

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012, LNCS 7612, pp. 223–234, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Impact of Soft Errors in a Jet Engine Controller

Olof Hannius1 and Johan Karlsson2

1 Volvo Aero Corporation,
S-46181 Trollhättan, Sweden

olof.hannius@volvo.com
2 Department of Computer Science and Engineering,

Chalmers University of Technology,
S-412 96 Göteborg, Sweden
johan@chalmers.se

Abstract. We present an experimental study in which we investigate the impact
of particle induced soft errors occurring in the microprocessor of an experimen-
tal FADEC system. The study focuses on the impact of single bit faults in the
instruction set architecture (ISA) registers. For such faults, we investigate the
effectiveness of the error detection mechanisms included in the FADEC system,
and determine the consequences of errors that escape detection. To this end, we
injected single bit faults in the ISA registers of a Freescale MC68340 micropro-
cessor during execution of a prototype jet engine control program. Utilizing
both random fault injection and partially exhaustive injections, we conducted
six fault injection campaigns comprising in total more than 7000 injected faults.
Twenty-three percent of the injected faults were effective, i.e., they affected the
outputs of the control program. Of these, the system detected 91%. Of the 9 %
that escaped detection, 7% caused a minor deviation in engine thrust that would
be harmless to flight safety, while 2% caused severe or potentially catastrophic
changes in engine thrust.

Keywords: jet-engine, controllers, FADEC, soft errors, cosmic neutrons, error
detection, coverage, fault injection.

1 Introduction

Digital control systems for turbo-jet engines have been in operational use for almost
30 years. These systems are known as Full Authority Digital Engine Control systems,
or FADEC systems. To ensure aircraft safety, FADEC systems must be highly relia-
ble and fault-tolerant. A basic requirement is that a failure of a single hardware unit
should never cause the engine to deliver inadequate thrust.

Most FADEC systems are provided with two redundant control channels configured
as a primary/backup pair. Recently designed FADEC systems are typically equipped
with two electronic channels, while older designs often use a single electronic channel
with a hydro-mechanical backup. Regardless of whether the backup channel is electron-
ic or hydro-mechanical, it is essential that the primary electronic channel is provided
with highly efficient error detection mechanisms so that a fail-over to the backup chan-
nel is performed immediately if the primary channel should fail.

224 O. Hannius and J. Karlsson

One of the key challenges in designing a dual channel FADEC system is to provide
the electronic channels with error detection mechanisms that can effectively detect
hardware errors occurring in the microprocessor that executes the control software.
These mechanisms must ensure that the FADEC does not exhibit critical failures. A
critical failure occurs when the FADEC generates erroneous actuator commands that
cause a significant change in the engine thrust.

There are two main design options available for detecting microprocessor faults in
a FADEC control channel. One is to execute the control program on two lock-stepped
microprocessors (or cores). This solution achieves very high detection coverage since
the errors are detected by comparing the outputs of the two processors. The other
option is to use a single microprocessor monitored by a watch-dog timer and various
software implemented assertions and reasonable checks. The latter solution has been
successfully used in several FADEC systems, including the one that controls the
RM12 engine produced by Volvo Aero.

However, many existing FADEC systems were designed for microprocessors pro-
duced during the 1980’s and 1990’s. These microprocessors were manufactured in
circuit technologies that are less sensitive to cosmic-ray induced soft errors and aging
faults than current technologies are. It is expected that technology and voltage scaling
will make future circuit technologies increasingly sensitive to these kinds of faults as
well as process variations [1]. It is therefore an open question whether the classical
design with a single microprocessor provides sufficient detection coverage for future
FADEC systems.

This paper presents the results of a fault injection study aiming to provide insights
into the error sensitivity of a single processor control channel with respect to micro-
processor faults that manifest as transient bit errors in the instruction set architecture
registers of the processor. Such errors can be caused by both transient and intermittent
transistor level faults, including cosmic ray-induced soft errors [2] electromagnetic
interference [3], intermittent faults caused by process variations [4], and aging effects
such as NBTI [5], hot-carrier injection [6] and gate-oxide breakdown [7]. We con-
ducted the fault injection experiments with an engineering prototype of a single pro-
cessor control channel based on the Freescale MC68340 microprocessor. We injected
single-bit faults in the instruction set architecture (ISA) registers of THE processor
while it was executing a program controlling a software model of the Volvo Aero
RM12 engine. To perform the experiments, we developed a fault injection tool called
JETFI (JET Engine Fault Injection tool) [8].

The remainder of this report is organized as follows. Section 2 explains the basic
operation of the RM12 jet engine including the main engine parameters, which we use
to describe the failure modes of the engine. Section 2 also includes an overview of the
main functions of the FADEC system. Section 3 describes the experimental system
and the fault injection procedure. The results of our experiments are presented in Sec-
tion 4. A summary is provided in Section 5 and Conclusions and Future Work are
given in Section 6.

2 Jet Engine and C

The RM12 jet engine is a tw
principle operation is as fo
gine. The fan and the low-p
compressor and the high-p
engine with two shafts is a
air to the burner. When the
temperature gas flow that p

Intake Fan

 LP shaft Comp

Fig. 1. Cross-secti

The high-pressure turbin
powers the fan. When the h
is further expanded and acc
FADEC system controls th
the guide vanes of the fan
the burner (WFM) and the a
The pilot modulates thrust
from the demanded thrust,
inlet temperature TT1, the L
the HP shaft speed NH, th
exhaust gas temperature T
RM12 engine is found in [9

3 Experimental Sy

This section describes the m
overview of the set-up in S
in Section 3.2, while the JE

Impact of Soft Errors in a Jet Engine Controller

Control System Description

wo-spool mixed flow turbofan engine shown in Fig. 1.
llows. The intake delivers the air flow required by the

pressure (LP) turbine are connected by the LP shaft and
pressure (HP) turbine are connected by the HP shaft. (
a two-spool engine.) The compressor delivers compres
e air-fuel mixture burns, it releases energy causing a h
owers the high- and low-pressure turbines.

Burner HP- LP turbine Afterburner Exhaust nozzl

pressor Bypass duct HP shaft

ional view of the two-spool mixed flow RM12 engine

ne powers the compressor, while the low-pressure turb
hot gas flow has passed through the low-pressure turbine
celerated through the exhaust nozzle producing thrust. T
he thrust of the engine using five actuators. These con
(FVG) and the compressor (CVG), the fuel mass flow
afterburner (WFR) and the area of the exhaust nozzle (A
by changing the angle of a Power Lever (PLA). Besi

 the control system needs six more inputs. These are
LP shaft speed NL, the compressor inlet temperature TT
he compressor discharge pressure PS3 and the LP turb
TT5. A comprehensive description of how to control
9].

ystem

main elements of our experimental set-up. We provide
Section 3.1. The error detection mechanisms are descri

ETFI fault injection tool is described in Section 3.3.

225

 Its
en-
the

(An
ssed
high

le

bine
e, it
The

ntrol
s to

A8).
ides
the

T25,
bine

the

e an
ibed

226 O. Hannius and J. Karlsson

3.1 System Overview

The experimental system consists of a host computer and two computer boards, called
the FADEC board and the Engine board, as shown in Fig. 2. The computer boards are
identical and use the Motorola 68340 processor. The FADEC board executes the con-
trol software while the Engine board executes a software model of the RM12 engine.
The software for the two computer boards has been generated from models developed
with MATRIXx v6.1 [10] and compiled with GNU ADA.

The host computer is used for controlling the fault injection experiments and for
collection and analysis of experimental data. The RS232 serial link between the com-
puter boards and the host computer are used for program download and control of the
fault injection campaigns. Actuator commands and sensor data are exchanged via a
RS232 link between the FADEC computer board and the Engine board. Due to the
limited processing power of the 68340 processors, the set-up executes the control
program approximately 1000 times slower than a real system.

 Host computer
 RS232 RS232

Computer board executing the
FADEC software, “FADEC board”.

RS232

Computer board simulating the
RM12 engine, “Engine board”.

Fig. 2. Host computer and target system overview

The FADEC control software executes in a cyclic control loop with prescheduled
control tasks. It consists of 29 subsystems. A subsystem is a set of control tasks with
the same execution rate. The execution rate varies from 200 Hz for Subsystem 1 down
to 1 Hz for Subsystem 29. Subsystem 1 performs demanding control activities such as
positioning of the guide vanes, fuel flow metering and setting the exhaust nozzle area.
The other subsystems perform a variety of other control tasks and trim functions.

The Engine board executes simulation models of the engine, sensors, actuators and
the hydro-mechanical control system. We use a linearized model of the RM12 engine
to minimize execution time. We believe the accuracy of this model is sufficient for
the purpose of our experiments. The execution times would have become much longer
if we would have used a more accurate non-linear engine model.

The Engine board emulates a use case where the Power Lever Angle (PLA) in-
creases from 55º to 75º during one second of real-time execution. (Flight idle is at 28º
and max dry thrust, i.e., without afterburner, is at 100º.)

3.2 Error Detection Mechanisms

The error detection mechanisms, EDMs, implemented in the experimental FADEC
system include a watchdog monitor (WDM), hardware and software exceptions and
software assertions shown in Table 1.

 Impact of Soft Errors in a Jet Engine Controller 227

Table 1. Error Detection Mechanisms in the FADEC

EDM Description
WDM A timer which must be reset periodically to prevent it from trip-

ping, i.e. signaling that an error has occurred
Hardware exceptions Hardware EDMs supported by the Motorola 68340 processor.
Software exceptions Software checks generated automatically by MATRIXx or by the

programmer using the exception-clause in the ADA-language. They
detect erroneous execution, erroneous calculations and other errors.

Software assertions Range checks on engine parameters.

Watch Dog Monitor
The watchdog monitor is implemented in the host computer of the JETFI tool and
detects if the FADEC computer board stops to produce output data for duration longer
than 10 seconds. In our experimental setup, we consider a WDM-trip as a detected
error.

Hardware Exceptions
The Motorola 68340 processor supports 256 hardware exception vectors numbered in
the range 0 to 255. The exceptions that were triggered in the fault injection experi-
ments are Bus error, Address error, Illegal instruction, Line 1111 Emulator and For-
mat error, see Table 2.

Table 2. Hardware Exceptions

Hardware exception No Description
Bus error 2 Occurs when the processor attempts to use information from

an aborted bus cycle (illegal memory access).
Address error 3 Occurs if a misaligned memory access is attempted. For

instance a word transfer to an odd address.
Illegal instruction 4 Occurs if the processor attempts to execute an unimple-

mented instruction.
Line 1111 Emulator 11 A special case of illegal instruction. The name originates

from the contents of the most significant bits for unimple-
mented instructions.

Format error 14 This check ensures that the program does not make erroneous
assumptions about information in the stack frame.

Software Exceptions
A software exception is a general check concerning calculations and program execu-
tion. The FADEC software implemented software exceptions are shown in Table 3.

Software Assertions
The software assertions perform range checks on engine parameters and are based on
physical limitations of the jet engine and its environment. The software assertions
shown in Table 4 can detect engine failures, errors in data from sensors and wrap-
around signals from actuators (torque motor currents).

228 O. Hannius and J. Karlsson

Table 3. Software exceptions

Software exception Description
EXEC_ERROR Raised by execution checks generated by the MATRIXx-tool.
MATH_ERROR Raised when the predefined ADA exception NUMERIC_ERROR or

CONSTRAINT_ERROR is raised. This happens if a numeric opera-
tion is undefined or when a variable is erroneously assigned.

TIME_
OVERFLOW

Two types of scheduler errors can cause time overflow. 1) If the
scheduler is interrupted while executing the non-interruptible critical
section and 2) If a subsystem is ready to run but has still not finished
running. Both are due to inconsistency in the scheduler.

STOP_BLOCK This refers to a Stop Simulation Block.
UCB_ERROR Error in a User Code Block.
UNKNOWN_
ERROR

An error that is not recognized by the code generated by MATRIXx.
A possible cause is an incorrect user-written error condition.

OTHERS Raised if an unexpected exception occurs, i.e. it is not identified as
any of the other defined exceptions.

Table 4. Software assertions in the FADEC

S/W assertion Failure condition Possible cause Effect when not detected
TT1 out of
range

The reading from the TT1
sensor is not within range.

Sensor or input data
failure.

Low engine thrust and even
fan surge1.

NH over-
speed
(HP shaft)

The measured speed of the
compressor and high-
pressure turbine is too high.

Overspeed of the
HP shaft, failure in
the input data.

There is a risk for engine
disintegration.

NL sensor
loss

Missing pulses in the pulse
train from the NL sensor.

NL sensor failure
detected by h/w.

Fan overspeed. Possible
engine damage.

A8 or WFM
LVDT/TM
failure (actua-
tors)

The relationship between
demanded current and the
position change of the
actuator does not match.

Sensor, actuator or
mechanical failure
of the actuation
hardware.

A missed detection will
result in a low or high
engine thrust.

PS3 fails high

Out of range failure of the
comp. discharge pressure.

Sensor failure. Incorrect fuel flow and
erroneous thrust.

Flame out Engine speed and turbine
exhaust temp. decrease
below allowed limits.

Erroneous fuel
metering.

The engine may flame out,
if this occurs.

3.3 Fault Injection Tool

The JETFI tool [8] can inject single and multiple bit-flip faults in the ISA registers of
the CPU running the FADEC control program. In the experiments presented in this
paper we injected one single bit-flip in each experiment. A fault is defined by an in-
jection time and a bit in an ISA register. The injection time is defined by the execu-
tion of a target machine instruction and an invocation counter. The injection time and
the targeted bit can be selected randomly by the tool or deterministically by the tool
user.

1 Fan surge causes an abrupt reversal of the airflow through the engine.

 Impact of Soft Errors in a Jet Engine Controller 229

A fault injection experiment begins by replacing the target machine instruction in
the program memory of the FADEC board with a trap instruction. This is done by a
piece of code executed on the FADEC board. The host computer then orders the En-
gine board to start the RM12 simulator and the FADEC board to start the FADEC
control program.

Each time the FADEC control program executes the trap instruction, the corres-
ponding trap handling routine notes the number of times it has been called. If this
number is lower than the value of the invocation counter, the trap handler executes the
original machine instruction without any modifications and then directs the execution
back to the control program. When the trap instruction has been executed the same
number of times as stated by the invocation counter value, the trap handling routine
injects the fault by inverting the value of the target bit, replaces the trap instruction
with original machine instructions, and finally directs the execution back to that in-
struction. The JETFI tool then monitors the behavior of the continued simulation and
automatically starts a new experiment as soon as the outcome from the previous expe-
riment has been recorded.

4 Results

This section presents the results of our fault injection experiments. Section 6.1 de-
scribes how we classify the outcomes of the experiments. Section 6.2 describes the
results from five fault injection campaigns denoted A to F.

4.1 Classification of Experiment Outcomes

The outcome from an experiment is divided in five categories, Detected error, No
effect, Non-critical failure, Critical failure and Failed experiment. An explanation of
the categories is found in Table 6.

Table 5. Outcome classification

Category Description
Detected error An error detected by the watchdog monitor (WDM), a hardware or

software exception or a software assertion.
No effect The outcome No effect occurs when nothing can be observed that is

different from a fault free experiment. The injected error is either
overwritten or remains in the system but does not have any impact on
the outputs of the system (dormant error).

Non-critical failure A negligible deviation in the control system outputs caused by an
undetected error.

Critical failure A significant change in engine thrust caused by an undetected error.
Failed experiment A Failed experiment occurs when the fault injection routine uses a

non-valid fault time. It can happen if the address for the injected fault
is never executed by the software or if it is executed a fewer number
of times than specified as condition for the fault injection routine.

230 O. Hannius and J. Karlsson

In our experiments, undetected errors are identified by an automatic check in the
JETFI-tool. The automatic check compares the control system outputs with reference
data from an error-free (golden) experiment. We have defined an output signal that
deviates more than 5% from the correct value as a critical failure.

4.2 Description of Experiments and Presentation of Results

Campaign A is used as a reference for comparison with the other campaigns. Each of
the campaigns B to F has separate focus to investigate different aspects of fault injec-
tion and error detection.

Campaign A – Random Fault Selection
In Campaign A, we used random fault selection among instructions in all subsystems.
The result from 991 experiments is shown in Table 6. The last row of Table 6 shows
the relative frequency of each outcome with a 95% confidence interval bound. Of all
experiments, 715 were non-effective and 276 were effective.

Table 6. Results of Campaign A (faults selected randomly).

 Undetected
 No

effect
Watch-

dog
Hardware
Exception

Software
Exception

Software
Assertion

Non-crit.
failure

Critical
failure

No. of faults 715 32 200 12 13 15 4
Rel. freq. (%) 72.2±2.8 3.2±1.1 20.2±2.5 1.2±0.7 1.3±0.7 1.5±0.8 0.4±0.4

The number of non-effective faults relative to the total number of injected faults is

quite normal compared to other studies [11-13]. The distribution of experimental
outcomes for the effective faults is also typical with hardware exception as the prima-
ry error detection mechanism.

Campaign B – Scheduler Fault Injection
In Campaign B, we injected faults in the control task scheduler. The purpose of this
campaign was to investigate the sensitivity to faults in this part of the code. We se-
lected nine instructions in the initial part of the scheduler. For each of these, we ex-
haustively injected faults in the bits 0- 15 in the D0- D7 and A0- A7 CPU registers.
The scheduler reads input data and calls the subsystems and output routine periodical-
ly. The fault injection was directed to the input reading part of the scheduler. The
result of Campaign B is shown in Table 8. Most faults have no effect at all. Non-
effective faults were 86.1%. The corresponding number for Campaign A is 72.2%.
This part of the code showed to be less sensitive to faults than other parts.

Table 7. Results of Campaign B (target instructions in the initial part of scheduler)

 Undetected
No effect Watch-

dog
Hardware

Excep.
Software

Excep.
Software
Assertion

Non-crit.
failure

Critical
failure

1983 (86.1%) 2 (0.9%) 267 (11.6%) 0 (0%) 20 (0.9%) 10 (0.4%) 2 (0.1%)

 Impact of Soft Errors in a Jet Engine Controller 231

Campaign C – Control Subsystem Fault Injection
In this campaign we injected faults in Subsystem 1, containing fuel metering control
software and executing with the highest frequency. We selected seven target instruc-
tions and exhaustively injected faults in bits 0-31 in the D0-D7 and A0-A7 registers.
A total number of 3584 experiments were performed. The result is shown in Table 8.
Compared to Campaign A, the number of non effective faults is lower and the number
of undetected errors is higher.

Table 8. Results of Campaign C (target instructions in Subsystem 1)

 Undetected
No effect Watch-

dog
Hardware

Excep.
Software

Excep.
Software
Assertion

Non-crit.
failure

Critical
failure

2465 (68.8%) 97 (2.7%) 739 (20.6%) 29 (0.8%) 103 (2.9%) 86 (2.4%) 65 (1.8%)

Campaign D –Partially Exhaustive Fault Injection
The objective of Campaign D was to investigate a fault selection technique that cov-
ers a selected fault space with a minimum of experiments. We apply a manual pre-
injection analysis to avoid injecting faults that have known effect. Only those registers
that may change the behavior of the system compared to previous experiments are
selected. At the first address in the fault space, all data and address registers are in-
jected with faults so that the outcome is known for any register bit flip. From that
instruction and forward, only the registers that are used are injected with faults, since
they are the only that can change the outcome from what is already known.

The method was applied to a sequential piece of code in subsystem 1 consisting of
28 addresses. With pre-injection analysis, the number of experiments was reduced to
1664, instead of 14336 without pre-injection analysis. Table 9 shows the outcome.

Table 9. Result from Campaign D

 Undetected
No effect Watch-dog Hardware

Excep.
Software

Excep.
Software
Assertion

Non-crit.
failure

Critical
failure

11278 (78.7%) 308 (2.2%) 1640 (11.4%) 0 (0.0%) 780 (5.4%) 328 (2.3%) 2 (0.01%)

Campaign E – Faults in the Program Counter and Status Register
Campaign E was performed to investigate the effect of faults in the Program Counter
(PC) and Status Register (SR). These registers have not been selected for fault injec-
tion in the campaigns B to D. For fault injection in the Program Counter, we used a
subset of the address space used in Campaign B. The faults were injected in the 16
lowest bits with a total of 64 experiments. The outcome in Table 10 shows that the
distribution of detected and undetected errors differs a lot from the previous fault
injection campaigns. The number of non-effective errors is considerably lower. The
number of errors detected by Watchdog monitor and Hardware Exceptions are high.

232 O. Hannius and J. Karlsson

Table 10. Results from Fault injections in the PC register (Campaign E)

 Undetected
No effect Watch-dog Hardware

Excep.
Software

Excep.
Software
Assertion

Non-crit.
failure

Critical
failure

7 (11.0%) 17 (26.6%) 32 (50.0%) 0 (0%) 2 (3.1%) 5 (7.8%) 1 (1.5%)

It showed to be hard finding an address where fault injection in the Status Register
was effective. Most instructions change the contents of the Status Register but only a
few use the contents, for example branch instructions. The probability is therefore
high that a fault in the SR is overwritten. One example of an outcome from one effec-
tive experiment was a software exception. No further experiments were performed.

Campaign F – Fault Injection Time
In fault injection campaigns A- E we injected faults at, or close to, the 90th loop
count. In this campaign we set the fault injection time to 0.450, 1.015, 1.505 and
2.035 seconds corresponding to the 90th, 203rd, 301st and 407th loop count. The total
simulation time was the same as the other experiments (3.0 seconds/600 loop counts).
The goal for this setup was to find a fault location for which the outcome changed due
to injection time. We were especially interested to find out if the same fault location
could produce undetected and detected errors depending on injection time. A change
of outcome was observed in one experiment. At 0.450 seconds, the outcome was an
undetected error, but at the other time instances, the outcome was a software assertion
detection. The campaign was terminated when it was confirmed that the change of
fault injection time can change the outcome.

5 Summary

The effects from soft errors in a prototype FADEC controller have been evaluated by
injecting single bit-flip faults in the controller’s microprocessor while simulating a jet-
engine during an acceleration sequence. Of all experiments, 67% were non-effective.
The distribution of the remaining 23% of effective errors is shown in Table 11.

Table 11. Distribution of effective errors

 Undetected
Campaign No. of

eff. exp.
Watch-

dog
Hardware

Excep.
Software

Excep.
Software
Assertion

Non-crit.
failure

Critical
failure

A (Random) 276 11.6% 72.5% 4.3% 4.7% 5.4% 1.4%
B (Scheduler) 321 6.9% 83.2% 0% 6.2% 3.1% 0.6%
C (Subsys 1) 1119 8.7% 66.0% 2.6% 9.2% 7.7% 5.8%
D (Subsys 1) 3058 10.1% 53.6% 0% 25.5% 10.7% 0.1%
E (PC reg.) 57 29.8% 56.1% 0% 3.5% 8.8% 1.8%

Average - 13.4% 66.3% 1.4% 9.8% 7.2% 1.9%

The efficiency of the error detection mechanisms are (in descending order):

1) Hardware Exception
2) Watchdog Monitor and Software Assertion
3) Software Exception

 Impact of Soft Errors in a Jet Engine Controller 233

Hardware Exception is the most efficient mechanism (66.3%). Watchdog Monitor
(13.4%) and Software Assertions (9.1%) have roughly the same efficiency. Of the
undetected events (9.1%), Non-critical failures are dominating. It is worth to note that
the ratio of errors and failures differ much between campaigns.

6 Conclusions and Future Work

The results of our fault injection experiments provide valuable insights into the rela-
tive effectiveness of the error detection mechanisms included in our FADEC proto-
type. They show that the hardware exceptions included in the MC68340 processor
obtained the highest error coverage, in average 66.3%. This result is consistent with
results obtained in several other fault injection studies. The results also show that the
watchdog timer and the software assertions were quite effective obtaining average
coverage values of 13.4% and 9.8%, while the software exceptions detected merely
1.4% of the effective errors in average. Another important observation is that most of
the undetected failures were non-critical. However, the percentage of critical failures,
which varied between 0 and 6%, was higher than desirable. In particular, the high
percentage of critical failure observed for errors injected into Subsystem 1 in Cam-
paign C, suggest that the code for that subsystem needs to be provided with additional
error detection mechanisms.

Our future work will focus on development and evaluation of software-
implemented error detection techniques that can complement the ones we have
evaluated in this paper. Techniques that we plan to investigate include selective time-
redundant execution of sensitive code portions, software implemented control flow
checking and new types of software assertions. Our aim is to reduce the likelihood of
critical failure to below 0.01%. To this end, we plan to extend the JETFI tool to sup-
port test port-based fault injection and pre-injection analysis. We also plan to port our
experimental setup to a new hardware platform with faster CPUs, so that we can run
larger fault injection campaigns and thereby increase the confidence in our experi-
mental results. In addition, we also intend to evaluate our FADEC prototype with
respect to multiple bit errors.

Acknowledgements. This work has partially been supported by the research project
Reliable Jet Engines funded by the NFFP programme.

References

1. Chandra, V., Aitken, R.: Impact of Technology and Voltage Scaling on the Soft Error Sus-
ceptibility in Nanoscale CMOS. In: IEEE International Symposium on Defect and Fault
Tolerance of VLSI Systems (DFTVS 2008), pp. 114–122 (October 2008)

2. Ibe, E., Taniguchi, H., Yahagi, Y., Shimbo, K.S., Toba, T.: Impact of scaling on neutron-
induced soft error in SRAMs from a 250 nm to a 22 nm design rule. IEEE Transactions on
Electron Devices 57(7), 1527–1538 (2010)

234 O. Hannius and J. Karlsson

3. Benso, A., Di Carlo, S., Di Natale, G., Prinetto, P.: A watchdog processor to detect
data and control flow errors. In: 9th IEEE International On-Line Testing Symposium,
pp. 144–148 (July 2003)

4. Jahinuzzaman, S.M., Sharifkhani, M., Sachdev, M.: Investigation of process impact on soft
error susceptibility of nanometric SRAMs using a compact critical charge model. In: 9th
International Symposium of Quality Electronic Design (2008)

5. Islam, A.E., Kufluoglu, H., Varghese, D., Mahapatra, S., Alam, M.A.: Recent issues in
negative-bias temperature instability: Initial degradation, field dependence of interface trap
generation, hole trapping effects and relaxation. IEEE Trans. Electron Devices 54(9),
2143–2154 (2007)

6. Kufluoglu, H., Alam, M.A.: A Computational Model of NBTI and Hot Carrier Injection
Time-Exponents for MOSFET Reliability. Journal of Computational Electronics 3(3-4),
165–169 (2004)

7. Cannon, E.H., KleinOsowski, A.J., Kanj, R., Reinhardt, D.D., Joshi, R.V.: The impact of
aging effects and manufacturing variation on SRAM soft-error rate. IEEE Transactions on
Device and Materials Reliability 8(1), 145–152 (2008)

8. Hannius, O., Karlsson, J.: JETFI – A Fault Injection Tool for Assessment of Error Han-
dling Mechanisms in Jet-engine Control Systems.Technical Report 2012:06, Chalmers
University of Technology (2012) ISSN 1652-926X

9. Härefors, M.: A study in jet engine control - control structure selection and multivariable
design. Ph.D. Thesis, Chalmers University of Technology, Sweden (1999)

10. Ward, D.K., Andrews, S.F., McComas, D.C., O’Donnell, J.R.: Use of the MATRIXx inte-
grated toolkit on the Microwave Anisotropy Probe Attitude Control System. NASA’s
Goddard Space Flight Center,
http://lambda.gsfc.nasa.gov/product/map/team_pubs/aas99.pdf

11. Autran, J.L., Roche, P., Sauze, S., Gasiot, G., Munteanu, D., Loaiza, P., Zampaolo, M.,
Borel, J.: Real-Time Neutron and Alpha Soft-Error Rate Testing of CMOS 130nm SRAM:
Altitude versus Underground Measurements. In: Proc. International Conference On IC
Design and Technology (ICICDT), Grenoble, pp. 233–236 (2008)

12. Autran, J.L., Roche, P., Sauze, S., Gasiot, G., Munteanu, D., Loaiza, P., Zampaolo, M.,
Borel, J.: Altitude and Underground Real-Time SER Characterization of CMOS 65 nm
SRAM. IEEE Transactions on Nuclear Science 56(4) (August 2009)

13. Normand, E.: Single Event Upset at Ground Level. IEEE Transactions on Nuclear
Science 43(6) (December 1996)

14. Normand, E.: Single Event Effects in Avionics. IEEE Transactions on Nuclear
Science 43(2) (April 1996)

	Impact of Soft Errors in a Jet Engine Controller
	Introduction
	Jet Engine and C Control System Description
	Experimental Sy ystem
	System Overview
	Error Detection Mechanisms
	Fault Injection Tool

	Results
	Classification of Experiment Outcomes
	Description of Experiments and Presentation of Results

	Summary
	Conclusions and Future Work
	References

