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Abstract. We present an experimental study in which we investigate the impact 
of particle induced soft errors occurring in the microprocessor of an experimen-
tal FADEC system. The study focuses on the impact of single bit faults in the 
instruction set architecture (ISA) registers. For such faults, we investigate the 
effectiveness of the error detection mechanisms included in the FADEC system, 
and determine the consequences of errors that escape detection. To this end, we 
injected single bit faults in the ISA registers of a Freescale MC68340 micropro-
cessor during execution of a prototype jet engine control program. Utilizing 
both random fault injection and partially exhaustive injections, we conducted 
six fault injection campaigns comprising in total more than 7000 injected faults. 
Twenty-three percent of the injected faults were effective, i.e., they affected the 
outputs of the control program. Of these, the system detected 91%. Of the 9 % 
that escaped detection, 7% caused a minor deviation in engine thrust that would 
be harmless to flight safety, while 2% caused severe or potentially catastrophic 
changes in engine thrust.  

Keywords: jet-engine, controllers, FADEC, soft errors, cosmic neutrons, error 
detection, coverage, fault injection. 

1 Introduction 

Digital control systems for turbo-jet engines have been in operational use for almost 
30 years. These systems are known as Full Authority Digital Engine Control systems, 
or FADEC systems. To ensure aircraft safety, FADEC systems must be highly relia-
ble and fault-tolerant. A basic requirement is that a failure of a single hardware unit 
should never cause the engine to deliver inadequate thrust. 

Most FADEC systems are provided with two redundant control channels configured 
as a primary/backup pair. Recently designed FADEC systems are typically equipped 
with two electronic channels, while older designs often use a single electronic channel 
with a hydro-mechanical backup. Regardless of whether the backup channel is electron-
ic or hydro-mechanical, it is essential that the primary electronic channel is provided 
with highly efficient error detection mechanisms so that a fail-over to the backup chan-
nel is performed immediately if the primary channel should fail. 
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One of the key challenges in designing a dual channel FADEC system is to provide 
the electronic channels with error detection mechanisms that can effectively detect 
hardware errors occurring in the microprocessor that executes the control software. 
These mechanisms must ensure that the FADEC does not exhibit critical failures. A 
critical failure occurs when the FADEC generates erroneous actuator commands that 
cause a significant change in the engine thrust.    

There are two main design options available for detecting microprocessor faults in 
a FADEC control channel. One is to execute the control program on two lock-stepped 
microprocessors (or cores). This solution achieves very high detection coverage since 
the errors are detected by comparing the outputs of the two processors. The other 
option is to use a single microprocessor monitored by a watch-dog timer and various 
software implemented assertions and reasonable checks. The latter solution has been 
successfully used in several FADEC systems, including the one that controls the 
RM12 engine produced by Volvo Aero. 

However, many existing FADEC systems were designed for microprocessors pro-
duced during the 1980’s and 1990’s. These microprocessors were manufactured in 
circuit technologies that are less sensitive to cosmic-ray induced soft errors and aging 
faults than current technologies are. It is expected that technology and voltage scaling 
will make future circuit technologies increasingly sensitive to these kinds of faults as 
well as process variations [1]. It is therefore an open question whether the classical 
design with a single microprocessor provides sufficient detection coverage for future 
FADEC systems.  

This paper presents the results of a fault injection study aiming to provide insights 
into the error sensitivity of a single processor control channel with respect to micro-
processor faults that manifest as transient bit errors in the instruction set architecture 
registers of the processor. Such errors can be caused by both transient and intermittent 
transistor level faults, including cosmic ray-induced soft errors [2] electromagnetic 
interference [3], intermittent faults caused by process variations [4], and aging effects 
such as NBTI [5], hot-carrier injection [6] and gate-oxide breakdown [7]. We con-
ducted the fault injection experiments with an engineering prototype of a single pro-
cessor control channel based on the Freescale MC68340 microprocessor. We injected 
single-bit faults in the instruction set architecture (ISA) registers of THE processor 
while it was executing a program controlling a software model of the Volvo Aero 
RM12 engine. To perform the experiments, we developed a fault injection tool called 
JETFI (JET Engine Fault Injection tool) [8]. 

The remainder of this report is organized as follows. Section 2 explains the basic 
operation of the RM12 jet engine including the main engine parameters, which we use 
to describe the failure modes of the engine. Section 2 also includes an overview of the 
main functions of the FADEC system. Section 3 describes the experimental system 
and the fault injection procedure. The results of our experiments are presented in Sec-
tion 4. A summary is provided in Section 5 and Conclusions and Future Work are 
given in Section 6. 
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3.1 System Overview  

The experimental system consists of a host computer and two computer boards, called 
the FADEC board and the Engine board, as shown in Fig. 2. The computer boards are 
identical and use the Motorola 68340 processor. The FADEC board executes the con-
trol software while the Engine board executes a software model of the RM12 engine. 
The software for the two computer boards has been generated from models developed 
with MATRIXx v6.1 [10] and compiled with GNU ADA. 

The host computer is used for controlling the fault injection experiments and for 
collection and analysis of experimental data. The RS232 serial link between the com-
puter boards and the host computer are used for program download and control of the 
fault injection campaigns. Actuator commands and sensor data are exchanged via a 
RS232 link between the FADEC computer board and the Engine board. Due to the 
limited processing power of the 68340 processors, the set-up executes the control 
program approximately 1000 times slower than a real system. 

 
 
 
 

 Host computer  
  RS232  RS232 

Computer board executing the 
FADEC software, “FADEC board”. 

 
RS232 

Computer board simulating the 
RM12 engine, “Engine board”. 

Fig. 2. Host computer and target system overview 

The FADEC control software executes in a cyclic control loop with prescheduled 
control tasks. It consists of 29 subsystems. A subsystem is a set of control tasks with 
the same execution rate. The execution rate varies from 200 Hz for Subsystem 1 down 
to 1 Hz for Subsystem 29. Subsystem 1 performs demanding control activities such as 
positioning of the guide vanes, fuel flow metering and setting the exhaust nozzle area. 
The other subsystems perform a variety of other control tasks and trim functions. 

The Engine board executes simulation models of the engine, sensors, actuators and 
the hydro-mechanical control system. We use a linearized model of the RM12 engine 
to minimize execution time. We believe the accuracy of this model is sufficient for 
the purpose of our experiments. The execution times would have become much longer 
if we would have used a more accurate non-linear engine model. 

The Engine board emulates a use case where the Power Lever Angle (PLA) in-
creases from 55º to 75º during one second of real-time execution. (Flight idle is at 28º 
and max dry thrust, i.e., without afterburner, is at 100º.)   

3.2 Error Detection Mechanisms  

The error detection mechanisms, EDMs, implemented in the experimental FADEC 
system include a watchdog monitor (WDM), hardware and software exceptions and 
software assertions shown in Table 1.  
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Table 1. Error Detection Mechanisms in the FADEC 

EDM Description 
WDM  A timer which must be reset periodically to prevent it from trip-

ping, i.e. signaling that an error has occurred  
Hardware exceptions Hardware EDMs supported by the Motorola 68340 processor.  
Software exceptions Software checks generated automatically by MATRIXx or by the 

programmer using the exception-clause in the ADA-language. They 
detect erroneous execution, erroneous calculations and other errors.  

Software assertions Range checks on engine parameters.  

Watch Dog Monitor  
The watchdog monitor is implemented in the host computer of the JETFI tool and 
detects if the FADEC computer board stops to produce output data for duration longer 
than 10 seconds. In our experimental setup, we consider a WDM-trip as a detected 
error.  

Hardware Exceptions  
The Motorola 68340 processor supports 256 hardware exception vectors numbered in 
the range 0 to 255. The exceptions that were triggered in the fault injection experi-
ments are Bus error, Address error, Illegal instruction, Line 1111 Emulator and For-
mat error, see Table 2.  

Table 2. Hardware Exceptions 

Hardware exception No Description 
Bus error 2 Occurs when the processor attempts to use information from 

an aborted bus cycle (illegal memory access). 
Address error 3 Occurs if a misaligned memory access is attempted. For 

instance a word transfer to an odd address. 
Illegal instruction 4 Occurs if the processor attempts to execute an unimple-

mented instruction. 
Line 1111 Emulator 11 A special case of illegal instruction. The name originates 

from the contents of the most significant bits for unimple-
mented instructions. 

Format error 14 This check ensures that the program does not make erroneous 
assumptions about information in the stack frame. 

Software Exceptions  
A software exception is a general check concerning calculations and program execu-
tion. The FADEC software implemented software exceptions are shown in Table 3. 

Software Assertions  
The software assertions perform range checks on engine parameters and are based on 
physical limitations of the jet engine and its environment. The software assertions 
shown in Table 4 can detect engine failures, errors in data from sensors and wrap-
around signals from actuators (torque motor currents).  
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Table 3. Software exceptions 

Software exception Description 
EXEC_ERROR Raised by execution checks generated by the MATRIXx-tool. 
MATH_ERROR Raised when the predefined ADA exception NUMERIC_ERROR or 

CONSTRAINT_ERROR is raised. This happens if a numeric opera-
tion is undefined or when a variable is erroneously assigned. 

TIME_ 
OVERFLOW 

Two types of scheduler errors can cause time overflow. 1) If the 
scheduler is interrupted while executing the non-interruptible critical 
section and 2) If a subsystem is ready to run but has still not finished 
running. Both are due to inconsistency in the scheduler. 

STOP_BLOCK This refers to a Stop Simulation Block.  
UCB_ERROR Error in a User Code Block.  
UNKNOWN_ 
ERROR 

An error that is not recognized by the code generated by MATRIXx. 
A possible cause is an incorrect user-written error condition. 

OTHERS Raised if an unexpected exception occurs, i.e. it is not identified as 
any of the other defined exceptions. 

Table 4. Software assertions in the FADEC 

S/W assertion Failure condition Possible cause Effect when not detected 
TT1 out of 
range  

The reading from the TT1 
sensor is not within range.  

Sensor or input data 
failure. 

Low engine thrust and even 
fan surge1. 

NH over-
speed  
(HP shaft) 

The measured speed of the 
compressor and high-
pressure turbine is too high. 

Overspeed of the 
HP shaft, failure in 
the input data.  

There is a risk for engine 
disintegration. 

NL sensor 
loss 

Missing pulses in the pulse 
train from the NL sensor. 

NL sensor failure 
detected by h/w.  

Fan overspeed. Possible  
engine damage. 

A8 or WFM 
LVDT/TM 
failure (actua-
tors) 

The relationship between 
demanded current and the 
position change of the 
actuator does not match.  

Sensor, actuator or  
mechanical failure 
of the actuation 
hardware.  

A missed detection will 
result in a low or high 
engine thrust. 

PS3 fails high 
 

Out of range failure of the 
comp. discharge pressure.  

Sensor failure. Incorrect fuel flow and 
erroneous thrust. 

Flame out Engine speed and turbine 
exhaust temp. decrease 
below allowed limits. 

Erroneous fuel 
metering. 

The engine may flame out, 
if this occurs. 

3.3 Fault Injection Tool 

The JETFI tool [8] can inject single and multiple bit-flip faults in the ISA registers of 
the CPU running the FADEC control program. In the experiments presented in this 
paper we injected one single bit-flip in each experiment. A fault is defined by an in-
jection time and a bit in an ISA register. The injection time is defined by the execu-
tion of a target machine instruction and an invocation counter. The injection time and 
the targeted bit can be selected randomly by the tool or deterministically by the tool 
user. 

                                                           
1 Fan surge causes an abrupt reversal of the airflow through the engine. 
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A fault injection experiment begins by replacing the target machine instruction in 
the program memory of the FADEC board with a trap instruction. This is done by a 
piece of code executed on the FADEC board. The host computer then orders the En-
gine board to start the RM12 simulator and the FADEC board to start the FADEC 
control program. 

Each time the FADEC control program executes the trap instruction, the corres-
ponding trap handling routine notes the number of times it has been called. If this 
number is lower than the value of the invocation counter, the trap handler executes the 
original machine instruction without any modifications and then directs the execution 
back to the control program. When the trap instruction has been executed the same 
number of times as stated by the invocation counter value, the trap handling routine 
injects the fault by inverting the value of the target bit, replaces the trap instruction 
with original machine instructions, and finally directs the execution back to that in-
struction. The JETFI tool then monitors the behavior of the continued simulation and 
automatically starts a new experiment as soon as the outcome from the previous expe-
riment has been recorded.  

4 Results 

This section presents the results of our fault injection experiments. Section 6.1 de-
scribes how we classify the outcomes of the experiments. Section 6.2 describes the 
results from five fault injection campaigns denoted A to F.  

4.1 Classification of Experiment Outcomes  

The outcome from an experiment is divided in five categories, Detected error, No 
effect, Non-critical failure, Critical failure and Failed experiment. An explanation of 
the categories is found in Table 6.  

Table 5. Outcome classification 

Category Description 
Detected error An error detected by the watchdog monitor (WDM), a hardware or 

software exception or a software assertion.  
No effect The outcome No effect occurs when nothing can be observed that is 

different from a fault free experiment. The injected error is either 
overwritten or remains in the system but does not have any impact on 
the outputs of the system (dormant error). 

Non-critical failure  A negligible deviation in the control system outputs caused by an 
undetected error. 

Critical failure  A significant change in engine thrust caused by an undetected error.  
Failed experiment A Failed experiment occurs when the fault injection routine uses a 

non-valid fault time. It can happen if the address for the injected fault 
is never executed by the software or if it is executed a fewer number 
of times than specified as condition for the fault injection routine. 
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In our experiments, undetected errors are identified by an automatic check in the 
JETFI-tool. The automatic check compares the control system outputs with reference 
data from an error-free (golden) experiment. We have defined an output signal that 
deviates more than 5% from the correct value as a critical failure.  

4.2 Description of Experiments and Presentation of Results 

Campaign A is used as a reference for comparison with the other campaigns. Each of 
the campaigns B to F has separate focus to investigate different aspects of fault injec-
tion and error detection. 

Campaign A – Random Fault Selection 
In Campaign A, we used random fault selection among instructions in all subsystems. 
The result from 991 experiments is shown in Table 6. The last row of Table 6 shows 
the relative frequency of each outcome with a 95% confidence interval bound.  Of all 
experiments, 715 were non-effective and 276 were effective. 

Table 6. Results of Campaign A (faults selected randomly). 

      Undetected 
 No  

effect 
Watch-

dog  
Hardware 
Exception

Software 
Exception

Software 
Assertion

Non-crit. 
failure 

Critical 
failure 

No. of faults 715  32 200 12 13 15  4  
Rel. freq. (%) 72.2±2.8 3.2±1.1 20.2±2.5 1.2±0.7 1.3±0.7 1.5±0.8 0.4±0.4 

 
The number of non-effective faults relative to the total number of injected faults is 

quite normal compared to other studies [11-13]. The distribution of experimental 
outcomes for the effective faults is also typical with hardware exception as the prima-
ry error detection mechanism. 

Campaign B – Scheduler Fault Injection 
In Campaign B, we injected faults in the control task scheduler. The purpose of this 
campaign was to investigate the sensitivity to faults in this part of the code. We se-
lected nine instructions in the initial part of the scheduler. For each of these, we ex-
haustively injected faults in the bits 0- 15 in the D0- D7 and A0- A7 CPU registers. 
The scheduler reads input data and calls the subsystems and output routine periodical-
ly. The fault injection was directed to the input reading part of the scheduler. The 
result of Campaign B is shown in Table 8. Most faults have no effect at all. Non-
effective faults were 86.1%. The corresponding number for Campaign A is 72.2%. 
This part of the code showed to be less sensitive to faults than other parts.  

Table 7. Results of Campaign B (target instructions in the initial part of scheduler) 

     Undetected 
No effect Watch-

dog 
Hardware 

Excep. 
Software 

Excep. 
Software 
Assertion 

Non-crit. 
failure 

Critical 
failure 

1983 (86.1%) 2 (0.9%) 267 (11.6%) 0 (0%) 20 (0.9%) 10 (0.4%) 2 (0.1%) 
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Campaign C – Control Subsystem Fault Injection 
In this campaign we injected faults in Subsystem 1, containing fuel metering control 
software and executing with the highest frequency. We selected seven target instruc-
tions and exhaustively injected faults in bits 0-31 in the D0-D7 and A0-A7 registers. 
A total number of 3584 experiments were performed. The result is shown in Table 8. 
Compared to Campaign A, the number of non effective faults is lower and the number 
of undetected errors is higher. 

Table 8. Results of Campaign C (target instructions in Subsystem 1) 

     Undetected 
No effect Watch-

dog 
Hardware 

Excep. 
Software 

Excep. 
Software 
Assertion 

Non-crit. 
failure 

Critical 
failure 

2465 (68.8%) 97 (2.7%) 739 (20.6%) 29 (0.8%) 103 (2.9%) 86 (2.4%) 65 (1.8%) 

Campaign D –Partially Exhaustive Fault Injection 
The objective of Campaign D was to investigate a fault selection technique that cov-
ers a selected fault space with a minimum of experiments. We apply a manual pre-
injection analysis to avoid injecting faults that have known effect. Only those registers 
that may change the behavior of the system compared to previous experiments are 
selected. At the first address in the fault space, all data and address registers are in-
jected with faults so that the outcome is known for any register bit flip. From that 
instruction and forward, only the registers that are used are injected with faults, since 
they are the only that can change the outcome from what is already known.  

The method was applied to a sequential piece of code in subsystem 1 consisting of 
28 addresses. With pre-injection analysis, the number of experiments was reduced to 
1664, instead of 14336 without pre-injection analysis. Table 9 shows the outcome.  

Table 9. Result from Campaign D 

     Undetected 
No effect Watch-dog Hardware 

Excep. 
Software 

Excep.
Software 
Assertion 

Non-crit. 
failure 

Critical 
failure 

11278 (78.7%) 308 (2.2%) 1640 (11.4%) 0 (0.0%) 780 (5.4%) 328 (2.3%) 2 (0.01%) 

Campaign E – Faults in the Program Counter and Status Register 
Campaign E was performed to investigate the effect of faults in the Program Counter 
(PC) and Status Register (SR). These registers have not been selected for fault injec-
tion in the campaigns B to D. For fault injection in the Program Counter, we used a 
subset of the address space used in Campaign B. The faults were injected in the 16 
lowest bits with a total of 64 experiments. The outcome in Table 10 shows that the 
distribution of detected and undetected errors differs a lot from the previous fault 
injection campaigns. The number of non-effective errors is considerably lower. The 
number of errors detected by Watchdog monitor and Hardware Exceptions are high. 
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Table 10. Results from Fault injections in the PC register (Campaign E) 

     Undetected 
No effect Watch-dog Hardware 

Excep. 
Software 

Excep. 
Software 
Assertion 

Non-crit. 
failure 

Critical 
failure 

7 (11.0%) 17 (26.6%) 32 (50.0%) 0 (0%) 2 (3.1%) 5 (7.8%) 1 (1.5%) 

It showed to be hard finding an address where fault injection in the Status Register 
was effective. Most instructions change the contents of the Status Register but only a 
few use the contents, for example branch instructions. The probability is therefore 
high that a fault in the SR is overwritten. One example of an outcome from one effec-
tive experiment was a software exception. No further experiments were performed. 

Campaign F – Fault Injection Time  
In fault injection campaigns A- E we injected faults at, or close to, the 90th loop 
count. In this campaign we set the fault injection time to 0.450, 1.015, 1.505 and 
2.035 seconds corresponding to the 90th, 203rd, 301st and 407th loop count. The total 
simulation time was the same as the other experiments (3.0 seconds/600 loop counts). 
The goal for this setup was to find a fault location for which the outcome changed due 
to injection time. We were especially interested to find out if the same fault location 
could produce undetected and detected errors depending on injection time. A change 
of outcome was observed in one experiment. At 0.450 seconds, the outcome was an 
undetected error, but at the other time instances, the outcome was a software assertion 
detection. The campaign was terminated when it was confirmed that the change of 
fault injection time can change the outcome. 

5 Summary 

The effects from soft errors in a prototype FADEC controller have been evaluated by 
injecting single bit-flip faults in the controller’s microprocessor while simulating a jet-
engine during an acceleration sequence. Of all experiments, 67% were non-effective. 
The distribution of the remaining 23% of effective errors is shown in Table 11.  

Table 11. Distribution of effective errors 

      Undetected 
Campaign  No. of 

eff. exp. 
Watch-

dog 
Hardware 

Excep. 
Software 

Excep. 
Software 
Assertion

Non-crit. 
failure 

Critical 
failure 

A (Random) 276 11.6%  72.5% 4.3% 4.7% 5.4% 1.4% 
B (Scheduler) 321 6.9%  83.2%  0%  6.2% 3.1%  0.6% 
C (Subsys 1) 1119 8.7%  66.0%  2.6%  9.2%  7.7% 5.8% 
D (Subsys 1) 3058 10.1%  53.6%  0%  25.5%  10.7% 0.1% 
E (PC reg.) 57 29.8%  56.1%  0%  3.5%  8.8%  1.8%  

Average  - 13.4% 66.3% 1.4% 9.8% 7.2% 1.9% 

The efficiency of the error detection mechanisms are (in descending order): 

1) Hardware Exception 
2) Watchdog Monitor and Software Assertion  
3) Software Exception 
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Hardware Exception is the most efficient mechanism (66.3%). Watchdog Monitor 
(13.4%) and Software Assertions (9.1%) have roughly the same efficiency. Of the 
undetected events (9.1%), Non-critical failures are dominating. It is worth to note that 
the ratio of errors and failures differ much between campaigns. 

6 Conclusions and Future Work 

The results of our fault injection experiments provide valuable insights into the rela-
tive effectiveness of the error detection mechanisms included in our FADEC proto-
type. They show that the hardware exceptions included in the MC68340 processor 
obtained the highest error coverage, in average 66.3%. This result is consistent with 
results obtained in several other fault injection studies. The results also show that the 
watchdog timer and the software assertions were quite effective obtaining average 
coverage values of 13.4% and 9.8%, while the software exceptions detected merely 
1.4% of the effective errors in average. Another important observation is that most of 
the undetected failures were non-critical. However, the percentage of critical failures, 
which varied between 0 and 6%, was higher than desirable. In particular, the high 
percentage of critical failure observed for errors injected into Subsystem 1 in Cam-
paign C, suggest that the code for that subsystem needs to be provided with additional 
error detection mechanisms. 

Our future work will focus on development and evaluation of software-
implemented error detection techniques that can complement the ones we have  
evaluated in this paper. Techniques that we plan to investigate include selective time-
redundant execution of sensitive code portions, software implemented control flow 
checking and new types of software assertions. Our aim is to reduce the likelihood of 
critical failure to below 0.01%. To this end, we plan to extend the JETFI tool to sup-
port test port-based fault injection and pre-injection analysis. We also plan to port our 
experimental setup to a new hardware platform with faster CPUs, so that we can run 
larger fault injection campaigns and thereby increase the confidence in our experi-
mental results. In addition, we also intend to evaluate our FADEC prototype with 
respect to multiple bit errors. 
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