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Preface

The present work concentrates on the issue of feature selection for the Naïve Bayes
model with application in unsupervised word sense disambiguation (WSD). It
examines the process of feature selection while referring to an unsupervised cor-
pus-based method for automatic WSD that relies on this specific statistical model.
It concentrates on a distributional approach to unsupervised WSD based on
monolingual corpora, with focus on the usage of the Naïve Bayes model as
clustering technique.

While the Naïve Bayes model has been widely and successfully used in
supervised WSD, its usage in unsupervised WSD has led to more modest dis-
ambiguation results and is less frequent. One could, in fact, say that it has been
entirely dropped. The latest and most comprehensive survey1 on WSD refers to the
Naïve Bayes model strictly in conjunction with supervised WSD noting that ‘‘in
spite of the independence assumption, the method compares well with other
supervised methods’’ (Navigli 2009). It seems that the potential of this statistical
model in unsupervised WSD continues to remain insufficiently explored. We feel
that unsupervised WSD has not yet made full use of the Naïve Bayes model.

It is equally our belief that the Naïve Bayes model needs to be fed knowledge in
order to perform well as clustering technique for unsupervised WSD. This
knowledge can be fed in various ways and can be of various natures. The present
work studies such knowledge of completely different types and hopes to initiate an
open discussion concerning the nature of the knowledge that is best suited for the
Naïve Bayes model when acting as clustering technique. Three different sources of
such knowledge, which have been used only very recently in the literature (rela-
tively to this specific clustering technique) are being examined and compared:
WordNet, dependency relations, and web N-grams. This study ultimately con-
centrates not on WSD (which is regarded as an application) but on the issue of
feeding knowledge to the Naïve Bayes model for feature selection.

1 Navigli, R.: Word Sense Disambiguation: A Survey. ACM Comput. Surv. 41(2), 1–69 (2009).
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The present work represents a synthesis of 5 journal papers that have been
authored or coauthored by us during the time interval 2008–2012, when our
scientific interest was fully captured by the issue of feature selection for the Naïve
Bayes model. This research is hereby extended, with two important additional
conclusions being drawn in Chaps. 4 and 5. Each chapter will introduce knowledge
of a different type, that is to be fed to the Naïve Bayes model, indicating those
words (features) that should be part of the so-called ‘‘disambiguation vocabulary’’
when trying to decrease the number of parameters for unsupervised WSD based on
this statistical model.

This work therefore places WSD with an underlying Naïve Bayes model at the
border between unsupervised and knowledge-based techniques. It highlights the
benefits of feeding knowledge (of various natures) to a knowledge-lean algorithm
for unsupervised WSD that uses the Naïve Bayes model as clustering technique.

Our study will show that a basic, simple knowledge-lean disambiguation
algorithm, hereby represented by the Naïve Bayes model, can perform quite well
when provided knowledge in an appropriate way. It will equally justify our belief
that the Naïve Bayes model still holds a promise for the open problem of unsu-
pervised WSD.

Toulouse, France, November 2011 Florentina T. Hristea
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Chapter 1
Preliminaries

Abstract This chapter describes the problem we are investigating and trying to
solve in all other chapters. It introduces word sense disambiguation (WSD) and
Naïve Bayes-based WSD, as well as local type features for unsupervised WSD with
an underlying Naïve Bayes model.

Keywords Naïve Bayes model · Feature selection · Word sense disambiguation ·
Supervised disambiguation · Unsupervised disambiguation · Knowledge-based
disambiguation · Local-type features

1.1 Introduction: The Problem

The present work concentrates on the issue of feature selection for the Naïve Bayes
model, with application in unsupervised word sense disambiguation.

Word sense disambiguation (WSD), which signifies determining the meaning of a
word in a specific context, is a core research problem in natural language processing,
which was recognized since the beginning of the scientific interest in machine transla-
tion, and in artificial intelligence, in general. As noted in (Agirre and Edmonds 2006),
finding a solution to the WSD problem is obviously essential for applications which
deal with natural language understanding (message understanding, man-machine
communication etc.) and is at least useful, and in some cases compulsory, for several
applications which do not have natural language understanding as main goal, appli-
cations such as: information retrieval, machine translation, speech processing, text
processing etc.

As a computational problem, lexical disambiguation was originally regarded as
being AI-complete, that is, a problem whose solution requires a solution to complete
natural language understanding or common-sense reasoning. This view originated in
the fact that possible statistical approaches to the problem were almost completely
ignored in the past. As it is well known, starting with the early nineties, the artificial

F. T. Hristea, The Naïve Bayes Model for Unsupervised Word Sense Disambiguation, 1
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-33693-5_1, © The Author(s) 2013



2 1 Preliminaries

intelligence community witnesses a great revival of empirical methods, especially
statistical ones. Nowadays statistical methods are used for solving a great number
of problems posed by artificial intelligence, in general, and by natural language
processing, in particular. WSD is one such problem, for which the Naïve Bayes
model has been extensively used.1

In the subfield of natural language processing (from the perspective of which
we shall approach WSD within the framework of the present study), the problem
we are discussing here is defined as that of computationally determining which sense
of a word is activated by the use of that word in a particular context and represents,
essentially, a classification problem.

The problem becomes even more difficult to solve when taking into account the
great existing number of natural languages with very high polysemy. As noted in
(Agirre and Edmonds 2006), the 121 most frequent English nouns, for instance,
which account for about one in five word occurrences in real English text, have on
average 7.8 meanings each, according to the Princeton University lexical database
WordNet (Miller 1990, 1995; Miller et al. 1990; Fellbaum 1998).

In spite of the great number of existing disambiguation algorithms, the problem
of WSD remains an open one, with three main classes of WSD methods being
taken into consideration by the literature: supervised disambiguation, unsupervised
disambiguation and knowledge-based disambiguation.

The present study refers to unsupervised corpus-based methods for WSD. It con-
centrates on distributional approaches to unsupervised WSD that rely on monolingual
corpora, with focus on the usage of the Naïve Bayes model as clustering technique.

Within the framework of the present study, the term “unsupervised” will refer, as in
Pedersen (2006), to knowledge-lean methods, that do not rely on external knowledge
sources such as machine-readable dictionaries, concept hierarchies or sense-tagged
text. Due to the lack of knowledge they are confronted with, these methods do
not assign meanings to words, relative to a pre-existing sense inventory, but make
a distinction in meaning based on distributional similarity. While not performing a
straightforward WSD, these methods achieve a discrimination among the meanings
of a polysemous word.

The problem we are investigating here could be formulated in the following terms:
we are given I sentences that each contain a particular polysemous word; our goal
is to divide these I instances of the ambiguous word (the so-called target word)
into a specified number of sense groups. These sense groups must be mapped to
sense tags in order to evaluate system performance. Let us note that sense tags, as
in previous studies (Pedersen and Bruce 1998; Hristea et al. 2008; Hristea 2009;
Hristea and Popescu 2009), will be used only in the evaluation of the sense groups
found by the unsupervised learning procedure. The discussed algorithm is automatic
and unsupervised in both training and application.

From the wide range of unsupervised learning techniques that could be applied
to our problem, we have chosen to use a parametric model in order to assign a sense

1 Especially with reference to supervised WSD.



1.1 Introduction: The Problem 3

group to each ambiguous occurrence of the target word. As already mentioned,
in each case, we shall assign the most probable group given the context as defined
by the Naïve Bayes model, where the parameter estimates are formulated via unsu-
pervised techniques. The theoretical model will be presented and its implementation
will be discussed. Special attention will be paid to feature selection, the main issue of
the model’s implementation. Various novel methods of performing knowledge-based
feature selection will be presented and discussed.

When the Naïve Bayes model is applied to supervised disambiguation, the actual
words occurring in the context window are usually used as features. This type of
framework generates a great number of features and, implicitly, a great number of
parameters. This can dramatically decrease the model’s performance since the avail-
able data is usually insufficient for the estimation of the great number of resulting
parameters. A situation that becomes even more drastic in the case of unsupervised
disambiguation, where parameters must be estimated in the presence of missing data
(the sense labels). In order to overcome this problem, the various existing unsu-
pervised approaches to WSD implicitly or explicitly perform a feature selection.
In fact, one can say that discussions concerning the implementation of the Naïve
Bayes model for supervised/unsupervised WSD focus almost entirely on the issue
of feature selection.

The approach to feature selection of the present study is that of implementing a
Naïve Bayes model that uses as features the actual words occurring in the context
window2 of the target and decreases the existing number of features by selecting
a restricted number of such words, as indicated by a specific knowledge source.
The size of the feature set is therefore reduced by performing knowledge-based
feature selection. The Naïve Bayes model will be fed knowledge of various natures.
Chapters 3, 4 and 5 will each introduce knowledge of a different type, that is to be fed
to the Naïve Bayes model, indicating those words (features) which should be part of
the disambiguation vocabulary when trying to decrease the number of parameters for
unsupervised WSD. This type of approach will place the disambiguation process at
the border between unsupervised and knowledge-based techniques, while reinforcing
the benefits of combining the unsupervised approach to the WSD problem with usage
of a knowledge source.

We shall ultimately compare totally different ways of feeding knowledge of
various types to a knowledge-lean algorithm for unsupervised WSD based on an
underlying Naïve Bayes model. The discussed method will once again prove that
a basic, simple knowledge-lean disambiguation algorithm, hereby represented by
the Naïve Bayes model, can perform quite well when provided knowledge in an
appropriate way, a remark also made by Ponzetto and Navigli (2010).

2 The context window can be of fixed size or it can be represented by the entire sentence in which
the target word occurs.

http://dx.doi.org/10.1007/978-3-642-33693-5_3
http://dx.doi.org/10.1007/978-3-642-33693-5_4
http://dx.doi.org/10.1007/978-3-642-33693-5_5


4 1 Preliminaries

1.2 Word Sense Disambiguation (WSD)

In artificial intelligence (from the perspective of which we are approaching word
sense disambiguation here) the problem we are discussing is defined as that of com-
putationally determining which sense of a word is activated by the use of that word
in a specific context. In this view, word sense disambiguation (WSD) represents,
essentially, a classification problem.

The importance of WSD has been widely acknowledged in recent years, with over
700 papers in the ACL Anthology mentioning the term “word sense disambiguation”
and with three classes of WSD methods being taken into consideration by the litera-
ture: supervised disambiguation, unsupervised disambiguation and knowledge-based
disambiguation.

Supervised disambiguation is based on learning. As it is well known, the super-
vised approach to WSD consists of automatically inducing classification models or
rules from annotated examples. A disambiguated corpus is available for training. This
disambiguated corpus will be used in training a classifier that can label words within
a new, unannotated text. The task is that of conceiving a classifier which correctly
classifies the new cases, based on the context where they occur. One such classi-
fier, that has been widely used in supervised disambiguation, is the Bayes classifier,
which looks at the words around an ambiguous word in a so-called context window.

Unlike supervised disambiguation, the unsupervised approach to the same prob-
lem uses no pre-existing knowledge source. Unsupervised disambiguation methods
are data-driven, highly portable, robust, and offer the advantage of being language-
independent. They rely either on the distributional characteristics of unannotated
corpora (which will represent the approach within the present work), or on transla-
tional equivalences in word aligned parallel text. Within the framework of the present
study, the term “unsupervised” will refer, as in Pedersen (2006), to knowledge-lean
methods, that do not rely on external knowledge sources such as machine readable
dictionaries, concept hierarchies, or sense-tagged text. Due to the lack of knowledge
they are confronted with, these methods do not assign meanings to words, relative to
a pre-existing sense inventory, but rather make distinctions in meaning based on dis-
tributional similarity. While not performing a straightforward WSD, these methods
achieve a discrimination among the meanings of a polysemous word. As commented
in (Agirre and Edmonds 2006), they have the potential to overcome the knowledge
acquisition bottleneck (manual sense-tagging).

Unsupervised disambiguation is considered extremely important because it uses
no pre-existing knowledge source (which makes it very applicable) and because it
is language-independent. Even though, for both these reasons, its performance is
5–10 % lower than that of some of the dictionary-based algorithms, it also offers the
advantage that it can be easily adapted to produce distinctions between usage types
that are more fine-grained than would be found in a dictionary. (For example, it can
distinguish between civil suit and criminal suit, while regular dictionaries record only
law suit.) Usually, the induced clusters do not line up well with dictionary senses.
If the unsupervised algorithm is run for a large number of senses, then it will split
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dictionary senses into fine-grained contextual variants. Information retrieval is an
application for which this is considered useful.

Finally, knowledge-based disambiguation methods perform sense disambiguation
(and not sense discrimination) by means of a pre-existing sense inventory. These
methods can usually be applied to all words of a given text, unlike the techniques
based on corpora, which can be used only in the case of those words for which
annotated corpora are available.

With the exception of the case when it is unsupervised, the problem of WSD
requires establishing a sense inventory, namely determining all meanings which can
be assigned to each word that must be disambiguated. However, the concept of word
sense still generates debates among linguists. That is probably why, nowadays, an
official and unique sense inventory for English still doesn’t exist. Some of the most
frequent sources used for establishing a sense inventory are: electronic dictionaries,
thesauri (LDOCE, Roget’s Thesaurus), bilingual dictionaries in electronic format, and
lexical knowledge bases (of type WordNet). Princeton University’s WordNet3 (Miller
1990, 1995; Miller et al. 1990; Fellbaum 1998) has probably become the most widely
used source for establishing a sense inventory. We shall be making use of it in Chap. 3.

1.3 Naïve Bayes-Based WSD at the Border Between
Unsupervised and Knowledge-Based Techniques

Unlike previous approaches (Pedersen and Bruce 1998) that, when implementing
the Naïve Bayes model, make use of a small number of local features, the present
work means to implement a Naïve Bayes model that uses as features the actual
words occurring in the context window of the (ambiguous) target. Our study imple-
ments the model in its simplest and most straightforward form, while selecting a
restricted number of words in order to decrease the number of features used and,
as a result, to increase the performance of the disambiguation process. The method
of performing feature selection will place the disambiguation process at the border
between unsupervised and knowledge based techniques. The obtained disambigua-
tion methods and corresponding results, as compared to previously existing ones, will
reinforce the benefits of combining the unsupervised approach to the WSD problem
with usage of a knowledge source for feature selection. Various types of knowledge
sources (which have led to different ways of performing feature selection) will be
examined. In fact, as noted in Sect. 1.1, one can say that discussions concerning the
implementation of the Naïve Bayes model for supervised/unsupervised WSD focus
almost entirely on the issue of feature selection.

Two early approaches to word sense discrimination, context group discrimina-
tion (Schütze 1998) and McQuitty’s Similarity Analysis (Pedersen and Bruce 1997,
1998), rely on totally different sets of features and still represent the main approaches
to feature selection.

3 Available at http://wordnet.princeton.edu/.

http://dx.doi.org/10.1007/978-3-642-33693-5_3
http://wordnet.princeton.edu/.


6 1 Preliminaries

As commented in (Pedersen 2006), Schütze (1998) represents contexts in a high
dimensional feature space that is created using a separate large corpus (referred
to as the training corpus). While Schütze (1998) reduces dimensions by means of
LSI/LSA, Pedersen and Bruce (1997) define features over a small contextual win-
dow (local context) and select them to produce low dimensional event spaces. They
make use of a small number of first-order features to create matrices that show the
pairwise (dis)similarity between contexts. They rely on local features that include
co-occurrence and part of speech information near the target word. Three different
feature sets, consisting of various combinations of features of the mentioned types,
were defined in (Pedersen and Bruce 1998) for each word and were used to formulate
a Naïve Bayes model describing the distribution of sense groups of that word. Unlike
Schütze (1998), Pedersen and Bruce (1998) select features from the same test data
that is being discriminated, which, as noted in (Pedersen 2006), is a common practice
in clustering in general.

The more recent disambiguation results obtained when using knowledge-based
feature selection were compared to those of Pedersen and Bruce (1998) since all
these disambiguation methods (see Chaps. 3, 4 and 5) use an algorithm of the same
type i.e. unsupervised and based on an underlying Naïve Bayes model. Moreover,
the model parameters are estimated in the same way, namely by means of the EM
algorithm.

The entire discussion that is to follow concerns feature selection for the Naïve
Bayes model and will be studying various types of features which differ completely
from the initially and only ones used for this type of problem (Pedersen and Bruce
1998).

1.3.1 Pedersen and Bruce Local-Type Features

When performing unsupervised word sense disambiguation with an underlying Naïve
Bayes model, Pedersen and Bruce (1997, 1998), define three different feature sets
for each word and use them to formulate such a model describing the distribution
of sense groups of that word. The feature sets taken into account were composed of
various combinations of the following five types of features:

Morphology The feature denoted M represents the morphology of the ambiguous
word. In the case of nouns, for instance, M is binary indicating singular or plural.
For verbs, the value of M indicates the tense of the verb and can have up to seven
possible values. This feature is not used for adjectives.

Part-of-speech The features denoted P Li and P Ri represent the part-of-speech
(POS) of the word i positions to the left or right, respectively, of the ambiguous word.
Each POS feature can have one of five possible values: noun, verb, adjective, adverb
or other.

Co-occurrences The features denoted Ci are binary variables representing
whether the i th most frequent content word in all sentences containing the ambiguous
word occurs anywhere in the sentence being processed.

http://dx.doi.org/10.1007/978-3-642-33693-5_3
http://dx.doi.org/10.1007/978-3-642-33693-5_4
http://dx.doi.org/10.1007/978-3-642-33693-5_5


1.3 Naïve Bayes-Based WSD at the Border 7

Unrestricted collocations The features denoted U Li and U Ri are features with
20 possible values that indicate if one of the top 19 most frequent words occurs in
position i to the left (U Li ) or right (U Ri ) of the target word.

Content collocations The features denoted C L1 and C R1 indicate the con-
tent word occurring in the position 1 place to the left or right, respectively, of the
ambiguous word. In general, features (C Li , C Ri ) are identical to the unrestricted
collocations, except they exclude function words and only represent content words.

All these features4 are defined over a small contextual window (local-context)
and are selected to produce low dimensional event spaces.

The three feature sets used in the experiments presented in (Pedersen and Bruce
1998) were designated A, B and C and were formulated as follows:

A: M, P L2, P L1, P R1, P R2, C1, C2, C3
B: M, U L2, U L1, U R1, U R2
C : M, P L2, P L1, P R1, P R2, C L1, C R1

It is our belief that the most interesting aspect of the described approach is repre-
sented by the choice of such types of features and feature sets in order to formulate
a Naïve Bayes model. However, as the authors note in (Pedersen and Bruce 1998)
“while frequency-based features, such as those used in this work, reduce sparsity,
they are less likely to be useful in distinguishing among minority senses”.

Pedersen and Bruce consider nouns, verbs and adjectives as possible target words
in the discrimination task, and explore the use of several different combinations
of features. The two mentioned authors conducted an experimental evaluation in
(Pedersen and Bruce 1998) relative to the 12-word sense-tagged corpus of Bruce et
al. (1996) as well as with the line corpus (Leacock et al. 1993).

The obtained performance when using the described type of local-context features
is relatively low. The best results were obtained in the case of nouns, where in
combination with a specific feature set the obtained accuracy improved upon the most
frequent sense by at least 10 %. The most modest results (accuracy) were obtained
in the case of the noun line.

No feature set resulted in greater accuracy than the most frequent sense for verbs
and adjectives. In the case of nouns McQuitty’s method performed better. In combi-
nation with feature set B it improved upon the most frequent sense by at least 10 %.
Pedersen and Bruce (1998) found that feature set B performs best for nouns, while
feature set C performs best for both adjectives and verbs. Their disambiguation results
were compared to those reported in (Hristea et al. 2008; Hristea 2009; Hristea and
Popescu 2009) where an algorithm of the same type (unsupervised with an underlying
Naïve Bayes model) is examined and where knowledge-based feature selection is per-
formed. In the case of all parts of speech, test results have shown that feature selection
using a knowledge source of type WordNet is more effective in sense disambiguation

4 For more details concerning these types of features, feature sets, and their usage, see (Pedersen
and Bruce 1998).
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than local-type features are (see Chap. 3). Further comparisons were made (Preoţiuc
and Hristea 2012) with web N-gram feature selection (for which see Chap. 5).

In the chapters that follow we shall be presenting three other, completely differ-
ent, ways of performing feature selection for the Naïve Bayes model, when acting
as clustering technique in unsupervised WSD. The full presentation of these feature
selection methods will once again reinforce the benefits of combining the unsu-
pervised approach to the WSD problem with a knowledge source of various types.
Especially since we must keep in mind that knowledge-lean methods as the one pro-
posed in (Pedersen and Bruce 1998) can also require information that is not always
available. Such knowledge-lean methods can equally have difficulties when asking
for information like part of speech, for instance, especially if a part-of-speech tagger
does not exist for the language under investigation.
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Chapter 2
The Naïve Bayes Model in the Context
of Word Sense Disambiguation

Abstract This chapter discusses the Naïve Bayes model strictly in the context of
word sense disambiguation. The theoretical model is presented and its implemen-
tation is discussed. Special attention is paid to parameter estimation and to feature
selection, the two main issues of the model’s implementation. The EM algorithm is
recommended as suitable for parameter estimation in the case of unsupervised WSD.
Feature selection will be surveyed in the following chapters.

Keywords Bayesian classification · Expectation-Maximization algorithm · Naïve
Bayes classifier

2.1 Introduction

The classical approach to WSD that relies on an underlying Naïve Bayes model repre-
sents an important theoretical approach in statistical language processing: Bayesian
classification (Gale et al. 1992). The idea of the Bayes classifier (in the context of
WSD) is that it looks at the words around an ambiguous word in a large context
window. Each content word contributes potentially useful information about which
sense of the ambiguous word is likely to be used with it. The classifier does no
feature selection. Instead it combines the evidence from all features. The mentioned
classifier (Gale et al. 1992) is an instance of a particular kind of Bayes classifier, the
Naïve Bayes classifier.

Naïve Bayes is widely used due to its efficiency and its ability to combine evidence
from a large number of features. It is applicable if the state of the world that we base
our classification on is described as a series of attributes. In our case, we describe
the context of the ambiguous word in terms of the words that occur in the context.

The Naïve Bayes assumption is that the attributes used for description are all
conditionally independent, an assumption having two main consequences. The first
is that all the structure and linear ordering of words within the context are ignored,

F. T. Hristea, The Naïve Bayes Model for Unsupervised Word Sense Disambiguation, 9
SpringerBriefs in Statistics, DOI: 10.1007/978-3-642-33693-5_2, © The Author(s) 2013
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leading to a so-called “bag of words model”.1 The other is that the presence of
one word in the bag is independent of another, which is clearly not true in the case
of natural language. However, in spite of these simplifying assumptions, as noted
in (Manning and Schütze 1999), this model has been proven to be quite effective
when put into practice. This is not surprising when viewing the Bayesian model
from a cognitive perspective, which is an adequate one in the case of a problem
concerning natural language processing. And when taking into consideration that, as
noted in (Eberhardt and Danks 2011), “without an account of the rationality of the
observed input-output relation, the computational level models provide a summary
of the observed data, but no rational explanation for the behaviour”.

2.2 The Probability Model of the Corpus
and the Bayes Classifier

In order to formalize the described model, we shall present the probability struc-
ture of the corpus C . The following notations will be used: w is the word to be
disambiguated (target word); s1, ..., sK are possible senses for w; c1, ..., cI are con-
texts of w in a corpus C ; v1, ..., vJ are words used as contextual features for the
disambiguation of w.

Let us note that the contextual features could be some attributes (morphological,
syntactical, etc.), or they could be actual “neighboring” content words of the target
word. The contextual features occur in a fixed position near w, in a window of fixed
length, centered or not on w. In what follows, a window of size n will denote taking
into consideration n content words to the left and n content words to the right of the
target word, whenever possible. The total number of words taken into consideration
for disambiguation will therefore be 2n +1.When not enough features are available,
the entire sentence in which the target word occurs will represent the context window.

The probability structure of the corpus is based on one main assumption: the
contexts {ci , i} in the corpus C are independent. Hence, the likelihood of C is given
by the product

P (C ) =
I∏

i=1

P (ci )

Let us note that this is a quite natural assumption, as the contexts are not connected,
they occur at significant lags in C .

On considering the possible senses of each context, one gets

P (C ) =
I∏

i=1

K∑

k=1

P (sk) · P (ci | sk)

1 A bag is similar to a set, only it allows repetition.
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A model with independent features (usually known as the Naïve Bayes model)
assumes that the contextual features are conditionally independent. That is,

P (ci | sk) =
∏

v j in ci

P
(
v j | sk

) =
J∏

j=1

(
P

(
v j | sk

))|v j in ci | ,

where by
∣∣v j in ci

∣∣ we denote the number of occurrences of feature v j in context ci .

Then, the likelihood of the corpus C is

P (C ) =
I∏

i=1

K∑

k=1

P (sk)

J∏

j=1

(
P

(
v j | sk

))|v j in ci |

The parameters of the probability model with independent features are

{
P (sk) , k = 1, ..., K and P

(
v j | sk

)
, j = 1, ..., J, k = 1, ..., K

}

Notation:

• P (sk) = αk, k = 1, ..., K , αk ≥ 0 for all k,
∑K

k=1 αk = 1
• P

(
v j | sk

) = θk j , k = 1, ..., K , j = 1, ..., J, θk j ≥ 0 for all k and j,∑J
j=1 θk j = 1 for all k = 1, ..., K

With this notation, the likelihood of the corpus C can be written as

P (C ) =
I∏

i=1

K∑

k=1

αk

J∏

j=1

(
θk j

)|v j in ci |

The well known Bayes classifier involves the a posteriori probabilities of the
senses, calculated by the Bayes formula for a specified context c,

P (sk | c) = P (sk) · P (c | sk)

K∑
k=1

P (sk) · P (c | sk)

= P (sk) · P (c | sk)

P (c)
,

with the denominator independent of senses.
The Bayes classifier chooses the sense s′ for which the a posteriori probability is

maximal (sometimes called the Maximum A Posteriori classifier)

s′ = arg max
k=1,...,K

P (sk | c)

Taking into account the previous Bayes formula, one can define the Bayes classifier
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by the equivalent formula

s′ = arg max
k=1,...,K

(log P (sk)+ log P (c | sk))

Of course, when implementing a Bayes classifier, one has to estimate the parameters
first.

2.3 Parameter Estimation

Parameter estimation is performed by the Maximum Likelihood method, for the
available corpus C . That is, one has to solve the optimization problem

max
(
log P (C ) | {

P (sk) , k = 1, ..., K and P
(
v j | sk

)
, j = 1, ..., J, k = 1, ..., K

})

For the Naïve Bayes model, the problem can be written as

max

⎛

⎝
I∑

i=1

log

⎛

⎝
K∑

k=1

αk

J∏

j=1

(
θk j

)|v j in ci |
⎞

⎠

⎞

⎠ (2.1)

with the constraints
K∑

k=1

αk = 1

J∑

j=1

θk j = 1

for all k = 1, ..., K

For supervised disambiguation, where an annotated training corpus is available,
the parameters are simply estimated by the corresponding frequencies:

θ̂k j =
∣∣occurrences of v j in a context of sense sk

∣∣
J∑

j=1

∣∣occurrences of v j in a context of sense sk
∣∣
,

k = 1, ..., K ; j = 1, ..., J

α̂k = |occurrences of sense sk in C |
|occurrences of w in C | , k = 1, ..., K

For unsupervised disambiguation, where no annotated training corpus is available,
the maximum likelihood estimates of the parameters are constructed by means of
the Expectation-Maximization (EM) algorithm.
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For the unsupervised case, the optimization problem (2.1) can be solved only by
iterative methods. The Expectation-Maximization algorithm (Dempster et al. 1977)
is a very successful iterative method, known as very well fitted for models with
missing data.

Each iteration of the algorithm involves two steps:

• estimation of the missing data by the conditional expectation method (E-step)
• estimation of the parameters by maximization of the likelihood function for com-

plete data (M-step)

The E-step calculates the conditional expectations given the current parameter
values, and the M-step produces new, more precise parameter values. The two steps
alternate until the parameter estimates in iteration r + 1 and r differ by less than a
threshold ε.

The EM algorithm is guaranteed to increase the likelihood log P (C ) in each
step. Therefore, two stopping criteria for the algorithm could be considered: (1) Stop
when the likelihood log P (C ) is no longer increasing significantly; (2) Stop when
parameter estimates in two consecutive iterations no longer differ significantly.

Further on, we present the EM algorithm for solving the optimization prob-
lem (2.1).

The available data, called incomplete data, are given by the corpus C .The missing
data are the senses of the ambiguous words, hence they must be modeled by some
random variables

hik =
{

1, context ci generates sense sk

0, otherwise
, i = 1, ..., I ; k = 1, ..., K

The complete data consist of incomplete and missing data, and the corresponding
likelihood of the corpus C becomes

Pcomplete (C ) =
I∏

i=1

K∏

k=1

⎛

⎝αk

J∏

j=1

(
θk j

)|v j in ci |
⎞

⎠
hik

Hence, the log-likelihood for complete data is

log Pcomplete (C ) =
I∑

i=1

K∑

k=1

hik

⎛

⎝logαk +
J∑

j=1

∣∣v j in ci
∣∣ · log θk j

⎞

⎠

Each M-step of the algorithm solves the maximization problem

max

⎛

⎝
I∑

i=1

K∑

k=1

hik

⎛

⎝logαk +
J∑

j=1

∣∣v j in ci
∣∣ · log θk j

⎞

⎠

⎞

⎠ (2.2)
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with the constraints
K∑

k=1

αk = 1

J∑

j=1

θk j = 1

for all k = 1, ..., K

For simplicity, we denote the vector of parameters by

ψ = (α1, ..., αK , θ11, ..., θK J )

and notice that the number of independent components (parameters) is (K − 1) +
(K J − K ) = K J − 1.

The EM algorithm starts with a random initialization of the parameters, denoted by

ψ(0) =
(
α
(0)
1 , ..., α

(0)
K , θ

(0)
11 , ..., θ

(0)
K J

)

The iteration (r + 1) consists in the following two steps:
The E-step computes the missing data, based on the model parameters estimated

at iteration r, as follows:

h(r)ik = Pψ(r) (hik = 1 | C ) ,

h(r)ik =
α
(r)
k ·

J∏
j=1

(
θ
(r)
k j

)|v j in ci |

K∑
k=1

α
(r)
k ·

J∏
j=1

(
θ
(r)
k j

)|v j in ci | , i = 1, ..., I ; k = 1, ..., K

The M-step solves the maximization problem (2.2) and computes α(r+1)
k and

θ
(r+1)
k j as follows:

α
(r+1)
k = 1

I

I∑

i=1

h(r)ik , k = 1, ..., K

θ
(r+1)
k j =

I∑
i=1

∣∣v j in ci
∣∣ · h(r)ik

J∑
j=1

I∑
i=1

∣∣v j in ci
∣∣ · h(r)ik

, k = 1, ..., K ; j = 1, ..., J

The stopping criterion for the algorithm is “Stop when parameter estimates in two
consecutive iterations no longer differ significantly”. That is, stop when
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∥∥∥ψ(r+1) − ψ(r)
∥∥∥ < ε,

namely
K∑

k=1

(
α
(r+1)
k − α

(r)
k

)2 +
K∑

k=1

J∑

j=1

(
θ
(r+1)
k j − θ

(r)
k j

)
< ε

It is well known that the EM iterations
(
ψ(r)

)
r converge to the Maximum Like-

lihood Estimate ψ̂ = (
α̂1, ..., α̂K , θ̂11, ..., θ̂K J

)
.

Once the parameters of the model have been estimated, we can disambiguate
contexts of w by computing the probability of each of the senses based on features v j

occurring in the context c. Making the Naïve Bayes assumption and using the Bayes
decision rule, we can decide s′ if

s′ = arg max
k=1,...,K

⎛

⎝log α̂k +
J∑

j=1

∣∣v j in c
∣∣ · log θ̂k j

⎞

⎠

Our choice of recommending usage of the EM algorithm for parameter estima-
tion in the case of unsupervised WSD with an underlying Naïve Bayes model is
based on the fact that this algorithm has proven itself to be not only a successful
iterative method, but also one which fits well to models with missing data. However,
our choice is based on previously existing discussions and reported disambiguation
results as well. The EM algorithm has equally been used for parameter estimation
(together with Gibbs sampling), relatively to an underlying Naïve Bayes model, in
(Pedersen and Bruce 1998), to the results of which the accuracies obtained by other
disambiguation methods (see Chaps. 3 and 5) have constantly been compared. These
are disambiguation accuracies resulted when feeding knowledge of completely dif-
ferent natures to the Naïve Bayes model, as a result of using various different ways
of performing feature selection (see Chaps. 3–5). The EM algorithm has equally
been used with a Naïve Bayes model in (Gale et al. 1995), in order to distinguish
city names from people’s names. An accuracy percentage in the mid-nineties, with
respect to Dixon, a name found to be quite ambiguous, was reported.
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Chapter 3
Semantic WordNet-Based Feature Selection

Abstract The feature selection method we are presenting in this chapter makes use
of the semantic network WordNet as knowledge source for feature selection. The
method makes ample use of the WordNet semantic relations which are typical of
each part of speech, thus placing the disambiguation process at the border between
unsupervised and knowledge-based techniques. Test results corresponding to the
main parts of speech (nouns, adjectives, verbs) will be compared to previously exist-
ing disambiguation results, obtained when performing a completely different type
of feature selection. Our main conclusion will be that the Naïve Bayes model reacts
well in the presence of semantic knowledge provided by WN-based feature selection
when acting as clustering technique for unsupervised WSD.

Keywords Bayesian classification · Word sense disambiguation · Unsupervised
disambiguation · Knowledge-based disambiguation · WordNet

3.1 Introduction

The feature selection method we shall be describing here makes use of the semantic
network WordNet for creating a disambiguation vocabulary that contains a restricted
number of words (features) for unsupervised WSD with an underlying Naïve Bayes
model. The number of parameters which are to be estimated by the EM algorithm1 is
therefore reduced by performing knowledge-based feature selection. The novelty of
the presented method consists in using the semantic network WordNet as knowledge
source for feature selection. The method makes ample use of the WordNet semantic
relations which are typical of each part of speech (see Sect. 3.3) and therefore places
the disambiguation process at the border between unsupervised and knowledge-
based techniques. Test results corresponding to all major parts of speech (nouns,
adjectives, verbs) have been performed (Hristea et al. 2008; Hristea 2009; Hristea
and Popescu 2009) and have shown that feature selection using a knowledge source

1 See the mathematical model presented in Chap. 2.
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of type WordNet is more effective in disambiguation than local-type features (like
part-of-speech tags) are.

3.2 WordNet

WordNet (Miller 1990, 1995; Miller et al. 1990) is a large electronic and interac-
tive lexical database for English. It has been developed during the last 20 years2 at
Princeton University by a group headed by Professor George Miller, a psycholinguist
who was inspired by experiments in Artificial Intelligence that tried to understand
human semantic memory [e.g., (Collins and Quillian 1969)3]. The novelty of Miller’s
approach was the attempt to represent the entire bulk of the lexicalized concepts of
a language in a network-like structure based on hierarchical relations.

As its authors note, WordNet (WN)4 is a lexical knowledge base which was created
as a machine-readable dictionary based on psycholinguistic principles. It is a lexical
database that currently contains (ver. 3.0) approximately 155,287 English nouns,
verbs, adjectives and adverbs organized by semantic relations into over 117,000
meanings, where a meaning is represented by a set of synonyms (a synset) that
can be used (in an appropriate context) to express that meaning. These numbers
are approximate since WN continues to grow. The building block of WN is the
synset. A synset lexically expresses a concept. A word’s membership in multiple
synsets reflects that word’s polysemy. Different relations link the WN synsets. An
entry in WN consists of a synset, a definitional gloss, and (sometimes) one or more
phrases illustrating usage. The major relations used to organize words and entries
are synonymy and antonymy, hyponymy, troponymy and hypernymy, meronymy and
holonymy.

WN was primarily viewed as a lexical database. However, due to its structure,
it can be equally considered a semantic network and a knowledge base. It has been
recognized as a valuable resource in the human language technology and knowledge
processing communities. In WSD, WN represents the most popular sense inventory,
with its synsets being used as labels for sense disambiguation.

WSD can be performed at many levels of granularity. The various existing sense
inventories have different such levels of granularity. WN is very fine-grained, while
other possible sense inventories, such as thesauri and dictionaries, have much lower
granularity. The level of granularity offered by the sense inventory has great influence

2 In 1986 George Miller has the initiative of creating WordNet and designs its structure, which was
meant to serve testing current theories concerning human semantic memory. Verbs are added to the
network the following year (1987) and its first version (1.0) is released in 1991. Already in 2006
approximately 8000 download operations were registered on a daily basis and similar, more or less
developed, semantic networks of type WordNet existed for some 40 other languages.
3 The Collins and Quillian model proposed a hierarchical structure of concepts, where more specific
concepts inherit information from their superordinate, more general concepts. That is why only
knowledge particular to more specific concepts needs to be stored with such concepts.
4 For a comprehensive description of WN see also Fellbaum (1998).
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over WSD, making the problem more or less difficult, and is therefore taken into
account in the evaluation of WSD systems. As already mentioned, WN has become
the most popular sense inventory nowadays.

As the American WN continues to grow, new features are added to it. Version 2.1,
for instance, is the first to incorporate the distinctions between classes and instances
reported in (Miller and Hristea 2006) which lead to a semi-ontology of WN nouns.
And which facilitate the disambiguation of proper names.

According to specific semantic relations, in WN, noun and verb synsets are orga-
nized as hierarchies, while adjective and adverb synsets are part of a completely
different structure—the cluster.

Let us finally note that WN represents words and concepts as an interrelated system
which, according to Miller (1998), is consistent with evidence of the way speakers
organize their mental lexicons. And which incorporates knowledge into the lexicon,
bringing it closer to the mental one, that contains both word and world knowledge
(Kay 1989). This should be of the essence for artificial intelligence applications
such as WSD and is in contrast to linguistic theories that attempt to model human
grammar, or linguistic competence. Unlike such linguistic theories (as the one used
in Chap. 4), the structure of WordNet is motivated by theories of human knowledge
organization (Fellbaum 1998, p. 2).

The Naïve Bayes model has been shown (Hristea et al. 2008; Hristea 2009; Hristea
and Popescu 2009) to react well, from the point of view of unsupervised WSD, in
the presence of knowledge such as that offered by WordNet.

3.3 Making Use of WordNet for Feature Selection

The approach to WSD, more precisely to word sense discrimination, of Hristea
et al. (2008), which we are describing here, relies on a set of features formed by
the actual words occurring near the target word (within the context window) and
tries to reduce the size of this feature set by performing knowledge-based feature
selection. The semantic network WordNet has been used as unique knowledge source
for feature selection. While the classical approach forms the vocabulary on which the
disambiguation process relies dynamically, using all the content words which occur
in the contexts, the present approach forms the same vocabulary based entirely on
WordNet. The WN semantic network will provide the words considered relevant for
the set of senses taken into consideration corresponding to the target word.

First of all, words occurring in the same WN synsets as the target word (WN
synonyms) have been chosen (Hristea et al. 2008), corresponding to all senses of the
target. Additionally, the same authors consider the words occurring in synsets related
(through explicit relations provided in WN) to those containing the target word as
part of the vocabulary used for disambiguation. Synsets and relations were restricted
to those associated with the part of speech of the target word. The content words of
the glosses of all types of synsets participating in the disambiguation process, using
the example string associated with the synset gloss as well, were equally taken into
consideration (Hristea et al. 2008). The latter choice was made since previous studies

http://dx.doi.org/10.1007/978-3-642-33693-5_4
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(Banerjee and Pedersen 2003), performed for knowledge-based disambiguation, have
come to the conclusion that the example relation—which simply returns the example
string associated with the input synset—seems to provide useful information in the
case of all parts of speech. A conclusion which is not surprising, as the examples
contain words related syntagmatically to the target.

With respect to nouns, which represent the best developed portion of WordNet,
previous studies (Banerjee and Pedersen 2003), performed for knowledge-based
disambiguation, come to the conclusion that hyponym and meronym synsets are the
most informative. However, in (Hristea et al. 2008) hypernyms and holonyms are
equally taken into consideration. Tables 3.5 and 3.7 of Sect. 3.4.2 show the obtained
disambiguation results when using various combinations of the mentioned types of
WN synsets in the formation of the “disambiguation vocabulary”.

Corresponding to adjectives, the discussed disambiguation method has taken into
account (Hristea et al. 2008; Hristea and Popescu 2009) the similarity relation, which
is typical of adjectives (and, in fact, only holds for adjective synsets contained in
adjective clusters5). The also-see relation and the attribute relation have also been
taken into account since these relations are considered most informative and have
been found (Banerjee and Pedersen 2003) to rank highest among the useful relations
for adjectives. The pertaining-to relation has also been considered, whenever possi-
ble. Finally, the antonymy relation has represented a source of “negative information”
that has proven itself useful in the disambiguation process. This is in accordance
with previous findings of studies performed for knowledge-based disambiguation
(Banerjee and Pedersen 2002) that consider the antonymy relation a source of nega-
tive information allowing a disambiguation algorithm “to identify the sense of a word
based on the absence of its antonymous sense in the window of context”. Tables 3.8
and 3.9 of Sect. 3.4.2 show the obtained disambiguation results (Hristea et al. 2008;
Hristea and Popescu 2009) when using a disambiguation vocabulary in the formation
of which all mentioned types of synsets have taken part. This is the vocabulary which
has provided the best disambiguation results in the case of adjectives common and
public (see Sect. 3.4.2.2). Disambiguation results were computed with and without
antonym synsets participating in the disambiguation process.

In the case of verbs, it has been suggested (Hristea et al. 2008; Hristea 2009) to
additionally use, whenever possible, WN synsets indicated by the entailment rela-
tion6 and by the causal relation,7 which are typical of this part of speech. Table 3.10

5 WordNet divides adjectives into two major classes: descriptive and relational. Descriptive adjec-
tives are organized into clusters on the basis of binary opposition (antonymy) and similarity of
meaning (Fellbaum 1998). Descriptive adjectives that do not have direct antonyms are said to
have indirect antonyms by virtue of their semantic similarity to adjectives that do have direct
antonyms. Relational adjectives are assumed to be stylistic variants of modifying nouns and are
cross-referenced to the noun files (see the relation “relating-or-pertaining-to”). The function such
adjectives play is usually that of classifying their head nouns (Fellbaum 1998).
6 The entailment relation between verbs resembles meronymy between nouns, but meronymy is
better suited to nouns than to verbs (Fellbaum 1998).
7 The causal relation (Fellbaum 1998) picks out two verb concepts, one causative (like give), the
other what might be called the “resultative” (like have).
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of Sect. 3.4.2 shows the obtained disambiguation results (Hristea et al. 2008) in the
case of verb help.

As a result of using only those words indicated as being relevant by WordNet,
a much smaller vocabulary was obtained, and therefore a much smaller number of
features have taken part in the disambiguation process. In the case of this method
each word (feature) contributes to the final score being assigned to a sense with a
weight given by P(v j | sk).8 This weight (probability) is not a priori established, but
is learned by means of the EM algorithm.

3.4 Empirical Evaluation

Tests concerning the described disambiguation method have initially concentrated
on adjectives (Hristea and Popescu 2009). An experiment concerning verbs has also
been performed (Hristea 2009). The method was extended to nouns and surveyed
in (Hristea et al. 2008), where conclusions regarding all these parts of speech were
presented.

In the case of nouns, the part of speech for which the best disambiguation results
had been recorded by the literature, the goal of the performed experiment (Hristea
et al. 2008) was to compare results obtained by means of the new disambiguation
method with those obtained by a classical unsupervised algorithm (one having an
underlying Naïve Bayes model, which does not perform feature selection and which
is trained with the EM algorithm). The obtained disambiguation results (Hristea
et al. 2008) were equally compared to those of Pedersen and Bruce (1998), where an
algorithm of the same type (unsupervised with an underlying Naïve Bayes model) is
placed under survey. However, the algorithm studied by Pedersen and Bruce relies
on a restricted set of local features, that include co-occurrence and part of speech
information near the target word (as commented in Chap. 1). It therefore performs
feature selection, although in a completely different manner than that proposed by
the described method. With the necessity of performing feature selection of some
type being obvious, disambiguation results concerning adjectives and verbs were
compared with those of Pedersen and Bruce (1998) only. In the case of all parts of
speech test results have shown (Hristea et al. 2008) that feature selection using a
knowledge source of type WordNet is more effective in sense disambiguation than
local-type features are.

3.4.1 Design of the Experiments

In what follows, we are describing the experiments designed in (Hristea et al. 2008),
experiments which have led to the conclusion that semantic WN-based features are
more effective in sense discrimination than local type ones.

8 See the mathematical model presented in Chap. 2.
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Table 3.1 Distribution
of senses of line

Sense Count

Product 2,218 (53,47 %)
Written or spoken text 405 (9,76 %)
Telephone connection 429 (10,34 %)
Formation of people or things; queue 349 (8,41 %)
An artificial division; boundary 376 (9,06 %)
A thin, flexible object; cord 371 (8,94 %)
Total count 4,148

3.4.1.1 Noun Experiment

In the case of nouns, the line corpus (Leacock et al. 1993) has been used (Hristea
et al. 2008) as test data. This corpus contains around 4,000 examples of the word
line (noun) sense-tagged with subsets of their WordNet 1.5 senses. Examples are
drawn from the WSJ corpus, the American Printing House for the Blind, and the San
Jose Mercury. The line data set was chosen (Hristea et al. 2008) for tests concerning
nouns since it seems to have raised the greatest problems in the case of the Pedersen
and Bruce (1998) approach to WSD, to which the results of the new method were
compared. Pedersen and Bruce obtain the most modest disambiguation results in the
case of the noun line (when testing for 5 different nouns).

The line data was created by Leacock et al. (1993) by tagging every occurrence
of line in the selected corpus with one of 6 possible WordNet senses. These senses
and their frequency distribution are shown in Table 3.1.

In order for the experiments to be conducted, the line corpus was preprocessed in
the usual required way for WSD: the stop words were eliminated, and Porter stemmer
was applied to the remaining words.

Two types of tests were performed in the case of the classical unsupervised algo-
rithm. A first variant of testing involved a context window of size 5, which is a
common size for WSD tests of this type. The second testing variant used a context
window of size 25. This dimension was chosen in order for the two methods (the
classical one and the newly proposed one) to be compared under the same conditions.

The newly introduced method generated a series of experiments that vary accord-
ing to the specific sources used in establishing the so-called disambiguation vocab-
ulary.

The overall source for creating the vocabulary was WordNet 3.0, which lists 30
different senses corresponding to the noun line. The line corpus is sense-tagged
with subsets of WordNet 1.5 senses, namely with those senses listed in Table 3.1.
Therefore a sense mapping of the initial (corpus) senses to those of the WN 3.0
database was necessary.

The sense “product” occurring in the line corpus has been mapped to the WN
3.0 synset having the synset−id 103671668 and containing the nouns {line, product
line, line of products, line of merchandise, business line, line of business}. The
sense “written or spoken text” occurring in the corpus corresponds to 3 WN 3.0
synsets, namely synset {note, short letter, line, billet} having the id 106626286,
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synset {line} having the id 107012534, and synset {line} having the id 107012979,
respectively. The sense “telephone connection” occurring in the corpus corresponds
to the WN 3.0 synset {telephone line, phone line, telephone circuit, subscriber line,
line} having the id 104402057. The sense “formation of people or things; queue”
occurring in the corpus corresponds to 2 WN 3.0 synsets, namely synset {line} having
the id 108430203 and synset {line} having the id 108430568, respectively. The sense
“an artificial division; boundary” occurring in the corpus corresponds to the WN 3.0
synset {line, dividing line, demarcation, contrast} having the id 105748786. Finally,
the sense “a thin, flexible object; cord” occurring in the corpus corresponds to the
WN 3.0 synset {line} having the id 103670849.

Let us once again note that this disambiguation method is an unsupervised one and
therefore does not require sense labels (but only the number of senses, as detailed
in Sect. 3.4.2). Performing the presented sense mapping was necessary solely for
establishing the restricted disambiguation vocabulary (relevant words).

Once the subset of senses taking part in the experiments had been established, the
relevant information for building the vocabulary had to be specified.

The first performed experiment involving the disambiguation of the noun line
establishes (Hristea et al. 2008) as relevant words forming the vocabulary all nouns
of the 9 WN 3.0 synsets containing line which have been chosen as a result of sense
mapping. Additionally, all content words occurring in the glosses of these synsets
have been added to this vocabulary.9 Within the following experiments information
provided by the synsets related (through explicit relations existing in WN) to those
containing the target word line has been successively added. Thus, the second per-
formed experiment uses, along with all words occurring in the first one, the words
existing in the hyponym and meronym synsets of the 9 synsets containing the tar-
get.10 The third experiment uses all words occurring in the second one, to which all
content words of all the hyponym and meronym synset glosses are added.11 Within
the next experiment the initially used vocabulary (first experiment) has been enriched
by adding all words coming from all hyponym, hypernym, meronym and holonym
synsets of the 9 synsets containing the target.12 Finally, the last experiment uses all
words involved in the previously described one, to which the content words occurring
in the glosses of all synsets required by the previous experiment are added.13

3.4.1.2 Adjective Experiment

In the case of adjectives, in (Hristea et al. 2008) the test data is represented by the
Bruce et al. (1996) data containing twelve words taken from the ACL/DCI Wall Street

9 Experiment referred to in Tables 3.5 and 3.7 as “Synonyms + Glosses”.
10 Experiment referred to in Tables 3.5 and 3.7 as “+Hyponyms + Meronyms”.
11 Experiment referred to in Tables 3.5 and 3.7 as “+Hyponyms + Glosses + Meronyms + Glosses”.
12 Experiment referred to in Tables 3.5 and 3.7 as “+Hyponyms + Hypernyms + Meronyms +
Holonyms”.
13 Experiment referred to in Tables 3.5 and 3.7 as “+Hyponyms + Glosses + Hypernyms + Glosses
+ Meronyms + Glosses + Holonyms + Glosses”.
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Table 3.2 Distribution
of senses of common

Sense Count

As in the phrase “common stock” 84 %
Belonging to or shared by 2 or more 8 %
Happening often; usual 8 %
Total count 1,060

Table 3.3 Distribution
of senses of public

Sense Count

Concerning people in general 68 %
Concerning the government and people 19 %
Not secret or private 13 %
Total count 715

Journal corpus and tagged with senses from the Longman Dictionary of Contempo-
rary English. This data set was chosen for tests concerning adjectives since it has
equally been used in the case of the Pedersen and Bruce (1998) approach to WSD,
to which the results reported in (Hristea et al. 2008) were constantly compared.

Test results have been reported in the case of two adjectives, common and public,
the latter being the one corresponding to which Pedersen and Bruce obtain the most
modest disambiguation results. The senses of common that have been taken into
consideration and their frequency distribution are shown in Table 3.2, while Table 3.3
provides the same type of information corresponding to the adjective public. In these
tables total count represents the number of occurrences in the corpus of each word,
with each of the adjectives being limited to the 3 most frequent senses, while count
gives the percentage of occurrence corresponding to each of these senses. In fact,
the choice of performing tests in the case of adjectives common and public has been
influenced (Hristea et al. 2008) by the fact that these adjectives are represented in
the mentioned corpus by three different senses, while the other two adjectives for
which Pedersen and Bruce perform disambiguation tests, chief and last, have only
two senses (in the same corpus). Since unsupervised disambiguation should be able
to produce distinctions even between usage types that are more fine grained than
would be found in a dictionary, the choice of testing in the case of those adjectives
having the greatest number of senses represented in the corpus becomes a natural
one.

In order for the experiments to be conducted, the data set was preprocessed in the
usual required way for WSD: the stop words were eliminated, and Porter stemmer
was applied to the remaining words.

The overall source for creating the disambiguation vocabulary (Hristea et al.
2008) was again WordNet 3.0, which lists 9 different senses corresponding to the
adjective common and only 2 different senses corresponding to the adjective public.
Obviously, a sense mapping of the initial (corpus) senses to those of the WN 3.0
database was again necessary. According to this mapping, 4 WN 3.0 synsets took part
in the disambiguation vocabulary corresponding to the adjective common, namely the
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synsets having the IDs 300492677,14 302152473,15 30167381516 and 300970610,17

respectively. Both WN synsets corresponding to the adjective public and having the
IDs 30049329718 and 301861205,19 respectively were part of the same vocabulary
when performing disambiguation tests relative to this adjective.

Once the subset of WN senses taking part in the experiments was established, the
relevant information for building the disambiguation vocabulary had to be specified
once again.

Each of the experiments involving the disambiguation of adjectives common and
public have established (Hristea et al. 2008; Hristea and Popescu 2009) as rele-
vant words forming the vocabulary all words of the WN 3.0 synsets containing the
respective adjective which have been chosen as a result of sense mapping. Addition-
ally, all content words occurring in the glosses and the associated example strings
of these synsets have been added to this vocabulary. Information provided by the
synsets related (through explicit relations existing in WN) to those containing the
target word has also been included in the same vocabulary. Thus, the first performed
experiment20 additionally uses all content words occurring in the synsets, their cor-
responding glosses and example strings, given by the similarity relation, the also-see
relation, the attribute relation, the pertaining-to relation, whenever possible, and,
finally, the antonymy relation, which has been considered interesting due to the
“negative information” it can provide. The second performed experiment21 elimi-
nates from the disambiguation vocabulary all words brought in precisely by these
antonym synsets.

3.4.1.3 Verb Experiment

The newly proposed disambiguation method has been tested (Hristea et al. 2008;
Hristea 2009) in the case of verbs as well, since it is well known that the verb repre-
sents the part of speech which is the most difficult to disambiguate. Test results were
equally compared to those obtained in (Pedersen and Bruce 1998). Corresponding to
verbs the Bruce et al. (1996) data was used as test data once again. From this 12-word
sense-tagged corpus the verb help was selected, out of a total of 4 sense-tagged verbs.
This choice was again determined by the fact that help is a verb in the case of which
disambiguation results are quite modest when using the Pedersen-and-Bruce-type
local features. The distribution of senses corresponding to help that has been used

14 This is synset {common} having the gloss ‘belonging to or participated in by a community as a
whole; public’.
15 This is synset {common, mutual} having the gloss ‘common to or shared by two or more parties’.
16 This is synset {common} having the gloss ‘to be expected; standard’.
17 This is synset {common, usual} having the gloss ‘commonly encountered’.
18 This is synset {public} having the gloss ‘affecting the people or community as a whole’.
19 This is synset {public} having the gloss ‘not private; open to or concerning the people as a whole’.
20 Referred to in Tables 3.8 and 3.9 as “all”.
21 Referred to in Tables 3.8 and 3.9 as “all-antonyms”.
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Table 3.4 Distribution
of senses of help

Sense Count

To enhance-inanimate object 78 %
To assist-human object 22 %
Total count 1,267

in the performed experiments, as well as in (Pedersen and Bruce 1998), is shown in
Table 3.4.

The discussed disambiguation method has again generated a series of experiments
that vary according to the specific sources used in establishing the disambiguation
vocabulary. The overall source for creating this vocabulary was again WordNet 3.0,
which lists 8 different senses corresponding to the verb help. In the case of this verb
the disambiguation vocabulary was formed by taking into account all verbs of the
6 WN 3.0 synsets22 containing help which have been chosen as a result of sense
mapping, all content words occurring in the glosses and the associated example
strings of these synsets, as well as all content words belonging to all WN-related
synsets, their glosses and their corresponding example strings. This vocabulary is
regarded (Hristea et al. 2008; Hristea 2009) as an extended one, thus created in order
to ensure greater coverage of the corpus instances for participation in the learning
process, a requirement which is always more difficult to meet in the case of verbs.

3.4.2 Test Results

In all mentioned studies (Pedersen and Bruce 1998; Hristea et al. 2008; Hristea
2009; Hristea and Popescu 2009) concerning unsupervised WSD with an underlying
Naïve Bayes model, performance is evaluated in terms of accuracy. In the case of
unsupervised disambiguation, however, defining accuracy is not as straightforward
as in the supervised case. The objective is to divide the I given instances of the
ambiguous word into a specified number K of sense groups, which are in no way
connected to the sense tags existing in the corpus. In the performed experiments, sense
tags are used only in the evaluation of the sense groups found by the unsupervised
learning procedure. These sense groups must be mapped to sense tags in order to

22 These are the following:

• synset {help, aid} having the ID 200082081 and the gloss ‘improve the condition of’;
• synset {help} having the ID 200206998 and the gloss ‘improve; change for the better’;
• synset {serve, help} having the ID 201181295 and the gloss ‘help to some food; help with food

or drink’;
• synset {avail, help} having the ID 201193569 and the gloss ‘take or use’;
• synset {help, assist, aid} having the ID 202547586 and the gloss ‘give help or assistance; be of

service’;
• synset {help} having the ID 202555434 and the gloss ‘contribute to the furtherance of’.
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evaluate system performance. The mapping that results in the highest classification
accuracy23 has been used.

Test results are presented in Tables 3.5, 3.7, 3.8, 3.9 and 3.10.24 Each result repre-
sents the average accuracy and standard deviation obtained by the learning procedure
over 20 random trials while using a context window of size 2525 and a threshold ε
having the value 10−9. Tables 3.5 and 3.7 (corresponding to nouns) also present, for
enabling comparison, the results obtained by the classical algorithm, when using a
context window of size 5 and 25, respectively. These results equally represent the
average accuracy and standard deviation over 20 trials of the EM algorithm with a
threshold ε having the value 10−9.

Apart from accuracy, the following type of information is also included in
Tables 3.5, 3.7, 3.8, 3.9 and 3.10: number of features resulting in each experiment
and percentage of instances having only null features (i.e. containing no relevant
information).

As previously mentioned, within the present approach to disambiguation, the value
of a feature is given by the number of occurrences of the corresponding word in the
given context window. Since the process of feature selection is based on the restriction
of the disambiguation vocabulary, it is possible for certain instances not to contain
(in their context window) any of the relevant words forming this vocabulary. Such
instances will have null values corresponding to all features. The smaller the number
of features used for disambiguation, the more frequently this takes place. These
instances do not contribute to the learning process. However, they have been taken
into account in the evaluation stage of the presented experiments. Corresponding
to these instances, the algorithm assigns the sense sk for which the value of P(sk)

(estimated by the EM algorithm)26 is maximal.

3.4.2.1 Test Results Concerning Nouns

In the case of nouns, as can be seen in Table 3.5, the obtained disambiguation results
(Hristea et al. 2008) when using an underlying Naïve Bayes model and applying the
EM algorithm to the classical set of features, formed with the actual words occurring

23 In order to conduct their experiments the mentioned authors have chosen a number of sense
groups equal to the number of sense tags existing in the corpus. Therefore a number of K ! possible
mappings (with K denoting the number of senses of the target word) should be taken into account.
For a fixed mapping, its accuracy is given by the number of correct labellings (identical to the
corresponding corpus sense tags) divided by the total number of instances. From the K ! possible
mappings, the one with maximum accuracy has been chosen.
24 Reprinted here from (Hristea et al. 2008).
25 The choice of this context window size is based on the suggestion of Lesk (1986) that the
quantity of data available to the algorithm is one of the biggest factors to influence the quality of
disambiguation. In this case, a larger context window allows the occurrence of a greater number of
WN relevant words (with respect to the target), which are the only ones to participate in the creation
of the disambiguation vocabulary.
26 See the mathematical model presented in Chap. 2.

http://dx.doi.org/10.1007/978-3-642-33693-5_2
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Table 3.5 Experimental results for 6 senses of line

Method No. of Percentage of Accuracy
features instances having

only null features

Classic-5 4700 0.0 0.274 ± 0.02
Classic-25 9932 0.0 0.255 ± 0.02
Synonyms + Glosses 73 45.7 0.473 ± 0.02
+ hyponyms + meronyms 138 38.3 0.478 ± 0.01
+ hyponyms + glosses 305 11.7 0.454 ± 0.04
+ meronyms + glosses
+ hyponyms + hypernyms 152 35.9 0.465 ± 0.02
+ meronyms + holonyms
+ hyponyms + glosses 358 8.5 0.448 ± 0.05
+ hypernyms + glosses
+ meronyms + glosses
+ holonyms + glosses

in the context window, are extremely modest. A possible cause of this failure is the
great number of features used by the learning algorithm. This is also suggested by
the fact that, when enlarging the context window from size 5 to size 25, the number
of features increases from 4,700 to 9,932, which leads to a decrease in accuracy from
0.274 to 0.255. Let us note that accuracy in the same range (25–30 %) is reported
in (Pedersen and Bruce 1998) when tests corresponding to all 6 senses of the line
corpus are performed.

The first conclusion that results presented in Table 3.5 immediately lead to is that,
whenever performing feature selection, accuracy increases substantially.

The best disambiguation result (0.478) was obtained (Hristea et al. 2008) in the
case when the disambiguation vocabulary was formed with all WN synonyms occur-
ring in all synsets that contain the target word, content words of the glosses cor-
responding to these synsets, as well as nouns coming from all their hyponym and
meronym synsets. This is in accordance with previous findings of studies performed
for knowledge-based disambiguation (Banerjee and Pedersen 2003) concluding that,
in the case of nouns, hyponym and meronym synsets of those containing the target
word are the most informative. The obvious conclusion is that making use of a knowl-
edge base of type WordNet (in this case, for feature selection) substantially improves
disambiguation results.

The same set of experiments, performed under the same conditions, has been
conducted (Hristea et al. 2008) in the case of only 3 senses of line. The reason
for performing this reduction from 6 to 3 senses was to verify to what extent the
existence of a majority sense in the distribution of senses for line27 influences the

27 Sense “product” occurs in 53,47 % of the line corpus instances.
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Table 3.6 Distribution of the
3 chosen senses of line

Sense Count

Telephone connection 429 (37,33 %)
Formation of people or things; queue 349 (30,37 %)
A thin, flexible object; cord 371 (32,28 %)
Total count 1,149

performances of the presented disambiguation method. The 3 chosen senses are listed
in Table 3.6.28

A more uniform distribution of the line senses has thus been obtained. Addition-
ally, the 3 senses that have been selected (Hristea et al. 2008) coincide with the ones
used in (Pedersen and Bruce 1998) for the presented disambiguation experiment, a
choice which has allowed a straightforward comparison between the corresponding
results.

Test results for this case (3 senses of line) are presented in Table 3.7. As in the
previous case (6 senses of line) the results obtained by the classical algorithm (without
feature selection) are very modest, while performing feature selection consistently
improves the results corresponding to each experiment. The maximum obtained
accuracy (0.591) represents a consistent improvement over the maximum obtained in
the previous case (0.478). This maximum accuracy was obtained corresponding to a
disambiguation vocabulary formed with all words occurring in all synsets containing
the target word, their hyponym, hypernym, meronym, and holonym synsets, to which
all content words of all corresponding glosses were added. The explanation for
obtaining the best result when using a larger number of explicit relations provided in
WordNet could reside in the fact that, corresponding to the three chosen senses of line,
no meronym synsets exist. This considerably reduces the disambiguation vocabulary
that resulted in the best accuracy when all 6 senses of line were disambiguated.

The presented disambiguation method and corresponding results have been com-
pared (Hristea et al. 2008) primarily to those of Pedersen and Bruce (1998) since
both methods rely on an underlying Naïve Bayes model, use the EM algorithm for
estimating model parameters29 in unsupervised WSD and perform feature selection.
The main difference between the two approaches consists in the way feature selec-
tion is performed. While Pedersen and Bruce, as mentioned before, use local features
that include co-occurrence and part of speech information near the target word, the
present approach relies on WordNet and its rich set of semantic relations for perform-
ing feature selection. This places the disambiguation process at the border between
unsupervised and knowledge-based techniques, but improves disambiguation accu-
racy consistently. Thus, the way in which this method performs feature selection
brings the same disambiguation accuracy when testing for all 6 senses of line as
that obtained in (Pedersen and Bruce 1998) in the case of only 3 chosen senses
of this target word (47 %). The mentioned authors report that “accuracy degrades

28 Reprinted here from (Hristea et al. 2008).
29 Pedersen and Bruce (1998) also make use of Gibbs sampling for parameter estimation, without
results improving significantly.
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Table 3.7 Experimental results for 3 senses of line

Method No. of Percentage of Accuracy
features instances having

only null features

Classic-5 1907 0.0 0.280 ± 0.02
Classic-25 4806 0.0 0.248 ± 0.02
Synonyms + Glosses 30 49.7 0.487 ± 0.03
+ hyponyms + meronyms 74 41.7 0.513 ± 0.03
+ hyponyms + glosses 203 17.9 0.570 ± 0.08
+ meronyms + glosses
+ hyponyms + hypernyms 82 38.5 0.498 ± 0.03
+ meronyms + holonyms
+ hyponyms + glosses 229 15.1 0.591 ± 0.06
+ hypernyms + glosses
+ meronyms + glosses
+ holonyms + glosses

Table 3.8 Experimental
results for 3 senses of
common

Method No. of Percentage of Accuracy
features instances having

only null features

All 83 19.2 0.775 ± 0.02
All—antonyms 74 20.0 0.766 ± 0.04

considerably, to approximately 25–30 %, depending on the feature set” when testing
for all 6 senses taken into consideration in the line corpus. When disambiguating
only the same three chosen senses of line, the accuracy of the discussed method
is significantly higher (59 %), being obtained with significant corpus coverage (the
percentage of instances having only null features is 15.1). This clearly shows that
feature selection using a knowledge source of type WordNet can be more effective
in disambiguation than local-type features (like part-of-speech tags).

3.4.2.2 Test Results Concerning Adjectives

The presented method has been tested (Hristea et al. 2008; Hristea and Popescu 2009)
with respect to adjectives common and public, the latter being the one in the case of
which Pedersen and Bruce (1998) obtain the most modest disambiguation results.
Test results are presented in Table 3.8 (corresponding to adjective common) and in
Table 3.9 (corresponding to adjective public).

It can be noticed that the way in which this method performs feature selection
brings a disambiguation accuracy of 0.775±0.02 in the case of the adjective common,
while the highest accuracy obtained in (Pedersen and Bruce 1998), corresponding to
the same adjective and when estimating model parameters with the EM algorithm as
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Table 3.9 Experimental
results for 3 senses of public

Method No. of Percentage of Accuracy
features instances having

only null features

All 74 43.3 0.559 ± 0.03
All—antonyms 71 44.4 0.550 ± 0.03

well, is of 0.543 ± 0.09. When leaving out antonym synsets the accuracy obtained
by the discussed method decreases to 0.766 ± 0.04, which again represents a value
significantly higher than the corresponding one of Pedersen and Bruce (1998). In
the case of adjective public this method attains an accuracy of 0.559 ± 0.03, which
decreases to 0.550 ± 0.03 when leaving out antonym synsets, with both values
being higher than the corresponding one obtained in (Pedersen and Bruce 1998):
0.507 ± 0.03. These results clearly show that feature selection using a knowledge
source of type WordNet can be more effective in disambiguation than local-type
features (like part-of-speech tags).

When analyzing the results presented in Tables 3.8 and 3.9 one must also notice
that accuracy decreases each time the information provided by the antonym synsets
is left out of the disambiguation vocabulary. Although there is an obviously restricted
number of antonym synsets (see the number of features in the tables) the type of neg-
ative information they provide seems to be beneficial to the disambiguation process.

Finally, the fact that, although adjective public has only two senses in WN 3.0,
discrimination among three different senses was possible, reinforces the idea that
unsupervised WSD in general, and that based on an underlying Naïve Bayes model
in particular, is able to make distinctions between very fine grained usage types, even
more fine grained than those present in a knowledge source of type WordNet.

3.4.2.3 Test Results Concerning Verbs

Usage of the discussed disambiguation method has been exemplified and examined
(Hristea et al. 2008; Hristea 2009) in the case of verb help, corresponding to which
Pedersen and Bruce obtain the most modest results (when estimating model parame-
ters by means of the EM algorithm), out of 4 studied verbs. In the case of help, the
best disambiguation accuracy attained in (Pedersen and Bruce 1998) is 0.602±0.03.
Since, in this case, all WN synonyms corresponding to all chosen synsets will be
verbs, which are unlikely to have multiple occurrences in the context window of
the target word, and in order to ensure greater coverage of the corpus instances
for participation in the learning process, an “extended disambiguation vocabulary”
has been taken into account (Hristea et al. 2008; Hristea 2009) as mentioned in
Sect. 3.4.1.3. This vocabulary was created by using all verbs of the 6 WN 3.0 synsets
containing help that have resulted after performing sense mapping, all content words
occurring in the glosses and the associated example strings of these synsets, as well
as all content words belonging to all WN-related synsets, their glosses and their
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Table 3.10 Experimental
results for 2 senses of help

Method No. of Percentage of Accuracy
features instances having

only null features

All 130 41.8 0.671 ± 0.04

corresponding example strings. The presented disambiguation method was asked to
perform discrimination among the two senses of help chosen in (Pedersen and Bruce
1998) and presented in Table 3.4. As shown in Table 3.10, the obtained accuracy
was 0.671 ± 0.04 with a number of 130 resulting features and with over 50 % of
the instances contributing to the learning process. This represents an improvement
of the result obtained in (Pedersen and Bruce 1998), although the verb is the most
difficult to disambiguate part of speech.

Additionally, it is our belief that disambiguation results will improve correspond-
ing to those verbs for which related synsets via the entailment and the causal relations,
which are typical of verbs, exist. This was not the case of help, corresponding to which
only hyponym and hypernym synsets were found. However, help was chosen for the
performed experiments since it enables comparison with results found in (Pedersen
and Bruce 1998). In the case of verbs as well, feature selection using a knowledge
source of type WordNet has once again proven to be more effective in disambiguation
than local-type features are.

One of the main problems which persists, when using the presented disambigua-
tion method in the case of verbs, is that of low corpus coverage. In an attempt to deal
with this problem and for the purpose of the present discussion, we have performed
an experiment which extends the disambiguation vocabulary even more. Thus, we
have enriched the disambiguation vocabulary used in the experiment presented in
Table 3.10 by adding to it the first 1 % of the most frequent words which occur in the
context windows of the target. In the case of help this gives us 50 new words which
have been added to the 130 features indicated by WordNet. Two of these words coin-
cide with existing ones, which leaves us with 178 features. In this case, the accuracy
of the described method decreases from 0.671 ± 0.04 to 0.602 ± 0.04. The latter
result is extremely close to the corresponding (Pedersen and Bruce 1998) accuracy
(0.602 ± 0.03). This decrease in accuracy (despite the fact that the most frequently
occurring words have been used as features) reinforces the idea that it is the power
of WordNet’s semantic relations that helps the Naïve Bayes model when acting as
clustering technique for unsupervised WSD.

3.5 Conclusions

We have presented a relatively new word sense disambiguation method (Hristea
et al. 2008; Hristea 2009; Hristea and Popescu 2009) that lies at the border between
unsupervised and knowledge-based techniques. The method performs unsupervised
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word sense disambiguation based on an underlying Naïve Bayes model, while using
WordNet as knowledge source for feature selection. The performance of the method
has been compared (Hristea et al. 2008; Hristea 2009; Hristea and Popescu 2009) to
that of a previous approach that relies on completely different feature sets (Pedersen
and Bruce 1998). Test results for all involved parts of speech have shown that feature
selection using a knowledge source of type WordNet is more effective in disam-
biguation than local-type features (like part-of-speech tags) are. The presentation of
the method has reinforced the benefits of combining the unsupervised approach to
the WSD problem with a knowledge source of type WordNet. Our main conclusion
is that the Naïve Bayes model reacts well in the presence of semantic knowledge
provided by WN-based feature selection when acting as clustering technique for
unsupervised WSD.
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Chapter 4
Syntactic Dependency-Based Feature Selection

Abstract The feature selection method we are presenting in this chapter makes use
of syntactic knowledge provided by dependency relations. Dependency-based fea-
ture selection for the Naïve Bayes model is examined and exemplified in the case
of adjectives. Performing this type of knowledge-based feature selection places the
disambiguation process at the border between unsupervised and knowledge-based
techniques. The discussed type of feature selection and corresponding disambigua-
tion method will once again prove that a basic, simple knowledge-lean disambigua-
tion algorithm, hereby represented by the Naïve Bayes model, can perform quite
well when provided knowledge in an appropriate way. Our main conclusion will be
that the Naïve Bayes model reacts well in the presence of syntactic knowledge of
this type and that dependency-based feature selection for the Naïve Bayes model is
a reliable alternative to the WordNet-based semantic one.

Keywords Bayesian classification · Word sense disambiguation · Unsupervised
disambiguation · Knowledge-based disambiguation · Dependency relations ·
Dependency-based feature selection

4.1 Introduction

The present chapter focuses on an entirely different way of performing feature selec-
tion, that is equally knowledge-based. The Naïve Bayes model will be fed knowledge
of a totally different nature than the one examined in Chap. 3. With the benefits of plac-
ing the disambiguation process at the border between unsupervised and knowledge-
based techniques having already become obvious (see Chap. 3), our next concern
is to augment the role of linguistic knowledge in informing the construction of the
semantic space for WSD based on an underlying Naïve Bayes model. This chapter
investigates the usage of syntactic features provided by dependency relations, as
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defined by the classical Dependency Grammar formalism.1 Although dependency-
based semantic space models have been studied and discussed by several authors
(Padó and Lapata 2007; Nǎstase 2008; Chen et al. 2009), to our knowledge, gram-
matical dependencies have been used in conjunction with the Naïve Bayes model
only very recently (Hristea and Colhon 2012).

The semantic space proposed to the Naïve Bayes model for unsupervised WSD
in (Hristea and Colhon 2012) is based on syntactic knowledge, more precisely on
dependency relations, extracted from natural language texts via a syntactic parser.
The resulting dependency relations will indicate those words (features) which should
be part of the disambiguation vocabulary when trying to decrease the number of
parameters that are to be estimated by the EM algorithm.2 The corresponding dis-
ambiguation method, which we shall be presenting here, makes use (Hristea and
Colhon 2012) of a PCFG parser, namely the Stanford parser (Klein and Manning
2003), in order to extract syntactic dependency relations that will indicate the dis-
ambiguation vocabulary required by the Naïve Bayes model.

Dependency relations are considered a linguistically rich representation where
fixed word order is not required, argument structure differences can be captured,
different types of contexts can be selected and words do not have to co-occur within
a small, fixed context window (Padó and Lapata 2007). Such properties have recom-
mended dependency relations as appropriate for feeding syntactic knowledge to the
Naïve Bayes model.

The discussed disambiguation method introduces (Hristea and Colhon 2012)
dependency-based feature selection in the case of adjectives and compares test results
with those obtained when using the disambiguation vocabulary previously generated
(see Chap. 3) by WordNet. Two totally different ways of feeding knowledge of dif-
ferent natures to a knowledge-lean algorithm with an underlying Naïve Bayes model
are ultimately compared in the case of unsupervised WSD. The discussed method
will once again prove that a basic, simple knowledge-lean disambiguation algo-
rithm, hereby represented by the Naïve Bayes model, can perform quite well when
provided knowledge in an appropriate way, a remark also made by (Ponzetto and
Navigli 2010).

Although the discussed disambiguation method has so far been tested (Hristea
and Colhon 2012) only in the case of adjectives, it is our belief that the obtained
results (see Sect. 4.3.2) should initiate an open discussion concerning the type of
knowledge that is best suited for the Naïve Bayes model when performing the task
of unsupervised WSD.

1 Dependency grammar (DG) is a class of syntactic theories developed by Lucien Tesnière (1959).
Within this theory, syntactic structure is determined by the grammatical relations existing between
a word (a head) and its dependents.
2 See the mathematical model presented in Chap. 2.
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4.2 A Dependency-Based Semantic Space for WSD
with a Naïve Bayes Model

In the case of unsupervised WSD with an underlying Naïve Bayes model, our inten-
tion is to construct a semantic space that takes into account syntactic relations. The
Naïve Bayes model will be fed syntactic knowledge based on the consideration that
“because syntax-based models capture more linguistic structure than word-based
models, they should at least in theory provide more informative representations of
word meaning” (Padó and Lapata 2007). The choice of the syntactic formalism to be
used is not an easy one. The main concern (Hristea and Colhon 2012) was that of hav-
ing the semantic relationships between concepts and the words that lexicalize them
mirrored in some way, considering that semantic knowledge of this type had already
proven useful in the disambiguation process (Hristea et al. 2008; Hristea 2009; Hris-
tea and Popescu 2009). Once again following the line of reasoning of Padó and Lapata
(2007), “an ideal syntactic formalism should abstract over surface word order, mirror
semantic relationships as closely as possible, and incorporate word-based informa-
tion in addition to syntactic analysis ... These requirements point towards dependency
grammar, which can be considered as an intermediate layer between surface syntax
and semantics”.

Despite the various existing linguistic theories, which lead to different ways of
viewing sentence structure and therefore syntactic analysis, most linguists today
agree that at the heart of sentence structure are the relations among words. These
relations refer either to grammatical functions (subject, complement etc.) or to the
links which bind words into larger units like phrases or even sentences. The depen-
dency grammar approach to syntactic analysis takes into consideration the latter,
viewing each word as depending on another word that links it to the rest of the
sentence. Unlike generative grammars therefore, dependency grammars (DG) are
not based on the notion of constituent but on the direct relations existing among
words.

The relation between the dependent word and the word on which it depends (the
head) is at the basis of DG. The syntactical analysis of a sentence signifies, from the
point of view of DG, the description of all dependency relations (between the head
and the dependent) which occur among all words of the sentence. Any word should
depend exactly on one other word (the head), with the exception of the main predicate
in the sentence which depends on no other word. Several words may depend on the
same head. The dependency relations may or may not lack directionality3 (from
head to dependent) in the relation between words, according to which variant or
alternative dependency-based grammatical theory4 is used. A variety of dependency
relations may exist among the words of a sentence if no restrictions are specified. The
role of dependency grammars is mainly that of specifying the restrictions which the
dependency relations should meet so that the structure they define is linguistically

3 The relations between the dependent and the head are usually represented by an arch.
4 See also Link grammar (Sleator and Temperley 1991, 1993) and Word grammar (Hudson 1984).
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correct. The dependency structure will specify, in the case of each word, what other
word it depends on. The dependencies indicated by the dependency structure of a
sentence map straightforwardly onto a directed graph representation, in which the
words of the represented sentence are nodes in the graph and grammatical relations
are edge labels. It is various combinations of such dependencies5 that will form the
context over which we shall be constructing the semantic space for WSD. Just as
Padó and Lapata (2007), we adopt the working hypothesis that syntactic structure in
general and argument structure in particular are a close reflection of lexical meaning
(Levin 1993). When using dependency relations we model meaning by quantifying
the degree to which words occur in similar syntactic environments.

The Naïve Bayes model’s reaction to knowledge of this type will be tested in the
case of unsupervised adjective sense disambiguation.

4.2.1 Dependency-Based Feature Selection

Of the several existing dependencies parsers (Minipar, MaltParser, the Berkeley
Parser, Stanford Parser, Link Grammar Parser) Hristea and Colhon (2012), whose
line of reasoning we are following here, have chosen to use the Stanford Parser
(Klein and Manning 2003) in order to automatically extract typed dependency
parses of English sentences.

While the classical dependency-based linguistic theory does not allow the arches
denoting the dependency relations to intersect (thus leading to an oriented graph
which has no cycles), the dependency analysis performed by the Stanford parser can
be either projective (disallowing crossing dependencies) or non-projective (permit-
ting crossing dependencies). When using this specific syntactic parser the mentioned
authors have performed a dependency syntactical analysis of non-projective type, in
order to maximize the number of dependencies between content words. Although
this may increase the number of features (words included into the disambiguation
vocabulary) and therefore of parameters which must be estimated by the EM algo-
rithm,6 it was their belief that it could give a better indication of the ambiguous
word’s sense in context. The number of resulting features should then be decreased
by taking into account only dependency relations of specific types (see Sect. 4.3.1).

Tests concerning the construction of the semantic space for WSD by feeding the
Naïve Bayes model syntactic knowledge (provided by dependency relations) have so
far concentrated (Hristea and Colhon 2012) on adjectives. However, we believe that
the discussion which is to follow holds for all parts of speech (POS) and should only
be subject to certain adaptations, depending on the particularities of each syntactic
POS category. The mentioned authors’ intention was to study the effectiveness of
syntactic features (determined by dependency relations) as compared to semantic

5 For which see Sect. 4.3.1.
6 See the mathematical model presented in Chap. 2.
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ones, more precisely to the ones provided by WordNet (see Chap. 3) which has been
created in the spirit of understanding human semantic memory.

In order to inform the construction of the semantic space for WSD with syn-
tactic knowledge of this type, Hristea and Colhon (2012) have conducted a two-
stage experiment. At the first stage of their study, they have made no qualitative
distinction between the different relations, by not taking into account the type of
the involved dependencies.7 This approach was inspired by existing syntax-based
semantic space models, where the construction of the space is either based on all
relations (Grefenstette 1994; Lin 1998) or on a fixed subset (Lee 1999), but always
with no qualitative distinction between the different relations being made. At the
second stage of their experiment Hristea and Colhon (2012) have taken into account
the dependency type, thus informing the construction of the semantic space in a
more linguistically rich manner. They have therefore eliminated certain paths (of the
associated dependency graph) from the semantic space, on the basis of linguistic
knowledge, by making use only of specific dependency relations, which are consid-
ered more informative than others relatively to the studied part of speech.

At both stages, their experiment takes place in the same type of setup. Namely, in
defining thesyntacticcontextof the targetword, theyhavefirst taken intoconsideration
direct relationships8 between the target and other words (denoted by dependency
relations where the target is either the head or a dependent and which correspond to
paths of length 1 anchored9 at the target in the associated dependency graph). They
have subsequently considered indirect relationships10 between the target and other
words by taking into account paths of length 2 in the same associated dependency
graph. At the present stage of their study Hristea and Colhon (2012) have limited
their investigation to second order dependencies. However, the length (order) of these
dependencies (paths in the associated graph) represent a parameter that can vary and
whichweconsideranalogous to theclassical“windowsize”parameter.Thisparameter
shouldhaverelativelysmallvalues,sinceit isaknownfactthat linguisticallyinteresting
paths are of limited length. By taking into account second order dependencies one
additionally represents indirect semantic relations which could prove to be important.

When using dependency-based syntactic features the disambiguation vocabulary
is formed by taking into account all words that participate in the considered depen-
dencies.

In their experiments Hristea and Colhon (2012) have considered both depen-
dencies having directionality and dependencies lacking it. Contrary to other studies
(Padó and Lapata 2007), which consider that “directed paths would limit the context
too severely”, they have taken into account both undirected and directed paths, with

7 They have only eliminated the potentially unuseful relations—for WSD—provided by the Stanford
parser, such as: determiner, predeterminer, numeric determiner, punctuation relations, etc.
8 In what follows, such dependencies will be called first order dependencies.
9 A path anchored at the target word w is a path in the dependency graph starting at w. If the
dependency relations have directionality, leading to an associated oriented graph, a path anchored
at w is either a path starting at w or arriving at w.
10 In what follows, such dependencies will be called second order dependencies.
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the latter providing the best test results (see Sect. 4.3.2). As will be seen, the Naïve
Bayes model seems to react well to the directionality of dependency relations.

4.3 Empirical Evaluation

In order to compare their disambiguation results to those of other previous studies
(Hristea et al. 2008; Hristea and Popescu 2009) that had made use of the same Naïve
Bayes model, trained with the EM algorithm, but had performed semantic WordNet-
based feature selection, Hristea and Colhon (2012) try to disambiguate the same
target adjectives using the same corpora. Specifically, they report disambiguation
results in the case of adjectives common and public (see Sect. 4.3.2).

4.3.1 Design of the Experiments

With respect to adjectives Hristea and Colhon (2012) have used as test data the (Bruce
et al. 1996) data containing twelve words taken from the ACL/DCI Wall Street Jour-
nal corpus and tagged with senses from the Longman Dictionary of Contemporary
English. They have chosen this data set for their tests concerning adjectives since
it has equally been used in the case of the Hristea et al. (2008) approach to WSD
(WordNet-based feature selection), to which they were comparing the results of their
own disambiguation method (dependency-based feature selection). As already men-
tioned, test results were reported in the case of two adjectives, common and public.
The senses of common that have been taken into consideration and their frequency
distribution are shown in Table 4.1, while Table 4.2 provides the same type of infor-
mation corresponding to the adjective public. In these tables11 total count represents
the number of occurrences in the corpus of each word, with each of the adjectives
being limited to the 3 most frequent senses, while count gives the percentage of
occurrence corresponding to each of these senses.

In order for the experiments to be conducted, the data set was preprocessed
(Hristea and Colhon 2012) in the usual required way for WSD: the stop words were
eliminated and Porter stemmer was applied to the remaining words.

When performing syntactic (dependency-based) feature selection, at the first stage
of the testing process, the mentioned authors have taken into account both directed
and undirected dependency relations. No information concerning the types of the
considered dependencies was used. At this stage of their study, they have designed a
set of eight experiments (with the first two referring to undirected dependencies and
the following six referring to directed ones).

11 Which are the same as those showing the distribution of senses of common and public, respectively
in Chap. 3.

http://dx.doi.org/10.1007/978-3-642-33693-5_3
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Table 4.1 Distribution
of senses of common

Sense Count

As in the phrase “common stock” 84 %
Belonging to or shared by 2 or more 8 %
Happening often; usual 8 %
Total count 1,060

Table 4.2 Distribution
of senses of public

Sense Count

Concerning people in general 68 %
Concerning the government and people 19 %
Not secret or private 13 %
Total count 715

The first performed experiment (Hristea and Colhon 2012) considers all undi-
rected first order dependencies anchored at the target word. All words participating
in these dependencies (with the exception of the target) will be included in the so-
called disambiguation vocabulary. This experiment is referred to in Table 4.312 of
Sect. 4.3.2 (corresponding to adjective common) and Table 4.413 of Sect. 4.3.2 (cor-
responding to adjective public) as Undirected first order dependencies.

The second performed experiment (Hristea and Colhon 2012) also refers to undi-
rected dependencies. It takes into account all first order and second order depen-
dencies which are anchored at the target word. All words participating in these
dependencies are part of the disambiguation vocabulary. This experiment is referred
to in Table 4.3 of Sect. 4.3.2 (corresponding to adjective common) and Table 4.4 of
Sect. 4.3.2 (corresponding to adjective public) as Undirected first and second order
dependencies.

The following six experiments were all designed (Hristea and Colhon 2012) with
reference to dependency relations that have directionality.14 Both dependencies that
view the target word as head15 and dependencies that view it as dependent16 have
been considered. Within this group of experiments, the first two refer to directed
first order dependencies and the following four to directed first and second order
dependencies, respectively (see Tables 4.3 and 4.4 of Sect. 4.3.2).

The third performed experiment which is presented in Tables 4.3 and 4.4 of
Sect. 4.3.2 views the target word as head. It takes into account all head-driven depen-
dencies of first order anchored at the target word and collects all corresponding
dependents, which form the considered disambiguation vocabulary. This experiment
must be looked up, in Table 4.3 of Sect. 4.3.2 (corresponding to adjective common)

12 Undertaken from (Hristea and Colhon 2012).
13 Undertaken from (Hristea and Colhon 2012).
14 The considered directionality is from head to dependent.
15 In what follows, these dependencies will be called head-driven dependencies.
16 In what follows, these dependencies will be called dependent-driven dependencies.
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and Table 4.4 of Sect. 4.3.2 (corresponding to adjective public) under Directed first
order dependencies. It is referred to as Head-driven dependencies.

The fourth performed experiment views the target word as dependent. It takes
into account all dependent-driven dependencies of first order anchored at the target
word and collects all corresponding heads, which form the considered disambigua-
tion vocabulary. This experiment must also be looked up, in Table 4.3 of Sect. 4.3.2
(corresponding to adjective common) and Table 4.4 of Sect. 4.3.2 (corresponding
to adjective public) under Directed first order dependencies. It is referred to as
Dependent-driven dependencies.

The fifth performed experiment views the target word as head. It takes into account
all first order head-driven dependencies anchored at the target word and collects all
corresponding dependents. Furthermore, it takes into consideration all first order
head-driven dependencies anchored at the previously obtained dependents and col-
lects the corresponding dependents of these dependents.17 All such collected words
are included in the disambiguation vocabulary. This experiment must be looked
up, in Table 4.3 of Sect. 4.3.2 (corresponding to adjective common) and Table 4.4 of
Sect. 4.3.2 (corresponding to adjective public) under Directed first and second order
dependencies and Head-driven dependencies respectively. It is referred to as Two
head-driven dependencies.

The sixth performed experiment also views the target word as head. It takes
into account all first order head-driven dependencies anchored at the target word
and collects all corresponding dependents. Furthermore, it takes into consideration
all first order dependent-driven dependencies anchored at the previously obtained
dependents and collects the corresponding heads of these dependents.18 All such
collected words are included in the disambiguation vocabulary. This experiment
must be looked up, in Table 4.3 of Sect. 4.3.2 (corresponding to adjective common)
and Table 4.4 of Sect. 4.3.2 (corresponding to adjective public) under Directed first
and second order dependencies and Head-driven dependencies respectively. It is
referred to as Head-driven dependencies and dependent-driven dependencies.

The seventh performed experiment views the target word as dependent. It takes
into account all first order dependent-driven dependencies anchored at the target
word and collects all corresponding heads. Furthermore, it takes into consideration
all first order dependent-driven dependencies anchored at the previously obtained
heads and collects the corresponding heads of these heads.19 All such collected words
are included in the disambiguation vocabulary. This experiment must be looked up,
in Table 4.3 of Sect. 4.3.2 (corresponding to adjective common) and Table 4.4 of

17 The case Two head-driven dependencies can be summarized as follows: let us denote the target
word by A; collect all words of type B and C such that B is a dependent of A and C is a dependent
of B.
18 The case Head-driven dependencies and dependent-driven dependencies can be summarized as
follows: let us denote the target word by A; collect all words of type B and C such that B is a
dependent of A and B is a dependent of C.
19 The case Two dependent-driven dependencies can be summarized as follows: let us denote the
target word by A; collect all words of type B and C such that A is a dependent of B and B is a
dependent of C.
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Sect. 4.3.2 (corresponding to adjective public) under Directed first and second order
dependencies and Dependent-driven dependencies respectively. It is referred to as
Two dependent-driven dependencies.

The eighth and last performed experiment also views the target word as depen-
dent. It takes into account all first order dependent-driven dependencies anchored
at the target word and collects all corresponding heads. Furthermore, it takes into
consideration all first order head-driven dependencies anchored at the previously
obtained heads and collects the resulted dependents of these heads.20 All such col-
lected words are included in the disambiguation vocabulary. This experiment must
be looked up, in Table 4.3 of Sect. 4.3.2 (corresponding to adjective common) and
Table 4.4 of Sect. 4.3.2 (corresponding to adjective public) under Directed first and
second order dependencies and Dependent-driven dependencies respectively. It is
referred to as Dependent-driven dependencies and head-driven dependencies.

Contrary to more general comments made in other studies (Padó and Lapata 2007),
as far as WSD with an underlying Naïve Bayes model is concerned, test results
(Hristea and Colhon 2012) will show (see Sect. 4.3.2) that considering directionality
of the dependency relations is essential when forming the disambiguation vocabulary.
The Naïve Bayes model will be shown to react well, as clustering technique, to the
directionality of dependency relations.

During the second stage of their testing process, Hristea and Colhon (2012) have
been taking into account the type of the dependency relations and have chosen only
typed dependencies that have been considered relevant for the study of adjectives.
Such typed dependencies were the providers of the words to be included in the
disambiguation vocabulary.

Of the various dependency relations provided by the Stanford parser, Hristea
and Colhon (2012) have chosen a restricted set of such relations (that they have
viewed as minimal) in order to conduct their experiments. The chosen dependency
relations (Hristea and Colhon 2012) are: adjectival modifier, nominal subject, noun
compound modifier and preposition collapsed. The latter, which is not typical for
adjectives, is a common Stanford collapsed dependency relation. In the considered
non-projective analysis of the Stanford parser, the dependencies that involve prepo-
sitions, conjunctions or multi-word constructions are collapsed in order to get direct
dependencies between content words (de Marneffe and Manning 2008). In this case,
the relation is applicable for adjectival constructs where the adjective can be accom-
panied/intensified by an adverb particle such as “more common” or “very difficult”.
As a general rule in choosing the dependency type, however, the mentioned authors
have constantly looked for, or looked at, the noun21 that the target adjective modifies.

20 The case Dependent-driven dependencies and head-driven dependencies can be summarized as
follows: let us denote the target word by A; collect all words of type B and C such that A is a
dependent of B and C is a dependent of B.
21 This principle, which gives the nominal information priority, while the adjectival information is
evaluated strictly within the range allowed by the nominal one, has guided Hristea and Colhon (2012)
when choosing the nominal subject relation, for instance. This relation refers to the predicative form
of the adjective linked via a copula verb to the noun that the adjective modifies.
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In the case in which the head role of the target adjective is not imposed, that is in
the case of undirected dependency relations, Hristea and Colhon (2012) also take into
consideration the adjectival modifier relation, a very frequent dependency relation
for adjectives that connects them as dependents directly to the noun they modify.
This is probably the most informative of the considered relations and corresponds to
the attribute semantic relation which has been used (Hristea et al. 2008; Hristea and
Popescu 2009) when performing WordNet-based feature selection (see Chap. 3).

The experiments conducted by Hristea and Colhon (2012) have once again used
both first order and second order dependencies. In order to obtain second order
dependencies, the first order dependency relations were composed only with the
modifier-type relations for nouns, as the first order relations (usually) return the
modified noun of the target adjective (in this case by means of the previously specified
relations—nominal subject and preposition collapsed). The modifier-type relations
that were considered are adjectival modifier (returning the modifying adjective) and
noun compound modifier (for the modifying noun).

The presented test results (see Sect. 4.3.2) correspond to experiments performed
with this restricted set of chosen dependency relations, which is meant to ensure a
minimal number of features for WSD, as well as a restricted number of parameters to
be estimated by the EM algorithm.22 However, experiments of the same type could
be conducted with an enlarged set of such relations, a choice which should be made
according mainly to linguistic criteria and by the linguistic community.

During this second stage of their study, which takes into account the type of the
involved dependencies, Hristea and Colhon (2012) have designed a set of four experi-
ments.Bothdirectedandundirecteddependencyrelationshaveagainbeenconsidered.

The first performed experiment uses undirected first order dependencies. The con-
sidered relations are adjectival modifier, preposition collapsed and nominal subject,
respectively. The disambiguation vocabulary is formed, as before, with all words par-
ticipating in these dependency relations (with the exception of the target adjective).
This experiment is referred to in Table 4.523 of Sect. 4.3.2 (corresponding to adjec-
tive common) and in Table 4.624 of Sect. 4.3.2 (corresponding to adjective public) as
Undirected first order dependencies.

The second performed experiment also refers to undirected dependencies, this
time of second order as well. The disambiguation vocabulary is formed with all words
provided by the undirected first order dependencies of the previous experiment, to
which all words indicated by the considered undirected second order dependencies
are added. When forming the second order dependencies the following modifier-type
dependency relations are used: adjectival modifier and noun compound modifier. This
experiment is referred to in Table 4.5 of Sect. 4.3.2 (corresponding to adjective com-
mon) and in Table 4.6 of Sect. 4.3.2 (corresponding to adjective public) as Undirected
first and second order dependencies.

22 See the mathematical model presented in Chap. 2.
23 Undertaken from (Hristea and Colhon 2012).
24 Undertaken from (Hristea and Colhon 2012).

http://dx.doi.org/10.1007/978-3-642-33693-5_3
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The next two experiments were both designed (Hristea and Colhon 2012) with
reference to dependency relations that have directionality. Within both experiments
the target adjective is viewed as head25 only. Therefore all considered dependencies
are head-driven ones.

The third performed experiment takes into account first order head-driven depen-
dencies and forms the disambiguation vocabulary with all words they provide. The
dependency relations that were used (Hristea and Colhon 2012) are preposition col-
lapsed and nominal subject. All these dependency relations take the target adjective
as the head word and, as consequence, the resulted disambiguation vocabulary is
made of all the dependents of the target. This experiment is referred to in Table 4.5
of Sect. 4.3.2 (corresponding to adjective common) and in Table 4.6 of Sect. 4.3.2
(corresponding to adjective public) as Head-driven first order dependencies.

The fourth and last performed experiment refers to first and second order head-
driven dependencies. The disambiguation vocabulary is formed with all words pro-
vided by the first order head-driven dependencies of the previous experiment, to
which all words indicated by the considered second order head-driven dependencies,
representing dependents of the target’s dependents, are added. The experiment there-
fore considers the head role of both the target and of its dependents. When forming
the second order dependencies, the following modifier-type dependency relations are
used (Hristea and Colhon 2012): adjectival modifier and noun compound modifier.
This experiment is referred to in Table 4.5 of Sect. 4.3.2 (corresponding to adjec-
tive common) and in Table 4.6 of Sect. 4.3.2 (corresponding to adjective public) as
Head-driven first and second order dependencies.

Test results have shown (see Sect. 4.3.2) that taking into account the type of the
dependency relations when forming the disambiguation vocabulary for the Naïve
Bayes model is of the essence.

4.3.2 Test Results

Performance is evaluated in terms of accuracy, just as in Chap. 3. In the case of
unsupervised disambiguation defining accuracy is not as straightforward as in the
supervised case. Our objective is to divide the I given instances of the ambiguous
word into a specified number K of sense groups, which are in no way connected to the
sense tags existing in the corpus. In all performed experiments, sense tags are used
only in the evaluation of the sense groups found by the unsupervised learning proce-
dure. These sense groups must be mapped to sense tags in order to evaluate system
performance. As in previous studies (Hristea et al. 2008; Hristea and Popescu 2009),

25 This is the approach suggested by the first series of performed experiments, which had disregarded
the dependency type. Test results have shown (see Sect. 4.3.2) that directionality of the relations
counts and that the best disambiguation results are obtained when the target word plays the role of
head.

http://dx.doi.org/10.1007/978-3-642-33693-5_3
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Hristea and Colhon (2012) have used the mapping that results in the highest classi-
fication accuracy.26

Test results are presented in Tables27 4.3, 4.4, 4.5 and 4.6. Each result represents
the average accuracy and standard deviation obtained by the learning procedure over
20 random trials while using a threshold ε having the value 10−9.

Apart from accuracy, the following type of information is also included in
Tables 4.3, 4.4, 4.5 and 4.6: number of features resulting in each experiment and
percentage of instances having only null features (i.e. containing no relevant infor-
mation).

As previously mentioned, within the present approach to disambiguation, the
value of a feature is given by the number of occurrences of the corresponding word
in the given context window. Since the process of feature selection is based on the
restriction of the disambiguation vocabulary, it is possible for certain instances not
to contain any of the relevant words forming this vocabulary. Such instances will
have null values corresponding to all features. These instances do not contribute to
the learning process. However, they have been taken into account in the evaluation
stage of the presented experiments. Corresponding to these instances, the algorithm
assigns the sense sk for which the value P(sk) (estimated by the EM algorithm)28

is maximal.
As far as the Stanford parser (Klein and Manning 2003) is concerned, the output

was generated (Hristea and Colhon 2012) in dependency relation format (de Marneffe
et al. 2006) and the data was preprocessed (Hristea and Colhon 2012) in the usual way:
edges that do not connect open-class words were filtered out, words were lemmatized.
The first of the mentioned operations could lead to some instances having only null
features. However, corpus coverage will be much greater here than in the case of
WordNet-based feature selection, where an independent knowledge source (WN) is
used. Which makes the obtained results even more valuable.

Test results are presented in Tables 4.3 and 4.5 (corresponding to adjective com-
mon) and in Tables 4.4 and 4.6 (corresponding to adjective public).

At the first stage of the testing process, when no information concerning the
dependency type was used (see the experiments designed in Sect. 4.3.1), the best
obtained accuracy was 0.643±0.09 in the case of adjective common and 0.607±0.02
in the case of adjective public, respectively. These disambiguation results are more
modest than the ones obtained in (Hristea et al. 2008) and in (Hristea and Popescu
2009) when performing WordNet-based feature selection (as described in Chap. 3).
These studies report an accuracy of 0.775 ± 0.02 (obtained with 83 features and
19.2 % instances having only null features) in the case of adjective common and an
accuracy of 0.559 ± 0.03 (obtained with 74 features and 43.3 % instances having
only null features) in the case of adjective public, respectively.

26 For more details concerning how to define accuracy in the case of unsupervised disambiguation,
see Sect. 3.4.2 of Chap. 3.
27 Undertaken from (Hristea and Colhon 2012).
28 See the mathematical model presented in Chap. 2.

http://dx.doi.org/10.1007/978-3-642-33693-5_3
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Table 4.3 First stage of the experiments corresponding to adjective common

Name of experiment No. of
features

Instances
having only
null features

Accuracy

Undirected first order dependencies 279 0.02 0.586 ± 0.09

Undirected first and second order dependencies 553 0.05 0.532 ± 0.09

Directed first order Head-driven dependencies 135 0.00 0.616 ± 0.07

dependencies Dependent-driven dependencies 178 0.02 0.547 ± 0.05

Two head-driven 224 0.01 0.643 ± 0.09
dependencies

Head-driven Head-driven
dependencies dependencies and 154 0.00 0.614 ± 0.10

Directed first dependent-driven
and second dependencies

order
dependencies

Two
dependent-driven 281 0.03 0.517 ± 0.07

Dependent- dependencies

driven

dependencies
Dependent-driven
dependencies and 336 0.03 0.540 ± 0.10
head-driven
dependencies

When analyzing Tables 4.3 and 4.4 several conclusions have been drawn in
(Hristea and Colhon 2012).

The best result is never obtained in the presence of undirected dependencies. When
using undirected dependencies, taking into account second order dependencies as
well does not increase accuracy in the case of adjective common and leads to only a
slight increase in accuracy in the case of adjective public.

The highest accuracy is attained within the same testing setup, both corresponding
to adjective common and corresponding to adjective public—namely in the case Two
head-driven dependencies—which takes into consideration the head role of both
the target and of its dependents.29 Disambiguation accuracy obtained in this case
is higher than the one attained by head-driven directed first order dependencies. A
result which suggests that, when ignoring the dependency type, one should move to
second order dependencies for increasing accuracy.

29 Let us note that accuracy is always higher in the case Two head-driven dependencies than in the
case Head-driven dependencies and dependent-driven dependencies, which shows that, in the case
of directed first and second order dependencies, it is essential to consider the head role not only of
the target word but also of its dependents.
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Table 4.4 First stage of the experiments corresponding to adjective public

Name of experiment No. of
features

Instances
having only
null features

Accuracy

Undirected first order dependencies 340 0.03 0.424 ± 0.04

Undirected first and second order dependencies 698 0.07 0.436 ± 0.04

Directed first Head-driven dependencies 40 0.00 0.597 ± 0.03

order dependencies Dependent-driven dependencies 312 0.02 0.435 ± 0.02

Two head-driven 53 0.01 0.607 ± 0.02
dependencies

Head-driven Head-driven
dependencies dependencies and 51 0.01 0.569 ± 0.03

Directed first dependent-driven
and second dependencies

order
dependencies Two

dependent-driven 527 0.04 0.434 ± 0.04
Dependent- dependencies

driven
dependencies

Dependent-driven
dependencies and 515 0.05 0.426 ± 0.03
head-driven
dependencies

High accuracy is never attained in the case of dependent-driven dependencies.
Considering solely the head role, corresponding to both first and second order depen-
dencies, proves to be of the essence, a principle which has guided the second series
of experiments. During which Hristea and Colhon (2012) have tried to decrease the
number of features, and therefore of parameters that the EM algorithm must esti-
mate,30 by taking into account the type of the involved dependency relations (see the
test results presented in Tables 4.5 and 4.6).

When comparing results of Table 4.3 with those of Table 4.5 and results of
Table 4.4 with those of Table 4.6 respectively, it becomes obvious that disambigua-
tion accuracy improves as a result of taking into consideration the type of the existing
dependencies (Hristea and Colhon 2012).

When analyzing Tables 4.5 and 4.6, one notices that the best obtained accuracy
was 0.775 ± 0.07 in the case of adjective common and 0.669 ± 0.01 in the case of
adjective public, respectively. Both results were obtained with full corpus coverage,
ensured by a small number of features (73 words corresponding to adjective common
and 11 words corresponding to adjective public). Both accuracy values are superior

30 See the mathematical model presented in Chap. 2.

http://dx.doi.org/10.1007/978-3-642-33693-5_2
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Table 4.5 Second stage of the experiments corresponding to adjective common

Name of experiment No. of
features

Instances having
only null features

Accuracy

Undirected first order
dependencies

225 0.02 0.605 ± 0.09

Undirected first and second
order dependencies

416 0.04 0.568 ± 0.09

Head-driven first order
dependencies

73 0.00 0.775 ± 0.07

Head-driven first and second
order dependencies

112 0.07 0.753 ± 0.08

Table 4.6 Second stage of the experiments corresponding to adjective public

Name of experiment No. of
features

Instances having
only null features

Accuracy

Undirected first order
dependencies

294 0.02 0.428 ± 0.03

Undirected first and second
order dependencies

443 0.06 0.423 ± 0.03

Head-driven first order
dependencies

11 0.00 0.669 ± 0.01

Head-driven first and second
order dependencies

18 0.00 0.662 ± 0.01

to the ones obtained in the previous experiments, which did not take into account
the dependency type, and are attained with a much smaller number of features.
Maximal disambiguation accuracy corresponding to adjective common is practically
the same as the one obtained when performing WordNet-based feature selection (see
Chap. 3), the latter being attained with a more or less similar number of features
but with less corpus coverage. In the case of adjective public accuracy increases
significantly when performing dependency-based feature selection (as compared to
WN-based feature selection), while the number of features used in disambiguation
decreases significantly in spite of the ensured full corpus coverage. Both discussed
accuracies were obtained (Hristea and Colhon 2012) within the same testing setup,
namely in the case of head-driven first order dependencies, which take into account
the head role of the target. In fact, this role is so significant that moving to second
order dependencies becomes unnecessary in this case.31

Accuracies obtained when considering only undirected dependencies are always
much lower, even when taking into account the dependency type. In both studied
cases the head role of the target is of the essence.

31 Disambiguation results are close but slightly inferior in the case of head-driven first and second
order dependencies (see Tables 4.5 and 4.6).

http://dx.doi.org/10.1007/978-3-642-33693-5_3
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The main significance of a dependency relation, that of indicating the head role
of a word, proves itself to represent crucial information for the Naïve Bayes model
when acting as clustering technique for unsupervised WSD.

4.3.2.1 Improving Accuracy in the Case of Dependency-Based Feature
Selection for the Naïve Bayes Model

In order to study even further the reaction of the Naïve Bayes model to knowledge
of syntactic type, specifically to dependency-based feature selection, and for the
purpose of the present study, we have extended the two-stage experiment performed
in (Hristea and Colhon 2012).

As already mentioned, Hristea and Colhon (2012) have performed a dependency
syntactical analysis of non-projective type32 in order to maximize the number of
dependencies between content words, thus feeding the Naïve Bayes model as much
knowledge of syntactic type as possible (relatively to the chosen set of dependency
relations). Their best obtained results correspond to the experiments denoted Head-
driven first order dependencies and Head-driven first and second order dependen-
cies which are presented in Table 4.5 (corresponding to adjective common) and in
Table 4.6 (corresponding to adjective public) respectively. For the purpose of the
present discussion, we have repeated these two experiments, while performing a
projective type33 analysis when using the same Stanford parser. A smaller num-
ber of dependency relations will thus be taken into account, with a smaller number
of words (features) being included into the disambiguation vocabulary. The Naïve
Bayes model is fed less syntactic knowledge, with the number of parameters to be
estimated by the EM algorithm34 decreasing accordingly. From the minimal set of
dependency relations considered in (Hristea and Colhon 2012) we have retained
only those relations which ensure a projective type analysis (namely arches that do
not cross, thus leading to an oriented graph which has no cycles). Specifically, for
the experiment Head-driven first order dependencies we have considered only the
nominal subject relation. In the case of the experiment Head-driven first and second
order dependencies the relations adjectival modifier and noun compound modifier
have been used. Test results are presented in Table 4.7 corresponding to adjective
common and in Table 4.8 corresponding to adjective public, respectively.

As can be seen, disambiguation accuracy improves, compared to the one obtained
in (Hristea and Colhon 2012) as a result of performing a projective type analysis,
corresponding to both studied adjectives. In the case of adjective common accuracy
increases from 77 % (non-projective) to 85 % (projective). In the case of adjective
public the same accuracy increases from 66 % (non-projective) to 67 % (projective).
In both cases the number of features used in disambiguation by the Naïve Bayes

32 Which allows the arches denoting the dependency relations to intersect.
33 Which does not allow the arches denoting the dependency relations to intersect, in accordance
with the classical dependency linguistic theory.
34 See the mathematical model presented in Chap. 2.

http://dx.doi.org/10.1007/978-3-642-33693-5_2
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Table 4.7 Projective analysis corresponding to adjective common

Name of experiment No. of
features

Instances having
only null features

Accuracy

Head-driven first order
dependencies

28 0.00 0.858 ± 0.003

Head-driven first and second
order dependencies

45 0.00 0.856 ± 0.01

Table 4.8 Projective analysis corresponding to adjective public

Name of experiment No. of
features

Instances having
only null features

Accuracy

Head-driven first order
dependencies

7 0.00 0.674 ± 0.007

Head-driven first and second
order dependencies

12 0.00 0.674 ± 0.005

model decreases, with corpus coverage being fully ensured. This opens an entirely
new line of investigation concerning the sensitivity of the Naïve Bayes model to
syntactic features and to syntactic knowledge of this specific type. Both kinds of
performed analyses show the Naïve Bayes model to react well to syntactic knowledge
of dependency type.

4.4 Conclusions

This chapter has examined dependency-based feature selection and has tested the
efficiency of such syntactic features in the case of adjectives. Performing this type of
knowledge-based feature selection has once again placed the disambiguation process
at the border between unsupervised and knowledge-based techniques, while reinforc-
ing the benefits of combining the unsupervised approach to the WSD problem, based
on the Naïve Bayes model, with usage of a knowledge source for feature selection.
Specifically, syntactic knowledge provided by dependency relations, which has been
under study here, seems to be even more useful to the Naïve Bayes model than the
semantic one provided by WordNet (see Chap. 3).

Our main conclusion is that the Naïve Bayes model reacts well in the presence
of syntactic knowledge of dependency type. The fact that 7 words (features) only,
for instance, are sufficient in order to attain a higher disambiguation accuracy35 than
the one obtained by WordNet-based feature selection, while ensuring full corpus
coverage, determines us to recommend syntactic dependency-based feature selection
as a reliable alternative to the semantic one.

35 In the case of adjective public; see Table 4.8 of Sect. 4.3.2.1.

http://dx.doi.org/10.1007/978-3-642-33693-5_3
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The essence of the considered dependencies, namely the head role of a word
(in our case the target), seems to represent crucial information for the Naïve Bayes
model when acting as clustering technique for unsupervised WSD. Together with
the dependency type, which should always be taken into account, since it expresses
in what way the head links the dependent to the sentence in which they both occur.
While directionality proves itself to be of the essence, projective syntactical analysis
of dependency type should always be performed, which is in full accordance with
the underlying linguistic theory.

As commented in Hristea and Colhon (2012), whether or not disambiguation
accuracy can be improved by taking into consideration dependencies of various other
types could represent a topic of discussion (primarily for the linguistic community).
Whether or not this type of syntactic information can replace the mentioned semantic
one should probably be subject to further investigation. And should also involve other
parts of speech. Hristea and Colhon (2012) hope to have initiated an open discussion
concerning the type of knowledge that is best suited for the Naïve Bayes model when
performing the task of unsupervised WSD.
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Chapter 5
N-Gram Features for Unsupervised WSD
with an Underlying Naïve Bayes Model

Abstract The feature selection method we are presenting in this chapter relies on
web scale N-gram counts. It uses counts collected from the web in order to rank
candidates. Features are thus created from unlabeled data, a strategy which is part of
a growing trend in natural language processing. Disambiguation results obtained by
web N-gram feature selection will be compared to those of previous approaches that
equally rely on an underlying Naïve Bayes model but on completely different feature
sets. Test results corresponding to the main parts of speech (nouns, adjectives, verbs)
will show that web N-gram feature selection for the Naïve Bayes model is a reliable
alternative to other existing approaches, provided that a “quality list” of features,
adapted to the part of speech, is used.

Keywords Bayesian classification · Word sense disambiguation · Unsupervised
disambiguation · Web-scale N-grams

5.1 Introduction

The present chapter focuses on an entirely different way of performing feature selec-
tion for the Naïve Bayes model, that relies on using web scale N-gram counts. The
presented feature selection method was introduced in (Preoţiuc and Hristea 2012).
To our knowledge, it represents a first attempt of using web N-gram features in unsu-
pervised WSD in general, and in conjunction with the Naïve Bayes model as clus-
tering technique for unsupervised WSD in particular. While creating features from
unlabeled data, we are “helping” a simple, basic knowledge-lean disambiguation
algorithm, hereby represented by the Naïve Bayes model, to significantly increase
its accuracy as a result of receiving easily obtainable knowledge.

The proposed feature selection method (Preoţiuc and Hristea 2012) is based on
the intuition that the most frequently occurring words near the target can give us
a better indication of the sense which is activated than words being semantically
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similar that may not appear so often in the same context with the target word. The
corresponding disambiguation method is unsupervised and knowledge-lean in the
sense that it just requires the existence or the possibility to estimate N-gram counts
for the target language corresponding to which the disambiguation process takes
place. No information regarding the actual word senses will be used at any stage of
the process. When using such features, the Naïve Bayes model will not require any
sense definitions or sense inventories.

5.2 The Web as a Corpus

With respect to feature selection it is necessary to use those words that are the most
relevant and distinctive for the target word. So, it is intuitive to think that these words
are the ones that co-occur most often with the target. These words can be found
by searching and performing an estimate over large corpora and the largest corpora
available is the whole Web itself.

While the web provides an imense linguistic resource, collecting and processing
data at web-scale is very timeconsuming. Previous research has relied on search
engines to collect online information, but an alternative to this that has been developed
more recently is to use the data provided in an N-gram corpus. An N-gram corpus is
an efficient compression of large amounts of text as it states how often each sequence
of words (up to length N) occurs.

The feature selection method that we are presenting here makes use of the Google
Web 1T 5-gram Corpus Version 1.1, introduced in (Brants and Franz 2006), that
contains English word N-grams (with N up to 5) and their observed frequency counts,
calculated over 1 trillion words from the web and collected by Google in January
2006. The text was tokenized following the Penn Treebank tokenization, except that
hyphenated words, dates, email addresses and URLs are kept as single tokens. The
sentence boundaries are marked with two special tokens<S> and</S>. Words that
occurred fewer than 200 times were replaced with the special token <UNK>. The
data set has a N-gram frequency cutoff, that is N-grams that have a count that is less
than 40 are discarded.

This corpus has been used in a variety of NLP tasks with good results. Yuret
(2007) describes a WSD system that uses a statistical language model based on
the Web 1T 5-gram dataset. The model is used to evaluate the likelihood of various
substitutes for a word in a given context. These likelihoods are then used to determine
the best sense for the word in novel contexts. (Bergsma et al. 2009) presents a unified
view of using web-scale N-gram models for lexical disambiguation and uses the
counts of 2–5 grams in a supervised method on the task of preposition selection,
spelling correction or non-referential pronoun detection. In (Bergsma et al. 2010)
web-scale N-gram data is used for supervised classification on a variety of NLP
tasks such as: verb part-of-speech disambiguation, prenominal adjective ordering or
noun compound bracketing. Islam and Inkpen (2009) have used the N-gram data
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for spelling correction, while Chang and Clark (2010) have made use of this data to
check the acceptability of paraphrases in context.

Web-scale N-gram counts are used for the first time in unsupervised word sense
disambiguation, as a mean of feature selection for the Naïve Bayes model, in (Preoţiuc
and Hristea 2012).

In order to find the most frequent words that co-occur with the target word within
a distance of N−1 words, one must take into consideration the N-grams in which
the target word occurs. Thus, we can build different feature sets depending on the
size of N and on the number of words to include in the feature set. These sets will
be referred using the following convention: n-w-t represents the set containing the
top t words occurring in n-grams together with the word w.

For example, 5-line-100 is the set constituted by the most frequent 100 (stemmed)
words that co-occur in the Web with the word line within a distance of, at most,
4 words.

In order to build the feature set corresponding to the top t words occurring in
N-grams of size n with the target word w, (n-w-t), Preoţiuc and Hristea (2012) have
used the following processing directions:

• they have lowercased every occurrence in the N-gram corpus and have combined
the counts for identical matches;

• for every number k(k < n), they have built a list of words and counts, each
representing word counts occurring at a distance of exactly k on each side of the
target word;

• they have merged the counts from all n − 1 lists to get a complete list of words
and counts that co-occur in a context window of size n −1 with the target word w;

• they have removed the numbers, the punctuation marks, the special tokens
(eg. <s>, <unk>), the words starting with special characters or symbols and
the stopwords from the list;

• they have performed stemming using the Porter Stemmer on each feature set,
merging counts for similar words whenever the case;

• they have sorted the word and counts pairs in descending order of their counts and
have extracted the top t words.

Let us note the fact that, while in the context window only content words
exist, within the N-grams stopwords may also occur. So it is not guaranteed that
the N-grams show the counts of words appearing in a context window of N−1.
Preoţiuc and Hristea (2012) have chosen to eliminate stopwords because they appear
much too often in the corpora and, by using them as features, the model tends to put
too much weight on these, as opposed to the content words that are the ones indicative
of the word sense.

Despite the fact that the target words and the dataset we refer to in the experi-
ments are in English, the feature selection method we are discussing here is language
independent and can be applied with no extra costs to other languages for which we
know or can estimate N-gram counts from large data. Recently, Google has released
Web 1T 5-gram, 10 European Languages Version 1 (Brants and Franz 2009) con-
sisting of word N-grams and their observed frequency counts for other ten European



58 5 N-Gram Features for Unsupervised WSD with an Underlying Naïve Bayes Model

languages: Czech, Dutch, French, German, Italian, Polish, Portuguese, Romanian,
Spanish and Swedish. The N-grams were extracted from publicly accessible web
pages from October 2008 to December 2008 using the same conventions as for the
English data set, with only the data being approximately 10 times smaller. Thus, the
presented method can be used with no changes whatsoever to extract features for
performing sense disambiguation corresponding to these languages as well.

Using a Web scale N-gram corpus implies performing counts that take into account
all the possible senses of the target word. Automatically, when computing these
counts, high frequency senses will have more words indicative of those senses than
low frequency senses have. If the disambiguation setting is restricted to a specific
domain (eg. medicine), the discussed method of feature extraction could be used
with a N-gram corpus derived from large corpora of texts in that domain.

5.3 Experimental Results

Preoţiuc and Hristea (2012) have tested their proposed feature sets for the three main
parts of speech: nouns, adjectives and verbs. They have drawn conclusions, that we
shall be presenting here, with regard to each of these parts of speech.

5.3.1 Corpora

In order to compare their results with those of other previous studies (Pedersen and
Bruce 1998; Hristea et al. 2008; Hristea 2009; Hristea and Popescu 2009) that have
presented the same Naïve Bayes model, trained with the EM algorithm, but using
other methods of feature selection, Preoţiuc and Hristea (2012) try to disambiguate
the same target words using the same corpora.

In the case of nouns they have used as test data the line corpus (Leacock et al.
1993). This corpus contains around 4,000 examples of the word line (noun) sense-
tagged with one of the 6 possible WordNet 1.5 senses. Examples are drawn from the
WSJ corpus, the American Printing House for the Blind, and the San Jose Mercury.
The description of the senses and their frequency distribution1 are shown in Table 5.1.

In (Pedersen and Bruce 1998; Hristea et al. 2008) tests are also performed for
only 3 senses of line. Preoţiuc and Hristea (2012) do not perform this comparison
as their method is not relying on sense inventories. Therefore it is not possible to
distinguish and take out the words that co-occur with the specific senses represented
in the test set.

In the case of adjectives and verbs the mentioned authors have used as test data
the corpus introduced in (Bruce et al. 1996) that contains twelve words taken from
the ACL/DCI Wall Street Journal corpus and tagged with senses from the Longman
Dictionary of Contemporary English.

1 Which are the same as those considered in Chap. 3.

http://dx.doi.org/10.1007/978-3-642-33693-5_3
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Table 5.1 Distribution
of senses of line

Sense Count Pct. (%)

Product 2,218 53,47
Written or spoken text 405 9,76
Telephone connection 429 10,34
Formation of people or things; queue 349 8,41
An artificial division; boundary 376 9,06
A thin, flexible object; cord 371 8,94

Total count 4,148 100

Table 5.2 Distribution
of senses of common

Sense Count Pct. (%)

As in the phrase “common stock” 892 84
Belonging to or shared by 2 or more 88 8
Happening often; usual 80 8

Total count 1,060 100

Table 5.3 Distribution
of senses of public

Sense Count Pct. (%)

Concerning people in general 440 68
Concerning the government and people 129 19
Not secret or private 90 13

Total count 659 100

Tests have been conducted for two adjectives, common and public, the latter
being the one corresponding to which Pedersen and Bruce (1998) obtain the worst
disambiguation results.

The senses of common and public that have been taken into consideration and
their frequency distribution2 are shown in Table 5.2 and in Table 5.3, respectively. In
order to compare their results to those of (Pedersen and Bruce 1998; Hristea et al.
2008; Hristea and Popescu 2009), Preoţiuc and Hristea (2012) have also taken into
account only the 3 most frequent senses of each adjective, as was the case in those
studies.

For verbs, the part of speech which is known as being the most difficult to disam-
biguate, Preoţiuc and Hristea (2012) have performed tests corresponding to the verb
help while considering the most frequent two senses of this word. The definition of
the senses and the frequency distribution3 are presented in Table 5.4.

In order for the experiments to be conducted, the data set was preprocessed
(Preoţiuc and Hristea 2012) in the usual way: the stopwords, words with special
characters and numbers were eliminated and stemming was applied to all remaining
words, using the same Porter Stemmer as in the case of stemming the lists of feature
words.

2 Which are the same as those considered in Chaps. 3 and 4.
3 Which are the same as those considered in Chap. 3.

http://dx.doi.org/10.1007/978-3-642-33693-5_3
http://dx.doi.org/10.1007/978-3-642-33693-5_4
http://dx.doi.org/10.1007/978-3-642-33693-5_3
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Table 5.4 Distribution
of senses of help

Sense Count Pct. (%)

To enhance-inanimate object 990 78
To assist-human object 279 22

Total count 1,269 100

5.3.2 Tests

As was the case in the mentioned previous studies that examine unsupervised WSD
with an underlying Naïve Bayes model, studies to the results of which they are com-
paring their own disambiguation results, Preoţiuc and Hristea (2012) also evaluate
performance in terms of accuracy. As it is well known, in the case of unsupervised
disambiguation defining accuracy is not as straightforward as in the supervised case.
The objective is to divide the I given instances of the ambiguous word into a spec-
ified number K of sense groups, which are in no way connected to the sense tags
existing in the corpus. In the experiments, sense tags are used only in the evaluation
of the sense groups found by the unsupervised learning method. These sense groups
must be mapped to sense tags in order to evaluate system performance. As in the
previously mentioned studies, in order to enable comparison, Preoţiuc and Hristea
(2012) have used the mapping that results in the highest classification accuracy.

In the case when none of the words belonging to the feature set are found in the
context window of the target, as in (Hristea et al. 2008; Hristea 2009; Hristea and
Popescu 2009), the disambiguation method presented by Preoţiuc and Hristea (2012)
assigns the instance to the cluster that has the greatest number of assignments. If the
target word has a dominant sense, which is the case with all the considered test target
words, lower coverage will determine an increase in the performance of the method
when results are below the most frequent sense baseline (a very high one in the
case of unsupervised WSD using the same underlying mathematical model). With
respect to this, Preoţiuc and Hristea (2012) also define coverage as the percentage
of instances in which at least one feature word occurs in the context window and,
so, the assignment is performed by the Naïve Bayes classifier as opposed to a most
frequent sense one.

Preoţiuc and Hristea (2012) show results that couple accuracy with coverage.
They use a context window with varying size around the target word, the coverage
for a feature set increasing accordingly with the enlargement of the window size.

As in (Hristea et al. 2008) each presented result represents the average accuracy
obtained by the disambiguation method over 20 random trials while using a fixed
threshold ε having the value 10−9.

In what follows, we show the most significant test results that were obtained
(Preoţiuc and Hristea 2012) in the case of all main parts of speech.

Within the graphs, the (Preoţiuc and Hristea 2012) results are designated by solid
lines with different markers indicating the various parameters (n or t) that were
used. The context window sizes vary and are listed in the corresponding text for
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Fig. 5.1 Results for feature sets 5-line

each part of speech. The Hristea et al. (2008) method is presented with a dashed
line and always uses a context window of size 25. The variation in coverage is due
to the different type of WordNet relations that were used, resulting in a different
number of feature words. The results of the Pedersen and Bruce (1998) method are
presented as well. We notice that here we always have just one value, corresponding
to a 100 % coverage and to a size of 5 or 25 of the context window. This is due to
the fact that the method of feature selection takes into consideration all the words
in the vocabulary. Therefore, in this case, there are no contexts with no features. In
each graph, corresponding to each of the other two previous methods, and in order to
allow an easier visual comparison, Preoţiuc and Hristea (2012) have drawn a dotted
black line to illustrate the highest accuracy obtained for that word by the respective
method.

5.3.2.1 Test Results Concerning Nouns

In the case of the noun line results are presented in Fig. 5.1.4

The best results were obtained by using the most frequent words appearing in 5-
gram with line, although results with a lower n were only slightly worse, as reported
in (Preoţiuc and Hristea 2012).

Test results are presented (Preoţiuc and Hristea 2012) for context windows of
size 4, 5, 10, 15 and 25 corresponding to each feature set. We observe the largest
difference in favour of the Preoţiuc and Hristea feature selection method as resulting

4 Reprinted here from (Preoţiuc and Hristea 2012).
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in an accuracy of 54.7 % (for context window 5 and feature set 5-line-100) as com-
pared to 47.8 % for a similar coverage in (Hristea et al. 2008). For the feature sets
5-line-100 and 5-line-200, the tests concerning web N-gram feature selection show
better performances than any of the results of Hristea et al. (2008) and better, by a
wide margin, than those of Pedersen and Bruce (1998). For some experiments, the
method outperforms the most frequent sense baseline which, in this case, is situated
at 53.47 %.

The graph also shows that by increasing too much the number of features (5-line-
300), the performance of the system decreases. This performance decreases even
more when considering even larger feature sets (t = 500 or 1000—not shown on the
graph for clarity).

We observe that when web N-gram feature selection is performed in the case
of noun disambiguation, increasing the size of the context window (thus bringing
more features into the process) does not bring improvements to the disambiguation
results (taking into consideration the coverage-accuracy trade-off), as stated in other
studies. As reported in (Preoţiuc and Hristea 2012), another interesting aspect is that,
by every step in extending the context window, the coverage increases significantly.
This remark is not valid, as we shall see, in the case of adjectives and verbs.

The obtained results (Preoţiuc and Hristea 2012) confirm the intuition that, in
order to disambiguate a noun, the information in a wide context is useful and can
contribute to the disambiguation process. Features taken from wider contexts are
also good indicators for disambiguation.

5.3.2.2 Test Results Concerning Adjectives

With respect to adjectives, Preoţiuc and Hristea (2012) have considered the disam-
biguation of the polysemous words common and public. Test results are shown in
Figs. 5.25 and 5.3,6 respectively.

The best results were achieved by using the most frequent words appearing in
bigrams with common and in 3-grams with public (although results with bigrams for
public were close in terms of accuracy).

In the case of adjective common the results are presented for context windows of
size 1, 2, 3, 4, 5 and 10. We observe the largest difference in favour of the Preoţiuc
and Hristea (2012) feature selection method as resulting in an accuracy of 87.0 %, as
compared to 77.5 %, the best result obtained in (Hristea et al. 2008). Again, almost
all scores (16 out of 18 shown) are higher than the ones of the Hristea et al. (2008)
method, with almost half of them exceeding the most frequent sense baseline (set at
84.0 % in this case).

Corresponding to the adjective public test results are presented for context win-
dows of size 2, 3, 4, 5 and 10. The Preoţiuc and Hristea (2012) best result is 58.7 %

5 Reprinted here from (Preoţiuc and Hristea 2012).
6 Reprinted here from (Preoţiuc and Hristea 2012).
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accuracy as compared to 55.9 % obtained with much smaller coverage in (Hristea
et al. 2008).

We must keep in mind that, as we move to the right of the graph (increasing
coverage), the results are more significant, because the bias of choosing the most
frequent sense baseline for contexts with no features is reduced, due to the fact that
the baseline has a very high value (84 and 68 % respectively).

For both adjectives, we observe that just by taking the most frequent 100 words in
bigramsor trigramsandaverynarrowcontextwindow(startingwithsize1)wealready
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obtain a very high coverage, that increases at a low rate together with the enlargement
of the context window. This corresponds to the linguistic argument that an adjective
will appear together with the word it modifies, the latter representing the most frequent
and important attribute when disambiguating the respective adjective. Results with
wider N-grams were inferior by a distinctive margin (Preoţiuc and Hristea 2012).

5.3.2.3 Test Results Concerning Verbs

Corresponding to the verb help test results are shown in Fig. 5.4.7

As commented in (Preoţiuc and Hristea 2012), interestingly enough, the best
results were achieved by using the top 100 words regardless of the order of the
N-grams. The (Preoţiuc and Hristea 2012) top result was 73.1 % when using words
from 4-grams and a context window of size 15, as compared to a maximum of 67.1 %
in (Hristea et al. 2008), obtained with similar coverage. Out of 12 results, 11 were
better than those in (Hristea et al. 2008), confirming the reliability of disambiguating
using web N-gram feature sets.

Test results are presented for context windows of size 10, 15 and 25 respectively,
as coverage is too low corresponding to smaller context windows. One can notice
that coverage for this verb is very low compared to the case of the studied nouns
and adjectives and that it increases by a very low margin with the enlargement of the
context window.

7 Reprinted here from (Preoţiuc and Hristea 2012).
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This is also very linguistically intuitive because verbs usually appear in very
different contexts. This makes feature selection more difficult and is the main reason
why most studies conclude that this is the hardest to disambiguate part-of-speech.

As we are shown from the Preoţiuc and Hristea (2012) results, corresponding to
all parts of speech, we can restate the fact that, by taking more, less related words
(increasing t), the accuracy drops, a fact which emphasizes the need for a “quality
list of features”. The presented feature selection method (Preoţiuc and Hristea 2012)
obtains very high results compared to Pedersen and Bruce (1998) in all tests, good
results compared to Hristea et al. (2008) and sometimes exceeds the most frequent
sense baseline, which is a high baseline to achieve using the Naïve Bayes model.

5.3.3 Adding Knowledge from an External
Knowledge Source

While noting that web N-gram feature selection has provided the best disambiguation
results so far, we are now trying to “help” the Naïve Bayes model, when acting as
clustering technique for unsupervised WSD, by combining the described features
with other, additional ones, coming from an external knowledge source. For the
purpose of the present discussion, the chosen knowledge source will be WordNet.

Disambiguation results provided by WN-based feature selection are shown and
commented in Chap. 3 corresponding to all major parts of speech (nouns, adjectives,
verbs). WN-based feature selection has provided more modest disambiguation accu-
racies than those obtained when using web N-gram features. It is therefore natural
to hope for an increase in accuracy when combining the WN-based features with
those that have led to the best disambiguation results. In order to test this assump-
tion we have performed8 a great number of experiments that combine WN-based
and web N-gram features. For enabling comparison, we have attempted to disam-
biguate the same polysemous words that have been discussed so far: the noun line,
the adjectives common and public and the verb help. The same corpora have been
used corresponding to each of these polysemous words.

In the case of the noun line we have designed experiments which perform discrim-
ination between the 6 senses listed in Table 5.1. We have started by combining the
two sets of features which had provided the best disambiguation results for each of
the considered feature selection methods. In the case of WN-based feature selection
this is the disambiguation vocabulary formed with WN synonyms, content words
of the associated synset glosses and example strings, and all nouns coming from
all hyponym and meronym synsets (see Chap. 3). This disambiguation vocabulary
had brought an accuracy of 47.8 % (see Sect. 3.4.2.1). In the case of web N-gram
feature selection the best disambiguation accuracy (54.7 %) has been obtained with
the feature set 5-line-100 (see Sect. 5.3.2.1). When combining these two feature
sets accuracy drops to 43.0 % (obtained with 70.3 % corpus coverage). Numerous

8 Together with Daniel Preoţiuc.

http://dx.doi.org/10.1007/978-3-642-33693-5_3
http://dx.doi.org/10.1007/978-3-642-33693-5_3
http://dx.doi.org/10.1007/978-3-642-33693-5_3
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other tests have been performed, none of which have led to the improvement of the
disambiguation accuracy. Our best result is represented by an accuracy of 48.7 %
(obtained with 95.8 % corpus coverage). As far as WN-based feature selection is
concerned, this best result is obtained when considering the disambiguation vocab-
ulary formed with all WN-synonyms and content words of the associated synset
glosses and example strings, all nouns of hyponym synsets plus all content words
of the associated glosses and example strings, as well as all nouns coming from
the meronym synsets, to which all content words of the corresponding glosses and
example strings are added. As far as web N-gram feature selection is concerned, the
best obtained accuracy resulted when using the feature set 5-line-200.

This best obtained accuracy (48.7 %) slightly improves the one resulting as best
when performing WN-based feature selection alone, and does not come close to the
best one obtained with web N-gram feature selection. In the case of nouns, the Naïve
Bayes model does not react well to the combination of web N-gram features and
WN-based ones.

In the case of the adjective common we have designed experiments which perform
discrimination again between the 3 senses listed in Table 5.2. Our best obtained result
is an accuracy of 87.2 % (with corpus coverage 83.5 %). This is very close to the
obtained web N-gram result (87.0 %) and significantly improves the best obtained
WN result (77.5 %). As far as feature sets are concerned, it is obtained corresponding
to the extended WN vocabulary (all relations) discussed in Chap. 3, but leaving out
antonyms, and to the web N-gram feature set 2-common-100.

In the case of the adjective public we have designed experiments which perform
discrimination between the 3 senses listed in Table 5.3. Out best obtained result is an
accuracy of 56.4 % (with corpus coverage 73.2 %). This is lower than the obtained
web N-gram result (58.7 %) and very slightly improves the best obtained WN result
(55.9 %). As far as feature sets are concerned, it is obtained corresponding to the same
extended WN vocabulary (all relations, including antonymy) discussed in Chap. 3
and to the web N-gram feature set 3-public-100.

In the case of the verb help we have designed experiments which perform discrimi-
nation between the 2 senses listed in Table 5.4. Our best obtained result is an accuracy
of 70.3 % (with corpus coverage 61.8 %). This is lower than the obtained web N-gram
result (73.1 %) and improves the best obtained WN result (67.1 %). As far as feature
sets are concerned, it is obtained corresponding to the extended WN vocabulary (all
relations) discussed in Chap. 3 and to the web N-gram feature set 3-help-100.

Our conclusion is that it is not worth combining these features of totally different
natures, but it is recommendable to rather use web N-gram features alone.

5.4 Conclusions

This chapter has examined web N-gram feature selection for unsupervised word
sense disambiguation with an underlying Naïve Bayes model.
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The disambiguation method using N-gram features that we have presented here
is unsupervised and uses counts collected from the web in a simple way, in order
to rank candidates. It creates features from unlabeled data, a strategy which is part
of a growing trend in natural language processing, together with exploiting the vast
amount of data on the web. Thus, the method does not rely on sense definitions or
inventories. It is knowledge-lean in the sense that it just requires the existence or
the possibility to estimate N-gram counts for the target language corresponding to
which the disambiguation process takes place. No information regarding the actual
word senses is used at any stage of the process.

Comparisons have been performed with previous approaches that rely on com-
pletely different feature sets. In the case of all studied parts of speech, test results were
better, by a wide margin, than those obtained when using local-type features (Ped-
ersen and Bruce 1998). They have also indicated a superior alternative to WordNet
feature selection for the Naïve Bayes model (see Chap. 3). Strictly as far as adjec-
tives are concerned, results are more or less similar to those obtained when feeding
the Naïve Bayes model syntactic knowledge of the studied type (see Chap. 4). Web
N-gram feature selection seems a reliable alternative to projective dependency-based
feature selection as well.

The experiments conducted for all three major parts of speech (nouns, adjectives,
verbs) have provided very different results, depending on the feature sets that were
used. These results are in agreement with the linguistic intuitions and indicate the
necessity of taking into consideration feature sets that are adapted to the part of
speech which is to be disambiguated.

Another conclusion we have come to, in the present study, is that, when using
the Naïve Bayes model as clustering technique for unsupervised WSD, it is not
recommended to combine features created from unlabeled data with those coming
from an external knowledge source (such as WordNet).

Last but not least, the presented method has once again proven that a basic, simple
knowledge-lean disambiguation algorithm, hereby represented by the Naïve Bayes
model, can perform quite well when provided knowledge in an appropriate way.
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