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Abstract. This paper suggests methods, and a tool chain for model based speci-
fication, verification, and test generation for a safety fieldbus profile. The basis 
of this tool chain is the use of an UML-profile as a specification notation, a 
simple high level Petri net model called “Safe Petri Net with Attributes” 
(SPENAT) and analysis methods found in Petri net theory. The developed 
UML-profile contains UML class diagrams and UML state machines for speci-
fication modeling. Verification and developed test generation methods are 
shown to be applicable after mapping the specification model onto SPENAT. 
The practical use of this tool chain is exemplarily demonstrated for a safety 
fieldbus profile. 

Keywords: model based testing, verification, model based specification, 
SPENAT. 

1 Introduction 

More and more safety-relevant applications are being handled within industrial auto-
mation. The IEC 61508 standard describes requirements of functional safety. Micro-
processor based device solutions for safety-relevant applications are faced with this 
standard. This forces the device manufacturer to contact third party partners such as 
TÜV and IFA which verify the development process and the development result. This 
results in a resource overhead for the device manufacturer. Therefore, these manufac-
turers are looking for methods and tools to automate some activities in order to de-
crease the overhead. 

The paradigm of the model based system development (see e.g. [1]) is generally 
accepted handling the increasing complexity of the system and device development. 
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One usage of model based techniques is within the development of safety relevant 
fieldbus profiles in the industrial communication area. A fieldbus profile specifies the 
common use of communication services and interacting variables of selected device 
classes. These profiles serve as a basis for automation device development and are 
subject to certification tests in the framework of the related communication market 
organizations - the so-called user organizations. Devices which have successfully 
passed the tests can work interoperably if the coverage of test cases meets the neces-
sary requirements. Additionally, the profile specification is part of a general quality 
process both within the user organization as well as the device manufacturer. 

Using model based specifications as a result of profile development processes 
some quality assurance activities are addressed. One activity is the verification of 
syntactic and semantic correctness with regard to the specified requirements. Another 
activity is the generation of test cases with high specification coverage based on pro-
file specification model. 

To support formal verification and test generation from model based specifications 
a simple and intuitively understandable new Petri net model (“Safe Petri Net with 
Attributes” - SPENAT) was developed based on safe place transition nets (PT nets). 
Thanks to the simplicity of SPENAT a wide spectrum of existing and future modeling 
notations should be supported and usable for verification and test generation. The 
mapping of a UML State Machine to an ESPTN, the predecessor model of the 
SPENAT, is described in detail in [6]. 

In this paper methods for model based specification, verification, and test genera-
tion are introduced. All methods are implemented on a tool chain. The practical usage 
of this tool chain will be demonstrated on an existing safety fieldbus profile. 

This paper is structured as follows. Section 2 addresses fieldbus profiles and their 
model based specification and section 3 introduces SPENAT, and discusses its verifi-
cation and test generation. The methods introduced are implemented on a tool chain 
in section 4 and a case study is carried out for a PROFIsafe PA profile in section 5. 
Finally, section 6 concludes the paper and gives an outlook of future research. 

2 Model Based Specification of Fieldbus Profiles 

Device profiles usually provide variables and/or application functions with related 
input and output variables, parameters, and commands. In some cases, functions can 
be aggregated to function blocks. The variables, parameters and commands (called 
variables within this paper) are data to be communicated. The variables are dedicated 
to modules and sub-modules which provide addressing and data type information for 
the related communication services. 

UML [14] nowadays is well established in the domain of embedded systems.  
Automation devices are seen as such systems. Class diagrams and state machine dia-
grams are the only UML languages which are used in the context of device and pro-
file models. Class diagrams are used to describe the device structure which consists of 
functional elements and variables. A semantic enrichment of the classes is necessary 
which is done by the UML extension mechanism using stereotype and tags. The ste-
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reotypes correlate with the device model and the class tags define the attributes of the 
profile elements - for instance the characteristics of the variables. 

Table 1. Mapping of device and profile model elements to UML 

Device and profile model element UML language elements 
Device Class stereotype <<Device>> 
Module Class stereotype <<Module>> 
Function Block Class stereotype <<FB_Type>> 
Physical Block Class stereotype <<PB_Type>> 
Transducer Block Class stereotype <<TB_Type>> 
Function Class stereotype <<Function_Type>> 
Variable Class stereotype <<Variable_Type>> 
Attributes of Variable Tagged Value of class stereotype 

<<Variable>> 
Behavior of function blocks State machines 

 
The result is a UML profile template with the standard elements which can be used 

by the profile developers. Table 1 gives an overview of all used model elements and 
their UML representation. 

In order to generate test cases and/or to verify the fieldbus profile model in view of 
safety relevant properties such as deadlock freeness and/or reachability analysis of 
special states Petri net methods can be used. Therefore, a mapping of this fieldbus 
profile model onto SPENAT needs to be implemented (see [6]). The Petri net dialect 
SPENAT as an extension of the Petri net dialect from [6] is introduced in the next 
section. 

3 Safe Petri Net with Attributes (SPENAT) 

3.1 Motivation 

The SPENAT notation is built upon safe place transition nets (p/t net) [10] and con-
cepts of high level Petri nets [3], [4], [5], [10]. Using SPENAT it is possible to use 
external and parameterized signal/events as transition triggers (in contrast to 
STG [11], SIPN [15], IOPT [16]). Thanks to this feature it is much easier to model the 
required behavior of an open and reactive system with a Petri net. Also, the mapping 
of existing models onto a Petri net should be possible in an easy and intuitive way. 

An example of a declaration of a Petri net reacting on externally parameterized 
signals is presented in Fig. 1. This Petri net has two transitions where transition t2 can 
only fire after transition t1 and the guard of t2 depends implicitly on the value of the 
parameter x of the trigger event of t1. 

If transition t2 of the Petri net of Fig. 2 fires, it is clear that the parameter x of the 
external event ev1(int x) must be 1. This value is a result of the guard of t1 
(msg.x<2), the effect of t1 (y=msg.x), and the guard of t2 (y>0). The keyword msg is 
a reference to the respective trigger event of the transition. In this case the value 1 is 
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the only valid value for parameter x of the trigger event ev1(int x) so t2 can fire. For 
any other value of x, transition t1 cannot fire (see guard msg.x<2) otherwise the 
SPENAT of Fig. 1 would be in a deadlock after t1 has been fired. 

p2

ev1(x)[msg.x<2]/y=msg.x;

p1

event ev1(int x);
event ev2();
int y=0;

p3

ev2()[y>0]/;

environmentenvironment
signal ev1(int x)

signal ev2()

t1

t2

 

Fig. 1. SPENAT with externally parameterized signals/events 

3.2 Structure and Behavior 

Like every Petri net SPENAT is characterized by a bipartite graph. The places of 
SPENAT are typecasted (see [3], [5], [10]). The transitions have some special proper-
ties defining their firing behavior. The markings of a SPENAT are distinguishable. 
Places of SPENAT can only be marked with one (colored) token at the same time and 
the arcs are not inscripted. Furthermore, transitions can fire if an external paramete-
rized event appears and there is a clear separation between control and data places. 
Control places can only be marked with the token  and data places can only be 
marked with a colored token [3]. Hierarchies are not allowed within SPENAT. 

The color of a colored token of a data place represents a data value. Every data 
place belongs to the initial marking M0 of SPENAT. Data places represent the 
attributes of SPENAT and it is mandatory that every attribute has an initial value. 

p2

ev1(x)[msg.x<2]/y=msg.x+1;

p1 y=0 int

event ev1(int x);

p2

ev1(x)[msg.x<2]/y=msg.x+1;

p1

event ev1(int x);
int y=0;

 

Fig. 2. Declaration of SPENAT 

In Fig. 2 an example of SPENAT is outlined. On the left the attribute y of 
SPENAT is declared, whereas on the right the equivalent net representation without 
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an explicit attribute declaration is outlined. Furthermore, SPENAT can receive the 
external event ev1 with one parameter x of type int. 

Based on Fig. 2 the essential properties of SPENAT can easily be identified. The 
connection of a data place to a transition is always implemented by a loop, so every 
data place which is a predecessor of a transition is always a successor of the same 
transition. Whether a data place is connected (by a loop) to a transition is determined 
by the transition inscription (guard and effect). With this property and the fact that 
data places are part of the initial marking, data places are always marked. This restric-
tion allows a more simplified analysis of SPENAT. Also, the declaration of the data 
places is not mandatory for the graphical declaration of SPENAT (see Fig. 2). 

The syntax and semantic of the inscription of a SPENAT transition is essentially 
adequate (see Fig. 2) to the syntax and semantic of a transition of a UML State Ma-
chine (USM [14]). However, a transition of SPENAT can have more than one prede-
cessor which is not possible for a USM transition. A SPENAT transition fires if all 
predecessors are marked, if its (external) event (its trigger event) appears, and if its 
guard is evaluated as ‘true’. If a transition fires, all specified actions associated with 
the effect of the transition are executed. 

ev1(x)[msg.x<2]/y=msg.x+1;

p1

p2

y=2 int

event ev1(int x);

p2

ev1(x)[msg.x<2]/y=msg.x+1;

p1 y=0 int

event ev1(int x);

t1 t1

firing of t1

for ev1(x=1)

 

Fig. 3. SPENAT before and after the firing of a transition 

In Fig. 3 SPENAT with a data place y is presented before and after an firing of a 
transition (t1). The places p1 and p2 are control places. The initial marking M0 of this 
SPENAT is characterized by the set M0={(p1,•),(y,0)}. The marking M1={(p2,•),(y,2)} 
is induced by the firing of t1 based on M0. A marking set M contains all current co-
lored tokens. Here, a colored token represents a pair of place and value (color, see 
[3]). The element • is used as a type and a value of control places. More than one 
colored token cannot be used in the current marking set for one place, so SPENAT is 
safe. 

If a transition of SPENAT fires, all colored tokens representing a predecessor of 
the transition will be removed from the current marking set and for each successor a 
new colored token is produced and added to the current marking set. 

3.3 Verification of SPENAT 

For an exhaustive analysis of SPENAT a state space analysis is necessary. The state 
space of a Petri net can be represented by its reachability graph. For the creation of 
the reachability graph of a Petri net all possible processes are sequentialized, which is 
a main drawback of this state space coding. The state space explodes if the Petri net is 
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strongly concurrent. Therefore, it is suggested to use the complete prefix of the un-
folding [7], [9], [11] of the Petri net for analysis tasks. 

There are several algorithms for creating the prefix of the unfolding of a Petri net, 
most of them for a safe place transition net. The first algorithm was developed in [9]. 
This algorithm was improved in [7] by the use of a total order for the prefix events for 
the construction of a minimal prefix. In [11] this algorithm was parallelized and further 
optimized. Also, in [11] the dependence on general place transition nets was removed. 
Thus, the algorithm for prefix construction now is applicable to higher Petri nets as well. 

Values of attributes of SPENAT can depend on values of external event parameters. 
In order to represent a marking of SPENAT during the prefix calculation algorithm 
classic (value based) marking representation of (colored) Petri nets are not suitable. 
However, the marking of SPENAT attributes can be expressed by a set of constraints. A 
marking of SPENAT can then be represented by a marking set for the control places and 
by the identified constraints for the data places. With this marking representation and 
the results of [11] the known algorithms for the prefix creation can also be used for the 
prefix construction for SPENAT. However, the method for the extension of the prefix 
with new events has to be adapted because of the use of constraints as marking repre-
sentation for a data place. Now a new event can only be added to the prefix if the identi-
fied constraints are satisfiable. Also, the identification of the cutoff events has to be 
adapted. Now it is necessary to check if two events produce the same marking of control 
places as well as the same constraints on a semantic level. 

In Fig. 4 SPENAT with its prefix is presented. The events of the prefix are in-
scripted with the constraints for the data places. The parameters of the trigger events 
are associated with the respective prefix events for a better overview. The constraint 
e1.x<10 of the event e3 is valid for the parameter x of the trigger event ev1(int x) of 
transition t1 represented by e1 in this process. The prefix contains the cutoff events e2, 
e7, and e8. All cutoff events correspond to the marking of event e1. Furthermore, a 
deadlock can be identified within the prefix seen in Fig. 4. This deadlock is a result of 
the execution sequence t1t3t5 represented by the local configuration {e0,e1,e3,e5} as-
signed to the prefix event e5 (not added here). 

In general, the complete prefix of the unfolding of Petri net is a compact represen-
tation of the state space and is well suited for the verification of interesting properties 
like deadlock and reachability analysis, and satisfiability of LTL formulas by methods 
of model checking. In [8] and [11] methods for formal verification based on prefix are 
presented. These methods are also applicable to the verification of SPENAT. 

3.4 Test Generation Based on a SPENAT Specification 

The method of the test generation is also based on the computation of the prefix of 
SPENAT. This method is described in [6] in more detail. The work in [6] was ex-
tended in such a way that external events with parameters can now be used, too. 

The steps of the test generation based on SPENAT specifications are straight for-
ward. First the prefix is constructed based on the specified test criteria (e.g. coverage 
criteria). It is not strictly necessary to construct the complete prefix of the unfolding 
of SPENAT. If all places are covered by at least one test case the resulting prefix is in 
general much smaller than the complete prefix. 
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ev1(int x)[x<10]/
y2=x;y1=y2;

ev 3()[y1>5]/

ev5()[y2<3]

event ev1(int x), ev2(int x), ev3(), ev4(int x), ev5();
int y1=0, y2=0;

p1

e1.x<10;
y1=e1.x; y2=e1.x;

p2

y1 y2

ev2(int x)[x<10]/
y2=x;y1=y2;

ev4(int x)[x>5 and x<10]/
y1=x;

p2

t1

NOT SAT!!!  DEADLOCK! 

t2

t3 t4

t5

e1(t1)

y1=0;y2=0;

e2.x<10;
y1=e2.x; y2=e2.x;e2(t2)

y1 y2y1

y2

e1.x<10; e1.x>5;
y1=e1.x; y2=e1.x;

e3(t3) e1.x<10; e4.x<10; e4.x>5;
y1=e4.x; y2=e1.x; e4(t4)

p3 y1 p3

y1

e1.x<3; e1.x>5;
y1=e1.x; y2=e1.x;

e1.x<3; e4.x<10; e4.x>5;
y1=e4.x; y2=e1.x;e5(t5) e6(t5)

p1 y2

e8.x<10;
y1=e8.x; y2=e8.x;

e8(t2)

p2 y1y2

p1

p2

p3

e0(ε)

prefix

e7.x<10;
y1=e7.x; y2=e7.x;

e7(t1)

p2 y1y2  

Fig. 4. SPENAT and its prefix 

After the prefix construction the test cases are identified. The prefix of the unfolded 
SPENAT is an acyclic Petri net in which all possible processes of SPENAT are con-
tained within the prefix. Each possible process can be identified by a prefix event or 
rather by the local configuration of a prefix event [7]. Prefix events with no successor 
events and a maximal number of transitions represent maximum processes. So in gen-
eral, it is a good strategy to associate each identified maximum process with a test 
case. With this strategy the coverage criteria “round trip path” of SPENAT can be 
achieved. 

The values of the external events as the stimulus of the test object are constrained 
by the inscription of the prefix events. When instantiating a process and assigning it to 
a test case, a value within the specified value range needs to be selected. This can be 
carried out in a random way but in general it is a widely accepted strategy to select a 
bound (upper and/or lower) within the specified value range. 

The identified test cases specify a (concurrent) message exchange between the test 
object (System Under Test – SUT) and the tester or test system. This is an abstract 
sequence-based description of the stimuli and the expected responses of the test ob-
ject. This abstract representation of the test cases must be transformed in an unders-
tandable and executable format for the test system. Furthermore, the realized level of 
abstraction during the modeling of the required test object behavior must be respected 
in order to get automatically executable test specifications as a result of the test gen-
eration process. 

Data types, events, and/or signals, modelled within the profile model at an abstract 
level, have to be mapped to usable structures of the target test notation of the used test 
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The result of the two test generators are abstract test cases on the same level as the 
specification model. These abstract test cases have to be transformed into suitable test 
notations in order to automatically execute the tests with suitable test tools. This 
transformation is implemented for TTCN 3 and a C# based test notation for the used 
test tool isDEET. The test execution and test verdict identification can be realized 
with isDEET. 

5 Case Study for the PROFIsafe PA profile 

The UML-profile previously described was used within a project to describe the 
structure and the required behavior based on the specification of the PROFIsafe PA 
profile (see extracts in Fig. 6). The required behavior was modeled with a UML State 
Machine. Then, model verification was done in a first step to guarantee that the model 
was free of errors. In particular, safety critical properties like deadlock freeness and 
reachability of all states and all transitions were checked. 

Based on the verified model of the specification of the PROFIsafe PA profile, a 
test suite with high coverage (coverage criteria “round trip path”) was generated. The 
generated test cases were transformed from the abstract sequence based format to  
the input format of the used test tool (based on C#). Variables necessary to influence 
the state machine and get the state machine status are additionally used for this trans-
formation. For this transformation some rules had to be implemented by an adapter in 
order to handle the actual communication between the test tool and the test object. A 
SIEMENS device (“SITRANS P”) was successfully used as a test object. Except for 
the implementation of the transformation rules by an adapter for the test cases of the 
test tool, all activities were executed automatically. 

 

Fig. 6. (a) Three selected parameters and (b) The state machine of the PROFIsafe profile [13] 

5.1 Specification Model of the PROFIsafe PA Profile 

The profile specification for PROFIsafe PA [13] includes the description of the beha-
vior and PA-PROFIsafe specific profile parameters. For example, the state machine 
and a selection of three parameters are shown in Fig. 6. Before starting the communi-
cation, a device must go into the safe state “S4”. In the state “S1” a standard unsafe 

(b) PROFIsafe state machine(a) parameter characteristics
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communication is still possible. The changeover to error-free communication is 
reached via the states “S2” and “S4” or “S2”, “S3” and “S4” (see Fig. 6). 

All PROFIsafe profiles consist of various blocks such as “physical block“, “func-
tion block,” and “transducer block.” The different blocks are specified in detail with 
functional elements. Thus, in each block the corresponding profile parameters are 
defined as class attributes. Additionally, a parameter class for each parameter was 
created with the parameter characteristics as tags. 

5.2 Verification and Test Generation 

A tool developed at the ifak Magdeburg is used to verify the specification model and 
generate test cases out of this verified specification model. It allows transferring a 
UML state machine into SPENAT, and it creates the complete prefix of the unfolding 
of this SPENAT. Based on this prefix the verification (deadlock and reachability 
analysis) and the test generation are done. Therefore, different structural coverage 
criteria can be chosen. For the highest possible coverage criteria “round trip path” 52 
test cases are generated. 

 

Fig. 7. Abstract and formatted test case for state machine testing 

Fig. 7 shows an example of a test case as a sequence diagram. The test case will 
run through all four states of the PROFIsafe state machine starting in state “S1”. State 
“S2” is initiated by a write request on the inspection parameter and confirmed with a 
positive response. The transition to “S3 and then to “S4” takes place in the same 
manner. Finally, an attempt to execute a transition from state “S4” to state “S3” is 
made. According to the state machine, this is an illegal transition and a negative re-
sponse is returned by SUT. 

MTC SUT

ev_InspectionWriteRequest(value=S2)

ev_WriteResponse(response=OK)

ev_InspectionWriteRequest(value=S3)

ev_WriteResponse(response=OK)

ev_InspectionWriteRequest(value=S4)

ev_WriteResponse(response=OK)

ev_InspectionWriteRequest(value=S3)

ev_WriteResponse(response=INVALID_RANGE)

(a) Abstract test case

//tc_1
MSG.TEXT("tc_1");
{
CALL("ev_Init");
CALL("ev_InspectionWriteRequest",value="S2");
CALL("ev_WriteResponse",response="OK"); 
CALL("ev_InspectionWriteRequest",value="S3");
CALL("ev_WriteResponse",response="OK");
CALL("ev_InspectionWriteRequest",value="S4");
CALL("ev_WriteResponse",response="OK");
CALL("ev_InspectionWriteRequest",value="S3");
CALL("ev_WriteResponse",response="INVALID_RANGE");
}

(b) isDEET test case
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5.3 Test of the PROFIsafe Device Siemens SITRANS-P 

Fig. 8 shows the test setup with the test device Siemens SITRANS-P. The test tool 
“isDEET” runs on a computer which can access the PROFIBUS devices via the “is 
Pro Profibus USB Interface”. Using a segment coupler the SITRANS-P device is 
connected to PROFIBUS PA. 

 

Fig. 8. Test setup 

All generated abstract test cases are transformed into an executable test notation 
and afterwards run as a combined test suite on the test system. The test tool creates a 
report of the success or failure of the executed test cases. The testing of parameter and 
state machine test cases for the PROFIsafe profile was successful. The result of the 
test suite confirms the correctness of the device regarding the profile on the one hand, 
where functionality and behavior comply with the profile and its requirements. On the 
other hand, a successful validation of the method for test case generation and the 
transformation in the test notation are shown with the established test device used. 

6 Conclusion and Outlook 

In this paper an approach to model based specification, verification, and test genera-
tion for safety fieldbus profiles were introduced. The essential methods and tools 
ranging from model based fieldbus profile specification to the test execution are de-
scribed. Here, UML was used for the fieldbus profile specification, and Petri net me-
thods were employed for the model verification and test generation. The developed 
Petri net model “Safe Petri Net with Attributes” (SPENAT) was used for the mapping 
of the UML model and the application of the Petri net methods. The practical use of 
these methods was demonstrated with an existing safety relevant UML profile (PRO-
FIsafe PA profile) for fieldbus devices in the PROFIBUS and PROFINET domain. 

In the future, more existing methods of formal verification from the petri net area 
should be used to verify the SPENAT model. Especially model checking algorithms 
should be applied for the SPENAT analysis. Additionally, the method for test case 
generation should be more configurable. One goal is to have more possibilities for 
controlling the test generation process. The description of distributed (cooperative) 
systems with communicating SPENAT components is an ongoing future research 
aspect. The verification and generation of tests based on domain specific models will 
gain an increasing importance in the future for distributed and cooperative systems. 

test tool
isDEET

is Pro Profibus USB Interface Pepperl+Fuchs
segment coupler

Siemens SITRANS P DSIII, 
digital pressure transmitter
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