
Formal Development and Assessment

of a Reconfigurable On-board Satellite System

Anton Tarasyuk1,2, Inna Pereverzeva1,2, Elena Troubitsyna1,
Timo Latvala3, and Laura Nummila3

1 Åbo Akademi University, Turku, Finland
2 Turku Centre for Computer Science, Turku, Finland

3 Space Systems Finland, Espoo, Finland
{inna.pereverzeva,anton.tarasyuk,elena.troubitsyna}@abo.fi,

{timo.latvala,laura.nummila}@ssf.fi

Abstract. Ensuring fault tolerance of satellite systems is critical for
achieving goals of the space mission. Since the use of redundancy is
restricted by the size and the weight of the on-board equipments, the
designers need to rely on dynamic reconfiguration in case of failures of
some components. In this paper we propose a formal approach to devel-
opment of dynamically reconfigurable systems in Event-B. Our approach
allows us to build the system that can discover possible reconfiguration
strategy and continue to provide its services despite failures of its vital
components. We integrate probabilistic verification to evaluate reconfig-
uration alternatives. Our approach is illustrated by a case study from
aerospace domain.

Keywords: Formal modelling, fault tolerance, Event-B, refinement,
probabilistic verification.

1 Introduction

Fault tolerance is an important characteristics of on-board satellite systems.
One of the essential means to achieve it is redundancy. However, the use of
(hardware) component redundancy in spacecraft is restricted by the weight and
volume constraints. Thus, the system developers need to perform a careful cost-
benefit analysis to minimise the use of spare modules yet achieve the required
level of reliability.

Despite such an analysis, Space System Finland has recently experienced a
double-failure problem with a system that samples and packages scientific data
in one of the operating satellites. The system consists of two identical modules.
When one of the first module subcomponents failed, the system switched to the
use of the second module. However, after a while a subcomponent of the spare
has also failed, so it became impossible to produce scientific data. To not lose
the entire mission, the company has invented a solution that relied on healthy
subcomponents of both modules and a complex communication mechanism to
restore system functioning. Obviously, a certain amount of data has been lost
before a repair was deployed. This motivated our work on exploring proactive

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012, LNCS 7612, pp. 210–222, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Formal Development and Assessment of a Reconfigurable System 211

solutions for fault tolerance, i.e., planning and evaluating of scenarios imple-
menting a seamless reconfiguration using a fine-grained redundancy.

In this paper we propose a formal approach to modelling and assessment of on-
board reconfigurable systems. We generalise the ad-hoc solution created by Space
Systems Finland and propose an approach to formal development and assess-
ment of fault tolerant satellite systems. The essence of our modelling approach is
to start from abstract modelling functional goals that the system should achieve
to remain operational, and to derive reconfigurable architecture by refinement in
the Event-B formalism [1]. The rigorous refinement process allows us to establish
the precise relationships between component failures and goal reachability. The
derived system architecture should not only satisfy functional requirements but
also achieve its reliability objective. Moreover, since the reconfiguration proce-
dure requires additional inter-component communication, the developers should
also verify that system performance remains acceptable. Quantitative evaluation
of reliability and performance of probabilistically augmented Event-B models is
performed using the PRISM model checker [8].

The main novelty of our work is in proposing an integrated approach to formal
derivation of reconfigurable system architectures and probabilistic assessment
of their reliability and performance. We believe that the proposed approach
facilitates early exploration of the design space and helps to build redundancy-
frugal systems that meet the desired reliability and performance requirements.

2 Reconfigurable Fault Tolerant Systems

2.1 Case Study: Data Processing Unit

As mentioned in the previous section, our work is inspired by a solution proposed
to circumvent the double failure occurred in a currently operational on-board
satellite system. The architecture of that system is similar to Data Processing
Unit (DPU) – a subsystem of the European Space Agency (ESA) mission Bepi-
Colombo [2]. Space Systems Finland is one of the providers for BepiColombo.
The main goal of the mission is to carry out various scientific measures to explore
the planet Mercury. DPU is an important part of the Mercury Planetary Orbiter.
It consists of four independent components (computers) responsible for receiv-
ing and processing data from four sensor units: SIXS-X (X-ray spectrometer),
SIXS-P (particle spectrometer), MIXS-T (telescope) and MIXS-C (collimator).

The behaviour of DPU is managed by telecommands (TCs) received from the
spacecraft and stored in a circular buffer (TC pool). With a predefined rate, DPU
periodically polls the buffer, decodes a TC and performs the required actions.
Processing of each TC results in producing telemetry (TM). Both TC and TM
packages follow the syntax defined by the ESA Packet Utilisation Standard [12].
As a result of TC decoding, DPU might produce a housekeeping report, switch
to some mode or initiate/continue production of scientific data. The main pur-
pose of DPU is to ensure a required rate of producing TM containing scientific
data. In this paper we focus on analysing this particular aspect of the system

212 A. Tarasyuk et al.

behaviour. Hence, in the rest of the paper, TC will correspond to the telecom-
mands requiring production of scientific data, while TM will designate packages
containing scientific data.

2.2 Goal-Oriented Reasoning about Fault Tolerance

We use the notion of a goal as a basis for reasoning about fault tolerance. Goals
– the functional and non-functional objectives that the system should achieve –
are often used to structure the requirements of dependable systems [7,9].

Let G be a predicate that defines a desired goal and M be a system model.
Ideally, the system design should ensure that the goal can be reached “infinitely
often”. Hence, while verifying the system, we should establish that

M |= ��G.
The main idea of a goal-oriented development is to decompose the high-level
system goals into a set of subgoals. Essentially, subgoals define the intermediate
stages of achieving a high-level goal. In the process of goal decomposition we as-
sociate system components with tasks – the lowest-level subgoals. A component
is associated with a task if its functionality enables establishing the goal defined
by the corresponding task.

For instance, in this paper we consider “produce scientific TM” as a goal of
DPU. DPU sequentially enquires each of its four components to produce its part
of scientific data. Each component acquires fresh scientific data from the cor-
responding sensor unit (SIXS-X, SIXS-P, MIXS-T or MIXS-C), preprocesses it
and makes available to DPU that eventually forms the entire TM package. Thus,
the goal can be decomposed into four similar tasks “sensor data production”.

Generally, the goal G can be decomposed into a finite set of tasks:

T = {taskj | j ∈ 1..n ∧ n ∈ N1},

Let also C be a finite set of components capable of performing tasks from T :

C = {compj | j ∈ 1..m ∧m ∈ N1},

where N1 is the set of positive integers. Then the relation Φ defined below asso-
ciates components with the tasks:

Φ ∈ T ↔ C, such that ∀t ∈ T · ∃c ∈ C ·Φ(t, c),
where ↔ designates a binary relation.

To reason about fault tolerance, we should take into account component un-
reliability. A failure of a component means that it cannot perform its associated
task. Fault tolerance mechanisms employed to mitigate results of component fail-
ures rely on various forms of component redundancy. Spacecraft have stringent
limitations on the size and weight of the on-board equipment, hence high degree
of redundancy is rarely present. Typically, components are either duplicated or
triplicated. Let us consider a duplicated system that consists of two identical
DPUs – DPUA and DPUB. As it was explained above, each DPU contains four
components responsible for controlling the corresponding sensor.

Formal Development and Assessment of a Reconfigurable System 213

Traditionally, satellite systems are designed to implement the following sim-
ple redundancy scheme. Initially DPUA is active, while DPUB is a cold spare.
DPUA allocates tasks on its components to achieve the system goal G – pro-
cessing of a TC and producing the TM. When some component of DPUA fails,
DPUB is activated to achieve the goal G. Failure of DPUB results in failure of
the overall system. However, even though none of the DPUs can accomplish G
on its own, it might be the case that the operational components of both DPUs
can together perform the entire set of tasks required to reach G. This observation
allows us to define the following dynamic reconfiguration strategy.

Initially DPUA is active and assigned to reach the goal G. If some of its
components fails, resulting in a failure to execute one of four scientific tasks
(let it be taskj), the spare DPUB is activated and DPUA is deactivated. DPUB

performs the taskj and the consecutive tasks required to reach G. It becomes fully
responsible for achieving the goal G until some of its component fails. In this case,
to remain operational, the system performs dynamic reconfiguration. Specifically,
it reactivates DPUA and tries to assign the failed task to its corresponding
component. If such a component is operational then DPUA continues to execute
the subsequent tasks until it encounters a failed component. Then the control
is passed to DPUB again. Obviously, the overall system stays operational until
two identical components of both DPUs have failed.

We generalise the architecture of DPU by stating that essentially a system
consists of a number of modules and each module consists of n components:

C = Ca ∪ Cb, where Ca = {a compj | j ∈ 1..n ∧ n ∈ N1} etc.

Each module relies on its components to achieve the tasks required to accomplish
G. An introduction of redundancy allows us to associate not a single but sev-
eral components with each task. We reformulate the goal reachability property
as follows: a goal remains reachable while there exists at least one operational
component associated with each task. Formally, it can be specified as:

M |= �Os, where Os ≡ ∀t ∈ T · (∃c ∈ C ·Φ(t, c) ∧ O(c))

and O is a predicate over the set of components C such that O(c) evaluates to
TRUE if and only if the component c is operational.

2.3 Probabilistic Assessment

If a duplicated system with the dynamic reconfiguration achieves the desired
reliability level, it might allow the designers to avoid module triplication. How-
ever, it also increases the amount of intercomponent communication that leads
to decreasing the system performance. Hence, while deciding on a fault tolerance
strategy, it is important to consider not only reachability of functional goals but
also their performance and reliability aspects.

In engineering, reliability is usually measured by the probability that the
system remains operational under given conditions for a certain time interval. In
terms of goal reachability, the system remains operational until it is capable of

214 A. Tarasyuk et al.

reaching targeted goals. Hence, to guarantee that system is capable of performing
a required functions within a time interval t, it is enough to verify that

M |= �≤t Os. (1)

However, due to possible component failures we usually cannot guarantee the
absolute preservation of (1). Instead, to assess the reliability of a system, we need
to show that the probability of preserving the property (1) is sufficiently high.
On the other hand, the system performance is a reward-based property that can
be measured by the number of successfully achieved goals within a certain time
period.

To quantitatively verify these quality attributes we formulate the following
CSL (Continuous Stochastic Logic) formulas [6]:

P=?{G ≤ t Os} and R(|goals|)=?{C ≤ t }.
The formulas above are specified using PRISM notation. The operator P is used
to refer to the probability of an event occurrence,G is an analogue of �,R is used
to analyse the expected values of rewards specified in a model, while C specifies
that the reward should be cumulated only up to a given time bound. Thus, the
first formula is used to analyse how likely the system remains operational as
time passes, while the second one is used to compute the expected number of
achieved goals cumulated by the system over t time units.

In this paper we rely on modelling in Event-B to formally define the architec-
ture of a dynamically reconfigurable system, and on the probabilistic extension
of Event-B to create models for assessing system reliability and performance.
The next section briefly describes Event-B and its probabilistic extension.

3 Modelling in Event-B and Probabilistic Analysis

3.1 Modelling and Refinement in Event-B

Event-B is a state-based formal approach that promotes the correct-by-construc-
tion development paradigm and formal verification by theorem proving. In Event-
B, a system model is specified using the notion of an abstract state machine [1],
which encapsulates the model state, represented as a collection of variables, and
defines operations on the state, i.e., it describes the behaviour of a modelled sys-
tem. Usually, a machine has an accompanying component, called context, which
includes user-defined sets, constants and their properties given as a list of model
axioms. The model variables are strongly typed by the constraining predicates.
These predicates and the other important properties that must be preserved by
the model constitute model invariants.

The dynamic behaviour of the system is defined by a set of atomic events.
Generally, an event has the following form:

e =̂ any a where Ge then Re end,

where e is the event’s name, a is the list of local variables, the guard Ge is
a predicate over the local variables of the event and the state variables of the

Formal Development and Assessment of a Reconfigurable System 215

system. The body of the event is defined by the next-state relation Re. In Event-
B, Re is defined by a multiple (possibly nondeterministic) assignment over the
system variables. The guard defines the conditions under which the event is
enabled. If several events are enabled at the same time, any of them can be
chosen for execution nondeterministically.

Event-B employs a top-down refinement-based approach to system devel-
opment. Development starts from an abstract specification that nondetermin-
istically models the most essential functional requirements. In a sequence of
refinement steps we gradually reduce nondeterminism and introduce detailed de-
sign decisions. In particular, we can add new events, split events as well as replace
abstract variables by their concrete counterparts, i.e., perform data refinement.
When data refinement is performed, we should define gluing invariants as a part
of the invariants of the refined machine. They define the relationship between the
abstract and concrete variables. The proof of data refinement is often supported
by supplying witnesses – the concrete values for the replaced abstract variables
and parameters. Witnesses are specified in the event clause with.

The consistency of Event-B models, i.e., verification of well-formedness and
invariant preservation as well as correctness of refinement steps, is demonstrated
by discharging the relevant proof obligations generated by the Rodin platform
[11]. The platform provides an automated tool support for proving.

3.2 Augmenting Event-B Models with Probabilities

Next we briefly describe the idea behind translating of an Event-B machine into
continuous time Markov chain – CTMC (the details can be found in [15]). To
achieve this, we augment all events of the machine with information about the
probability and duration of all the actions that may occur during their execution,
and refine them by their probabilistic counterparts.

Let Σ be a state space of an Event-B model defined by all possible values of
the system variables. Let also I be the model invariant. We consider an event e
as a binary relation on Σ, i.e., for any two states σ, σ′ ∈ Σ:

e(σ, σ′) def
= Ge(σ) ∧Re(σ, σ

′).

Definition 1. The behaviour of an Event-B machine is fully defined by a tran-
sition relation →:

σ, σ′ ∈ Σ ∧ σ′ ∈
⋃

e∈Eσ

after(e)

σ → σ′ ,

where before(e) = {σ ∈ Σ | I(σ) ∧Ge(σ)}, Eσ = {e ∈ E | σ ∈ before(e)} and

after(e) = {σ′ ∈ Σ | I(σ′) ∧ (∃σ ∈ Σ · I(σ) ∧Ge(σ) ∧Re(σ, σ
′))}.

Furthermore, let us denote by λe(σ, σ
′) the (exponential) transition rate from σ

to σ′ via the event e, where σ ∈ before(e) and Re(σ, σ
′). By augmenting all the

event actions with transition rates, we can modify Definition 1 as follows.

216 A. Tarasyuk et al.

Definition 2. The behaviour of a probabilistically augmented Event-B machine

is defined by a transition relation
Λ−→:

σ, σ′ ∈ Σ ∧ σ′ ∈
⋃

e∈Eσ

after(e)

σ
Λ−→ σ′

, where Λ =
∑

e∈Eσ

λe(σ, σ
′).

Definition 2 allows us to define the semantics of a probabilistically augmented
Event-B model as a probabilistic transition system with the state space Σ, tran-

sition relation
Λ−→ and the initial state defined by model initialisation (for prob-

abilistic models we require the initialisation to be deterministic). Clearly, such
a transition system corresponds to a CTMC.

In the next section we demonstrate how to formally derive an Event-B model
of the architecture of a reconfigurable system.

4 Deriving Fault Tolerant Architectures by Refinement
in Event-B

The general idea behind our formal development is to start from an abstract goal
modelling, decompose it into tasks and introduce an abstract representation of
the goal execution flow. Such a model can be refined into different fault tolerant
architectures. Subsequently, these models are augmented with probabilistic data
and used for the quantitative assessment.

4.1 Modelling Goal Reaching

Goal Modelling. Our initial specification abstractly models the process of
reaching the goal. The progress of achieving the goal is modelled by the variable
goal that obtains values from the enumerated set STATUS = {not reached,
reached, failed}. Initially, the system is not assigned any goals to accomplish,
i.e., the variable idle is equal to TRUE. When the system becomes engaged
in establishing the goal, idle obtains value FALSE as modelled by the event
Activation. In the process of accomplishing the goal, the variable goal might
eventually change its value from not reached to reached or failed, as modelled
by the event Body. After the goal is reached the system becomes idle, i.e., a new
goal can be assigned. The event Finish defines such a behaviour. We treat the
failure to achieve the goal as a permanent system failure. It is represented by
the infinite stuttering defined in the event Abort.

Activation =̂
when idle = TRUE
then idle := FALSE
end

Body =̂
when idle = FALSE ∧ goal = not reached
then goal :∈ STATUS

end

Finish =̂
when idle = FALSE ∧ goal = reached
then goal, idle := not reached, TRUE
end

Abort =̂
when goal = failed
then skip

end

Formal Development and Assessment of a Reconfigurable System 217

Goal Decomposition. The aim of our first refinement step is to define the
goal execution flow. We assume that the goal is decomposed into n tasks, and
can be achieved by a sequential execution of one task after another. We also
assume that the id of each task is defined by its execution order. Initially, when
the goal is assigned, none of the tasks is executed, i.e., the state of each task
is “not defined” (designated by the constant value ND). After the execution,
the state of a task might be changed to success or failure, represented by the
constants OK andNOK correspondingly. Our refinement step is essentially data
refinement that replaces the abstract variable goal with the new variable task
that maps the id of a task to its state, i.e., task ∈ 1..n → {OK,NOK,ND}.

We omit showing the events of the refined model (the complete development
can be found in [13]). They represent the process of sequential selection of one
task after another until either all tasks are executed, i.e., the goal is reached, or
execution of some task fails, i.e., goal is not achieved. Correspondingly, the guards
ensure that either the goal reaching has not commenced yet or the execution of
all previous task has been successful. The body of the events nondeterministically
changes the state of the chosen task to OK or NOK. The following invariants
define the properties of the task execution flow:

∀l · l ∈ 2 .. n ∧ task(l) �= ND ⇒ (∀i · i ∈ 1 .. l − 1⇒ task(i) = OK),

∀l · l ∈ 1 .. n− 1 ∧ task(l) �= OK ⇒ (∀i · i ∈ l + 1 .. n⇒ task(i) = ND).

They state that the goal execution can progress, i.e., a next task can be chosen for
execution, only if none of the previously executed tasks failed and the subsequent
tasks have not been executed yet.

From the requirements perspective, the refined model should guarantee that
the system level goal remains achievable. This is ensured by the gluing invariants
that establish the relationship between the abstract goal and the tasks:

task[1 .. n] = {OK} ⇒ goal = reached,

(task[1 .. n] = {OK,ND} ∨ task[1 .. n] = {ND})⇒ goal = not reached,

(∃i · i ∈ 1 .. n ∧ task(i) = NOK)⇒ goal = failed.

Introducing Abstract Communication. In the second refinement step we
introduce an abstract model of communication. We define a new variable ct that
stores the id of the last achieved task. The value of ct is checked every time when
a new task is to be chosen for execution. If task execution succeeds then ct is
incremented. Failure to execute the task leaves ct unchanged and results only
in the change of the failed task status to NOK. Essentially, the refined model
introduces an abstract communication via shared memory. The following gluing
invariants allow us to prove the refinement:

ct > 0⇒ (∀i · i ∈ 1 .. ct⇒ task(i) = OK), ct < n⇒ task(ct+ 1) ∈ {ND,NOK},
ct < n− 1⇒ (∀i · i ∈ ct+ 2 .. n⇒ task(i) = ND).

As discussed in Section 2, each task is independently executed by a separate
component of a high-level module. Hence, by substituting the id of a task with
the id of the corresponding component, i.e., performing a data refinement with
the gluing invariant

∀i ∈ 1..n · task(i) = comp(i),

218 A. Tarasyuk et al.

we specify a non-redundant system architecture. This invariant trivially defines
the relation Φ. Next we demonstrate how to introduce either a triplicated archi-
tecture or duplicated architecture with a dynamic reconfiguration by refinement.

4.2 Reconfiguration Strategies

To define triplicated architecture with static reconfiguration, we define three
identical modules A, B and C. Each module consists of n components execut-
ing corresponding tasks. We refine the abstract variable task by the three new
variables a comp, b comp and c comp:

a comp ∈ 1..n → STATE, b comp ∈ 1..n → STATE, c comp ∈ 1..n → STATE.

To associate the tasks with the components of each module, we formulate a
number of gluing invariants that essentially specify the relation Φ. Some of these
invariants are shown below:

∀i · i ∈ 1 .. n ∧module = A ∧ a comp(i) = OK ⇒ task(i) = OK,

module = A⇒ (∀i · i ∈ 1 .. n⇒ b comp(i) = ND ∧ c comp(i) = ND),

∀i · i ∈ 1 .. n ∧module = A ∧ a comp(i) �= OK ⇒ task(i) = ND,

∀i · i ∈ 1 .. n ∧module = B ∧ b comp(i) �= OK ⇒ task(i) = ND,

∀i · i ∈ 1 .. n ∧module = C ⇒ c comp(i) = task(i),

module = B ⇒ (∀i · i ∈ 1 .. n⇒ c comp(i) = ND).

Here, a new variable module ∈ {A,B,C} stores the id of the currently active
module. The complete list of invariants can be found in [13]. Please note, that
these invariants allows us to mathematically prove that the Event-B model pre-
serves the desired system architecture.

An alternative way to perform this refinement step is to introduce a duplicated
architecture with dynamic reconfiguration. In this case, we assume that our
system consists of two modules, A and B, defined in the same way as discussed
above. We replace the abstract variable task with two new variables a comp and
b comp. Below we give an excerpt from the definition of the gluing invariants:

module = A ∧ ct > 0 ∧ a comp(ct) = OK ⇒ task(ct) = OK,

module = B ∧ ct > 0 ∧ b comp(ct) = OK ⇒ task(ct) = OK,

∀i · i ∈ 1 .. n ∧ a comp(i) = NOK ∧ b comp(i) = NOK ⇒ task(i) = NOK,

∀i · i ∈ 1 .. n ∧ a comp(i) = NOK ∧ b comp(i) = ND ⇒ task(i) = ND,

∀i · i ∈ 1 .. n ∧ b comp(i) = NOK ∧ a comp(i) = ND ⇒ task(i) = ND.

Essentially, the invariants define the behavioural patterns for executing the tasks
according to dynamic reconfiguration scenario described in Section 2.

Since our goal is to study the fault tolerance aspect of the system architecture,
in our Event-B model we have deliberately abstracted away from the represen-
tation of the details of the system behaviour. A significant number of functional
requirements is formulated as gluing invariants. As a result, to verify correctness
of the models we discharged more than 500 proof obligations. Around 90% of
them have been proved automatically by the Rodin platform and the rest have
been proved manually in the Rodin interactive proving environment.

Formal Development and Assessment of a Reconfigurable System 219

Note that the described development for a generic system can be easily in-
stantiated to formally derive fault tolerant architectures of DPU. The goal of
DPU – handling the scientific TC by producing TM – is decomposed into four
tasks that define the production of data by the satellite’s sensor units – SIXS-X,
SIXS-P, MIXS-T and MIXS-C. Thus, for such a model we have four tasks (n=4)
and each task is handled by the corresponding computing component of DPU.
The high-level modules A, B and C correspond to three identical DPUs that
control handling of scientific TC – DPUA, DPUB and DPUC , while functions
a comp, b comp and c comp represent statuses of their internal components.

From the functional point of view, both alternatives of the last refinement
step are equivalent. Indeed, each of them models the process of reaching the
goal by a fault tolerant system architecture. In the next section we will present
a quantitative assessment of their reliability and performance aspects.

5 Quantitative Assessment of Reconfiguration Strategies

The scientific mission of BepiColombo on the orbit of the Mercury will last for
one year with possibility to extend this period for another year. Therefore, we
should assess the reliability of both architectural alternatives for this period of
time. Clearly, the triplicated DPU is able to tolerate up to three DPU failures
within the two-year period, while the use of a duplicated DPU with a dynamic
reconfiguration allows the satellite to tolerate from one (in the worst case) to
four (in the best case) failures of the components.

Obviously, the duplicated architecture with a dynamic configuration min-
imises volume and the weight of the on-board equipment. However, the dynamic
reconfiguration requires additional inter-component communication that slows
down the process of producing TM. Therefore, we need to carefully analyse the
performance aspect as well. Essentially, we need to show that the duplicated
system with the dynamic reconfiguration can also provide a sufficient amount of
scientific TM within the two-year period.

To perform the probabilistic assessment of reliability and performance, we
rely on two types of data:

– probabilistic data about lengths of time delays required by DPU components
and sensor units to produce the corresponding parts of scientific data

– data about occurrence rates of possible failures of these components

It is assumed that all time delays are exponentially distributed. We refine the
Event-B specifications obtained at the final refinement step by their proba-
bilistic counterparts. This is achieved via introducing probabilistic information
into events and replacing all the local nondeterminism with the (exponential)
race conditions. Such a refinement relies on the model transformation presented
in Section 3. As a result, we represent the behaviour of Event-B machines by
CTMCs. This allows us to use the probabilistic symbolic model checker PRISM
to evaluate reliability and performance of the proposed models.

Due to the space constraints, we omit showing the PRISM specifications in
the paper, they can be found in [13]. The guidelines for Event-B to PRISM model
transformation can be found in our previous work [14].

220 A. Tarasyuk et al.

The results of quantitative verification performed by PRISM show that with
probabilistic characteristics of DPU presented, in Table 11, both reconfiguration
strategies lead to a similar level of system reliability and performance with in-
significant advantage of the triplicated DPU. Thus, the reliability levels of both
systems within the two-year period are approximately the same with the differ-
ence of just 0.003 at the end of this period (0.999 against 0.996). Furthermore,
the use of two DPUs under dynamic reconfiguration allows the satellite to han-
dle only 2 TCs less after two years of work – 1104 against 1106 returned TM
packets in the case of the triplicated DPU. Clearly, the use of the duplicated
architecture with dynamic reconfiguration to achieve the desired levels of relia
bility and performance is optimal for the considered system.

Table 1. Rates (time is measured by minutes)

TC access rate when the system is idle λ 1
12·60 SIXS-P work rate α2

1
30

TM output rate when a TC is handled μ 1
20

SIXS-P failure rate β2
1

106

Spare DPU activation rate (power on) δ 1
10

MIXS-T work rate α3
1
30

DPUs “communication” rate τ 1
5

MIXS-T failure rate β3
1

9·107

SIXS-X work rate α1
1
60

MIXS-C work rate α4
1
90

SIXS-X failure rate β1
1

8·107 MIXS-C failure rate β4
1

6·107

Finally, let us remark that the goal-oriented style of the reliability and per-
formance analysis has significantly simplified the assessment of the architectural
alternatives of DPU. Indeed, it allowed us to abstract away from the configura-
tion of input and output buffers, i.e., to avoid modelling of the circular buffer as
a part of the analysis.

6 Conclusions and Related Work

In this paper we proposed a formal approach to development and assessment
of fault tolerant satellite systems. We made two main technical contributions.
On the one hand, we defined the guidelines for development of the dynamically
reconfigurable systems. On the other hand, we demonstrated how to formally
assess reconfiguration strategy and evaluate whether the chosen fault tolerance
mechanism fulfils reliability and performance objectives. The proposed approach
was illustrated by a case study – development and assessment of the reconfig-
urable DPU. We believe that our approach not only guarantees correct design of
complex fault tolerance mechanisms but also facilitates finding suitable trade-offs
between reliability and performance.

1 Provided information may differ form the characteristics of the real components. It is
used merely to demonstrate how the required comparison of reliability/performance
can be achieved.

Formal Development and Assessment of a Reconfigurable System 221

A large variety of aspects of the dynamic reconfiguration has been studied
in the last decade. For instance, Wermelinger et al. [17] proposed a high-level
language for specifying the dynamically reconfigurable architectures. They focus
on modifications of the architectural components and model reconfiguration by
the algebraic graph rewriting. In contrast, we focused on the functional rather
than structural aspect of reasoning about reconfiguration.

Significant research efforts are invested in finding suitable models of triggers
for run-time adaptation. Such triggers monitor performance [3] or integrity [16]
of the application and initiate reconfiguration when the desired characteristics
are not achieved. In our work we perform the assessment of reconfiguration strat-
egy at the development phase that allows us to rely on existing error detection
mechanisms to trigger dynamic reconfiguration.

A number of researchers investigate self* techniques for designing adaptive
systems that autonomously achieve fault tolerance, e.g., see [4,10]. However,
these approaches are characterised by a high degree of uncertainty in achieving
fault tolerance that is unsuitable for the satellite systems. The work [5] proposes
an interesting conceptual framework for establishing a link between changing
environmental conditions, requirements and system-level goals. In our approach
we were more interested in studying a formal aspect of dynamic reconfiguration.

In our future work we are planning to further study the properties of dynamic
reconfiguration. It particular, it would be interesting to investigate reconfigura-
tion in the presence of parallelism and complex component interdependencies.

References

1. Abrial, J.-R.: Modeling in Event-B. Cambridge University Press (2010)
2. BepiColombo: ESA Media Center, Space Science,

http://www.esa.int/esaSC/SEMNEM3MDAF_0_spk.html

3. Caporuscio, M., Di Marco, A., Inverardi, P.: Model-Based System Reconfiguration
for Dynamic Performance Management. J. Syst. Softw. 80, 455–473 (2007)

4. de Castro Guerra, P.A., Rubira, C.M.F., de Lemos, R.: A Fault-Tolerant Software
Architecture for Component-Based Systems. In: Architecting Dependable Systems,
pp. 129–143. Springer (2003)

5. Goldsby, H.J., Sawyer, P., Bencomo, N., Cheng, B., Hughes, D.: Goal-Based Mod-
eling of Dynamically Adaptive System Requirements. In: ECBS 2008, pp. 36–45.
IEEE Computer Society (2008)

6. Grunske, L.: Specification Patterns for Probabilistic Quality Properties. In: ICSE
2008, pp. 31–40. ACM (2008)

7. Kelly, T.P., Weaver, R.A.: The Goal Structuring Notation – A Safety Argument
Notation. In: DSN 2004, Workshop on Assurance Cases (2004)

8. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: Verification of Probabilistic
Real-Time Systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011)

9. van Lamsweerde, A.: Goal-Oriented Requirements Engineering: A Guided Tour.
In: RE 2001, pp. 249–263. IEEE Computer Society (2001)

10. de Lemos, R., de Castro Guerra, P.A., Rubira, C.M.F.: A Fault-Tolerant Architec-
tural Approach for Dependable Systems. IEEE Software 23, 80–87 (2006)

11. Rodin: Event-B Platform, http://www.event-b.org/

http://www.esa.int/esaSC/SEMNEM3MDAF_0_spk.html
http://www.event-b.org/

222 A. Tarasyuk et al.

12. Space Engineering: Ground Systems and Operations – Telemetry and Telecom-
mand Packet Utilization: ECSS-E-70-41A. ECSS Secretariat (January 30, 2003),
http://www.ecss.nl/

13. Tarasyuk, A., Pereverzeva, I., Troubitsyna, E., Latvala, T., Nummila, L.: Formal
Development and Assessment of a Reconfigurable On-board Satellite System. Tech.
Rep. 1038, Turku Centre for Computer Science (2012)

14. Tarasyuk, A., Troubitsyna, E., Laibinis, L.: Quantitative Reasoning about Depend-
ability in Event-B: Probabilistic Model Checking Approach. In: Dependability and
Computer Engineering: Concepts for Software-Intensive Systems, pp. 459–472. IGI
Global (2011)

15. Tarasyuk, A., Troubitsyna, E., Laibinis, L.: Formal Modelling and Verification
of Service-Oriented Systems in Probabilistic Event-B. In: Derrick, J., Gnesi, S.,
Latella, D., Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 237–252. Springer,
Heidelberg (2012)

16. Warren, I., Sun, J., Krishnamohan, S., Weerasinghe, T.: An Automated Formal Ap-
proach to Managing Dynamic Reconfiguration. In: ASE 2006, pp. 18–22. Springer
(2006)

17. Wermelinger, M., Lopes, A., Fiadeiro, J.: A Graph Based Architectural Reconfig-
uration Language. SIGSOFT Softw. Eng. Notes 26, 21–32 (2001)

http://www.ecss.nl/

	Formal Development and Assessment of a Reconfigurable On-board Satellite System
	Introduction
	Reconfigurable Fault Tolerant Systems
	Case Study: Data Processing Unit
	Goal-Oriented Reasoning about Fault Tolerance
	Probabilistic Assessment

	Modelling in Event-B and Probabilistic Analysis
	Modelling and Refinement in Event-B
	Augmenting Event-B Models with Probabilities

	Deriving Fault Tolerant Architectures by Refinement in Event-B
	Modelling Goal Reaching
	Reconfiguration Strategies

	Quantitative Assessment of Reconfiguration Strategies
	Conclusions and Related Work
	References

