

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012, LNCS 7612, pp. 87–98, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Model Based Specification, Verification, and Test
Generation for a Safety Fieldbus Profile

Jan Krause1, Elke Hintze1, Stephan Magnus1, and Christian Diedrich2

1 Institut für Automation und Kommunikation (ifak),
Werner-Heisenberg-Str. 1,

39106 Magdeburg,
Germany

2 Otto von Guericke Universität Magdeburg,
Lehrstuhl Integrierte Automation,

Universitätsplatz 2,
39104 Magdeburg,

Germany
{jan.krause,elke.hintze,stephan.magnus}@ifak.eu,

christian.diedrich@ovgu.de

Abstract. This paper suggests methods, and a tool chain for model based speci-
fication, verification, and test generation for a safety fieldbus profile. The basis
of this tool chain is the use of an UML-profile as a specification notation, a
simple high level Petri net model called “Safe Petri Net with Attributes”
(SPENAT) and analysis methods found in Petri net theory. The developed
UML-profile contains UML class diagrams and UML state machines for speci-
fication modeling. Verification and developed test generation methods are
shown to be applicable after mapping the specification model onto SPENAT.
The practical use of this tool chain is exemplarily demonstrated for a safety
fieldbus profile.

Keywords: model based testing, verification, model based specification,
SPENAT.

1 Introduction

More and more safety-relevant applications are being handled within industrial auto-
mation. The IEC 61508 standard describes requirements of functional safety. Micro-
processor based device solutions for safety-relevant applications are faced with this
standard. This forces the device manufacturer to contact third party partners such as
TÜV and IFA which verify the development process and the development result. This
results in a resource overhead for the device manufacturer. Therefore, these manufac-
turers are looking for methods and tools to automate some activities in order to de-
crease the overhead.

The paradigm of the model based system development (see e.g. [1]) is generally
accepted handling the increasing complexity of the system and device development.

88 J. Krause et al.

One usage of model based techniques is within the development of safety relevant
fieldbus profiles in the industrial communication area. A fieldbus profile specifies the
common use of communication services and interacting variables of selected device
classes. These profiles serve as a basis for automation device development and are
subject to certification tests in the framework of the related communication market
organizations - the so-called user organizations. Devices which have successfully
passed the tests can work interoperably if the coverage of test cases meets the neces-
sary requirements. Additionally, the profile specification is part of a general quality
process both within the user organization as well as the device manufacturer.

Using model based specifications as a result of profile development processes
some quality assurance activities are addressed. One activity is the verification of
syntactic and semantic correctness with regard to the specified requirements. Another
activity is the generation of test cases with high specification coverage based on pro-
file specification model.

To support formal verification and test generation from model based specifications
a simple and intuitively understandable new Petri net model (“Safe Petri Net with
Attributes” - SPENAT) was developed based on safe place transition nets (PT nets).
Thanks to the simplicity of SPENAT a wide spectrum of existing and future modeling
notations should be supported and usable for verification and test generation. The
mapping of a UML State Machine to an ESPTN, the predecessor model of the
SPENAT, is described in detail in [6].

In this paper methods for model based specification, verification, and test genera-
tion are introduced. All methods are implemented on a tool chain. The practical usage
of this tool chain will be demonstrated on an existing safety fieldbus profile.

This paper is structured as follows. Section 2 addresses fieldbus profiles and their
model based specification and section 3 introduces SPENAT, and discusses its verifi-
cation and test generation. The methods introduced are implemented on a tool chain
in section 4 and a case study is carried out for a PROFIsafe PA profile in section 5.
Finally, section 6 concludes the paper and gives an outlook of future research.

2 Model Based Specification of Fieldbus Profiles

Device profiles usually provide variables and/or application functions with related
input and output variables, parameters, and commands. In some cases, functions can
be aggregated to function blocks. The variables, parameters and commands (called
variables within this paper) are data to be communicated. The variables are dedicated
to modules and sub-modules which provide addressing and data type information for
the related communication services.

UML [14] nowadays is well established in the domain of embedded systems.
Automation devices are seen as such systems. Class diagrams and state machine dia-
grams are the only UML languages which are used in the context of device and pro-
file models. Class diagrams are used to describe the device structure which consists of
functional elements and variables. A semantic enrichment of the classes is necessary
which is done by the UML extension mechanism using stereotype and tags. The ste-

Model Based Specification, Verification, and Test Generation for a Safety Fieldbus Profile 89

reotypes correlate with the device model and the class tags define the attributes of the
profile elements - for instance the characteristics of the variables.

Table 1. Mapping of device and profile model elements to UML

Device and profile model element UML language elements
Device Class stereotype <<Device>>
Module Class stereotype <<Module>>
Function Block Class stereotype <<FB_Type>>
Physical Block Class stereotype <<PB_Type>>
Transducer Block Class stereotype <<TB_Type>>
Function Class stereotype <<Function_Type>>
Variable Class stereotype <<Variable_Type>>
Attributes of Variable Tagged Value of class stereotype

<<Variable>>
Behavior of function blocks State machines

The result is a UML profile template with the standard elements which can be used

by the profile developers. Table 1 gives an overview of all used model elements and
their UML representation.

In order to generate test cases and/or to verify the fieldbus profile model in view of
safety relevant properties such as deadlock freeness and/or reachability analysis of
special states Petri net methods can be used. Therefore, a mapping of this fieldbus
profile model onto SPENAT needs to be implemented (see [6]). The Petri net dialect
SPENAT as an extension of the Petri net dialect from [6] is introduced in the next
section.

3 Safe Petri Net with Attributes (SPENAT)

3.1 Motivation

The SPENAT notation is built upon safe place transition nets (p/t net) [10] and con-
cepts of high level Petri nets [3], [4], [5], [10]. Using SPENAT it is possible to use
external and parameterized signal/events as transition triggers (in contrast to
STG [11], SIPN [15], IOPT [16]). Thanks to this feature it is much easier to model the
required behavior of an open and reactive system with a Petri net. Also, the mapping
of existing models onto a Petri net should be possible in an easy and intuitive way.

An example of a declaration of a Petri net reacting on externally parameterized
signals is presented in Fig. 1. This Petri net has two transitions where transition t2 can
only fire after transition t1 and the guard of t2 depends implicitly on the value of the
parameter x of the trigger event of t1.

If transition t2 of the Petri net of Fig. 2 fires, it is clear that the parameter x of the
external event ev1(int x) must be 1. This value is a result of the guard of t1
(msg.x<2), the effect of t1 (y=msg.x), and the guard of t2 (y>0). The keyword msg is
a reference to the respective trigger event of the transition. In this case the value 1 is

90 J. Krause et al.

the only valid value for parameter x of the trigger event ev1(int x) so t2 can fire. For
any other value of x, transition t1 cannot fire (see guard msg.x<2) otherwise the
SPENAT of Fig. 1 would be in a deadlock after t1 has been fired.

p2

ev1(x)[msg.x<2]/y=msg.x;

p1

event ev1(int x);
event ev2();
int y=0;

p3

ev2()[y>0]/;

environmentenvironment
signal ev1(int x)

signal ev2()

t1

t2

Fig. 1. SPENAT with externally parameterized signals/events

3.2 Structure and Behavior

Like every Petri net SPENAT is characterized by a bipartite graph. The places of
SPENAT are typecasted (see [3], [5], [10]). The transitions have some special proper-
ties defining their firing behavior. The markings of a SPENAT are distinguishable.
Places of SPENAT can only be marked with one (colored) token at the same time and
the arcs are not inscripted. Furthermore, transitions can fire if an external paramete-
rized event appears and there is a clear separation between control and data places.
Control places can only be marked with the token and data places can only be
marked with a colored token [3]. Hierarchies are not allowed within SPENAT.

The color of a colored token of a data place represents a data value. Every data
place belongs to the initial marking M0 of SPENAT. Data places represent the
attributes of SPENAT and it is mandatory that every attribute has an initial value.

p2

ev1(x)[msg.x<2]/y=msg.x+1;

p1 y=0 int

event ev1(int x);

p2

ev1(x)[msg.x<2]/y=msg.x+1;

p1

event ev1(int x);
int y=0;

Fig. 2. Declaration of SPENAT

In Fig. 2 an example of SPENAT is outlined. On the left the attribute y of
SPENAT is declared, whereas on the right the equivalent net representation without

Model Based Specification, Verification, and Test Generation for a Safety Fieldbus Profile 91

an explicit attribute declaration is outlined. Furthermore, SPENAT can receive the
external event ev1 with one parameter x of type int.

Based on Fig. 2 the essential properties of SPENAT can easily be identified. The
connection of a data place to a transition is always implemented by a loop, so every
data place which is a predecessor of a transition is always a successor of the same
transition. Whether a data place is connected (by a loop) to a transition is determined
by the transition inscription (guard and effect). With this property and the fact that
data places are part of the initial marking, data places are always marked. This restric-
tion allows a more simplified analysis of SPENAT. Also, the declaration of the data
places is not mandatory for the graphical declaration of SPENAT (see Fig. 2).

The syntax and semantic of the inscription of a SPENAT transition is essentially
adequate (see Fig. 2) to the syntax and semantic of a transition of a UML State Ma-
chine (USM [14]). However, a transition of SPENAT can have more than one prede-
cessor which is not possible for a USM transition. A SPENAT transition fires if all
predecessors are marked, if its (external) event (its trigger event) appears, and if its
guard is evaluated as ‘true’. If a transition fires, all specified actions associated with
the effect of the transition are executed.

ev1(x)[msg.x<2]/y=msg.x+1;

p1

p2

y=2 int

event ev1(int x);

p2

ev1(x)[msg.x<2]/y=msg.x+1;

p1 y=0 int

event ev1(int x);

t1 t1

firing of t1

for ev1(x=1)

Fig. 3. SPENAT before and after the firing of a transition

In Fig. 3 SPENAT with a data place y is presented before and after an firing of a
transition (t1). The places p1 and p2 are control places. The initial marking M0 of this
SPENAT is characterized by the set M0={(p1,•),(y,0)}. The marking M1={(p2,•),(y,2)}
is induced by the firing of t1 based on M0. A marking set M contains all current co-
lored tokens. Here, a colored token represents a pair of place and value (color, see
[3]). The element • is used as a type and a value of control places. More than one
colored token cannot be used in the current marking set for one place, so SPENAT is
safe.

If a transition of SPENAT fires, all colored tokens representing a predecessor of
the transition will be removed from the current marking set and for each successor a
new colored token is produced and added to the current marking set.

3.3 Verification of SPENAT

For an exhaustive analysis of SPENAT a state space analysis is necessary. The state
space of a Petri net can be represented by its reachability graph. For the creation of
the reachability graph of a Petri net all possible processes are sequentialized, which is
a main drawback of this state space coding. The state space explodes if the Petri net is

92 J. Krause et al.

strongly concurrent. Therefore, it is suggested to use the complete prefix of the un-
folding [7], [9], [11] of the Petri net for analysis tasks.

There are several algorithms for creating the prefix of the unfolding of a Petri net,
most of them for a safe place transition net. The first algorithm was developed in [9].
This algorithm was improved in [7] by the use of a total order for the prefix events for
the construction of a minimal prefix. In [11] this algorithm was parallelized and further
optimized. Also, in [11] the dependence on general place transition nets was removed.
Thus, the algorithm for prefix construction now is applicable to higher Petri nets as well.

Values of attributes of SPENAT can depend on values of external event parameters.
In order to represent a marking of SPENAT during the prefix calculation algorithm
classic (value based) marking representation of (colored) Petri nets are not suitable.
However, the marking of SPENAT attributes can be expressed by a set of constraints. A
marking of SPENAT can then be represented by a marking set for the control places and
by the identified constraints for the data places. With this marking representation and
the results of [11] the known algorithms for the prefix creation can also be used for the
prefix construction for SPENAT. However, the method for the extension of the prefix
with new events has to be adapted because of the use of constraints as marking repre-
sentation for a data place. Now a new event can only be added to the prefix if the identi-
fied constraints are satisfiable. Also, the identification of the cutoff events has to be
adapted. Now it is necessary to check if two events produce the same marking of control
places as well as the same constraints on a semantic level.

In Fig. 4 SPENAT with its prefix is presented. The events of the prefix are in-
scripted with the constraints for the data places. The parameters of the trigger events
are associated with the respective prefix events for a better overview. The constraint
e1.x<10 of the event e3 is valid for the parameter x of the trigger event ev1(int x) of
transition t1 represented by e1 in this process. The prefix contains the cutoff events e2,
e7, and e8. All cutoff events correspond to the marking of event e1. Furthermore, a
deadlock can be identified within the prefix seen in Fig. 4. This deadlock is a result of
the execution sequence t1t3t5 represented by the local configuration {e0,e1,e3,e5} as-
signed to the prefix event e5 (not added here).

In general, the complete prefix of the unfolding of Petri net is a compact represen-
tation of the state space and is well suited for the verification of interesting properties
like deadlock and reachability analysis, and satisfiability of LTL formulas by methods
of model checking. In [8] and [11] methods for formal verification based on prefix are
presented. These methods are also applicable to the verification of SPENAT.

3.4 Test Generation Based on a SPENAT Specification

The method of the test generation is also based on the computation of the prefix of
SPENAT. This method is described in [6] in more detail. The work in [6] was ex-
tended in such a way that external events with parameters can now be used, too.

The steps of the test generation based on SPENAT specifications are straight for-
ward. First the prefix is constructed based on the specified test criteria (e.g. coverage
criteria). It is not strictly necessary to construct the complete prefix of the unfolding
of SPENAT. If all places are covered by at least one test case the resulting prefix is in
general much smaller than the complete prefix.

Model Based Specification, Verification, and Test Generation for a Safety Fieldbus Profile 93

ev1(int x)[x<10]/
y2=x;y1=y2;

ev 3()[y1>5]/

ev5()[y2<3]

event ev1(int x), ev2(int x), ev3(), ev4(int x), ev5();
int y1=0, y2=0;

p1

e1.x<10;
y1=e1.x; y2=e1.x;

p2

y1 y2

ev2(int x)[x<10]/
y2=x;y1=y2;

ev4(int x)[x>5 and x<10]/
y1=x;

p2

t1

NOT SAT!!! DEADLOCK!

t2

t3 t4

t5

e1(t1)

y1=0;y2=0;

e2.x<10;
y1=e2.x; y2=e2.x;e2(t2)

y1 y2y1

y2

e1.x<10; e1.x>5;
y1=e1.x; y2=e1.x;

e3(t3) e1.x<10; e4.x<10; e4.x>5;
y1=e4.x; y2=e1.x; e4(t4)

p3 y1 p3

y1

e1.x<3; e1.x>5;
y1=e1.x; y2=e1.x;

e1.x<3; e4.x<10; e4.x>5;
y1=e4.x; y2=e1.x;e5(t5) e6(t5)

p1 y2

e8.x<10;
y1=e8.x; y2=e8.x;

e8(t2)

p2 y1y2

p1

p2

p3

e0(ε)

prefix

e7.x<10;
y1=e7.x; y2=e7.x;

e7(t1)

p2 y1y2

Fig. 4. SPENAT and its prefix

After the prefix construction the test cases are identified. The prefix of the unfolded
SPENAT is an acyclic Petri net in which all possible processes of SPENAT are con-
tained within the prefix. Each possible process can be identified by a prefix event or
rather by the local configuration of a prefix event [7]. Prefix events with no successor
events and a maximal number of transitions represent maximum processes. So in gen-
eral, it is a good strategy to associate each identified maximum process with a test
case. With this strategy the coverage criteria “round trip path” of SPENAT can be
achieved.

The values of the external events as the stimulus of the test object are constrained
by the inscription of the prefix events. When instantiating a process and assigning it to
a test case, a value within the specified value range needs to be selected. This can be
carried out in a random way but in general it is a widely accepted strategy to select a
bound (upper and/or lower) within the specified value range.

The identified test cases specify a (concurrent) message exchange between the test
object (System Under Test – SUT) and the tester or test system. This is an abstract
sequence-based description of the stimuli and the expected responses of the test ob-
ject. This abstract representation of the test cases must be transformed in an unders-
tandable and executable format for the test system. Furthermore, the realized level of
abstraction during the modeling of the required test object behavior must be respected
in order to get automatically executable test specifications as a result of the test gen-
eration process.

Data types, events, and/or signals, modelled within the profile model at an abstract
level, have to be mapped to usable structures of the target test notation of the used test

94 J. Krause et al.

tool. Therefore, rules are n
formatting in the standardi
notation based on C#, suitab

4 Tool Chain

The previously described m
typical implementations (se
UML modeling tool Rhapso
tion is done using Rhapsody

Fig. 5. Too

With the available API o
extracted. Therefore, two d
el. The test generator for dy
chines and generates, for t
with Petri net techniques (s
generator for the paramete
model indicating the param
is not discussed in this pape

necessary in order to automate this test formatting. For
ised test notation TTCN-3 [12] and in a proprietary
ble rules were developed and are implemented.

methods are implemented with established tools and pro
ee Fig. 5) on a tool chain. For the modeling, the establis
ody by IBM is used. The modeling of the profile specifi
y and our definition of the UML profile.

ol chain for test generation and test formatting

of Rhapsody, the model of the profile specification can
different test generators can operate using this profile m
ynamic specification elements searches for UML state m
these models of the expected behavior, suitable test ca
ee left branch of Fig. 5) as described in this paper. The

er testing looks for special stereotypes within the pro
meter classes (see right branch of Fig. 5). This test genera
er.

the
test

oto-
hed

fica-

n be
mod-

ma-
ases
test

ofile
ator

Model Based Specification, Verification, and Test Generation for a Safety Fieldbus Profile 95

The result of the two test generators are abstract test cases on the same level as the
specification model. These abstract test cases have to be transformed into suitable test
notations in order to automatically execute the tests with suitable test tools. This
transformation is implemented for TTCN 3 and a C# based test notation for the used
test tool isDEET. The test execution and test verdict identification can be realized
with isDEET.

5 Case Study for the PROFIsafe PA profile

The UML-profile previously described was used within a project to describe the
structure and the required behavior based on the specification of the PROFIsafe PA
profile (see extracts in Fig. 6). The required behavior was modeled with a UML State
Machine. Then, model verification was done in a first step to guarantee that the model
was free of errors. In particular, safety critical properties like deadlock freeness and
reachability of all states and all transitions were checked.

Based on the verified model of the specification of the PROFIsafe PA profile, a
test suite with high coverage (coverage criteria “round trip path”) was generated. The
generated test cases were transformed from the abstract sequence based format to
the input format of the used test tool (based on C#). Variables necessary to influence
the state machine and get the state machine status are additionally used for this trans-
formation. For this transformation some rules had to be implemented by an adapter in
order to handle the actual communication between the test tool and the test object. A
SIEMENS device (“SITRANS P”) was successfully used as a test object. Except for
the implementation of the transformation rules by an adapter for the test cases of the
test tool, all activities were executed automatically.

Fig. 6. (a) Three selected parameters and (b) The state machine of the PROFIsafe profile [13]

5.1 Specification Model of the PROFIsafe PA Profile

The profile specification for PROFIsafe PA [13] includes the description of the beha-
vior and PA-PROFIsafe specific profile parameters. For example, the state machine
and a selection of three parameters are shown in Fig. 6. Before starting the communi-
cation, a device must go into the safe state “S4”. In the state “S1” a standard unsafe

(b) PROFIsafe state machine(a) parameter characteristics

96 J. Krause et al.

communication is still possible. The changeover to error-free communication is
reached via the states “S2” and “S4” or “S2”, “S3” and “S4” (see Fig. 6).

All PROFIsafe profiles consist of various blocks such as “physical block“, “func-
tion block,” and “transducer block.” The different blocks are specified in detail with
functional elements. Thus, in each block the corresponding profile parameters are
defined as class attributes. Additionally, a parameter class for each parameter was
created with the parameter characteristics as tags.

5.2 Verification and Test Generation

A tool developed at the ifak Magdeburg is used to verify the specification model and
generate test cases out of this verified specification model. It allows transferring a
UML state machine into SPENAT, and it creates the complete prefix of the unfolding
of this SPENAT. Based on this prefix the verification (deadlock and reachability
analysis) and the test generation are done. Therefore, different structural coverage
criteria can be chosen. For the highest possible coverage criteria “round trip path” 52
test cases are generated.

Fig. 7. Abstract and formatted test case for state machine testing

Fig. 7 shows an example of a test case as a sequence diagram. The test case will
run through all four states of the PROFIsafe state machine starting in state “S1”. State
“S2” is initiated by a write request on the inspection parameter and confirmed with a
positive response. The transition to “S3 and then to “S4” takes place in the same
manner. Finally, an attempt to execute a transition from state “S4” to state “S3” is
made. According to the state machine, this is an illegal transition and a negative re-
sponse is returned by SUT.

MTC SUT

ev_InspectionWriteRequest(value=S2)

ev_WriteResponse(response=OK)

ev_InspectionWriteRequest(value=S3)

ev_WriteResponse(response=OK)

ev_InspectionWriteRequest(value=S4)

ev_WriteResponse(response=OK)

ev_InspectionWriteRequest(value=S3)

ev_WriteResponse(response=INVALID_RANGE)

(a) Abstract test case

//tc_1
MSG.TEXT("tc_1");
{
CALL("ev_Init");
CALL("ev_InspectionWriteRequest",value="S2");
CALL("ev_WriteResponse",response="OK");
CALL("ev_InspectionWriteRequest",value="S3");
CALL("ev_WriteResponse",response="OK");
CALL("ev_InspectionWriteRequest",value="S4");
CALL("ev_WriteResponse",response="OK");
CALL("ev_InspectionWriteRequest",value="S3");
CALL("ev_WriteResponse",response="INVALID_RANGE");
}

(b) isDEET test case

Model Based Specification, Verification, and Test Generation for a Safety Fieldbus Profile 97

5.3 Test of the PROFIsafe Device Siemens SITRANS-P

Fig. 8 shows the test setup with the test device Siemens SITRANS-P. The test tool
“isDEET” runs on a computer which can access the PROFIBUS devices via the “is
Pro Profibus USB Interface”. Using a segment coupler the SITRANS-P device is
connected to PROFIBUS PA.

Fig. 8. Test setup

All generated abstract test cases are transformed into an executable test notation
and afterwards run as a combined test suite on the test system. The test tool creates a
report of the success or failure of the executed test cases. The testing of parameter and
state machine test cases for the PROFIsafe profile was successful. The result of the
test suite confirms the correctness of the device regarding the profile on the one hand,
where functionality and behavior comply with the profile and its requirements. On the
other hand, a successful validation of the method for test case generation and the
transformation in the test notation are shown with the established test device used.

6 Conclusion and Outlook

In this paper an approach to model based specification, verification, and test genera-
tion for safety fieldbus profiles were introduced. The essential methods and tools
ranging from model based fieldbus profile specification to the test execution are de-
scribed. Here, UML was used for the fieldbus profile specification, and Petri net me-
thods were employed for the model verification and test generation. The developed
Petri net model “Safe Petri Net with Attributes” (SPENAT) was used for the mapping
of the UML model and the application of the Petri net methods. The practical use of
these methods was demonstrated with an existing safety relevant UML profile (PRO-
FIsafe PA profile) for fieldbus devices in the PROFIBUS and PROFINET domain.

In the future, more existing methods of formal verification from the petri net area
should be used to verify the SPENAT model. Especially model checking algorithms
should be applied for the SPENAT analysis. Additionally, the method for test case
generation should be more configurable. One goal is to have more possibilities for
controlling the test generation process. The description of distributed (cooperative)
systems with communicating SPENAT components is an ongoing future research
aspect. The verification and generation of tests based on domain specific models will
gain an increasing importance in the future for distributed and cooperative systems.

test tool
isDEET

is Pro Profibus USB Interface Pepperl+Fuchs
segment coupler

Siemens SITRANS P DSIII,
digital pressure transmitter

98 J. Krause et al.

References

1. Schätz, B., Pretschner, A., Huber, F., Philipps, J.: Model-Based Development of Embed-
ded Systems. In: Bruel, J.-M., Bellahsène, Z. (eds.) OOIS 2002. LNCS, vol. 2426,
pp. 298–311. Springer, Heidelberg (2002)

2. Frenzel, R., Wollschlaeger, M., Hadlich, T., Diedrich, C.: Tool support for the develop-
ment of IEC 62390 compliant fieldbus profiles. In: Emerging Technologies and Factory
Automation (ETFA), IEEE Conference (2010)

3. Jensen, K.: Coloured Petri Nets: Modeling and Validation of Concurrent Systems. Sprin-
ger, Berlin (2009)

4. Best, E., Fleischhack, H., Fraczak, W., Hopkins, R., Klaudel, H., Pelz, E.: A Class of
Composable High Level Petri Nets. In: ATPN 1995. Springer (1995)

5. ISO/IEC 15909-1: Software and system engineering – High-level Petri nets – Part 1: Con-
cepts, definitions and (2004)

6. Krause, J., Herrmann, A., Diedrich, C.: Test case generation from formal system specifica-
tions based on UML State Machines. atp - International 01/2008. Oldenbourg-Verlag
(2008)

7. Esparza, J., Römer, S., Vogler, W.: An Improvement of McMillan’s unfolding algorithm.
In: Formal Methods in Systems Design, vol. 20, Springer (2002)

8. Heljanko, K.: Combining Symbolic and Partial Order Methods for Model Checking 1-safe
Petri Nets, PhD thesis. Helsinki University of Technology, Helsinki (2002)

9. McMillan, K.L.: Using Unfoldings to avoid the State Explosion Problem in the Verifica-
tion of Asynchronous Circuits. In: Probst, D.K., von Bochmann, G. (eds.) CAV 1992.
LNCS, vol. 663, pp. 164–177. Springer, Heidelberg (1993)

10. Girault, C., Valk, R.: Petri Nets for Systems Engineering: A Guide to Modelling, Verifica-
tion, and Applications. Springer, Heidelberg (2003)

11. Khomenko, V.: Model Checking Based on Prefixes of Petri Net Unfoldings. University of
Newcastle (2003)

12. ETSI: Testing and Test Control Notation (2009), http://www.ttcn3.org/
13. PNO, PROFIBUS Specification: PROFIsafe for PA Devices. V1.01 (2009)
14. Object Management Group: Unified Modeling Language 2.2 Superstructure Specification

(2009), http://www.uml.org/ (January 08, 2010)
15. Frey, G.: Design and formal Analysis of Petri Net based Logic Controllers, Dissertation.

Shaker Verlag, Aachen (2002)
16. Gomes, L., Barros, J., Costa, A., Nunes, R.: The Input-Output Place-Transition Petri Net

Class and Associated Tools. In: Proceedings of the 5th IEEE International Conference on
Industrial Informatics (INDIN 2007), Vienna, Austria (2007)

	Model Based Specification, Verification, and Test Generation for a Safety Fieldbus Profile
	Introduction
	Model Based Specification of Fieldbus Profiles
	Safe Petri Net with Attributes (SPENAT)
	Motivation
	Structure and Behavior
	Verification of SPENAT
	Test Generation Based on a SPENAT Specification

	Tool Chain
	Case Study for the PROFIsafe PA profile
	Specification Model of the PROFIsafe PA Profile
	Verification and Test Generation
	Test of the PROFIsafe Device Siemens SITRANS-P

	Conclusion and Outlook
	References

