
Towards Secure Fieldbus Communication

Felix Wieczorek1, Christoph Krauß2, Frank Schiller1, and Claudia Eckert3

1 Beckhoff Automation, Scientific Safety & Security
Ostendstraße 196, D-90482 Nuremberg

{f.wieczorek,f.schiller}@beckhoff.com
2 Fraunhofer Research Institution AISEC

Parkring 4, D-85748 Garching
christoph.krauss@aisec.fraunhofer.de

3 Technische Universität München
Boltzmannstraße 3, D-85748 Garching

claudia.eckert@in.tum.de

Abstract. In this paper, we present an approach to secure fieldbus com-
munication of automation systems used in security-critical applications.
We propose a protocol that applies a scheme combining a stream ci-
pher and a Message Authentication Code (MAC) to ensure integrity,
confidentiality, authenticity, and freshness of transmitted telegrams over
a fieldbus while maintaining real-time constraints. The security discus-
sion shows that the protocol is secure against an adversary attacking
the fieldbus communication. A first proof-of-concept implementation for
the EtherCAT fieldbus protocol is implemented to perform some initial
runtime analyses.

Keywords: fieldbus, security, protocol.

1 Introduction

Industrial automation systems use fieldbus communication for real-time dis-
tributed control of systems such as water supply, energy distribution, or man-
ufacturing. Security for fieldbus communication was not considered to be an
important issue, since these systems were deployed typically in closed environ-
ments. However, since fieldbus installations become more and more automated
and cross-linked, security becomes more and more important. For example, the
cables of the fieldbus-connections in a wind park used to connect the wind tur-
bines with a central control system can be accessed by an adversary since it is
not possible to protect the whole area. If wireless fieldbuses [3] are used, attacks
such as eavesdropping on the communication are even much easier for an adver-
sary. Thus, security mechanisms have to be applied. To enable the compliance
with real-time requirements as well as to provide transparent security to higher
layers, security mechanisms have to be integrated into the fieldbus layer.

These security mechanisms have to protect the confidentiality of the fieldbus
communication to prevent an adversary from eavesdropping to get sensitive in-
formation such as the temperature profile of a beer brewing process, which may

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012, LNCS 7612, pp. 149–160, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

150 F. Wieczorek et al.

be confidential intellectual property. Furthermore, the authenticity of the com-
munication has to be ensured, i.e., the origin of data has to be genuine. This
prevents an adversary from injecting false data such as false temperature settings
in order to destroy the mash. To detect any unauthorized modification of data,
mechanisms for integrity protection are required. The detection of replayed old
data requires mechanisms to ensure the freshness of data. Finally, the availability
of the communication should be ensured, i.e., all authorized entities have access
to services or information as intended. However, this is hard to achieve since an
adversary may always perform Denial-of-Service (DoS) attacks, e.g., by simply
cutting the wire or by performing a jamming attack if wireless fieldbuses are
used. Thus, security mechanisms should at least not influence the availability of
the fieldbus communication during operation.

In this paper, we present a protocol to ensure the security goals integrity, con-
fidentiality, authenticity, and freshness of telegrams transmitted over a fieldbus.
The protocol is based on a scheme combining a stream cipher (SC) and a Mes-
sage Authentication Code (MAC). It is designed in such a way that the used SC
and MAC primitives can be easily substituted, e.g., if they become insecure or
more efficient primitives have been developed. The protocol is able to maintain
real-time requirements when integrated into a fieldbus as long as no attacks such
as DoS are performed, i.e., it guarantees secure telegram transmission within de-
fined boundaries. We discuss the security of our protocol and how it meets the
security goals. In addition, we present a first proof-of-concept implementation
for the EtherCAT fieldbus and some initial results of our runtime analyses.

2 Related Work

Since most fieldbus systems have been used in closed systems, only a few ap-
proaches are designed to provide security, e.g., [12] which is based on IEEE
802.15.4 [11]. Here, Block Ciphers (BCs) in CCM-mode are used, which are
padded to full block length. This is a major disadvantage when many short tele-
grams are transmitted like in typical fieldbus communication. Adding security
mechanisms such as IPsec for Internet Protocol (IP)-based fieldbuses is discussed
in [18]. Introducing security mechanisms at higher levels is also discussed in [19].
Secure industrial communication using Transmission Control Protocol/Internet
Protocol (TCP/IP) is addressed in [4], where the necessary reaction times of
automation fieldbuses cannot be reached.

In the area of Building Automation Control (BAC), an approach for secure field-
bus communication is presented in [16] using Data Encryption Standard (DES)
and Hashed MAC (HMAC) with SHA-1 on smartcards. In [7], the security of wire-
less BAC networks is discussed. BAC networks have smaller bandwidth and the
presented solutions are not fast enough for general fieldbuses in automation, where
the data rate is much higher and the real-time constraints tighter than in
BAC applications.

In [17], a multicast authentication protocol for fieldbuses based on MACs is
proposed. The focus is on automotive buses such as CAN. Mechanisms to provide
confidentiality are not discussed.

Towards Secure Fieldbus Communication 151

The bus systems used in the automotive domain such as CAN, LIN or Flexray
do not provide any security mechanisms [22,23]. In [22], an approach to secure
automotive bus communication is proposed, where the communication always
involves a central gateway as intermediary.

Some popular schemes that combine authentication and encryption on basis
of block-ciphers are OCB [15] or EAX [2].

We decided to use stream ciphers, since they can be implemented in hardware
easily to reach high performance and do not require padding of data. Stream
cipher schemes, providing combination of encryption and authentication, are
VMPC-MAC [25], Helix [6] and Phelix [20]. They create a Message Authenti-
cation Code (MAC) that depends on the specific design of the stream-cipher.
However, Phelix and Helix are considered insecure [24]. Another interesting ap-
proach is ASC [21]. However, the receiver has to decrypt first and then check
the integrity, which leads to more effort, than our approach, if telegrams are
corrupted.

To the best of our knowledge, there exists no efficient security protocol which
can be used in fieldbuses with high bandwidth and hard real-time requirements
for telegrams with various length. Previously proposed approaches cannot be
transferred without adaption, due to restrictions of the performance require-
ments. Thus, we developed a new approach which is based only on universal
properties of stream ciphers enabling the use of well evaluated stream ciphers as
well as an easy way to exchange them in case they become insecure.

3 Protocol Description

In this section, we describe our proposed protocol in detail. We first discuss the
requirements we address. Then we describe our scheme to combine a SC with a
MAC. Finally, we describe the protocol steps in detail.

3.1 Addressed Requirements

The protocol is designed to meet real-time requirements which are necessary
in fieldbus communication. Real-time in this context means the guarantee of
telegram transmission shorter than a fixed delay. This is commonly reached
by cyclic communication, which also allows detection of lost telegrams. The
worst-case execution time of all security algorithms, which is relevant for the
fieldbus performance, has to be limited to a fixed upper bound. Our proposed
protocol meets this requirement in the regular operation phase, which is usable
as long as all telegrams are correctly transmitted, by using only algorithms with
deterministic runtime. The tasks of the (not real-time capable) initial phase
need to be accomplished once, to distribute trust-anchors and keys, afterwards
the key-exchange has to be carried out periodically in maintenance intervals
where real-time constraints do not apply. Hybrid techniques similar to this one
are widely in use.

152 F. Wieczorek et al.

Furthermore, our protocol ensures authenticity, integrity, freshness, and con-
fidentiality of the fieldbus communication assuming an active attacker attack-
ing the fieldbus communication. Availability is not considered, since protection
against an active attacker is usually not possible.

An important design principle of our protocol is the exchangeability of the
used Stream Cipher (SC) and Message Authentication Code (MAC) primitives
and adaptability of security levels. If an underlying primitive becomes insecure
during the long life-time of automation systems, easy substitution is required to
fix those systems.

3.2 Generic SC and MAC Scheme

The generic SC and MAC scheme (cf. Figure 1) uses two distinct parts of the
output of only one SC. One part is used for encryption, the other as input of
a MAC scheme. We assume that the underlying MAC construction and the SC
are secure and have deterministic runtime.

The inputs of the scheme are

– payloads pl(0..n), all of the same fixed length (|pl(i)| = |pl(j)| ∀ 0 ≤ i, j ≤ n),
– a key k and
– an initialization vector iv.

The outputs of the scheme are

– ciphertexts c(0..n), and
– integrity protecting tags mac(0..n)

where each (c(i), mac(i)) pair corresponds to one payload (pl(i)).
Whenever the SC outputs a cipher-stream of the length |otpenc| + |otpmac|,

the internal state of the SC is updated (s(i + 1) = f(s(i))). The initial state
is derived from the key k and the initialization vector iv (s(0) = finit(k, iv)).
The cipher-stream is partitioned into the two parts otpmac(i) and otpenc(i), which
serve as inputs of the MAC and the encryption algorithms, respectively.

Note that usually different keys are used for different purposes, e.g., one key
for encryption and one key for the MAC. Using one key could enable an attacker
to get information from a possible relation between the ciphertext and the MAC
[13, pp. 418, 567]. The disadvantage of using multiple keys is the additional
overhead for key distribution and storage. However, when carefully designed, a
cryptographic scheme can still be secure although only one key is used. Examples
are Grain-128a [27,26] and CCM mode for BCs [5].

3.3 Protocol Steps

In this section, we describe the protocol steps in the two phases of our protocol,
i.e., initialization and operational phase.

Towards Secure Fieldbus Communication 153

k

iv

partition

pl(0..n)
Enc

otpmac(0..n)

MAC

mac(0..n)

c(0..n)

c(0..n)

otpenc(0..n)

s(0..n)
SC

s(i + 1) = f(s(i))
s(0) = finit(iv, k)

Fig. 1. Concept of the generic SC and MAC scheme (sender)

Initialization Phase. This phase does not require real-time, therefore the use
of asymmetric cryptography is possible. During this phase, trust is established,
parameters, such as cipher choice, key- and MAC-length, are negotiated and
keys are exchanged. The key-exchange of the communicating parties has to be
triggered in advance by one party knowing the network topology, which is usually
the master. A Diffie-Hellman key-exchange using trust anchors for authentication
can be used as key-exchange protocol.

The SCs of every party are initialized using the exchanged key (and other
parameters) and iv := 0, resulting in same states s0 of the SCs.

Operational Phase. In this phase, real-time restrictions apply. If the al-
gorithms and state-updates of the security layer run in real-time, the secure
transmission of data is done in real-time itself, because the underlying fieldbus
provides real-time transmission of telegrams. All protocol steps are based solely
on symmetric algorithms to have a short runtime.

States of a Participant. Each party has to keep a state per communication
relationship consisting of:

– secret key k,
– current iv,
– current state s of the SC,
– fixed payload length |pl|,
– fixed MAC length |mac|, and
– maximum retries of windowing wmax.

154 F. Wieczorek et al.

During resynchronization, the following additional variables are required:

– temporary state s∗,
– counter for telegrams not correctly verified w, and
– temporary initialization vector iv∗.

state sA = s(i)

sA = s(i + 1)
otpenc(i) and otpmac(i)
partition next stream

pl(i)

c(i) := Encotpenc(i)(pl(i))
mac(i) := MACotpmac(i)(c(i))

Device A Device B

c(i)||mac(i)

sB = s(i)
partition next stream

sB = s(i + 1)

if Vrfotpmac(i)(mac(i)):
pl(i) := Decotpenc(i)(c(i))

else
resynchronize

pl(i)

otpenc(i) and otpmac(i)

Fig. 2. Regular real-time operation

Regular Operation. The regular operation is sketched in Figure 2. All parties
share the same state of the SC. Since each payload has the same length, the
execution of the security algorithms consumes the same amount of cipher-stream
for each payload. Given the actual state s(i) of the SC, each successor state
s(j) (j > i) and the corresponding otpmac and otpenc are computable in advance
without knowing the payloads (cf. Figure 1).

Each time a payload pl is passed to the security layer, the cipher-stream is
first used as otpenc for encryption and afterwards as otpmac for integrity protec-
tion. A ciphertext is build with the encryption algorithm Enc (which computes
c := otpenc ⊕pl). Then the MAC secures the authenticity and integrity of the ci-
phertext consuming otpmac. The telegram transmitted over the fieldbus consists
of the ciphertext concatenated with the mac.

The receiver uses the same cipher-stream, thus resulting in the same state
as the sender. It first checks the correctness of the mac with the verification
algorithm Vrf. If the mac is verified successfully, the ciphertext is decrypted (by

Towards Secure Fieldbus Communication 155

using bitwise XOR with the same otpenc the sender had used to encrypt the
ciphertext). The resulting payload is then passed to the application.

Regularly, the initialization vector is changed due to a specific schedule (e.g.,
every fixed number of telegrams). If the states of the communication parties
are no longer synchronized, mechanisms for resynchronization are required. At
a data rate of 100 Mbit/s of the fieldbus, the SC Grain-128a, which we used
in our implementation, can be used with one initialization vector over a typical
operational uptime, so renewing the initialization vector is only necessary if
synchronization is lost.

Resync. When a telegram is lost, resynchronization is needed, since the states of
the SCs are not equal anymore. The resynchronization is not real-time capable,
just as it would be in plain fieldbus communication without the security-layer.
The asynchronous state is recognizable by an unsuccessful verification of the mac.
Because of this, an asynchronous state is not distinguishable from a manipulated
telegram. If only a few telegrams were lost, it is possible, due to the fixed telegram
length, to resynchronize only the receiver.

The Resync with windowing resynchronizes the receiver after a few lost mes-
sages. If messages are lost, the receiver tries to catch up by verifying the received
telegram with the following stream-cipher states as temporary states. This mech-
anism is limited to a predefined number of retries. An example is given in Fig-
ure 3. Both parties A and B share the same SC state s0 in the beginning. One
telegram gets lost during transmission, the next payload is passed to A in state
sA = s2, resulting in the correctly transmitted telegram tel2 = c2||mac2. This
telegram is received by B in state sB = s1, not corresponding to the senders
state, and not verified correctly by B. B enters the windowing mechanism and
steps one state forward temporarily, correctly verifying the integrity of tel2. A
posteriori, the one lost message is detectable. The temporary state is applied,
resulting in synchronous states of both parties, again.

If the number of lost telegrams exceeds the limit of windowing, interaction
between the receiver and the sender is required. After the windowing has failed,
the receiver determines a fresh initialization vector, by incrementing the current
initialization vector. Then the SC is initialized with the current secret key and
the fresh initialization vector, resulting in a new defined state. The initialization
vector and a SyncLost notification is sent unencrypted but integrity protected
to the other party, which can reach the same state with the knowledge of the
initialization vector and verify the integrity of the telegram subsequently. The
resync mechanism is shown in Figure 4.

4 Security Discussion

In this section, we discuss the security of our proposed protocol, i.e., how it pro-
tects the integrity, confidentiality, authenticity, and freshness of the transmitted
messages. We assume an active adversary with access to the whole communi-
cation who can try to inject, eavesdrop, replay, drop, delay, or manipulate any

156 F. Wieczorek et al.

Device A Device B

sA = s(i) sB = s(i)

notify not verified

c(i)||mac(i) loss

pl(i + 1)

Vrfoptmac(i)(mac(i + 1)) = false

sA = s(i + 1)

c(i + 1)||mac(i + 1)

no real-time possible

real-time

pl(i)

partition next stream
otpenc(i+1) and otpmac(i+1)

Vrfoptmac(i+1)(mac(i + 1)) = true

notify message lost

pl(i + 1)
pl(i + 1) = Decotpenc(i+1)(c(i + 1))

s∗
B = s(i + 1)

sB = s∗
B

Fig. 3. Resynchronization with windowing

telegrams. However, we assume that the adversary has no access to the automa-
tion devices and to any stored data such as the cryptographic keys. This is a
reasonable assumption since automation devices are expected to be mounted in
physically secured installation environments. If that is not the case, i.e., systems
could be compromised, additional mechanisms have to be taken into account.
For example, the automation systems could be equipped with hardware security
modules such as smartcards, which provide secure storage for cryptographic data,
a secure execution environment for (cryptographic) computations, and often the
support for additional features such as secure boot or remote attestation.

In the following, we assume that the used stream cipher and the MAC are
each secure, i.e., an adversary can neither decrypt messages encrypted with
the stream cipher nor forge valid MACs without knowing the cryptographic

Towards Secure Fieldbus Communication 157

otp∗
mac := next stream

Device A Device B

no real-time possible
windowing fails

increment ivB

sB := finit(ivB) = s∗(0)
otp∗

mac := next stream
mac∗ := MACotp∗

mac (syncLost||ivB)

syncLost||ivB ||mac∗

assure ivB > ivA

s∗ := finit(ivB)

sB = s∗(1)

s∗ = s∗(1)
if Vrfotp∗

mac (mac∗):
sA := s∗ = s∗(1) real-time

several losses

Fig. 4. Resync with iv

key. Since the basis of our protocol is the proposed generic construction, we
show that using this construction is also secure. First, we show that given any
set of pairs (c(0..n), mac(0..n)), where c(i) = pl(i) ⊕ otpenc(i) and mac(i) =
MACotpmac(i)(c(i)) for payloads pl(i) 0 ≤ i ≤ n, an adversary cannot get infor-
mation about any pl(i) by eavesdropping these pairs. Second, we show that an
adversary is not able to forge a valid pair (x, mac(i)) = (x, MACotpmac(i)(x)) for
any arbitrary binary string x.

In the first case, the generic construction loses its security properties if two dif-
ferent messages are ever encrypted with the same cipher-stream. Thus, otpenc(i)
has to be different for each pl(i). To achieve this, the SC changes the state
for each transmitted telegram. The initial state s(0) is calculated using the ini-
tialization vector iv and key k: s(0) = finit(iv, k) and all subsequent states are
calculated according to s(i+1) = f(s(i)). Each state results in a different output
which is partitioned into otpmac(i) and otpenc(i). When the scheme is reinitial-
ized, a new iv is used by incrementing the old one. Assuming the size of the iv is
carefully chosen to prevent overflows, an iv is only used once. Thus, for each pl(i)
always a different otpenc(i) is used. This reduces the security of the scheme up to
the security of the used stream cipher. Since we assumed that the stream cipher is

158 F. Wieczorek et al.

secure and protects the confidentiality of the transmitted messages, this is also
true for the generic scheme.

In the second case, the security of the MAC is solely based on the secrecy of
the used key since we assumed that the used MAC construction is secure. Thus,
an adversary can only forge a valid (x, mac) pair if he can derive the key k or
the correct otpmac(x). However, since we assumed the applied stream cipher is
secure, an adversary neither can get both of them by analyzing eavesdropped
pairs (c(0..n), mac(0..n)).

Thus, an adversary cannot successfully eavesdrop on telegrams or inject new
telegrams. Furthermore, an adversary cannot successfully replay telegrams, since
the freshness is ensured by changing the internal state after each correctly verified
telegram. Likewise the dropping of telegrams is detected and a resynchronization
initialized.

5 Implementation and Runtime Analysis

In our implementation, we have used Grain-128a [27] with 128 bit key and 96 bit
initialization vector as underlying stream cipher of the generic scheme. The
Grain-128a cipher is based on the well-analyzed cipher Grain [8] which can be
easily implemented in hardware, provides high performance, and has determin-
istic runtime. As MAC, we have chosen the Toeplitz matrix based approach,
which is easy to implement in hardware and also has deterministic runtime. We
chose a MAC length of 80 bit which provides a reasonable security level for most
applications. The telegrams are embedded as process data in regular EtherCAT
telegrams [10].

We have developed a corresponding prototype software implementation in C
[14]. The implementation is currently not optimized for speed. In future appli-
cations it might be possible to run the security stack in hardware in order to
reach higher performance. The master and slave were both running on the same
Microsoft Windows XP Professional SP3, Intel Core2Duo T7400@2.16 GHz,
2 GB RAM machine during the runtime measurements. This configuration re-
sembles widely used IPC. The slave controller is a Beckhoff FC1100 card [1].
For the proof-of-concept implementation, EtherCAT was used in a synchronous
mode, triggering the slave application to run once on each incoming datagram.
The master can not be executed in hard real-time (this is only possible with pro-
gramming languages defined in [9]), as a replacement for the missing real-time
capabilities, the multimedia timer of Microsoft Windows was used to achieve a
de-facto cycle-time of 1 ms.

The first measurements show, that the security layer only generates negligible
overhead, at a cycle-time of 10 ms, the non-secure slave application runs in 7 µs,
compared to the execution time of 8 µs of the slave application with enabled
security layer. The execution times for resynchronization are not significantly
longer. Those measurements do not consider the transmission-time overhead of
the MAC. More extensive measurements, also at shorter cycle-times, will be part
of future work.

Towards Secure Fieldbus Communication 159

6 Conclusion

In this paper, we presented a protocol to secure the fieldbus communication of
automation systems while maintaining real-time requirements. The basis of the
protocol is a generic scheme which combines a stream cipher with a MAC to
ensure integrity, confidentiality, authenticity, and freshness of transmitted mes-
sages using only one key for cipher and MAC to facilitate key management.
The scheme relies solely on symmetric primitives, which are much more efficient
than asymmetric primitives, to support the use in resource-constrained systems
as well as to enable small cycle times for real-time communication. We chose a
stream cipher since they typically execute at a higher speed than block ciphers
and have lower hardware complexity. The security of our protocol relies on the
security of the used stream cipher and MAC construction. By adjusting the key
length, the protocol can be adapted according to the application requirements.
Our proof-of-concept implementation and the first results of our performed per-
formance analysis have shown the feasibility of our approach. As future work,
we plan to implement the protocol in hardware and perform more detailed per-
formance analyses. Another future topic is to provide exchangeability of SC and
MAC in the prototype.

References

1. Beckhoff Automation GmbH: FC1100 | PCI EtherCAT slave card (2011)
2. Bellare, M., Rogaway, P., Wagner, D.: The EAX Mode of Operation. In: Roy, B.,

Meier, W. (eds.) FSE 2004. LNCS, vol. 3017, pp. 389–407. Springer, Heidelberg
(2004)

3. Brühne, M.: IEEE 802.1n und WLAN-Controller – Lohnt der Einsatz auch in
der Industrie. In: SPS/IPC/DRIVES: Elektrische Automatisierung, Systeme und
Komponenten (2011)

4. Damm, M., Leitner, S.H., Mahnke, W., Leitner, S.H.: Security. In: OPC Unified
Architecture, pp. 1–51. Springer (2009)

5. Dworkin, M.: Recommendation for Block Cipher Modes of Operation: The CCM
Mode for Authentication and Confidentiality. NIST Special Publication 800-38C,
NIST - Computer Security Resource Center (2007)

6. Ferguson, N., Whiting, D., Schneier, B., Kelsey, J., Lucks, S., Kohno, T.: Helix: Fast
Encryption and Authentication in a Single Cryptographic Primitive. In: Johansson,
T. (ed.) FSE 2003. LNCS, vol. 2887, pp. 330–346. Springer, Heidelberg (2003)

7. Granzer, W., Reinisch, C., Kastner, W.: Future Challenges for Building Automa-
tion: Wireless and Security. In: Proc. IEEE Int Industrial Electronics (ISIE) Symp.,
pp. 4415–4467 (2010)

8. Hell, M., Johansson, T., Meier, W.: Grain – A Stream Cipher for Constrained
Environments. International Journal of Wireless and Mobile Computing, Special
Issue on Security of Computer Network and Mobile Systems 2(1), 86–93 (2006)

9. IEC: IEC 61131-3, Programmable controllers — Part 3: Programming languages,
2 edn. (2003)

10. IEC: IEC 61158, Industrial communication networks — Fieldbus specifications, 2
edn. (2010)

160 F. Wieczorek et al.

11. IEEE: IEEE 802.15.4, Wireless Medium Access Control (MAC) and Physical Layer
(PHY) Specifications for Low-Rate Wireless Personal Area Networks (WPANs)
(2006)

12. ISA: ISA100.11a Wireless systems for industrial automation: Process control and
related applications (2011)

13. Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of Applied Cryptog-
raphy. Discrete Mathematics and Its Applications, 5th printing edn. CRC Press,
Inc. (1996)

14. Microsoft Corporation: Microsoft Visual Studio, Ultimate, version 10.0.4.0129.1
SP1Rel (2010)

15. Rogaway, P., Bellare, M., Black, J.: OCB: A block-cipher mode of operation for
efficient authenticated encryption. ACM Trans. Inf. Syst. Secur. 6, 365–403 (2003)

16. Schwaiger, C., Treytl, A.: Smart Card Based Security for Fieldbus Systems. In:
Proc. IEEE Conf. Emerging Technologies and Factory Automation ETFA 2003,
vol. 1, pp. 398–406 (2003)

17. Szilagyi, C., Koopman, P.: Flexible Multicast Authentication for Time-Triggered
Embedded Control Network Applications. In: DSN, pp. 165–174. IEEE (2009)

18. Treytl, A., Sauter, T., Schwaiger, C.: Security Measures for Industrial Fieldbus
Systems – State of the Art and Solutions for IP-based Approaches. In: Proc. IEEE
Int Factory Communication Systems Workshop, pp. 201–209 (2004)

19. Treytl, A., Sauter, T., Schwaiger, C.: Security Measures in Automation Systems –
a Practice-Oriented Approach. In: Proc. 10th IEEE Conf. Emerging Technologies
and Factory Automation ETFA., vol. 2, pp. 847–855 (2005)

20. Whiting, D., Schneier, B., Lucks, S., Muller, F.: Phelix Fast Encryption and Au-
thentication in a Single Cryptographic Primitive. Tech. rep., ECRYPT Stream
Cipher Project Report 2005/027 (2005)

21. Wirt, K.T.: ASC – A Stream Cipher with Built–In MAC Functionality. World
Academy of Science, Engineering and Technology 29 (2007)

22. Wolf, M., Weimerskirch, A., Paar, C.: Security in Automotive Bus Systems. In:
Proceedings of the Workshop on Embedded Security in Cars, ESCAR 2004 (2004)

23. Wolf, M., Weimerskirch, A., Wollinger, T.: State of the Art: Embedding Security
in Vehicles. EURASIP Journal on Embedded Systems (2007)

24. Wu, H., Preneel, B.: Differential-Linear Attacks against the Stream Cipher Phelix.
eSTREAM, ECRYPT Stream Cipher Project, Report 2006/056

25. Zoltak, B.: VMPC-MAC: A Stream Cipher Based Authenticated Encryption
Scheme. In: Fast Software Encryption, Springer, Heidelberg (2004)

26. Ågren, M., Hell, M., Johansson, T.: On Hardware-Oriented Message Authentica-
tion with Applications towards RFID. In: Lightweight Security Privacy: Devices,
Protocols and Applications (LightSec), pp. 26–33. IEEE Computer Society (2011)

27. Ågren, M., Hell, M., Johansson, T., Meier, W.: A New Version of Grain-128 with
Authentication. In: Symmetric Key Encryption Workshop. European Network of
Excellence in Cryptology II (2011)

	Towards Secure Fieldbus Communication
	Introduction
	Related Work
	Protocol Description
	Addressed Requirements
	Generic SC and MAC Scheme
	Protocol Steps
	Initialization Phase.
	Operational Phase.

	Security Discussion
	Implementation and Runtime Analysis
	Conclusion
	References

