

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012, LNCS 7612, pp. 74–86, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Requirement Decomposition and Testability
in Development of Safety-Critical Automotive

Components*,**

Viacheslav Izosimov, Urban Ingelsson, and Andreas Wallin

EIS by Semcon AB, Sweden
{viacheslav.izosimov,urban.ingelsson,

andreas.wallin}@eis.semcon.com

Abstract. 12ISO26262 is a recently approved standard for functional safety in
road vehicles. It provides guidelines on minimization of unreasonable safety
risks during development of embedded systems in road vehicles. However, the
development process specified in ISO26262 involves a number of steps that
will require changing traditional and well established development processes. In
a transition phase, however, due to lack of tool support, the steps may be per-
formed manually, increasing the risk for delays and increased cost. This paper
describes a case study in which we have successfully worked with traceability
and testability of functional safety requirements, as well as safety requirements
assigned to a testing tool that automates integration and verification steps, lead-
ing to standard-compliant tool qualification. Our tool qualification method em-
ploys fault injection as a validation method to increase confidence in the tool.
Our case study will help to avoid many of the new pitfalls that can arise when
attempting to realize standard-compliant development.

1 Introduction

Industry and academia struggle to improve safety of road vehicles. The innovations
often employ embedded systems. However, malfunctions in safety-critical embedded
systems may lead to new hazards (potential sources of harm). To reduce the risk of
such malfunctions, safety-critical embedded systems must be developed according to
a safety standard. Recently a standard for functional safety, IEC61508, was adapted to
the context of road vehicles resulting in ISO26262 [1], which addresses development
of safety-critical electronic systems (Items). Development steps and processes are
specified according to five Automotive Safety Integrity Levels (ASILs), namely
Quality Management (QM) and ASIL A-D. The ASIL for an Item is determined by

 * This work has resulted from FUSS, a subproject of DFEA2020, partially sponsored by the

FFI council of VINNOVA (Swedish Research Agency).
** The authors thank Erik Hesslow, an ISO26262 safety expert from Mecel AB (partner in the

FUSS/DFEA2020 project), for reviewing the work and providing valuable comments.

Requirement Decomposition and Testability in Development 75

considering the severity and probability for each hazard, as well as a driver’s ability to
compensate (controllability). For high ASIL items, the standard requires stringent
measures for risk minimization. In contrast to IEC61508, besides many other aspects,
ISO26262 imposes qualification requirements on software tools used in the develop-
ment process, which also includes verification and validation tools. While tools exist,
they may not have been qualified or developed considering safety requirements. Con-
sequently, to be ISO26262-compliant, existing tools must be qualified, and in each
future version, re-qualified. Similar to IEC 61508, ISO26262 allows decomposition of
high ASIL safety requirements, using two same-or-lower ASIL requirements and
redundancy, monitoring or other safety-enhancing concept. Since development to a
lower ASIL typically requires less effort, decomposition is an attractive possibility.
However, the decomposition must be implemented by independent components and
affects the system architecture. To demonstrate fulfillment of the original require-
ments, there shall be traceability to and from the decomposed requirements.

As seen from above, ISO26262-compliant development include specification of
safety requirement (including determination of ASIL), decomposition of safety re-
quirements, requirement traceability and testability, qualification of software tools,
verification and validation. This paper provides an example of how these steps can be
performed. The aim is to help minimize pitfalls in transition to ISO26262.

The next section reviews prior work. Section 3 presents requirements elicitation
and traceability. Section 4 discusses testability, leading up to Section 5 which is about
testing tool qualification. Section 6 presents a verification and validation strategy.
These concepts are illustrated in a case study in Section 7.

2 Prior Work

Previous publications on ISO26262 include introductions to the standard [2] [3] [4]
[5], guides to successful application [4], experience reports [5], studies on the impact
on Item development [6], considerations regarding the development process and as-
sessment [3] [7] and adapting model-based development workflows to the standard
[8]. Dittel and Aryus [2] pointed out the need for support tools and methods. Hillen-
brand, et al. [6] discussed impact on the electric and electronic architecture, as well as
management of safety requirements. They found challenges, time-consuming activi-
ties, lack of support tools and proven workflows [8].

Support tools for ISO26262-compliant development are considered in [9] [10] [11]
[12]. Makartetskiy, Pozza and Sisto [9] review two tools, Medini and Edona, for
system level modeling, handling the documents and checks against the standard regu-
lations. They stress that to bring a shared view of safety among companies, both a
standard and tools are required. Hillenbrand et al. [10] provide an FMEA tool with
features to support work with ISO26262. Schubotz [11] address the gap between the
standard and companies’ internal development processes by a concept approach to
plan, link, track and evaluate standard-required activities with documentation. Palin,
Ward, Habli and Rivett [12] argue that a safety case consisting of collected work

76 V. Izosimov, U. Ingelsson, and A. Wallin

products, as ISO26262 allows, lacks an explicit argumentation for safety. They
present a template for a proper safety case using goal structuring notation.

Qualification methods for software tools used in development are addressed in [13]
[14]. Conrad, Munier and Rauch [13] present a reference development workflow
using model-based design, with checks in every development step, comparing re-
quirements and the model and comparing test results and the model. This way, tool
confidence is achieved by high tool error detection probability. In [13] the tools are
qualified for such use that strictly follows the reference development workflow. The
reference workflow approach to tool qualification is criticized by Hillebrand, et al.
[14], since it is tailored to specific tools and creates a dependency on the tool vendor.
While it is good practice to keep the same tool version throughout a development
project, various projects use different tool versions. This can be a source for confu-
sion. A “tool” may be a flow consisting of several tools and each tool in the tool flow
may have to undergo qualification. In [14] tool classification is addressed to avoid
unnecessary effort in tool qualification.

Robinson-Mallett and Heers [15] report that hardware-in-the-loop (HIL) test plat-
forms require special consideration, and the model-based approaches to tool qualifica-
tion do not apply. HIL test platforms provide a test environment that closely resembles
the intended operation environment of the Item and can be more complex than the sum
of electronic components in a car. Consequently, qualification of a HIL platform is a
challenge. In our previous work in [16] and [17], a testing tool qualification method for
HIL platforms is presented to reduce the qualification effort. The method includes a
monitor and fault injection. Our work in [16] and [17] focus on development of a semi-
automatic qualification process for the HIL tool, while we do not consider traceability
and testability of the Item requirements and within the HIL tool.

The papers listed above have identified the need for a best practice and the need to
develop and qualify tools. Previous papers on ISO 26262 have not discussed require-
ments traceability of safety-critical systems in the context of decomposition, nor for
verification and validation. For non-safety-critical complex computer-based systems,
however, Arkley and Riddle [18] discuss requirement traceability, motivating the
need for a traceable development contract. Further, in the context of aerospace indus-
try, Andersen and Romanski [19] discuss development of safety-critical avionics
software, including verification, validation and assessment, and emphasize impor-
tance of requirement traceability. Neither of the previous papers, however, has ad-
dressed propagation of safety requirements into the tool qualification. To address tool
qualification, requirements traceability, verification and validation in the context of
safety-critical systems and ISO 26262, this paper provides an example of how such
tasks can be performed, illustrated by a case study.

3 Safety Requirement Elicitation and Traceability

To get an overview of the activities that are involved in elicitation and traceability of
safety requirements, Fig. 1 shows the safety lifecycle, i.e. the safety-related steps of a
development project that follows ISO26262. Each step has a set of work products, as

Requirement Decomposition and Testability in Development 77

content for design documents and item documentation. Item definition is both the first
step and the first work product, in which the concept item is described, before devel-
opment starts. Only product and project requirements are gathered here. Functional
safety requirements, i.e. requirements that must be fulfilled to achieve minimization
of unreasonable safety risks, are identified in the subsequent hazard analysis and
risk assessment step. Hazards are identified and categorized leading to an ASIL as-
signment and a set of safety goals. A safety goal is an abstract, top-level safety re-
quirement, which is proposed to overcome the hazardous situation that can arise from
malfunctioning of the Item, mitigating the risk that this situation brings. To fulfill the
safety goals, more detailed safety requirements are defined, each with a corresponding
ASIL. Thus, a functional safety concept is formed, consisting of all the safety re-
quirements and the steps taken to ensure safety. The safety requirements govern all
subsequent steps of the safety lifecycle. A typical problem in any large project is that
an individual requirement does not explain the reasoning behind its formulation and
so the importance of a safety requirement can be misunderstood. To clarify relations
between requirements and their reasons, requirement traceability is ensured by link-
ing each requirement to safety goals, corresponding tests, design decisions, etc.

Fig. 1. Safety lifecycle

Requirement traceability is illustrated in Fig. 2, where some of the most relevant

ISO 26262 work products are overlaid on a V-type development process. As shown
with lines between the work products on the left hand side of the V, requirements are
specified in several steps, including the safety goals, the functional safety concept, the
technical safety requirements and the specific hardware and software requirements.
The included work products show how requirements must be traceable in work prod-
ucts for test, integration, verification, qualification, assessment and validation. Tra-
ceability of requirements on independence after decomposition, and between different
ASILs, must be also addressed in all the steps, including the safety case.

As can be seen from Fig. 2, lower abstraction levels contain more detailed re-
quirements. Different shades of the work products describe different sets of
requirements, namely safety goals, functional safety requirements, technical safety

Item definition

Initiation of the
safety lifecycle

Hazard analysis
& risk assess-

ment

Functional

safety concept

Product

development

Safety
validation

Functional safety
assessment

Release for
production

Production

Operation, service &
decommisioning

Production

planning

Operation
planning

78 V. Izosimov, U. Ingelsson, and A. Wallin

requirements, software requirements and hardware requirements. The requirements in
a given set are designed to fulfill the requirements in the set above in a more specific
way. It should be noted that requirement traceability must correctly describe how a set
of requirements fulfill the set above. Such traceability of safety requirements can
practically be implemented by tabulating the relations between requirements in each
work product. Such a table should detail the name of the requirement, the name of
requirements with “fulfills” or “fulfilled by” relations and the names of all other re-
lated requirements. An example is given in Table 1.

Fig. 2. Work products and requirement relations

Table 1. Relations between TSR42 and other requirements (often represented by “links”
between requirements in requirement management tools)

Requirement ID Fulfills Fulfilled by Other related

TSR42 FSR17 HWSR71, SWSR50 TTR3

Table 1 shows a technical safety requirement TSR42, which is designed to fulfill
the functional safety requirement FSR17 together with other requirements. Similarly,
hardware safety requirement HWSR71 and software safety requirement SWSR50 are

Requirement Decomposition and Testability in Development 79

designed to fulfill TSR42. Further, TSR42 is related to TTR3, a requirement assigned
to a testing tool. To span all the sets of requirements, there should be similar tables to
relate HWSR71 to hardware components, SWSR50 to a part of the software design,
and FSR17 to a safety goal. Following these relations in either direction helps in un-
derstanding the requirements and the Item.

The above requirements traceability concept is common practice in all mature de-
velopment projects. ISO26262 requires adaption of this common practice to decom-
position of requirements and tool qualification. Furthermore, requirement traceability
is a prerequisite for requirement testability, which is discussed next.

4 Testability

The claim that design and implementation fulfill the requirements shall be verified.
Verification is the task to determine completeness and correct specification of re-
quirements as well as correctness of the implementation that is to fulfill the require-
ments. Verification constitutes the right hand side of Fig. 2 and is performed for all
integration steps of the system design including implementation in software and
hardware. To be verified, the requirements should be testable. To ensure testability, a
semi-formal representation that is compatible with a definition of testability is uti-
lized. We present two representations to illustrate aspects to testability.

For the first representation, we define a requirement Ri as a logical expression Li:
<Object X> shall <Action Y> [applied to] <Subject Z>. The requirement is mapped
onto Object X which performs Action Y onto Subject Z. Testability of Ri is a property
of Ri that this logical expression Li can be verified. We suggest that, to fulfill testa-
bility, the requirement has to consist of the object, the action and the subject and the
object, the action and the subject must be identifiable within and present in the sys-
tem. With these conditions valid, the requirement can be verified, and is testable.

Consider following “good” and “bad” examples of safety requirements, some that
fulfill, and some that do not fulfill the requirement pattern and, thus, shall be changed:

R1: We shall ensure presence of error correction codes (ECC) in the system for cor-
rection of single-event upsets (SEUs).

R2: The MCU (microcontroller) shall include a logical watchdog.

In R1, neither Object nor Subject is clear, only Action is present, i.e., ensuring pres-
ence of ECC codes, and the requirement is not testable. In R2, the elements are clear-
ly identifiable and physically present in the system. Thus, this requirement is testable.
However, this requirement will have to be detailed further to identify watchdog prop-
erties, relevant MCU software and monitoring strategy.

For the second representation of requirements, consider that although object, action
and subjects are obligatory attributes of requirements, it is often important to identify
conditions under which the requirements are applicable. R3 is an example require-
ment that is designed to prevent over-heating of a component.

R3: The MCU shall not enable a power supply to the central CPU if the ambient tem-
perature is above 95ºC.

80 V. Izosimov, U. Ingelsson, and A. Wallin

In R3 there is an example of another important property of requirements, which is the
presence of measurable quantitative parameters. These parameters will ensure opera-
tional intervals and applicability of requirements, i.e., as in R3, “above 95ºC”.
However, R3 is not easily refutable. The test that is necessary to check that the
requirement is fulfilled will be boundless. Therefore, it is good practice to either for-
mulate requirements such that they are easily refutable or give a set of appropriate
measurement conditions for the test.

Requirement elicitation with respect to requirement testability and how it leads to
testing tool qualification can be shown in several steps (see Fig. 2 for work products):

Define Safety Goals: Safety goals cannot be tested since they are usually very ab-
stract. Note, however, that safety goals and functional safety requirements shall be
validated by studying behavior of the whole system, to ensure that the correct system
has been developed and potentially dangerous behavior successfully avoided.

Define Safety Requirements: Many functional safety requirements cannot be veri-
fied due to lack of technical details. In this step, however, it is usually clear which
testing tools will be needed. Thus, selection and classification of testing tools can be
done, resulting with an input to SW tool criteria evaluation reports.

Refine Safety Requirements: By considering system properties, decomposition of
requirement is performed. Requirements are also evaluated on their feasibility by
performing requirements reviews, design studies and testability assessments. This will
result in a verification strategy, part of which will be adaptation of the test tool.

Detailed Safety Requirements: Verification is possible only for technical safety
requirements, which are the most detailed safety requirements. In this step, it is neces-
sary to derive test cases and clearly demonstrate requirement testability. Several
iterations of requirement elicitation may be needed. Testing tool qualification is per-
formed, resulting with input to SW tool qualification reports.

Implementation: Here, verification activities are fully executed on implementation
releases with testing tools providing test reports for the respective requirements.

Safety Case: Test cases, test reports and tool qualification reports will provide inputs
to the safety case, for demonstration of fulfillment of the requirements.

5 Testing Tool Aspects of Testability

Verification of safety requirements is usually done with help of a testing tool, to au-
tomate the verification process and increase its efficiency. A testing tool is used to
verify the logical expression of a requirement (see Section 4) by applying test cases,
generated or specifically provided for this requirement. Some testing tools, in particu-
lar hardware-in-the-loop test rigs, often need to be adapted for testing against safety
requirements. In the following, we consider such a testing tool with regard to the
requirement aspects. For the testing tool, we will have to specify functional safety

Requirement Decomposition and Testability in Development 81

requirements. Such specification includes classification and qualification of a testing
tool. Classification will identify which measures are to be applied for ensuring cor-
rectness of the testing tool. The classification has three Tool Confidence Levels
(TCLs) and depends on tool error detection (TD) capability and tool impact (TI).
Tools that have a possibility of silent failures (TD3) with high impact to the Item
(TI2) motivate qualification to the highest confidence level, TCL3. A “silent” mal-
function in a testing tool used for an ASIL D Item can cause a test to miss detection of
a fault in a component of a road vehicle.

Qualification will ensure correctness and applicability of the testing tool based on
the classification. ISO26262 specifies qualification steps according to the TCL that is
required from the tool. For example, when classification determines that tool malfunc-
tion can cause an ASIL C or ASIL D safety hazard and this malfunction is likely not
to be detected, the standard recommends that the tool should be developed to the same
ASIL according to a safety standard, followed by validation. Development and valida-
tion of the testing tool should complement each other to ensure that the risk of test
escapes in the safety-critical component is minimized. Note also that if the tools are
used for testing of decomposed requirements, i.e., ASIL B(D), the ASIL level of in-
dependence, in this case: ASIL D, shall be often considered as the ASIL level in qua-
lification of these software tools.

The results of qualification of a testing tool and verification against safety require-
ments of the safety-critical automotive component will be reflected in a work product
called the safety case (see Fig. 2), which will include arguments that safety is
achieved using qualification and verification work products, including testing tool
analysis report, testing tool qualification report, integration and verification plan, test
cases (for the respective requirements) and respective test reports.

It should be noted that verification includes more than testing against requirements.
A complete verification process includes activities such as fault injection experiments,
tests in the operation environmental of the Item and EMC tests.

6 Verification and Validation

As mentioned in Section 5, the main document to describe the argumentation for item
safety is the safety case, which includes content of the work packages that are re-
quired by ISO26262. A significant part of the safety case comes from work products
of verification and validation activities. All these activities and work products become
difficult to manage without a thought-through and proven strategy. Part of any such
strategy is to automate as much as possible, use templates to ensure information quali-
ty, and to have tool support for the activities and management of the work products.

However, automation requires extra effort with respect to tool qualification. In
[16], a testing tool qualification method was presented, with a monitor to detect test-
ing tool malfunction and fault injection into the testing tool to evaluate the capability
of the monitor to detect malfunctions. The method is semi-automatic and reduces the
effort for tool qualification as is described in the following case study. To enable effi-
cient ISO26262-compliant development, it is vital to gather such methods and tools.

82 V. Izosimov, U. Ingelsson, and A. Wallin

7 Case Study

In this section, we provide an example where we apply the concepts discussed in the
previous sections, in particular decomposition, traceability and testability of require-
ments, as well as testing tool qualification and fault injection based verification.

7.1 ASIL C Windshield Wiper

Consider a car’s windshield wiper and washer liquid spray. When the washer liquid
spray is activated, the windshield wiper is also activated for a short duration.

Two failure modes of the windshield wiper controller may cause the driver’s view
to be obscured by washer fluid, by (1) failure of the windshield wiper or by (2) failure
of the washer liquid spray. Controller failure can impact a common driving scenario,
while driving at high speed on a curvy road, resulting in the highest probability, E4.
The highest severity, S3, applies, since the result may be that the car departs from the
road at high speed with risk of critical injury. The controllability is modest, C2, since
an obscured view is comparable to loss of headlights at night, which is categorized as
C2 in [1] (Part 3, Table B-4). Consequently, the hazard corresponds to ASIL C, the
second highest ASIL ([1] Part 3, Table 4).

We formulate a safety goal SG1: “A malfunction should not obscure the drivers

view with washer liquid”. For SG1, we formulate two functional safety requirements,
FSR1 and FSR2, to enforce a safe state “washer liquid spray disabled” upon control-
ler failure. The two requirements correspond to the two possible failure modes.

FSR1: The controller should not spray washer liquid if the windshield wiper fails.
FSR2: The controller should not spray washer liquid for an extended duration.

We found a decomposition to fulfill both FSR1 and FSR2. An overview is given in
Fig. 3. The ECUs perform mutual checking of each other’s operation as is described
by the technical safety requirements TSR1.1 and TSR2.1.

ECU1
Washer Liquid

Spray Activate

Windshield

Wiper Angle

Washer Liquid

Spray Enable

Windshield

Wiper Activate
ECU2

Windshield

Wiper Enable

Override

Fig. 3. Overview of windshield wiper

Requirement Decomposition and Testability in Development 83

TSR1.1: ECU1 shall disable the washer liquid spray if the windshield wiper angle
does not change.
TSR2.1: ECU2 shall override the washer liquid spray if the washer liquid spray is
enabled for >1s.

ISO26262 allows decomposition from an ASIL C requirement to two requirements with
ASIL A(C) and ASIL B(C) respectively, if they are independent, e.g. correspond to
independent ECUs. ECU1 is controlling the washer liquid spray based on the driver’s
activation, while monitoring the windshield wiper angle. Thus ECU1 is to fulfill
TSR1.1. ECU2 fulfills TSR2.1 and is responsible for controlling the windshield wiper
based on the driver’s activation and sensor input of the windshield wiper angle. ECU2
also monitors the washer liquid spray enable signal from ECU1 such that it can override
that signal if necessary. We choose to assign ASIL B(C) to ECU2 and ASIL A(C) to
ECU1 since ECU2 controls the windshield wipers. A malfunction of the windshield
wipers can potentially lead to ASIL B hazards. Take, for example, a scenario in which
the windshield is suddenly splashed with dirt which has been stirred up by another ve-
hicle on a wet and dirty road. Visibility is suddenly reduced. Malfunction of the wipers
in this situation will not allow cleaning of the windshield. Although the situation is fair-
ly controllable (C2), the probability of this situation is second highest (E3) and the
vehicle may drive into meeting traffic leading to high severity (S3) if the driver loses
control. Thus, ASIL B should be assigned ([1] Part 3, Table 4).

The traceability of these requirements across the decomposition is implemented in
Table 2 as described in Section 3. Testability is achieved by representing the technical
safety requirements according to a semi-formal pattern (see Section 4) and by using
quantitatively measurable parameters. A testing tool is required, as is discussed next.

Table 2. Requirement relations

Requirement ID Fulfills Fulfilled by Other related

SG1 n/a FSR1, FSR2 n/a
FSR1 SG1 TSR1.1 n/a
FSR2 SG1 TSR2.1 n/a
TSR1.1 FSR1 HWSRxx, SWSRyy TTR1
TSR2.1 FSR2 HWSRww, SWSRzz TTR2

7.2 Testing Tool Qualification

The considered testing tool consists of software and a Hardware-In-the-Loop (HIL)
platform, which is to be qualified to TCL3, as discussed in Section 5.

ISO26262 recommends that tools with TCL3 are developed according to a stan-
dard for safety-critical systems and then validated (see Section 5). Even though the
testing tool is not a component of a road vehicle, we develop the testing tool accord-
ing to ISO26262 as an Item. The testing tool has the same ASIL as the Item with the
highest ASIL that is to be tested, and we want to be able to test ASIL D items.

The testing tool is intended to be used during development, to get prototypes certi-
fied for use in road vehicles. As a prototype is developed, new features and attributes

84 V. Izosimov, U. Ingelsson, and A. Wallin

are added. This type of testing tools are often developed together with the prototype
since the set of signals to measure and the evaluation criteria are not known on
beforehand. Consequently, frequent changes to the testing tool can be anticipated. For
each change to the testing tool, re-qualification to ASIL D is required. However, the
effort involved in re-qualification of the testing tool to TCL 3, by management of
changes to an ASIL D Item, can be a bottleneck for the development process. Conse-
quently, we sought an appropriate decomposition to reduce re-qualification effort.

We added a monitor to the testing tool, such that the monitor is developed to ASIL
D(D) and the testing tool to QM(D). The key idea behind this decomposition is that
the monitor ensures detection of testing tool failures, bringing the tool error detection
to TD1. This leads to the lowest required tool confidence level TCL1, for which less
qualification effort is required. While the testing tool goes through frequent changes
with re-qualification corresponding to TCL1, the monitor is not changed so often. Re-
qualification to TCL3 through change management of an ASIL D Item is not required
very often and there is less effort when the testing tool is changed.

We use fault injection experiments to semi-automatically perform verification and
validation on the monitor [16]. In these experiments, we inject faults into the testing
tool and thereby measure the monitor’s ability to detect unexpected behavior in the
testing tool. Through these experiments we identify three cases. The first case corres-
ponds to discovering a “bug” in the testing tool. In this case, the decision about
changing the monitor is deferred until the “bug” is corrected. In the second case, it is
discovered that the monitor is insufficient and requires a change and a change man-
agement to ASIL D(D) is performed, followed by further fault injection experiments.
In this case, the fault injection experiments must be adjusted. In [16] we describe a
semi-automatic procedure for adjusting the fault injection experiments. In the third
case, the monitor is able to detect all injected faults and no change to the monitor is
required. The relative frequency of the three cases depends on the type of testing tool
changes. We expect that the third case, which requires no changes to the monitor, will
be common enough to motivate the decomposition by its reduction in effort.

7.3 Case Study Summary

In the case study, we have seen two different applications of requirement decomposi-
tion, explicit requirement traceability and thorough management of requirement testabil-
ity including testing tool qualification. Furthermore, we believe that the fault injection
experiments applied to verify the testing tool monitor can be adapted also to other soft-
ware components and tools as an appropriate and time-saving verification method.

8 Conclusion

This paper addresses development of safety-critical embedded systems for use in road
vehicles according to ISO26262. Since the standard is new and introduces develop-
ment steps such as requirement decomposition and software tool qualification, we
have argued that this can lead to many manual steps and consequential pitfalls.

Requirement Decomposition and Testability in Development 85

For example, software tool qualification can become a bottleneck in the development
process. To mitigate such pitfalls we have reviewed the important concepts
requirement decomposition, traceability, testability, verification and validation. We
have showed application of the concepts in a case study involving two requirement
decompositions, testing tool qualification using a monitor and fault injection experi-
ments. The chosen approach will increase efficiency of the development process of
Items with high ASIL levels, avoiding unnecessary bottlenecks and potential pitfalls
that might lead to hard-to-solve problems and compromise safety.

References

1. ISO, ISO 26262:2011 Functional safety - road vehicles, ISO (2011)
2. Dittel, T., Aryus, H.-J.: How to “Survive” a Safety Case According to ISO 26262. In:

Schoitsch, E. (ed.) SAFECOMP 2010. LNCS, vol. 6351, pp. 97–111. Springer, Heidelberg
(2010)

3. Hamann, R., Sauler, J., Kriso, S., Grote, W., Mössinger, J.: Application of ISO 26262 in
distributed development ISO 26262 in reality, SAE Technical Paper (2009)

4. Born, M., Favaro, J., Olaf, K.: Application of ISO DIS 26262 in practice. In: Proc. of the
1st Workshop on Critical Automotive Applications: Robustness & Safety (2010)

5. Schubotz, H.: Experience with ISO WD 26262 in Automotive Safety Projects, SAE Tech.
Paper (2008)

6. Hillenbrand, M., Heinz, M., Adler, N., Müller-Glaser, K.D., Matheis, J., Reichmann, C.:
ISO/DIS 26262 in the Context of Electric and Electronic Architecture Modeling. In: Giese,
H. (ed.) ISARCS 2010. LNCS, vol. 6150, pp. 179–192. Springer, Heidelberg (2010)

7. Johannessen, P., Halonen, Ö., Örsmark, O.: Functional Safety Extensions to Automotive
SPICE According to ISO 26262. In: O’Connor, R.V., Rout, T., McCaffery, F., Dorling, A.
(eds.) SPICE 2011. CCIS, vol. 155, pp. 52–63. Springer, Heidelberg (2011)

8. Hillenbrand, M., Heinz, M., Müller-Glaser, K., Adler, N., Matheis, J., Reichman, C.: An
approach for rapidly adapting the demands of ISO/DIS 26262 to electric/electronic archi-
tecture modeling. In: Proc. of the Intl. Symp. on Rapid System Prototyping (2010)

9. Makartetskiy, D., Pozza, D., Sisto, R.: An Overview of software-based support tools for
ISO26262. In: Intl. Workshop Innovation Inf. Tech. - Theory and Practice (2010)

10. Hillenbrand, M., Heinz, M., Adler, N., Matheis, J., Müller-Glaser, K.: Failure mode and
effect analysis based on electric and electronic architectures of vehicles to support the safe-
ty lifecycle ISO/DIS 26262. In: Intl. Symp. on Rapid System Prototyping (2010)

11. Schubotz, H.: Integrated safety planning according to ISO 26262, SAE Tech. Paper (2009)
12. Palin, B., Ward, D., Habli, I., Rivett, R.: ISO 26262 safety cases: compliance and assur-

ance. In: IET Intl. System Safety Conf. (2011)
13. Conrad, M., Munier, P., Rauch, F.: Qualifying Software Tools According to ISO 26262.

In: Model-Based Development of Embedded Systems (2010)
14. Hillebrand, J., Reichenpfader, P., Mandic, I., Siegl, H., Peer, C.: Establishing Confidence in

the Usage of Software Tools in Context of ISO 26262. In: Flammini, F., Bologna, S., Vittori-
ni, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 257–269. Springer, Heidelberg (2011)

15. Robinson-Mallett, C., Heers, H.: Qualifizierung der Konfiguration eines Integrations-HiL
zum Nachweis einer Fahrerassistenzfunction im Kontext der ISO 26262. In: Elektronik im
Kraftfahrzeug, Internationaler Kongress mit Fachausstellung (2011)

86 V. Izosimov, U. Ingelsson, and A. Wallin

16. Wang, Q., Wallin, A., Izosimov, V., Ingelsson, U., Peng, Z.: Test tool qualification through
fault simulation. In: European Test Symp. (2012)

17. Åström, A., Izosimov, V., Örsmark, O.: Efficient software tool qualification for automotive
safety-critical systems. In: Elektronik im Kraftfahrzeug, Internationaler Kongress mit Fa-
chausstellung (2011)

18. Arkley, P., Riddle, S.: Overcoming the traceability benefit problem. In: Proc. of the 13th
IEEE Intl. Conf. on Requirements Engineering (2005)

19. Andersen, B.S., Romanski, G.: Verification of safety-critical software. ACM Queue 9(8),
1–10 (2011)

	Requirement Decomposition and Testability in Development of Safety-Critical Automotive Components
	Introduction
	Prior Work
	Safety Requirement Elicitation and Traceability
	Testability
	Testing Tool Aspects of Testability
	Verification and Validation
	Case Study
	ASIL C Windshield Wiper
	Testing Tool Qualification
	Case Study Summary

	Conclusion
	References

