
Online Black-Box Failure Prediction for Mission

Critical Distributed Systems

Roberto Baldoni1, Giorgia Lodi1, Luca Montanari1, Guido Mariotta1,
and Marco Rizzuto2

1 “Sapienza” University of Rome, Via Ariosto 25, 00185, Rome, Italy
2 Selex Sistemi Integrati, Finmeccanica Group, Rome, Italy

Abstract. This paper introduces a novel approach to failure prediction
for mission critical distributed systems that has the distinctive features to
be black-box, non-intrusive and online. The approach combines Complex
Event Processing (CEP) and Hidden Markov Models (HMM) so as to
analyze symptoms of failures that might occur in the form of anomalous
conditions of performance metrics identified for such purpose. The paper
describes an architecture named CASPER, based on CEP and HMM,
that relies on sniffed information from the communication network of a
mission critical system, only, for predicting anomalies that can lead to
software failures. An instance of CASPER has been implemented, trained
and tuned to monitor a real Air Traffic Control (ATC) system. An ex-
tensive experimental evaluation of CASPER is presented. The obtained
results show (i) a very low percentage of false positives over both normal
and under stress conditions, and (ii) a sufficiently high failure prediction
time that allows the system to apply appropriate recovery procedures.

1 Introduction

Context and Motivation.Distributed mission critical systems such as air traf-
fic control, battlefield or naval command and control systems consist of several
applications distributed over a number of nodes connected through a LAN or
WAN. The applications are constructed out of communicating software compo-
nents that are deployed on those nodes and may change over time. The dynamic
nature of applications is principally due to (i) the employed policies for resilience
to software or hardware failures, (ii) the adopted load balancing strategies or (iii)
the management of new comers. In such complex real time systems, failures may
happen with potentially catastrophic consequences for their entire functioning.
The industrial trend is to face failures by using, during operational system life,
supervision services that are not only capable of detecting and certificating a
failure, but also predicting and preventing it through an analysis of the overall
system behavior. Such services shall have a minimum impact on the supervised
system and possibly no interaction with the operational applications. The goal
is to plug-in a “ready-to-use observer” that acts at run time and is both non-
intrusive and black-box, i.e., it considers nodes and applications as black boxes.

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012, LNCS 7612, pp. 185–197, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



186 R. Baldoni et al.

In mission critical systems, a large amount of data deriving from communica-
tions among applications transits on the network; thus, the ”observer” can focus
on that type of data, only, in order to recognize many aspects of the actual in-
teractions among the components of the system. The motivation to adopt this
non-intrusive and black-box approach is twofold. Firstly, applications change
and evolve over time: grounding failure prediction on the semantic of the appli-
cations’ communications would require a deep knowledge of the specific system
design, a proven field experience, and a non-negligible effort to keep aligned the
supervision service to the controlled system. Secondly, interactions between the
service and system to be monitored might lead to unexpected behaviors, hardly
manageable as fully unknown and unpredictable.

Contribution. In this paper we introduce the design, implementation and ex-
perimental evaluation of a novel online, non-intrusive and black-box failure pre-
diction architecture we named CASPER that can be used for monitoring mission
critical distributed systems. CASPER is (i) online, as the failure prediction is
carried out during the normal functioning of the monitored system, (ii) non-
intrusive, as the failure prediction does not use any kind of information on the
status of the nodes (e.g., CPU, memory) of the monitored system; only infor-
mation concerning the network to which the nodes are connected is exploited
as well as that regarding the specific network protocol used by the system to
exchange information among the nodes (e.g., SOAP, GIOP); and (iii) black-box,
as no knowledge of the application’s internals and of the application logic of the
system is analyzed. Specifically, the aim of CASPER is to recognize any devi-
ation from normal behaviors of the monitored system by analyzing symptoms
of failures that might occur in the form of anomalous conditions of specific per-
formance metrics. In doing so, CASPER combines, in a novel fashion, Complex
Event Processing (CEP) [1] and Hidden Markov Models (HMM) [2]. The CEP
engine computes at run time the performance metrics. These are then passed
to the HMM in order to recognize symptoms of an upcoming failure. Finally,
the symptoms are evaluated by a failure prediction module that filters out as
many false positives as possible and provides at the same time a failure pre-
diction as early as possible. Note that we use HMM rather than other more
complex dynamic bayesian networks [3] since it provides us with high accu-
racy, with respect to the problem we wish to address, through simple and low
complexity algorithms. We deployed CASPER for monitoring a real Air Traffic
Control (ATC) system. Using the network data of such a system in the presence
of both steady state performance behaviors and unstable state behaviors, we
first trained CASPER in order to stabilize HMM and tune the failure prediction
module. Then we conducted an experimental evaluation of CASPER that aimed
to show its effectiveness in timely predicting failures in the presence of memory
and I/O stress conditions.

Related Work. A large body of research is devoted to the investigation of
approaches to online failure prediction. [4] presents an error monitoring-based
failure prediction technique that uses Hidden Semi-Markov Model (HSMM) in
order to recognize error patterns that can lead to failures. This approach is



Black-Box Failure Prediction for Mission Critical Distributed Systems 187

event-driven as no time intervals are defined: the errors are events that can
be triggered anytime. [5] describes two non-intrusive data driven modeling ap-
proaches to error monitoring: one based on a Discrete Time Markov Model, and
a second approach based on function approximation. The difference between
our approach and these works is twofold: firstly we propose a symptoms mon-
itoring system in contrast to error monitoring, moreover, our approach is not
event-based but it can be defined period-based [6] as we use Hidden Markov
Models (discrete time) to recognize, in the short term, patterns of specific per-
formance metrics exhibiting the evidence of symptoms of failures. In the context
of symptoms monitoring mechanisms, there exist research works that use black-
box approaches [7]. [8] presents ALERT; an anomaly prediction system that
considers the hosts of the monitored system as black-boxes and that collects
metrics concerning CPU consumption, memory usage, input/output data rate.
The authors in [9] consider the problem of discovering performance bottlenecks
in large scale distributed systems consisting of black-box software components.
The system introduced in [9] solves the problem by using message-level traces
related to the activity of the monitored system in a non-intrusive fashion (pas-
sively and without any knowledge of node internals or semantics of messages).
[10] analyzes the correlation in time and space of failure events and implements
a long-term failure prediction framework named hPrefects for such a purpose.

We differ from the earlier mentioned works as we employ an approach that
is not only black-box but also non-intrusive. It is true that we use message-
level traces as [9]; however, we combine in a novel fashion both CEP for network
performance metrics computation and HMM to infer the system state. Note that
typically HMM is widely used in failure prediction to build a components’ state
diagnosis [11]. In our architecture the entire system state is modeled as a hidden
state and thus inferred by HMM.

Finally, there exist other types of researches [12] that apply online failure
prediction to distributed stream processing systems, mostly using decision tree
and classifiers. We do not specifically target these systems, and we use different
techniques (CEP and HMM) to predict failures.

Structure of the Paper. Section 2 presents the failure and prediction model
we adopt in the design of CASPER described in section 3. Section 4 introduces
CASPER implementation for a real ATC mission critical system. Section 5 dis-
cusses the experimental evaluation of CASPER we have conducted in ATC.
Finally, section 6 concludes the paper highlighting our future works.

2 Failure and Prediction Model

We model the distributed system to be monitored as a set of nodes that run
one or more services. Nodes exchange messages over a communication network.
Nodes or services can be subject to failures. A failure is an event for which
the service delivered by a system deviates from its specification [13]. A failure
is always preceded by a fault (e.g., I/O error, memory misusage); however, the



188 R. Baldoni et al.

Time

Failure

Symptom

Fault

Prediction Limit

time-to-prediction time-to-failure

Fig. 1. Fault, Symptoms, Failure and
Prediction

CASPER Symptoms Detection
Performance 

Metrics 
Computation

System State 
Inference

Pre-Processing
SymbolsEvents Failure 

Prediction

Network Packets

Inferred
System
State

Prediction

Host N

Monitored System

Host 1 Host 2 Host 3

Communication Network

Actions

Knowledge
Base

Fig. 2. The modules of the CASPER fail-
ure prediction architecture

vice versa might not be always true. i.e., a fault inside a system could not always
bring to a failure as the system could tolerate, for example by design, such fault.

Faults that lead to failures, independently of the fault’s root cause, affect the
system in an observable and identifiable way. Thus, faults can generate side-
effects in the monitored systems till the failure occurs. Our work is based on the
assumptions that a fault generates increasingly unstable performance-related
symptoms indicating a possible future presence of a failure, and that the system
exhibits a steady-state performance behavior with a few variations when a non-
faulty situation is observed [14,15,7]. In Figure 1 we define Time-to-failure the
distance in time between the occurrence of the prediction and the software failure
event. The prediction has to be raised before a time Limit, beyond which the
prediction is not sufficiently in advance to take some effective actions before
the failure occurs. We also consider the time-to-prediction which represents the
distance between the occurrence of the first symptom of the failure and the
prediction.

3 The CASPER Failure Prediction Architecture

The architecture designed is named CASPER and is deployed in the same sub-
network as the distributed system to be monitored. Figure 2 shows the principal
modules of CASPER that are described in isolation as follows.

Pre-processing Module. It is mainly responsible for capturing and decod-
ing network data required to recognize symptoms of failures and for producing
streams of events. The network data the Pre-Processing module receives as input
are properly manipulated. Data manipulation consists in firstly decoding data
included in the headers of network packets. The module manages TCP/UDP
headers and the headers of the specific inter-process communication protocol
used in the monitored system (e.g., SOAP, GIOP, etc) so as to extract from
them only the information that is relevant in the detection of specific symptoms
(e,g., the timestamp of a request and reply, destination and source IP addresses
of two communicating nodes). Finally, the Pre-Processing module adapts the
extracted network information in the form of events to produce streams for the
use by the second CASPER’s module (see below).



Black-Box Failure Prediction for Mission Critical Distributed Systems 189

Safe Unsafe1

σ2σ1 σMσ3

Unsafe2 UnsafeK

Hidden Process

Symbols

0.8

0.2 0.6 0.4 0.2 0.9

0.2 0.7

0.3

Fig. 3. Hidden Markov Models graph used in the system state inference component

Symptoms Detection Module. The streams of events are taken as input
by the Symptoms detection module and used to discover specific performance
patterns through complex event processing (i.e., event correlations and aggrega-
tions). The result of this processing is a system state that must be evaluated in
order to detect whether it is a safe or unsafe state. To this end, we divided this
module into two different components, namely a performance metrics computa-
tion component and a system state inference component.

The performance metrics computation component uses a CEP engine for cor-
relation and aggregation purposes. It then periodically produces as output a rep-
resentation of the system behavior in the form of symbols. Note that, CASPER
requires a clock mechanism in order to carry out this activity at each CASPER
clock cycle. The clock in CASPER allows it to model the system state using a
discrete time Markov chain and let the performance metrics computation com-
ponent coordinate with the system state inference one (see below). The represen-
tation of the system behavior at run time is obtained by computing performance
metrics, i.e., a set of time-changing metrics whose value indicates how the system
actually works (an example of network performance metric can be the round trip
time). In CASPER we denote symbols as σm (see Figure 3), wherem = 1, . . . ,M .
Each symbol is built by the CEP engine starting from a vector of performance
metrics: assuming P performance metrics, at the end of the time interval (i.e.
the clock period), the CEP engine produces a symbol combining the P values.
The combination of performance metrics is the result of a discretization and a
normalization: each continuous variable is discretized into slots of equal lengths.
The produced symbol represents the system status during the clock period1.

The system state inference component receives a symbol from the previous
component at each CASPER clock cycle and recognizes whether it is a correct or
an incorrect behavior of the monitored system. To this end, the component uses
the Hidden Markov Models’ forward probability [2] to compute the probability
that the model is in a given state using a sequence of emitted symbols and a
knowledge base(see Figure 2). We model the system state to be monitored by
means of the hidden process. We define the states of the system (see Figure 3)
as Safe, i.e., the system behavior is correct as no active fault [13] is present; and
Unsafe, i.e., some faults, and then symptoms of faults, are present.

Failure Prediction Module. It is mainly responsible for correlating the infor-
mation about the state received from the system state inference component of

1 For further details please refer to the technical report [16].



190 R. Baldoni et al.

the previous CASPER module. It takes in input the inferred state of the system
at each CASPER clock-cycle. The inferred state can be a safe state or one of the
possible unsafe states. Using the CEP engine, this module counts the number of
consecutive unsafe states and produces a failure prediction alert when that num-
ber reaches a tunable threshold (see below). We call this threshold window size,
a parameter that is strictly related to the time-to-prediction shown in Figure 1.

3.1 Training of CASPER

The knowledge base concerning the possible safe and unsafe system states of the
monitored system is composed by the parameters of the HMM. This knowledge is
built during an initial training phase. Specifically, the parameters are adjusted by
means of a training phase using the max likelihood state estimators of the HMM
[2]. During the training, CASPER is fed concurrently by both recorded network
traces and a sequence of pairs <system-state,time>. Each pair represents the
fact that at time <time> the system state changed in <system-state>2.

3.2 Tuning of CASPER Parameters

CASPER architecture has three parameters to be tuned whose values influence
the quality of the whole failure prediction mechanism in terms of false positives
and time-to-prediction. These values are (i) the length of the CASPER clock pe-
riod ; (ii) the number of symbols output by the performance metrics computation
module; (iii) the length of the failure prediction, i.e., window size.

The length of the clock period influences the performance metrics computa-
tion and the system state inference: the shorter the clock period is, the higher
the frequency of produced symbols is. A longer clock period allows CASPER to
minimize the effects of outliers. The number of symbols influences the system
state inference: if a high number of symbols is chosen, a higher precision for each
performance metrics can be obtained. The failure prediction window size corre-
sponds to the minimum number of CASPER clock cycles required for raising a
prediction alert. The greater the window size, the more the accuracy of the pre-
diction, i.e., the probability that the prediction actually is followed by a failure
(i.e. a true positive prediction). The tradeoff is that the time-to-prediction in-
creases linearly with the windows size causing shorter time-to-failure (see Figure
1); During the training phase, CASPER automatically chooses the best values
for both clock period and number of symbols, leaving to the operator the re-
sponsibility to select the windows size according to the criticality of the system
to be monitored.

4 Monitoring a Corba-Based ATC System with CASPER

CASPER has been specialized to monitor a real Air Traffic Control system.
ATC systems are composed by middleware-based applications running over a

2 As the training is offline, the sequence of pairs <system-state,time> can be created
offline by the operator using network traces and system log files.



Black-Box Failure Prediction for Mission Critical Distributed Systems 191

collection of nodes connected through a Local Area Network (LAN). The ATC
system that we monitored is based on CORBA [17] middleware. CASPER inter-
cepts GIOP messages produced by the CORBA middleware and extracts several
information from themin order to build the representation of the system at run
time. In this section we describe how the events are represented starting from
the GIOP messages and how the performance metrics representing the system
state are computed.

Event Representation. Each GIOP message intercepted by CASPER becomes
an event feeding the CEP engine of the performance metrics computation com-
ponent. Each event contains (i)Request ID : The identifier of a request-reply
interaction between two CORBA entities; (ii)Message Type: A field that charac-
terizes the message and that can assume different values (e.g., Request, Reply,
Close Connection) and (iii)Reply Status : It specifies whether there were excep-
tions during the request-reply interaction and, if so, the kind of the exception. In
addition, we insert into the event further information related to the lower level
protocols (TCP/UDP) such as source and destination IP, port, and timestamp.
In order not to capture sensitive information of the ATC system (such as flight
plans or routes), CASPER ignores the payload of the messages.

Performance Metrics. Events sent to the CEP engine are correlated online
so as to produce so-called performance metrics. After long time of observations
of several metrics of the ATC CORBA-based system, we identified the following
small set of metrics that well characterize the system, showing a steady behavior
in case of absence of faults, and an unstable behavior in presence of faults:

– Round Trip Time: elapsed time between a request and the relative reply;
– Rate of the messages carrying an exception: the number of reply messages

with exception over the number of caught messages;
– Average message size: the mean of the messages size;
– Percentage of Replies: the number of replies over the number of requests in

a given spatial or temporal window;
– Number of Requests without Reply: the number of requests expecting a reply

that do not receive the reply;
– Messages Rate: the number of messages exchanged in a fixed time.

To compute the performance metrics we correlate the sniffed network data using
the CEP engine ESPER [1]. This choice is motivated by its low cost of ownership
compared to other similar systems (e.g. [18]) and its offered usability.

5 CASPER Experimental Evaluation

We deployed CASPER so as to monitor an Air Traffic Control system of Selex
Sistemi Integrati, one of the major players of the ATC market. The first part of
the work on the field has been to collect a large amount of network traces from
the ATC underlying communication network when in operation. These traces
represented steady state performance behaviors. Additionally, on the testing



192 R. Baldoni et al.

environment of the ATC system we stressed some of the nodes till achieving
software failure conditions, and we collected the relative traces. In our test field,
we consider one of the nodes of the ATC system to be affected by either Memory
or I/O stress (according to the experience of the ATC designers, these two stress
conditions are typical of the observed system). After collecting all these traces,
we trained CASPER. At end of the training phase, we deployed CASPER again
on the testing environment of the ATC system in order to conduct experiments
in operative conditions. Our evaluation assesses the system state inference com-
ponent accuracy and the failure prediction module accuracy. In particular, we
evaluate the former in terms of Ntp (number of true positives) the system state is
unsafe and the inferred state is “system unsafe”; Ntn (number of true negatives):
the system state is safe and the inferred state is “system safe”; Nfp (number of
false positive): the system state is safe but the inferred state is “system unsafe”;
and Nfn (number of false negatives): the system state is unsafe but the inferred
state is “system safe”. Using these parameters, we compute the following metrics
that define the accuracy of CASPER: We evaluate the latter module in terms

Precision: p =
Ntp

Ntp+Nfp
Recall (TP rate): r =

Ntp

Ntp+Nfn

F-measure: F = 2× p×r
p+r

FP Rate: f.p.r. =
Nfp

Nfp+Ntn

of Nfp (number of false positive): the module predicts a failure that is not actu-
ally coming and Nfn (number of false negatives): the module does not predict a
failure that is coming.

Testbed. We deployed CASPER in a dedicated host located in the same LAN
as the ATC system to be monitored (see Figure 2). This environment is actually
the testing environment of the ATC system where new solutions are tested before
getting into the operational ATC system. The testing environment is composed
by 8 machines, 16 cores 2.5 GHz CPU, 16 GB of RAM each one. It is important
to remark that CASPER does not know the application nor the service logic nor
the testbed details.

5.1 Faults and Failures

The ATC testbed includes two critical servers: one of the server is responsible
for disk operations (I/O) and another server is the manager of all the services.
In order to induce software failures in the ATC system, we apply the following
actions in such critical servers: (i)memory stress ; that is, we start a memory-
bound component co-located with the manager of all ATC services, to grab
constantly increasing amount of memory resource; (ii)I/O stress ; that is, we
start an I/O-bound component co-located with the server responsible for disk
operations, to grab disk resources. In both cases we brought the system to the
failure of critical services. During the experiment campaign, we also considered
the CPU stress; however, we discovered that due to the high computational
power of the ATC nodes, the CPU stress never causes failures. For this reason
we decided not to show the results of these tests.



Black-Box Failure Prediction for Mission Critical Distributed Systems 193

5.2 Results

The results are divided in three subsections: the training of CASPER, the tuning
of the parameters (both before the deployment), and the failure prediction eval-
uation (using network traces and deploying the system). We considered three
performance metrics: Number of request without reply, Round Trip Time and
Message Rate, the more influenced by the stress conditions.

Training of CASPER.We trained CASPER (see Section 3.1) using the follow-
ing two types of recorded traces: a type of trace between 10 and 13 minute long
(5 traces in total) in which the ATC system exhibits a steady-state behavior.
These traces are taken from the ATC system when in operation; and a second
type of trace between 10 and 11 minute long (4 traces per each kind of injected
stress, i.e., memory and I/O stress) in which one of the services of the ATC
system fails. These traces are taken from ATC system’s testing environment.
During the training phase, the performance metrics computation component
produces a symbol at each CASPER clock cycle. Thanks to the set of pairs
<system-state,time> we are able to represent the emitted symbols in case of
safe and unsafe system states. Figure 4 illustrates these symbols. Each symbol
is calculated starting from a combination of three values. In this case, we have 6
possible values per each performance metric; the number of different symbols is
therefore 6× 6× 6 = 216. Observing Figure 4 we can notice that the majority of
the emissions belong to the interval [0, 2] for the Round Trip Time, and [0, 1] for
Number of Request Without Reply and Message Rate. Starting from the symbols
represented in Figure 4, the HMM-based component builds its knowledge base.

Tuning of CASPER Parameters: Clock Period and Number of
Symbols. After the training of HMM, CASPER requires a tuning phase to
set the clock period and number of symbols in order to maximize the accuracy
(F-measure, precision, recall and false positive rate) of the symptoms detection
module output. This tuning phase is done by feeding the system with a recorded
network trace (different from the one used during the training). We can see that
the best choice of the clock period is 800 milliseconds. CASPER tries 4 different
values of clock (100ms, 300ms, 800ms, 1000ms) and compute the F-Measure for
each value and for each possible number of symbols. A clock period of 800 mil-
liseconds yields a higher F-Measure value than the other clock values in most of
the number of symbols considered, thus, CASPER set the clock period to 800
milliseconds. Once fixed this clock period, the second parameter to define is the
number of symbols. Figure 5 shows the precision, recall, F-measure and false
positive rate of the symptoms detection module varying the number of sym-
bols. CASPER considers the maximum difference between the F-measure and
the false positive rate in order to choose the ideal number of symbols (ideally,
F-measure is equal to 1 and f.p.r. to 0). As shown in Figure 5, considering 216
symbols (6 values per performance metric) we obtain F = 0.82 and f.p.r. = 0.12
which is actually the best situation in case of memory stress.

Tuning of CASPER Parameters: Window Size. The window size is the
only parameter that has to be tuned by the operator according to the tradeoff



194 R. Baldoni et al.

discussed in Section 3.2. We experimentally noticed that during fault-free execu-
tions the system state inference still produced some false positives. However, the
probability that there exists a long sequence of false positives in steady-state is
very low. Thus, we designed the failure prediction module to recognize sequences
of consecutive clock cycles whose inferred state is not safe. Only if the sequence
is longer than a certain threshold CASPER rises a prediction. The length of
these sequences multiplied by the clock period (set to 800ms) is the window size.
The problem is then to set up a reasonable threshold in order to avoid false
positive predictions during steady-state. Figure 6 illustrates the number of the
false positive varying the window size. From this Figure it can be noted that
the window size has to be set to at least 16 seconds in order not to incur in
any false positives. Let us remark that the window size also corresponds to the
minimum time-to-prediction. All the results presented below are thus obtained
using a window size of 16 seconds.

Results of CASPER Failure Prediction. We run two types of experiments
once CASPER was trained and tuned. In the first type, we injected the faults
described in section 5.1 in the ATC testing environment and we carried out 10
tests for each type of fault3. In the second type, we observed the accuracy of
CASPER when monitoring for 24h the ATC system in operation. These types
of experiments and their related results are discussed in order as follows. As
first test, we injected a memory stress in one of the node of the ATC system
till a service failure. Figure 7 shows the anatomy of this failure in one test.
The ATC system runs with some false positive till the time the memory stress
starts at second 105. The sequence of false positives starting at second 37 is not
sufficiently long to create a false prediction. After the memory stress starts, the
failure prediction module outputs a prediction at second 128; thus, the time-to-
prediction4 is 23s. The failure occurs at second 335, then the time-to-failure is
207s, which is satisfactory with respect to ATC system recovery requirements. A
failure caused by I/O stress happens after 408 seconds from the start of the stress
(at second 190) and has been predicted at time 222 after 32 seconds of stress,
with a time-to-prediction equal to 376 seconds before the failure. In general,
we obtained that in the 10 tests we carried out, the time-to-failure in case of
memory stress varied in the range of [183s, 216s] and the time-to-prediction in
the range of [20.8s, 27s]. In case of I/O stress, in the 10 tests, the time-to-failure
varied in the rage of [353s, 402s] whereas the time-to-prediction in the range
of [19.2s, 24.9s]. Finally, we performed a 24h test deploying CASPER on the
network of the ATC system in operation. In these 24 hours the system exhibited
steady-state performance behavior. CASPER did not produce any false positive
along the day. Figure 8 depicts a portion of 400 seconds of this run.

3 The number of tests was limited by the physical access to the ATC testing environ-
ment. In fact, every experiment takes actually 2 hours to be completed due to data
storage, the stabilizing and rebooting of the ATC system after the failure.

4 The prediction time depends on how the system reacts to the injected stress and on
the injected stress itself.



Black-Box Failure Prediction for Mission Critical Distributed Systems 195

0
1

2
3

4
5

6

0
1

2
3

4
5

6
0

1

2

3

4

5

6

 

Number of Requsts 
Without Reply

Round Trip Time 

M
es

sa
ge

 R
at

e

System Safe Emissions

System Unsafe Emissions

Fig. 4. Symbols emitted by the perfor-
mance metrics computation component in
case of a recorded trace subject to mem-
ory stress

Number of Symbols

 

 

Fig. 5. Performance of the symptoms de-
tection module varying the number of
possible symbols in case of a recorded
trace subject to memory stress

4 8 12 16 20 24
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Window Size (Seconds)

P
er

ce
nt

ag
e 

of
 F

al
se

 P
os

iti
ve

s

Fig. 6. False positives varying the window
size. CASPER is fed with a recorded trace
behaving in steady-state.

0 37 100 200 300 335128

Safe State

Unsafe State

System State Inferred

Real System State

Prediction

Fig. 7. Failure prediction in case of mem-
ory stress starting at second 105. time-to-
prediction 23s, time-to-failure 207s.

0 50 100 150 200 250 300 350 400
Safe State

Unsafe State

Time (seconds)

 

 

System State Inferred

Fig. 8. 400 seconds of a steady-state run of the ATC system in operation



196 R. Baldoni et al.

6 Conclusions and Future Work

We presented an architecture to predict online failures of mission critical dis-
tributed systems. The failure prediction architecture, namely CASPER, pro-
vides accurate predictions of failures by exploiting only the network traffic of
the monitored system. In this way, it results non intrusive with respect to the
nodes hosting the mission critical system and it executes a black-block failure
prediction as no knowledge concerning the layout and the logic of the mission
critical distributed system is used. To the best of our knowledge, this is the first
failure detection system exhibiting all these features together. Let us remark
that the black-box characteristic has a strategic value for a company developing
such systems. Indeed from a company perspective the approach is succeeding
as long as the failure prediction architecture is loosely bound to the application
logic as this logic evolves continuously over time. This non intrusiveness of our
approach has the advantage that no additional load to the monitored system is
introduced and it can be applied in all the existing middleware based systems
without modifications of the architecture. As future work we are developing a
CASPER version capable of executing online training. i.e., the training is done
just connecting to the monitored system without any human intervention. This
will make CASPER a complete “plug-and-play” failure prediction system. The
advantage of the online training solution is that CASPER can analyze a huge
amount of network data. The disadvantage is that the training phase can last
for long time as CASPER does not have any external clue concerning the safe
or faulty system state.

References

1. Esper: Esper project web page (2011), http://esper.codehaus.org/

2. Rabiner, L., Juang, B.: An introduction to hidden markov models. IEEE ASSP
Magazine 3(1), 4–16 (1986)

3. Murphy, K.: Dynamic Bayesian Networks: Representation, Inference and Learning.
PhD thesis, UC Berkeley, Computer Science Division (2002)

4. Salfner, F.: Event-based Failure Prediction: An Extended Hidden Markov Model
Approach. PhD thesis, Department of Computer Science, Humboldt-Universität
zu Berlin, Germany (2008)

5. Hoffmann, G.A., Salfner, F., Malek, M.: Advanced Failure Prediction in Complex
Software Systems. Technical Report 172, Berlin, Germany (2004)

6. Yu, L., Zheng, Z., Lan, Z., Coghlan, S.: Practical online failure prediction for blue
gene/p: Period-based vs event-driven. In: Proc. of IEEE/IFIP DSN-W 2011, pp.
259–264 (2011)

7. Williams, A.W., Pertet, S.M., Narasimhan, P.: Tiresias: Black-box failure predic-
tion in distributed systems. In: Proc. of IEEE IPDPS 2007, Los Alamitos, CA,
USA (2007)

8. Tan, Y., Gu, X., Wang, H.: Adaptive system anomaly prediction for large-scale
hosting infrastructures. In: Proc. of ACM PODC 2010, pp. 173–182. ACM, New
York (2010)

http://esper.codehaus.org/


Black-Box Failure Prediction for Mission Critical Distributed Systems 197

9. Aguilera, M.K., Mogul, J.C., Wiener, J.L., Reynolds, P., Muthitacharoen, A.: Per-
formance debugging for distributed systems of black boxes. SIGOPS Oper. Syst.
Rev. 37, 74–89 (2003)

10. Fu, S., Zhong Xu, C.: Exploring event correlation for failure prediction in coalitions
of clusters (2007)

11. Daidone, A., Di Giandomenico, F., Bondavalli, A., Chiaradonna, S.: Hidden markov
models as a support for diagnosis: Formalization of the problem and synthesis of
the solution. In: SRDS 2006, Leeds, UK, pp. 245–256 (2006)

12. Gu, X., Papadimitrioul, S., Yu, P.S., Chang, S.P.: Online failure forecast for fault-
tolerant data stream processing. In: ICDE 2008, pp. 1388–1390 (2008)

13. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.E.: Basic concepts and tax-
onomy of dependable and secure computing. IEEE Trans. Dependable Sec. Com-
put. 1(1), 11–33 (2004)

14. Hood, C., Ji, C.: Proactive network-fault detection. IEEE Transactions on Relia-
bility 46(3), 333–341 (1997)

15. Thottan, M., Ji, C.: Properties of network faults. In: NOMS 2000, pp. 941–942
(2000)

16. Baldoni, R., Lodi, G., Mariotta, G., Montanari, L., Rizzuto, M.: Online Black-box
Failure Prediction for Mission Critical Distributed Systems. Technical report
(2012),
http://www.dis.uniroma1.it/~midlab/articoli/MidlabTechReport3-2012.pdf

17. Object Management Group: CORBA. Specification, Object Management Group
(2011)

18. IBM: System S Web Site (2011), http://domino.research.ibm.com/comm/
research projects.nsf/pages/esps.index.html

http://www.dis.uniroma1.it/~midlab/articoli/MidlabTechReport3-2012.pdf
http://domino.research.ibm.com/comm/research_projects.nsf/pages/esps.index.html
http://domino.research.ibm.com/comm/research_projects.nsf/pages/esps.index.html

	Online Black-Box Failure Prediction for Mission Critical Distributed Systems
	Introduction
	Failure and Prediction Model
	The CASPER Failure Prediction Architecture
	Training of CASPER
	Tuning of CASPER Parameters

	Monitoring a Corba-Based ATC System with CASPER
	CASPER Experimental Evaluation
	Faults and Failures
	Results

	Conclusions and Future Work
	References




