer with
information on functional and non-functional properties of security building blocks,
information on platform compatibility properties, available optimality criteria,
specification of the device and some means for the governance of the configuration
process.

The configuration tool application represents the final step at the security design
stage for the device. Starting from the phase of security and non-security requirements,
producing the simulation and carrying out the experiments allow the developer to
accumulate needed data on particular blocks, configurations and the device.
Afterwards, as input data for the tool these ones are used to obtain the sought solutions.

5 Conclusion

Conventionally in practice embedded device security issues are either neglected or
considered only at the final stage of the design process in the form of integration of
some particular security functions like encryption of the outgoing traffic into the
device.

284 V. Desnitsky, I. Kotenko, and A. Chechulin

Fig. 6. Configuration Tool GUI

In the paper we proposed a new configuration model, which facilitates the design
of secure and resource consumption efficient embedded devices. The proposed
configuration model gives the developers a possibility to construct more secure and
energy efficient embedded solutions. The model enables the search for the most
resource efficient combinations of security building blocks on the basis of solving
optimization problem.

We analyzed the case study simulation peculiarities and experiments on evaluation
of the device resources’ consumption. The possibilities of the configuration software
prototype implemented were demonstrated.

The distinctive peculiarity of the proposed approach is construction of the
combined protection based on particular security building blocks, taking into account
both functional and non-functional protection properties. Considering non-functional
ones allows device developers to deduce the needed protection, reasoning from
amounts of resources available for the blocks.

The future work will comprise reinforcement of modeling and experimental part
through the expansion of security building blocks under investigation. Besides remote
attestation and symmetric encryption blocks, we assume to model deeply and make
use of some other ones and wider range of crypto primitives they are based on.
Having more security building blocks will allow us, firstly, to enhance the proof of
the whole configuration concept and, secondly, to reproduce completely the
configuration process proposed on the basis of the existing demonstration example.

 Configuration-Based Approach to Embedded Device Security 285

Acknowledgements. This research is being supported by grant of the Russian
Foundation of Basic Research (project #10-01-00826-a), Program of fundamental
research of the Department for Nanotechnologies and Informational Technologies of
the Russian Academy of Sciences (contract #2.2), State contract #11.519.11.4008 and
partly funded by the EU as part of the SecFutur and MASSIF projects.

References

1. Abraham, D.G., Dolan, G.M., Double, G.P., Stevens, J.V.: Transaction security system.
IBM Systems Journal 30(2), 206–228 (1991)

2. Gogniat, G., Wolf, T., Burleson, W.: Reconfigurable Security Primitive for Embedded
Systems. In: Proceedings of International Symposium on In System-on-Chip, pp. 23–28
(2005)

3. Grand, J.: Practical Secure Hardware Design for Embedded Systems. In: Proceedings of
the 2004 Embedded Systems Conference, San Francisco, California (2004)

4. Gu, L., Ding, X., Deng, R.H., Xie, B., Mei, H.: Remote attestation on program execution.
In: Proceedings of the 3rd ACM Workshop on Scalable Trusted Computing (STC 2008).
ACM, New York (2008)

5. Kocher, P., Lee, R., Mcgraw, G., Ravi, S.: Security as a new dimension in embedded
system design. In: Proceedings of the 41st Design Automation Conference (DAC 2004),
San Diego, CA (2004)

6. Kommerling, O., Kuhn, M.G.: Design principles for tamper-resistant smartcard processors.
In: Proceedings of the USENIX Workshop on Smartcard Technology, Chicago, pp. 9–20
(1999)

7. Koopman, P.: Embedded System Security. IEEE Computer (2004)
8. Kuntze, N., Rudolph, C.: Secure Digital Chains of Evidence. In: Proceedings of 2011

IEEE Sixth International Workshop on Systematic Approaches to Digital Forensic
Engineering, SADFE 2011, Oakland, CA, USA (2011)

9. Lee, G.M., Kim, J.Y.: The Internet of Things – A problem statement. In: 2010
International Conference on Information and Communication Technology Convergence
(ICTC), pp. 517–518 (2010)

10. Rae, A.J., Wildman, L.P.: A Taxonomy of Attacks on Secure Devices. In: Australian
Information Warfare and IT Security, Australia, pp. 251–264 (2003)

11. Raghunathan, A., Ravi, S., Hattangady, S., Quisquater, J.: Securing Mobile Appliances:
New Challenges for the System Designer. In: Proceedings of DATE 2003, pp. 3–7 (2003)

12. Ravi, S., Raghunathan, A., Kocher, P., Hattangady, S.: Security in Embedded Systems:
Design Challenges. ACM Transactions on Embedded Computing Systems 3(3), 461–491
(2004)

13. Ruiz, J.F., Harjani, R., Maña, A., Desnitsky, V., Kotenko, I., Chechulin, A.:
A Methodology for the Analysis and Modeling of Security Threats and Attacks for
Systems of Embedded Components. In: The 20th Euromicro International Conference on
Parallel, Distributed and Network-Based Computing (PDP 2012), Munich, Germany
(2012)

14. Object Management Group: The UML Profile for MARTE: Modeling and Analysis of
Real-Time and Embedded Systems. Version 1.1 (2011), http://www.omgmarte.org

A Study of Entropy Sources

in Cloud Computers:
Random Number Generation on Cloud Hosts

Brendan Kerrigan and Yu Chen

Dept. of Electrical and Computer Engineering, SUNY - Binghamton

Abstract. Cloud computing hosts require a good source of cryptograph-
ically strong random numbers. Most of the standard security practices
are based on assumptions that hold true for physical machines, but don’t
translate immediately into the domain of virtualized machines. It is im-
perative to reconsider the well accepted security practices that were built
around physical machines, and whether blind application of such prac-
tices results in the possibility of a data breach, machine control, or other
vulnerabilities. Because of Cloud computers reliance on virtualization,
access to the hardware based random number generator is restricted,
and virtualization can have unforeseen effects on the operating system
based random number generator. In this paper, the entropy pool poison-
ing attack is introduced and studied and a Cloud Entropy Management
System is proposed. Extensive experimental study verified that there are
measurable problems with entropy in Cloud instances, and the manage-
ment system effectively solves them.

1 Introduction

A rapidly growing trend is the offloading of computing resources from internally
owned and operated infrastructure to the Cloud. Outsourced computing is often
cheaper and incurs less business overhead than maintaining private computing
infrastructure. Businesses may also build private Clouds, which often reduce the
amount of infrastructure necessary by increasing the utilization of computing
resources. Cloud computing also brings new challenges, and the aggressive adop-
tion of Clouds could lead to a large population of highly concentrated machines
that are vulnerable to different attack vectors.

The combination of multiple users on a single physical machine raises many
security concerns. Many of these issues are related to issues that operating sys-
tems had to address when they went from single user to multiple user systems.
Of main concern is keeping one user’s data, activity, programs, and resources
separate from all others. In the Cloud arena, this means keeping virtual ma-
chine information and state separate from other virtual machines, and insofar
as it’s possible to keep the virtual machine activity and state separate from the
controller that schedules operating systems.

Creating such secure partitions while maintaining the advantages and flexi-
bility of Cloud services is a difficult task. Other issues include the migration of

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2012, LNCS 7531, pp. 286–298, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Study of Entropy Sources in Cloud Computers 287

data across networks (sometimes instances are moved due to heavy local ma-
chine load), inheritance of security vulnerabilities from platforms used to con-
struct Clouds, trust of the Cloud operators (an unavoidable concession in public
Clouds), and new vulnerabilities that emerge from a Cloud’s architecture and im-
plementation. Creation of fully homomorphic encryption systems is an essential
key tosolving the trust problem of public Cloud operators. Such a system would
allow users to encrypt their data, send it to the Cloud for some computational
purpose, and the Cloud would perform that computation on the encrypted mes-
sage, returning an encrypted result. This protects the data because it is never
decrypted on the shared system. Inherently the robustness of such a system re-
lies on truly physical random sources. It is critical to identify, demonstrate, and
provide a solution to securing the possible vulnerabilities.

The main focus of this work is to explore evidence of weaknesses in the gen-
eration of random numbers in Cloud hosts, and provide tools for mitigation of
these weaknesses. A thorough background on the generation of random num-
bers is presented, along with the reasoning why currently accepted methods for
random number generation don’t translate immediately into the Cloud environ-
ment. A series of experiments has been conducted to reveal statistical weaknesses
in the way random samples are processed by Cloud guests and the controlling
operating system. To address these weaknesses, a customized Cloud Entropy
Management System is designed and implemented.

2 Random Number Generation

This section provides a brief explanation on the generation of random numbers
on computer systems, focusing on the difference between a true random number
generator (TRNG) and a psuedo-random number generator (PRNG) including
the PRNG used in the Linux kernel.

Currently computers generally rely on two sources to gather randomness, one
which measures hardware noise (hardware RNG), and another that conditions
user-input to derive a certain amount of randomness which is used to seed a
pseudo-random number generator. An interesting contrast with most computer
functionality, generation of random numbers is actually very slow.

Corresponding to the two sources, there are two commonly recognized types
of random number generators in computers. The first, a TRNG, measures some
physically random features to generate bits. These are bits of entropy; true
randomness, especially following some conditioning for the elimination of biases.
The second, a PRNG, is a deterministic algorithm which produces streams of
random appearing numbers based on some random input ‘seed.’

True Random Number Generators (TRNG). TRNGs are somewhat of a
burden to semiconductor designers because the standard design requires analog
components, at a large power consumption price, and also considerable redesign
costs because the analog designs don’t scale down quite as neatly as the digital
counterparts when a new process technology is transitioned to (e.g. 45nm to
28nm) [1].

288 B. Kerrigan and Y. Chen

Fig. 1. Schematic of random source used in Intel’s Bull Mountain Digital Hardware
RNG

The basic theory of operation behind a TRNG is amplifying some noise in
the system, generally the thermal noise in a resistor, and sampling that signal.
This very basic design has some shortcomings such the rate of bit generation and
power consumption, and Intel made improvements to it [1]. Instead of simply
sampling the noise, the amplified noise was used to control a voltage controlled
oscillator. Another oscillator, at 100x the frequency, is then used to create a
two bit signal. To remove possible biases, a “von Neumann corrector” is used.
The output of the corrector is then run through a secure hash algorithm before
it is accessible from its application interface. It could produce random bits at
300Kbit/sec.

Intel has again looked to create a better random number generator recently,
this time side stepping the problems with TRNGs to the present by creating
an all digital generating circuit [2]. This alleviates the power consumption of
analog amplifiers, and simplifies the moving of a design between fabrication
technology. Their solution, code named Bull Mountain, violates common digital
design practices used to ensure stability in the name of creating randomness.
The circuit used as a random source is shown in Figure 1. Note that each input
node of the inverter has two drivers, the output of the other inverter, and the
drain of a pFET with a clocked gate. When the clock is low, both inverters have
their input forced to high. This is where the circuit is in a metastable state, and
the final stable output will be detemined by thermal noise that exists because of
the resistive losses in the transistors. Each time the inputs are forced into that
metastable state, one bit of randomness is produced. Again these raw random
measurements are not used directly, but go through some conditioning like the
von Neumann corrector. Once finished conditioning, the output should then be
used to seed a quality PRNG.

Pseudo-Random Number Generators (PRNG). Psuedo-random number
generation is the use of deterministic algorithms to produce a seemingly random
sequence of numbers. By itself, a PRNG is a poor source of randomness, as
knowledge of the seed value is all that is needed to reproduce the output. This

A Study of Entropy Sources in Cloud Computers 289

makes the secrecy of the seed paramount. Other attacks are also described that
PRNG algorithms can be vulnerable to [6].

There are also a number of different PRNG algorithms, and parameters for
the algorithms can have an enormous effect on the statistical quality of the
output. Being the goal is a uniform distribution, a good PRNG will generate
each number in the entire range, regardless of seed. A chronological background
of selected popular generators follows.

For many years, PRNGs were created based on Prime Modulus Multiplicative
Linear Congruential Generators (PMMLGC) [13]. A generator, g, is an element
of a group, G, which when raised to integer powers, generates a cyclic subgroup
belonging to G [15]. In this case, the group is the integers (without 0) over a
prime modulus. This relies on some number and group theory results.

A very efficient PRNG can be constructed from shift registers with feedback.
These generators rely on bitwise shifts, and usually the XOR operation, and are
in general called General Feed-back Shift Registers (GFSRs). However, they do
perform poorly on some statistical tests for randomness, such as initialization
sensitivity and partitioning problems [3].

An interesting solution to the problem of apparent parallel hyperplanes in
these generators is to carefully combine the output of two generators, creat-
ing what is a called a combined PRNG [14]. The resultant sequence of pseudo-
random numbers, after combination, doesn’t exhibit the apparent parallel
biasing.

Two less traditional approaches have been proposed in [4] and [5]. In [4] a
cryptographically secure pseudo-random number generator, named Yarrow, is
created. The main idea in Yarrow is to keep a more conservative estimate of the
real entropy gathered from the system, and only keep an entropy accumulator, as
opposed to a giant pool with the samples mixed in. The accumulator is then used
in combination with one-way hash function to provide random numbers. The
width of the accumulator is a major drawback to high performance applications.

The designers of Yarrow relooked at the problem a few years later, with a
focus on removing need for highly precise entropy estimation. Their new scheme,
named Fortuna [5], relies on keeping 32 pools of entropy, and spreading the
entropy across the pools in an even manner.

The Linux RNG (Twisted GFSRs). The Linux kernel provides two charac-
ter devices which output random numbers, /dev/random (blocking) and /dev/
urandom (non-blocking). Cryptographic services are recommended to avoid the
use of the non-blocking random numbers, as they could be open to state com-
promise extension attacks [6]. The quality of the outputs of the random number
generator relies heavily on the entropy provided by the input.

The Linux RNG collects entropy by measuring inter-interrupt timing from
various sources, mainly the keyboard, mouse, disk read and writes, and network
interrupts [7,8,9]. Cloud instances are starved of the first three, and are largely
dependent upon network interrupts for entropy. This has significant ramifications
for the security, because these interrupts not only contribute to the virtual ma-
chines entropy pool, but also to the scheduling operating system’s entropy pool.

290 B. Kerrigan and Y. Chen

The inter-interrupt timings are used as input, along with the current pool
contents, to a twisted General Feedback Shift Register. The output is fed back
into the pool. Finally if a read of the pool is requested, the pool is used as
the input to the Secure Hash Algorithm (SHA). This step is to provide further
security to the secret state of the entropy pool, as SHA is considered to be
irreversible. While the SHA is currently considered good in that respect, there is
a possibility of the algorithm being analyzed where attack is possible. It would
be desirable to run SHA on the entropy samples. However, it would have serious
overhead when being called so frequently.

3 Distributed vs. Shared Entropy Distribution

In this section, scheduling in the Xen hypervisor is discussed to provide the
necessary understanding of how virtualization scheduling leads to hypothetical
weaknesses in random number generation in virtual machines, and the virtual
machine monitor itself. When it comes to entropy sources on cloud systems, each
level of service may offer access to a different type of source. For Infrastructure as
a Service (IaaS) systems, entropy sources are distributed among the instances;
each instance generates its own random numbers. For Software as a Service
(SaaS) and Platform as a service (PaaS), it is possible that all services share a
common pool of random numbers.

There are advantages and weaknesses to both approaches. The advantage of
a distributed entropy generation is the control in selecting how random numbers
are generated, and the separation from possible adversaries. It does however open
up the possibility of attacks on the privileged operating system that schedules
instances. In shared entropy systems, it is possible for a malicious user to drain
entropy from the entropy pool faster than it can be filled, leading to performance
degradation of other users and possible denial of service. If a shared entropy
system is unable to create random numbers at a rapid enough rate, it would
stand to limit access to the pool, or even market the access. In cloud computers
that leverage the Xen virtualization hypervisor, high entropy sources are scarce.
This scarcity will be explained in the next section.

3.1 Xen Scheduling

The Xen system has a multitude of different schedulers, which use various mech-
anisms to decide which operating system gets scheduled next. The scheduling of
operating systems is analogous to the scheduling of processes within an operating
system. The main three schedulers that Xen uses are the Borrowed-Virtual-Time
(BVT) scheduler, the Earliest Deadline First Scheduler (sEDF), and the Credit
scheduler [12]. There is also a round-robin scheduler, which will be used to sim-
plify the presentation of attacks. The BVT scheduler allows latency sensitive
applications to jump the scheduling queue, at the cost of owing that CPU time
at a later point [10].

In the sEDF scheduler, anytime a process is scheduled, the priority queue of
processes is searched for the one with the most imminent deadline [11]. Both of

A Study of Entropy Sources in Cloud Computers 291

these schedulers are to be deprecated in future Xen versions. The credit sched-
uler is the most recommended scheduler by the Xen maintainers, and tasks are
scheduled based on a currency based system where Virtualized CPUs (VCPUs)
are scheduled in a queue, and ‘pay’ for real CPU time. Each VCPU receives an
allowance from an accounting system.

In Section 6, we use a round robin approximation, assuming an attacker saves
his VCPU credits (used as a score in normal Xen scheduler) for a few rounds of
scheduling, and hence has a reliably long window to execute the attack.

4 Attacks on Cloud Entropy Sources

Two possible attacks on cloud entropy were conceptualized. One is the random
number pool depletion attack that focuses on a shared entropy distribution archi-
tecture like that of a PaaS cloud might have, and another one is the entropy pool
poisoning attack that focuses on a distributed entropy distribution architecture
like an IaaS cloud would likely have. The latter is the focus of this paper.

Fig. 2. Overview of Scheduled Pool Poisoning Attack

Pool Poisoning Attack. The entropy pool poisoning attack is a theoretical
attack with dire consequences for victims, from attackers being able to decrypt
secured traffic (exposing for instance, credit card numbers) up to arbitrary code
execution through remote procedure calls (RPCs). From a high level, the at-
tacker tries to make contributions to another user’s entropy pool, by generating
interrupts with known delays between them. Those delays are run through the
Linux RNG as input, and provide some knowledge of another user’s entropy pool
contents.

I = {i0, i1, i2, . . . , ix, i∗, . . . , in−1, in}
E = {e0, e1, e2, e3, e4}
τ = (Δt0, Δt1, Δt2, . . . , Δtm)

292 B. Kerrigan and Y. Chen

Where:

– I: set of n instances on the cloud host
– ix: attacker instance
– i∗: dom0 operating system
– E: set of attack events (enumerated in detail below)
– τ : Sequence of inter-interrupt timings generated by ix during e1

Note that with respect to interrupts, i∗ “sees” all the interrupts that the cur-
rently scheduled instance “sees”. Below is an enumeration of the events in E:

– e0 Flush the entropy pool (deplete until empty, then stop)
– e1 Begin sending TCP packets.
– e2 Stop sending TCP packets.
– e3 Read the entire entropy pool.
– e4 Transmit or store before time slice ends.

For clarity, note that in e1 every TCP packet that is sent is followed by the
next Δti over the entire sequence τ . Following these steps, the entropy pool of
i∗ should be full of the contributions matched in the copy of the entropy pool
that is stored or sent in e4.

5 Cloud Entropy Management System

In this paper, a Cloud Entropy Management System is proposed to address
the weaknesses of entropy generation on Cloud instances. The Cloud Entropy
Management System was created to operate on the cloud hosts to help provide
guests with more refined estimates of entropy in their pool. It also provides
a mechanism for getting rescue entropy in the case where entropy production
from the cloud hosts is insufficient to provide for a workload that requires a
large quantity of entropy. This design uses the philosophy of least intervention,
allowing the existing kernel PRNG to operate normally, but giving it a more
realistic estimate of the entropy in its samples. This allows the kernel PRNG
to operate under the assumptions the PRNG creators outlined in the source
file (namely that secrecy of entropy contributions is maintained and accurately
estimated.) The amount of true entropy bits in a physical cloud host is not
very straightforward. In general estimating entropy is difficult, however, it is
important to have a reasonable estimate, as this is used as a parameter in the
number of samples mixed into the pool. The Linux kernel provides easy access
to the estimate in the proc filesystem. The entropy management system looks
to provide a more reasonable entropy estimation to overcome accumulation of
errors in each sample. Figure 3 shows the operation of the system. Each cloud
host runs a server which provides service to the instances that run on it. If a
cloud instance on the server is running the Entropy Manager, it will connect on
start up to the server. The server provides a count of the number of instances on
the cloud, which is used as a divisor for the entropy estimate on the guest. This
is a consequence of the principle earlier mentioned that the sum of the entropy

A Study of Entropy Sources in Cloud Computers 293

Fig. 3. Activity diagram of the Entropy Management System

of the virtual machines cannot exceed the entropy of the physical host. This
divisor is broadcast to clients.

Consequently, the Linux PRNG will use this updated estimate to provide
appropriate feedback to internal thresholds used to control generation. Finally,
in order to provide for flexibility, the client can request entropy packages from the
server. For testing, one source of entropy is a HTTP GET request to random.org
for 2KB of digitally sampled atmospheric noise.

There are some security concerns (namely packet snooping between the cloud
host and random.org) with this, but it is only used as a proof of concept. For in-
stance, if an attacker was able to intercept the HTTP response from random.org,
and knew the hash function used, the system would provide no extra security.
There are methods that could be used to overcome this fairly easily, such as
employing encryption between the two, or even adding some local entropy to
the sample before the hash function.

The server program is designed to allow flexible source selection. This was
done in anticipation of new sources becoming available, such as the Bull Moun-
tain source [2]. Emergency entropy is added to the entropy estimate, then the
total is checked again to ensure that the estimate hasn’t changed in the mean
time. Following this, a read is allowed to return.

6 Experimental Study and Results

Building an Experimental Cloud. Initial work was done on the Amazon
EC2 cloud, however flexibility required for experimentation required a private
Xen Cloud Platform to be setup. The test cloud host was small, however it
is sufficient for the testing required. The private cloud host consisted of a Dell

294 B. Kerrigan and Y. Chen

PowerEdge 2950 server with the following specifications: 2x Quad-core Xeon
E5335 Processors @ 2GHz, 8GB @ 667MHz, and 500GB of Storage.

6.1 Pool Poisoning Attack

The pool poisoning experiment revealed the source of entropy weakness in cloud
guests. The entropy contributions used in the Linux RNG consist of the jiffie,
num, and cycle variables. Each interrupt causes a read on these variables. Jiffie
is a counter of the number of timer interrupts generated (every 4ms in Linux).
Num indicates the type of interrupt, such as keyboard, or network. Cycle is
a free-running counter register available in x86 CPUs that runs at the clock
frequency.

Invariability of Jiffie and Num. In Figure 4, the invariability of both the jiffie
and num variables with 4 guest instances are demonstrated. After the first 300
seconds, the jiffies quantity is invariant for both domain 0, and the guest instance.
This problem is likely filtered by the hypervisor, so no guests are affected by it.
The num variable however, has significant change in all cases for domain 0, but
is completely static for all guest instances. The same invariability is observed in
the experiment over one and two guest instances.

Fig. 4. Jiffie and num variables with 4 instances

The Cycle Variable. The cycle variable has a much more interesting, and
entropy rich behavior across all instances, both guests and domain 0, and are
shown in Figure 5. The guest instances show tight coupling between the cycle
variable and each other, however the domain 0 instance is largely independent of
any guest instance. In Table 1, the correlation and covariance of the cycle variable
between the guest instance and the dom0 OS is rather low. The covariance for
each pair is normalized to the first listed instance’s covariance with itself. The
correlation across guests is much higher than that of the cases with the domain
0 OS, and is shown in Table 2.

A Study of Entropy Sources in Cloud Computers 295

Table 1. Guest Instance Cycle contributions correlated with Dom 0 Cycle Contribu-
tions (4 guests)

Instance (with Dom 0) Correlation Covariance

DomU1 0.177657311 0.2019764114

DomU2 0.3175715104 0.2947513962

DomU3 0.4681160782 0.5268961915

DomU4 0.3753263986 0.3768116959

Table 2. Correlation and Covariance of Entropy Contributions Across Guest Instances

Instance Pair Correlation Covariance

2 Instances

DomU1-2 0.7698154055 0.7775670479

4 Instances

DomU1-2 0.6424939995 1.6548446143

DomU1-3 0.7283067151 0.7936474751

DomU1-4 0.893786794 2.2162510283

DomU2-3 0.8870338305 1.0030611841

DomU2-4 0.9862760451 0.9635573195

DomU3-4 0.8700133244 1.0424442764

6.2 Analysis of Results

The assumed ability to contribute to the dom0 entropy pool by generating inter-
rupts on the guest instances turned out to be largely incorrect. While this makes
the pool poisoning attack unlikely, the correlation between the guest instances
was remarkably high over large runs of the samples. This violates the assumption
made by the designers of the Linux RNG that the contributions are uniquely
random; unknowable to anything but the RNG. The cycle variable is measured
by the assembly instruction rdtsc. It is zeroed on a reset of the processor, and
increases every clock cycle. The correlation is likely the result of the free running
counter register being synchronized among cores, which is typical for multicore
processors, though not guaranteed. So highly correlated guests were scheduled
on the same CPU but a different core.

The general invariance of the rest of the two-thirds of each sample does nega-
tively affect the entropy estimate of contributions to the pool. The num variable
was invariant due to its source, the type of interrupt generating the event. For in-
stance, a keyboard event would pass the keyboard scancode to the num variable.
Being that guests receive all their I/O from the network, there is no variation.
The invariance of the jiffie variable is most likely due from Xen trying to han-
dle the jiffie clock for guests. Entropy generation rates are negatively affected by
this. Therefore, the proposed Entropy Management System does serve a purpose
to provide an emergency source of entropy.

296 B. Kerrigan and Y. Chen

Fig. 5. Cycle variable with 4 instances

7 Discussions

Overall there aren’t any glaring practical security vulnerabilities that are demon-
strated in the Xen Cloud Platform, however the rate of recovery for guest in-
stances is likely overestimated, which leads to the conclusion that the estimates
were inflated throughout the tests. While this makes a theoretical cryptanalytic
attack hypothetically possible, it is not much different from other hosts which
suffer from overestimation. This is the reasoning behind the use of a dividing
mechanism in the Entropy Management System. It’s far better to underestimate
the entropy than it is to overestimate it. If a guest instance is to be cloned,
it ought to have its pool drained before cloning. Upon start up of the cloned
instances, the pool should be again drained, and finally any keys should be re-
generated. While the step of draining the pools after cloning was performed in
tests, SSH keys were not regenerated, and as a result the RSA fingerprint for all
instances was identical. Mechanisms for dealing with the shared state of cloned
instances, namely breaking the common state for things that require uniqueness,
would be a fruitful endeavor in securing cloud instances. Carelessness of users
cannot be underestimated, and tools to automate these chores would be very
useful. Another area which is hypothetically weak in respect to Cloud entropy is
the loadbalancing mechanisms and cloning mechanisms. There are times when
the instances may be loadbalanced over a public network. If an instance is cloned
or loadbalanced across a public network, it would also be prudent to drain the
pool, and regenerate keys.

A Study of Entropy Sources in Cloud Computers 297

8 Conclusions

In this work, we explored the potential weaknesses in the generation of random
numbers in Cloud hosts, and provided tools to mitigate these weaknesses. First,
the evidence of entropy coupling between domain U instances in Xen Cloud
Platform hosts is revealed. There is a possibility of prediction of the variable
given enough instances are under the control of an attacker.

Second, our experimental results show that virtualization affects entropy sam-
ple collection. The num variable in particular did not change once in any of the
experiments, while the jiffie variable did exhibit one change throughout all the
experiments, apparently most changes being filtered by the virtualization layer.
Finally, the high correlation of the cycle variable is concerning, and makes a case
for entropy gathering on Xen guests to be managed differently in the kernel.The
use of the Cloud Entropy Management System sidesteps the problems with the
correlation of samples by providing bailout entropy that is uncoupled. The im-
plementation is low overhead, and consists of two daemons written in Python.
It provides a reasonable way to ensure entropy estimates and entropy pools in
Cloud guests aren’t susceptible to exploitation.

References

1. Jun, B., Kocher, P.: The Intel Random Number Generator, Cryptography
Research Inc., white paper prepared for Inter Corp., (April 1999), http://www.
cryptography.com/resources/whitepapers/IntelRNG.pdf

2. Taylor, G., Cox, G.: Digital randomness. IEEE Spectrum 48 (September 2011)
3. Lian, G.: Testing Primitive Polynomials for Generalized Feedback Shift Reg-

ister Random Number Generators, http://citeseerx.ist.psu.edu/viewdoc/

download?doi=10.1.1.89.318&rep=rep1&type=pdf
4. Kelsey, J., Schneier, B., Ferguson, N.: Yarrow-160: Notes on the Design and Analy-

sis of the Yarrow Cryptographic Pseudorandom Number Generator. In: Heys, H.M.,
Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 13–33. Springer, Heidelberg
(2000), http://www.schneier.com/paper-yarrow.ps.gz

5. Ferguson, N., Schneier, B.: Practical Cryptography, pp. 161–182. John Wiley &
Sons (2003)

6. Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Cryptanalytic Attacks on Pseudo-
random Number Generators. In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372,
pp. 168–188. Springer, Heidelberg (1998)

7. Gutterman, Z., Pinkas, B., Reinman, T.: Analysis of the linux random number
generator. In: Proceedings of the 2006 IEEE Symposium on Security and Privacy.
IEEE Computer Society (2006)

8. Mackall, M.: Linux Kernel Source 2.6.32.8 Random Character Driver,
(/linux2.6.32.8/drivers/char/random.c in kernel source tree)

9. Beige, T.: Analysis of a strong Pseudo Random Number Generator by anatomizing
Linux Random Number Device (November 2006),
http://www.suse.de/~thomas/papers/random-analysis.pdf

10. Duda, K., Cheriton, D.: Borrowed-Virtual-Time (BVT) scheduling: supporting
latency-sensitive threads in a general-purpose scheduler. In: Proceedings of the
17th ACM Symposium on Operating Systems Principles, SOSP 1999 (December
1999)

http://www.cryptography.com/resources/whitepapers/IntelRNG.pdf
http://www.cryptography.com/resources/whitepapers/IntelRNG.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.318&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.89.318&rep=rep1&type=pdf
http://www.schneier.com/paper-yarrow.ps.gz
http://www.suse.de/~thomas/papers/random-analysis.pdf

298 B. Kerrigan and Y. Chen

11. “Earliest deadline first scheduling” Internet: http://en.wikipedia.org/wiki/

Earliest deadline first scheduling (December 4, 2010) [April 26, 2011]
12. Mathai, J.: ”Scheduling - Xen Wiki” Internet: http://wiki.xensource.com/

xenwiki/Scheduling (June 09, 2007) [May 7, 2011]
13. Park, S., Miller, K.: Random Number Generators: Good Ones Are Hard to Find.

Communications of ACM 21(10) (October 1988)
14. LÈcuyer, P.: Efficient and Portable Combined Random Number Generators.

Communications of the ACM 31(6), 742–774 (1988)
15. Carstensen, C., Fine, B., Rosenberger, G.: Abstract Algebra - Applications to

Galois Theory, Algebraic Geometry and Cryptography. Heldermann Verlag (2011)

http://en.wikipedia.org/wiki/Earliest_deadline_first_scheduling
http://en.wikipedia.org/wiki/Earliest_deadline_first_scheduling
http://wiki.xensource.com/xenwiki/Scheduling
http://wiki.xensource.com/xenwiki/Scheduling

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2012, LNCS 7531, pp. 299–308, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Security Modeling of Grid Systems Using Petri Nets

Peter D. Zegzhda, Dmitry P. Zegzhda, Maxim O. Kalinin,
and Artem S. Konoplev

Information Security Center, St. Petersburg Polytechnical University,
St. Petersburg, Russia

{zeg,dmitry,max,project}@ssl.stu.neva.ru

Abstract. The paper reviews the security problem with computing and infor-
mation resources in Grid systems. It discusses security relative characteristics of
Grid architecture and provides a common threat model of Grid. It summarizes
methods being applied to improve security of Grid systems and discusses their
disadvantages. There is proposed the Petri-net-based model of access control
for Grid systems. That model enhances Grid security with trusted 'job' submis-
sion (in strict accordance with security policy constraints) and verification of
the security implementation in Grid systems.

Keywords: Grid, information security, Petri net, security model, security policy,
verification.

1 Introduction

Nowadays, Grid systems as kind of distributed computing systems have become a
leading technology which is applied to solve work-intensive and resource-intensive
tasks in scientific and commercial areas. Due to the higher value of information being
processed by Grid hosts, Grid systems are focused on aspects of information security,
specifically computing and information resource protection. This problem is caused
by specific nature of distributed Grid systems, which are built basing on the principles
of heterogeneity, common ownership of job processing infrastructure, high dynamics
of states, and decentralization.

The processing of users' jobs is performed remotely on multiple host systems. But
it takes effective methods to protect user data from host environment. Information
security policies are to solve that problem using authorization regulations (usually, in
form of constraints 'subject-object-rights'). But due to specific nature of Grid systems
there is no unified mathematical apparatus which would allow these requirements to
be defined for each entity involved in job processing. Accounting of predefined rela-
tions is also required. This paper proposes a technology targeted to solve the problem
of computing and information resource protection.

2 Background

Grid system resources are divided on several classes in accordance with user tasks:

300 P.D. Zegzhda et al.

1. Computing resources. This Grid system is utilized by users to solve labor-
intensive tasks which require allocation of significant amounts of CPU time or
memory.

2. Storage resources. This Grid system is used as the user’s information storage lo-
cated on remote hosts.

3. Software resources. This Grid system is applied by users for data processing by
applications which are unavailable in their own software environment.

4. Network resources. This kind of Grid is not directly available for users, but they
are utilized for communications between other types of resources.

The underlying Grid system for the principle of common ownership of job processing
infrastructure is implemented through the mechanism of virtual organization (VO),
the dynamic community of users that share resources of the Grid system to solve a
common tasks and in accordance with agreed rules [1]. It means that every user may
consist in a few VO at once. Moreover, the VO's content changes extremely high.

Thus, the special nature of Grid systems, characterized by the properties of the
decentralized, heterogeneous, and highly dynamic states, complicates the task of
ensuring an adequate level of security protection of computing resources and user
data. For example, for Grid systems it is difficult to use classical security models, and,
consequently, to verify information security policies.

We distinguish the following classes of computer attacks which are typical for Grid
systems (a common threat model of Grid systems is shown on Fig. 1):

Fig. 1. A common threat model of Grid system

• Denial of service attacks carried out by:
─ network attacks targeted at basic services of Grid system (break functioning of

the system as a whole);

 Security Modeling of Grid Systems Using Petri Nets 301

─ enforcement of the authorized component to disconnect from the Grid system;
─ overload Grid system in which the work of users and services is difficult.

• Spread of malicious software. This type of attacks is especially important for
Grid systems because of the ideal environment for its implementation (there is an
open way for 'job' migration which can be used in insecure manner).

• Unauthorized access to computing resources. Attacks could come from both
authorized users and components of Grid systems and an external intruder. We can
distinguish the following subtypes of attacks of unauthorized access:
─ connection the unauthorized user or component to the system (component is

supposed to be unauthorized if it has no certificate issued by the trusted certifi-
cation center);

─ attempt to access user's data by the user's processes of the host environment;
─ attempt to exceed the privileges of user, application, or service in Grid system.

In the next section we consider the related approaches applied to protect Grid system.
Section 4 presents a mathematical apparatus of Petri nets for modeling of Grid system
security. The specified technique allows trusted 'job' submission (in accordance with
security policy constraints) and verification of the security implementation in Grid
systems. The conclusion summarizes the main results of our work. The paper thus
provides a solution of computing and information resource protection problem.

3 Related Works

To provide protection against denial of service attacks and the spread of malicious
software, Grid systems implement special hardware and software components (securi-
ty managers) with intrusion detection systems (IDS), firewalls, and antivirus agents
installed on them [2]. There are also several research aimed at solving the problem of
anomaly detection in distributed computing systems [3].

Security managers are integrated with dedicated communication channels, which in
the case of intrusion detection alerts are broadcast. Receiving such notification, each
host duplicates it to all resource providers being connected to it. As a result, all hosts
isolate the problematic host. It thus prevents the possibility of attacks spreading in
Grid systems.

In addition, in some Grid systems the fuzzy logic of trust is used [4]. Each host is
initially labeled. This label shows the trust level assigned to it by other components of
Grid system. If attack from that host is fixed, the trust level is decreased. While search
for a suitable host for a user-defined jobs, the hosts with the highest trust level are
chosen for running these jobs.

In contemporary Grid systems (e.g., Globus Toolkit [5], UNICORE [6], gLite [7],
Gridbus [8], and BOINC [9]), it is distinguished two major security mechanisms:
authorization and authentication [10]. There are two approaches of user authorization.
The first one is based on a special service – GRAM (Grid Resource Allocation and
Management). Using GRAM, the user can delegate their applications to the resource
provider, and then get the results from it [11]. The second one is taken from cloud
computing systems and is based on the web services. There are some services running
on the resource provider. Each service is "attached" with operations. User can get
access to the operations attached to the required services.

302 P.D. Zegzhda et al.

Since platform for Grid systems is a set of personal computers, an important task
for Grid is to ensure confidentiality and integrity of user data. There is required pro-
tection of user-related data from the local host users including 'root' user. For this
purpose, the trusted software and hardware platform is used on the hosts. User data
are protected in a special encrypted repository at host environment.

4 Security Modeling of Grid Systems Using Petri Nets

Compliance with the rules of information security policies are guaranteed by the access
control. The high heterogeneity of Grid systems, multiple user authentication mecha-
nisms and lack of a centralized security server make it difficult to use classical security
models. In [12] there is presented a unified model which allows logical specification of
security policies in Grid systems taking into account the different mechanisms of user
authentication. But there Grid system is considered as a static set of the system states,
which either meet the requirements of information security policies or not. Since each
user of Grid system may at any time belong to several VOs, to close threats of unau-
thorized access it should be able to establish the relations of division between all po-
tential members of the computational process. Therefore, according to the presented
threat model problem of unauthorized access is still open for Grid systems.

We propose an approach to protect Grid system resources against unauthorized ac-
cess based on secure job submission in accordance with the requirements of security
policies. Implementation of this approach involves the mathematical apparatus of
functional colored Petri nets. In contrast with access control models describing the
time and change of state in considerable system as two continuous variables, Petri net
is one of several mathematical representations of dynamic discrete systems. Another
great advantage of chosen mathematical apparatus is possibility of describing the
predefined access relations in Grid system states.

The finite set of vertices { }imM = of the graph ,*),(TMc = are the nodes of

the Grid system (hosts, resource managers, etc.), where { }itT = is a set of transi-

tions between the vertices of c. Markers denote the requests for a particular type of
Grid system resource. The transitions are implemented by the function that takes into
account time spent in the queue tags (i.e., the job processing waiting time).

Consider the basic representation of Grid system in the form of Petri net (Fig. 2).
There are four resource providers (M1, M2, M3 and M4). Generally, a set of users U
and a set of vertices of M cannot coincide. This is explained by the fact that the same
node of Grid system can operate with multiple users. On the other hand, some nodes
may not be authorized by any user, even though the computing power of this unit is
part of the resources of the Grid system. However, for simplicity here and further it is
assumed that each resource provider meets single Grid system user. Let's assume that
all user requests go through the resource provider M2, and any job can be initiated
only by user U1 (on M1 resource provider). Moreover, the specified job can always be
performed by the other two host systems M3 and M4. Consider job submission in the
specified example.

 Security Modeling of Grid Systems Using Petri Nets 303

Suppose that ti ⎯ transition probability of the marker from one node of Grid sys-

tem to another. In our example 10 =t , since there is only one connection to resource

provider M2 in the system and all job requests pass through it. t1, t2 ⎯ the probabili-
ties that computing resources of M3 and M4 nodes are required to perform the job. t3
⎯ the probability that computing resources of both M3 and M4 are required to perform
the specified job. Such situation is possible, for example, when two programs should
be executed to get job solved, and each of them is installed on only one host. t4 and t5
⎯ the probabilities that the task has been successfully solved on the appropriate re-
source provider, and its result is returned to the user U1. The initial marking of the net

is presented with the vector))(),...,((1 nMM μμμ = , where n ⎯ a number of

Petri net nodes. For the net shown in Fig. 2, μ = (1, 0, 0, 0).

Fig. 2. An example of representation of Grid system using Petri net

Real Grid system has a more complicated architecture with several resource providers
each of which has a particular set of connected hosts (Fig. 3). In addition resource
providers can move job requests between themselves (transitions t31 and t32). It
happens in two cases:

1. The limit of active job requests is reached for that resource provider. In that case
the load balancing between resource providers is performed, and a part of requests
goes to other resource providers.

2. There are no available hosts connected to the specified resource providers which
have an appropriate type or count of computing resources. Therefore, a part of job
requests go to another more appropriate resource provider.

In considered Grid system implementation, there are no limits associated with securi-
ty policy requirements. To take into account that limits, let's define the set of limits
(the access rights in terms of information security) Rights, defined as constraints in
security policy, and the set of predefined relations, i.e. the set of marks (the job re-
quests of users) which are presented on the specified node at the moment. We define
the type of mark as a cortege >=< AFT , , where F ⎯ a class of resources request-

ed by user for his job (computing resources, storage resources, etc.), A ⎯ the security
attributes using to verify compliance with the regulations of security policy.

304 P.D. Zegzhda et al.

Fig. 3. Classification of resources and nodes in Grid system

For example, on Fig. 3 there are presented marks corresponding to the user's requests
of two classes on vertices M1 and M5 correspondently. As a security attributes appear
subjects (the Grid system users) access IDs, who had initiated specified request, U⊆A.
In relation to the graph vertices cortege T defines the type of Grid system node.

Movement of user’s job request from the node im to the node jm means that the

conditions for transition tij triggering are occurred. Finally it is possible to declare
conditions of trusted job submission:

• User and resource provider trust each other, i.e. have successfully passed authenti-
cation procedure.

• There is a predefined user account on the specified host which corresponds to the
user initiated the job. All calculations will be performed with privileges of that user
account.

• Requested resource provider is available and has an appropriate type.
• Takes into account predefined access relations on the specified resource provider:

─ the requested access type is equal to all existing access types on the specified re-
source provider or

─ there is at least one existing access type on the specified resource provider that
is not equal to the requested access type but security policy won't be violated if
the requested access type grants.

Now we can define an operator which acts on the set of transitions {tij}:

 Ψ : <J, M, Rights, Relations> → {True, False}

where:

• J is a set of all jobs in the Grid (note that each job is uniquely corresponds to the
user that initiated the job);

 Security Modeling of Grid Systems Using Petri Nets 305

• M is a set of resource providers presented in Grid system;
• Rights is the access rights in terms of information security policy;
• Relations is set of predefined access relations.

Thus, while choosing a suitable resource provider for the specified job there are con-
sidering not only availability and type of resource providers but also the requirements
of information security policies that allow or prohibit the use of resources on the spec-
ified node by the user that initiated the request.

Applying predicate logic allows considering parameters that define the domain of
the operator as variational. The formalization of operatorΨ , as well as the presence
or absence of its parameters and the range of values of the operator generate a set of
practical tasks aimed at enhancing security for Grid systems:

1. Trusted distribution of job requests. Let the sets U, M, Rights, Relations be defined.
The presence of these parameters allows building the algorithm of host systems
search to run the query specified by the user, taking into account the requirements
of security policies. Thus, the necessary condition holds the secure distribution of
user job requests for the provision of Grid system resources ⎯ every state of the
Grid system meets the constraints of security policy.

2. Security policy verification. Let the sets U, M, Rights and range of values of opera-
tor Ψ be defined. The presence of these parameters allows solving the problem of
identifying predefined relations leading to a violation of the security requirements.

3. Creating of security template settings. Let the sets U, M, Relations and range of
values of operator Ψ be defined. The presence of these parameters allows creating
security settings, which can then be used to automate the process of setting up of
Grid system security configuration in accordance with the requirements of security
policies.

4. Finding intruders (users who violate the security constraints). Let the sets M,
Rights and Relations be defined. The presence of these parameters allows identify-
ing of the users that perform actions which lead to violation of the security rules.

Consider job submission procedure using following example based on Globus Toolkit
implementation of Grid. Suppose we have seven resource providers connected as
shown on Fig. 3. For each resource provider, there are defined the following types: T1
= {‘storage resources’}, T3 = {‘computing resources’, ‘storage resources’}, T4 =
{‘computing resources}, T5 = {‘storage resources’}, T7 = {‘storage resources’}.
Also suppose the security policy defined using two types of access (storage access
and computing access). It includes the following access constraints:

1. User U1 can store data on host M3.
2. User U3 can execute applications on host M7.
3. User U2 can execute applications on host M3.
4. User U4 can store data on host M1.
5. User U2 cannot do anything on host M3.

Initially there are no any jobs processing on hosts of Grid system. Suppose that user
U1 on host M1 create job J1 with the following attribute (in terms of Petri net): type of
mark T = <’Storage resources’, U1>. Then J1 goes to resource provider M2 using t10

306 P.D. Zegzhda et al.

transition arc. Transition t10 is triggered unconditionally because J1 came from the
host that had created the given job, and obviously the host U1 could not process that
job. As soon as J1 appears on M2, the resource provider starts a procedure of searching
for the mostly appropriate host for job processing. It knows a list of hosts linked with
it, their state, and a type of the resources they can provide. The host M3 has ‘ready’
state and the required type for J1 processing (‘storage resources’). On the next step,
M2 checks that the job submission meets the requirements of current security policy.
It finds the rule 1 (from the security constraints listed above) that allows U1 to store
data on the host M3. Therefore, J1 appears on M3 (Fig. 4). Then, let’s suppose that J2
with the type T = <’computing resources’, U2> appears in Grid system. It means that
J2 came from the host M5 and moved to the resource provider M6. As there is no host
connected to M6 which has the appropriate type, M6 moves J2 to M2. Finally, J2 ap-
pears on M4 because it also supports ‘computing resources’ type and there is no secu-
rity constraint that prohibits ‘execute applications’ access on M4 for the user U2.

Fig. 4. Job submission procedure

Seems that job submission procedure was performed in agreement with require-
ments of the specified security policy but more detailed examination shows that
it’s not true. At the end of job submission procedure, we can see that both users U1
and U2 have access to host M3. In addition, some application of the user U2 is running
on the host M3 while the user U1 stores his data on the host M3. In other words, the
user U2 has access to the user's U1 data that is not allowed by security policy. The
unauthorized flow of job submission is shown on Fig. 4 with dashed arrows.

Now consider a specified procedure but using our approach of trusted job submis-
sion. First part of procedure will be the same till the stage when J1 appears on the host

 Security Modeling of Grid Systems Using Petri Nets 307

M3. When J2 comes to M2, the resource provider in spite of M3 is most appropriate
host for J2 processing t11 transition wont trigger because of predefined relations on the
host M3 (the user U1 has already had access to M3). That is why J2 at the end comes to
the host M4 which is also available, has appropriate type and no predefined relations
at all. The trusted flows of job submission are shown on Fig. 4 with solid arrows.

The task of finding hosts that are suitable for job submission procedure is per-
formed by special service of Grid system, which is running on the resource providers.

Therefore, to ensure the trusted job submission, the operator Ψ is to be integrated
into the specified service. Thus, when choosing a suitable host will be considered not
only their availability and the type of Grid system resources, but also the requirements
of security policies with accounting of predefined relations in host environment.

5 Conclusion

The paper has addressed to the problem of computing and information resource pro-
tection in Grid systems. It provided threat model of Grid systems and disadvantages
of existing methods to improve security of Grid systems. There is presented a theoret-
ical model of access control for Grid systems based on Petri nets. It allows the trusted
job submission procedure in accordance with the requirements of information security
policies. Novelty of the proposed model is describing the time and change of state in
Grid systems as two discrete variables and taking into account predefined access rela-
tions. Solving the specified problems as well as implementation of the suggested ap-
proach will allow to automate the process of safety analysis, and thus provide a high
level of security in Grid systems.

References

1. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure, 2nd
edn (2004)

2. Lohr, H., Ramasamy, H.V., Sadeghi, A., Schulz, S., Schunter, M., Stuble, C.: Enhancing
Grid Security Using Trusted Virtualization. Springer (2007)

3. Stepanova, T., Zegzhda, D., Kalinin, M., Baranov, P.: Mobile Anomaly Detector Module
Based on Power Consumption Analysis. In: The 2010 International Conference on Infor-
mation Security and Privacy (ISP 2010), Orlando, FL, USA, July 12-14 (2010)

4. Song, S., Hwang, K., Macwan, M.: Fuzzy Trust Integration for Security Enforcement in
Grid Computing. Springer (2004)

5. The Globus Security Team. Globus Toolkit Version 4 Grid Security Infrastructure: A
Standards Perspective / The Globus Security Team (2005), http://globus.
org/toolkit/docs/4.0/security/GT4-GSI-Overview.pdf

6. Internet resource: http://www.unicore.eu
7. Sciaba, A., Burke, S., Campana, S., Lanciotti, E., Litmaath, M., Lorenzo, P.M., Miccio, V.,

Nater, C., Santinelli, R.: GLite 3.2 User Guide. – CERN (2011)
8. Buyya, R., Venugopal, S.: The Gridbus Toolkit for Service Oriented Grid and Utility

Computing: An Overview and Status Report. In: 1st IEEE International Workshop on Grid
Economics and Business Models, Seoul, Korea, April 23 (2004)

308 P.D. Zegzhda et al.

9. Internet resource: http://boinc.berkeley.edu
10. Kalinin, M., Konoplev, A., Markov, Y.: Control of the security policies requirements in

grid-systems. In: Proc. of the Conference Information Security of Russian Regions (ISRR
2011). St. Petersburg, Russia (2011)

11. Alfieri, R., Cecchini, R., Ciaschini, V., Dell’Agnello, L., Frohner, A., Gianoli, A.,
Lorentey, K., Spataro, F.: VOMS, an Authorization System for Virtual Organizations.
LNCS (2003)

12. Kalinin, M., Markov, Y.: Verification of security policies requirements in grid-systems. In-
formation Security Problems. Computing systems 2 (2011)

I. Kotenko and V. Skormin (Eds.): MMM-ACNS 2012, LNCS 7531, pp. 309–318, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Using Graph Theory for Cloud System Security Modeling

Peter D. Zegzhda, Dmitry P. Zegzhda,
and Alexey V. Nikolskiy

Information Security Center, St. Petersburg Polytechnical University, St. Petersburg, Russia
zeg@ssl.stu.neva.ru

Abstract. The paper discusses the security problems of cloud systems.
It also contains a model of cloud systems that allows formally describe
different security problems. The proposed model is based on graph theory
and it describes main features of virtual machines in cloud systems. The
paper formally presents a transformation of data operations that happens in
hypervisor software due to virtualization technology. It allows formally
define several cloud system security problems of hypervisor software. The
paper also contains a discussion about other security problems with shared
virtual machines in the cloud.

Keywords: cloud, information security, virtualization, model, graph theory.

1 Introduction

Cloud computing is an intensively developed modern business model that is embed-
ded worldwide. Cloud computing service user performs required computations using
temporary allocated resources in cloud but user can’t control internal cloud architec-
ture where actual resources are located. This idea produces main benefits and hazard
of cloud computing technology.

Using cloud computing user data is moved to cloud internals with loss of user con-
trol over this data. In addition cloud service providers practically have no liability for
user data security [13]. It also considerably increases the complexity of security sys-
tems development and deployment in cloud and requires revision and adapts of
existing security models to new cloud reality.

To be able to create a secure cloud system it is required to create a security model,
allows describing main features of virtual machines in cloud environment. The main
features of virtual machines in cloud are:

• virtual machine application as a network node in the cloud;
• virtual machine migration;
• virtual machine replication;
• virtual machine image holding in shared for all network nodes storage server;
• consolidation of virtual machines in isolated virtual networks.

310 P.D. Zegzhda, D.P. Zegzhda, and A.V. Nikolskiy

2 Related Works

Continuous development of cloud systems produces a lot of different mathematical
models for many features of cloud. Joe Weinman in his paper [8] has created an axi-
omatic for the cloud theory and a mathematical model based on this axiomatic. His
work describes one of the most generic and accurate model for cloud computing. The
cloud in his work is defined as a structure that must satisfies five formal axioms: it
must be 1) Common, 2) Location-independent, 3) Online, 4) Utility, and 5) on-
Demand. One of the main parts of this сloud structure is a graph that changes in time.
This model is not appropriate for the virtual machine feature modeling and security
cloud modeling because it is very generic and doesn’t define explicitly security sub-
jects and objects for access operations.

In our previous paper [14] we have provided a review of main security problems
and threats for any cloud system. The paper [13] trends to focus on the discussion
about security problems of virtualization software and its application in cloud based
information systems. But in this paper authors presents a formal model for the cloud
and a formal definition for virtualization software security problems.

W.K. Chan, Lijun Mei and Zhenyu Zhang in their work [9] have presented a model
based on graph theory suitable to describe application behavior in the cloud systems.
The article is focused on challenges with testing of application in the cloud environ-
ment. Purposed model represents computing resources on nodes with different attrib-
utes. The most interesting part of this model’s ability is representing a usage of any
resource as a predicate on an edge of the graph. There is no virtual machine entity
explicitly presented in this model, so it is not applicable for security model that is
required for virtual machine features description.

Yingmin Li and Omar Boucelma in their paper [10] have presented a model based
diagnosis approach to monitor workflow provenance in the сloud. The article is fo-
cused on diagnosis of security and verification approach based on modeling of cloud
systems. The model in Yingmin and Omar work is based on Petri Nets. This approach
and model is not enough to model cloud system security and virtual machine features.

Hui et al. in their article [11] extends the formal model of Abstract State Services
(AS2s) by formalizing the notion of plot of a service. This approach is very interest-
ing, because it allows to actually capture the possible sequencing of service opera-
tions, which is only implicitly present in the AS2 model. This work is focuses only on
service side of cloud systems and doesn’t allow to model network communications
within cloud structure.

Thomas et al. [12] has created not only a formal model of cloud systems but also a
simulation framework and a simulator. The cloud model in their work is also based on
the graph where each node corresponds to a computing entity like a physical or a
virtual machine and each edge is a communication link between two nodes. This ap-
proach allows to model network communications in cloud systems but it is not appli-
cable for security modeling.

It is also important to mention that it is possible to describe cloud internal network
nodes with RBAC model [15], but cloud system security problems has more specifics
then just roles of software agents within network system. For example, virtualization

 Using Graph Theory for Cloud System Security Modeling 311

software adds more challenges to existing security systems, network topology has not
only real wired connections, but also virtual isolated and shared networks. All these
features of cloud systems are complicated to be represented in RBAC model.

It is useful to exercise graph theory for cloud system modeling that consists of many
network nodes and computational resources. Graph models can be used to formally
describe security requirements for complex network systems like grids [16]. But to
create a security model for cloud systems and virtual machine features it is required to
include security entities and virtual machine features in this model explicitly.

3 Virtual Machine Security Model for Cloud System

Basically any cloud system is a complicated computer network that can be named an
internal cloud network [1]. Any cloud is based on cloud platform software (like
VMware vSphere or Xen Cloud platform) that defines all rules and mechanics of inter-
nal cloud network nodes cooperation and data exchange. Modern data processing cen-
ters running cloud platform software can consist of thousands of network nodes. Any
node execute specified role in internal cloud network and it is possible to mark some
major set of roles R}ControllerStorage,{VmHost, ⊆ that exists in any cloud

system, where: VmHost – This role is assigned to Working Nodes; Storage – This

role is assigned to cloud Storage nodes; Controller– This role is assigned to all Con-
troller nodes in the cloud.

Due to the fact that any internal cloud infrastructure is a kind of local area network,

it is possible to represent cloud infrastructure as an undirected graph),(ηNCL = ,

where }{ inN = – a set of network nodes from internal cloud network and

NN×⊆η - a set of edges between network nodes that represents an allowable

network links between them. η is defined by physical connection, individual firewall

and router settings. This graph is undirected because data exchange in the system
network.

It is possible to define a function Role , that associate any node from the graph

with a set of roles that are assigned to this node:)(: RPNRole → . In huge data

processing centers any node has only one role (1)(, =∈∀ nRoleNn) [2], but

cloud platform software allows to host multiple roles on single node.

Let }{ ivV = defines a set of all virtual machines in the cloud. It is also possible

to define another undirected graph),(υVCV = , where VV×⊆υ is a set of edges

between virtual machines that represents an allowable virtual network links.

Let }{V imNM =∪= define a set of all machines in the cloud (joining all vir-

tual machines and all network nodes from internal cloud infrastructure).

312 P.D. Zegzhda, D.P. Zegzhda, and A.V. Nikolskiy

Finally it is possible to define a cloud graph),(cMC = , where MM×⊆c is

a set of edges between machines that represents an allowable network links. For c it
is also true: υη ∪⊆c .

Beyond network relations represented by graph C , set of virtual machines V and

set of cloud internal network nodes N has some relations that produces by virtual-

ization technology features that makes possible to define extra relations between V

and N :

• NH ×⊆ V – a set of tuples),(ii hv where iv is a virtual machine instance run-

ning on node ih ;

•)(V NPI ×⊆ – this is a set of tuples),(ii Sv where iv is a virtual machine

instance and iS is a set of all nodes of internal cloud network that has image of this

virtual machine instance;

•)(V OPF ×⊆ – this is a set of tuples),(
ivi Ov where iv is a virtual machine

instance and
ivO is a set of all files (as a subset of all objects in the system O) that

represents virtual machine image in the cloud;

•)(V NPR ×⊆ – this is a set of tuples),(ii Tv where iv is a virtual machine

instance and iT is a set of all nodes of internal cloud network that replicates run-

ning state of this virtual machine instance.

The software that is running on the machine im may be represented as a set of pro-

grams }{ i

i

m
jm pP = . Let }{ ipP = define a set of all programs in the cloud

 imPP ⊆ . Let)(PPMSoft ×⊆ defines a set of tuples that links together all

machines in the cloud with programs set installed on them. It is also possible to de-

fine: SoftPPNSoft N ⊂×⊆)(for network nodes;

SoftPPVSoftV ⊂×⊆)(for virtual machines.

Each virtual machine is a software abstraction that can be implemented by using
hypervisor software. This means that each running virtual machine is a program with-
in software of some network node in cloud:

jjj ni
N

njnjiji PvSoftPnPPNhVvHhv ∈∧∈⊂∃∈∈∈∀),(,:,,),(

Finally as for any information system for security purposes it is possible to define

more statements [3]: }{ iuU = and }{ isS = be a set of users and subjects;

)(SPUId ×⊆ - the identification set; SP×⊆Im - impersonation set.

Now we can define a cloud system state as a tuple:
Im),,,,,,,,,(IdSoftRIHSUPC=ψ .

 Using Graph Theory for Cloud System Security Modeling 313

where: C - is a network graph of all machines in the cloud including virtual machines
and cloud internal network nodes; P - is a set of all programs in the cloud that is
running on machines or stored in some images; U - is a set of all cloud users; S - is a
set of all subjects in the cloud that are defined by the software running in the cloud;

Im,,,,, IdSoftRIH - are set of tuples that defines current state of different

relations between cloud users, subjects, machines and programs.

In this case cloud system can be represented as a finite automation),,(0 τψΨ=Ω ,

where Ψ defines a set of all states of cloud, Ψ∈0ψ is an initial state of the cloud and

Ψ→Ψ:τ is a state-transition function for the cloud system.
Live migration [4] can be represented in purposed model like an operation that

changes cloud state in the parameter H . It means that this operation moves system
from state ψ to state ψ~ and:

)Im,,,,,,,,,(~
)Im,,,,,,,,,(

,,),,(),(\

~~~~~~~~~~

~

ψψψψψψψψψψ

ψψψψψψψψψψ

ψψψψψ

ψ
ψ

IdSoftRIHSUPC

IdSoftRIHSUPC

NnNnVvnvnvHH kjikiji

=
=

∈∈∈∪=

 

Finally a proposed model allows describing all basic features of virtual machines in 
cloud systems, presented in the beginning of this article: 

• virtual machine application as a network node in the cloud can be described this 
way: MV ⊆ ; 

• virtual machine migration can be described this way: 

• ψψψψψ NnNnVvnvnvHH kjikiji ∈∈∈∪= ,,),,(),(\
~

; 

• virtual machine replication in purposed model presented this way: 
)(V NPR ×⊆ ; 

• separation of virtual machine image holding and virtual machine execution can be 

described this way:
 

)(:,),( jijii nRoleVmHostSnISv ∈∈∃/∈∀ ; 

• consolidation of virtual machines in isolated virtual networks presented in pur-

posed model as a separated graph vC . 

Putting virtual machines and network nodes in single graph allows graph theory using 
for deep analysis of whole network system of the cloud. It is also possible to formally 

define predicates (for example: cnvNnVv ijij ∈⊂∃/∈∀ ),(:: ) that should be 

enforced by security systems in the cloud. 

4 Model Application Experiment 

Authors has created the graph for internal network of the cloud system in St. Peters-
burg Polytechnical University. This cloud system is shared between different 



314 P.D. Zegzhda, D.P. Zegzhda, and A.V. Nikolskiy 

departments of the university, including Technical Cybernetics Department. The 
formal graph is based on explained model and includes 112 machines (24 hosts and 
88 virtual machines). The graph was built with special automation software we de-
veloped based on network scanning utility. The sub graph (Fig. 1) of this graph was 

analysed and finally several issues was found. For example, the node 1N has a com-

bination of two roles (a Storage and Controller) and single authentication mechanism 

and administrative users for both services. Also a virtual machine 43V  was used as a 

virtual gateway and DHCP server for isolated network of two other virtual machines 

( 4241,VV ) that was owned by one of the lab of Technical Cybernetics Department. 

Experiments shows that machine 43V  has not only a direct link to the main router of 

the cloud ( 4N ), but also links to other working nodes in the cloud (bold lines on the 

Fig. 1), which is a security issue, that should be solved. As a result of these experi-
ments authors of this paper has created a report with 11 security issues found in the 
cloud system. The security issues was discussed and solved with head engineers of 
this cloud system. 

 

Fig. 1. University cloud graph segment 

5 Hypervisor Security Problems in Cloud 

As described above each virtual machine instance in cloud is a program and in addi-
tion each virtual machine instance also has some programs running on it: 







∈⊂∃∈∀
⊆

SoftPvPPVv
jj vjvj ),(,:

PV
  

 



 Using Graph Theory for Cloud System Security Modeling 315 

These two statements produce next one: 

IdspIdsvSssSSUuSu

PpSoftPvNnVvHnv

vvniunvuu

vvvijiji

i

iii

∈∧∈⊂⊂∈∈∃

∈∈∈∈∈∀

),(),(,},{,,Im,),(

:,),(,,,),(
 

which means that for some cloud user u it is possible to define at least two potentially 

different subjects: vs - a subject that impersonates program 
ivp , running in virtual 

machine; ns - a subject that impersonates virtual machine iv , running on host jn . 

When the program 
ivp running inside virtual machine iv  performs write operation 

vop  with file f  located on the hard drive of this virtual machine program 
ivp have 

to use an operating system software running in the same virtual machine iv . If opera-

tion vop  is allowed then operating system has to perform a set of low-level opera-

tions }{ v
iop  to write some data on the hard drive device (Fig. 2). Basically each 

operation 
v

iop  can be either IO-ports manipulations or DMA transfers handling. An 

object parameter of these operations can be IO ports or memory regions. All of these 
operations are performed by operating system software at the highest privilege level 

inside virtual machine (not a vs  subject). Next each of 
v

iop  operation should be 

transformed to some other operations 
h

iop  by virtualization software [5]. Type of 

each operation 
h

iop  and a resource is depended on virtualization software implemen-

tation and virtual machine configuration. 

 

Fig. 2. Data access operation transformation 

In case when virtual hard drive for virtual machine is located in the remote Storage 

rn  - is a host, where hard drive image files are stored (presented with set of files 

Of v
i ⊆}{ ). It means that set of operations }{ h

iop
 
actually is a set of network 



316 P.D. Zegzhda, D.P. Zegzhda, and A.V. Nikolskiy 

communication data exchange operations using edge η∈),( ri nn
 
in the graph LC . 

It also means that on the host rn there is another set of operations }{ r
iop

 
performs 

actual access to virtual machine image data (Fig. 2). 
The example above produces the situation where cloud system user u  associates 

with at least three different subjects that uses in three different software programs, all 
of these programs are running in three different execution environments (Table. 1). 

Table 1. File access operation hierarchy 

Execution 
environment 

Software Operations Object Object 
identifier 

Subject 

iv  vp  vop  f  The name of 
the file 

vs  

iv
 

OS kernel 
inside 
virtual 
machine 

}{ v
iop  

hard 
drive 
sectors 

sector num-
bers 

OS kernel 

in  iv  }{ h
iop  f

~
- 

socket 

a socket 
number asso-
ciated with 
storage serv-
er 

ns  

in
 

hypervisor IO opera-
tions with 
real net-
work de-
vice  

low-level 
IO areas 

network ad-
dress 

hypervisor 

rn  rp  }{ r
iop  }{ v

if  image file 
names 

rs  

rn  
OS kernel 
on the 
storage 
server 

IO opera-
tions with 
real hard 
drive de-
vice 

hard 
drive 
sectors 

sector num-
bers 

OS kernel 

 
This may produce several security problems that can be exercised by attackers [14].  
In the first case if cloud system is used like a SaaS service by the user then it is 

possible that two users perform operations within single virtual machine but this vir-
tual machine performs actual operations using single subject rights in virtualization 
software. It means that multiple users inside virtual machine may be associated with 
one subject on the host system, that is not really belongs to any of that users: 



 Using Graph Theory for Cloud System Security Modeling 317 

21

212211

22112121

,),(

},{,),(,)},(),,{(

,,,,,2,1Im,),2(Im,),1(

ununni

vvvvivvvv

uvuvuuuu

SsSsIdsv

PppSoftPvIdspsp

SsSsSSSUuuSuSu

ii

∉∧∉∈

∈∈⊂
∈∈⊂∈∈∈∃

 

Second situation may happen because еmost of virtualization software implementa-
tions like Xen or KVM implements virtual machine using a set of components that 
runs using different subjects. For example, in Xen any virtual machine runs with 
common unprivileged mode, but to perform some operations virtual machine use a 
special qemu process that runs with administrator privileges at the host system [6]. It 
means that some operations of users in virtual machine finally performed by adminis-
trator user on the host system. This problem allows attackers to perform very danger-
ous actions with administrator privileges on the host [7]. This real issue in terms of 
purposed model can be presented this way: 

1

11

1111

,),(

,),(,),(

,,1Im,),1(

unni

vivv

uvuu

SsIdsv

SoftPvIdsp

SsSSUuSu

i

∈∈

∈∈
∈⊂∈∈∃

 

Both cases means that if some subject inside virtual machine has rights to virtual re-
sources from virtual machine image then access control for these resources exists only 
in operating system running inside virtual machine but actual data access operations 
are performed in some other execution environment with no security control.  

Looking at hypervisor software with operation set translation formalism can also 
be used for user behavior anomaly detection [17] in future works. 

It is possible to declare that to make secure use of virtualization in the cloud any 
user of cloud system should be represented inside virtual machines only by subjects 
that has the same rights and privileges as this user in whole cloud system. 

Purposed model allows to formally describing conditions of attacks in the cloud 
system, like described above. 

6 Conclusions 

Virtualization software implementation makes huge impact on overall cloud system 
security. This software makes transformation of one data access operation to the set of 
other data access operations with changing objects, subjects and even types of the 
original operation. Proposed mathematical model for cloud architecture allows de-
scribing basic entities and operations in cloud internals and it shows if some subject 
inside virtual machine has rights to some virtual resources from virtual machine im-
age then attacker may get access to whole virtual machine image data. 

This paper contributes a formal model for cloud systems that allows to formally 
describing of conditions for attacks performing in the cloud system. It also contributes 
a condition for secure cloud systems. Conditions may include users and subject rela-
tions, real and virtual networking topology, also based on the node role, conditions on 
software and virtual machine hosting. 



318 P.D. Zegzhda, D.P. Zegzhda, and A.V. Nikolskiy 

References 

1. Catteddu, D., Hogben, G.: Cloud Computing. In: Benefits, Risks and Recommendations 
for Information Security / European Network and Information Security Agency, ENISA 
(November 2009) 

2. Michael, H.R.: VMware vSphere in the Enterprise (July 28, 2009), http://www. 
hypervisor.com 

3. Zegzhda, P.D., Zegzhda, D.P.: Dynamic security methodology / MaBIT conference  
materials 

4. Clark, C.: Live Migration of Virtual Machines. University of Cambridge Computer  
Laboratory Cambridge, UK, Department of Computer Science University of Copenhagen, 
Denmark 

5. Jones, M.T.: Anatomy of a cloud storage infrastructure / IBM developer works (November 
30, 2010) 

6. How Does Xen Work? (December 2009), 
http://www.xen.org/files/Marketing/HowDoesXenWork.pdf 

7. Elhage, N.: Virtunoid: A KVM Guest ! Host privilege escalation exploit / Black Hat USA 
(2011) 

8. Weinman, J.: Axiomatic Cloud Theory. Working Paper (July 29, 2011) 
9. Chan, W.K., Mei, L., Zhang, Z.: Modeling and Testing of Cloud Applications. City Uni-

versity of Hong Kong and The University of Hong Kong (2009) 
10. Li, Y., Boucelma, O.: A CPN Provenance Model of Workflow: Towards Diagnosis in the 

Cloud. Laboratoire des Sciences de l’Information et des Systémes, Domaine Universitaire 
de Saint-Jérôme 

11. Ma, H., Schewe, K.D., Thalheim, B., Wang, Q.: A Formal Model for the Interoperability 
of Service Clouds (December 22, 2011) 

12. Henzinger, T.A., Singh, A.V., Singh, V., Wies, T., Zufferey, D.: FlexPRICE: Flexible 
Provisioning of Resources in a Cloud Environment / IST Austria 

13. Zegzhda, P.D., Zegzhda, D.P., Karetnikov, A.V.: Cloud systems. In: Virtual Security or 
Secure Virtualization? / Proc. of the Conference ”RusCrypto” (2012) 

14. Zegzhda, D.P., Karetnikov, A.V.: Cloud systems security. In: Problems and Prospect / 
(ISSN-2071-8217) Information Security Application #4 (2011)  

15. Drouineaud, M., Luder, A., Sohr, K.: A Role based Access Control Model for Agent based 
Control Systems 

16. Kalinin, M., Konoplev, A., Markov, Y.: Control of the security policies requirements in 
grid-systems. In: Proc. of the Conference Information Security of Russian Regions (ISRR 
2011). St. Petersburg, Russia (2011) 

17. Stepanova, T.: The relations between user behavior and outgoing network traffic for 
behaveiour anomaly detection. In: Proc. of the Conference Information Security of Russian 
Regions (ISRR 2011). St. Petersburg, Russia (2011) 
 



Author Index

Achemlal, Mohammed 156
Avanesov, Tigran 130

Bakaev, Mihail 51
Birnbaum, Zachary 191

Cadenhead, Tyrone 36
Chechulin, Andrey 146, 270
Chen, Yu 286
Chevalier, Yannick 130
Coppolino, Luigi 171

Débar, Hervé 156, 203
Desharnais, Josée 114
Desnitsky, Vasily 146, 270
Dini, Gianluca 240
Dolgikh, Andrey 191

Gaber, Chrystel 156, 171
Gonzalez Granadillo, Gustavo 156
Grusho, Alexander 108
Grusho, Nick 108

Hutchison, Andrew 171

Jacob, Grégoire 156, 203
Jin, Xin 84
Johnson, Ryan 3

Kalinin, Maxim O. 299
Kantarcioglu, Murat 36
Kanyabwero, Erwanne P. 114
Kerrigan, Brendan 286
Khadilkar, Vaibhav 36
Komashinskiy, Dmitry 254
Konoplev, Artem S. 299
Korzhik, Valery 51
Kotenko, Igor 146, 254, 270
Krishnan, Ram 84

Livshits, Benjamin 1

Martinelli, Fabio 22, 240
Matteucci, Ilaria 22

Mjølsnes, Stig F. 65
Moldovyan, Alexandr 77
Moldovyan, Nikolay 77
Morales-Luna, Guillermo 51
Morisset, Charles 22
Murmuria, Rahul 3
Mustapha, Yosra Ben 203

Nikolskiy, Alexey V. 309
Novikova, Evgenia 77
Nykodym, Tomas 191

Oleshchuk, Vladimir 97

Prieto, Elsa 171

Rangwala, Huzefa 226
Rieke, Roland 171, 181
Rusinowitch, Michaël 130

Sandhu, Ravi 84
Saracino, Andrea 240
Schütte, Julian 181
Sgandurra, Daniele 240
Skormin, Victor 191
Stavrou, Angelos 3, 226
Stepanova, Tatiana V. 218

Tawbi, Nadia 114
Thuraisingham, Bhavani 36
Timonina, Elena 108
Tokhtabayev, Arnur 226
Tsay, Joe-Kai 65
Turuani, Mathieu 130

Wang, Zhaohui 3
Winkelvos, Timo 181

Yakovlev, Victor 51
Yavvari, Chaitanya 226

Zegzhda, Dmitry P. 218, 299, 309
Zegzhda, Peter D. 299, 309


	Title
	Preface
	Organization
	Table of Contents
	Invited Papers
	Finding Malware on a Web Scale
	Nozzle: Runtime Heap Spray Detector
	Zozzle: Mostly Static JavaScript Malware Detector
	Rozzle: Multi-execution Approach for Revealing Cloaking JavaScript Malware
	References

	Exposing Security Risks for Commercial Mobile Devices
	Introduction
	Background and Related Work
	Motivation
	Open USB Communication
	Lack of Protection for Data at Rest
	Missing Fine-Grain Application Auditing and Regulation

	Proposed Solutions
	USBSec: Authentication for USB Communication
	EncFS for Android
	Application Analysis

	Conclusions
	References

	From Qualitative to Quantitative Enforcement of Security Policy
	Introduction
	Enforcing Security Policies
	Enforcement Mechanisms and Security Automata
	From Security Automata to Process Algebra Controller Operators

	Synthesis of Controller Operator
	Quantitative Reasoning
	Trace Selector
	Inexact Enforcement
	Probabilistic Future
	Cost of Enforcement
	Trace Reward/Utility

	Related Work
	Conclusion and Future Directions
	References

	Design and Implementation of a Cloud-Based Assured Information Sharing System
	Introduction
	Architecture
	RDF Framework Configuration
	User Interface Layer
	Policy Engines
	Data Layer

	Features of Our Policy Engine Framework
	Policy Reciprocity
	Develop and Scale Policies
	Justification of Resources
	Policy Specification and Enforcement

	Summary and Directions
	References


	Applied Cryptography and Security Protocols
	Optimization of Key Distribution Protocols Based on Extractors for Noisy Channels within Active Adversaries
	Introduction
	Key Distribution Model and Main Criteria for Efficiency
	The New Key Distribution Protocols and Their Optimization
	Conclusion
	References

	A Vulnerability in the UMTS and LTE Authentication and Key Agreement Protocols 
	Introduction
	UMTS and LTE Authentication and Key Agreement
	Overview of the Mobile Network Architecture
	The UMTS & LTE AKA Protocols

	Attacking and Correcting UMTS & LTE AKA
	Communication Security between S and H
	Session-Mixup Attack against Authentication Data Response
	The GSM Subscriber Identity Authentication Protocol
	Possible Corrections
	Feasibility of Real-World Attacks

	Conclusions and Future Work
	References

	Blind 384-bit Digital Signature Scheme
	Introduction
	The Used Hard Problem
	The Proposed Protocol of Blind Signature
	Discussion of the Correctness, Anonymity, and Security
	Conclusions
	References


	Access Control and Information Protection
	RABAC: Role-Centric Attribute-Based Access Control
	Introduction and Motivation
	Related Work
	RABAC Model
	Model Overview
	RABAC Reference Model
	Functional Specification

	XACML Profile for RABAC
	Proposed Profile
	Example

	Conclusion and Future Work
	References

	Trust-Aware RBAC
	Introduction
	Related Work
	Measurement of Trust: Subjective Logic
	Trust-Aware RBAC (TA-RBAC)
	Core Model
	Role Hierarchies
	Separation of Duties
	Delegation

	Conclusion
	References

	Alternative Mechanisms for Information Security
	Introduction
	Model of Unauthenticity for Confidentiality Protection
	Model of Unauthenticity for Integrity Protection
	Methods of Inserting of Unauthenticity into Information
	Conclusion
	References


	Security Policies
	Enforcing Information Flow Policies by a Three-Valued Analysis
	Introduction
	Programming Language
	Syntax
	Semantics

	Security Type System
	Type System Soundness
	Related Work
	Conclusion
	References

	Towards the Orchestration of Secured Services under Non-disclosure Policies 
	Introduction
	Context
	Synthesis of a Loan Origination Process (LOP)

	Derivations and Constraint Systems
	Terms and Substitutions
	Deduction Systems
	Derivations and Localizations
	Constraint Systems

	Subterm Deduction System
	Definition and Main Property
	Locality
	Milestone Sequence

	Deciding Constraint Systems
	Conclusion
	References

	An Approach for Network Information Flow Analysis for Systems of Embedded Components
	Introduction
	Related Work
	Approaches for Information Flow Analysis
	Topological Information Flow Analysis Principles
	Information Flows Analysis Based on Security Policies

	Case Study and Experiments
	Conclusion
	References


	Security Event and Information Management
	Individual Countermeasure Selection Based on the Return On Response Investment Index
	Introduction
	State of the Art on Impact Analysis
	Countermeasure Selection Model
	Constraints
	Improved RORI
	Improvements
	Sensitivity Analysis

	Countermeasure Selection Process
	RORI Calculation
	Countermeasure Evaluation
	Limitations of the RORI-Based Countermeasure Selection

	Case Study: Mobile Money Transfer Service (MMTS)
	Use Case Description
	Account Takeover Attack
	Countermeasure Selection for an Account Takeover Attack

	Related Work
	Conclusions and Future Work
	References

	Security and Reliability Requirements for Advanced Security Event Management
	Introduction
	Large Scale Scenarios in Four Industrial Domains
	Scenario 1: SIEM Technologies Used in the Olympic Games
	Scenario 2: Mobile Money Transfer Service
	Scenario 3: Managed Enterprise Service Infrastructures
	Scenario 4: Critical Infrastructure Process Control (Dam)

	Consolidated Guidelines for Next Generation SIEM
	Guidelines Concerning Advanced Security Services
	Guidelines Concerning Event Processing
	Guidelines Concerning Advanced SIEM Trustworthiness
	Guidelines Concerning Compiler Technologies
	Guidelines Concerning Legal Aspects

	Related Work
	Conclusion and Future Work
	References

	Model-Based Security Event Management
	Introduction
	Motivation and Related Work
	State of the Art
	Requirements

	The Security Strategy Meta Model
	EventStreamProperty
	Condition

	Modeling a Misuse Case
	Conclusion
	References


	Intrusion Prevention, Detection, and Response
	Using Behavioral Modeling and Customized Normalcy Profiles as Protection against Targeted Cyber-Attacks
	Introduction
	Approach
	Behavioral Representation
	Algorithm
	Verification of the Procedure
	Normalcy Representation

	Limitation of Honeypot/Honeynet Databases to Enhance Alert Correlation
	Introduction
	State of the Art
	Honeypots and Honeynet
	Alert Correlation Techniques

	Proposed Approach: Cross-View Alert Correlation
	Information Sources
	Alert Enrichement Process

	Experimental Results and Analysis
	Local Information Source
	Experiment Honeypot Databases
	Experimental Results and Evaluation
	Interpretations

	Conclusions and Perspectives
	References

	Stochastic Model of Interaction between Botnets and Distributed Computer Defense Systems
	Introduction
	Related Works
	NxCA Model
	Stochastic Model of Interaction between NDCA and NMCA
	Modeling Interaction between NxCA with CentralizedTopology and NxCA with Random Topology
	Conclusion
	References


	Anti-malware Techniques
	Malware Characterization Using Behavioral Components
	Introduction
	Malware Soft Clustering Using Behavioral Mapping
	Behavioral Mapping
	Commonality Analysis via Iterative Behavioral Mapping

	Evaluation
	Behavioral Map Use Cases
	Commonality Analysis (Iterative clustering)

	Related Work
	Conclusions
	References

	MADAM: A Multi-level Anomaly Detector for Android Malware
	Introduction
	Related Work
	MADAM Approach
	Multi-level Detection
	Implementation

	Experimental Results
	Training Set and Classifiers
	Experiments Description
	False Positive Measurement
	Malware Detection
	Performance

	Discussion
	Conclusions and Future Works
	References

	Using Low-Level Dynamic Attributes for Malware Detection Based on Data Mining Methods
	Introduction
	Related Work
	Approach Description
	Experiments
	Discussion
	Conclusion
	References


	Security Modeling and Cloud Security
	Configuration-Based Approach to Embedded Device Security
	Introduction
	Core Conceptions of the Configuration Model
	Configuration Model Development
	Case Study
	Conclusion
	References

	A Study of Entropy Sources in Cloud Computers: Random Number Generation on Cloud Hosts
	Introduction
	Random Number Generation
	Distributed vs. Shared Entropy Distribution
	Xen Scheduling

	Attacks on Cloud Entropy Sources
	Cloud Entropy Management System
	Experimental Study and Results
	Pool Poisoning Attack
	Analysis of Results

	Discussions
	Conclusions
	References

	Security Modeling of Grid Systems Using Petri Nets
	Introduction
	Background
	Related Works
	Security Modeling of Grid Systems Using Petri Nets
	Conclusion
	References

	Using Graph Theory for Cloud System Security Modeling
	Introduction
	Related Works
	Virtual Machine Security Model for Cloud System
	Model Application Experiment
	Hypervisor Security Problems in Cloud
	Conclusions
	References


	Author Index



