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Preface

Since 1979, when the first SAFECOMP conference was organized by the Techni-
cal Committee on Reliability, Safety and Security of the European Workshop on
Industrial Computer Systems (EWICS TC7), the SAFECOMP conference se-
ries has always been a mirror of current trends and challenges in highly critical
systems engineering.

The key theme of SAFECOMP 2012 was “virtually safe – making system
safety traceable”. This theme addresses two important aspects of critical systems.
On the one hand, systems are always claimed to be virtually safe, which often
means they are safe unless some very rare events happen. However, many recent
accidents – like Fukushima, for example, – have shown that these assumptions
often do not hold. As a consequence, we must reconsider what acceptable and
residual risk shall be. The second aspect of the theme addresses the question
of making system safety understandable. Safety case and arguments are often
based on a deep understanding of the system and its behavior. Displaying such
dynamic behavior in a visual way or even a virtual reality scenario might help
in understanding the arguments better and finding flaws more easily.

SAFECOMP has always seen itself as a conference connecting industry and
academia. To account for this, we introduced separate categories for industrial
and academic papers. More than 70 submission from authors of 20 countries
were reviewed and the best 33 papers were selected for presentation at the con-
ference and publication in this volume. In addition, three invited talks given by
Jürgen Leohold (CTO of Volkswagen), Marta Kwiatkowska (Oxford University),
and Hans Hansson (Mälardalen University) were included in the conference pro-
gram. Safety, security, and reliability is a very broad topic, which touches many
different application domains. In 2012, we decided to co-locate five scientific
workshops, which focus on different current topics ranging from critical infras-
tructures to dependable cyber-physical systems. The SAFECOMP workshops
are not included in this volume but in a separate SAFECOMP LNCS volume.

As Program Chairs , we want to give a very warm thank you to all 60 members
of the international Program Committee. The comprehensive reviews provided
the basis for the productive discussions at the Program Committee meeting held
in May in Munich, which was hosted by Siemens. We also want to thank the local
organization team at the Otto-von-Guericke University Magdeburg (OVGU), the
Local Chairs Gunter Saake, Michael Schenk, and Jana Dittmann, the Center for
Digital Engineering (CDE), and the Virtual Development and Training Center
(VDTC).



VI Preface

Finally, we hope you find, the papers in this volume interesting. On behalf of
EWICS TC7, we also invite you to join the SAFECOMP community and hope
you will be joining us at the 2013 SAFECOMP conference in Toulouse.

September 2012 Frank Ortmeier
Peter Daniel
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Towards Composable Safety

(Invited Talk)

Prof. Hans Hansson

Märdalen University, Väster̊as, Sweden

Increased levels of complexity of safety-relevant systems bring increased respon-
sibility on the system developers in terms of quality demands from the legal
perspectives as well as company reputation. Component based development of
software systems provides a viable and cost-effective alternative in this con-
text provided one can address the quality and safety certification demands in
an efficient manner. This keynote targets component-based development and
composable safety-argumentation for safety-relevant systems. Our overarching
objective is to increase efficiency and reuse in development and certification
of safety-relevant embedded systems by providing process and technology that
enable composable qualification and certification, i.e. qualification/certification
of systems/subsystems based on reuse of already established arguments for and
properties of their parts. The keynote is based on on-going research in two larger
research efforts; the EU/ARTEMIS project SafeCer and the Swedish national
project SYNOPSIS. Both projects started in 2011 and will end 2015. SafeCer
includes more than 30 partners in six different countries, and aims at adapting
processes, developing tools, and demonstrating applicability of composable cer-
tification within the domains: Automotive, Avionics, Construction Equipment,
Healthcare, and Rail, as well as addressing cross-domain reuse of safety-relevant
components. SYNOPSIS is a project at Mälardalen University sharing the Safe-
Cer objective of composable certification, but emphasizing more the scientific
basis than industrial deployment.

Our research is motivated by several important and clearly perceivable trends:
(1) The increase in software based solutions which has led to new legal directives
in several application domains as well as a growth in safety certification stan-
dards. (2) The need for more information to increase the efficiency of production,
reduce the cost of maintaining sufficient inventory, and enhance the safety of per-
sonnel. (3) The rapid increase in complexity of software controlled products and
production systems, mainly due to the flexibility and ease of adding new func-
tions made possible by the software. As a result the costs for certification-related
activities increase rapidly. (4) Modular safety arguments and safety argument
contracts have in recent years been developed to support the needs of incre-
mental certification. (5) Component-Based Development (CBD) approaches, by
which systems are built from pre-developed components, have been introduced
to improve both reuse and the maintainability of systems. CBD has been in the
research focus for some time and is gaining industrial acceptance, though few
approaches are targeting the complex requirements of the embedded domain.
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Our aim is to enhance existing CBD frameworks by extending them to in-
clude dependability aspects so that the design and the certification of systems
can be addressed together more efficiently. This would allow reasoning about
the design and safety aspects of parts of the systems (components) in relative
isolation, without consideration of their interfaces and emergent behaviour, and
then deal with these remaining issues in a more structured manner without hav-
ing to revert to the current holistic practices. The majority of research on such
compositional aspects has concentrated on the functional properties of systems
with a few efforts dealing with timing properties. However, much less work has
considered non-functional properties, including dependability properties such as
safety, reliability and availability.

This keynote provides an introduction to component-based software devel-
opment and how it can be applied to development of safety-relevant embed-
ded systems, together with an overview and motivation of the research being
performed in the SafeCer and SYNOPSIS projects. Key verification and safety
argumentation challenges will be presented and solutions outlined.



Sensing Everywhere: Towards Safer and More

Reliable Sensor-Enabled Devices

(Invited Talk)

Marta Kwiatkowska

Department of Computer Science, University of Oxford, Wolfson Building,
Parks Road, Oxford OX1 3QD, UK

Abstract. In this age of ubiquitous computing we are witnessing ever
increasing dependence on sensing technologies. Sensor-enabled smart de-
vices are used in a broad range of applications, from environmental mon-
itoring, where the main purpose is information gathering and appro-
priate response, through smartphones capable of autonomous function
and localisation, to integrated and sometimes invasive control of phys-
ical processes. The latter group includes, for example, self-parking and
self-driving cars, as well as implantable devices such as glucose monitors
and cardiac pacemakers [1, 2]. Future potential developments in this area
are endless, with nanotechnology and molecular sensing devices already
envisaged [3].

These trends have naturally prompted a surge of interest in methodologies for
ensuring safety and reliability of sensor-based devices. Device recalls [4] have
added another dimension of safety concerns, leading FDA to tighten its oversight
of medical devices. In seeking safety and reliability assurance, developers employ
techniques to answer to queries such as “the smartphone will never disclose the
bank account PIN number to unauthorised parties”, “the blood glucose level
returns to a normal range in at most 3 hours” and “the probability of failure to
raise alarm if the levels of airborne pollutant are unacceptably high is tolerably
low”. Model-based design and automated verification technologies offer a number
of advantages, particularly with regard to embedded software controllers: they
enable rigorous software engineering methods such as automated verification in
addition to testing, and have the potential to reduce the development effort
through code generation and software reuse via product lines.

Automated verification has made great progress in recent years, resulting in
a variety of software tools now integrated within software development environ-
ments. Models can be extracted from high-level design notations or even source
code, represented as finite-state abstractions, and systematically analysed to es-
tablish if, e.g., the executions never violate a given temporal logic property. In
cases where the focus is on safety, reliability and performance, it is necessary to
include in the models quantitative aspects such as probability, time and energy
usage. The preferred technique here is quantitative verification [5], which em-
ploys variants of Markov chains, annotated with reward structures, as models
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and aims establish quantitative properties, for example, calculating the probabil-
ity or expectation of a given event. Tools such as the probabilistic model checker
PRISM [6] are widely used to analyse safety, dependability and performabil-
ity of system models in several application domains, including communication
protocols, sensor networks and biological systems.

The lecture will give an overview of current research directions in automated
verification for sensor-enabled devices. This will include software verification for
TinyOS [7], aimed at improving the reliability of embedded software written in
nesC; as well as analysis of sensor network protocols for collective decision mak-
ing, where the increased levels of autonomy demand a stochastic games approach
[8]. We will outline the promise and future challenges of the methods, includ-
ing emerging applications at the molecular level [9] that are already attracting
attention from the software engineering community [10].

Acknowledgement. This research has been supported in part by ERC grant
VERIWARE and Oxford Martin School.
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A Lightweight Methodology for Safety Case Assembly

Ewen Denney and Ganesh Pai

SGT / NASA Ames Research Center
Moffett Field, CA 94035, USA

{ewen.denney,ganesh.pai}@nasa.gov

Abstract. We describe a lightweight methodology to support the automatic as-
sembly of safety cases from tabular requirements specifications. The resulting
safety case fragments provide an alternative, graphical, view of the requirements.
The safety cases can be modified and augmented with additional information. In
turn, these modifications can be mapped back to extensions of the tabular require-
ments, with which they are kept consistent, thus avoiding the need for engineers
to maintain an additional artifact. We formulate our approach on top of an ide-
alized process, and illustrate the applicability of the methodology on excerpts of
requirements specifications for an experimental Unmanned Aircraft System.

Keywords: Safety cases, Formal methods, Automation, Requirements,
Unmanned Aircraft Systems.

1 Introduction

Evidence-based safety arguments, i.e., safety cases, are increasingly being considered
in emerging standards [10] and guidelines [3], as an alternative means for showing
that critical systems are acceptably safe. The current practice for demonstrating safety,
largely, is rather to satisfy a set of objectives prescribed by standards and/or guide-
lines. Typically, these mandate the processes to be employed for safety assurance, and
the artifacts to be produced, e.g., requirements, traceability matrices, etc., as evidence
(that the mandated process was followed). However, the rationale connecting the rec-
ommended assurance processes, and the artifacts produced, to system safety is largely
implicit [7]. Making this rationale explicit has been recognized as a desirable enhance-
ment for “standards-based” assurance [14]; especially also in feedback received [4]
during our own, ongoing, safety case development effort.

In effect, there is a need in practice to bridge the gap between the existing means,
i.e., standards-based approaches, and the alternative means, i.e., argument-based ap-
proaches, for safety assurance. Due to the prevalence of standards-based approaches,
conventional systems engineering processes place significant emphasis on producing
a variety of artifacts to satisfy process objectives. These artifacts show an apprecia-
ble potential for reuse in evidence-based argumentation. Consequently we believe that
automatically assembling a safety argument (or parts of it) from the artifacts, to the
extent possible, is a potential way forward in bridging this gap.

In this paper, we describe a lightweight methodology to support the automatic as-
sembly of (preliminary) safety cases. Specifically, the main contribution of our paper
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is the definition of transformations from tabular requirements specifications to argument
structures, which can be assembled into safety case fragments. We accomplish this,
in part, by giving process idealizations and a formal, graph theoretic, definition of a
safety case. Consequently, we provide a way towards integrating safety cases in existing
(requirements) processes, and a basis for automation. We illustrate our approach by
applying it to a small excerpt of requirements specifications for a real, experimental
Unmanned Aircraft System (UAS).

2 Context

The experimental Swift UAS being developed at NASA Ames comprises a single air-
borne system, the electric Swift Unmanned Aerial Vehicle (UAV), with duplicated
ground control stations and communication links. The development methodology used
adopts NASA mandated systems engineering procedures [15], and is further constrained
by other relevant standards and guidelines, e.g., for airworthiness and flight safety [13],
which define some of the key requirements on UAS operations. To satisfy these require-
ments, the engineers for the Swift UAS produce artifacts (e.g., requirements specifica-
tions, design documents, results for a variety of analyses, tests, etc.) that are reviewed at
predefined intervals during development. The overall systems engineering process also
includes traditional safety assurance activities as well as range safety analysis.

3 Safety Argumentation Approach

Our general approach for safety assurance includes argument development and uncer-
tainty analysis. Fig. 1 shows a data flow among the different processes/activities dur-
ing the development and safety assurance of the Swift UAS, integrating our approach
for safety argumentation.1 As shown, the main activities in argument development are
claims definition, evidence definition/identification, evidence selection, evidence link-
ing, and argument assembly. Of these, the first four activities are adapted from the
six-step method for safety case construction [8].

The main focus of this paper is argument development2; in particular, we consider
the activity of argument assembly, which is where our approach deviates from existing
methodologies [2], [8]. It reflects the notion of “stitching together” the data produced
from the remaining activities to create a safety case (in our example, fragments of ar-
gument structures for the Swift UAS) containing goals, sub-goals, and evidence linked
through an explicit chain of reasoning.

We distinguish this activity to account for (i) argument design criteria that are likely
to affect the structure of the overall safety case, e.g., maintainability, compliance with
safety principles, reducing the cost of re-certification, modularity, and composition of
arguments, and (ii) automation, e.g., in the assembly of heterogenous data in the overall

1 Note that the figure only shows some key steps and data relevant for this paper, and is not a
comprehensive representation. Additionally, the figure shows neither the iterative and phased
nature of the involved activities nor the feedback between the different processes.

2 Uncertainty analysis [5] is out of the scope of this paper.



A Lightweight Methodology for Safety Case Assembly 3

Fig. 1. Safety assurance methodology showing the data flow between the processes for safety
analysis, system development, software verification, and safety argumentation

safety case, including argument fragments and argument modules created using manual,
automatic, and semi-automatic means [6].

Safety argumentation, which is phased with system development, is applied starting
at the level of the system and then repeated at the software level. Consequently, the
safety case produced itself evolves with system development. Thus, similar to [11], we
may define a preliminary, interim, and operational safety case reflecting the inclusion
of specific artifacts at different points in the system lifecycle. Alternatively, we can also
define finer grained versions, e.g., at the different milestones defined in the plan for
system certification3.

4 Towards a Lightweight Methodology

The goal of a lightweight version of our methodology (Fig. 1), is to give systems engi-
neers a capability to (i) continue to maintain the existing set of artifacts, as per current
practice, (ii) automatically generate (fragments of) a safety case, to the extent possible,
rather than creating and maintaining an additional artifact from scratch, and (iii) provide
different views on the relations between the requirements and the safety case.

Towards this goal, we characterize the processes involved and their relationship to
safety cases. In this paper, we specifically consider a subset of the artifacts, i.e., tables
of (safety) requirements and hazards, as an idealization4 of the safety analysis and de-
velopment processes. Then, we transform the tables into (fragments of) a preliminary
safety case for the Swift UAS, documented in the Goal Structuring Notation (GSN) [8].
Subsequently, we can modify the safety case and map the changes back to (extensions
of) the artifacts considered, thereby maintaining both in parallel.

3 Airworthiness certification in the case of the Swift UAS.
4 We consider idealizations of the processes, i.e., the data produced, rather than a formal process

description since we are mainly interested in the relations between the data so as to define and
automate the transformations between them.
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Hazards Table

ID Hazard Cause / Mode Mitigation Safety 
Requirement

HR.1.3 Propulsion system hazards
HR.1.3.1 Motor overheating Insufficient airflow Monitoring RF.1.1.4.1.2

Failure during operation

HR.1.3.7 Incorrect programming of KD motor 
controller

Improper procedures to check programming before 
flight Checklist RF.1.1.4.1.9

System Requirements Table

ID Requirement Source Allocation
Verification
Method

Verification
Allocation

RS.1.4.3 Critical systems must be redundant AFSRB RF.1.1.1.1.3

RS.1.4.3.1
The system shall provide independent and 
redundant channels to the pilot

AFSRB

Functional Requirements Table

ID Requirement Source Allocation
Verification
Method

Verification
Allocation

RF.1.1.1.1.3
FCS must be dually 
redundant

RS.1.4.3 FCS Visual Inspection
FCS-CDR-20110701,
TR20110826

RF.1.1.4.1.2

CPU/autopilot system must 
be able to monitor engine 
and motor controller 
temperature.

HR.1.3.1 Engine systems Checklist Pre-flight checklist

RF.1.1.4.1.9
Engine software will be 
checked during pre-
deployment checkout

HR.1.3.7
Pre-deployment
checklist

Checklist
Pre-deployment
checklist

Fig. 2. Tables of hazards, system and functional requirements for the Swift UAS (excerpts)

4.1 Process Idealizations

We consider three inter-related tables as idealizations of the safety analysis and de-
velopment processes for the Swift UAS; namely: the hazards table (HT), the system
requirements table (SRT), and the functional requirements table (FRT)5.

Fig. 2 shows excerpts of the three tables produced in the (ongoing) development
of the Swift UAS. As shown, the HT contains entries of identified hazards, potential
causes, mitigation mechanisms and the corresponding safety requirements. The require-
ments tables contain specified requirements, their sources, methods with which they
may be verified, and verification allocations, i.e., links to artifacts containing the re-
sults of verification. Requirements can be allocated either to lower-level (functional)
requirements or to elements of the physical architecture.

Fig. 2 mainly shows those parts of the tables that are relevant for defining transfor-
mations to an argument structure. Additionally, we are concerned only with a subset of
the set of requirements, i.e., those which have a bearing on safety. Since we are look-
ing at snapshots of development, the tables are allowed to be incomplete, as shown in
Fig. 2. We further assume that the tables have undergone the necessary quality checks
performed on requirements, e.g., for consistency.

Entries in any of the tables can be hierarchically arranged. Identified safety require-
ments in the HT need not have a corresponding entry in the SRT or FRT. Additionally,

5 Strictly speaking, this table contains lower-level requirements and not only functional require-
ments; however, we use the terminology used by the engineers of the Swift UAS.
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requirements identified as safety-relevant in either of the requirements tables need not
have a hazard, from the HT, as a source (although to ensure full traceability, both of
these would be necessary). The HT, as shown, are a simplified view of hazard ana-
lysis as it occurs at a system level. In practice, hazard analysis would be conducted at
different hierarchical levels, i.e., at a subsystem and component level.

For now, we consider no internal structure to the table contents, and simply assume
that there are disjoint, base sets of hazards (H), system requirements (Rs), functional
requirements (Rf ), verification methods (V ), and external artifacts (Ar). The set of ex-
ternal artifacts contains items such as constraints from stakeholders, artifacts produced
from development, e.g., elements of the physical architecture, concepts of operation, re-
sults of tests, etc. We also consider a set of causes (C) and mitigation mechanisms (M ).
Without loss of generality, we assume that hazards and requirements have unique iden-
tifiers. Additionally, we assume the sets V , Ar, C, and M each have a unique “blank”
element, shown in the tables as a blank entry.

The HT consists of rows of type

hazard × cause
∗ × mitigation

∗ × safety requirement
∗ (1)

Definition 1. A hazards table, HT , is set of hazard entries ordered by a tree relation
→h, where a hazard entry is a tuple 〈h, c,m, sr〉, in which h ∈ H , c ⊆ C, m ⊆ M ,
and sr ⊆ (Rs ∪Rf ).

The SRT and FRT each have rows of type

requirement × source
∗ × allocation

∗ × verif method
∗ × verif alloc

∗ (2)

Definition 2. A system requirements table, RTs, is a set of system requirements en-
tries ordered by a tree relation →s, where a system requirements entry is a tuple,
〈r, so, al, vm, va〉, in which r ∈ Rs, so ⊆ (H ∪ Ar), al ⊆ (Rf ∪ Ar), vm ⊆ V ,
and va ⊆ Ar.

Definition 3. A functional requirements table, RTf , is a set of functional requirement
entries ordered by a tree relation →f , where a functional requirement entry is a tuple
〈r, so, al, vm, va〉 in which r ∈ Rf , so ⊆ (H ∪ Ar ∪ Rs), al ⊆ Ar, vm ⊆ V , and
va ⊆ Ar.

Thus, in an SRT (i) a source is one or more hazard or external artifact, (ii) an allocation
is a set of functional requirements or a set of artifacts, and (iii) a verification allocation
is a set of artifacts. Whereas in a FRT (i) a source is a hazard, external artifact or system
requirement, (ii) an allocation is a set of artifacts, and (iii) a verification allocation links
to a specific artifact that describes the result of applying a particular verification method.

Given the base sets and the definitions 1 – 3, we can now define:

Definition 4. A requirements specification, R, is a tuple 〈HT,RTs, RTf 〉.
We consider a safety case as the result of an idealized safety argumentation process, and
document its structure using GSN. We are concerned here with development snapshots,
however, so want to define a notion of partial safety case. Here, we ignore semantic
concerns and use a purely structural definition. Assuming finite, disjoint sets of goals
(G), strategies (S), evidence (E), assumptions (A), contexts (K) and justifications (J),
we give the following graph-theoretic definition:
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Definition 5. A partial safety case, S, is a tuple 〈G,S,E,A,K, J, sg, gs, gc, sa, sc,
sj〉 with the functions

– sg : S → P(G), the subgoals to a strategy
– gs : G → P(S) ∪ P(E), the strategies of a goal or the evidence to a goal
– gc : G → P(K), the contexts of a goal
– sa : S → P(A), the assumptions of a strategy
– sc : S → P(K), the contexts of a strategy
– sj : S → P(J), the justifications of a strategy

We say that g′ is a subgoal of g whenever there exists an s ∈ gs(g) such that g′ ∈ sg(s).
Then, define the descendant goal relation, g � g′ iff g′ is a subgoal of g or there is a
goal g′′ such that g � g′′ and g′ is a subgoal of g′′. We require that the � relation is a
directed acyclic graph (DAG) with roots R.6

4.2 Mapping Requirements Specifications to Safety Cases

We now show how a requirements specification (as defined above) can be embedded in a
safety case (or, alternatively, provide a safety case skeleton). Conversely, a safety case can
be mapped to an extension of a requirements specification. It is an extension because there
can be additional sub-requirements for intermediate claims, as well as entries/columns
accounting for additional context, assumptions and justifications. Moreover, a safety case
captures an argument design that need not be recorded in the requirements.

In fact, the mapping embodies the design decisions encapsulated by a specific argu-
ment design, e.g., argument over an architectural breakdown, and then over hazards. A
given requirements specification can be embedded in a safety case (in many different
ways), and we define this as a relation. Based on definitions 1 – 5, intuitively, we map:

– hazard, requirement, causes �→ goal, sub-goal
– allocated requirements �→ sub-goals
– mitigation, verification method �→ strategy
– verification allocation �→ evidence
– requirement source, allocated artifact �→ goal context

We want to characterize the minimal relation which should exist between a require-
ments specification and a corresponding partial safety case. There are various ways of
doing this. Here, we simply require a correspondence between node types, and that
“structure” be preserved.

We define x ≤ x′ whenever (i) x →s x, or (ii) x →f x, or (iii) x →h x, or
(iv) x = r, x′ = al, 〈r, so, al, vm, va〉 ∈ RTs and al ∈ RTf , or (v) x = h, x′ = sr,
〈h, c,m, sr〉 ∈ HT and sr ∈ (RTs ∪ RTf).

Definition 6. We say that a partial safety case, S = 〈G,S,E,A,K, J, sg, gs, gc, sa,
sc, sj〉, extends a requirements specification, R = 〈HT,RTs, RTf 〉, if there is an
embedding (i.e., injective function), ι, on the base sets of R in S, such that:

6 Note that we do not require there to be a unique root. A partial safety case is, therefore, a forest
of fragments. A (full) safety case can be defined as a partial safety case with a single root, but
we will not use that here. Informally, however, we refer to partial safety cases as safety cases.
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– ι(H ∪ C ∪Rs ∪Rf ) ⊆ G
– ι(V ∪M) ⊂ S

– 〈r, so, al, vm, va〉 ∈ (RTs ∪ RTf) ⇒

⎧⎪⎨
⎪⎩
ι(so) ∈ gc(ι(r)),

ι(vm) ∈ gs(ι(r)),

ι(va) ⊆ sg(ι(vm)) ∩ E

– x ≤ x′ ⇒ ι(x) � ι(x′)

Whereas goal contexts may be derived from the corresponding requirements sources,
strategy contexts, assumptions and justifications are implicit and come from the map-
ping itself, e.g., as boilerplate GSN elements (See Fig. 3, for an example of a boilerplate
assumption element). Note that we do not specify the exact relations between the indi-
vidual elements, just that there is a relation.

4.3 Architecture of the Argument

The structure of the tables, and the mapping defined for each table, induces two patterns
of argument structures. In particular, the pattern arising from the transformation of the
HT can be considered as an extension of the hazard-directed breakdown pattern [12].
Thus, we argue over each hazard in the HT and, in turn, over the identified hazards in a
hierarchy of hazards. Consequently, each defined goal is further developed by argument
over the strategies implicit in the HT, i.e., over the causes and mitigations.

Similarly, the pattern induced by transforming the SRT and FRT connects the argu-
ment elements implicit in the tables, i.e., requirements (goals), and verification methods
and verification allocations (strategies), respectively. Additionally, it includes strategies
arising due to both the hierarchy of requirements in the tables, and the dependencies
between the tables. Specifically, for each requirement, we also argue over its allocation,
e.g., the allocation of a functional requirement to a system requirement, and its chil-
dren, i.e., lower-level requirements. The links between the tables in the requirements
specification define how the two patterns are themselves related and, in turn, how the
resulting safety case fragments are assembled.

4.4 Transformation Rules

One choice in the transformation is to create goals and strategies that are not marked
as undeveloped (or uninstantiated, or both, as appropriate), i.e., to assume that the
completeness and sufficiency of all hazards, their respective mitigations, and all re-
quirements and their respective verification methods, is determined prior to the trans-
formation, e.g., as part of the usual quality checks on requirements specifications. An
alternative is to highlight the uncertainty in the completeness and sufficiency of the
hazards/requirements tables, and mark all goals and strategies as undeveloped. We pick
the second option, i.e., in the transformation described next, all goals, strategies, and
evidence that are created are undeveloped except where otherwise indicated.

We give the transformation in a relational style, where the individual tables are pro-
cessed in a top-to-bottom order, and no such order is required among the tables.
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Hazards Table: For each entry in the HT (Fig. 2),
(H1) For an entry {Hazard} in the Hazard column with no corresponding entries,

{Cause} in the Cause/Mode column, {Mitigation} in the Mitigation column,
or {Requirement} in the Safety Requirement column, respectively,
(a) Create a top-level goal “{Hazard} is mitigated”, with the hazard identi-

fier as context. Here, we are assuming that this top-level entry is a “con-
tainer” for a hierarchy of hazards, rather than an incomplete entry.

(b) The default strategy used to develop this goal is “Argument over identi-
fied hazards”, with the associated assumption “Hazards have been com-
pletely and correctly identified to the extent possible”.

(H2) For each lower-level entry, {Hazard}, in the hierarchy,
(a) Create a sub-goal, “{Hazard} is mitigated”, of the parent goal.
(b) The way we further develop this sub-goal depends on the entries {Cause},

{Mitigation} and {Requirement}; specifically,
i. For one or more causes, the default strategy is “Argument over

identified causes”, with “Causes have been completely and correctly
identified to the extent possible” as an assumption, and “{Cause}
is managed” as the corresponding sub-goal for each identified cause.
Then develop each of those sub-goals using “Argument by
{Mitigation}” as a strategy.7

ii. For no identified causes, but one or more mitigations specified, create
an “Argument by {Mitigation}” strategy, for each mitigation.

iii. When no cause/mitigation is given, but a safety requirement is spec-
ified, then create a strategy “Argument by satisfaction of safety re-
quirement”.

iv. If neither a cause, mitigation nor a safety requirement is given, then
assume that the entry starts a new hierarchy of hazards.

(c) The entry in the Safety Requirement column forms the sub-goal “{Safety
Requirement} holds”, attached to the relevant strategy, with the require-
ment identifier forming a context element.

System/Functional Requirements Tables: For each entry in either of the SRT/FRT
(Fig. 2),
(R1) The contents of the Requirements column forms a goal “{System Require-

ment} holds” if the SRT is processed, or “{Functional requirement} holds”
if the FRT is processed. Additionally, if the entry is the start of a hierarchy,
create a strategy “Argument over lower-level requirements” connected to this
goal. Subsequently, for each lower-level entry in the hierarchy, create a goal
“{Lower-level requirement} holds” from the content of the Requirements col-
umn.

(R2) (a) the Source column forms the context for the created goal/sub-goal. Ad-
ditionally, if the source is a hazard, i.e., (an ID of) an entry {Hazard} in
the HT, then the created goal is the same as the sub-goal that was created
from the Safety Requirement column of the HT, as in step (H2)(c).

7 An alternative strategy could be “Argument by satisfaction of safety requirement”, assuming
that the entry in the Safety Requirement column of the HT is a safety requirement that was
derived from the stated mitigation mechanism.
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(b) the Allocation column is either a strategy or a context element, depending
on the content. Thus, if it is

i. an allocated requirement (or its ID), then create and attach a strategy
“Argument over allocated requirement”; the sub-goal of this strategy
is the allocated requirement8.

ii. an element of the physical architecture, then create an additional con-
text element for the goal.

(c) the Verification method column, if given, creates an additional strategy
“Argument by {Verification Method}”, an uninstantiated sub-goal con-
nected to this strategy9, and an item of evidence whose content is the
entry in the column Verification allocation.

We now state (without proof), that the result of this transformation is a well-formed
partial safety case that extends the requirements specification.

5 Illustrative Example

Fig. 3 shows a fragment of the Swift UAS safety case, in the GSN, obtained by apply-
ing the transformation rules (Section 4.4) to the HT and FRT (Fig. 2), and assembling
the argument structures. Note that a similar safety case fragment (not shown here) is
obtained when the transformation is applied to the SRT and FRT.

We observe that (i) the argument chain starting from the top-level goal G0, to the
sub-goals G1.3 and G2.1 can be considered as an instantiation of the hazard-directed
breakdown pattern, which has then been extended by an argument over the causes and
the respective mitigations in the HT (ii) the argument chains starting from these sub-
goals to the evidence E1 and E2 reflects the transformation from the FRT, and that,
again, it is an instantiation of a specific pattern of argument structures, and (iii) when
each table is transformed, individual fragments are obtained which are then joined based
on the links between the tables (i.e., requirements common to either table). In general,
the transformation can produce several unconnected fragments. Here, we have shown
one of the two that are created.

The resulting partial safety case can be modified, e.g., by including additional con-
text, justifications and/or assumptions, to the goals, sub-goals, and strategies. In fact, a
set of allowable modifications can be defined, based on both a set of well-formedness
rules, and the activities of argument development (Fig. 1). Subsequently, the modifica-
tions can be mapped back to (extensions of) the requirements specification.

Fig. 4 shows an example of how the Claims definition and Evidence linking activities
(Fig. 1) modify the argument fragment in Fig. 3. Specifically, goal G2 has been fur-
ther developed using two additional strategies, StrStatCheck and StrRunVerf, resulting
in the addition of the sub-goals GStatCheck and GRunVerf respectively. Fig. 5 shows
the corresponding updates (as highlighted rows and italicized text) in the HT and SRT
respectively, when the changes are mapped back to the requirements specification. Par-
ticularly, the strategies form entries in the Mitigation column of the HT, whereas the

8 This will also be an entry in the Requirements column of the FT.
9 A constraint, as per [8], is that each item of evidence is preceded by a goal, to be well-formed.
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G0
[Propulsion System Hazards] 

is mitigated

C0.1
HR.1.3

S0
Argument over 

identified hazards

G2
[Incorrect programming 
of KD motor controller] 

is mitigated

G1
[Motor overheating] 

is mitigated
C2.1

HR.1.3.7

C1.1
HR.1.3.1

S1
Argument over 

identified causes

S2.1
Argument over 

identified causes

G1.2
[Failure during operation] 

is managed

G1.1
[Insufficient airflow] is 

managed

G2.1.1
[Improper procedures to 

check programming 
before fight] is managed

S2
Argument by 
[Monitoring]

S3
Argument by 
[Checklist]

G1.3
[CPU/Autopilot system must be 

able to monitor engine and motor 
controller temperature] holds

G2.1
[Engine software will be checked 
during pre-deployment checkout] 

holds

C1.3.2
HR.1.3.1

C1.3.1
RF.1.1.4.1.2

C1.3.3
Engine Systems

C2.1.2
HR.1.3.7

C2.1.1.
RF.1.1.4.1.9

C2.1.3
Pre-deployment 

checklist
S6

Argument by 
[Checklist]

S7
Argument by 
[Checklist]

G6.1
{To be instantiated}

G7.1
{To be instantiated}

E1
Pre-flight 
checklist

E2
Pre-

deployment 
checklist

A0.1
Hazards have been 

completely and 
correctly identified to 
the extent possible.

A2.1
Causes have been 

completely and 
correctly identified to 
the extent possible

A1.1
Causes have been 

completely and 
correctly identified to 
the extent possible

Fig. 3. Fragment of the Swift UAS safety case (in GSN) obtained by transformation of the hazards
table and the functional requirements table

G2
[Incorrect programming 
of KD motor controller] 

is mitigated

C2.1
HR.1.3.7

S2.1
Argument over 

identified causes

G2.1.1
[Improper procedures to 

check programming 
before fight] is managed

StrStatCheck
Argument by 

[Static Checking]

GStatCheck
[Software checks that 

programmed parameter 
values are valid] holds

SRunVerf
Argument by 

[Runtime Verification]

GRunVerf
[Software performs runtime 

checks on programmed 
parameter values] holds

Fig. 4. Addition of strategies and goals to the safety case fragment for the Swift UAS

sub-goals form entries in the Safety Requirement and Requirement columns of the HT
and the SRT respectively. Some updates will require a modification (extension) of the
tables, e.g., addition of a Rationale column reflecting the addition of justifications to
strategies. Due to space constraints, we do not elaborate further on the mapping from
safety cases to requirements specifications.
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Hazards Table

ID Hazard Cause / Mode Mitigation
Safety
Requirement

HR.1.3 Propulsion system hazards
HR.1.3.1 Motor overheating Insufficient airflow Monitoring RF.1.1.4.1.2

Failure during operation
Improper procedures to check 
programming before flight

Checklist RF.1.1.4.1.9

- Static checking GStatCheck
- Runtime Verification GRunVerf

Incorrect programming of 
KD motor controller

HR.1.3.7

System Requirements Table

ID Requirement Source Allocation
Verification
Method

Verification
Allocation

RS.1.4.3 Critical systems must be redundant AFSRB RF.1.1.1.1.3
RS.1.4.3.1 The system shall provide independent and redundant channels to the pilot AFSRB
GStatCheck Software checks that programmed parameter values are valid HR.1.3.7
GRunVerf Software performs runtime checks on programmed parameter values HR.1.3.7

Fig. 5. Updating the requirements specification tables to reflect the modifications shown in Fig. 4

6 Conclusion

There are several points of variability for the transformations described in this paper,
e.g., variations in the forms of tabular specifications, and in the mapping between these
forms to safety case fragments. We emphasize that the transformation described in this
paper is one out of many possible choices to map artifacts such as hazard reports [9] and
requirements specifications to safety cases. Our main purpose is to place the approach
on a rigorous foundation and to show the feasibility of automation.

We are currently implementing the transformations described in a prototype tool10;
although the transformation is currently fixed and encapsulates specific decisions about
the form of the argument, we plan on making this customizable. We will also imple-
ment abstraction mechanisms to provide control over the level of detail displayed (e.g.,
perhaps allowing some fragments derived from the HT to be collapsed).

We will extend the transformations beyond the simplified tabular forms studied here,
and hypothesize that such an approach can be extended, in principle, to the rest of the
data flow in our general methodology so as to enable automated assembly/generation
of safety cases from heterogeneous data. In particular, we will build on our earlier work
on generating safety case fragments from formal derivations [1]. We also intend to
clarify how data from concept/requirements analysis, functional/architectural design,
preliminary/detailed design, the different stages of safety analysis, implementation, and
evidence from verification and operations can be transformed, to the extent possible,
into argument structures conducive for assembly into a comprehensive safety case.

We have shown that a lightweight transformation and assembly of a (preliminary)
safety case from existing artifacts, such as tabular requirements specifications, is fea-
sible in a way that can be automated. Given the context of existing, relatively mature
engineering processes that appear to be effective for a variety of reasons [14], our view
is that such a capability will ameliorate the adoption of, and transition to, evidence-
based safety arguments in practice.

10 AdvoCATE: Assurance Case Automation Toolset.
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Abstract. This article exemplifies the application of a pattern-based
method, called SaCS (Safe Control Systems), on a case taken from the
nuclear domain. The method is supported by a pattern language and pro-
vides guidance on the development of design concepts for safety critical
systems. The SaCS language offers six different kinds of basic patterns
as well as operators for composition.
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1 Introduction

This article presents a pattern-based method, referred to as SaCS (Safe Con-
trol Systems), facilitating development of conceptual designs for safety critical
systems. Intended users of SaCS are system developers, safety engineers and
HW/SW engineers.

The method interleaves three main activities each of which is divided into
sub-activities:

S Pattern Selection – The purpose of this activity is to support the concep-
tion of a design with respect to a given development case by: a) selecting
SaCS patterns for requirement elicitation; b) selecting SaCS patterns for
establishing design basis; c) selecting SaCS patterns for establishing safety
case.

C Pattern Composition – The purpose of this activity is to specify the in-
tended use of the selected patterns by: a) specifying composite patterns; b)
specifying composition of composite patterns.

I Pattern Instantiation – The purpose of this activity is to instantiate the
composite pattern specification by: a) selecting pattern instantiation order;
and b) conducting step wise instantiation.

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012, LNCS 7612, pp. 13–24, 2012.
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A safety critical system design may be evaluated as suitable and sufficiently
safe for its intended purpose only when the necessary evidence supporting this
claim has been established. Evidence in the context of safety critical systems
development is the documented results of the different process assurance and
product assurance activities performed during development. The SaCS method
offers six kinds of basic patterns categorised according to two development per-
spectives: Process Assurance; and Product Assurance. Both perspectives details
patterns according to three aspects: Requirement ; Solution; and Safety Case.
Each basic pattern contains an instantiation rule that may be used for assessing
whether a result is an instantiation of a pattern. A graphical notation is used
to explicitly detail a pattern composition and may be used to assess whether a
conceptual design is an instantiation of a pattern composition.

To the best of our knowledge, there exists no other pattern-based method that
combines diverse kinds of patterns into compositions like SaCS. The supporting
language is inspired by classical pattern language literature (e.g. [1,2,3]); the
patterns are defined based on safety domain needs as expressed in international
safety standards and guidelines (e.g. [6,9]); the graphical notation is inspired by
languages for system modelling (e.g. [10]).

This article describes the SaCS method, and its supporting language, in an
example-driven manner based on a case taken from the nuclear domain.

The remainder of this article is structured as follows: Section 2 outlines our
hypothesis and main prediction. Section 3 describes the nuclear case. Section 4
exemplifies how functional requirements are elicited. Section 5 exemplifies how
a design basis is established. Section 6 exemplifies how safety requirements are
elicited. Section 7 exemplifies how a safety case is established. Section 8 exempli-
fies how intermediate pattern compositions are combined into an overall pattern
composition. Section 9 concludes.

2 Success Criteria

Success is evaluated based on satisfaction of predictions. The hypothesis (H) and
predictions (P) for the application of SaCS is defined below.

H: The SaCS method facilitates effective and efficient development of concep-
tual designs that are: 1) consistent; 2) comprehensible; 3) reusable; and 4)
implementable.

Definition. A conceptual design is as a triple consisting of: a specification of
requirements; a specification of design; and a specification of a safety case. The
safety case characterises a strategy for demonstrating that the design is safe with
respect to safety requirements.

We deduce the following prediction from the hypothesis with respect to the
application of SaCS on the case described in Section 3:

P: Application of the SaCS method on the load following case described in
Section 3 results in a conceptual design that uniquely characterises the load
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following case and is easily instantiated from a composite SaCS pattern.
Furthermore, the conceptual design: 1) is consistent; 2) is expressed in a
manner that is easily understood; 3) may be easily extended or detailed; 4)
is easy to implement.

Definition. A conceptual design instantiates a SaCS composite pattern if: each
element of the triple can be instantiated from the SaCS composite pattern ac-
cording to the instantiation rules of the individual patterns and according to the
rules for composition.

3 The Case: Load Following Mode Control

In France, approximately 75% of the total electricity production is generated
by nuclear power which requires the ability to scale production according to
demand. This is called load following [8]. The electricity production generated
by a PWR (Pressurised Water Reactor) [8] is typically controlled using:

– Control rods : Control rods are inserted into the core, leading to the control
rods absorbing neutrons and thereby reducing the fission process.

– Coolant as moderator : Boron acid is added to the primary cooling water,
leading to the coolant absorbing neutrons and thereby reducing the fission
process.

Control rods may be efficiently used to adjust reactivity in the core; several per-
centage change in effect may be experienced within minutes as the core will react
immediately upon insertion or retraction. When using boron acid as moderator
there is a time delay of several hours to reach destined reactivity level; reversing
the process requires filtering out the boron from the moderator which is a slow
and costly process.

When using Boron acid as moderator, fuel is consumed evenly in the reactor
as the coolant circulates in the core. When using the control rods as moderator,
the fuel is consumed unevenly in the reactor as the control rods are inserted at
specific sections of the core and normally would not be fully inserted.

A successful introduction of load following mode control requires satisfying
the following goals:

G1 Produce according to demand : assure high manoeuvrability so that produc-
tion may be easily scaled and assure precision by compensating for fuel burn
up.

G2 Cost optimisation: assure optimal balance of control means with respect to
cost associated with the use of boron acid versus control rods.

G3 Fuel utilisation: assure optimal fuel utilisation.

The SaCS method is applied for deriving an adaptable load following mode
control system intended as an upgrade of an existing nuclear power plant control
system. The adaptable feature is introduced as a means to calibrate the controller
performing control rod control during operation in order to accommodate fuel
burn up. The system will be referred to as ALF (Adaptable Load Following).
The scope is limited to goal G1 only.
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Fig. 1. Pattern Selection Activity Map

4 Elicit Functional Requirements

4.1 Pattern Selection

The selection of SaCS basic patterns is performed by the use of the pattern
selection map illustrated in Figure 11. Selection starts at selection point (1).
Arrows provide the direction of flow through the selection map. Pattern selection
ends when all selection points have been explored. A choice specifies alternatives
where more than one alternative may be chosen. The patterns emphasized with
a thick line in Figure 1 are used in this article.

1 Not all patterns in Figure 1 are yet available in the SaCS language but has been
indicated for illustration purpose.
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The labelled frames in Figure 1 represent selection activities denoted as UML
[10] activity diagrams. The hierarchy of selection activities may also be used
as an indication of the categorisation of patterns into types. All patterns that
may be selected is of type Basic Pattern (indicated by the outermost frame).
The type Basic Pattern is specialised into two pattern types: Process Assurance;
and Product Assurance. These two are both specialised into three pattern types:
Requirement ; Solution; and Safety Case. The Solution type within Process As-
surance is for patterns on methods supporting the process of developing the
product. The Solution type within Product Assurance is for patterns on design
of the product to be developed.

All patterns indicated in Figure 1 should be understood as generally applicable
unless otherwise specified. General patterns represent domain independent and
thus common safety practices. Domain specific patterns are annotated by a tag
below the pattern reference. In Figure 1, the tag: “Nuc” is short for nuclear;
“Avi” short for aviation; and “Rail” short for railway. Domain specific patterns
reflect practices that are dependent on domain.

In selection point (3) of Figure 1 a set of product assurance requirement pat-
terns may be reached. We assume in this article that the information provided in
Section 3 sufficiently details the development objectives and context such that
the patterns reached from selection point (1) and (2) may be passed. The pat-
tern Variable Demand for Service reached from selection point (3) captures the
problem of specifying requirements for a system that shall accommodate changes
arising in a nuclear power production environment. The pattern is regarded as
suitable for elicitation of requirements related to the goal G1 (see Section 3).

4.2 Pattern Instantiation

The pattern Variable Demand for Service referred to in Figure 1 is a product
oriented requirement pattern. Pattern descriptions is not given in this article
(see [5] for the full details) but an excerpt of the pattern is given in Figure 2.

Figure 2 defines a parametrised problem frame annotated by a SaCS adapted
version of the problem frames notation [7]. It provides the analyst with a means
for elaborating upon the problem of change in a nuclear power production en-
vironment in order to derive requirements (represented by Req) for the system
under construction (represented by Machine) that control a plant (represented
by Plant) such that a given objective (represented by Obj ) is fulfilled.

pfd Variable Demand for Service
Obj

Req

Machine Plant
Sensors

Actuators
Environment  Req

Plnt

Fig. 2. Excerpt (simplified) of “Variable Demand for Service” Pattern
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When Variable Demand for Service is instantiated, the Req artefact indicated
in Figure 2 is produced with respect to the context given by Obj and Plnt. In
Section 4.1 we selected the pattern as support for eliciting requirements for a
PWR system upgrade with respect to goalG1. The parameter Obj is then bound
to G1, and the parameter Plnt is bound to the specification of the PWR system
that the ALF upgrade is meant for.

Assume that the instantiation of Variable Demand for Service according to
its instantiation rule provides a set of requirements where one of these is defined
as: “FR.1: ALF system shall activate calibration of the control rod patterns when
the need to calibrate is indicated”.

4.3 Pattern Composition

Figure 3 illustrates a Composite Pattern Diagram that is a means for a user
to specify a composite pattern. A composite pattern describes an intended use,
or the integration of, a set of patterns. A specific pattern is referred to by a
Pattern Reference. A pattern reference is illustrated by an oval shape with two
compartments. The letter “R” given in the lower compartment denotes that this
is a requirement pattern; the prefix “Nuc-” indicates that this is a pattern for the
nuclear domain. A solid-drawn oval line indicates a product assurance pattern.
A dotted-drawn oval line indicates a process assurance pattern.

A small square on the oval represent a Port. A port is used to represent
a connection point to Pattern Artefacts. A socket represents Required Pattern
Artefact and the lollipop represents Provided Pattern Artefact. Patterns are
integrated by the use of Combinators. A combinator (e.g. the solid-drawn lines
annotated with “delegates” in Figure 3) specifies a relationship between two
patterns in terms of a pattern matching of the content of two Artefact Lists, one
bound to a source pattern and one bound to a target pattern. An artefact list
is an ordered list of Pattern Artefacts (A user may give names to lists).

Figure 3 specifies that the Variable Demand for Service pattern delegates its
parameters to the Functional Requirements composite. The binding of parameter
Obj and Plnt to the informal information provided on goal G1 and the PWR
specification is denoted by two Comment elements. A comment is drawn similar
to a comment in UML [10].

cmp Fragment  1

Nuc-R

Variable
Demand for Service

[[FR.1]][[Req=
{FR.1}]]

[[Obj]]

[[Plnt]]

[[Obj={G1}]]

[[Plnt={PWR}]]

cmp Functional Requirements

G1: Produce according to 
demand

PWR: Description of PWR

«delegates»

«delegates»

«delegates»

Fig. 3. Fragment showing use of “Functional Requirements” composite
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5 Establish Design Basis

5.1 Pattern Selection

In selection point (4) of Figure 1, a set of alternative design patterns may be
selected. All design patterns describe adaptable control concepts. The patterns
differ in how adaptable control is approached and how negative effects due to
potential erroneous adaptation are mitigated.

The Trusted Backup pattern describes a system concept where an adaptable
controller may operate freely in a delimited operational state space. Safety is
assured by a redundant non-adaptable controller that operates in a broader
state space and in parallel with the adaptable controller. Control privileges are
granted by a control delegator to the most suitable controller at any given time
on the basis of switching rules and information from safety monitoring.

The Trusted Backup is selected as design basis for the ALF system on the
basis of an evaluation of the strengths and weaknesses of the different design
patterns with respect to functional requirements, e.g. FR.1 (see Section 4.2).

5.2 Pattern Instantiation

Requirements may be associated with the system described by the Trusted
Backup pattern. No excerpt of the pattern is provided here due to space re-
strictions (fully described in [5]). Assume a design specification identified as
ALF Dgn is provided upon instantiation of Trusted Backup according to its in-
stantiation rule. The design specification describes the structure and behaviour
of the ALF system and consists of component diagrams and sequence diagrams
specified in UML as well as textual descriptions.

5.3 Pattern Composition

The referenced basic pattern Trusted Backup in Figure 4 is contained in a com-
posite named Design. Requirements may be associated with the system (denoted
S for short) described by the pattern Trusted Backup. In SaCS this is done by
associating requirements (here FR.1 ) to the respective artefact (here S ) as il-
lustrated in Figure 4.

cmp Fragment 2

 

C

 D

Functional
Requirements

Trusted Backup
cmp Design

«satisfies»

[[FR.1]] [[S={ALF Dgn}]] [[S={ALF Dgn}]]

«delegates»

Fig. 4. Fragment showing use of “Design” composite
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The satisfies combinator in Figure 4 indicates that ALF Dgn (that is the in-
stantiation of S ) satisfies the requirement FR.1 provided as output from instan-
tiation of the Functional Requirements composite. The Functional Requirements
composite is detailed in Figure 3. A pattern reference to a composite is indicated
by the letter “C” in the lower compartment of a solid-drawn oval line.

6 Elicit Safety Requirements

6.1 Pattern Selection

Once a design is selected in selection point (4) of Figure 1, further traversal leads
to selection point (5) and the pattern Hazard Identification. This pattern defines
the process of identifying potential hazards and may be used to identify hazards
associated with the ALF system.

In selection point (6), a set of method patterns supporting hazard identifi-
cation are provided. The FMEA pattern is selected under the assumption that
a FMEA (Failure Modes Effects Analysis) is suitable for identifying potential
failure modes of the ALF system and hazards associates with these.

Once a hazard identification method is decided, further traversal leads to
selection point (7) and Hazard Analysis. In selection point (8) process solution
patterns supporting hazard analysis may be selected. The FTA is selected as
support for Hazard Analysis under the assumption that a top-down FTA (Fault
Tree Analysis) assessment is a suitable complement to the bottom-up assessment
provided by FMEA.

Selection point (9) leads to the pattern Risk Analysis. The pattern provides
guidance on how to address identified hazards with respect to their potential
severity and likelihood and establish a notion of risk.

In selection point (10), domain specific patterns capturing different methods
for criticality classification are indicated. The I&C Functions Classification is
selected as the ALF system is developed within a nuclear context.

In selection point (11) the pattern Establish System Safety Requirements is
reached. The pattern describes the process of eliciting requirements on the basis
of identified risks.

6.2 Pattern Instantiation

Safety requirements are defined on the basis of risk assessment. The process
requirement patterns selected in Section 6.1 support the process of eliciting safety
requirements and may be applied subsequently in the following order:

1. Hazard Identification – used to identify hazards.
2. Hazard Analysis – used to identify potential causes of hazards.
3. Risk Analysis – used for addressing hazards with respect to their severity

and likelihood of occurring combined into a notion of risk.
4. Establish System Safety Requirements – used for defining requirements on

the basis of identified risks.
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Identify 
Target

act Establish System Safety Requirements

Req

Confer Laws, 
Regualations

Confer risk 
analysis

Define 
Requirements

Risks

ToA

Fig. 5. Excerpt (simplified) of “Establish System Safety Requirements” pattern

Assume that when Risk analysis is instantiated on the basis of inputs pro-
vided by the instantiation of its successors, the following risk is identified: “R.1:
Erroneously adapted control function”. The different process requirement pat-
terns follow the same format; details on how they are instantiated are only given
with respect to the pattern Establish System Safety Requirements.

Figure 5 is an excerpt of Establish System Safety Requirements pattern. It
describes a UML activity diagram with some SaCS specific annotations. The
pattern provides the analyst a means for elaborating upon the problem of es-
tablishing safety requirements (represented by Req) based on inputs on the risks
(represented by Risks) associated with a given target (represented by ToA).

Assume that Establish System Safety Requirements is instantiated with the
parameter Risks bound to the risk R.1, and the parameter ToA bound to the
ALF Dgn design (see Section 5.2). The instantiation according to the instanti-
ation rule of the pattern might then give the safety requirements: “SR.1: ALF
shall disable the adaptive controller during the time period when controller pa-
rameters are configured” and “SR.2: ALF shall assure that configured parameters
are correctly modified before enabling adaptable control”.

6.3 Pattern Composition

The composite Identify Risk illustrated in Figure 6 is not detailed here but it
may be assumed to provide data on risks by the use of the patterns Hazard
Identification, Hazard Analysis and Risk Analysis as outlined in Sections 6.1
and 6.2. The pattern I&C Functions Categorisation is supposed to reflect the
method for risk classification used within a nuclear context as defined in [6].

Semantics associated with the address combinator assures that the parame-
ter ToA of Establish System Safety Requirements is inherited from ToA of the
pattern Identify Risk.

7 Establish Safety Case

7.1 Pattern Selection

From selection point (12) in Figure 1 and onwards, patterns supporting a safety
demonstration is provided. We select Assessment Evidence, reached from selec-
tion point (15), as support for deriving a safety case demonstrating that the
safety requirements SR.1 and SR.2 (defined in Section 6.2) are satisfied.
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Fig. 6. Fragment showing use of “Safety Requirements” composite

7.2 Pattern Instantiation

Figure 7 represents an excerpt (fully described in [5]) of the pattern Assessment
Evidence and defines a parametrised argument structure annotated by a SaCS
adapted version of the GSN notation [4]. When Assessment Evidence is instanti-
ated a safety case is produced, represented by the output Case. The parameters
of the argument structure is bound such that the target of demonstration is set
by ToD, the condition that is argued satisfied is set by Cond. The argument
structure decomposes an overall claim via sub-claims down to evidences. The
FMEA assessment identified as ALF FMEA of the design ALF Dgn performed
during the assessment phase described in Section 6 provides a suitable evidence
that may be bound to the evidence obligation Ev.

7.3 Pattern Composition

Figure 8 specifies that the Assessment Evidence pattern delegates its parameters
to the Safety Case composite. The binding of parameters ToD, Cond, and Ev
is set informally by three comment elements referencing the respective artefacts
that shall be interpreted as the assignments. Instantiation of the pattern provides
the safety case artefact identified as ALF Case.

scd Assessment Evidence

ToD

Cond
Case:Claim

Sub:Claim

 Justification
Evj

S:Strategy

Case

Fig. 7. Excerpt (simplified) of “Assessment Evidence” pattern
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Fig. 9. The “ALF Pattern Solution” composite

8 Combine Fragments

The composite ALF Pattern Solution illustrated in Figure 9 specifies how the
different composite patterns defined in the previous sections are combined.

Figure 9 specifies the patterns used; the artefacts provided as a result of
pattern instantiation; the relationships between patterns and pattern artefacts
by the use of operators. The composite specification of Figure 9 may be refined by
successive steps of the SaCS method, e.g. by extending the different constituent
composite patterns with respect to the goals G2-G3 of Section 3.

9 Conclusions

In this paper we have exemplified the application of the SaCS-method on the
load following mode control application.

We claim that the conceptual design is easily instantiated from several SaCS
basic patterns within a case specific SaCS composite (Figure 9). Each basic
pattern has clearly defined inputs and outputs and provides guidance on instan-
tiation through defined instantiation rules. Combination of instantiation results
from several patterns is defined by composition operators. The conceptual design
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is built systematically in manageable steps (exemplified in Section 4 to Section
8) by instantiating pieces (basic patterns) of the whole (composite pattern) and
merge results. The conceptual design (fully described in [5]) is consistent with
definition, the required triple is provided by the artefacts ALF Req, ALF Dgn,
and ALF Case (as indicated in Figure 9) and uniquely specifies the load following
case.

Future work includes expanding the set of basic patterns, detailing the syntax
of the pattern language and evaluation of the SaCS-method on further cases from
other domains.
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Abstract. The era of digital avionics is opening a fabulous opportunity to im-
prove aircraft operational functions, airline dispatch and service continuity. But 
arising vulnerabilities could be an open door to malicious attacks. Necessity for 
security protection on airborne systems has been officially recognized and new 
standards are actually under construction. In order to provide development as-
surance and countermeasures effectiveness evidence to certification authorities, 
security objectives and specifications must be clearly identified thanks to a se-
curity risk assessment process. This paper gives main characteristics for a secu-
rity risk assessment methodology to be integrated in the early design of airborne 
systems development and compliant with airworthiness security standards.  
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1 Introduction 

The increasing complexity of aircraft networked systems exposes them to three ad-
verse effects likely to erode flight safety margins: intrinsic component failures, design 
or development errors and misuse. Safety1 processes have been capitalizing on expe-
rience to counter such effects and standards were issued to provide guidelines for 
safety assessment process and development assurance such as ARP-4754 [1], ARP-
4761 [2], DO-178B [3] and DO-254 [4]. But safety-critical systems segregation from 
the Open World tends to become thinner due to the high integration level of airborne 
networks: use of Commercial Off-The-Shelf equipments (COTS), Internet access for 
passengers as part of the new In-Flight Entertainment (IFE) services, transition from 
Line Replaceable Units to field loadable software, evolution from voice-ground-based 
to datalink satellite-based communications, more autonomous navigation with e-
Enabled aircrafts, etc. Most of the challenging innovations to offer new services, ease 
air traffic management, reduce development and maintenance time and costs, are not 
                                                           
1  Please note that safety deals with intrinsic failures of a system or a component (due to ageing 

or design errors) whereas security deals with the external threats that could cause such fail-
ures. Security being a brand new field in aeronautics, instead of building a process from 
scratch, the industry is trying to approximate to the well-known safety process, which has 
reached a certain level of maturity through its 50 years of experience. 
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security-compatible. They add a fourth adverse effect, increasingly worrying certifica-
tion authorities: vulnerability to deliberate or accidental attacks (e.g. worms or viruses 
propagation, loading of corrupted software, unauthorized access to aircraft system 
interfaces, on-board systems denial of service). De Cerchio and Riley quote in [5] a 
short list of registered cyber security incidents in the aviation domain. As a matter of 
fact, EUROCAE2 and RTCA3 are defining new airworthiness security standards: ED-
202 [6] provides guidance to achieve security compliance objectives based on future 
ED-2034 [7] methods.  

EU and US5 certification authorities are addressing requests to aircraft manufactur-
ers so they start dealing with security issues. However, ED-203 has not been officially 
issued and existing risk assessment methods are not directly applicable to the aero-
nautical context: stakes and scales are not adapted, they are often qualitative and de-
pend on security managers expertise. Also, an important stake in aeronautics is costs 
minimization. On the one hand, if security is handled after systems have been imple-
mented, modifications to insert security countermeasures, re-development and re-
certification costs are overwhelming: "fail-first patch-later" [8] IT security policies are 
not compatible with aeronautic constraints. It is compulsory that risk assessment is 
introduced at an early design step of development process. On the other hand, security 
over-design must be avoided to reduce unnecessary development costs: risk needs to 
be quantified in order to rank what has to be protected in priority. 

This paper introduces a simple quantitative risk assessment framework which is: 
compliant with ED-202 standard, suitable to the aeronautics, adaptable to different 
points of view (e.g. at aircraft level for airframer, at system level for system provider) 
and taking into account safety issues. This methodology is in strong interaction with 
safety and development processes. Its main advantage is to allow the identification of 
risks at an early design step of development V-cycle so that countermeasures are con-
sistently specified before systems implementation. It provides means to justify the 
adequacy of countermeasures to be implemented in front of certification authorities. 

Next chapter gives an overview of risk assessment methods; third one, depicts our 
six-step risk assessment framework, illustrated by a simple study case in chapter 4; 
last one concludes on pros and cons of our method and enlarges to future objectives. 

2 About Risk Assessment Methods 

Many risk assessment methodologies aim at providing tools to comply with ISO secu-
rity norms such as: ISO/IEC:27000, 31000, 17799, 13335, 15443, 7498, 73 and 15408 
(Common Criteria [9]). For example, MAGERIT [10] and CRAMM [11] deal with 
governmental risk management of IT against for example privacy violation. 

                                                           
2  European Organization for Civil Aviation Equipment. 
3  Radio Technical Commission for Aeronautics. 
4  ED-203 is under construction, we refer to the working draft [7] which content may be prone 

to change. 
5  Respectively EASA (European Aviation Safety Agency) and FAA ( Federal Aviation  

Administration). 
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NIST800-30 [12] provides security management steps to fit into the system develop-
ment life-cycle of IT devices. Others, such as OCTAVE [13] aim at ensuring enter-
prise security by evaluating risk to avoid financial losses and brand reputation  
damage. Previously stated methods are qualitative, i.e. no scale is given to compare 
identified risks between them. MEHARI [14] proposes a set of checklists and evalua-
tion grids to estimate natural exposure levels and impact on business. Finally, EBIOS 
[15] shows an interesting evaluation of risks through the quantitative characterization 
of a wide spectrum of threat sources (from espionage to natural disasters) but scales 
of proposed attributes do not suit to the aeronautic domain. 

Risk is commonly defined as the product of three factors: Risk = Threat × Vulne-
rability × Consequence. Quantitative risk estimations combine these factors with 
more or less sophisticated models (e.g. a probabilistic method of risk prediction based 
on fuzzy logic and Petri Nets [16] vs. a visual representation of threats under a py-
ramidal form [17]). Ortalo, Deswarte and Kaaniche [18] defined a mathematical mod-
el based on Markovian chains to define METF (Mean Effort to security Failure), a 
security equivalent of MTBF (Mean Time Between Failure). Contrary to the failure 
rate used in safety, determined by experience feedback and fatigue testing on compo-
nents, security parameters are not physically measurable. To avoid subjective analy-
sis, Mahmoud, Larrieu and Pirovano [19] developed an interesting quantitative  
algorithm based on computation of risk propagation through each node of a network. 
Some of the parameters necessary for risk level determination are computed by using 
network vulnerability scanning. This method is useful for an a posteriori evaluation, 
but it is not adapted to an early design process as the system must have been imple-
mented or at least emulated. 

3 Risk Assessment Methodology Steps 

Ideally, a security assessment should guarantee that all potential scenarios have been 
exhaustively considered. They are useful to express needed protection means and to 
set security tests for final products. This part describes our six-steps risk assessment 
methodology summarized in Figure 1, with a dual threat scenario identification in-
spired on safety tools and an adaptable risk estimation method.  

3.1 Step 1: Context Establishment 

First of all, a precise overview of the security perimeter is required to focus the analy-
sis, avoid over-design and define roles and responsibilities. Some of the input ele-
ments of a risk analysis should be:  

• security point of view (security for safety, branding, privacy, etc.),  
• depth of the analysis (aircraft level, avionics suite level, system or item level),  
• operational use cases (flight phases, maintenance operations),  
• functional perimeter,  
• system architecture and perimeter (if available),  
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• assumptions concerning the environment and users,  
• initial security countermeasures (if applicable),  
• interfaces and interactions,  
• external dependencies and agreements.  

A graphical representation (e.g. UML) can be used to gather perimeter information, 
highlight functional interfaces and interactions. 
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Fig. 1. Risk assessment and treatment process: the figure differentiates input data for the securi-
ty process as coming either from the development process or from a security knowledge basis 

3.2 Step 2: Preliminary Risk Assessment (PRA) 

PRA is an early design activity: its goal is to assess designers so they consider main 
security issues during the first steps of avionic suite architecture definition. Basically, 
it aims at identifying what has to be protected (assets) against what (threats).  

Primary Assets. According to ED-202, assets are "those portions of the equipment 
which may be attacked with adverse effect on airworthiness". We distinguish two 
types of assets: primary assets (aircraft critical functions and data) that are performed 
or handled by supporting assets (software and hardware devices that carry and process 
primary assets). In PRA, system architecture is still undefined, only primary assets 
need to be identified. 
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Threats. Primary assets are confronted to a generic list of Threat Conditions (TCs) 
themselves leading to Failure Conditions (FCs). Examples of TCs include: misuse, 
confidentiality compromise, bypassing, tampering, denial, malware, redirection, sub-
version. FCs used in safety assessment are: erroneous, loss, delay, failure, mode 
change, unintended function, inability to reconfigure or disengage.  

Top-down Scenarios Definition. Similarly, to safety deductive Fault Tree Analysis 
(FTA), the security PRA follows a top-down approach: parting from a feared event, 
all threat conditions leading to it are considered to deduce the potential attack or mi-
suse causes deep into systems and sub-systems. Due to the similarities with Function-
al Hazard Analysis (FHA) made in safety process and as a matter of time and cost 
saving, this assessment could be common both to safety and security preliminary 
processes as they share the same FCs. 

3.3 Step 3: Vulnerability Assessment 

Supporting Assets. Once architecture has been defined and implementation choices 
are known, all supporting assets of a given primary asset can be identified. Supporting 
assets are the ones that will potentially receive countermeasures implementation.  

Vulnerabilities. They are supporting assets’ weaknesses exploited by attackers to get 
into a system. TC are associated to types of attacks and all known vulnerabilities are 
listed to establish a checklist typically based on the public database CVE6 (Common 
Vulnerabilities and Exposures), and eventually completed by new vulnerabilities 
found by intrusion testing. 

Bottom-up Scenarios Definition. Similarly to the safety inductive approach of Failure 
Mode and Effect Analysis (FMEA), the security vulnerability assessment is a bottom-
up approach: it aims at identifying potential security vulnerabilities in supporting 
assets, particularly targeting human-machine and system-system interfaces. First with 
vulnerability checklists and then by testing, threat propagation paths must be followed 
to determine the consequences on sub-systems, systems and aircraft level of each item 
weakness exploitation.  

To summarize, the top-down approach allows the identification of high-level security 
requirements. Whereas the bottom-up approach, allows validating and completing these 
requirements with technical constraints and effectiveness requirements, as well as iden-
tifying threats and vulnerabilities left unconsidered during the top-down analysis. 

3.4 Step 4: Risk Estimation 

It would be impossible to handle all of identified scenarios. It is necessary to quantify 
their likelihood and safety impact, to determine whether risk is acceptable or not, and 
measure the effort to be provided to avoid the most likely and dangerous threats.  

                                                           
6  http://cve.mitre.org/ 
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Likelihood. It is the qualitative estimation that an attack can be successful. ED-202 
considers five likelihood levels: 'pV: frequent', 'pIV: probable', 'pIII: remote', 'pII: 
extremely remote', 'pI: extremely improbable'. As they are too subjective to be deter-
mined directly, we built Table 1 to determine likelihood by combining factors that 
characterize and quantify both attacker capability (A) and asset exposure to threats 
(E). Note that Table 1 is usable whatever the amount of attributes required, and what-
ever the number of values each attribute can take, i.e. this framework allows flexible 
evaluation criteria as they may vary according to the context (aircraft or system level, 
special environment conditions, threats evolution). However, these criteria must be 
defined with an accurate taxonomy so the evaluation is exhaustive, unambiguous and 
repeatable. 

Table 1. Attack likelihood through attacker characteristics and asset exposure 

  ATTACKER CAPABILITY SCORE 
  0 ≤ A ≤ 0,2 0,2 < A ≤ 0,4 0,4 < A ≤ 0,6 0,6 < A ≤ 0,8 0,8 < A ≤ 1 

E
X

P
O

SU
R

E
 0  ≤ E ≤ 0,2 pI pI pII pIII pIV 

0,2 < E ≤ 0,4 pI pI pII pIII pIV 
0,4 < E ≤ 0,6 pII pII pIII pIV pV 
0,6 < E ≤ 0,8 pIII pIII pIV pV pV 
0,8 < E ≤  1 pIV pIV pV pV pV 

Let  X X , … , X  be a set of n qualitative attributes chosen to characterize the 
“attacker capability”. For instance, X X =“elapsed time to lead the attack”, X = 
“attacker expertise”, X = “previous knowledge of the attacked system”,  X = “equip-
ment used”,  X = “attacker location”}. Each attribute X  can take m values: X , … , X , X  being more critical than X . E.g.  X  can take the values: 
{X =">day", X ="<day", X ="hours (by flight time)", X ="minutes"}. To each qua-
litative value X , we associate quantitative severity degrees x , with x  > x . In the 
study case, we set: x  =0, x =1, x =2 and x =3.  

Let us call f () the evaluation function performed by the security analyst to assign 
the corresponding severity degree a  to each X  for a given threat scenario: af x . Attacker capability is expressed by the normalized sum of the values as-
signed to all attributes of set X (see equation 1). Exactly the same reasoning is made to 
express the “asset exposure”.                             A ∑ ,   x x , i 1 … n, j 1 … m                            (1) 

Acceptability. To determine whether a risk is acceptable or not, we use Table 2: the 
risk matrix provided by ED-202 that associates safety impact and likelihood. Safety 
impact levels are: 'N/E: no safety effect', 'MIN: minor', 'MAJ: major', 'HAZ: hazard-
ous', 'CAT: catastrophic'. 
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Table 2. ED-202 acceptability risk matrix 

  SAFETY IMPACT 
  No Effect Minor Major Hazardous Catastrophic 

L
IK

E
L

IH
O

O
D

 

pV: Frequent Acceptable Unacceptable Unacceptable Unacceptable Unacceptable 

pIV: Probable Acceptable Acceptable Unacceptable Unacceptable Unacceptable 

pIII: Remote Acceptable Acceptable Acceptable Unacceptable Unacceptable 

pII: Extremely Remote Acceptable Acceptable Acceptable Acceptable Unacceptable 

pI: Extremely Improbable Acceptable Acceptable Acceptable Acceptable Acceptable* 

* = assurance must be provided that no single vulnerability, if attacked successfully, would result in a catastrophic condition 

3.5 Step 5: Security Requirements 

Security Level (SL). The SL is similar to safety Design Assurance Level (DAL7) 
defined in DO-178B [3]. SL has a dual signification, it stands both for: 

• strength of mechanism (assurance must be provided that countermeasures per-
form properly and safely their intended security functions) 

• implementation assurance (assurance must be provided that security counter-
measure has followed rigorous design and implementation process) 

For each non acceptable threat scenario identified, a SL is determined based on the 
risk reduction required so that risk becomes acceptable in Table 2. Depending if the 
likelihood has to be reduced of 0, 1, 2, 3 or 4 levels to be on an acceptable level, SL 
will respectively take the values E, D, C, B or A. The SL is assigned to each devel-
oped countermeasure and associated assurance requirements will be given by ED-203. 
 
Security Requirements. For each unacceptable threat scenario, a set of security ob-
jectives are established. They are translated into security requirements using the Secu-
rity Functional Requirements (SFR) classes of Common Criteria part 2 in order to 
have an initial template to express security requirements in a formal way. Indeed, 
Common Criteria provide a classification of requirements patterns where inter-
dependencies between them are already traced.  
 
Assurance Requirements. Proving security requirements have been respected is not 
enough; development assurance must be consistent with a given environment and 
procedures quaity. To do so, we have mapped each SL with Common Criteria EALs 
(Evaluation Assurance Levels). Each EAL is linked to a set of assurance families 
themselves composed of SARs (Security Assurance Requirements). Assurance re-
quirements aim at establishing accurate development rules so that security functions 
perform correctly their intended purpose and means to maintain security during de-
velopment, maintenance and operational use have been taken into account.  
                                                           
7  DAL stands for the accuracy dedicated to the design and development of a system according 

to its criticality in terms of safety impact, it sets objectives to properly provide assurance to 
certification authorities that developed system performs safely its intended functions. For ex-
ample a DAL A system will receive the maximum care as a failure would have a catastrophic 
impact, whereas a DAL E system will have no design constraint as a failure would not have 
any consequence on safety of flight. Design and development rules are given by standards 
DO-178B for software and DO-254 for hardware. 
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3.6 Step 6: Risk Treatment 

Countermeasure Selection. Countermeasures must be selected for their compliance 
towards security requirements and for their effectiveness, but also taking into account 
development costs in order to avoid over design. Once a countermeasure has been 
developed on the most exposed supporting asset, verification such as intrusion tests 
must be performed on the basis of threat scenarios to prove its conformity with securi-
ty requirements. Both countermeasures and intrusion tests should be made according 
to component AVA_VAN (Vulnerability assessment) of Common Criteria [9]. 

Security Rules. Safety process counts on a set of “safety rules” to provide for integrity 
or availability loss ensuring a fail-safe state of the systems. For instance, continuous 
monitoring, reconfiguration, redundancy (duplex, triplex, etc.), voting or comparison 
and dissimilarity are some of these rules. The Common Mode Analysis (CMA) is then 
performed to verify the correct and safe construction of the architecture.  

The same way, in order to ease security architecture design, “security rules” can be 
set around principles such as: passive (e.g. monitoring) or active defense, perimetric 
defense (e.g. at Human-Machine Interface level or at any equipment receiving exter-
nal data or software), middleware defense (e.g. at switch or router level), “onion skin” 
defense (e.g. at each system interface of a functional chain or potential attack path), 
central defense (e.g. central decision system), etc. Formal verification methods such 
as CMA could be then deployed to verify security rules for architecture patterns con-
struction have been correctly applied (e.g. respect of segregation between critical and 
non-critical data in a router). These rules and verification means are to be defined. 

4 Study Case 

4.1 Scope 

Let us consider the Weight and Balance (WBA) function that ensures 3D stability 
control of aircraft gravity center. It determines flight parameters (e.g.: quantity of 
kerosene to be loaded, takeoff run and speed, climbing angle, cruising speed, landing 
roll) and requires interactions with ground facilities. Figure 2 depicts the interactions 
required by the WBA function: check-in counters furnish number and distribution of 
passengers in the aircraft. Ground agent enters weight of bulk freight loaded in aft 
hold. Weight data is directly sent via data link to the ground WBA calculation tool to 
compute flight parameters. On ground, flight crew imports flight parameters to be 
directly loaded in the Flight Management System (FMS).  

4.2 Preliminary Risk Assessment 

Figure 3 depicts the top-down approach of threat scenario building, with identified 
primary assets, Failure and Threat Conditions. It should be shaped as a FTA but we 
choose this representation for a matter of space, left-right rows are causal links.  
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Fig. 2. WBA simplified functional chain sequence diagram 

 

Fig. 3. Top-down approach threat scenario identification: from feared event to potential causes 

4.3 Vulnerability Assessment 

Most of supporting assets in this study case such as check-in counters and freight 
management computers are COTS. Let us suppose they present the following weak-
nesses: activated autorun, system bootable from peripherals, connection to Internet, 
no antivirus, no passwords. These vulnerabilities could be exploited by intruders or by 
a certain kind of boot virus. Depending on the consequences of these vulnerabilities 
exploitation on the aircraft, more threat scenarios would have to be added.  

4.4 Risk Estimation 

We estimate threat scenarios (TS) derived from TC 1 to 3 on Fig.2: “ground agent 
weight typing mistake on freight laptop” (TS1), “unauthorized person enters delibe-
rately wrong weight data on freight laptop” (TS2) and “intruder modifies flight para-
meters by accessing directly to FMS” (TS3).  

To summarize, for each threat scenario, attacker capability and asset exposure are 
evaluated using a set of attributes and scales (respectively tables 3 and 4 for this study 
case). Values A and E are obtained thanks to equation 1 and used in table 1 intervals 
to determine likelihood. Obtained likelihood level combined with the safety impact of 
a successful attack attempt on table 2, allow deciding on risk acceptability. Results are 
gathered on table 5. 
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Table 3. Attacker capability score example 

 Values 

Attributes 3 2 1 0 
X1: Elapsed time for the attack minutes hours <day >day 
X2: Attacker expertise “misuser” layman proficient expert 
X3: Attacker system knowledge public restricted sensitive critical 
X4: Equipment used none domestic specialized dedicated 
X5: Attacker location off-airport airport cabin cockpit 

Table 4. Asset exposure score example 

 Values 

Attributes 4 3 2 1 0 
Y1: Asset location off-aircraft cabin maint. facility cockpit avionic bay 
Y2: Class8 of asset class 1  class 2  class 3 
Y3: DAL DAL E DAL D DAL C DAL B DAL A 
Y4: Vulnerabilities large public  limited public not public unknown none at all  
Y5: Countermeasure none organizational  technical on asset >2 on chain  

Table 5. Risk estimation: likelihood, impact, acceptability and SL determination 

TS 
 

Attacker capability  Asset Exposure 
Likelihood Impact Acceptable? SL 

a1 a2 a3 a4 a5 A e1 e2 e3 e4 e5 E 
1 3 3 2 1 2 0,73 

2 4 4 3 3 0,8 
pV HAZ no (> pII) B 

2 3 1 2 3 2 0,73 pV HAZ no (> pII) B 
3 0 0 1 1 1 0,4 2 0 0 1 1 0,5 pII HAZ yes (≤ pII) E 

4.5 Security Requirements 

In this example, only cases 1 and 2 will require to set security objectives that are: to 
provide means of user and data authentication. In Common Criteria part 2, this aspect 
corresponds to the SFR class FIA (Identification and Authentication) and more par-
ticularly the families FIA_UAU (User Authentication) and FIA_AFL (Authentication 
Failure Handling). An example of SFR is “FIA_UAU.2.1: The system shall require 
each user to be successfully authenticated before allowing any other actions on behalf 
of that user” [9]. Even if case 3 is not handled, the threat scenario and its risk evalua-
tion must be traced so that risk acceptance can be justifiable in front of certification 
authorities. For case 3, the justification is that only an expert who has a critical know-
ledge of the system can break into it. It is considered that company document storage 
and security policy is trusted enough.  

4.6 Risk Treatment 

For cases 1 and 2, an organizational countermeasure is having a third party checking 
the weight data entered by ground agent. For case 1, a technical countermeasure is 

                                                           
8  Class 1: Portable Electronic Device (PED); class 2: modified PED; class 3: installed  

equipment under design control. 
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simply having the software used by ground agent asking to type twice the value to 
avoid typing mistakes. For case 2, a personal authentication password should be add-
ed to ground agent computer. If case 3 was unacceptable, file security management 
should be enhanced.  

5 Conclusion 

This paper justifies the need to develop an efficient risk assessment method to build 
secured architectures for digital aircrafts. We aim at introducing security considera-
tions at an early design step of the development, allowing a certain degree of freedom 
to use attributes that best fit to the scope of analysis. Criteria taxonomy rules are to be 
improved by practice to make procedures as systematic and accurate as possible. 
However the exhaustiveness of threat scenarios identification cannot be proved nor 
guaranteed. Readjustments will have to be made to comply with future ED-203 mod-
ifications. This methodology has been tested on various examples and then applied on 
a real case of security certification. It has been agreed by the certification authority 
provided that intrusion test results validate the coherence of identified threat scenarios 
and eventually reveal new vulnerabilities. 
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Abstract. One of the effects of the radically changing energy market
is that more and more offshore wind turbines are being constructed. To
meet the increasing demand for renewable energy, many new companies
with different levels of experience are entering the market. As the con-
struction and maintenance of large offshore wind farms is a complex task,
safety aspects of these operations are of crucial importance to avoid acci-
dents. To this end, we introduce a method that assists in (1) identifying
and precisely describing hazards of a scenario of an offshore operation,
(2) quantifying their safety impact, and (3) developing risk mitigation
means. Based on a guided hazard identification process, a formalization
of hazardous scenarios will be proposed that unambiguously describes
the risks of a given offshore operation. We will demonstrate the feasibil-
ity of our approach on a specific offshore scenario.

1 Introduction

The radical change in the energy market towards renewable energy production
that has been initiated by politics causes a high demand for wind turbines to be
built. Because of concerns regarding noise emissions and scenic impacts, there
are ongoing plans to place more and more wind turbines into offshore wind parks.
In Germany, 24 wind parks in the North Sea have been approved so far ([1], [2]).
However, the construction of many of these wind parks is delayed.

As such a huge change in a short time can only be realized by a large amount
of companies constructing multiple facilities concurrently, a lot new players rush
into the offshore wind energy market. Not all of these companies have extended
experience in the maritime or offshore sector and are familiar with the required
safety assessment procedures. Implementing the necessary practices and pro-
cesses is a highly complex task. Not supporting their adoption could be a de-
laying factor for the energy change. Recent events ([3], [4]) have shown that
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nevertheless these assessments have to take place to protect personnel and en-
vironment In many aspects, offshore scenarios fulfil the criteria of a System of
System (SoS). Maier[5], for instance, uses five characteristics that, depending on
their strength, impose different challenges for offshore operations:

• Operational independence of the elements: To a small extend, the people and
systems may act independently during an offshore operation. However, they
are mostly directed by guidelines and supervisors.

• Managerial independence of the elements: The systems (e.g. construction
ships) are to some extend not depending on other systems during an opera-
tion. Nevertheless, a complete independence is not given.

• Evolutionary development: While the first offshore operations had proto-
typical character, new technological possibilities as well as political/legal
constraints lead to an evolution of the operations, its procedures, and the
involved systems.

• Emergent behavior: As of today, there has (to our knowledge) not been a
systematical investigation of the interaction of people and systems during
offshore operations. To perform such an analysis, a model that consistently
integrates the behavior of the involved systems is a preferable solution.

• Geographic distribution: There might be a large geographic distribution as
the guidance authorities for an operation might reside onshore whereas the
operation itself takes place offshore. Further, the geographic distributions of
involved systems and people offshore has a strong impact on the efficiency.

Therefore, we consider the collection of all systems and persons involved in typi-
cal offshore operations as an SoS.

The SOOP project1 aims at supporting planning and execution of safe off-
shore operations for construction and maintenance of offshore wind turbines. A
special focus is set on the behavior of persons involved. To analyze an operation,
a model based approach is used, including modeling the behavior of the involved
persons, as described in [6]. Thus, a conceptual model is build and maintained
that describes the interaction of systems and persons as well as the evolution of
the system. The architecture of the system and thus the conceptual model will
be changing over time as new needs might arise during the project implemen-
tation. Another aspect of the SOOP project is the identification and mitigation
of possible risks during the planning process while also taking the situation into
consideration. The results for this will also be used for an online assistant system
that monitors the mission (e.g. the location of crew and cargo, cf. [7]) and warns
if a hazardous event is emerging. This is intended as a further way to avoid risks
during an offshore operation.

In this paper, we will focus on the risk assessment aspects of the project.
We will discuss our current approach in performing those steps and present
our methods we developed for an improved risk identification process. After
introducing some terms and definitions, we will first give an overview about
current hazard identification and risk assessment approaches. Later, we show

1 http://soop.offis.de/
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how the conceptual model can be used to guide the hazard identification and
formalization process and how it can be used for modeling the relevant scenarios
and risk mitigation possibilities.

2 Terms and Definitions

To ensure a common understanding of hazard related terms in this paper, we
will give an overview over our definitions for which we follow ISO 26262[8] and
IEC 61508[9]. In sec. 4, we will further describe why we use parts of the auto-
motive standard in addition to the maritime approaches.

We define a hazard as an event that might lead to harm of humans or of
the environment. The event that might lead to a hazard is called failure, it
is the inability of persons or systems to perform the normative functions. A
failure might be induced by an error which is an abnormal condition; its cause
is called fault. An operational situation describes a process or setting during
an operation, and the combination with a hazard is called hazardous event.
This term is most commonly used in the automotive context, less often in other
domains. We introduce it to be able to further differentiate hazards as the impact
of a hazard depends on the situation. An example for this is an injury happening
to a person working on a ship. It is less problematic happening while the ship is
in the harbor, as transportation to the nearest hospital will take less time than
transporting the person from an offshore location.

According to Vinnem[10], the risk in the offshore sector can be quantified by
the expected harm that is caused by a hazard and its probability. In our approach
that takes some aspects of the ISO 26262 into consideration, we extend this
with the controllability of a hazard. A quantification respecting these parameters
would describe the risk of an operation as Risk(Hazardous Event) =∑

i(Probability of independent causei)×Consequence×Controllability. The controllability reflects
the ability to avoid harm or damage by timely reacting to a hazardous event.
This could be realized by alerting persons of emerging risks, hence they are aware
of it and have the possibility to deploy preventive measures. More details on our
extended risk definition can be found in sec. 4.

3 State of Practice in Risk Assessment

Oil and gas companies have collected a lot of experience in the offshore sector.
Safety assessments have been performed in this area for a long time and a large
knowledge base exists. Nevertheless, these experiences cannot directly be applied
to offshore wind turbine operations as, although some similarities exist, most of
the risks differ substantially. For example, there may be a lot of risks regarding
fire and explosion when considering oil and gas rigs, as both of them handle
ignitable compounds. Those are not primary risks when talking about offshore
wind turbines. Neither are there risks such as blowouts or leakage. Besides these
differences, some operations are common between both types of offshore opera-
tions. Therefore, Vinnem[10] has been taken into consideration as a reference to
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planning of oil rig related operations. It describes the state of the art in risk anal-
ysis in the domain. In detail, it addresses the steps of Quantitative Risk Analysis
(QRA), which is a type of risk assessment that is frequently applied to oil and gas
related offshore operations. Its approach is based in the standards IEC 61508[9]
(which is also the base for ISO 26262) and IEC 61511[11]. The steps involved
in the QRA approach are depicted in fig. 1, which we have extended with the
shaded box (along with annotations of our developed methods). They include
identifying possible hazards, assessing their risks and developing risk mitigation
measures if the identified risk is not tolerable. We further describe these steps
when introducing our modified approach in sec. 4.

In order to identify all possible hazards, Vinnem further introduces HAZID
(HAZard IDentification) as an analysis technique, which basically suggests which
steps need to be performed and which sources should be taken into consideration
when identifying hazards. The sources include check lists, previous studies, and
accident and failure statistics. Performing the approach requires a lot of manual
work which demands experienced personnel. In newly planned operations, this is
a time consuming and expensive process. In addition to this, the HAZID process
is not well defined, not structured, and has no source that completely lists the
relevant potential hazards or risks. To improve this, we introduce a guided way
of identifying hazards, which is described in sec. 4.

A further approach is Formal Safety Analysis which is also used for offshore
safety assessment[12]. It is based on assigning risks (that are also identified using
HAZID) to three levels: intolerable, as low as is reasonably practicable (ALARP),
and negligible. Risk assigned to the ALARP level are only accepted if it is shown
that serious hazards have been identified, associated risks are below a tolerance
limit and are reduced “as low as is reasonably practicable”. Because this concept
does not rely on quantification and rather uses an argumentative method for
assessing risks, the analysis might not be complete and requires a lot of manual
expert effort. Because of this there are no concepts that are interesting for usage
with our model-based approach.

Of particular interest is the current automotive standard as in contrast to
the processes in the offshore sector, those in the automotive sector are more
time and cost efficient. This is due to the strong competition between different
manufacturers in this industry, the large amount of sold units, the short innova-
tion cycles and a high volume market with many different car configurations. To
achieve a cost efficient process of risk assessment, a specialized approach, defined
in ISO 26262[8], is used by the automotive companies. In contrast to the offshore
sector, the automotive industry also considers controllability as a factor for the
risk assessment, which we have described in sec. 2.

4 Introducing a Modified Approach for Offshore Risk
Assessment

We will introduce an improved approach of it in the current section as well
as additional methods to support the risk assessment process. Our approach is
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model-based because this kind of analysis has proven to us to be effective in
other domains. It enables us to model the expected behavior as well as possible
dysfunctional behavior. It also makes it possible to reuse methods and techniques
for model-based safety assessment, for instance those developed in the ESACS
and ISAAC projects (cf. [13,14]) in the aerospace domain.

The most important difference between the risk assessment approach of the
automotive sector and the one used in the offshore sector is that the auto-
motive approach includes a third risk assessment factor, the controllability of
hazardous situations. We borrow this concept as a further assessment factor of
our approach, which will support the risk mitigation by introducing measures
raising the awareness of a risk, thus allowing its prevention or reduction of its
impact. Considering this parameter enables us to include human factors, that
is the ability of humans to react to a hazardous event in a way that lowers its
impact or even prevents it, in our analysis. Further, the mission assistant de-
veloped in the SOOP project (cf. sec. 1) that might alert the personnel about
potential hazards and thus allows avoiding them or mitigating their impact can
also be incorporated. The modified approach with added controllability (marked
by shades) can be seen in fig. 1. Also, we added information about how our
methods are integrated with the QRA approach in the boxes on the right side.

A further concept originating in the automotive sector and used in our ap-
proach are Hazardous Events. Their usage enables for us to further differentiate

Fig. 1. Overview over the risk assessment steps. Our methods to support them are
annotated by boxes. Enhanced version the QRA approach from [10]. Enhancements
are marked by shades.
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the hazards by specifying the situations in which they occur. This allows us to
assess the impact of a hazard in a specific situation, as the impact might be
dependent on the operational situation. A hazard might have a more severe con-
sequence in some situations than in others. In a few situations, a hazard may
even have no relevant impact at all.

In the following sections, we introduce every step of our approach as well as
the supporting methods.

4.1 Hazard Identification and Completeness of Identified Hazards

The base for the assessment of risks are the hazardous events. To create this
base, it is necessary to identify all possible hazards including the related faults,
environmental conditions, and operational situations of which the hazardous
events consist. We introduce three steps that result in a list of hazardous events
and the corresponding causes.

The first step is obtaining a detailed Scenario Description out of which the
possible hazards have to be identified in the next step. To support this process
we introduce a concept of a Generic Hazard List. As a final step, the results of
the identification process have to be documented.

Scenario Description: A precondition for identifying the hazards that could
occur during a scenario is a detailed description. An interview with maritime
experts is one way to reach this description. During the interview, guidance by
the interviewer is necessary to ensure that all steps are captured completely,
as the interviewed persons might omit intermediate actions and checks that
seem obvious to them because of their many years of experience. Each step has
to be collected and every single sub-step has to be gathered to get a detailed
description. Additionally, potential hazards might be collected, too, to extend
the amount of hazards detected using the Generic Hazard List introduced in the
next section. As explained in the introduction, these scenario descriptions are
used to update the conceptual model.

Offshore Operation Generic Hazard List (OOGHL): The HAZID ap-
proach described in sec. 3 takes several sources of information about potential
hazards into consideration (e.g. previous studies, accident reports, etc.). These
sources lack structure that allows their use as an efficient guide for hazard iden-
tification. Furthermore, similar hazards might be described in different sources
which causes additional effort in harmonizing them. Another problem is that
merging different sources might lead to oversight of a relevant hazard.

This is why we developed a special instrument, theOffshore Operation Generic
Hazard List (OOGHL). It consists of an abstract description of possible actions
during an offshore operation, as well as of descriptions of the hazards to which
the actions might contribute to. Its structure is based on the approach of an Au-
tomotive Generic Hazard List (AGHL) as described by Reuss[15] and Beisel[16],
but as their GHL is optimized for automotive assistance systems, it cannot be
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applied directly to the offshore sector. The nature and the complexity of inter-
actions and hazards differ in an extensive manner. Thus, we have developed a
GHL that is specifically adjusted to offshore related interactions and hazards.
The data of our GHL is based on accident reports (e.g. Lessons Learned for
Seafahrers [17]), guidance documents (e.g. IMCA publicatons2), and expert in-
terviews. Our data is not complete by now and currently limited to assess two
example scenarios as we focus on them in the research project. Further sources
can be reviewed to extend the OOGHL which currently consists of about 450
entries.

In order to use the OOGHL, a detailed description of the scenario is required
(see above). Using this description, a step by step walktrough of the scenario
is possible and every step can be analyzed by looking up the potential in the
OOGHL. To allow such a lookup systematically, the OOGHL comprises of all
possible actions that might be part of an offshore operation. It also contains
points of interaction between persons, resources, and the environment (e.g. other
traffic, fixed installations, or other resources) and, as a third component, the
potential hazards that might occur in the analyzed scenario. The structure of
the OOGHL is depicted in fig. 2.

Fig. 2. Excerpt from the OOGHL

When using the OO-
GHL to look up haz-
ards, all actions that are
performed in the step
of the scenario have to
be considered. As an ex-
ample, we show how to
identify the hazards for
the step Stepping Over
to the Offshore Turbine
of a scenario that com-
prises transferring per-
sons to the turbine. We
match our descriptions of
the steps taken during the
scenario to the actions
listed in the OOGHL.
The description of the ex-
ample includes a step in
which a ladder is used and the matching action from the OOGHL would be
Entering/Moving/Navigating. After this, every row of the column of the action
containing an X is considered. The label of this row reflects a possible point of
interaction. For our example, a possible row would be Rain/Fog (wetness). If
this combination with the action seams feasible, the descriptions of the poten-
tial hazards referenced in the table will be taken into consideration. In addition,
this descriptions include promotive and preventive factors for the hazard. In our

2 http://www.imca-int.com/documents/publications.html

http://www.imca-int.com/documents/publications.html
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Fig. 3. Example entries for detailed description of hazards

case, the descriptions for the entries 17.9 to 17.12 are taken into account, of
which two are shown in fig. 3.

Using the OOGHL to identify possible hazards has the advantage that only
one source has to be taken into consideration (in contrast to HAZID). This leads
to less time expense in processing hazard descriptions in contrast to the HAZID
approach.

Identifying Hazardous Events: To assess the risks associated with the iden-
tified hazards, the hazards have to be documented. As we use Hazardous Events
which we introduced in sec. 2 and sec. 4, we extended the documentation with
these events as well as with all their dependencies and the dependencies for the
hazards. The documentation is realized by a list consisting of all events and con-
ditions. They are distinguished by a type and linked by a dependency structure
for each event through an column that lists the causes for each event. An ex-
cerpt of possible content of the table is depicted in fig. 4 showing the previously
identified hazards with some of their causes and two resulting hazardous events.
By parsing the Causes column, a fault tree can automatically be generated. Fur-
ther to this, the dependency structure can be used to formalize the hazardous
events listed in the table which is useful for analyzing the scenario, as we will
demonstrate in the next section.

Fig. 4. Excerpt from the list of events. The Hazardous Events are marked.

4.2 Risk Picture

After all potential hazards of the scenario are defined, a risk picture can be cre-
ated. This can be achieved by formalizing the scenario description as well as the
hazardous events to analyze their occurrence and causes. While creating the risk
picture, the risks associated with the hazardous events are assessed by evaluat-
ing the frequency, consequence, and controllability. This is realized by assessing
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the hazardous events regarding their consequences (i.e. harm caused to humans
and to the environment, costs caused, etc.) and their controllability (i.e. if the
event can be controlled if it occurs, thus mitigating its impact) and investigat-
ing the underlying causes for the hazardous event regarding their frequency of
occurrence.

Modeling the Scenario: To perform a model-based risk assessment, we have
to model the scenario we want to analyze. Because the behavior of the involved
actors the model is highly dynamic, we decided to use a graph transformation
model. This allows us to reflect this behavior in a way that is not possible when
using, for instance, finite state machines. Graph transformations allow us to
dynamically add or remove actors and allows changing the way of interaction
and the relations between actors during execution.

As a demonstration, we modeled the previously mentioned example using
GROOVE3. Within the project, we are planning to develop software to auto-
matically generate models out of the conceptual model. Fig. 5 (a) shows the
initial state of our modeled graph from the example. The worker is safeguarded
using a safety rope which is hooked on the service ship and he is not yet on the
ladder of the wind turbine to which he wants to step over. For this, the hook
has to be removed and he has to step onto the ladder before he can hook in
the safeguarding again. This is realized in the model by using transformation
rules that describe how the graph may be modified and leads to the state s3
after passing the states s1 and s2. To step up the ladder, the hook has to be
removed and hooked into the next step of the ladder. This can be seen in fig. 5
in the attributes onStep of the Worker and the SafeguardHook, which reflect the
current step of the worker and the hook. The worker may not use the next step
until the hook is attached on the current step of the ladder.

(a) s0 (b) s1 (c) s2 (d) s3 (e) s4 (f) s5 (g) s6 (h) s7

Fig. 5. States (s0–s7) of an example of a scenario modeled using GROOVE

Fig. 5 only shows the correct process of stepping over and climbing up the
ladder. In order to detect potential hazards in the scenario, a formalization of
the hazardous events can be used.

Formalizing Hazardous Events: Using a model of the scenario, it can be
checked if it is possible to reach a hazardous event by utilizing a model checker.
For this, an observer has to exist that is used to check if a state has been reached

3 http://groove.cs.utwente.nl/

http://groove.cs.utwente.nl/
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(a) s7 (b) s8 (c) s9 (d) s10 (e) s11

Fig. 6. States (s7–s11) of an example of a scenario modeled using GROOVE

that might constitute a hazardous event. One way to create such an observer
is to formalize the hazardous events from the list of events as presented prior.
As the formalization of hazardous event is currently under development in the
SOOP project, developing a specialized formalization language, we use a Linear
Temporal Logic with past operators (PLTL, cf. [18]) to demonstrate the formal-
ization. Formalization allows assessing each state of the simulation regarding if
a hazardous event has occurred, thus generating observers that permit to realize
an automatic detection of all hazardous events happening in a modeled scenario.

An example of how a hazardous event might occur can be seen in fig. 6,
continuing the scenario depicted in fig. 5. After removing the safeguarding hook
in order to hook it into the next step of the ladder, the worker slips off the ladder.
Because he is not safeguarded anymore, he falls from step to step until he lands
into the water (i.e. currentStep becomes−1). This is caused by the environmental
condition Wet Weather that causes the ladder to become slippery.

The dependency structure allows to use the list as a source for formalization.
Resolving the dependencies, a LTL formula can be developed stepwise with which
it can be assessed whether a state (πi) satisfies (|=) the formula. The following
gives an example for this process:

πi |= Falling into cold water

πi |= F (Cold Water ∧O(Falling into Water))

πi |= F (Cold Water ∧O(Falling down the ladder ∧Missing Safeguarding ∨ . . . )).

The formalization also models the faults and environmental conditions that are
necessary for the hazardous event to occur. This list of faults can be used as a
source for the causes that might lead to the hazardous event and thus should be
injected into the model to provoke a hazardous event. The model is modified to
be able to represent faults and those faults are systematically triggered. By this,
it is possible to detect which faults are required to cause a hazardous event. A
detailed methodology for fault injection and model checking has been developed
in the ESACS and ISAAC projects (cf. [13,14]).

After having detected all possible causes of a hazardous event, the frequency
of the independent causes (that e.g. origins from reference manuals or, in case of
humans, analyses of behavior) has to be summed up and thus the frequency of the
occurrence of the hazardous event is calculated. The consequence and controlla-
bility of the hazardous events have to be assessed, too. Finally, a quantification
for each hazardous event exists. If the quantified risk value is higher than the risk
acceptance value, a risk mitigation has to take place.
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4.3 Risk Mitigation

In order to minimize the risk of an offshore scenario, a risk mitigation process for
hazardous events that have a high risk quantification value has to take place. This
can be realized by developing measures to prevent certain faults, thus lowering the
frequency of occurrence of a hazardous event. Another way to minimize the risk is
to raise the controllability of the hazardous event. To reach this, the awareness of
potential hazards has to be raised so that proper reaction to the hazardous event
can happen or other technical measures have to be considered. A third option is
to minimize consequence of a hazardous event if it occurs. To minimize the risk
in the example scenario, possible causes for risks can be avoided. The easiest way
for this is not to allow the operation to be performed during wet weather as this
removes one cause for the hazardous event, thus reducing the probability.

Another way is to add additional safety measures. As described in the example
description, there is only one safety hook that is attached while using the ladder.
The use of a second hook, attached in alternation with the first one, fixes this flaw
as there now is at least one hook that might catch the worker when falling down
the ladder. This way the risk is reduced because of the improved controllability.
To minimize the consequence in the example, the worker falling down the ladder
should be required to wear a life belt so that drowning would become less likely.

5 Conclusion

In this paper, we have presented a newmethod to improve risk assessment for con-
struction and maintenance operations for offshore wind energy parks. We have
based our approach on existing techniques used for risk assessment of offshore and
maritime operations. To extend the approach, we adoptedmethods from the auto-
motive domain for improving and optimizing the risk assessmentprocess by adding
the factorControllability (as defined in ISO 26262) to complement the existing fac-
torsFrequency andConsequence for forming the riskpicture.Taking controllability
into account enables better distinction between possible outcomes of a hazardous
event (which is also a concept taken from the ISO 26262), thereby improving the
correct assessment of the actual risk. Furthermore, it improves the ability to eval-
uate the effectiveness of mitigation measures. This is especially important with re-
spect to the SOOP project in which we plan to develop an assistant system that is
intended to raise awareness of developing critical situations and suggestmitigation
measures in case a hazard has actually happened (cf. sec. 1).

One of the central improvements is ourGeneric Hazard List that we are specif-
ically developing to systematically identify potential hazards and their causes in
offshore operations. The idea of a generic list of hazards was adopted from a
similar concept, originating from automotive projects. In our approach, we have
taken this tool and further improved it to not only address the topic of hazard
identification, but also to include the possible causes leading to a hazard. Once
this data has been captured, we were able to formalize the dependency relation
between faults, errors, failures, and hazards.
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Our next step is to model the behavior of the system, the environment, and
participating persons. This behavior model is the necessary precondition for
further model-based safety analysis of the system. Techniques to be used include
those developed during the ESACS and ISAAC projects which enable model-
based FMEA (Failure Mode and Effect Analysis) and FTA (Fault Tree Analysis)
(cf. [13,14]).
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Abstract. The paper gives an insight into current ASMONIA research work on 
risk analysis, security requirements and defence strategies for 4G network ele-
ments. It extends the 3GPP security architecture for 4G networks, in particular 
when being part of critical infrastructures. Based on identified requirements it 
focuses on enhanced protection concepts, aiming to improve implementation 
security of threatened elements in 4G networks through attack resistant mecha-
nisms for integrity protection, covering attacks against a system during boot- 
and execution-time. The concepts concentrate on generic mechanisms that can 
be applied to 4G network elements and complete other methods researched in 
ASMONIA. The paper describes infrastructure aspects of software integrity in 
mobile networks and provides proposals for implementation of verification and 
enforcement processes inside self-validating target systems. The proposals are 
based on typical exemplary systems, relying on Linux and QEMU/KVM.  

Keywords: Runtime integrity protection, TPM, PKI, certificates, signatures, 
secure boot, 3GPP security, eNB, HeNB, ASMONIA, Linux, QEMU, KVM. 

1 Introduction 

The overall goal in ASMONIA [1] is development of security concepts for 4G mobile 
network infrastructures, satisfying relevant security requirements. Research areas 
comprise integrity protection, attack and malware detection for network elements 
(NE) and devices, exploitation of attack resilient and flexible cloud computing tech-
niques, as well as collaborative information exchange mechanisms. ASMONIA is 
partially funded by the German Federal Ministry of Education and Research within IT 
Security Research work program. Primarily, this paper addresses specific security 
aspects related to NEs in 4G networks, providing an insight into ongoing work. Re-
flecting essential, identified security requirements it concentrates on concepts for 
software (SW) integrity protection. While correlative aspects of integrity protection 
for devices are examined in accompanying ASMONIA work, e.g., [22], these are not 
further considered in the context of this paper. 

2 Risk Analysis and Requirements for 4G Network Elements 

Increasingly, nodes in access network become sensitive parts of mobile communica-
tion infrastructures. As 4G networks are completely moving to IP based techniques 
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and widely tend to use general purpose components and open software architectures, 
they successively become susceptible for various, partly well known attacks. While 
relevant security requirements already have been established by 3GPP standardiza-
tion, room is left for fulfilment and in particular for attack resilient design and imple-
mentation. Taking these aspects into account, below we identify specific challenges 
and resulting demands and elaborate proposals for typical system architectures and 
execution environments. 

2.1 Security Requirements for 3GPP Access Network 

Reflecting peculiarities of the 4G network architecture, relevant security requirements 
have been stated in 3GPP standardization. In the context of this paper, particularly 
this affects elements in access networks, such as eNB and HeNB ([20], [21]) terminat-
ing security relations between user equipment and backhaul. While [21] explicitly 
demands integrity for SW and setup of secure environments and stipulates exclusive 
use of authorized software, [20] postulates principles of secure SW updates, secure 
boot, and autonomous validation, implying reliable capabilities for self-validation. As 
3GPP restricts its focus to co-operability and compatibility aspects (e.g., use of 
TR.069 in [20]), enough freedom is left for interpretation and implementation. This 
pertains to the implementation of measures against malicious physical access – im-
plicitly knowing that due to exposition in public areas (and even personal possession 
as in HeNB case) particular protection must be provided, e.g., for stored keys. Like-
wise, no explicit requirements exist for the runtime, to assure that a securely booted 
system withstands attacks while operating over weeks or even months. 

2.2 ASMONIA Related Requirements 

The 4G risk analysis made in ASMONIA [3] provides a very detailed insight and 
assessment on threats and risk influence parameters, regarding individual NEs, also 
beyond the access network. It substantiates why and which risks are particularly high 
ranked - suggesting particular security accurateness in access networks. Accordingly, 
system compromising and insider attacks are among the most relevant threats, which 
in many cases manifest themselves in unauthorized SW manipulations that have to be 
made as difficult as possible. Such risks significantly can be lowered by SW integrity 
and sufficient access protection assuring only authorized firmware and SW to exe-
cute. In [2] we consider requirements arising from the need to protect SW integrity 
mechanisms themselves, particularly when implemented into a target system, relying 
on sensitive functionalities for validation and enforcement. In addition to compliance 
with 3GPP (e.g., on proof of origin; autonomous and self-validation; secure boot 
process; authorized SW updates), enhanced implementation security and in particular 
runtime protection is motivated taking the typical conditions of 4G systems into ac-
count (e.g., long lasting operation after boot; very long product life cycles and re-
stricted possibilities for costly manual repair once systems like eNB are installed in 
field; avoidance of class break risks; preventing systems not to stay unnoticedly in 
vulnerable state; etc.). In addition, special requirements arise due to the obviating and 
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warning nature of the ASMONIA cooperation and the underlying protection, imply-
ing mechanisms for reporting and hardening of network elements. It is argued that the 
complexity of today’s systems and in particular ‘execution environments’ require a 
combination of defence mechanisms beyond the protection that can be provided by 
crypto-graphical SW integrity paradigms themselves. Apart from security improve-
ments organizational needs are addressed, such as the responsibility which falls to 
system manufacturers and operators, as well as the directive to keep infrastructure 
efforts minimal, in particular in highly standardized 3GPP network environment. 
Regarding practicability, it is advisable to rely on harmonized protection paradigms. 
These shall be applicable to a variety of products and use cases for integrity protec-
tion covering the entire SW life cycle. Such use cases include SW delivery and stor-
age, boot, installation, as well as runtime integrity protection, which is the central 
subject of research in this contribution. 

3 Boot Paradigms – A View on TCG Technologies 

During the last decade a variety of concepts have been developed assuring SW integrity 
protection (SW-IP) during boot, many of them centring around Trusted Computing 
Group (TCG) technologies and in particular on usage of Trusted Platform Modules 
(TPM) [4], which represent available hardware (HW). Examining TPM-based solutions 
(also see [19]) the following findings deserve to be mentioned: 

From paradigm point of view TPMs are based on hash values, calculated (by the 
system CPU) and sequentially extended during boot. Natively there is no local en-
forcement (‘secure boot’) immediately blocking malicious software. Proof of trust-
worthiness requires remote attestation, where TPM-signed assertions are assessed by 
external validators requiring validation processes, which are difficult to manage. Nev-
ertheless, no inherent proof of origin for ‘authorized SW’ is included. This could be 
implemented by some administrative security around (and, e.g., use of sealing 
mechanisms requiring per-platform provisioning) implying specific extensions to 
TPM paradigms. Altogether this has implications complicating centralized trust and 
software management as well as for platform security. If systems are not enabled to 
take autonomous decisions they must connect to a validation entity in network, even 
in case the device already executes some malicious SW. Moreover, TPM specific and 
probably proprietary product specific infrastructure would be needed in highly stan-
dardized (3GPP) mobile operator networks, raising many challenges and efforts from 
cost and integration perspective. Focusing on protecting the boot process TPM para-
digms do not efficiently support other use cases for integrity protection. Particularly, 
missing runtime protection in long-time scenarios we may risk false reporting of in-
tegrity, if a system actually has been compromised after boot, via manipulations of 
running or loaded code. An additional difficulty is that neither integrity protection of 
data is natively included nor protection of SW during delivery, downloads, installa-
tion, or on repositories, and during system operation. Also, revocation is not part of 
the TPM paradigms and this, again would require proprietary extensions. 



52 M. Schäfer 

 

From design point of view the TPM is a coprocessor for the system CPU, commu-
nicating over the so-called Low Pin Count (LPC) bus. There are many publications 
showing that the CPU involvement via ‘Core Root of Trust for Measurement 
(CRTM)’ and the LPC bus are the Achilles’ heel regarding physical attacks. For  
instance, we analysed the findings in [5], [6], [7] and [8], where several attack 
mechanisms have been examined. These are applicable with some low budget equip-
ment – but requiring physical access to the board level design. It was shown that even 
‘Dynamic Root of Trust (DRTM)’ communication can be hijacked and also simpler 
tricks seem possible (e.g., blocking LPC communication when exiting DRTM meas-
ured code would keep a TPM in its previous state, which would be attested. Even 
worse, TPM-sealed secrets then would be accessible for malicious code). Even if 
DRTM has interesting capabilities it is restricted to a few CPUs and thus, could not be 
applied for general security concepts, as these would depend on decisions related to a 
system’s board design and to selectable processing units. Summarizing we may state 
that (wrt. physical attacks) the TPM itself may be secure, but due to its design particu-
larities it does not provide chip-level security for assurance of trustworthy boot  
processes. Nevertheless, an indisputable advantage of TPMs is the hardware (HW) 
protection of private keys, which could be integrated in authentication processes, 
reliably preventing a device identity from being cloned. 

When looking for alternatives [19] we found that applying PKI based paradigms 
for SW signing would remove most organisational and cryptographic limitations of 
TCG’s hash-centric approaches and would reduce efforts in operator network. Signa-
tures are well suited for approaches being applicable in very different use cases. Un-
fortunately, at the time being supporting general purpose HW is missing and even if 
CPU vendors are going to implement related mechanisms, these may not be compati-
ble among each other and thus may cause portability problems in concepts for secure 
HW design. Due to these findings and facing the requirements mentioned above, 
(CPU/OS independent) HW based concepts are advisable, particularly for use cases 
requiring higher attack resilience against unauthorized physical access. 

4 Management of Trusted SW for Network Elements 

In the following we introduce ASMONIA concepts to assure SW integrity protection 
for 4G network elements at boot and at load-time. The proposals reflect security re-
quirements as identified and take paradigmatic considerations into account, as given 
in Section 3. Consequently, our concepts are built on digital signatures and aligned 
with PKI principles, which likewise are well suited to cover other use cases for SW 
integrity protection, as listed above. First we consider the entire infrastructure  
and its impacts on involved stakeholders and associated domains. Then we describe 
required generic extensions for an implementation concept, as it could be applied  
for typical NEs. Built upon this, we present methods for event-triggered, file-based 
runtime integrity protection in native or virtualized Linux-based execution  
environments.  
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4.1 Generic NW Architecture for Software Integrity Protection 

ASMONIA introduces a generic SW-IP architecture where a NE-vendor is the main 
responsible party for establishing and controlling protection mechanisms, relying on 
others to support or to contribute. Involved domains typically comprise: 

• The NE vendor (manufacturer), which creates the product and provides means and 
control mechanisms for integrity protection and by setting policies for validation. 
The manufacturer also ensures that products are equipped with the components re-
quired to reliably support validation and enforcement mechanisms. 

• Service and repair entities, which belong to the NE vendor organization or act on 
behalf of the vendor. Over a product’s lifecycle same protection mechanisms are 
used and need to be authorized, for instance, to modify protected firmware. 

• Component suppliers may create and deliver hardware or software components, 
assembled as part of the product. As such components must be trusted an associ-
ated integrity protection method must be applied before the system is composed. 
This method can be independent or aligned with the vendor’s SW-IP system, but 
must be compliant regarding the objectives for integrity protection. 

 

Fig. 1. SW-IP in Generic NW Architecture 

• Delivery services, which are used to cache and to distribute products to the recipi-
ents. In case code signing paradigms are used, delivery may be reduced to a logistic 
service, which does not need additional security, except for confidentiality purposes 
if this is required, e.g., to protect SW containing secrets. Otherwise, the major obliga-
tion is to check the integrity at point of acceptance (depends on use case). 

• Mobile network operators are using and maintaining the products. Verification and 
enforcement typically is done inside operator network, possibly to a large extend or 
even completely within products. An operator may protect its own configuration 
data (or even vendor provided SW as, e.g., explicitly intended for HeNBs). The 
scheme allows that major efforts are imposed on vendor side while efforts in op-
erator-side infrastructure (highly standardized environment) can be kept small.  

• The ASMONIA overlay network providing analytic and collaborative services. 
Essentially, it aggregates and processes anomaly messages (e.g., logs and alerts 
from failed SW-IP validation), but may also store SW and validation data (e.g., 
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signatures, certificates, trusted reference values) for update, revocation, and recov-
ery scenarios. The ASMONIA network also connects operators among each other. 
The overlay network may need own protection mechanisms, but such security is 
widely independent from the mechanisms provided by the NE-vendor and not con-
sidered further in this paper.  

4.2 System Reference Architecture  

When looking into a target system (i.e., a NE product), various (partly alternative) 
components are required to securely anchor integrity protection mechanisms during 
boot and runtime. As today’s systems are vulnerable at multiple layers, umpteen de-
fence strategies have to be applied in parallel, taking very different attack vectors into 
account. 

 

Fig. 2. Components in System Reference Architecture 

Fig. 2 shows an idealized view on logical components cooperating in order to pro-
vide a ‘perfect’ system protection, but does not define a functional architecture. The 
reference architecture unites protection as well as detection and control elements and 
aims to sketch the framework where all these components are playing together. For an 
actual system realization these components may come in various shapes and may use 
very different implementation technologies. Essentially, in a target system SW-IP 
relies on protected verification and enforcement components, as well as on policy-
based trust management, coordinated by associated security control. Obviously, built-
in SW integrity protection requires cryptographic support, but also must be shielded 
by sufficient hardening measures, and by guarding of local secrets and validation 
data. Such protection may range from SW and OS based methods to the provision of 
underlying security HW and HW based control.  

While for each of the components several implementation alternatives exist, in this 
paper we focus on methods supporting file based, event triggered runtime protection 
for a virtualized environment and the secure setup thereof. Starting point for solution 
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proposals are typical system architectures, which, however may range from closed, 
embedded designs to administered server-like architectures. We assume that operating 
system extensions and SW on top is based on Linux, which is in mainstream for many 
commercial products. Nevertheless, given the ability to implement required compo-
nents, the methods considered may be portable to other system architectures (includ-
ing customized or virtualized solutions) as well. 

4.3 SW Integrity Protection Concepts 

This section details the components as indicated in Section 4.2. As an implementation 
variant virtualization is used to protect critical parts of a system in order to achieve 
higher attack resilience. HW based security is applied to evade influence of remote 
SW attacks and to complicate local, physical attacks against foundations of trust. In 
addition, SW attacks are prevented or at least mitigated by hardening and virtualiza-
tion mechanisms. 

Foundation of Trust and Boot Time SW Integrity Protection 
While not ignoring the value of TPM based solutions (where applicable), in 
ASMONIA we prefer a promising, alternative protected boot concept, which over-
comes many difficulties tied to TPM approaches and is better adapted to the specific 
requirements of NEs and their embedding in mobile networks. As an enhancement 
over ‘conventional’ TPM designs (driven from CRTM and system CPU) dedicated 
security HW is proposed, built upon flexible protection paradigms.  

 

 

Fig. 3. Authorized Flash Memory Control Process (AFCP) 

Our approach is tailored to support autonomous validation and flexible firmware 
and SW updates relying on PKI based integrity protection. Update and trust manage-
ment processes cannot be influenced by SW attacks be it locally or from remote. This 
is achieved via an Authorized Flash (memory) Control Process (AFCP), realizing 
dedicated protection and validation logic, built around flash memory components.  
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It enforces protection of updatable firmware together with relevant secrets and cre-
dentials. As indicated in Fig. 3 and introduced in [19], the AFCP logically communi-
cates with an external entity (e.g., OAM Server) via a secure handshake protocol, 
exclusively executing commands, which have been signed by an authoritative source, 
e.g., the manufacturer or even the operator, depending on system configuration and 
provisioning. As the AFCP acts autonomously (i.e., independent from system CPU) it 
immunizes the roots of trust against any kind of SW manipulation. During lifetime 
secure trust management (e.g., updatable firmware, exchange of trust anchors, revoca-
tion handling - as with CRLs) is facilitated via authorized operations - in contrast to 
the immutable CRTM in a TPM design (that in long time scenarios may cause prob-
lems due to required updates). As the AFCP securely reports successful or failed ac-
tions to the network, the state of the trusted core is always known to the network, 
independent from an individual boot process. After reset the AFCP first validates 
firmware and protected data, before unlocking key storage and enabling trusted proc-
esses, which then will be executed by a system CPU starting with the trusted firm-
ware. SW updating is supported by validating any new code, before it is installed into 
the system and is re-checked at each start-up. 

In case of firmware validation failures the AFCP may select fall-back strategies, 
such as mapping to a previous image or even an immutable pristine boot image corre-
sponding with initial factory settings. In contrast to the passive nature of TPM de-
signs, the AFCP enables autonomy, removes restrictions and hassles with LPC bus 
communication, and particularly in long-term scenarios it profits from SW integrity 
protection schemes using PKI control. Moreover, as the system is enabled for self-
validation difficulties as with remote attestation are no longer relevant, avoiding ef-
forts for complex provisioning and validation processes as well as additional entities 
in operator infrastructure. Note that resilience against physical attacks widely depends 
on implementation, but assuming realization via integrated circuits this might be 
comparable with other security HW. Note that if requested, a TPM could be inte-
grated as ‘Security HW’, e.g., for protection and secure usage of private keys and 
secrets, but actually it is not needed for the secure boot logic. 

Runtime-SW Integrity Protection 
Once a system is running, control of SW integrity is handled via the system CPU 
relying on a securely booted kernel or hypervisor (HV) and depending on system 
configuration and usage scenarios. The underlying strategy is to reliably block invalid 
(unauthorized) resources at load-time via system call interception. This facilitates 
event-triggered integrity checks on any data in file system. If no HV is present this 
can be processed via Linux Security Modules (LSM) hooks built into a Linux kernel, 
as in principle described with the DigSig approach [10], [11]. In case a hypervisor is 
available, SW integrity checks can be executed via the virtualization layer, enabling 
to control resources for arbitrary (Linux) guests, even without individually modifying 
them. However, this comes with some restrictions as the HV has limited knowledge 
about the semantics of file operations initiated from guests. On the other hand it is 
well separated from attacks against SW-IP mechanisms (coming from a guest). In the 
following we describe a flexible and harmonized solution, which makes use of DigSig 
principles built into a –hardened- Linux kernel. It can be applied to a standalone OS 
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(protecting itself) as well as to a hypervisor (e.g., if built on Linux, such as with 
QEMU/KVM based virtualization) to protect itself and likewise its individual guests. 
Adaptations to the guests-kernels or QEMU (emulation of block devices) would also 
be possible (and might in some cases further enhance flexibility and security), but due 
to the complexity of such approach this is not considered here. Instead, in the follow-
ing we assume that neither QEMU nor a virtualized OS is adapted to the solution. 

To broaden scope of protection, first we substitute the native ELF based approach 
as proposed in DigSig (which is restricted to binaries) by a separate signed database 
for maintaining signature objects or hashes. By trust transition the signed database 
enables to apply the same cryptographic mechanisms and management principles (i.e., 
PKI control via certificates, signed objects, trust anchor, CRLs, etc.) as provided 
trough the AFCP. In addition, it allows integration of arbitrary file types (not only 
ELF files), e.g., documentation, scripts, or any (configuration) data shipped with a 
distribution. Fig. 4 below describes a suitable solution, including caching mechanisms 
similar to the initial approach, but also applicable to any file resource. The integrity of 
the (remotely) signed database is validated using the mechanisms introduced above. 
Via signed polices, individual files or directories (/tmp,..) could be excluded from 
being checked or dependencies between individual files could be expressed. 

 

Fig. 4. Signed Database to support SW-IP 

The extended DigSig approach (which we call ‘FSigCk’ in the following) can be 
applied in many ways. FSigCk could be implemented into a (standalone) operating 
system’s kernel or into a guest kernel as well as into a Linux-based HV kernel 
(whereas additional implications have to be taken into account, as explained below), 
such as realized with KVM/QEMU. Fig. 5 shows principles for such implementation 
variants. The FSigCk modules (as well as associated databases) always run protected 
in kernel space, and integrity checking is triggered via system call interception (i.e., 
using LSM hooks). 
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Fig. 5. Possibilities of FsigCk integration 

If the protection within the kernel is deemed to be insufficient and depending on 
the layer it is assigned to the FSigCk approach may need additional hardening mecha-
nisms. Essentially, this is to prevent from outsmarting SW-IP mechanisms via specifi-
cally tailored SW exploits, as such runtime attacks can not be defended by built-in 
integrity protection mechanisms. As FsigCk is unable to prevent runtime-exploits, 
e.g., buffer-overflow attacks or similar attacks against control flow integrity (CFI) 
launched against sensitive functionality and data within the kernel it is running in, we 
consider three countermeasures that are illustrated in Fig. 6:  

First we propose to apply a mitigation approach based on Mandatory Access Con-
trol (MAC) such as available with SeLinux [16] or RSBAC [15] for Linux systems. 
Associated policies should be established to protect the kernel against attacks via 
hijacked functions in kernel and user space, in particular attacks violating control flow 
integrity (e.g. exploits running on stack or heap or return-to-libc attacks). Such miti-
gation approach might be implemented into a standalone OS or applied to the HV or 
to the guest (as shown at the left side in Fig. 6.) to protect the SW-IP mechanisms and 
data residing in kernel space.  

Second, an effective, proactive countermeasure is known with the SecVisor ap-
proach [14], aiming at preventing injection of malicious code into the (guest’s) kernel 
memory, by applying DMA and W⊕X protection via IOMMU virtualization and 
dynamic access control on memory pages during transitions between user and kernel 
mode. While SecVisor needs a (small) special HV layer, also conventional hardening 
mechanisms could be applied, e.g., using kernel security patches (non executable 
pages, address space layout randomization, etc.) as described with PAX [17] or Pro-
Police [18]. Effects on SW-IP accurately need to be considered (as hashed code may 
be affected). Such hardening mechanisms could be combined with a MAC approach, 
without interfering with each other. 

Both types of approaches harden an OS or, respectively, a guest kernel, but indi-
rectly also a HV by mitigating or minimizing risks arising from SW-IP targeted at-
tacks via a guest’s kernel on top.  
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Fig. 6. Realization of SW-IP in OS or HV layer 

A third way for protecting runtime SW-IP (that could also be used in combination 
of the above) is shown on the right in Fig. 6 applying file-based runtime protection in 
a QEMU/KVM based virtualization system. The fundamental idea is to control file 
system resources via a hypervisor, which is isolated from the guest by virtualization 
mechanisms and hereby, less prone to attacks launched against one of its guests. This 
approach comes with some restrictions, as in practice it is applicable only to resources 
routed through Network File System (NFS) interfaces. The cause behind is the granu-
larity of signatures, which for reasons of portability and computational complexity are 
assigned to ‘entire files’, but do not take into account the internal fragments and struc-
ture of individual block devises. Otherwise, to enable handling of block devices, SW 
creation processes as well as QEMU had to be adapted, which causes additional ef-
forts and difficulties of implementation. Thus, it is much easier and more effective to 
only allow NFS routed resources (where entire files are ‘seen’) and to validate and 
control requested resources by the HV via NFS interception while usage of block 
devices is strictly bared via the virtualization layers (i.e., QEMU).  

Such solution beneficially can be applied for virtualized NE platforms, receiving 
their resources via an HV, provided locally or even from remote NFS storage through 
the network. An advantage is that arbitrary guests can be secured without modifica-
tions in their kernel code in order to implement SW-IP mechanisms individually. Still, 
some dedicated hardening may be required, depending on the attack vectors that must 
be prevented. For NEs running within secured domains and mainly executing trans-
port and routing functionality, user level applications are less relevant and thus, addi-
tional individual hardening measures may be expendable.  

When using encrypted NFS to remote servers (e.g., via ssh or TLS) special care 
has to be taken that the HV (not the guest) terminates the security relations, otherwise 
file operations are not visible and SW-IP mechanisms cannot be applied.  

For embedded systems, where only restricted or even no virtualization support can 
be established, suitable combinations of the above building blocks can be selected.  
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5 Conclusion 

By extending integrity protection into the runtime, the methods presented allow im-
plementing attack resistant mechanisms for event triggered SW integrity protection 
into file-based systems. Due to the proposed protection paradigms and mechanisms 
(relying on signatures and PKI at vendor side and -if requested- on flexible HW based 
foundation of trust in target systems, as well as through Linux-based implementation 
concepts) the SW-IP approaches in this paper are well adapted to the security re-
quirements for NEs in a mobile network. In particular, SW-IP paradigms can be ap-
plied to a variety of products and use cases for integrity protection, while efforts in 
operator network can be kept minimal. It also allows re-using of an established SW 
signing infrastructure for several scenarios. 

The feasibility of the runtime SW-IP approach has been shown by a proof of con-
cept, where skeleton components have been implemented into a Fedora ‘Vanilla’ 
kernel and KVM/QEMU based virtualization. Still such a solution leaves some as-
pects open, for example on how to validate sensitive code and data during execution 
in memory. Further, extended attack analysis examining tailored attacks against such 
a solution has not been done yet. However, related research work is in the scope of 
the ASMONIA protection concepts and is currently under study.  

The authors acknowledge incitations and assistance by the ASMONIA consortium, 
the support by ‘Hochschule der Medien’ (Prof. J. Charzinski, Julius Flohr; Stuttgart, 
Germany) for a proof of concept implementation, and also like to thank the colleagues 
at Nokia Siemens Networks for valuable ideas, discussions, and comments contribut-
ing to this work. 
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Abstract. Hardware and software development of embedded systems interde-
pendently gear into each other. Even more so if the device under development 
is intended for use in critical care facilities such as intensive care units. Espe-
cially in this case, safety measures and risk mitigation techniques are imple-
mented using both hardware and software components. Thus applying hardware 
and software testing approaches in combination is inevitable as well.  

The increasing utilization of test domain-specific languages (Test DSLs), 
code generators and keyword-driven interpreters tends to raise the level of ab-
straction in test development. This approach aims to enhance productivity by 
generating executable tests from a non-programming language created for de-
scribing test cases. A second goal is to increase coverage by generating tests for 
as many as possible combinations of input values (black box test) or for all rea-
sonable paths of a program flow (white box test). In combination with hard-
ware-supported signal generation and fault injection this can be a very powerful 
strategy for testing safety-critical embedded devices. This article introduces an 
example of this strategy - the usage of a keyword-driven testing technique in 
cooperation with additional test hardware - in the context of an embedded med-
ical device development, all the while emphasizing the benefit of combining 
different approaches. It discusses the utilization of commercial off-the-shelf 
(COTS) testing hardware as well as the application of an in-house developed 
test box. It also highlights the integration of commercial software - for require-
ments engineering, test management and continuous integration - with a self-
developed testing framework powered by its own keyword-based test DSL. 

Keywords: keyword-driven, embedded system, testing hardware, domain-
specific language, safety-critical, medical device. 

1 Introduction 

New technologies have a hard time to gain a foothold in embedded systems develop-
ment for a couple of reasons. A lot of time and money has to be invested in reducing 
size, average cost per unit and power consumption of a new hardware device until it is 
applicable for special purpose embedded systems with limited power source.  
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When the development is finally finished, the next hardware generation is already 
available for the non-embedded market. 

Another reason is that, despite the huge progress creating small and extremely po-
werful microcontrollers and increasing power density and lifetime of batteries, there 
are still many limitations especially for the software part of embedded system devel-
opment, mainly both in available processing power and memory.  

For a third reason, the intended use and application area of the device under devel-
opment can be another source of restrictions. Regulations and the obligation to prove 
the effectiveness of risk mitigation techniques for safety-critical medical devices have 
an impact on the hardware options as well as the choice of compiler, programming 
language, operating system and test environment.  

The bottom line is that modern object-oriented (OO) languages and incorporated 
paradigms such as inheritance, encapsulation and information hiding are still uncom-
mon in embedded systems [1] - mainly for debatable performance reasons [2, 3, 4, 5]. 
Based thereon architectural and design patterns (i.e. event-driven architecture, pub-
lish-subscribe) as well as related, but non-OO concepts (i.e. component based devel-
opment) which in turn promote testability can only be found in some niche projects.  

Other methods for introducing those higher-level concepts, like textual and graphi-
cal domain-specific languages or UML profiles in conjunction with C-code genera-
tion can only emulate object orientation. Even today most programs for embedded 
systems are written in more or less monolithic ANSI C code [1] or assembler lan-
guage. If unit testing is not applied from the very beginning of the project, reaching 
adequate test coverage for a legacy code base like this is very time-consuming and 
costly at a later stage. 

How to adequately test such a system, given its limited external debugging and 
tracing interfaces, its inherent complexity and the multitude of possible internal 
states? In light of this, what can be done to improve the situation using industrial-
strength techniques? 

This paper aims to provide possible solutions by presenting two case studies from a 
software engineering point of view. The first case study describes the lessons learned 
while introducing system tests in a late development state of a regulated medical sys-
tem. In the second case study the application of design for testability and unit testing 
from the beginning on in combination with keyword-driven and hardware-supported 
testing are documented in detail. This second part of the article is set against the 
background of a medical device development, whereas the software part is classified 
as critical (conforming to IEC 62304 [6]).   

2 Learning the Lessons - A First Case Study 

2.1 Initial Situation 

The project for developing a regulated medical device is in a late state. Because of the 
inherent complexity of the product - a touch screen device for controlling multiple 
infusion pumps - manually testing the whole functionality is tedious and costly. Soft-
ware development has to finish well before the release day so that all necessary tests 



64 C. Woskowski 

 

can be carried out in a manual manner. Since normally some regressions are discov-
ered during testing, some extra time needs to be planned for bug fixing and re-testing. 
Unit tests exist for critical parts of the software but are carried out locally by the de-
velopers and are not part of a continuous integration process. The unit test coverage 
does not allow performing the necessary software refactoring safely in favor of the 
new features to be implemented. Even apparently small and local changes may or 
may not break remote parts of the system.  

2.2 Approaching the Problem 

To further improve software quality and to support necessary refactoring and devel-
opment of new features, automated tests have to be implemented at customer site. 

Increasing the unit test coverage adequately would be a huge effort considering the 
large legacy code base of several 100.000 lines of code. Moreover, a prototypical im-
plementation of a mock object generator delivers the following result: although some 
parts of the software are generated by an UML CASE tool, the costs of utilizing the 
code generator for substantially extending the test coverage would exceed the benefit. 

Since the programming language of the system is ANSI C, the modular structure is 
based upon single files. However, at least when working with the CASE tool, object-
oriented features, components and event based design are available. Although integra-
tion tests utilizing the event communication seem to be an option, due to the high 
degree of interdependence between the software modules and the necessity to dissolve 
those dependencies first, the complexity is too high to apply them. 

The conclusion for a system not designed for testability is to apply tests from out-
side of system boundary - as system tests. 

2.3 Automated System Testing 

The system tests for evaluating the compliance with the system requirements specifi-
cation are not automated and therefore executed manually by the testers. The test 
specification minutely describes each single step to carry out and the results are do-
cumented in a test report. Those documents have to be created and revised for each 
new release of the system. 

The idea behind introducing test automation at this point is to optimize both the 
execution of tests and the documentation of the results. Depending on the type and 
sophistication of the test automation tool, designing and planning tests becomes a 
programming task - when using a programming language for building tests - or more 
like composing a formal writing - when using a formal test domain-specific language 
with interpreter or code generator. 

2.4 Keyword-Driven System Tests 

According to M. Fowler [7] a general purpose programming language is meant to 
address any kind of software problem, whereas a domain-specific language focusses 
on a very particular kind of problem. 
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Although DSLs are no new phenomenon at all – HTML, VHDL, SQL and even 
COBOL today are recognized as domain-specific languages - there is still a lack of 
industrial-strength tools for easily implementing your own DSL. Programming and/or 
language design skills as well as knowhow about the available tools and their specific 
strengths and weaknesses are essential [8, 9, 10]. 

Even though testing as a whole can be seen as one domain - and there are already a 
couple of testing DSLs - every testing project is different, especially because of dif-
ferent people fulfilling the particular tester roles. Depending on the programming 
knowhow and overall background of the test team as well as on the system under test 
itself, a completely different domain exists, that requires its own specific language. 

Sometimes it is not necessary or even desirable to have a full-blown test language 
with sophisticated syntax, though. A good compromise between easy to implement, 
easy to use and particularly domain-specific can be a keyword-driven approach. 

In keyword-driven testing, a simplified non-programming language is used to write 
down test cases as a sequence of individual testing operations. Usually an operation is 
very limited and consists only of an object (e.g. button, password), an action that is 
applied on that object (e.g. click, enter) and optional data [11]. 

Generally, a keyword-based language is easy to write and read for human beings 
and on the other hand easy to parse and interpret for computers. The limited syntax 
can be a disadvantage though since writing complex statements like loops and deci-
sions depending on the capabilities of language and interpreter may not be possible. 
Since test cases should be simply structured and linear, this limitation generally has 
no negative impact on automated keyword-driven testing. 

For the task at hand this approach has the following advantages: 

• No additional 3rd party tool is necessary hence there is no need to validate it. 
• The test team has enough programming capabilities to implement a simple inter-

preter for a keyword-based language. 
• A keyword-based language can start very simple with a very small dictionary but 

can be easily enhanced and extended for more complex testing tasks. 
• A macro mechanism may be introduced to group commands that are used very 

often in a particular order (e.g. for bringing the system into an initial state). 

2.5 Challenges of System Test Implementation 

For testing a system which is not designed for testability, from outside, the options are 
restricted by the available external interfaces. The device under test at hand has a 
graphical user interface using a touch screen for input and output. Additionally there 
is an external industrial bus system for communication with other connected devices 
(e.g. infusion pumps). A serial port is available for debugging and tracing purposes. 
This port is, however, mechanically not accessible in the release version of the device.  

The external bus interface enables searching, monitoring and controlling of  
external devices. From a testing point of view, this is an input/output port which can 
be used to asynchronously insert test input and to inject errors (e.g. corrupt bus  
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communication frames). On the other hand the output of this port needs to be traced 
for expected and unexpected system reactions. 

Since most system functions are available and triggered by user input via touch 
screen, the main focus of the system tests has to be performing touch input and han-
dling graphical user interface (GUI) output. As a result most keywords of the testing 
DSL are vocabularies of the graphical user interface domain. The challenge is to au-
tomatically perform touch input and to validate GUI output by recognizing displayed 
elements on the screen. 

There are a couple of possible solutions for triggering the touch recognition of the 
screen. An electromechanical or robotic "finger" is very expensive and error-prone. 
The injection of a touch event via serial input annuls safety measures - like the diverse 
touch recognition of functional and monitoring processor - and thus prevents effective 
system testing. At the end of the day the problem is solved by utilizing a microcon-
troller to directly inject the corresponding voltage for touching the screen at specific 
coordinates. 

Recognizing GUI output is even more difficult, since the underlying structures like 
windows and buttons are not accessible from outside of the software. Image recogni-
tion using a camera gets very complex when there are lots of colors, shapes, texts and 
numbers in different fonts and sizes on the screen. As a compromise of benefit versus 
costs the device software is exploited to calculate a checksum of the whole screen or 
part of it when triggered via debug serial port and returns it using the same interface. 
Having only some volatile views and explicitly excluding very frequently changing 
parts like animations, this solution works well for recognizing screens that have been 
recorded before.   

For being able to recognize and reproduce deviations indicated by a failed check-
sum check at the same time a picture of the screen is taken. The test protocol contains 
this proof, so a successful or failed test run is well-documented and reproducible. 

2.6 Lessons Learned 

For testing a system that is not designed for testability the available options are very 
limited. In such a case, creating tests that cover all requirements as well as safety 
measures and that form a safety net for refactoring and feature implementations can 
be a huge effort. Viewed realistically, unit and integration test coverage cannot be 
increased sufficiently in a late state of a meaningful and complex project. Enhancing 
testability of legacy code requires major refactoring, which in turn requires adequate 
test coverage. 

It is possible though to add automated system tests to a project, which already is in 
an advanced state, provided that the external interfaces of the system under test can be 
utilized. The effort still is enormous and sufficient code coverage is very hard to reach 
and measure without at least exploiting parts of the code for accessing internal inter-
faces and structures. Safety measures realized by hardware and software parts that 
have no external interfaces generally are only testable by injecting errors using a 
hardware or software exploit. 
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From a developer’s point of view, the necessary safety net provided by test cover-
age is continuously growing during system test implementation. Still, since new fea-
tures are being added at the same time, software development only benefits after  
system test coverage reaches a certain level.  

For project management, external auditors and other stakeholders the visibility of 
automated system tests is very high as soon as the infrastructure is available and the 
first tests are running. Generally, considerable return on investment is possible only:  

• for large and medium sized projects that are continued for a longer period of time 
after system test automation,  

• for regulated projects with obligation to prove the effectiveness of risk mitigation 
techniques 

• and for projects that start a product line.  

3 Applied Knowledge - A Second Case Study 

3.1 Initial Situation 

The project involves the new development of a medical product that combines preci-
sion mechanical, electrical and electronic components, as well as software parts. The 
software is classified as critical according to criticality class C for medical products 
(conforming to IEC 62304 [6]). Unlike the preceding case study, this system is devel-
oped from scratch, which allows considering design for testability from the very be-
ginning. 

Although it is a "greenfield project" in some aspects, the development still is sub-
ject to restrictions. The final product has to comply with the applicable safety stan-
dards and regulations (e.g. IEC 60601-2-24 [12]). At the same time, it has to fulfill 
non-functional requirements like usability, robustness, stability, safety and reliability. 
Furthermore there are hard limits for production/per-unit costs as well as for power 
consumption and minimum battery life. 

According to the specification, the programming language is ANSI C, which has 
no built-in support for object-orientation and other higher-level concepts. 

3.2 Software Architecture 

One of the main architectural drivers of the system is to establish a platform strategy 
by separating a common part, which is applicable for similar devices of a product 
line, and a device specific part. The latter contains and encapsulates the very specific 
behavior of the device at hand. 

Part of this strategy is the horizontal separation of concerns of the device domain 
and the vertical decomposition in terms of layering. The lowest layer contains com-
ponents for hardware abstraction, the middle layer consists of services like event han-
dling, communication, graphical user interface handling and persistency, whereas the 
highest layer (called module layer) accommodates high-level modules representing 
concerns of the device domain. 



68 C. Woskowski 

 

The behavior of a module-layer element (active object) is modeled as Finite State 
Machine. An event bus realizes the completely event-based communication between 
those modules. 

The whole software architecture promotes testing on different levels, especially the 
vertical and horizontal decomposition as well as its implementation of an event bus. 

3.3 Static Analysis 

In this project the static analysis methods used are code & specification review, com-
piler check (compiler warnings treated as errors) and static code analysis. The latter 
involves tool-supported code inspection - using PC-lint [13] - to ensure compliance to 
automatic verifiable MISRA C rules [14]. 

Compiler check and static code analysis are part of the continuous process of ap-
plying quality control. The continuous integration tool (Jenkins [15]) ensures that, 
amongst others, both checks are carried out against the complete code base on the 
build server every time a developer commits code changes. The results are available 
within a few minutes. Additionally, each developer runs a pre-check on the modified 
local version before committing the changes. 

3.4 Hardware Support 

Additional hardware is needed to run the software on the native target, especially as 
long as no prototype with complete mechanical and electronic components is availa-
ble. For this reason the typical working environment for any developer consists of 
three in-house developed hardware components: 

• one microcontroller board, emulating the setup of the final main board, 
• one I/O board, emulating parts of the final periphery using slide switches and po-

tentiometers, 
• and one test board, also called "test box".  

The latter facilitates the emulation of sensors that are not available during earlier de-
velopment stages and the evaluation of signals that will trigger actors in the final set-
ting. The test box also contains a web server and is programmable and configurable 
via Representational State Transfer (REST) interface [16]. This way the test board 
executes even complex sequences and macros by consecutively triggering several 
sensors, for example to respond with valid data during the startup self-test of the sys-
tem under development. 

The general-purpose programmable test box is deployed for developer tests, inte-
gration tests and system tests running on the target hardware. Two test stands based 
on COTS [17] testing hardware (National Instruments) provide an additional option 
particularly for executing in-depth system tests. This equipment is especially useful 
for monitoring and generating complex signals and waveforms. It is also possible to 
inject faulty or disturbing signals directly into circuits and communication lines in 
order to test error detection and -recovery mechanisms. Exact timing measurements 
enable the verification of safety-critical reactions like error stop and putting the sys-
tem into a safe state. 
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3.5 Testing Strategy 

The main objective of all testing efforts is to be as comprehensive as possible in  
order to minimize any threat to the patients' life or physical condition. For this reason 
performing static analysis gets combined with applying dynamic testing at multiple 
levels: 

Unit Testing. The horizontal decomposition of the software architecture into modular 
units promotes unit testing at component level - as opposed to the implementation of 
file-based unit tests. This approach results in a well-defined interface for each compo-
nent. Clients of that interface perform operations solely through it, thus the internal 
structure and data of a component are hidden (information hiding). By replacing  
the real environment of a specific component with generated mock objects for all  
the interfaces it uses, the component can be tested standalone without external  
influences.  

When implementing unit tests for any component of the system at hand, preferably 
the operations of its external interfaces are called. Apart from that, the unit test 
framework used in this project also supports the exporting and invoking of compo-
nent-internal methods. This way the very high test coverage required by the device's 
criticality (up to 95 per cent condition/decision coverage) is accomplishable. 

By introducing a hardware abstraction layer the vertical decomposition in terms of 
layering confers independence of the hardware platform. Instead of exclusively de-
veloping directly on the target by using an IDE with cross-compiler and a (limited) 
hardware debugger, logical parts and modules representing concerns of the device 
domain can be implemented in a comfortable PC development environment with  
advanced debugging facilities. This accounts also for (unit) test development and 
coverage pre-analysis. In a first step, those tests can run against a PC simulation. The 
conclusive condition/decision coverage still has to be measured by running the tests 
on the target hardware. 

Integration Testing.  Another advantage of the chosen software architecture, particu-
larly from a testing point of view, is its event-driven approach. Given that modules 
which encapsulate the logic and concerns of the device domain are communicating 
solely over the event bus, they can be tested separately and isolated from all other 
modules. The build system also facilitates the possibility to form groups of related 
components and modules as a deployment scenario. This enables integration testing 
of complete features and feature sets. 

Integration tests are implemented based on the NUnit1 framework [18] and grouped 
as smoke/sanity tests and as short and long-running tests. Like the unit tests men-
tioned above they also run on the build server, triggered by any source code change. 
The long-running tests are part of the nightly build. The smoke tests are used by every 

                                                           
1 NUnit is an open-source (unit) testing framework for Microsoft .NET languages. 
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developer before committing any changes to verify that no apparently unrelated parts 
of the system are broken. The platform independence of the event bus permits the 
identical tests to run against the simulation and the target hardware. 

The source code that performs serialization and deserialization of the various 
events as well as the routing table used to transmit events from one module to another 
is generated by a code generator. The corresponding textual, Xtext2-based [19] do-
main-specific language is utilized to describe all events, their associated payloads, the 
interfaces they belong to and the modules that implement and/or use those interfaces. 
The same DSL framework applies to the specification of deployment scenarios and 
the definition of finite state machines that describe the behavior of module-layer ele-
ments. Parts of the development model formed by textual DSLs are also used in the 
testing context. The library containing the application programming interface that is 
deployed for sending and receiving events as part of the integration test framework 
also gets generated based on the DSL event description. 

System Testing.  The system testing framework implemented specifically for the 
critical embedded device at hand, benefits from experience and knowledge gained in 
previous testing projects. As already introduced in the first case study a keyword-
based testing DSL is used to formally specify test cases based on system requirements 
and system use cases. The goal is to reach significant requirements coverage by em-
ploying test automation, all the while reducing the number of remaining manual tests. 

All project-specific data - for instance all requirements, use cases, test cases as well 
as traceability information for impact and coverage analysis - are stored using com-
mercial project management software (Microsoft Team Foundation Server, TFS) [20]. 
Since the dictionary of the keyword-driven testing language primarily contains ex-
pressions that can also be found in the formal test case specification, it seems obvious 
to use the same repository for both the formal and the machine-readable aspect of a 
test case. Another advantage of this approach is the already existing linkage between 
requirement, use case and test case. Therefore traceability from the concrete processi-
ble test script to the corresponding use cases and requirements (and vice versa) is 
ensured and so is proving complete coverage of the system requirements. 

The in-house developed testing framework [Fig. 1] automatically fetches the ma-
chine-readable test cases from the project-specific repository. Then a parser processes 
the single test steps and generates a runnable test script which can be stored on the 
test server. The corresponding script interpreter finally executes the test script against 
the native target, reads back the results and stores them for further analysis.  

A webcam permits to take a picture of the current screen contents of the device un-
der test at any time. Like in the first case study the device software also is exploited to 
calculate a checksum of displayed screen areas. 

Every test run is extensively documented and contains test steps, tracing and debug 
output of the device under test as well as the acquired checksums of device screen 
areas synchronized with the corresponding webcam screen shots. The test server 
holds a history of all test runs and thus enables to detect volatile tests. 

                                                           
2 Xtext is an open-source framework for developing domain-specific languages. 
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Fig. 1. Keyword-driven System Testing Framework 

4 Related Work 

Some aspects of the presented proceeding for testing safety-critical medical devices 
are also covered by previous work. Pajunen et al. [11] propose to integrate a model-
based graphical user interface test generator with a keyword-driven test automation 
framework. Gypta et al. [21] present a similar approach. In both papers the focus lies 
on automated testing of web applications. But especially the abstraction of high-level 
GUI operations and user actions using a keyword-based language is much more gen-
eral than this. The extension of the keyword-driven concept for testing GUI-oriented 
systems in the embedded device domain is demonstrated by the article at hand.  

Peischl et al. [22] focus on tool integration in software testing, all the while empha-
sizing the necessity of integrating heterogeneous tools for creating a test automation 
flow. This concept (among others) is realized by the system testing framework pre-
sented above. R. Graves [17] analyzes the effects of using COTS hardware for con-
structing a test system, namely an avionics system testbed. His paper highlights the 
effective use of COTS hardware for testing purposes. As illustrated above by the 
second case study, this also applies to combining a general-purpose programmable 
test box based on COTS components with commercial test hardware. 

Using a REST interface for controlling and monitoring embedded devices – e.g. 
the test box mentioned above - is accepted practice and suggested by several articles. 
Lelli et al. [16] focus on using REST for managing instruments and devices shared on 
the grid while evaluating performance and compatibility with conventional web ser-
vices. Jari Kleimola [23] highlights the simplicity of a RESTful interface, resulting 
into small footprint implementations predestinated for low power embedded devices. 
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On the other hand Guinard et al. [24] emphasize the ability of REST to integrate dif-
ferent devices for building up heterogeneous web mashups.  

5 Conclusion 

Exhaustive testing of safety-critical embedded devices is essential but tends to get 
time-consuming and costly. It is advantageous though to consider design for testabili-
ty from the very beginning of a development project. In doing so, not only one testing 
approach (e.g. system testing) has to deliver the appropriate coverage, but several 
strategies can cooperate. 

Combining different conventional (industrial-strength) approaches in unconven-
tional ways also improves testing deliverables significantly. Some examples presented 
in this article are:  

• webcam screenshots in combination with calculating checksums over screen areas 
to test graphical user interfaces of embedded devices,  

• combining scripting and parsing techniques to create a project-specific keyword-
based testing DSL, 

• or using developed testing hardware in combination with a COTS test stand to 
improve integration- and system testing. 

From a developer’s point of view, high test coverage at the earliest possible develop-
ment state is helpful to enable refactoring in favor of new features to be implemented. 
Hardware and tool support for short but significant developer tests helps to establish a 
successful continuous integration process. 
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Abstract. 12ISO26262 is a recently approved standard for functional safety in 
road vehicles. It provides guidelines on minimization of unreasonable safety 
risks during development of embedded systems in road vehicles. However, the 
development process specified in ISO26262 involves a number of steps that 
will require changing traditional and well established development processes. In 
a transition phase, however, due to lack of tool support, the steps may be per-
formed manually, increasing the risk for delays and increased cost. This paper 
describes a case study in which we have successfully worked with traceability 
and testability of functional safety requirements, as well as safety requirements 
assigned to a testing tool that automates integration and verification steps, lead-
ing to standard-compliant tool qualification. Our tool qualification method em-
ploys fault injection as a validation method to increase confidence in the tool. 
Our case study will help to avoid many of the new pitfalls that can arise when 
attempting to realize standard-compliant development. 

1 Introduction 

Industry and academia struggle to improve safety of road vehicles. The innovations 
often employ embedded systems. However, malfunctions in safety-critical embedded 
systems may lead to new hazards (potential sources of harm). To reduce the risk of 
such malfunctions, safety-critical embedded systems must be developed according to 
a safety standard. Recently a standard for functional safety, IEC61508, was adapted to 
the context of road vehicles resulting in ISO26262 [1], which addresses development 
of safety-critical electronic systems (Items). Development steps and processes are 
specified according to five Automotive Safety Integrity Levels (ASILs), namely  
Quality Management (QM) and ASIL A-D. The ASIL for an Item is determined by 
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considering the severity and probability for each hazard, as well as a driver’s ability to 
compensate (controllability). For high ASIL items, the standard requires stringent 
measures for risk minimization. In contrast to IEC61508, besides many other aspects, 
ISO26262 imposes qualification requirements on software tools used in the develop-
ment process, which also includes verification and validation tools. While tools exist, 
they may not have been qualified or developed considering safety requirements. Con-
sequently, to be ISO26262-compliant, existing tools must be qualified, and in each 
future version, re-qualified. Similar to IEC 61508, ISO26262 allows decomposition of 
high ASIL safety requirements, using two same-or-lower ASIL requirements and 
redundancy, monitoring or other safety-enhancing concept. Since development to a 
lower ASIL typically requires less effort, decomposition is an attractive possibility. 
However, the decomposition must be implemented by independent components and 
affects the system architecture. To demonstrate fulfillment of the original require-
ments, there shall be traceability to and from the decomposed requirements. 

As seen from above, ISO26262-compliant development include specification of 
safety requirement (including determination of ASIL), decomposition of safety re-
quirements, requirement traceability and testability, qualification of software tools, 
verification and validation. This paper provides an example of how these steps can be 
performed. The aim is to help minimize pitfalls in transition to ISO26262. 

The next section reviews prior work. Section 3 presents requirements elicitation 
and traceability. Section 4 discusses testability, leading up to Section 5 which is about 
testing tool qualification. Section 6 presents a verification and validation strategy. 
These concepts are illustrated in a case study in Section 7.  

2 Prior Work 

Previous publications on ISO26262 include introductions to the standard [2] [3] [4] 
[5], guides to successful application [4], experience reports [5], studies on the impact 
on Item development [6], considerations regarding the development process and as-
sessment [3] [7] and adapting model-based development workflows to the standard 
[8]. Dittel and Aryus [2] pointed out the need for support tools and methods. Hillen-
brand, et al. [6] discussed impact on the electric and electronic architecture, as well as 
management of safety requirements. They found challenges, time-consuming activi-
ties, lack of support tools and proven workflows [8].  

Support tools for ISO26262-compliant development are considered in [9] [10] [11] 
[12]. Makartetskiy, Pozza and Sisto [9] review two tools, Medini and Edona, for  
system level modeling, handling the documents and checks against the standard regu-
lations. They stress that to bring a shared view of safety among companies, both a 
standard and tools are required. Hillenbrand et al. [10] provide an FMEA tool with 
features to support work with ISO26262. Schubotz [11] address the gap between the 
standard and companies’ internal development processes by a concept approach to 
plan, link, track and evaluate standard-required activities with documentation. Palin, 
Ward, Habli and Rivett [12] argue that a safety case consisting of collected work 



76       V. Izosimov, U. Ingelsson, and A. Wallin 

 

products, as ISO26262 allows, lacks an explicit argumentation for safety. They 
present a template for a proper safety case using goal structuring notation.   

Qualification methods for software tools used in development are addressed in [13] 
[14]. Conrad, Munier and Rauch [13] present a reference development workflow  
using model-based design, with checks in every development step, comparing re-
quirements and the model and comparing test results and the model. This way, tool 
confidence is achieved by high tool error detection probability. In [13] the tools are 
qualified for such use that strictly follows the reference development workflow. The 
reference workflow approach to tool qualification is criticized by Hillebrand, et al. 
[14], since it is tailored to specific tools and creates a dependency on the tool vendor. 
While it is good practice to keep the same tool version throughout a development 
project, various projects use different tool versions. This can be a source for confu-
sion. A “tool” may be a flow consisting of several tools and each tool in the tool flow 
may have to undergo qualification. In [14] tool classification is addressed to avoid 
unnecessary effort in tool qualification. 

Robinson-Mallett and Heers [15] report that hardware-in-the-loop (HIL) test plat-
forms require special consideration, and the model-based approaches to tool qualifica-
tion do not apply. HIL test platforms provide a test environment that closely resembles 
the intended operation environment of the Item and can be more complex than the sum 
of electronic components in a car. Consequently, qualification of a HIL platform is a 
challenge. In our previous work in [16] and [17], a testing tool qualification method for 
HIL platforms is presented to reduce the qualification effort. The method includes a 
monitor and fault injection. Our work in [16] and [17] focus on development of a semi-
automatic qualification process for the HIL tool, while we do not consider traceability 
and testability of the Item requirements and within the HIL tool. 

The papers listed above have identified the need for a best practice and the need to 
develop and qualify tools. Previous papers on ISO 26262 have not discussed require-
ments traceability of safety-critical systems in the context of decomposition, nor for 
verification and validation. For non-safety-critical complex computer-based systems, 
however, Arkley and Riddle [18] discuss requirement traceability, motivating the 
need for a traceable development contract. Further, in the context of aerospace indus-
try, Andersen and Romanski [19] discuss development of safety-critical avionics 
software, including verification, validation and assessment, and emphasize impor-
tance of requirement traceability. Neither of the previous papers, however, has ad-
dressed propagation of safety requirements into the tool qualification. To address tool 
qualification, requirements traceability, verification and validation in the context of 
safety-critical systems and ISO 26262, this paper provides an example of how such 
tasks can be performed, illustrated by a case study. 

3 Safety Requirement Elicitation and Traceability 

To get an overview of the activities that are involved in elicitation and traceability of 
safety requirements, Fig. 1 shows the safety lifecycle, i.e. the safety-related steps of a 
development project that follows ISO26262. Each step has a set of work products, as 
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content for design documents and item documentation. Item definition is both the first 
step and the first work product, in which the concept item is described, before devel-
opment starts. Only product and project requirements are gathered here. Functional 
safety requirements, i.e. requirements that must be fulfilled to achieve minimization 
of unreasonable safety risks, are identified in the subsequent hazard analysis and  
risk assessment step. Hazards are identified and categorized leading to an ASIL as-
signment and a set of safety goals. A safety goal is an abstract, top-level safety re-
quirement, which is proposed to overcome the hazardous situation that can arise from 
malfunctioning of the Item, mitigating the risk that this situation brings. To fulfill the 
safety goals, more detailed safety requirements are defined, each with a corresponding 
ASIL. Thus, a functional safety concept is formed, consisting of all the safety re-
quirements and the steps taken to ensure safety. The safety requirements govern all 
subsequent steps of the safety lifecycle. A typical problem in any large project is that 
an individual requirement does not explain the reasoning behind its formulation and 
so the importance of a safety requirement can be misunderstood. To clarify relations 
between requirements and their reasons, requirement traceability is ensured by link-
ing each requirement to safety goals, corresponding tests, design decisions, etc. 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. Safety lifecycle 
 
Requirement traceability is illustrated in Fig. 2, where some of the most relevant 

ISO 26262 work products are overlaid on a V-type development process. As shown 
with lines between the work products on the left hand side of the V, requirements are 
specified in several steps, including the safety goals, the functional safety concept, the 
technical safety requirements and the specific hardware and software requirements. 
The included work products show how requirements must be traceable in work prod-
ucts for test, integration, verification, qualification, assessment and validation. Tra-
ceability of requirements on independence after decomposition, and between different 
ASILs, must be also addressed in all the steps, including the safety case. 

As can be seen from Fig. 2, lower abstraction levels contain more detailed re-
quirements. Different shades of the work products describe different sets of  
requirements, namely safety goals, functional safety requirements, technical safety 
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requirements, software requirements and hardware requirements. The requirements in 
a given set are designed to fulfill the requirements in the set above in a more specific 
way. It should be noted that requirement traceability must correctly describe how a set 
of requirements fulfill the set above. Such traceability of safety requirements can 
practically be implemented by tabulating the relations between requirements in each 
work product. Such a table should detail the name of the requirement, the name of 
requirements with “fulfills” or “fulfilled by” relations and the names of all other re-
lated requirements. An example is given in Table 1.  

 

Fig. 2. Work products and requirement relations 

Table 1. Relations between TSR42 and other requirements (often represented by “links” 
between requirements in requirement management tools) 

Requirement ID Fulfills Fulfilled by Other related

TSR42 FSR17 HWSR71, SWSR50 TTR3

Table 1 shows a technical safety requirement TSR42, which is designed to fulfill 
the functional safety requirement FSR17 together with other requirements. Similarly, 
hardware safety requirement HWSR71 and software safety requirement SWSR50 are 
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designed to fulfill TSR42. Further, TSR42 is related to TTR3, a requirement assigned 
to a testing tool. To span all the sets of requirements, there should be similar tables to 
relate HWSR71 to hardware components, SWSR50 to a part of the software design, 
and FSR17 to a safety goal. Following these relations in either direction helps in un-
derstanding the requirements and the Item. 

The above requirements traceability concept is common practice in all mature de-
velopment projects. ISO26262 requires adaption of this common practice to decom-
position of requirements and tool qualification. Furthermore, requirement traceability 
is a prerequisite for requirement testability, which is discussed next. 

4 Testability 

The claim that design and implementation fulfill the requirements shall be verified. 
Verification is the task to determine completeness and correct specification of re-
quirements as well as correctness of the implementation that is to fulfill the require-
ments. Verification constitutes the right hand side of Fig. 2 and is performed for all 
integration steps of the system design including implementation in software and 
hardware. To be verified, the requirements should be testable. To ensure testability, a 
semi-formal representation that is compatible with a definition of testability is uti-
lized. We present two representations to illustrate aspects to testability. 

For the first representation, we define a requirement Ri as a logical expression Li: 
<Object X> shall <Action Y> [applied to] <Subject Z>. The requirement is mapped 
onto Object X which performs Action Y onto Subject Z. Testability of Ri is a property 
of Ri that this logical expression Li can be verified. We suggest that, to fulfill testa-
bility, the requirement has to consist of the object, the action and the subject and the 
object, the action and the subject must be identifiable within and present in the sys-
tem. With these conditions valid, the requirement can be verified, and is testable.  

Consider following “good” and “bad” examples of safety requirements, some that 
fulfill, and some that do not fulfill the requirement pattern and, thus, shall be changed: 

R1: We shall ensure presence of error correction codes (ECC) in the system for cor-
rection of single-event upsets (SEUs). 

R2: The MCU (microcontroller) shall include a logical watchdog. 

In R1, neither Object nor Subject is clear, only Action is present, i.e., ensuring pres-
ence of ECC codes, and the requirement is not testable. In R2, the elements are clear-
ly identifiable and physically present in the system. Thus, this requirement is testable. 
However, this requirement will have to be detailed further to identify watchdog prop-
erties, relevant MCU software and monitoring strategy.  

For the second representation of requirements, consider that although object, action 
and subjects are obligatory attributes of requirements, it is often important to identify 
conditions under which the requirements are applicable. R3 is an example require-
ment that is designed to prevent over-heating of a component. 

R3: The MCU shall not enable a power supply to the central CPU if the ambient tem-
perature is above 95ºC. 
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In R3 there is an example of another important property of requirements, which is the 
presence of measurable quantitative parameters. These parameters will ensure opera-
tional intervals and applicability of requirements, i.e., as in R3, “above 95ºC”.  
However, R3 is not easily refutable. The test that is necessary to check that the  
requirement is fulfilled will be boundless. Therefore, it is good practice to either for-
mulate requirements such that they are easily refutable or give a set of appropriate 
measurement conditions for the test. 

Requirement elicitation with respect to requirement testability and how it leads to 
testing tool qualification can be shown in several steps (see Fig. 2 for work products): 

Define Safety Goals: Safety goals cannot be tested since they are usually very ab-
stract. Note, however, that safety goals and functional safety requirements shall be 
validated by studying behavior of the whole system, to ensure that the correct system 
has been developed and potentially dangerous behavior successfully avoided. 

Define Safety Requirements: Many functional safety requirements cannot be veri-
fied due to lack of technical details. In this step, however, it is usually clear which 
testing tools will be needed. Thus, selection and classification of testing tools can be 
done, resulting with an input to SW tool criteria evaluation reports. 

Refine Safety Requirements: By considering system properties, decomposition of 
requirement is performed. Requirements are also evaluated on their feasibility by 
performing requirements reviews, design studies and testability assessments. This will 
result in a verification strategy, part of which will be adaptation of the test tool. 

Detailed Safety Requirements: Verification is possible only for technical safety  
requirements, which are the most detailed safety requirements. In this step, it is neces-
sary to derive test cases and clearly demonstrate requirement testability. Several  
iterations of requirement elicitation may be needed. Testing tool qualification is per-
formed, resulting with input to SW tool qualification reports. 

Implementation: Here, verification activities are fully executed on implementation 
releases with testing tools providing test reports for the respective requirements. 

Safety Case: Test cases, test reports and tool qualification reports will provide inputs 
to the safety case, for demonstration of fulfillment of the requirements. 

5 Testing Tool Aspects of Testability 

Verification of safety requirements is usually done with help of a testing tool, to au-
tomate the verification process and increase its efficiency. A testing tool is used to 
verify the logical expression of a requirement (see Section 4) by applying test cases, 
generated or specifically provided for this requirement. Some testing tools, in particu-
lar hardware-in-the-loop test rigs, often need to be adapted for testing against safety 
requirements. In the following, we consider such a testing tool with regard to the  
requirement aspects. For the testing tool, we will have to specify functional safety 
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requirements. Such specification includes classification and qualification of a testing 
tool. Classification will identify which measures are to be applied for ensuring cor-
rectness of the testing tool. The classification has three Tool Confidence Levels 
(TCLs) and depends on tool error detection (TD) capability and tool impact (TI). 
Tools that have a possibility of silent failures (TD3) with high impact to the Item 
(TI2) motivate qualification to the highest confidence level, TCL3. A “silent” mal-
function in a testing tool used for an ASIL D Item can cause a test to miss detection of 
a fault in a component of a road vehicle.  

Qualification will ensure correctness and applicability of the testing tool based on 
the classification. ISO26262 specifies qualification steps according to the TCL that is 
required from the tool. For example, when classification determines that tool malfunc-
tion can cause an ASIL C or ASIL D safety hazard and this malfunction is likely not 
to be detected, the standard recommends that the tool should be developed to the same 
ASIL according to a safety standard, followed by validation. Development and valida-
tion of the testing tool should complement each other to ensure that the risk of test 
escapes in the safety-critical component is minimized. Note also that if the tools are 
used for testing of decomposed requirements, i.e., ASIL B(D), the ASIL level of in-
dependence, in this case: ASIL D, shall be often considered as the ASIL level in qua-
lification of these software tools. 

The results of qualification of a testing tool and verification against safety require-
ments of the safety-critical automotive component will be reflected in a work product 
called the safety case (see Fig. 2), which will include arguments that safety is 
achieved using qualification and verification work products, including testing tool 
analysis report, testing tool qualification report, integration and verification plan, test 
cases (for the respective requirements) and respective test reports. 

It should be noted that verification includes more than testing against requirements. 
A complete verification process includes activities such as fault injection experiments, 
tests in the operation environmental of the Item and EMC tests. 

6 Verification and Validation 

As mentioned in Section 5, the main document to describe the argumentation for item 
safety is the safety case, which includes content of the work packages that are re-
quired by ISO26262. A significant part of the safety case comes from work products 
of verification and validation activities. All these activities and work products become 
difficult to manage without a thought-through and proven strategy. Part of any such 
strategy is to automate as much as possible, use templates to ensure information quali-
ty, and to have tool support for the activities and management of the work products. 

However, automation requires extra effort with respect to tool qualification. In 
[16], a testing tool qualification method was presented, with a monitor to detect test-
ing tool malfunction and fault injection into the testing tool to evaluate the capability 
of the monitor to detect malfunctions. The method is semi-automatic and reduces the 
effort for tool qualification as is described in the following case study. To enable effi-
cient ISO26262-compliant development, it is vital to gather such methods and tools. 
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7 Case Study 

In this section, we provide an example where we apply the concepts discussed in the 
previous sections, in particular decomposition, traceability and testability of require-
ments, as well as testing tool qualification and fault injection based verification. 

7.1 ASIL C Windshield Wiper 

Consider a car’s windshield wiper and washer liquid spray. When the washer liquid 
spray is activated, the windshield wiper is also activated for a short duration.  

Two failure modes of the windshield wiper controller may cause the driver’s view 
to be obscured by washer fluid, by (1) failure of the windshield wiper or by (2) failure 
of the washer liquid spray. Controller failure can impact a common driving scenario, 
while driving at high speed on a curvy road, resulting in the highest probability, E4. 
The highest severity, S3, applies, since the result may be that the car departs from the 
road at high speed with risk of critical injury. The controllability is modest, C2, since 
an obscured view is comparable to loss of headlights at night, which is categorized as 
C2 in [1] (Part 3, Table B-4). Consequently, the hazard corresponds to ASIL C, the 
second highest ASIL ( [1] Part 3, Table 4). 

 

 
We formulate a safety goal SG1: “A malfunction should not obscure the drivers 

view with washer liquid”. For SG1, we formulate two functional safety requirements, 
FSR1 and FSR2, to enforce a safe state “washer liquid spray disabled” upon control-
ler failure. The two requirements correspond to the two possible failure modes. 

FSR1: The controller should not spray washer liquid if the windshield wiper fails. 
FSR2: The controller should not spray washer liquid for an extended duration. 

We found a decomposition to fulfill both FSR1 and FSR2. An overview is given in 
Fig. 3. The ECUs perform mutual checking of each other’s operation as is described 
by the technical safety requirements TSR1.1 and TSR2.1. 
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Fig. 3. Overview of windshield wiper 
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TSR1.1: ECU1 shall disable the washer liquid spray if the windshield wiper angle 
does not change. 
TSR2.1: ECU2 shall override the washer liquid spray if the washer liquid spray is 
enabled for >1s. 

ISO26262 allows decomposition from an ASIL C requirement to two requirements with 
ASIL A(C) and ASIL B(C) respectively, if they are independent, e.g. correspond to 
independent ECUs. ECU1 is controlling the washer liquid spray based on the driver’s 
activation, while monitoring the windshield wiper angle. Thus ECU1 is to fulfill 
TSR1.1. ECU2 fulfills TSR2.1 and is responsible for controlling the windshield wiper 
based on the driver’s activation and sensor input of the windshield wiper angle. ECU2 
also monitors the washer liquid spray enable signal from ECU1 such that it can override 
that signal if necessary. We choose to assign ASIL B(C) to ECU2 and ASIL A(C) to 
ECU1 since ECU2 controls the windshield wipers. A malfunction of the windshield 
wipers can potentially lead to ASIL B hazards. Take, for example, a scenario in which 
the windshield is suddenly splashed with dirt which has been stirred up by another ve-
hicle on a wet and dirty road. Visibility is suddenly reduced. Malfunction of the wipers 
in this situation will not allow cleaning of the windshield. Although the situation is fair-
ly controllable (C2), the probability of this situation is second highest (E3) and the  
vehicle may drive into meeting traffic leading to high severity (S3) if the driver loses 
control. Thus, ASIL B should be assigned ( [1] Part 3, Table 4).  

The traceability of these requirements across the decomposition is implemented in 
Table 2 as described in Section 3. Testability is achieved by representing the technical 
safety requirements according to a semi-formal pattern (see Section 4) and by using 
quantitatively measurable parameters. A testing tool is required, as is discussed next. 

Table 2. Requirement relations 

Requirement ID Fulfills Fulfilled by Other related

SG1 n/a FSR1, FSR2 n/a
FSR1 SG1 TSR1.1 n/a
FSR2 SG1 TSR2.1 n/a
TSR1.1 FSR1 HWSRxx, SWSRyy TTR1
TSR2.1 FSR2 HWSRww, SWSRzz TTR2

7.2 Testing Tool Qualification 

The considered testing tool consists of software and a Hardware-In-the-Loop (HIL) 
platform, which is to be qualified to TCL3, as discussed in Section 5.  

ISO26262 recommends that tools with TCL3 are developed according to a stan-
dard for safety-critical systems and then validated (see Section 5). Even though the 
testing tool is not a component of a road vehicle, we develop the testing tool accord-
ing to ISO26262 as an Item. The testing tool has the same ASIL as the Item with the 
highest ASIL that is to be tested, and we want to be able to test ASIL D items. 

The testing tool is intended to be used during development, to get prototypes certi-
fied for use in road vehicles. As a prototype is developed, new features and attributes 
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are added. This type of testing tools are often developed together with the prototype 
since the set of signals to measure and the evaluation criteria are not known on  
beforehand. Consequently, frequent changes to the testing tool can be anticipated. For 
each change to the testing tool, re-qualification to ASIL D is required. However, the 
effort involved in re-qualification of the testing tool to TCL 3, by management of 
changes to an ASIL D Item, can be a bottleneck for the development process. Conse-
quently, we sought an appropriate decomposition to reduce re-qualification effort. 

We added a monitor to the testing tool, such that the monitor is developed to ASIL 
D(D) and the testing tool to QM(D). The key idea behind this decomposition is that 
the monitor ensures detection of testing tool failures, bringing the tool error detection 
to TD1. This leads to the lowest required tool confidence level TCL1, for which less 
qualification effort is required. While the testing tool goes through frequent changes 
with re-qualification corresponding to TCL1, the monitor is not changed so often. Re-
qualification to TCL3 through change management of an ASIL D Item is not required 
very often and there is less effort when the testing tool is changed. 

We use fault injection experiments to semi-automatically perform verification and 
validation on the monitor [16]. In these experiments, we inject faults into the testing 
tool and thereby measure the monitor’s ability to detect unexpected behavior in the 
testing tool. Through these experiments we identify three cases. The first case corres-
ponds to discovering a “bug” in the testing tool. In this case, the decision about 
changing the monitor is deferred until the “bug” is corrected. In the second case, it is 
discovered that the monitor is insufficient and requires a change and a change man-
agement to ASIL D(D) is performed, followed by further fault injection experiments. 
In this case, the fault injection experiments must be adjusted. In [16] we describe a 
semi-automatic procedure for adjusting the fault injection experiments. In the third 
case, the monitor is able to detect all injected faults and no change to the monitor is 
required. The relative frequency of the three cases depends on the type of testing tool 
changes. We expect that the third case, which requires no changes to the monitor, will 
be common enough to motivate the decomposition by its reduction in effort.  

7.3 Case Study Summary 

In the case study, we have seen two different applications of requirement decomposi-
tion, explicit requirement traceability and thorough management of requirement testabil-
ity including testing tool qualification. Furthermore, we believe that the fault injection 
experiments applied to verify the testing tool monitor can be adapted also to other soft-
ware components and tools as an appropriate and time-saving verification method.  

8 Conclusion 

This paper addresses development of safety-critical embedded systems for use in road 
vehicles according to ISO26262. Since the standard is new and introduces develop-
ment steps such as requirement decomposition and software tool qualification, we 
have argued that this can lead to many manual steps and consequential pitfalls.  
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For example, software tool qualification can become a bottleneck in the development 
process. To mitigate such pitfalls we have reviewed the important concepts  
requirement decomposition, traceability, testability, verification and validation. We 
have showed application of the concepts in a case study involving two requirement 
decompositions, testing tool qualification using a monitor and fault injection experi-
ments. The chosen approach will increase efficiency of the development process of 
Items with high ASIL levels, avoiding unnecessary bottlenecks and potential pitfalls 
that might lead to hard-to-solve problems and compromise safety. 
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Abstract. This paper suggests methods, and a tool chain for model based speci-
fication, verification, and test generation for a safety fieldbus profile. The basis 
of this tool chain is the use of an UML-profile as a specification notation, a 
simple high level Petri net model called “Safe Petri Net with Attributes” 
(SPENAT) and analysis methods found in Petri net theory. The developed 
UML-profile contains UML class diagrams and UML state machines for speci-
fication modeling. Verification and developed test generation methods are 
shown to be applicable after mapping the specification model onto SPENAT. 
The practical use of this tool chain is exemplarily demonstrated for a safety 
fieldbus profile. 

Keywords: model based testing, verification, model based specification, 
SPENAT. 

1 Introduction 

More and more safety-relevant applications are being handled within industrial auto-
mation. The IEC 61508 standard describes requirements of functional safety. Micro-
processor based device solutions for safety-relevant applications are faced with this 
standard. This forces the device manufacturer to contact third party partners such as 
TÜV and IFA which verify the development process and the development result. This 
results in a resource overhead for the device manufacturer. Therefore, these manufac-
turers are looking for methods and tools to automate some activities in order to de-
crease the overhead. 

The paradigm of the model based system development (see e.g. [1]) is generally 
accepted handling the increasing complexity of the system and device development. 
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One usage of model based techniques is within the development of safety relevant 
fieldbus profiles in the industrial communication area. A fieldbus profile specifies the 
common use of communication services and interacting variables of selected device 
classes. These profiles serve as a basis for automation device development and are 
subject to certification tests in the framework of the related communication market 
organizations - the so-called user organizations. Devices which have successfully 
passed the tests can work interoperably if the coverage of test cases meets the neces-
sary requirements. Additionally, the profile specification is part of a general quality 
process both within the user organization as well as the device manufacturer. 

Using model based specifications as a result of profile development processes 
some quality assurance activities are addressed. One activity is the verification of 
syntactic and semantic correctness with regard to the specified requirements. Another 
activity is the generation of test cases with high specification coverage based on pro-
file specification model. 

To support formal verification and test generation from model based specifications 
a simple and intuitively understandable new Petri net model (“Safe Petri Net with 
Attributes” - SPENAT) was developed based on safe place transition nets (PT nets). 
Thanks to the simplicity of SPENAT a wide spectrum of existing and future modeling 
notations should be supported and usable for verification and test generation. The 
mapping of a UML State Machine to an ESPTN, the predecessor model of the 
SPENAT, is described in detail in [6]. 

In this paper methods for model based specification, verification, and test genera-
tion are introduced. All methods are implemented on a tool chain. The practical usage 
of this tool chain will be demonstrated on an existing safety fieldbus profile. 

This paper is structured as follows. Section 2 addresses fieldbus profiles and their 
model based specification and section 3 introduces SPENAT, and discusses its verifi-
cation and test generation. The methods introduced are implemented on a tool chain 
in section 4 and a case study is carried out for a PROFIsafe PA profile in section 5. 
Finally, section 6 concludes the paper and gives an outlook of future research. 

2 Model Based Specification of Fieldbus Profiles 

Device profiles usually provide variables and/or application functions with related 
input and output variables, parameters, and commands. In some cases, functions can 
be aggregated to function blocks. The variables, parameters and commands (called 
variables within this paper) are data to be communicated. The variables are dedicated 
to modules and sub-modules which provide addressing and data type information for 
the related communication services. 

UML [14] nowadays is well established in the domain of embedded systems.  
Automation devices are seen as such systems. Class diagrams and state machine dia-
grams are the only UML languages which are used in the context of device and pro-
file models. Class diagrams are used to describe the device structure which consists of 
functional elements and variables. A semantic enrichment of the classes is necessary 
which is done by the UML extension mechanism using stereotype and tags. The ste-
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reotypes correlate with the device model and the class tags define the attributes of the 
profile elements - for instance the characteristics of the variables. 

Table 1. Mapping of device and profile model elements to UML 

Device and profile model element UML language elements 
Device Class stereotype <<Device>> 
Module Class stereotype <<Module>> 
Function Block Class stereotype <<FB_Type>> 
Physical Block Class stereotype <<PB_Type>> 
Transducer Block Class stereotype <<TB_Type>> 
Function Class stereotype <<Function_Type>> 
Variable Class stereotype <<Variable_Type>> 
Attributes of Variable Tagged Value of class stereotype 

<<Variable>> 
Behavior of function blocks State machines 

 
The result is a UML profile template with the standard elements which can be used 

by the profile developers. Table 1 gives an overview of all used model elements and 
their UML representation. 

In order to generate test cases and/or to verify the fieldbus profile model in view of 
safety relevant properties such as deadlock freeness and/or reachability analysis of 
special states Petri net methods can be used. Therefore, a mapping of this fieldbus 
profile model onto SPENAT needs to be implemented (see [6]). The Petri net dialect 
SPENAT as an extension of the Petri net dialect from [6] is introduced in the next 
section. 

3 Safe Petri Net with Attributes (SPENAT) 

3.1 Motivation 

The SPENAT notation is built upon safe place transition nets (p/t net) [10] and con-
cepts of high level Petri nets [3], [4], [5], [10]. Using SPENAT it is possible to use 
external and parameterized signal/events as transition triggers (in contrast to 
STG [11], SIPN [15], IOPT [16]). Thanks to this feature it is much easier to model the 
required behavior of an open and reactive system with a Petri net. Also, the mapping 
of existing models onto a Petri net should be possible in an easy and intuitive way. 

An example of a declaration of a Petri net reacting on externally parameterized 
signals is presented in Fig. 1. This Petri net has two transitions where transition t2 can 
only fire after transition t1 and the guard of t2 depends implicitly on the value of the 
parameter x of the trigger event of t1. 

If transition t2 of the Petri net of Fig. 2 fires, it is clear that the parameter x of the 
external event ev1(int x) must be 1. This value is a result of the guard of t1 
(msg.x<2), the effect of t1 (y=msg.x), and the guard of t2 (y>0). The keyword msg is 
a reference to the respective trigger event of the transition. In this case the value 1 is 
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the only valid value for parameter x of the trigger event ev1(int x) so t2 can fire. For 
any other value of x, transition t1 cannot fire (see guard msg.x<2) otherwise the 
SPENAT of Fig. 1 would be in a deadlock after t1 has been fired. 

p2

ev1(x)[msg.x<2]/y=msg.x;

p1

event ev1(int x);
event ev2();
int y=0;

p3

ev2()[y>0]/;

environmentenvironment
signal ev1(int x)

signal ev2()

t1

t2

 

Fig. 1. SPENAT with externally parameterized signals/events 

3.2 Structure and Behavior 

Like every Petri net SPENAT is characterized by a bipartite graph. The places of 
SPENAT are typecasted (see [3], [5], [10]). The transitions have some special proper-
ties defining their firing behavior. The markings of a SPENAT are distinguishable. 
Places of SPENAT can only be marked with one (colored) token at the same time and 
the arcs are not inscripted. Furthermore, transitions can fire if an external paramete-
rized event appears and there is a clear separation between control and data places. 
Control places can only be marked with the token  and data places can only be 
marked with a colored token [3]. Hierarchies are not allowed within SPENAT. 

The color of a colored token of a data place represents a data value. Every data 
place belongs to the initial marking M0 of SPENAT. Data places represent the 
attributes of SPENAT and it is mandatory that every attribute has an initial value. 

p2

ev1(x)[msg.x<2]/y=msg.x+1;

p1 y=0 int

event ev1(int x);

p2

ev1(x)[msg.x<2]/y=msg.x+1;

p1

event ev1(int x);
int y=0;

 

Fig. 2. Declaration of SPENAT 

In Fig. 2 an example of SPENAT is outlined. On the left the attribute y of 
SPENAT is declared, whereas on the right the equivalent net representation without 
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an explicit attribute declaration is outlined. Furthermore, SPENAT can receive the 
external event ev1 with one parameter x of type int. 

Based on Fig. 2 the essential properties of SPENAT can easily be identified. The 
connection of a data place to a transition is always implemented by a loop, so every 
data place which is a predecessor of a transition is always a successor of the same 
transition. Whether a data place is connected (by a loop) to a transition is determined 
by the transition inscription (guard and effect). With this property and the fact that 
data places are part of the initial marking, data places are always marked. This restric-
tion allows a more simplified analysis of SPENAT. Also, the declaration of the data 
places is not mandatory for the graphical declaration of SPENAT (see Fig. 2). 

The syntax and semantic of the inscription of a SPENAT transition is essentially 
adequate (see Fig. 2) to the syntax and semantic of a transition of a UML State Ma-
chine (USM [14]). However, a transition of SPENAT can have more than one prede-
cessor which is not possible for a USM transition. A SPENAT transition fires if all 
predecessors are marked, if its (external) event (its trigger event) appears, and if its 
guard is evaluated as ‘true’. If a transition fires, all specified actions associated with 
the effect of the transition are executed. 

ev1(x)[msg.x<2]/y=msg.x+1;

p1

p2

y=2 int

event ev1(int x);

p2

ev1(x)[msg.x<2]/y=msg.x+1;

p1 y=0 int

event ev1(int x);

t1 t1

firing of t1

for ev1(x=1)

 

Fig. 3. SPENAT before and after the firing of a transition 

In Fig. 3 SPENAT with a data place y is presented before and after an firing of a 
transition (t1). The places p1 and p2 are control places. The initial marking M0 of this 
SPENAT is characterized by the set M0={(p1,•),(y,0)}. The marking M1={(p2,•),(y,2)} 
is induced by the firing of t1 based on M0. A marking set M contains all current co-
lored tokens. Here, a colored token represents a pair of place and value (color, see 
[3]). The element • is used as a type and a value of control places. More than one 
colored token cannot be used in the current marking set for one place, so SPENAT is 
safe. 

If a transition of SPENAT fires, all colored tokens representing a predecessor of 
the transition will be removed from the current marking set and for each successor a 
new colored token is produced and added to the current marking set. 

3.3 Verification of SPENAT 

For an exhaustive analysis of SPENAT a state space analysis is necessary. The state 
space of a Petri net can be represented by its reachability graph. For the creation of 
the reachability graph of a Petri net all possible processes are sequentialized, which is 
a main drawback of this state space coding. The state space explodes if the Petri net is 
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strongly concurrent. Therefore, it is suggested to use the complete prefix of the un-
folding [7], [9], [11] of the Petri net for analysis tasks. 

There are several algorithms for creating the prefix of the unfolding of a Petri net, 
most of them for a safe place transition net. The first algorithm was developed in [9]. 
This algorithm was improved in [7] by the use of a total order for the prefix events for 
the construction of a minimal prefix. In [11] this algorithm was parallelized and further 
optimized. Also, in [11] the dependence on general place transition nets was removed. 
Thus, the algorithm for prefix construction now is applicable to higher Petri nets as well. 

Values of attributes of SPENAT can depend on values of external event parameters. 
In order to represent a marking of SPENAT during the prefix calculation algorithm 
classic (value based) marking representation of (colored) Petri nets are not suitable. 
However, the marking of SPENAT attributes can be expressed by a set of constraints. A 
marking of SPENAT can then be represented by a marking set for the control places and 
by the identified constraints for the data places. With this marking representation and 
the results of [11] the known algorithms for the prefix creation can also be used for the 
prefix construction for SPENAT. However, the method for the extension of the prefix 
with new events has to be adapted because of the use of constraints as marking repre-
sentation for a data place. Now a new event can only be added to the prefix if the identi-
fied constraints are satisfiable. Also, the identification of the cutoff events has to be 
adapted. Now it is necessary to check if two events produce the same marking of control 
places as well as the same constraints on a semantic level. 

In Fig. 4 SPENAT with its prefix is presented. The events of the prefix are in-
scripted with the constraints for the data places. The parameters of the trigger events 
are associated with the respective prefix events for a better overview. The constraint 
e1.x<10 of the event e3 is valid for the parameter x of the trigger event ev1(int x) of 
transition t1 represented by e1 in this process. The prefix contains the cutoff events e2, 
e7, and e8. All cutoff events correspond to the marking of event e1. Furthermore, a 
deadlock can be identified within the prefix seen in Fig. 4. This deadlock is a result of 
the execution sequence t1t3t5 represented by the local configuration {e0,e1,e3,e5} as-
signed to the prefix event e5 (not added here). 

In general, the complete prefix of the unfolding of Petri net is a compact represen-
tation of the state space and is well suited for the verification of interesting properties 
like deadlock and reachability analysis, and satisfiability of LTL formulas by methods 
of model checking. In [8] and [11] methods for formal verification based on prefix are 
presented. These methods are also applicable to the verification of SPENAT. 

3.4 Test Generation Based on a SPENAT Specification 

The method of the test generation is also based on the computation of the prefix of 
SPENAT. This method is described in [6] in more detail. The work in [6] was ex-
tended in such a way that external events with parameters can now be used, too. 

The steps of the test generation based on SPENAT specifications are straight for-
ward. First the prefix is constructed based on the specified test criteria (e.g. coverage 
criteria). It is not strictly necessary to construct the complete prefix of the unfolding 
of SPENAT. If all places are covered by at least one test case the resulting prefix is in 
general much smaller than the complete prefix. 
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ev1(int x)[x<10]/
y2=x;y1=y2;

ev 3()[y1>5]/

ev5()[y2<3]

event ev1(int x), ev2(int x), ev3(), ev4(int x), ev5();
int y1=0, y2=0;

p1

e1.x<10;
y1=e1.x; y2=e1.x;

p2

y1 y2

ev2(int x)[x<10]/
y2=x;y1=y2;

ev4(int x)[x>5 and x<10]/
y1=x;

p2

t1

NOT SAT!!!  DEADLOCK! 

t2

t3 t4

t5

e1(t1)

y1=0;y2=0;

e2.x<10;
y1=e2.x; y2=e2.x;e2(t2)

y1 y2y1

y2

e1.x<10; e1.x>5;
y1=e1.x; y2=e1.x;

e3(t3) e1.x<10; e4.x<10; e4.x>5;
y1=e4.x; y2=e1.x; e4(t4)

p3 y1 p3

y1

e1.x<3; e1.x>5;
y1=e1.x; y2=e1.x;

e1.x<3; e4.x<10; e4.x>5;
y1=e4.x; y2=e1.x;e5(t5) e6(t5)

p1 y2

e8.x<10;
y1=e8.x; y2=e8.x;

e8(t2)

p2 y1y2

p1

p2

p3

e0(ε)

prefix

e7.x<10;
y1=e7.x; y2=e7.x;

e7(t1)

p2 y1y2  

Fig. 4. SPENAT and its prefix 

After the prefix construction the test cases are identified. The prefix of the unfolded 
SPENAT is an acyclic Petri net in which all possible processes of SPENAT are con-
tained within the prefix. Each possible process can be identified by a prefix event or 
rather by the local configuration of a prefix event [7]. Prefix events with no successor 
events and a maximal number of transitions represent maximum processes. So in gen-
eral, it is a good strategy to associate each identified maximum process with a test 
case. With this strategy the coverage criteria “round trip path” of SPENAT can be 
achieved. 

The values of the external events as the stimulus of the test object are constrained 
by the inscription of the prefix events. When instantiating a process and assigning it to 
a test case, a value within the specified value range needs to be selected. This can be 
carried out in a random way but in general it is a widely accepted strategy to select a 
bound (upper and/or lower) within the specified value range. 

The identified test cases specify a (concurrent) message exchange between the test 
object (System Under Test – SUT) and the tester or test system. This is an abstract 
sequence-based description of the stimuli and the expected responses of the test ob-
ject. This abstract representation of the test cases must be transformed in an unders-
tandable and executable format for the test system. Furthermore, the realized level of 
abstraction during the modeling of the required test object behavior must be respected 
in order to get automatically executable test specifications as a result of the test gen-
eration process. 

Data types, events, and/or signals, modelled within the profile model at an abstract 
level, have to be mapped to usable structures of the target test notation of the used test 
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The result of the two test generators are abstract test cases on the same level as the 
specification model. These abstract test cases have to be transformed into suitable test 
notations in order to automatically execute the tests with suitable test tools. This 
transformation is implemented for TTCN 3 and a C# based test notation for the used 
test tool isDEET. The test execution and test verdict identification can be realized 
with isDEET. 

5 Case Study for the PROFIsafe PA profile 

The UML-profile previously described was used within a project to describe the 
structure and the required behavior based on the specification of the PROFIsafe PA 
profile (see extracts in Fig. 6). The required behavior was modeled with a UML State 
Machine. Then, model verification was done in a first step to guarantee that the model 
was free of errors. In particular, safety critical properties like deadlock freeness and 
reachability of all states and all transitions were checked. 

Based on the verified model of the specification of the PROFIsafe PA profile, a 
test suite with high coverage (coverage criteria “round trip path”) was generated. The 
generated test cases were transformed from the abstract sequence based format to  
the input format of the used test tool (based on C#). Variables necessary to influence 
the state machine and get the state machine status are additionally used for this trans-
formation. For this transformation some rules had to be implemented by an adapter in 
order to handle the actual communication between the test tool and the test object. A 
SIEMENS device (“SITRANS P”) was successfully used as a test object. Except for 
the implementation of the transformation rules by an adapter for the test cases of the 
test tool, all activities were executed automatically. 

 

Fig. 6. (a) Three selected parameters and (b) The state machine of the PROFIsafe profile [13] 

5.1 Specification Model of the PROFIsafe PA Profile 

The profile specification for PROFIsafe PA [13] includes the description of the beha-
vior and PA-PROFIsafe specific profile parameters. For example, the state machine 
and a selection of three parameters are shown in Fig. 6. Before starting the communi-
cation, a device must go into the safe state “S4”. In the state “S1” a standard unsafe 

(b) PROFIsafe state machine(a) parameter characteristics
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communication is still possible. The changeover to error-free communication is 
reached via the states “S2” and “S4” or “S2”, “S3” and “S4” (see Fig. 6). 

All PROFIsafe profiles consist of various blocks such as “physical block“, “func-
tion block,” and “transducer block.” The different blocks are specified in detail with 
functional elements. Thus, in each block the corresponding profile parameters are 
defined as class attributes. Additionally, a parameter class for each parameter was 
created with the parameter characteristics as tags. 

5.2 Verification and Test Generation 

A tool developed at the ifak Magdeburg is used to verify the specification model and 
generate test cases out of this verified specification model. It allows transferring a 
UML state machine into SPENAT, and it creates the complete prefix of the unfolding 
of this SPENAT. Based on this prefix the verification (deadlock and reachability 
analysis) and the test generation are done. Therefore, different structural coverage 
criteria can be chosen. For the highest possible coverage criteria “round trip path” 52 
test cases are generated. 

 

Fig. 7. Abstract and formatted test case for state machine testing 

Fig. 7 shows an example of a test case as a sequence diagram. The test case will 
run through all four states of the PROFIsafe state machine starting in state “S1”. State 
“S2” is initiated by a write request on the inspection parameter and confirmed with a 
positive response. The transition to “S3 and then to “S4” takes place in the same 
manner. Finally, an attempt to execute a transition from state “S4” to state “S3” is 
made. According to the state machine, this is an illegal transition and a negative re-
sponse is returned by SUT. 

MTC SUT

ev_InspectionWriteRequest(value=S2)

ev_WriteResponse(response=OK)

ev_InspectionWriteRequest(value=S3)

ev_WriteResponse(response=OK)

ev_InspectionWriteRequest(value=S4)

ev_WriteResponse(response=OK)

ev_InspectionWriteRequest(value=S3)

ev_WriteResponse(response=INVALID_RANGE)

(a) Abstract test case

//tc_1
MSG.TEXT("tc_1");
{
CALL("ev_Init");
CALL("ev_InspectionWriteRequest",value="S2");
CALL("ev_WriteResponse",response="OK"); 
CALL("ev_InspectionWriteRequest",value="S3");
CALL("ev_WriteResponse",response="OK");
CALL("ev_InspectionWriteRequest",value="S4");
CALL("ev_WriteResponse",response="OK");
CALL("ev_InspectionWriteRequest",value="S3");
CALL("ev_WriteResponse",response="INVALID_RANGE");
}

(b) isDEET test case
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5.3 Test of the PROFIsafe Device Siemens SITRANS-P 

Fig. 8 shows the test setup with the test device Siemens SITRANS-P. The test tool 
“isDEET” runs on a computer which can access the PROFIBUS devices via the “is 
Pro Profibus USB Interface”. Using a segment coupler the SITRANS-P device is 
connected to PROFIBUS PA. 

 

Fig. 8. Test setup 

All generated abstract test cases are transformed into an executable test notation 
and afterwards run as a combined test suite on the test system. The test tool creates a 
report of the success or failure of the executed test cases. The testing of parameter and 
state machine test cases for the PROFIsafe profile was successful. The result of the 
test suite confirms the correctness of the device regarding the profile on the one hand, 
where functionality and behavior comply with the profile and its requirements. On the 
other hand, a successful validation of the method for test case generation and the 
transformation in the test notation are shown with the established test device used. 

6 Conclusion and Outlook 

In this paper an approach to model based specification, verification, and test genera-
tion for safety fieldbus profiles were introduced. The essential methods and tools 
ranging from model based fieldbus profile specification to the test execution are de-
scribed. Here, UML was used for the fieldbus profile specification, and Petri net me-
thods were employed for the model verification and test generation. The developed 
Petri net model “Safe Petri Net with Attributes” (SPENAT) was used for the mapping 
of the UML model and the application of the Petri net methods. The practical use of 
these methods was demonstrated with an existing safety relevant UML profile (PRO-
FIsafe PA profile) for fieldbus devices in the PROFIBUS and PROFINET domain. 

In the future, more existing methods of formal verification from the petri net area 
should be used to verify the SPENAT model. Especially model checking algorithms 
should be applied for the SPENAT analysis. Additionally, the method for test case 
generation should be more configurable. One goal is to have more possibilities for 
controlling the test generation process. The description of distributed (cooperative) 
systems with communicating SPENAT components is an ongoing future research 
aspect. The verification and generation of tests based on domain specific models will 
gain an increasing importance in the future for distributed and cooperative systems. 

test tool
isDEET

is Pro Profibus USB Interface Pepperl+Fuchs
segment coupler

Siemens SITRANS P DSIII, 
digital pressure transmitter
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Abstract. Fault Tree Analysis has been used in reliability engineering for many 
decades and has seen various modifications to enable it to analyse fault trees 
with dynamic and temporal gates so it can incorporate sequential failure in its 
analysis. Pandora is a technique that analyses fault trees logically with three 
temporal gates (PAND, SAND, POR) in addition to Boolean gates. However, it 
needs extending so it can probabilistically analyse fault trees. In this paper, we 
present three techniques to probabilistically analyse one of its temporal gates – 
specifically the Priority-OR (POR) gate. We employ Monte Carlo simulation, 
Markov analysis and Pandora’s own logical analysis in this solution. These 
techniques are evaluated and applied to a case study. All three techniques are 
shown to give essentially the same results. 

Keywords: Safety, Fault Trees, Dynamic Fault Trees, Markov Chains, Monte 
Carlo, Pandora. 

1 Introduction 

Emerging complexity in modern technological systems brings with it new risks and 
hazards. Most of today's systems will feature multiple modes of operation and many 
offer some level of robustness built into the design. Nowhere is this truer than in the 
field of safety-critical systems: those with the most serious consequences should they 
fail. Frequently, such systems will make use of fault tolerance strategies with redun-
dant components, parallel architectures, and the ability to fall back to a degraded state 
of operation without failing completely. However, such complexity also poses new 
challenges for systems analysts, who need to understand how such systems behave 
and estimate how reliable and safe they really are. 

Fault Tree Analysis (FTA) is a classic technique for safety and reliability engineer-
ing that has stood the test of time – constantly being modified to meet changing re-
quirements. Fault trees (FTs) are graphical models based on Boolean logic which 
depict how hazards of a system can arise from the combinations of basic failure 
events in the system as well as any other contributing factors [1]. FTA begins with an 
undesired event known as the 'top event', which is typically a system failure. The 
analysis then decomposes this failure first into logical combinations of basic events, 
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which are usually component failures or contributory environmental conditions, 
thereby determining the potential causes of the top event. Fault tree events are con-
nected by logical Boolean gates, such as AND or OR. 

Once a fault tree is constructed, it can be analysed using Boolean algebra to reduce 
it into 'Minimal Cut Sets' (MCSs). An MCS is a disjoint sum of products consisting of 
a combination of events that are necessary and sufficient to cause the top event; for a 
cut set to be minimal, no subset of it can be capable of causing the top event. This 
process of logically analysing FTs to obtain the MCSs is called qualitative analysis. 
Quantitative or probabilistic analysis usually follows qualitative analysis, and in-
volves the mathematical evaluation of the probability that the top event will occur 
given the individual failure rates of the basic events. 

FTA is typically static: it does not take into account the effects of sequences of or 
dependencies between events [2]. This problem is not new and various solutions have 
been proposed to solve it. One of the most prominent solutions is the 'Dynamic Fault 
Tree' or DFT [3]. DFTs introduce dynamic gates, such as the Spare, Functional De-
pendency (FDEP), Sequential Enforcing (SEQ) and Priority-AND (PAND) gates, to 
better model the dynamic behaviours of events. DFT analysis typically proceeds by 
converting the fault tree into equivalent Markov models and deriving differential 
equations from the model for quantitative analysis. Attempts have also been made to 
qualitatively analyse DFTs [4-5]. 

A more recent modification of FTA is Pandora [6-7]. Pandora extends fault trees 
with three temporal gates – PAND, POR, and SAND – and provides an associated 
logic to allow qualitative analysis to take place.  

PAND stands for "Priority-AND". In Pandora, PAND is true only if each input 
event occurs strictly before next input event(s). Input events are arranged left-to-right 
with the leftmost occurring first. It is represented with the symbol ‘<’, so A<B means 
"A PAND B". It should be noted that the PAND gate predates both DFTs and Pandora 
[8], but the precise semantics of the gate are not always consistent from one technique 
to the next. POR means "Priority-OR". It represents the situation where an output 
event occurs if its first input event occurs before its second input event, but the second 
event is not required to occur. In Pandora, the symbol ‘|’ stands for POR; A|B means 
"A POR B". SAND stands for "Simultaneous-AND". A SAND gate is used to repre-
sent the situation where all input events occur at the same time. ‘&’ is used to denote 
a SAND gate; thus A&B means ‘A SAND B’.  

Unlike static FTA, where Boolean laws are used to generate MCSs, Pandora uses 
novel temporal laws [9] to generate Minimal Cut Sequences (MCSQs), which are 
essentially partly-ordered MCSs. Thus MCSQs are analogous to MCSs: they contain 
cut sequences that are sufficient and necessary to cause the top event.  

Until now, Pandora analyses have been focused solely on qualitative analysis.  
The purpose of this paper is to look at how the POR gate can be evaluated probabilis-
tically, therefore helping to enable quantitative analysis of Pandora fault trees to  
take place. The authors are only aware of one prior attempt [4] to probabilistically 
analyse the POR gate. This paper proposes three new techniques for quantifying POR 
gates: Monte Carlo simulation, Markov Chains, and an algebraic evaluation based on  
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Pandora's definitions. A mathematical model for multiple POR gates is derived from 
first principles. All techniques are applied to a case study and the results are discussed. 

1.1 Notation 

Pandora symbols in order of precedence (lowest first): 

+  logical OR 
.  logical AND 
|  Priority-OR 
<  Priority-AND 
&  Simultaneous-AND 
¬  logical NOT 

Other notation: ⊲  Non-Inclusive Before 
  Failure rate of event i   time 

2 Quantification of the POR Gate 

2.1 POR Gate Semantics 

The POR gate is derived from the unusual XOR gate featured in [10] and expands the 
OR gate with additional temporal constraints. The term ‘priority’ is used because the 
sequence of the events is taken into consideration, whereas the ‘OR’ indicates that not 
all input events need to occur. Thus A POR B is true if either A occurs before B (but 
both occur) or if A occurs but B does not. The POR gate is primarily used to represent 
a situation involving some degree of mutual exclusion, i.e., where the occurrence of 
one event before a second event precludes the occurrence of an output event caused 
by that second event.  

A POR gate can be thought of as being equivalent to (A PAND B) OR (A AND 
NOT B), i.e., |  . , for quantitative purposes. However, the NOT 
gate here is used only in an illustrative way: it means that B did not occur at any time, 
and is not just a simple negation of B. This avoids the issue of non-coherency that the 
NOT gate often introduces [11-12]; Pandora does not include the NOT gate and the 
semantics of the POR gate are such that Pandora ensures coherency of the fault tree. 
A full explanation of this is out of the scope of this paper, but essentially no event or 
gate can ever go from true to false (i.e., from occurred to non-occurred), and thus the 
structure function of a Pandora fault tree is monotonic [7]. Thus in this paper, it is 
assumed that the system under consideration is coherent, i.e., it cannot improve as a 
whole when one or more of its components fail [13]. Furthermore, all events are as-
sumed to be statistically independent. Finally, in cases of Markov analysis, Merle’s 
algebraic solution and Pandora analysis (discussed further in this paper), it is assumed 
that events are exponentially distributed with probability density function 
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, 0 ∞  (1)

and cumulative distribution function 1 , 0 ∞. (2)

2.2 Solution Using Markov Chains 

In reliability engineering, Markov models are widely used for analysing continuous 
time, discrete state scenarios [14-15]. Fig. 1 represents a Markov model for the POR 
gate. The arrowed lines (mostly arcs) represent the transition from one state to another 
and are labelled with the failure rate at which the transition occurred. The circles rep-
resent the states; failure states of the model (2 and 3) are shaded while non-failure 
states are not (1 and 4). Transition to state 4 is ignored because it does not lead to 
failure. With this in mind, at state 1, the system is fully functional and input event A 
has not failed. At state 2, A has failed but B has not, nevertheless leading to total fail-
ure of the system. If B subsequently fails (leading to state 3), the system remains in a 
failed state. 

 

Fig. 1. Markov model of a POR gate 

The probability of being in state 1 at a particular time t + dt is equal to that of be-
ing in state 1 at t and not transitioning to 2 during (t, t + dt). Mathematically this can 
be expressed as: 

  (3) 

The probabilities of being in states 2, 3 and 4 are similarly given as:      (4)     (5)       (6) 

Solving (3), (4), (5), (6) gives: 

  (7) 
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      (8)     (9) 1   (10) 

|   (11) 

2.3 Derivation from Pandora's Definition of POR 

From the definition of a POR gate (remembering that ‘|’ stands for POR and not con-
ditional probability) it is clear that the occurrence of a POR gate, e.g. a|b, is depend-
ent on the occurrence of either of two cases: a before b (i.e., a<b) and a without b 
(i.e., a.¬b): | . ; where ‘a’ and ‘b’ are input events (12) 

Thus by calculating the probabilities of these two cases, we can determine the prob-
ability of the POR gate as a whole by using the principle of inclusion-exclusion (and 
where (1-b) is the probability of event b not occurring, i.e., NOT(b)): |                            . .  (13) 

However, .  results in a logical contradiction because both 
terms cannot occur at the same time – b cannot happen both after a and not at all. 
Therefore . 0, and thus: | .  (14) | . 1  (15) 

|    (16) 

2.4 Monte Carlo 

The Monte Carlo (MC) simulation is an old mathematical technique used to provide 
numerical solutions to complex problems that are difficult to solve analytically by 
generating suitable random numbers and observing that fraction of the numbers which 
obey some properties [16]. Since its invention in the early 1940s, it has been used in 
various fields, such as chemistry, engineering, medicine, games, finance and so on. Its 
use has also been extended into reliability analysis [17-18]. The MC method is en-
tirely reliant on the use of random numbers for the computation of its results. The 



104 E. Edifor, M. Walker, and N. Gordon 

 

general method involved in creating a MC model includes defining the probability 
distribution of variables; calculating the cumulative probability distribution for each 
of these models; generating random numbers; and finally simulating a series of trials. 
Once the model is created, results can be evaluated after the simulation. 

To model |  in Monte Carlo the following steps were taken: 

1. Generate random numbers ,  for failure probabilities  and 
 respectively. 

2. Determine the Time-To-Failure (TTF)[17] of a and b using: 

  (17)    (18) 

3. Keep count if  AND  AND  OR  AND  is TRUE. 
4. The above steps are repeated for a specified number of times (called trials). |   is finally evaluated by dividing the counts kept in step 3 by the total number 
of trials. This gives the percentage of simulations in which the POR gate became true, 
and thus an estimation of its probability. 

2.5 Merle’s Algebraic Solution 

Merle [4] provides an algebraic model for probabilistically analysing the PAND, 
Spare, and FDEP gates of a DFT. He describes an equivalence between the POR gate 
and a “Non-inclusive BEFORE”, represent by the symbol ‘⊲’. Using the definition of 
f(x) and F(x) above, Merle provides a probabilistic expression for the Non-inclusive 
BEFORE as: ⊲ 1  (19) 

⊲     (20) 

It is evident that Merle’s algebraic solution (20) is exactly the same as the formulae 
from Pandora’s definitions (11) and Markov analysis (16).  

2.6 Deriving the Multiple POR Formula 

The expression for evaluating a MCSQ term with only two events has been discussed 
and derived from Markov Chains and Pandora's semantics. We derive the formula for 
evaluating a MCSQ with more than one POR gates from first principle below. 
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For any POR MCSQs with the expression | | … | | , and constant failure 
rates , , … , ,  respectively, the probability of this MCSQs is derived as: | | … | |               1 … 1  1   (21) 

| | … | |  (22) 

| | … | | ∑∑  (23) 

3 Case Study 

Fig. 2 below depicts a redundant fuel distribution system for a maritime propulsion 
system. There are two primary fuel flows: Tank1 provides fuel for Pump1 which 
pumps it to Engine1, and Tank2 provides fuel for Pump2 which pumps it to Engine2. 
Flow to each engine is monitored by two sensors, Flowmeter1 and Flowmeter2. In the 
event that flow to an engine stops, the Controller activates the standby Pump3 and 
adjusts the fuel flow accordingly using valves. If the Controller detects an omission of 
flow through Flowmeter1, it activates Pump3 and opens Valve1, diverting fuel from 
Pump1 to Pump3; if it detects an omission of flow through Flowmeter2, Valve2 is 
opened instead. In either case, either Valve3 or Valve4 is opened accordingly by the 
Controller to provide fuel flow to the appropriate fuel-starved engine.  

 

Fig. 2. Fuel distribution system  

Pump3 can therefore be used to replace either Pump1 or Pump2 in the event of 
failure, but not both. Engine failure will ensue if it receives no fuel. Although the ship 
can function in a degraded capacity on one engine, failure of either engine is still 
considered a potentially serious failure. 



106 E. Edifor, M. Walker, and N. Gordon 

 

Important failure logic for the engines is described below. Failure modes are ab-
breviated as follows: 

P1, P2, P3  = Failure of Pump 1/2/3 

V1, V2, V3, V4  = Valve 1/2/3/4 stuck 

E1, E2   = Failure of Engine 1/2 

S1, S2   = Failure of flowmeter sensors 1/2 

CF    = Controller failure 

Valve1 initially provides flow from Tank1 to Pump1, but when activated, provides 
flow from Tank1 to Pump3. Similarly, Valve2 initially provides flow to Pump2, but 
when activated by the Controller, provides flow to Pump3. Either valve can become 
stuck (failure modes V1 and V2 respectively), which will prevent the redirection of 
flow if it happens before the valve is opened by the Controller. Thus omission of flow 
to Pump3 from Valve1 is caused by 'V1 < ActivationSignalV1'. Failure to re-
ceive the control signal from the Controller will also cause a lack of flow to Pump 3.  

Each primary pump takes fuel from its assigned fuel tank and pumps it to an en-
gine. Omission of flow from a pump can be caused by a lack of fuel flowing to the 
pump or because the pump itself has failed (failure modes P1 and P2 for Pump1 and 
Pump2 respectively). The flowmeters monitor the flow of fuel to each engine from 
Pump1 and Pump2 and provide feedback to the Controller. If a sensor fails, it may not 
provide any feedback, meaning that an omission of flow goes undetected and the 
standby pump may not be activated. This is represented by S1 and S2. 

The Controller is responsible for monitoring the feedback from the two sensors and 
activating Pump3 if one of the two primary pumps fail. In this case, it sends signals to 
the valves, diverting the flow of fuel to Pump3. It can also fail itself (failure mode 
CF), in which case Pump3 may not be activated when needed. Once the Controller 
has activated Pump3, a subsequent failure of the Controller has no effect on the sys-
tem, i.e., 'ActivationSignalV1 | CF' (or V2, V3, V4 for other valves). 

Valves 3 and 4 direct the flow from Pump3 to either Engine1 or Engine2. Valve3 is 
activated at the same time as Valve1 by Activate-Ctrl.UseTank1, whereas Valve4 is 
activated at the same time as Valve2 by Activate-Ctrl.UseTank2. Like Valves 1 & 2, 
both may get stuck closed (failure modes V3 and V4); however, unlike Valves 1 & 2, 
they are only either open or closed. By default, they are closed. 

Pump3 is the standby pump in the system. Once activated, it replaces one of the 
two primary pumps, directing flow from one fuel tank to the appropriate engine 
(Tank1 ==> Engine1 or Tank2 ==> Engine2). It has the same failure modes as the 
other Pumps, but because it is a cold spare, it is assumed not to be able to fail until it 
is activated. Input to Pump3 can come from either Valve1 or Valve2. 

The engines provide propulsion for the ship. Each engine takes fuel from a differ-
ent fuel tank and can take its fuel from either its primary pump or Pump3. The order 
in which the pumps fail determines which engine fails; for example, if Pump1 fails 
first, then Engine1 can continue to function as long as Pump3 functions, but if Pump2 
fails first, then Engine1 will be wholly reliant on Pump1. This is expressed by the 
logical expressions below, where 'O-' denotes an omission of output. For simplicity, 
internal failure of the engines themselves is left out of the scope of this analysis. 
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O-Engine1 = ((O-Pump1 | O-Pump2) . O-Valve3)  

            + (O-Pump2 < O-Pump1) + (O-Pump2 & O-Pump1) 

O-Engine2 = ((O-Pump2 | O-Pump1) . O-Valve4)  

            + (O-Pump1 < O-Pump2) + (O-Pump1 & O-Pump2) 

The expanded fault tree expressions for the failure of each engine are as follows: 

E1 = (P1+P1|P2|CF|V1)|(P2+P2|P1|CF|V2).(V3 + P3 + V1<P1|P2|CF  

     + V1&P1|P2|CF + S1<P1|P2 + CF<P1|P2 + S1&P1|P2  

+ CF&P1|P2 + V2<P2|P1|CF + V2&P2|P1|CF + S2<P2|P1  

+ CF<P2|P1 + S2&P2|P1 + CF&P2|P1)+ (P2+P2|P1|CF|V2) 

<(P1+P1|P2|CF|V1) + (P2+P2|P1|CF|V2)&(P1+P1|P2|CF|V1) 

E2 = (P2+P2|P1|CF|V2)|(P1+P1|P2|CF|V1).(V4 + P3 + V1<P1|P2|CF  

+ V1&P1|P2|CF + S1<P1|P2 + CF<P1|P2 + S1&P1|P2 + CF&P1|P2 

     + V2<P2|P1|CF + V2&P2|P1|CF + S2<P2|P1 + CF<P2|P1  

+ S2&P2|P1 + CF&P2|P1) + (P1+P1|P2|CF|V1) 

<(P2+P2|P1|CF|V2) + (P1+P1|P2|CF|V1)&(P2+P2|P1|CF|V2) 

Minimisation of the fault trees for E1 and E2 gives the following MCSQs: 

E1 = (P1|P2).P3 + (P1|P2).V1 + (P1|P2).V3 + (S1<P1)|P2 +  

     (S1&P1)|P2 + (CF<P1)|P2 + (CF&P1)|P2 + P2<P1 + P1&P2 

E2 = (P2|P1).P3 + (P2|P1).V2 + (P2|P1).V4 + (S2<P2)|P1 +  

     (S2&P2)|P1 + (CF<P2)|P1 + (CF&P2)|P1 + P1<P2 + P1&P2 

As stated earlier, components are non-repairable, and furthermore, MCSQs with 
SANDs will not be considered in quantification, because we assume in this case that 
the probability of two independent events occurring simultaneously is effectively 0. 
Failure rate information for the system is as follows: 

Table 1. Failure rates for the fuel system 

Component Failure Rate (constant)/hour 
Tanks 1.5E-5 

Valve1 & Valve2 1E-5 
Valve3 & Valve4 6E-6 

Pump1, Pump2 & Pump3 3.2E-5 
Flowmeter sensors 2.5E-6 

Controller 5E-7 

4 Evaluation 

To verify the accuracy of POR gate quantifications discussed, terms of the MCSQs 
from the case study were modelled in Isograph Reliability Workbench 11.0 (IRW),  
a popular software package for reliability engineering. In Isograph, the RBDFTET 
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(Reliability Block Diagram Fault Tree Effect Tree) lifetime and an accuracy indicator 
of 1 were used [20]. Tables 2 to 4 give the results of the terms in the MCSQ for En-
gine 1 in the case study. Since E1 and E2 are caused by the same events just in the 
opposite sequences, their unavailability is the same, and thus results for E2 are the 
same as in Tables 2-4. The column headed 'Algebraic' indicates results from Markov 
analysis and Pandora. Results are obtained for varying values of system life time (in 
hours).  

Pr (P1<P2) for all three methods was evaluated using Fussel’s formula [8] while 
the top event probability was calculated using the Esary-Proschan [13] formula. The 
precedence order for evaluating temporal terms is stated in ‘Notation’. 

Table 2. Results of POR quantification for first two MCSQs 

Time  
(hours) 

Pr(P1|P2.P3) Pr(P1|P2.V1) 
Isograph Algebraic Monte Carlo Isograph Algebraic Monte Carlo 

1 1.024E-09 1.024E-09 1.120E-09 3.200E-10 3.200E-10 2.875E-10 
100 1.021E-05 1.019E-05 1.032E-05 3.199E-06 3.188E-06 3.166E-06 

1000 9.918E-04 9.762E-04 9.796E-04 3.134E-04 3.084E-04 3.068E-04 
10000 7.499E-02 6.473E-02 6.483E-02 2.606E-02 2.249E-02 2.246E-02 

Table 3. Results of POR quantification for next two MCSQs 

Time  
(hours) 

Pr(P1|P2.V3) Pr(S1<P1|P2) 
Isograph Algebraic Monte Carlo Isograph Algebraic Monte Carlo 

1 1.920E-10 1.920E-10 2.100E-10 4.000E-11 4.000E-11 0 
100 1.916E-06 1.913E-06 1.903E-06 3.987E-07 3.985E-05 3.625E-05 

1000 1.884E-04 1.854E-04 1.849E-04 3.871E-05 3.777E-02 3.769E-02 
10000 1.595E-02 1.376E-02 1.376E-02 2.905E-03 9.901E-01 8.329E-01 

Table 4. Results of POR quantification for remaining two MCSQs 

Time  
(hours) 

Pr(CF<P1|P2) Top Event [Pr(E1)] 
Isograph Algebraic Monte Carlo Isograph Algebraic Monte Carlo 

1 8.000E-12 8.000E-11 0 2.096E-09 2.168E-09 2.130E-09 
100 7.974E-08 7.970E-06 1.000E-05 2.091E-05 6.821E-05 6.674E-05 

1000 7.747E-06 7.676E-03 7.718E-03 2.035E-03 4.703E-02 4.699E-02 
10000 5.849E-04 9.518E-01 8.323E-01 1.497E-01 9.996E-01 9.757E-01 

 
From tables 2-4, it can be observed that the solutions obtained by the algebraic ex-

pression are close to those obtained by Isograph when the lifetime is small. However, 
with increasing lifetime, both results diverge. This may be attributed to the numerical 
integration method [20] Isograph uses. Unfortunately, Isograph does not have any 
representation for the POR gate, and having to model it ‘from scratch’ every time can 
be cumbersome and (human) error-prone due  as it consists of 4 states with three 
transitions between them (using Markov Chains)  or  4 gates with two basic events 
(using FTA). Modelling the entire system this way would be far worse.  
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It is also clear that results from the algebraic expression and Monte Carlo (800000 
trials) are much more similar. Both results tend to converge with increasing lifetime, 
although results for MSCSs with more than one temporal gate (S1<P1|P2 and 
CF<P1|P2) instead diverge considerably as the system lifetime t increases. Further 
research is being carried out to determine the cause of this behaviour.  

It is widely known that as the size of fault tree increases, Markov models become 
increasingly prone to human error and are crippled by the state explosion problem 
[17]. Markov models are usually limited to exponential failure and repair distribution 
[15,17], although some efforts have been made to extend it to other distributions [19].  

Merle's, Markov’s and Pandora’s methods are efficient because they are algebraic 
expressions generated from first principle. Even though Merle’s method is restricted 
to a cut sequence with only one POR gate, Pandora’s has been extended to two or 
more. Modelling multiple POR scenarios with Markov can be very cumbersome and 
error-prone. Unlike in Monte Carlo simulation, however, all three techniques are re-
stricted to exponential failure distribution. 

It can be observed that some of Monte Carlo’s results are zero. This is due to the use 
of small realistic constant failure rates. Monte Carlo simulation is hugely dependent on 
the sample size, which greatly impacts accuracy and computational time: the smaller the 
sample size, the less accurate the result and vice versa. The ready availability of high 
computing power means that such compromises are rarely necessary. However, unlike 
Markov analysis, which starts to break down when presented with complex fault trees, 
Monte Carlo is very efficient in handling complex situations [15,17].  

5 Conclusion 

Fault Tree Analysis has been used in reliability engineering for many decades now. 
Modifications to it have evolved over time to provide new capabilities, such as the 
introduction of dynamic or temporal semantics, allowing them to analyse sequential 
failure logic. One such technique is Pandora which introduces new temporal gates to 
enable the logical analysis of temporal fault trees. In this paper, we have presented 
three new ways of probabilistically analysing one of Pandora’s temporal gates –
Priority-OR. These techniques, Monte Carlo, Pandora analysis, and Markov analysis 
have been evaluated against an algebraic solution from Merle and applied to a case 
study. The three novel techniques produce very similar results. Results have been 
discussed. A mathematical model for more than one POR gate has been derived.  

Acknowledgements. This work has been developed in conjunction with the EU FP7 
project MAENAD. 
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Abstract. Ever shrinking device structures are one of the main reasons
for a growing inherent unreliability of embedded system components. As
a remedy, various means to increase the reliability of complex embedded
systems at several levels of abstraction are available. In fact, their efficient
application is a key factor for the successful design of reliable embedded
systems. While analysis approaches that evaluate these techniques and
their advantages and disadvantages at particular levels exist, an overall
system analysis that has to work cross-level is still lacking. This paper
introduces a framework for cross-level reliability analysis that enables
a seamless and flexible combination of various reliability analysis tech-
niques across different levels of abstraction. For this purpose, a proposed
framework provides mechanisms for (a) the composition and decomposi-
tion of the system during analysis and (b) the connection of different lev-
els of abstraction by adapters that convert and abstract analysis results.
As a case-study, the framework extends and combines three analysis ap-
proaches from the MPSoC domain: (I) a BDD-based reliability analysis
considers redundancies in the system structure, (II) an analytical behav-
ioral model to consider computational activity, and (III) a temperature
simulator for processor cores. This enables to capture thermal reliability
threats at transistor level in an overall system analysis. The approach
is seamlessly integrated in an automatic Electronic System Level (ESL)
tool flow.

1 Introduction

A major threat to the reliability of nowadays and future embedded system
components are their steadily shrinking device structures. These small device
structures are susceptible to, e. g., environmental changes and fluctuations like
cosmic rays and manufacturing tolerances. This poses a major challenge on the
(automatic) design of embedded systems at system level, because there needs to
be an awareness that the system is composed of unreliable components whose
unreliability itself is subject to uncertainties. Thinking of reliability-increasing
techniques at the system level like temporal/spatial redundancy or self-healing,
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there exists a significant gap between the level of abstraction where the faults
occur, i. e., switching devices like CMOS transistors at gate level and higher lev-
els like architecture level or system level where the interplay of hardware and
software is the main focus. This gap not only exists between the cause of faults
and the techniques to compensate them, but also between the techniques and
their efficiency, e. g., what is the effect of hardening techniques at circuit level
like Razor [3] on the applications at system level.

Today, there exists a smorgasbord of reliability analysis techniques for both, the
relatively low layers of abstraction that focus on technology as well as system-level
analysis techniques that focus on the applications.1 However, there currently ex-
ists no well-defined holistic and cross-level analysis technique that collects knowl-
edge at the lower levels of abstraction by combining different analysis techniques
and provide proper data for the analysis at higher levels of abstraction by perform-
ing abstraction and conversion.Moreover, means to enhance the system’s reliabil-
ity are not for free and typically deteriorate other design objectives like monetary
costs, latency, or energy-consumption. The outlined lack of suitable cross-level
analysis techniques, thus, prohibits an adequate system-wide cost-benefit anal-
ysis during the design of embedded systems.

This work introduces a Cross-level Reliability Analysis (CRA) framework that
combines various reliability analysis techniques across different levels of abstrac-
tion. It aims at closing the mentioned gaps and enables an efficient Design
Space Exploration (DSE) [16] during which a system-wide cost-benefit analysis
of reliability-increasing techniques is enabled. For this purpose, the framework
uses two basic concepts: (I) Decomposition and composition tackle the growing
complexity when considering lower levels of abstraction. (II) Adapters combine
different analysis techniques by converting between required and provided data
like temperature, radiation, and reliability-related measures. To give evidence of
the benefits of CRA, a case study investigates an embedded 8-core MPSoC plat-
form where a redundant task layout at system level is used as a means to cope
with thermal effects at device level. This is achieved by seamlessly combining
three analysis techniques from system level down to a temperature simulator of
the cores in CRA.

2 Related Work

Up to now, several system-level reliability analysis approaches have been pre-
sented for embedded systems and were integrated into design space exploration
techniques to automatically design reliable hardware/software systems. How-
ever, they typically rely on simplistic analysis approaches based on constant
failure rates for both, permanent and transient errors and series-parallel system
structures: An approach that unifies fault-tolerance via checkpointing and power

1 This work focuses on reliability issues for applications mapped to an embedded system
platform architecture and treats reliability of the (software) functionality itself as an
orthogonal aspect.
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management through dynamic voltage scaling is introduced in [24]. In [7,2], fault-
tolerant schedules with respect to performance requirements are synthesized us-
ing task re-execution, rollback recovery, and active replication. Other approaches
such as [18,23] try to maximize reliability by selectively introducing redundancy.
On the other hand, reliability analysis at low levels of abstraction like the level
of switching devices goes back a long history: Not only CMOS technology has
been thoroughly studied, see, e.g., [13,15], but also prospective switching devices
like carbon nano tubes, see [20].

Currently, there are very few approaches that try to upscale the knowledge
gathered at low levels of abstraction to the system level: In [25,5], thermal ef-
fects of the task scheduling on the reliability of an MPSoC are considered for
an optimization of task scheduling and binding at system level. The analysis
is based on a simulation of the MPSoC and models to relate the component’s
temperature profile and its resulting reliability, see [17,1]. However, they do not
investigate reliability-increasing techniques at system level such as temporal or
spatial redundancy. Moreover, they are tailored to capture thermal effects only,
without investigating the possibility to include and consider these effects in a
holistic analysis that also takes into account, e.g., soft errors or a complex system
structure like a networked embedded system consisting of several interconnected
processors or MPSoCs. A first approach that explicitly tries to close the gap
on accurate power models for reliability analysis between the Electronic System
Level (ESL) and the gate level is presented in [12]. While the approach sounds
promising with respect to modeling the influence of thermal effects on the com-
ponent reliability, there, again, is no flexibility to integrate different analysis
techniques cross-level. Although the purely software-related reliability analysis
domain is treated as an orthogonal problem here, it is worth mentioning that
compositional approaches to reliability analysis that consider component-based
software are, e. g., presented in [11] and [10]. However, the schemes of the latter
approaches do not put focus on automatic analysis as required during design
space exploration, but are mostly driven by the designer.

3 Compositional Reliability Analysis

This work targets the system-level design of embedded MPSoCs and distributed
embedded systems that typically consist of several processor cores connected
by a communication infrastructure such as buses, networks-on-a-chip, or field
buses. The main challenge is to analyze and increase the reliability of applica-
tions executed on the MPSoC by propagating the effects of faults and introduced
reliability-increasing techniques at lower design levels of abstraction up to the
system level. The work at hand targets this challenge by a cross-level Compo-
sitional Reliability Analysis (CRA) whose mathematical concept as introduced
in the following is directly reflected within a framework by means of a class and
interface structure. An important concept of the developed CRA is that for each
relevant error-model at a specific design level of abstraction, an appropriate reli-
ability analysis shall be applicable and seamlessly integrated into the CRA. As a
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Fig. 1. An abstract view on the two basic mechanisms that Compositional Reliability
Analysis (CRA) provides: A Compositional Reliability Node (CRN) applies an individ-
ual analysis techniqueX at a specific reliability level of abstraction and delivers specific
measures O such as error-rates, temperature, or aging over time. Within each reliability
level of abstraction, composition and decomposition are applied to tame complexity.
Different reliability levels of abstraction are connected using adapters that perform
refinement, data conversion, and abstraction.

result, the developed concepts will become independent of an actual error-model
since it aims abstracting from the actual source of unreliability during upscal-
ing, i. e., the propagation of data from lower levels to higher levels by means of
abstraction and data conversion, in the CRA. After an introduction of the CRA
concept in this section, the following section will provide a concrete example for
the CRA concept. A schematic view of such a compositional reliability analysis
and the required mechanisms is shown in Fig. 1.

As depicted, CRA is agnostic of design levels like Electronic System Level
(ESL), Register Transfer Level (RTL), or circuit level but introduces reliabil-
ity levels of abstraction. A reliability level of abstraction in CRA involves one
or even a range of design levels where the same error models and, especially,
their causes are significant. Consider, e. g., the effects of electromigration due to
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temperature T on a processing unit as cause for permanent defects. Analyzing
these effects properly requires to (I) be aware of the processor’s workload and,
hence, the task binding and scheduling defined at system level down to (II) the
power consumption and the actual floorplan of the processor at circuit level. To
realize a holistic cross-layer analysis, the CRA features three important aspects:
(a) Individual analysis techniques are encapsulated in Compositional Reliability
Nodes (CRNs) at reliability levels of abstraction, (b) composition C and decom-
position D is applied to tame system complexity, and (c) formerly incompatible
reliability levels of abstraction and, hence, analysis techniques are connected by
adapters A. CRA combines CRNs and adapters in a tree-based fashion to a
flexible and holistic system-wide analysis.

Compositional Reliability Nodes (CRNs) model and integrate a single analysis
step O = X(S, I). X is a concrete implementation of an AnalysisTechnique

like a fault-tree analysis. It requires as input a SystemModel S2 as well as a
set of analysis technique-specific InputMeasures I. By applying the technique,
it delivers a set of OutputMeasures O. Both input and output measures are
typically measures over continuous or discrete time t like the reliability function
R(t)3 with R : R+ → [0, 1] which determines the probability p of, e. g., the
processing unit to work properly at time t. A set of CRNs may be instantiated
at each specific reliability level of abstraction to consider different subsystems
or analysis techniques.

Composition and Decomposition is an essential technique to tame the analysis
complexity at one specific reliability level of abstraction and from that further
down. Composition and decomposition shall not be restricted to trivial cases
where a (sub)system can be partitioned into a set of independent subsystems.
In fact, in nowadays silicon systems, hardly any subsystem is independent of
all other subsystems. Decomposition delivers sound partitions of the inter-
/independent (sub)systems with respect to the CRN. Composition compen-
sates the effects of interdependencies that are neglected due to decomposition
and, hence, independent analysis of the partitions. By considering different de-
composition/composition techniques, the resulting error will vary. The flexibility
of CRA enables to manually choose or automatically determine a trade-off be-
tween acceptable error versus complexity of the analysis as a combination of
CRNs, decomposition, and composition.

A decomposition and composition is said to be feasible in case the resulting
error in analysis accuracy is lower than a designer-specified value. More formally,
a Decomposition D and Composition C of a system S into n subsystems

2 The (sub)system model S is assumed to be a complete system specification that
contains required information for all considered design levels of abstraction from,
e. g., task binding down to the floorplan of allocated processors.

3 Based on a given reliability function, all well-known reliability-related measures like
theMean-Time-To-Failure (MTTF) MTTF =

∫∞
0

R(t)dt or theMission Time (MT)
MT (p) = R−1(p) can be determined.
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S1, . . . , Sn with S =
⋃n

i=1 Si is feasible if the arising error for each output value
o ∈ O is smaller than a specified maximum εo:

D(S) = {S1, . . . , Sn} is feasible, if

∀o ∈ O : |Xo(S)− CP (Xo(S1) • . . . •Xo(Sn), Po({S1, . . . , Sn}))| ≤ εo (1)

Here, • is an Operator that may be a simple operation (addition, multipli-
cation, etc.) or advanced techniques specified by the designer. In this case, the
composition C not only takes into account the parts of the subsystem that can
be analyzed independently, but also performs a corrective Postprocessing P
based on the subsystems to take their interactions into account. Note that CP

indicates that a decomposition/composition has been performed and quantified
at a certain level. However, at which level(s) the postprocessing P is applied is
again specified by the designer. Performing a corrective postprocessing at lower
levels typically further decreases the occurring error but increases the complex-
ity of the operation or may in worst case result in an ineffective decomposition.
This trade-off is studied in the case study presented in the next section.

Adapters connect adjacent reliability levels of abstraction and perform three
tasks: (a) A refinement step transforms output measures provided at a higher
level to input measures required at the lower level of abstraction. (b) A data
conversion step transforms the output measures provided at the lower level to
the required input measures at the higher level. (c) During both refinement
and data conversion, abstraction is performed to tame analysis complexity be-
tween levels of abstraction. Formally, an Adapter A = (T↓, T↑) is a tuple of
Transformers T with T↓ being the Refinement and T↑ the Conversion,
respectively. Considering the usability of the CRA framework, an adapter can
be feasibly applied if T↓ (T↑) can derive all input measures for the CRN at lower
level (higher level) from the output measures of the CRN at higher level (lower
level). The transformers typically apply a specific model transformation like re-
lating the workload of a processor to a respective trace of its power consumption.
However, these transformers will typically not provide exact results, but will in-
herently apply a certain abstraction by either making an error or by just being
able to give upper and lower bounds. Imagine, e.g., a Field Programmable Gate
Array (FPGA) where cosmic ray may induce bit-flips: One level of abstraction
may be used to determine a profile for the intensity of the cosmic ray over time.
For the conversion T↑, existing approaches relate the intensity of cosmic rays
to the number of Block RAMs (BRAMs) and slices to determine a reliability
function, see [21]. However, it can hardly be analyzed whether a single bit-upset
results in an observable error or even permanent defect in case certain configu-
ration bits are flipped. Determining a reliability function in one adapter requires
the assumption that each flip of a configuration bit results in an observable error,
resulting in potentially highly pessimistic lower bound for the reliability. Here,
the CRA concept comes into play by, e. g., integrating an intermediate level that
investigates the number and sensitivity of configuration bits with respect to the
application at higher level.
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4 Case Study

As a case study, CRA is applied to a concrete reliability analysis during ESL
design space exploration of an MPSoC system where thermal-related aging at
gate level is the premier reliability threat. As means to increase reliability, spatial
redundancy of software tasks assigned to processors is employed. The particu-
lar goal of this case study is to investigate the reliability increase by redundant
task layout versus the reliability decrease as a result of the additional workload
and, hence, heat on the processors.4 This extends existing analysis methods
that are either agnostic to temperature effects at lower levels and only consider
system-level reliability or do not consider system level means like redundancy.
In the following, a description is given how (I) a BDD-based approach to con-
sider redundancy in the system structure, (II) an analytical behavioral analysis
technique to consider computational activity of processor cores, and (III) a tem-
perature simulator for the cores is seamlessly embedded in the proposed CRA.
The results investigate (I) the inaccuracy that is given when neglecting the neg-
ative effect of redundant task instantiation and (II) the inaccuracy during CRA
when using different composition schemes.

4.1 Temperature-Aware Redundant Task Layout

A dedicated CRA that consists of the mentioned three analysis techniques is
depicted in Fig. 2. At highest level, X I is a BDD-based reliability analysis as
introduced, e. g., in [4,6]. It delivers the reliability function of the complete 8-
core MPSoC, i. e., OI = {R(t)} and requires the reliability function of each
component (core) r ∈ R in the system, i. e., ∀r ∈ R : Rr(t) ∈ II. At the
intermediate level, X II is a behavioral analysis approach termed Real-Time Cal-
culus (RTC) [19]. Given a binding of tasks to cores and their schedule (acti-
vation), RTC delivers upper and lower bounds for the workload on each pro-
cessing unit. For this analysis, III = ∅ indicates that no additional input from
within RTC is required for the second level. However, the important part of
level II is OII = {β′

r} with β′
r being a service curve that describes the remain-

ing service (computational capacity) provided by the resource and, hence, en-
ables to derive the current workload. On level III, X III is a temperature simula-
tion using HotSpot [14]. HotSpot is capable of delivering a temperature profile,
i. e., OIII = {Tr(t)} and requires a power trace of the respective component
IIII = {Pr(t)}. Note that, for the sake of simplicity, additional data required
from the system model S at the different levels of abstraction as well as the
bypass of R(t),Rr(t) between levels I and II is omitted, see Fig. 2.

Temperature-Reliability Adapter. The refinement transformer T↓ within the
adapter between level II and III in Fig. 2 assumes that each core has two power
modes: idle and running. Whenever the processing unit executes a task, the

4 Note that influences on reliability as well as means to compensate faults may be
considered at each level of the CRA, e. g., temporal redundancy by task re-execution
may be considered at level II.
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Fig. 2. An example of a concrete CRA that considers three reliability levels of abstrac-
tion: At the highest, i.e., system level, reliability function R(t) are to be derived by
means of BDD-based structural analysis. In the next level, the MPSoC is decomposed
into subsystems, i.e., two processing units in this example. To gather the desired reli-
ability functions for each processing unit, a lower reliability level of abstraction where
the operating temperature T (t) is a significant cause of failures is chosen. The adapter
A between level II and III requires the workload on a processing unit derived by a
Real-Time Calculus (RTC) on level II. It then refines them into a power trace and
passes it to the temperature simulation at level III. The delivered temperature profile
is converted into a reliability function of the processor and passed back to level II.
Finally, the individual reliability functions from level II are passed to the BDD-based
approach at level I.

processor is in running mode and idle otherwise. Given the remaining service
β′ from OII, a power trace is generated with the concrete power consumption
values for idle and running being provided by the core’s specification in S.

The conversion transformer T↑ requires to decide for a particular fault model.
Here, electromigration is investigated. The effect of electromigration under con-
stant temperature T on the Mean-Time-To-Failure (MTTF) is modeled as

MTTFEM =
A
Jn

e
Ea
KT , (2)

where A is a material dependent constant, J is the current density, Ea is the
activation energy for mobile ion diffusion, and K is the Boltzmann’s constant.
The respective values are obtained from [1]. To take into account temperature
profiles T (t), the method proposed by [22] is adopted: The total simulation time
is segmented into time intervals ti. Within each ti, a scaling factor ηi is calculated
using the MTTFEM as given in Eq. (2) for the average temperature T (ti) within
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Fig. 3. Three possible levels for a corrective postprocessing: PRTC takes part at level
II but does not have access to temperature profiles and, thus, corresponds to no post-
procesing. PRoT takes part in the adapter and solely works on temperature profiles as
well as basic system model information. PHS takes part at level III and corresponds to
a complete simulation of both cores. The latter corresponds to an ineffective decom-
position and the error is assumed to be zero.

ti, see [22] for a detailed derivation. The resulting reliability function, assuming
exponential distribution, is then calculated as follows:

R(t) = e
−

∑ ti
ηi∑
ti

t
. (3)

Corrective Postprocessing. As outlined in the main section of this work, a cor-
rective postprocessing for composition may take part at various lower levels and
adapters. As shown by the experimental results later, the postprocessing is of
utmost importance in this kind of MPSoC scenario since there exists a signif-
icant heat dissipation between the cores. In this case study, three options are
compared, see Fig. 3:

PRTC: At level II, only reliability functions are available such that a reasonable
correction of the heat dissipation is prohibited. Thus, the level II postprocessing
corresponds to no postprocessing during composition.
PRoT: Within the adapter, the temperature profiles of the cores are available
from brief HotSpot simulations of the individual cores using a single-core floor-
plan. Here, a Rule-of-Thumb postprocessing is developed: According to [14], the
thermal resistance between adjacent cores is proportional to their central dis-
tance and inversely proportional to the cross-sectional area of contact. Figure 4
illustrates the heuristic calculation of the steady-state temperature change due
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Fig. 4. Illustration of calculation of temperature increase of “cold” Core 2 due to “hot”
Core 1, where ΔT is the temperature difference before interaction, and d1(d2) is the
central distance of Core 1(2) to the border

to heat flow of two adjacent cores. To be more specific, the net temperature
increase T12 of two cores 1 and 2 at their border can be derived using

ΔT − T12
d1

=
T12
d2

⇒ T12 = ΔT × d2
d1 + d2

(4)

with ΔT = T1−T2. The average net temperature change on the triangular area
F1→2

5 of Core 2 is approximated as

ΔT1→2 =
T12
2

=
ΔT
2

× d2
d1 + d2

. (5)

Then the overall temperature increase of Core 2 over all adjacent cores, denoted
as N , is

ΔT2 =
∑
n∈N

λn(ΔTn→2 ×
Fn→2

F2
), (6)

where F2 denotes the area of Core 2. An empirical scaling parameter λn is applied
to model all minor factors involved in thermal interaction calculation, such as
spreading/constriction resistance [14]. Note that Equation (6) should be applied
iteratively to obtain more accurate results. In this case study, the heuristic first
calculates the ΔT gain of all idle cores and then considers active cores.
PHS: The rule-of-thumb method as outlined above suffers from approximation
inaccuracy, in particular, due to the lack of transient temperature modeling.
At level III, this can be avoided by carrying out a HotSpot simulation of the
complete system to derive accurate temperature results. Compared to the no-
interaction and rule-of-thumb HotSpot simulation, the simulation time is set
to four times longer to accurately capture heat dissipation over the transient
behavior.

In the sense of compositional analysis, PHS leads to the most accurate temper-
ature estimation, because all dependencies (thermal interaction) are considered
during analysis. On the other hand, PRTC completely ignores heat flow among

5 “→” indicates the heat flow direction, where F1→2 is the area where heat from Core
1 flows into Core 2, and T1→2 is the temperature increase of Core 2 due to heat flow
from Core 1.



Cross-Level Compositional Reliability Analysis for Embedded Systems 121

adjacent processing cores and substantially degrades analysis accuracy. None the
less, the advantage is its significantly reduced estimation complexity. As shown
in the following subsection, PRoT offers a valuable trade-off by delivering high
accuracy at low computational cost.

4.2 Experimental Results

As a test case, a design space exploration of a multimedia application, in par-
ticular, an H.264 codec with a template UltraSPARC T1 8-core CMT as an
architecture [8] is carried out. The codec is specified at functional level with 28
and 38 computation/communication tasks for the decoder and encoder, respec-
tively. The frequency of each processing core is artificially determined as 3GHz.
To specify thermal characteristics, the dimensional and power (active and idle)
parameters of each functional unit are obtained from [8]. All computation tasks
are mapped onto any of the 8 general purpose cores and communication tasks are
mapped onto the memory units. The objectives of the design space exploration
are minimum average latency in milliseconds, minimum chip-wide power con-
sumption of all units, and maximum system-wide reliability in terms of MTTF.
The exploration was performed on a 2.66GHz Intel Core 2 Quad-CPU with
3.6GB RAM using the optimization framework Opt4J [9].

Postprocessing Accuracy. The accuracy of the postprocessing methods PRTC,
PRoT, and PHS is investigated based on 8000 implementations, randomly cre-
ated during a DSE. As depicted in Fig. 5, PRoT performs well and delivers a
relatively exact result in most cases. PRTC constantly overestimates the system-
wide MTTF by about 26%. This gives strong evidence of the significance of
heat dissipation on reliability at system level and, thus, the need for a holistic
analysis as enabled by CRA. In terms of execution time, compared to PHS (full
HotSpot simulation), PRTC achieves an average speed-up of 2.2x with PRoT still
delivering a 2x average speed-up.

Reliability-Decreasing Aspect of Spatial Task Redundancy. This subsection inves-
tigates the error that results from neglecting either low level reliability threats
or the efficiency of low level means to increase reliability on the system-level
applications. For example, the system-level analysis proposed in [4] neglects the
additional load imposed by the instantiation of redundant software tasks to
achieve spatial task redundancy. For the case study, 1200 different implementa-
tions of (I) the H.264 encoder only and (II) the complete H.264 on the described
8-core MPSoC platform are crafted using automatic DSE. For a fair compar-
ison, [4] is also connected to the CRA, but the considered workload does not
include the redundant tasks and, hence, ignores the negative effects due to tem-
perature increase. The CRA approach as proposed here, of course, considers the
correct resulting workload and temperatures. The results of the case study are
depicted in Figure 6: The scatter plots visualize the gain in MTTF by spatial
redundancy compared to a corresponding implementation without redundancy.
As can be seen, for many considered implementations, the positive effect of
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Fig. 5. The error in percentage on system-wide MTTF as a result of different postpro-
cessing strategies during composition. Given PHS is exact, PRoT delivers high accuracy
in most cases. However, PRTC almost constantly overestimates the system-wide MTTF
by about 26%. The latter indicates the significance of heat dissipation on system-wide
reliability.
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Fig. 6. The expected gain in MTTF by means of spatial task redundancy for the
H.264 encoder only (left) and complete H.264 (right). While [4] neglects the negative
effects of spatial redundancy, CRA shows that this may lead to an overestimation of
the gain in MTTF of up to 30% (H.264 encoder only) and 20% (H.264). Note that for
implementations below the dotted line, [4] expects an enhanced reliability. Revealed
by CRA, their spatial redundancy is in fact downgrading the system-wide MTTF.

spatial redundancy predominates the negative effects due to the increased work-
load and, hence, wear-out. Moreover, there also exist several implementations
where the spatial redundancy is actually downgrading the MTTF of the overall
system, i. e., the negative effects dominate the positive effects. In summary, the
case study gives strong evidence that only a holistic analysis approach is capable
of providing sufficient information with respect to all trade-offs and significant
effects.



Cross-Level Compositional Reliability Analysis for Embedded Systems 123

5 Conclusion

This paper introduces a flexible framework for cross-level Compositional Relia-
bility Analysis (CRA) that enables a seamless integration of various reliability
analysis techniques across different levels of abstraction. The framework provides
mechanisms for (a) the composition and decomposition of the system during
analysis and (b) the connection of different levels of abstraction by adapters.
As a case-study, CRA combines three analysis approaches from the MPSoC
domain: (I) a BDD-based approach to consider redundancy in the system struc-
ture, (II) an analytical behavioral model to consider computational activity, and
(III) a temperature simulator. The experimental results highlight the flexibil-
ity of the approach with respect to both, the integration of different techniques
cross-level and the mechanisms to trade-off accuracy versus computational com-
plexity. Moreover, the need for holistic and cross-level analysis as enabled by
CRA is shown by investigating the error of existing work that, e. g., neglects the
negative effects of redundancy at system level on component wear-out at circuit
level.
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Abstract. As more and more complex IT systems, modern automobiles increas-
ingly bare safety and security risks – and have a growing relevance as sources of 
potentially valuable traces or evidence. But existing procedures and tools, which 
have proven so far in the field of IT forensics, mostly focus on desktop IT systems. 
However, strategies and tools for IT forensic investigations on embedded systems 
such as automotive IT networks increasingly come into the research focus. 

Alongside a process model from an IT-forensics guideline by the German 
BSI, this article examines how incident investigations could be performed with 
a focus on automotive IT systems, e.g. to close weaknesses/vulnerabilities and 
increase the dependability/trustworthiness of future systems. On the example of 
route reconstruction in a hit-and-run scenario, appropriate strategies and tools 
for selected process steps are proposed. These are exemplarily illustrated by 
practical tests on real vehicle IT (especially CAN field bus and navigation sys-
tems) and applicable ways to route reconstruction are shown. 

Keywords: Automotive security and safety interplay, automotive IT forensics, 
forensic process models, investigation and treatment of safety/security incidents. 

1 Motivation: Automotive Incident Investigation and Applications 

Compared to the broad operation of vehicles, IT forensic investigations of vehicular 
IT are still very uncommon. Occasionally, similar techniques are used e.g. in the con-
text of accident reconstruction, in which – due to the growing potential of embedded 
automotive IT – electronic evidence sources are increasingly included. One publicly 
known example was the fatal accident of the Austrian politician Jörg Haider [1], 
where specialists of the vehicle manufacturer were involved in the subsequent inves-
tigation – mainly to reconstruct the vehicle speed right before the crash. However, 
routine IT forensic investigations of vehicle IT and processes compliant to the IT 
forensic principles constitute a still largely uncharted territory. Also in the scientific 
community only sporadic contributions as [2] address this young research field, to 
which this work should add further contributions. The spectrum of application scenar-
ios for IT-based automotive incident investigations is broad and can exceed common 
accident research by far: 
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• Collection of (in- or exculpatory) evidence in general litigation cases 
Already in cases where a vehicle plays no, or an only marginally relevant role in a 
process (e.g. burglary, assault, robbery) it might provide important digital evidence. 

In- or exculpatory evidence may already be derived from the fact, that a vehicle 
has been used or was turned off at the time in question – especially if provably 
only one person has access to it. The ability to link a vehicle with concrete identi-
ties of its drivers may be further increased in future, especially in the presence of 
biometric authentication systems for cars [3] (first fingerprint sensors, voice and 
face recognition systems are already available on the market). 

By the collection of additional, complementary information a given hypothesis 
can further be substantiated or disproved. For example, such data may include speed, 
position, seat occupation or the usage of telephone and infotainment systems. 

• Investigation of incidents on the vehicle as a target of electronic manipulation 
Also recognition and processing of electronic tampering with the vehicle itself, espe-
cially with the IT embedded in it, is of increasing relevance. A broad range of elec-
tronic manipulation can already be observed in practice. In 2011, the study [4] showed 
that the vehicle owners (or drivers) themselves are the driving force behind most cur-
rent cases of electronic tampering with vehicle and infrastructure systems. Usually 
these persons strive to optimise features/functionality of the vehicle. Because they 
usually do not know about the complex dependencies and interactions in the overall 
system, they consequently hazard unintended consequences of their manipulations in 
many cases (which can range from simple malfunctions up to severe hazards). 

Additionally, further attack scenarios can be expected in the future, potentially 
causing severe damage. The study [4] also shows that, in face of the increasingly 
introduced wireless interfaces, also attack scenarios might gain future importance, 
which are initiated by external attackers following intended, malicious motivations. 
Consequently, investigations on vehicular IT should also consider external attack-
ers and their preferred strategies (e.g. non-physical system access via injection of 
malicious software) as potential initiators of investigated incidents – as it is already 
common for IT forensics in the desktop domain. 

Scenario „hit-and-run suspect“: As an application example for an IT forensic investi-
gation in the automotive domain the following scenario is referenced in this article 
(mainly for the practical illustrations of the forensic procedures in section  3): After an 
accident with bodily injury the responsible driver of a green medium-class vehicle 
committed hit-and-run. Since no eyewitness remembers the licence plate number, the 
law enforcement agency performs a broad investigation of corresponding vehicles in 
the local district. While only one car fulfils the reported criteria, its owner asserts his 
innocence – but cannot provide an alibi for the time in question. He admits that he 
was driving the car at that time, but since he was passing through a different district 
he was sure not to be the person responsible for the investigated incident. His vehicle 
is equipped with a modern, integrated navigation system, attached to the internal 
vehicular CAN bus network, and a CAN bus data logger. On request by the investi-
gating law enforcement agency he gives his consent for a detailed analysis with the 
aim of a route reconstruction. 
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This article is structured as follows: Section 2 introduces an IT forensic process 
model (being used in the later parts) and selected approaches from prior research, 
which could be integrated in future cars as strategic preparation measures and this 
way serve as additional data sources. Section 3 starts with a conceptual overview over 
the application of the different phases of the introduced process model during investi-
gations on automotive IT systems. Afterwards, the automotive application of selected 
IT-forensic process steps is illustrated by presenting results from practical test setups. 
For the hit-and-run scenario introduced above, this section shows, which findings can 
be gained from automotive IT systems (in this case especially from integrated naviga-
tion systems and CAN field buses) for route reconstruction purposes. Section 4 closes 
with a summary and an outlook. 

2 Basics 

This section provides relevant basics from the IT forensics domain as well as an over-
view on the spectrum of research on automotive IT security. 

2.1 Process Model for IT Forensics 

In IT forensics the usage of IT forensic models is an appropriate way to support me-
thodical procedures and completeness of all acquired and subsequently analysed data. 
In many cases such models follow a distinction of different phases – which means 
that correlating activities are grouped in a common phase. In the IT forensics domain 
a lot of different models currently exist. Exemplary references are the „Forensic Proc-
ess“ model [5] defining four phases as well as the „Investigative Process Model “ [6], 
dividing the process into 12 phases. Picking up the phase approach (i.e. the grouping 
of contextual associated techniques and procedures), this article is based on the proc-
ess model of the „BSI Leitfaden IT-Forensik“ [7], which is an IT forensics guideline 
issued by the German Federal Office for Information Security (“Bundesamt für Si-
cherheit in der Informationstechnik” / BSI). This model is further described in [8]. 
The rationale for that choice is the inclusion of a phase of Strategic Preparation (SP), 
which covers measures to be taken ahead of a suspected specific incident in a forensic 
fashion, including the inclusion in the comprehensive documentation and the chain of 
custody (see section  3.1). Measures from the Strategic Preparation (SP) include the 
logging discussed in section  2.2. Furthermore, this model defines additional classes of 
forensic methods and data types, which have already been reflected in the context of 
automotive IT systems in [9] and which could become relevant in future work. In this 
article, especially the model’s division into six phases is referenced (see Fig. 1), 
which is further described in section  3.1. 

An important basic requirement for IT forensic investigations is the consequent 
protection of data integrity and authenticity as well as a complete documentation by 
maintaining a chain of custody for digital evidence. Especially at the acquisition of 
person related data additionally data confidentiality is an important aspect to protect 
the privacy of the affected persons. Usually, these security aspects are respected by 
the inclusion of cryptographic mechanisms like the application of cryptographic hash 
algorithms, digital signatures and encryption. 
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Fig. 1. IT forensic process model modified from [7, 9] 

2.2 The Spectrum of Automotive IT Security and Data Sources for IT Forensics 

Motivated by the existing threats to automotive IT, which have been discussed at the 
beginning of this article, research activities about the application of IT security con-
cepts to automotive IT systems and their individual characteristics are increasingly 
focused onto by the academic and industrial community. Especially facing the re-
stricted maintenance and update capabilities of vehicular embedded systems, a suit-
able overall concept will be characterised by the fact, that – in addition to preventive 
measures (update verification, device authentication or tampering protection on de-
vice level) – it will also feature measures and processes of detection (recognition of 
indications for active attacks) and reaction (recovery to safe system states, initiation 
and support of incident investigations). 

As in the desktop IT domain, an IT forensic investigation can profit from measures 
already installed before an incident (strategic preparation). Two exemplary ap-
proaches, which could serve as additional data sources for IT forensics, are: 

• Permanent logging: Logs of selected information from the vehicle usage can be 
useful for multifaceted applications (e.g. automatic driver’s logbooks or flexible 
insurance models). If they are recorded in a forensically sound manner, e.g. by a 
forensic vehicle data recorder [10], such log files can securely be provided to the 
respective users. The application cases of such a system can include the logging of 
information, which might be useful for the investigation of future incidents (e.g. 
accidents or manipulations). 

• Event-triggered logging: Another type of data source could be an automotive Intru-
sion-Detection-System (IDS) [11], which monitors the operating state of automo-
tive IT systems for potential IT security violations. Indications for respective  
incidents can be detected either signature- or anomaly-based, followed by an ap-
propriate reaction [12]. While the spectrum of potential reactions can range up to 
active operations as a controlled stopping of the vehicle, such major interventions 
should only be taken in justified emergency cases based on a sufficient reliability 
of detection [13]. In case of less critical or only vaguely detected incidents, the IDS 
can also decide for the initiation or an intensification of data logging for a certain 
amount of time. Since also an IDS should ensure the confidentiality, integrity and 
authenticity of logged information, it would also be an option to connect it with a 
forensic vehicle data recorder (see above and [10]). 
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3 Concept and Illustration of Automotive Incident 
Investigations on the Example of a Route Reconstruction  

Following the process model introduced in section  2.1, the investigation of automotive 
incidents (e.g. in the chosen hit-and-run scenario) should also reflect the introduced 
phases. This section presents a compact, conceptual overview on exemplary steps. 

3.1 Overview on the Application of the Process Steps in the Automotive Context 

The Strategic Preparation (SP), which is conducted ahead of a suspected specific 
incident, includes (next to the acquisition of technical specifications, wiring schemes 
etc.) also the provision of components supporting a subsequent forensic investigation 
such as forensic vehicle data or IDS components into the IT system, i.e. the car. Their 
installation (together with the necessary rights management and the initialisation of 
the cryptography key management) could be executed by the vehicle owners them-
selves (e.g. car fleet managers) in the medium term. However, in the long term, this 
installation could also be executed by car manufacturers when the acceptance rate of 
such components grows and the benefits are realised by the potential buyers. With the 
start of investigative proceedings after a suspected incident the Operational Prepara-
tion (OP) is initiated, involving the fundamental decision making about the course of 
action, such as the kind, extent and the manner of the gathering of volatile and non-
volatile data or the set of appropriate tools. Potential incident relevant data containing 
traces is collected during the Data Gathering (DG), e.g. using diagnostic protocols 
(diagnostic trouble codes, DTC) or direct access to individual electronic control units 
(ECU), e.g. data that is contained in non-volatile portions such as flash memory. This 
data gathering needs to be executed with authenticity and integrity assuring mecha-
nisms in place (both organisational or technical means, e.g. cryptographic algo-
rithms). The subsequent Data Investigation (DI) involves the usage of mostly (semi-) 
automatic tools (e.g. to reconstruct deleted data content, extraction of timestamps 
etc.). In the Data Analysis (DA) those single results are put into context, involving 
their correlation according to time in the incident (e.g. timelining) and/or causal rela-
tionship (e.g. why-because-analysis). Each individual step of forensic proceedings 
starting from the Strategic Preparation (SP) is comprehensively recorded (e.g. input 
parameters, input data, used tool and settings, output data, environmental data) in the 
process accompanying Documentation (DO). This data and the derived information 
from all steps are distilled into the closing report during the final Documentation 
(DO). Some of the phases can be revisited during the forensic investigation, e.g. when 
results point to promising data sources not yet acquired. 

3.2 Practical Illustration of Selected Process Steps 

This section provides some insights to exemplary procedures, which could be per-
formed during the execution of the single process steps. On the example of the route 
reconstruction application scenario introduced above, this is exemplarily illustrated 
for the phases Strategic Preparation (SP), Data gathering (DG) and Data Analysis 
(DA) using practical investigations and tests performed on real vehicular IT systems. 
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The navigation systems used in these tests are integrated devices for vehicles of an 
international manufacturer from Germany. 

Strategic Preparation (SP) 
The installation of strategic provisions as a (potentially conditional) logging function 
for selected information could be useful for the manufacturer himself (e.g. to support 
quality control and management or the processing of warranty claims) as well as for 
the vehicle owners (e.g. for usage in fleet management). 

For scenarios as the one selected for this article, it would be useful to include geo-
graphic information into the set of proactively logged data comprising of CAN bus 
messages. To gather such information, components to place as strategic preparation 
can implement this in two different ways: 

• Geographic information is already accessible in the car (e.g. if GPS coordinates are 
placed on the internal bus system by an existing electronic control unit) 

• The respective information can (or shall) not be acquired from external devices and 
has to be determined by the logging device (e.g. installation of a GPS receiver in 
such a component) 

At the same time, this choice is a compromise between costs and the reliability of the 
logged data. 

  

Fig. 2. Route information (street names) on the instrument cluster (left) and CAN bus (right) 

On the example of a real, integrated navigation system and its electronic integra-
tion into vehicles of a major international vehicle manufacturer from Germany, this 
could be implemented as follows. During operation, the navigation system displays 
the current route information (direction, street names etc.) also on the instrument clus-
ter (see left part of Fig. 2). This is both for comfort and safety reasons, because this 
way it is visible directly in front of the driver, not distracting him from maintaining a 
frontal view towards the traffic. To accomplish this, respective information is trans-
mitted over the internal vehicle CAN bus in clear text (see log excerpt in the right part 
of Fig. 2). A logging component placed in the context of strategic preparation (e.g. a 
forensic vehicle data recorder or an automotive IDS) could securely log this informa-
tion (i.e. preserving confidentiality, integrity and authenticity of the log files) and 
enable access to it in case of future incident investigations. In the chosen hit-and-run-
scenario, this data could provide significant indices for the presence or absence of the 
driver at the accident scene. 
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Data Gathering (DG) 
Additionally to the data, which is collected before an incident (by measures installed 
as strategic preparation), further information can be acquired from other data sources 
after an incident – corresponding to the classical IT forensics approach. 

Looking at the selected target of route reconstruction, potential evidence can be 
searched for on the navigation system, for example. The common approach from 
desktop IT forensics to perform a complete low-level block-wise image (dump) of 
non-volatile mass storage devices is more difficult to perform on embedded devices 
(due to their heterogeneous architecture, components and restricted interfaces). How-
ever, it can be tried to access such systems using debug interfaces of a controller type 
identified beforehand (left part of Fig. 3). Subsequently (or, at a pinch, as simplified 
alternative) information can be acquired using graphical user interfaces (Fig. 3, right 
part), while information deleted by the user can usually not be reconstructed this way. 
In such a scenario organisational measures (e.g. four-eyes-principle) have to ensure 
the authenticity and integrity of the acquired information.  

The acquired data should also critically be reflected regarding their evidentiary 
value – since in many cases displayed information can have been manipulated by the 
users (e.g. the system time). 

 

Fig. 3. Data Gathering via debug interfaces (left side) and/or GUIs (right side) 

Data Analysis (DA) 
Regarding the Data Analysis (DA) phase, this section covers the analysis of (com-
pletely or selective recorded) bus communication, which can be acquired by measures 
of strategic preparation (e.g. a forensic vehicle data recorder or logging functions of 
an automotive IDS component). 

Looking at the route reconstruction scenario, street names or GPS coordinates 
could be available in the log files (as illustrated above for the strategic preparation), 
which would make it a trivial case. However, even assuming that no such explicit 
information is available in the log files (maybe because the navigation system has  
not been used at the time in question) further possibilities remain for a subsequent 
route reconstruction. The following two subsections introduce a manual and a  
semi-automated approach. 
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Manual reconstruction based on communication logs 
During a test ride in the German city of Magdeburg the CAN bus communication 
from the infotainment subnetwork was logged and, subsequently, evaluated. 

One rudimentary approach for manual route reconstruction only requires the identi-
fication and evaluation of the speed signal. Since the semantic structure of the bus 
communication is usually kept secret by the manufacturers, the IT forensic personnel 
either has to perform their own analyses or can revert to results of respective analyses 
performed and published by internet communities [14]. During the manual analysis of 
the log file recorded in the performed test ride, an integer signal could be identified as 
a potential candidate for the speed signal – a continuous value between 0 and 8206. 
Including the known fact of an urban trip, a round scale factor of 150 can be assumed, 
which would correspond to a maximum speed of 54.7 km/h (In Germany, the standard 
urban speed limit is 50 km/h). The reconstructed velocity plot is illustrated in the 
upper part of Fig. 4. 

Illustration based on cartographic
material of the OpenStreetMap project

(www.openstreetmap.org)
© OpenStreetMap contributors, CC BY-

SA (www.creativecommons.org)

281m
399m

719m

 

Fig. 4. Manual route reconstruction based on the speed curve 

If a potential position of the vehicle (especially starting or destination location) is 
known or can be assumed, iterative plausibility checks enable a manual route recon-
struction based on the speed curve (and the covered distance, which can be deter-
mined via its integral). Fig. 4 illustrates the result of the manual route reconstruction. 
This practical evaluation on the logs from the test trip was done based on a known 
starting position. 

Semi-automated route reconstruction supported by existing navigation devices 
Comparable strategies for tracking vehicle positions are already implemented in some 
integrated navigation systems. The system data evaluated by respective algorithms usu-
ally include the vehicle’s speed and, partly, steering angles or gyrometer values. With 
reference to the local map material, these strategies are used to correct the vehicle’s 
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position under different conditions (e.g. in tunnels or at technical GPS reception prob-
lems) as well as for the reduction of power consumption (by reducing the frequency of 
GPS calculations). Using this “temporary solution”, some systems are even able to keep 
up a flawless operation for several hundreds of kilometres. This functionality already 
present in several devices can also be utilised by IT forensic personnel for route recon-
struction purposes. To accomplish this, three main steps are required: 

1. The device has to be started offline, i.e. without GPS reception and bus connection to 
a real car. In the lab this is usually easy to achieve by identifying and connecting the 
pins for power supply and ignition signal. It could also be done without dismounting 
it from a car by temporarily disconnecting only the vehicle bus and the GPS antenna. 

2. The device has to be configured for the suspected starting position. Some devices 
have a dedicated system menu dialogue for this purpose, as shown in Fig. 5 (by 
specifying a nearby intersection, its distance and the current orientation). 

3. To perform the actual route reconstruction, the device has to be provided with suita-
ble signals (as listed above) to simulate a trip done without working GPS reception. 

 

Fig. 5. Semi-automated route reconstruction – step 2 (configuring the suspected starting position) 

In our test, step 3 could not be completed for the device from Fig. 5 – because this 
older device did not pick the speed information from the CAN bus but expects it as an 
analogue signal. While a D/A conversion would also be feasible with suitable hard-
ware, digital feeding of the speed signal could successfully be implemented in a setup 
with a newer device shown in Fig. 6. This device uses the speed information present 
on the CAN bus and can be provided with respective signals (e.g. directly taken from 
the acquired bus communication) via a suitable bus interface. In general, a navigation 
system suitable for such an analysis does not necessarily have to be compatible to the 
bus protocol of the source vehicle. If this is not the case, it can be attempted to con-
vert the required input values to the expected data format, temporal resolution etc. 

Some snapshots from the route reconstruction (step 3) are shown in Fig. 6. As an 
issue of the second device we encountered that it does not evaluate the steering angle 
present on the infotainment CAN bus but determines the current angle with an inte-
grated gyrometer sensor. The provision of orientation information from the outside is 
a bit trickier in this case. Without opening the device (e.g. to intercept the sensor con-
nection) this could be performed by an automated rotation of the device according to 
the available log information (in this case: steering angle / velocity). In our setup we 
simply simulated this by manually turning the device. 
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Fig. 6. Semi-automated route reconstruction – step 3: test setup and test in progress 

When evaluating of the results of such a semi-automated route reconstruction, differ-
ent plausibility checks should be performed to assess the likelihood, that the determined 
route matches the original one. Some exemplary examples for suitable criteria are: 

• Is the route a realistic? This is probable, if it belongs either to the fastest or to the 
shortest connections between starting and destination address. It is less probable, if 
it contains closed circles. 

• Are the speed/location mappings realistic? During the reconstruction, the “virtual” 
vehicle should slow down on sharp curves and stop on other points with a certain 
probability (e.g. STOP signs, traffic lights). In single cases it may also slow down 
or stop on straight road segments (e.g. due to wait for passengers or other cars) but 
a significantly increased amount of such events would make the assumption of the 
route (or, respectively, the chosen starting point) more improbable. 

4 Summary and Outlook 

Alongside a process model for IT forensics, this article illustrated, how IT forensic 
incident investigations could also be applied to automotive IT systems in a suitable 
and more structured way – also for investigation purposes beyond route reconstruc-
tion. Due to the increasing complexity, feature scope and connectivity, this could be 
increasingly essential for future automotive systems to increase their security and to 
reduce safety threats, which can occur as intended or unintended implications of elec-
tronic manipulations or IT-based attacks. 

In the selected hit-and-run-scenario, the resulting findings would probably be suit-
able to support an exculpation of the determined vehicle owner. Beside such general 
application scenarios, automotive IT forensics bears a lot of potential for further, 
more vehicle-specific cases. Especially IT-based attacks targeted on the car itself 
might become relevant investigation scenarios in future. Electronic tampering of em-
bedded devices or injection of forged messages into in-vehicle networks already are a 
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daily occurrence. Recent studies revealed that still the owners/drivers themselves are 
the most frequent protagonists of such incidents trying to “optimise” their car. But 
also the relevance of third parties as initiating source of IT-based attacks on automo-
tive systems might increase in future. Since safety and security threats can arise as 
(direct or indirect) implications in both cases, IT forensic investigations can help in 
such cases to identify and fix the exploited vulnerabilities (e.g. by providing software 
updates for current systems or including design fixes for future ones). This makes IT 
forensics an essential part in the life cycle chain to improve the dependability and 
trustworthiness of automotive IT systems. 

Currently, the concept has still some practical boundaries, since the achievement of 
respective findings from current vehicles is typically a difficult task due several multi-
faceted restrictions. The amount of vehicular information accessible via – still mostly 
proprietary / manufacturer-dependent – diagnostic protocols is usually very limited. 
On the other hand, extraction and analyses of complete memory dumps (e.g. from 
flash memory) out of heterogeneous embedded devices of different manufacturers 
currently demand superior efforts. The alternate, comparably comfortable option of 
accessing potentially incident-relevant information via existing graphical user inter-
faces (as the GUI of the navigation system) is only possible for a small fraction of 
automotive systems and only has a restricted reliability (e.g. due to editing/deletion 
features for the users). 

Future automotive incident investigations could substantially be supported by the 
broad introduction of logging mechanisms as vehicle data recorders, which is being 
demanded by many accident researchers for several years. While these have also been 
identified in this article as a basically suitable measure of strategic preparation, the 
design of such systems should place a central focus on their IT security requirements. 
For the IT-forensic chain of custody it is necessary to ensure integrity and authenticity 
of every log entry, to be able to prove its correctness at later times. Facing the increas-
ing amount of person related (or relatable) information collected and processed by 
current vehicles, especially the confidentiality of log data is an essential, additional 
security aspect to protect the driver’s privacy. 
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Abstract. Some recent incidents have shown that possibly the vulnerability of 
IT systems in railway automation has been underestimated so far. Fortunately 
so far almost only denial of service attacks have been successful, but due to 
several trends, such as the use of commercial IT and communication systems or 
privatization, the threat potential could increase in the near future. However, up 
to now, no harmonized IT security requirements for railway automation exist. 
This paper defines a reference communication architecture which aims to sepa-
rate IT security and safety requirements as well as certification processes as far 
as possible, and discusses the threats and IT security objectives including typi-
cal assumptions in the railway domain. Finally examples of IT security re-
quirements are stated and discussed based on the approach advocated in the 
Common Criteria, in the form of a protection profile. 

Keywords: Railway, IT Security, Safety, Threats, IT Security Requirements, 
Protection Profile. 

1 Introduction 

Recently, reports on IT security incidents related to railways have increased as well as 
public awareness. For example, it was reported that on December 1, 2011, “hackers, 
possibly from abroad, executed an attack on a Northwest rail company's computers 
that disrupted railway signals for two days” [1]. Although the details of the attack and 
also its consequences remain unclear, this episode clearly shows the threats to which 
railways are exposed when they rely on modern commercial-off-the-shelf (COTS) 
communication and computing technology. However, in most cases, the attacks are 
denial of service attacks leading to service interruptions, but so far not to safety-
critical incidents. But also other services, such as satellite positioning systems, have 
been shown to be susceptible to IT security attacks, leading to a recommendation that 
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GNSS services should not be used as standalone positioning services for safety-
related applications [4]. 

What distinguishes railway systems from many other systems is their inherent dis-
tributed and networked nature with tens of thousands of kilometer track length for 
large operators. Thus, it is not economical to completely protect against physical 
access to this infrastructure and, as a consequence, railways are very vulnerable to 
physical denial of service attacks leading to service interruptions. 

Another distinguishing feature of railways from other systems is the long lifespan 
of their systems and components. Current contracts usually demand support for over 
25 years and history has shown that many systems, e.g. mechanical or relay interlock-
ings, last much longer. IT security analyses have to take into account such long lifes-
pans. Nevertheless, it should also be noted that at least some of the technical problems 
are not railway-specific, but are shared by other sectors such as Air Traffic Manage-
ment [5]. 

Publications and presentations related to IT security in the railway domain are in-
creasing. Some are particularly targeted at the use of public networks such as Ethernet 
or GSM for railway purposes [2], while others, at least rhetorically, pose the question 
“Can trains be hacked?”[3]. As mentioned above, some publications give detailed 
security-related recommendations [4]. While in railway automation harmonized safety 
standards were elaborated more than a decade ago, up to now no harmonized IT secu-
rity requirements for railway automation exist.  

This paper starts with a discussion of the normative background, then defines a ref-
erence communication architecture which aims to separate IT security and safety 
requirements as well as certification processes as far as possible, and discusses the 
threats and IT security objectives including typical assumptions in the railway  
domain. Finally, examples of IT security requirements are stated and discussed based 
on the approach advocated in the Common Criteria, in the form of a protection  
profile. 

2 Normative Background 

In railway automation, there exists an established standard for safety-related commu-
nication, EN 50159 [6]. The first version of the standard was elaborated in 2001. It 
has proved quite successful and is also used in other application areas, e.g. industry 
automation. This standard defines threats and countermeasures to ensure safe com-
munication in railway systems. So, at an early stage, the standard established methods 
to build a safe channel (in security called tunnel) through an unsafe environment. 
However, the threats considered in EN 50159 arise from technical sources or the envi-
ronment rather than from human beings. The methods described in the standard are 
partially able to protect the railway system also from intentional attacks, but not com-
pletely. Until now, additional organizational and technical measures have been im-
plemented in railway systems, such as separated networks, etc., to achieve a sufficient 
level of protection.  
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The purely safety aspects of electronic hardware are covered by EN 50129 [7]. 
However, security issues are taken into account by EN 50129 only as far as they af-
fect safety issues, but, for example, denial of service attacks often do not fall into this 
category. Questions such as intrusion protection are only covered by one requirement 
in Table E.10 (exist protection against sabotage). However, EN 50129 provides a 
structure for a safety case which explicitly includes a subsection on protection against 
unauthorized access (both physical and informational). Other security objectives 
could also be described in that structure. 

On the other hand, industrial standards on information security exist. Here we can 
specify the following standards: 

• ISO/IEC 15408 [8] provides evaluation criteria for IT security, the so-called 
Common Criteria [13 to15]. This standard is solely centered on information 
systems and has, of course, no direct relation to safety systems. 

• ISA 99 [9] is a set of 12 standards currently elaborated by the Industrial 
Automation and Control System Security Committee of the International 
Society for Automation (ISA). This standard is not railway-specific and focuses 
on industrial control systems. It is dedicated to different hierarchical levels, 
starting from concepts and going down to components of control systems. 

A more comprehensive overview on existing information security standards is pre-
sented in [10]. From these standards, it can be learnt, that for information security, not 
only technical aspects of concrete technical systems need to be taken into account, but 
also circumstances, organization, humans, etc. Certainly, not all elements mentioned 
in the general information security standards can and need to be used for a railway 
system. 

How is the gap between information security standards for general systems and rail-
ways to be bridged? The bridge is provided by the European Commission Regulation on 
common safety methods No. 352/2009 [11]. This Commission Regulation mentions 
three different methods to demonstrate that a railway system is sufficiently safe: 

a) by following existing rules and standards (application of codes of prac-
tice), 

b) similarity analysis, i.e. showing that the given (railway) system is equiv-
alent to an existing and used one, 

c) explicit risk analysis, where risk is assessed explicitly and shown to be 
acceptable. 

We assume that, from the process point of view, security can be treated just like safe-
ty, meaning that threats would be treated as particular hazards. Using the approach 
under a), Common Criteria [8] or ISA 99 [9] may be used in railway systems, but a 
particular tailoring would have to be performed due to different safety requirements 
and application conditions. By this approach, a code of practice that is approved in 
other areas of technology and provides a sufficient level of security, can be adapted to 
railways. This ensures a sufficient level of safety. 

However, application of the general standards [8] or [9] requires tailoring them to 
the specific needs of a railway system. This is necessary to cover the specific threats 
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associated with railway systems and possible accidents and to take into account spe-
cific other risk-reducing measures already present in railway systems, such as the use 
of specifically trained personnel. 

As a basis of our work, the Common Criteria [8] have been selected, as ISA99 was 
not finalized in spring 2011, when this work started. The use of Common Criteria 
may enable the reuse of systems for railway applications that have already been as-
sessed and certified for other areas of application. This is especially relevant as an 
increasing number of commercial-off-the-shelf (COTS) products are being used and 
certified against the Common Criteria. With this approach, a normative base has been  
developed by the German standardization committee DKE [17], based on the Com-
mon Criteria and a specific protection profile tailored for railways, considering rail-
way-specific threats and scenarios and yielding a set of IT security requirements. 
Assessment and certification of such a system can be carried out by independent ex-
pert organizations. Safety approval in Germany could then be achieved via the go-
vernmental organizations Federal German Railways Office (Eisenbahn-Bundesamt, 
EBA) for railway aspects and Federal German Office for Security in Information 
Technology (Bundesamt für Sicherheit in der Informationstechnik, BSI) for IT securi-
ty aspects. 

3 Reference Architecture  

The selected reference architecture refers to the proposed architecture B0 in 
CENELEC standard EN 50159, which aims at the separation of safety and security 
concerns. This concept can be illustrated by the onion skin model, where a security 
shell is placed between the Railway Signaling Technology (RST) application and 
network layers. It is similar to a layer-of-protection approach. This security shell is 
the Security Target of Evaluation (TOE) according to the Common Criteria (see 
Figure 1). 

RST 
(Safety)

TOE (Security)

Network

 

Fig. 1. The onion skin model 

Based on this onion skin model a reference model for communication (see Figure 
2) has been chosen, in which the RST applications are in a zone A or B. It is assumed 
that, if communication between the zones were through a simple wire (as a model for 
a simple and proprietary communication means), then all safety requirements of EN 
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50159 would be fulfilled. Communication between the two zones will be through a 
tunnel or conduit in an open network. This is similar to the zone and conduit model in 
ISA 99 [9], so that in the future this profile may also be used jointly with ISA99. 

In order to implement the conduit, additional security components have to be 
provided which are the physical implementations of the TOE. In Figure 2 the user is a 
generic representative of security management, which could have many different 
physical implementations, ranging from manual on-site to automated centralized 
management. 

Zone A Zone B

RST application RST applicationConduit

Network

User

Management

TOE TOE

 

Fig. 2. Zone and conduit reference architecture 

As an example, implementations of this reference architecture, Deutsche Bahn AG 
have long-standing operational experience with security gateway solutions from 
Siemens [15], where the zones are the centralized traffic control centers and the local 
interlockings. As a future general solution for a secure communication infrastructure 
for all safety-critical applications, a pilot project designated KISA [15] is conducted 
by Deutsche Bahn AG. The protection profile of the TOE provides the basis for 
evaluating a product solution and the necessary safety approval for use. 

4 Assumptions, Threats and Security Functions 

4.1 General Process 

The typical process as defined in the Common Criteria [12 to14] to derive functional 
IT security requirements is shown in Figure 3. In a first step, assumptions, threats and 
information about the organizational security policy have to be derived. This leads to 
a list of resulting security objectives which are the basis for setting security require-
ments. Note that the process contains a number of plausibility checks ensuring the 
coverage of threats and security objectives. The process is very similar to the process 
for the derivation of safety requirements in the CENELEC standards [7]. 
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Fig. 3. Derivation of security requirements based on Common Criteria  

RST in itself is safe but not necessarily secure. Often, there is a misconception in 
the railway world that by having safe signaling technology, security issues do not 
have to be taken care of. In this section, we will discuss the security threats which aim 
directly at signaling applications.   

4.2 Threats 

There is a common notion in the Common Criteria that threats are directed towards 
the three major IT security aspects: confidentiality, integrity and availability. One 
approach might be to analyze threats on this very high level. However, in our case 
experience has shown that only availability can be used directly as a threat; the other 
aspects need to be more detailed to derive security objectives. 

In railway signaling, the starting point is EN 50129 where the safety case explicitly 
demands addressing the aspect of unauthorized access (physical and/or non-physical).  
In general, threats can be described on a higher system level.   
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The threats can be categorized into threats which are to be taken care of by the 
TOE and threats which have to be dealt with by the safety system or the environment. 
Some threats regarding communication issues can be taken from EN 50159. This 
standard explores in detail security issues inherent to communication networks. 
Threats taken from this standard are often defined on a lower level and are not dis-
cussed in this paper. 

The threats have been listed using the following structure: 

t.<attack>{.<initiator>.<further properties>} 

t stands for threat and initiator for the initiator of the attack, typically a user, an at-
tacker or a technical problem, such as a software error. As the security profile is ge-
neric, in most cases there has been no further detailing.  

Is it is not prudent to list all threats in this paper; we will only list threats on the 
highest level. The lower levels give more properties e. g. regarding the particular 
types and means of an attack. We will name the initiators taken into account. The 
following threats have been used for the security profile. They deal with threats that 
have to be controlled by the IT system:  

• t.availability: Authorized users cannot obtain access to their data and re-
sources.  

• t.entry: Persons who should not have access to the system may enter the sys-
tem. The initiator of such a threat could be an attacker who masks him-
self/herself as an authorized user. 

• t.access: Authorized users gain access to resources which they are not en-
titled to according to the IT security policy. The initiator is an authorized us-
er. The system is manipulated by negligence or operating errors.  

• t.error: An error in part of the system leads to vulnerability in the IT security 
policy. An error can also be the result of a failure. The initiator of such a 
threat can be an attacker. 

• t.crash: After a crash, the IT system is no longer able to correctly apply the 
IT security policy. 

• t.repudiation: Incidents which are IT security-related are not documented or 
can not be attributed to an authorized user. 

• t.manipulation: An IT security-related measure is changed or bypassed. This 
might be initiated by an attacker. 

• t.diagnosis: IT security-related incidents are not diagnosed. The initiator of 
such a threat can be hardware failures, software errors and the action taken 
by an attacker. 

The following threats have to be controlled by the environment of the IT security 
system: 

• t.installation: The IT system is installed in an insecure mode. 
• t.operation: Due to errors in administration or operation, an IT security poli-

cy violation occurs.  
• t.roles: Due to incorrect definition or allocation of roles and/or rights, the IT 

security policy is disabled. 
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• t.violence: Due to external violence, IT security functions are manipulated or 
deactivated. 

It became quite obvious during the process of threat derivation that a detailed know-
ledge of the railway system and railway operation is necessary because otherwise no 
definite decision about what threats are relevant was possible.  

4.3 Assumptions 

The identification of threats depends on assumptions. As threats usually arise at the 
system boundary, the assumptions are related to the boundary and the environment. 
Some important assumptions are: 

• a.entry: At least some parts of the system are in areas which are accessible 
for authorized persons only. 

• a.protection: All system parts of the IT security system are protected directly 
against unauthorized modifications or there are (indirect) organizational 
measures which allow effective protection. This includes protection against 
elementary events. 

• a.user: Users are correctly and sufficiently trained. They are considered 
trustworthy. This does not mean that users are expected to work error-free 
and their interactions with the system are logged. 

4.4 Objectives 

In order to protect against threats, security objectives are defined. For the sake of 
brevity, we can demonstrate this process only for one example in Table 1: 

Table 1. Coverage of threats by security objectives (example) 

Threat 
Description of threat Related 

security objectives 
Comment 

t.repudiation
Incidents which are IT 
security-related are not 
documented or cannot 

be attributed to an 
authorized user. 

o. traceability, 
o.function, 

o.administration, 
o.storage, 

o.environment 

All information that is 
necessary to hold a user 

accountable for his or her 
actions is to be saved. 

 
As we have explained above, the threat t.repudiation summarizes all incidents 

where security-related incidents are not documented or cannot be attributed to an 
authorized user. To make sure this threat is counteracted, several security objectives 
have been defined: 

• o.traceability: The TOE allows the indisputable traceability of all IT security-
related actions. This information is stored securely. Access to this data is on-
ly possible for authorized users with appropriate rights 

• o.function: The TOE offers all necessary functions for administration to the 
authorized user with appropriate rights.  
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• o.administration: The TOE will be administered by personnel who are 
trained accordingly. This personnel are trustworthy for this task. Administra-
tion makes sure that no connections to non-trustworthy connections will jeo-
pardize security.  

• o.storage: In the environment of the TOE, there is storage space for the data 
and especially the backups according to the relevant laws.  

• o.environment: The TOE ensures that attackers cannot bypass the security 
mechanism, especially not using manipulative or erroneous software. 

In general, it is possible to show that the security objectives cover the threats com-
pletely, but the argument for each threat relies on expert opinion and does not give a 
formal proof. 

5 IT Security Requirements Based on Common Criteria 

Those portions of a TOE that must be relied on for correct enforcement of the func-
tional security requirements are collectively referred to as the TOE security functio-
nality (TSF). The TSF consists of all hardware, software, and firmware of a TOE that 
is either directly or indirectly relied upon for security enforcement.  

Table 2. Overview of functional classes and selected IT security functions 

Class Description Selected IT security functions 
FAU Security Audit FAU_GEN.1, FAU_SAA.1 
FCO Communication FCO_NRO.1, FCO_NRR.1 
FCS Cryptographic 

Support 
FCS_CKM.1, FCS_CKM.2, FCS_CKM.3, 
FCS_CKM.4, FCS_COP.1 

FDP User Data Pro-
tection 

FDP_ACC.1, FDP_ACF.1, FDP_DAU.1, 
FDP_DAU.2, FDP_ITT.1, FDP_ITT.3, FDP_ROL.1, 
FDP_SDI.2 

FIA Identification and 
Authentication 

FIA_AFL.1, FIA_ATD.1, FIA_SOS.1, FIA_UAU.1, 
FIA_UAU.2, FIA_UAU.3, FIA_UAU.4, FIA_UAU.5, 
FIA_UAU.6, FIA_UAU.7, FIA_UID.1, FIA_UID.2, 
FIA_USB.1 

FMT Security Man-
agement 

FMT_MOF.1, FMT_MSA.1, FMT_MSA.2, 
FMT_MSA.3, FMT_MTD.1, FMT_MTD.2, 
FMT_REV.1, FMT_SAE.1, FMT_SMF.1, 
FMT_SMR.1, FMT_SMR.2, FMT_SMR.3 

FPR Privacy - 
FPT Protection of the 

TSF 
FPT_FLS.1, FPT_ITT.1, FPT_RCV.1, FPT_STM.1, 
FPT_TST.1, FPT_ITA.1, FPT_ITC.1, FPT_ITI.1 

FRU Ressource Utili-
sation 

FRU_RSA.2 

FTA TOE Access FTA_LSA.1, FTA_MCS.1, FTA_SSL.1, FTA_SSL.2, 
FTA_SSL.3, FTA_SSL.4, FTA_TAH.1, FTA_TSE.1 

FTP Trusted 
Paths/Channels 

FTP_ITC.1, FTP_TRP.1 
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The Common Criteria, Part 2 [13], define an extensive list of security functions and 
requirements in a formalized language. Thus, the next step is to try to satisfy the securi-
ty objective by a subset of the security functions. As a countercheck, a walkthrough of 
all functions was performed. Table 2 shows an overview of the functional classes and 
the selected IT security functions as specified in the Common Criteria part 2. 

For some classes, it is immediately clear that their functionality is not required, e. 
g. privacy, which would in fact contradict some of the objectives.  

We give a short informal overview of the classes and the selected security re-
quirements. Class FAU sets basic requirements related to logging and rule-based 
evaluation of security-related events. Classes FCO and FTP set requirements for 
communication integrity. 

Class FCS sets requirements for the use and management of cryptographic keys 
over the complete lifecycle. The requirements demand the use of asymmetric key 
management according to standardized procedures with a minimum key length, but 
do not require a particular algorithm. 

Class FDP is concerned with the protection and integrity of user data, while class 
FIA is concerned with user identification and authentication. As an example, 
FIA_UAU.1 deals with requirements on the timing of authentication. Generically, it 
states “The TSF shall allow [assignment: list of TSF mediated actions] on behalf of the 
user to be performed before the user is authenticated.” It was decided that no security-
related user actions may be performed before user authentication. Other requirements 
limit the number of failed authentication attempts or time-out for inactive user sessions. 

Class FMT specifies a large number of generic configuration and management re-
quirements, but leaves freedom to implement particular role schemes.  

Classes FPT, FRU and FTA deal with protection of the TOE and the TSF them-
selves. The requirements covered include self-testing and recovery as well as preser-
vation of a secure state which is very similar to requirements from EN 50129: 
“FPT_FLS.1: The TSF shall preserve a secure state when the following types of fail-
ures occur: [assignment: list of types of failures in the TSF].” It was decided to apply 
this generic requirement rigorously to any failure of the TSF. 

Finally, as a plausibility check, coverage of the security objectives by the security 
requirements is evaluated (see Table 3 for an example). 

Table 3. Coverage of security objectives by security requirements (example) 

Security 
objective 

Security re-
quirements 

Explanation 

o.error  
 

FIA_AFL.1 
FIA_SOS.1 
FMT_MSA.2 
FMT_SAE.1 
FTA_SSL.1 
FTP_ITC.1 
FTP_TRP.1 
EAL4 

FIA_AFL.1 addresses the handling of authentication 
failures. FIA_SOS.1 makes sure that no weak pass-
words, etc., are used. FMT_MSA.2 inhibits insecure 
configuration. FMT_SAE.1 reduces the effect of com-
promised secrets. FTA_SSL.1 locks a session in the 
absence of a user. FPT_ITC.1 and FTP_TRP.1 protect 
data during communication. 
The evaluation assurance level (EAL) 4 ensures that 
implementation of the functions is sufficiently trust-
worthy. 
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A very important point is the selection of the evaluation assurance level according 
to the Common Criteria, which is a measure for how trustworthy implementation of 
the TSF is. In the particular railway environment, EAL 4 is proposed, because a suffi-
ciently high level of security has to be guaranteed but, on the other hand, economic 
aspects must also be taken into account. A high EAL may even be counterproductive 
and, considering the railway environment, may also not be necessary, but on the other 
hand, a low EAL may not be appropriate for safety-related applications. Currently, 
EAL 4 is selected, which means that the TSF must be methodologically designed, 
tested and reviewed. According to the Common Criteria [14], “EAL 4 permits a de-
veloper to gain maximum assurance from positive security engineering based on good 
commercial development practices …. EAL4 is the highest level at which it is likely 
to be economically feasible to retrofit to an existing product line.” 

6 Summary 

This paper has defined a reference communication architecture, which aims to sepa-
rate IT security and safety requirements as far as possible, and discussed the threats 
and IT security objectives including typical assumptions in the railway domain. Ex-
amples of IT security requirements have been stated and discussed based on the ap-
proach advocated in the Common Criteria, in the form of a protection profile [17]. 
The goal is to use COTS security components which can be certified according to the 
Common Criteria, also in the railway signaling domain, instead of creating a new 
certification framework. The work presented is still ongoing (the public consultation 
ends September 2012), in particular with respect to approval of the protection profile 
and practical experience. 
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Abstract. In this paper, we present an approach to secure fieldbus com-
munication of automation systems used in security-critical applications.
We propose a protocol that applies a scheme combining a stream ci-
pher and a Message Authentication Code (MAC) to ensure integrity,
confidentiality, authenticity, and freshness of transmitted telegrams over
a fieldbus while maintaining real-time constraints. The security discus-
sion shows that the protocol is secure against an adversary attacking
the fieldbus communication. A first proof-of-concept implementation for
the EtherCAT fieldbus protocol is implemented to perform some initial
runtime analyses.

Keywords: fieldbus, security, protocol.

1 Introduction

Industrial automation systems use fieldbus communication for real-time dis-
tributed control of systems such as water supply, energy distribution, or man-
ufacturing. Security for fieldbus communication was not considered to be an
important issue, since these systems were deployed typically in closed environ-
ments. However, since fieldbus installations become more and more automated
and cross-linked, security becomes more and more important. For example, the
cables of the fieldbus-connections in a wind park used to connect the wind tur-
bines with a central control system can be accessed by an adversary since it is
not possible to protect the whole area. If wireless fieldbuses [3] are used, attacks
such as eavesdropping on the communication are even much easier for an adver-
sary. Thus, security mechanisms have to be applied. To enable the compliance
with real-time requirements as well as to provide transparent security to higher
layers, security mechanisms have to be integrated into the fieldbus layer.

These security mechanisms have to protect the confidentiality of the fieldbus
communication to prevent an adversary from eavesdropping to get sensitive in-
formation such as the temperature profile of a beer brewing process, which may

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012, LNCS 7612, pp. 149–160, 2012.
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be confidential intellectual property. Furthermore, the authenticity of the com-
munication has to be ensured, i.e., the origin of data has to be genuine. This
prevents an adversary from injecting false data such as false temperature settings
in order to destroy the mash. To detect any unauthorized modification of data,
mechanisms for integrity protection are required. The detection of replayed old
data requires mechanisms to ensure the freshness of data. Finally, the availability
of the communication should be ensured, i.e., all authorized entities have access
to services or information as intended. However, this is hard to achieve since an
adversary may always perform Denial-of-Service (DoS) attacks, e.g., by simply
cutting the wire or by performing a jamming attack if wireless fieldbuses are
used. Thus, security mechanisms should at least not influence the availability of
the fieldbus communication during operation.

In this paper, we present a protocol to ensure the security goals integrity, con-
fidentiality, authenticity, and freshness of telegrams transmitted over a fieldbus.
The protocol is based on a scheme combining a stream cipher (SC) and a Mes-
sage Authentication Code (MAC). It is designed in such a way that the used SC
and MAC primitives can be easily substituted, e.g., if they become insecure or
more efficient primitives have been developed. The protocol is able to maintain
real-time requirements when integrated into a fieldbus as long as no attacks such
as DoS are performed, i.e., it guarantees secure telegram transmission within de-
fined boundaries. We discuss the security of our protocol and how it meets the
security goals. In addition, we present a first proof-of-concept implementation
for the EtherCAT fieldbus and some initial results of our runtime analyses.

2 Related Work

Since most fieldbus systems have been used in closed systems, only a few ap-
proaches are designed to provide security, e.g., [12] which is based on IEEE
802.15.4 [11]. Here, Block Ciphers (BCs) in CCM-mode are used, which are
padded to full block length. This is a major disadvantage when many short tele-
grams are transmitted like in typical fieldbus communication. Adding security
mechanisms such as IPsec for Internet Protocol (IP)-based fieldbuses is discussed
in [18]. Introducing security mechanisms at higher levels is also discussed in [19].
Secure industrial communication using Transmission Control Protocol/Internet
Protocol (TCP/IP) is addressed in [4], where the necessary reaction times of
automation fieldbuses cannot be reached.

In the area of Building Automation Control (BAC), an approach for secure field-
bus communication is presented in [16] using Data Encryption Standard (DES)
and Hashed MAC (HMAC) with SHA-1 on smartcards. In [7], the security of wire-
less BAC networks is discussed. BAC networks have smaller bandwidth and the
presented solutions are not fast enough for general fieldbuses in automation, where
the data rate is much higher and the real-time constraints tighter than in
BAC applications.

In [17], a multicast authentication protocol for fieldbuses based on MACs is
proposed. The focus is on automotive buses such as CAN. Mechanisms to provide
confidentiality are not discussed.
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The bus systems used in the automotive domain such as CAN, LIN or Flexray
do not provide any security mechanisms [22,23]. In [22], an approach to secure
automotive bus communication is proposed, where the communication always
involves a central gateway as intermediary.

Some popular schemes that combine authentication and encryption on basis
of block-ciphers are OCB [15] or EAX [2].

We decided to use stream ciphers, since they can be implemented in hardware
easily to reach high performance and do not require padding of data. Stream
cipher schemes, providing combination of encryption and authentication, are
VMPC-MAC [25], Helix [6] and Phelix [20]. They create a Message Authenti-
cation Code (MAC) that depends on the specific design of the stream-cipher.
However, Phelix and Helix are considered insecure [24]. Another interesting ap-
proach is ASC [21]. However, the receiver has to decrypt first and then check
the integrity, which leads to more effort, than our approach, if telegrams are
corrupted.

To the best of our knowledge, there exists no efficient security protocol which
can be used in fieldbuses with high bandwidth and hard real-time requirements
for telegrams with various length. Previously proposed approaches cannot be
transferred without adaption, due to restrictions of the performance require-
ments. Thus, we developed a new approach which is based only on universal
properties of stream ciphers enabling the use of well evaluated stream ciphers as
well as an easy way to exchange them in case they become insecure.

3 Protocol Description

In this section, we describe our proposed protocol in detail. We first discuss the
requirements we address. Then we describe our scheme to combine a SC with a
MAC. Finally, we describe the protocol steps in detail.

3.1 Addressed Requirements

The protocol is designed to meet real-time requirements which are necessary
in fieldbus communication. Real-time in this context means the guarantee of
telegram transmission shorter than a fixed delay. This is commonly reached
by cyclic communication, which also allows detection of lost telegrams. The
worst-case execution time of all security algorithms, which is relevant for the
fieldbus performance, has to be limited to a fixed upper bound. Our proposed
protocol meets this requirement in the regular operation phase, which is usable
as long as all telegrams are correctly transmitted, by using only algorithms with
deterministic runtime. The tasks of the (not real-time capable) initial phase
need to be accomplished once, to distribute trust-anchors and keys, afterwards
the key-exchange has to be carried out periodically in maintenance intervals
where real-time constraints do not apply. Hybrid techniques similar to this one
are widely in use.
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Furthermore, our protocol ensures authenticity, integrity, freshness, and con-
fidentiality of the fieldbus communication assuming an active attacker attack-
ing the fieldbus communication. Availability is not considered, since protection
against an active attacker is usually not possible.

An important design principle of our protocol is the exchangeability of the
used Stream Cipher (SC) and Message Authentication Code (MAC) primitives
and adaptability of security levels. If an underlying primitive becomes insecure
during the long life-time of automation systems, easy substitution is required to
fix those systems.

3.2 Generic SC and MAC Scheme

The generic SC and MAC scheme (cf. Figure 1) uses two distinct parts of the
output of only one SC. One part is used for encryption, the other as input of
a MAC scheme. We assume that the underlying MAC construction and the SC
are secure and have deterministic runtime.

The inputs of the scheme are

– payloads pl(0..n), all of the same fixed length (|pl(i)| = |pl(j)| ∀ 0 ≤ i, j ≤ n),
– a key k and
– an initialization vector iv.

The outputs of the scheme are

– ciphertexts c(0..n), and
– integrity protecting tags mac(0..n)

where each (c(i), mac(i)) pair corresponds to one payload (pl(i)).
Whenever the SC outputs a cipher-stream of the length |otpenc| + |otpmac|,

the internal state of the SC is updated (s(i + 1) = f(s(i))). The initial state
is derived from the key k and the initialization vector iv (s(0) = finit(k, iv)).
The cipher-stream is partitioned into the two parts otpmac(i) and otpenc(i), which
serve as inputs of the MAC and the encryption algorithms, respectively.

Note that usually different keys are used for different purposes, e.g., one key
for encryption and one key for the MAC. Using one key could enable an attacker
to get information from a possible relation between the ciphertext and the MAC
[13, pp. 418, 567]. The disadvantage of using multiple keys is the additional
overhead for key distribution and storage. However, when carefully designed, a
cryptographic scheme can still be secure although only one key is used. Examples
are Grain-128a [27,26] and CCM mode for BCs [5].

3.3 Protocol Steps

In this section, we describe the protocol steps in the two phases of our protocol,
i.e., initialization and operational phase.
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k

iv

partition

pl(0..n)
Enc

otpmac(0..n)

MAC

mac(0..n)

c(0..n)

c(0..n)

otpenc(0..n)

s(0..n)
SC

s(i + 1) = f(s(i))
s(0) = finit(iv, k)

Fig. 1. Concept of the generic SC and MAC scheme (sender)

Initialization Phase. This phase does not require real-time, therefore the use
of asymmetric cryptography is possible. During this phase, trust is established,
parameters, such as cipher choice, key- and MAC-length, are negotiated and
keys are exchanged. The key-exchange of the communicating parties has to be
triggered in advance by one party knowing the network topology, which is usually
the master. A Diffie-Hellman key-exchange using trust anchors for authentication
can be used as key-exchange protocol.

The SCs of every party are initialized using the exchanged key (and other
parameters) and iv := 0, resulting in same states s0 of the SCs.

Operational Phase. In this phase, real-time restrictions apply. If the al-
gorithms and state-updates of the security layer run in real-time, the secure
transmission of data is done in real-time itself, because the underlying fieldbus
provides real-time transmission of telegrams. All protocol steps are based solely
on symmetric algorithms to have a short runtime.

States of a Participant. Each party has to keep a state per communication
relationship consisting of:

– secret key k,
– current iv,
– current state s of the SC,
– fixed payload length |pl|,
– fixed MAC length |mac|, and
– maximum retries of windowing wmax.
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During resynchronization, the following additional variables are required:

– temporary state s∗,
– counter for telegrams not correctly verified w, and
– temporary initialization vector iv∗.

state sA = s(i)

sA = s(i + 1)
otpenc(i) and otpmac(i)
partition next stream

pl(i)

c(i) := Encotpenc(i)(pl(i))
mac(i) := MACotpmac(i)(c(i))

Device A Device B

c(i)||mac(i)

sB = s(i)
partition next stream

sB = s(i + 1)

if Vrfotpmac(i)(mac(i)):
pl(i) := Decotpenc(i)(c(i))

else
resynchronize

pl(i)

otpenc(i) and otpmac(i)

Fig. 2. Regular real-time operation

Regular Operation. The regular operation is sketched in Figure 2. All parties
share the same state of the SC. Since each payload has the same length, the
execution of the security algorithms consumes the same amount of cipher-stream
for each payload. Given the actual state s(i) of the SC, each successor state
s(j) (j > i) and the corresponding otpmac and otpenc are computable in advance
without knowing the payloads (cf. Figure 1).

Each time a payload pl is passed to the security layer, the cipher-stream is
first used as otpenc for encryption and afterwards as otpmac for integrity protec-
tion. A ciphertext is build with the encryption algorithm Enc (which computes
c := otpenc ⊕pl). Then the MAC secures the authenticity and integrity of the ci-
phertext consuming otpmac. The telegram transmitted over the fieldbus consists
of the ciphertext concatenated with the mac.

The receiver uses the same cipher-stream, thus resulting in the same state
as the sender. It first checks the correctness of the mac with the verification
algorithm Vrf. If the mac is verified successfully, the ciphertext is decrypted (by
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using bitwise XOR with the same otpenc the sender had used to encrypt the
ciphertext). The resulting payload is then passed to the application.

Regularly, the initialization vector is changed due to a specific schedule (e.g.,
every fixed number of telegrams). If the states of the communication parties
are no longer synchronized, mechanisms for resynchronization are required. At
a data rate of 100 Mbit/s of the fieldbus, the SC Grain-128a, which we used
in our implementation, can be used with one initialization vector over a typical
operational uptime, so renewing the initialization vector is only necessary if
synchronization is lost.

Resync. When a telegram is lost, resynchronization is needed, since the states of
the SCs are not equal anymore. The resynchronization is not real-time capable,
just as it would be in plain fieldbus communication without the security-layer.
The asynchronous state is recognizable by an unsuccessful verification of the mac.
Because of this, an asynchronous state is not distinguishable from a manipulated
telegram. If only a few telegrams were lost, it is possible, due to the fixed telegram
length, to resynchronize only the receiver.

The Resync with windowing resynchronizes the receiver after a few lost mes-
sages. If messages are lost, the receiver tries to catch up by verifying the received
telegram with the following stream-cipher states as temporary states. This mech-
anism is limited to a predefined number of retries. An example is given in Fig-
ure 3. Both parties A and B share the same SC state s0 in the beginning. One
telegram gets lost during transmission, the next payload is passed to A in state
sA = s2, resulting in the correctly transmitted telegram tel2 = c2||mac2. This
telegram is received by B in state sB = s1, not corresponding to the senders
state, and not verified correctly by B. B enters the windowing mechanism and
steps one state forward temporarily, correctly verifying the integrity of tel2. A
posteriori, the one lost message is detectable. The temporary state is applied,
resulting in synchronous states of both parties, again.

If the number of lost telegrams exceeds the limit of windowing, interaction
between the receiver and the sender is required. After the windowing has failed,
the receiver determines a fresh initialization vector, by incrementing the current
initialization vector. Then the SC is initialized with the current secret key and
the fresh initialization vector, resulting in a new defined state. The initialization
vector and a SyncLost notification is sent unencrypted but integrity protected
to the other party, which can reach the same state with the knowledge of the
initialization vector and verify the integrity of the telegram subsequently. The
resync mechanism is shown in Figure 4.

4 Security Discussion

In this section, we discuss the security of our proposed protocol, i.e., how it pro-
tects the integrity, confidentiality, authenticity, and freshness of the transmitted
messages. We assume an active adversary with access to the whole communi-
cation who can try to inject, eavesdrop, replay, drop, delay, or manipulate any
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Device A Device B

sA = s(i) sB = s(i)

notify not verified

c(i)||mac(i) loss

pl(i + 1)

Vrfoptmac(i)(mac(i + 1)) = false

sA = s(i + 1)

c(i + 1)||mac(i + 1)

no real-time possible

real-time

pl(i)

partition next stream
otpenc(i+1) and otpmac(i+1)

Vrfoptmac(i+1)(mac(i + 1)) = true

notify message lost

pl(i + 1)
pl(i + 1) = Decotpenc(i+1)(c(i + 1))

s∗
B = s(i + 1)

sB = s∗
B

Fig. 3. Resynchronization with windowing

telegrams. However, we assume that the adversary has no access to the automa-
tion devices and to any stored data such as the cryptographic keys. This is a
reasonable assumption since automation devices are expected to be mounted in
physically secured installation environments. If that is not the case, i.e., systems
could be compromised, additional mechanisms have to be taken into account.
For example, the automation systems could be equipped with hardware security
modules such as smartcards, which provide secure storage for cryptographic data,
a secure execution environment for (cryptographic) computations, and often the
support for additional features such as secure boot or remote attestation.

In the following, we assume that the used stream cipher and the MAC are
each secure, i.e., an adversary can neither decrypt messages encrypted with
the stream cipher nor forge valid MACs without knowing the cryptographic
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otp∗
mac := next stream

Device A Device B

no real-time possible
windowing fails

increment ivB

sB := finit(ivB) = s∗(0)
otp∗

mac := next stream
mac∗ := MACotp∗

mac (syncLost||ivB)

syncLost||ivB ||mac∗

assure ivB > ivA

s∗ := finit(ivB)

sB = s∗(1)

s∗ = s∗(1)
if Vrfotp∗

mac (mac∗):
sA := s∗ = s∗(1) real-time

several losses

Fig. 4. Resync with iv

key. Since the basis of our protocol is the proposed generic construction, we
show that using this construction is also secure. First, we show that given any
set of pairs (c(0..n), mac(0..n)), where c(i) = pl(i) ⊕ otpenc(i) and mac(i) =
MACotpmac(i)(c(i)) for payloads pl(i) 0 ≤ i ≤ n, an adversary cannot get infor-
mation about any pl(i) by eavesdropping these pairs. Second, we show that an
adversary is not able to forge a valid pair (x, mac(i)) = (x, MACotpmac(i)(x)) for
any arbitrary binary string x.

In the first case, the generic construction loses its security properties if two dif-
ferent messages are ever encrypted with the same cipher-stream. Thus, otpenc(i)
has to be different for each pl(i). To achieve this, the SC changes the state
for each transmitted telegram. The initial state s(0) is calculated using the ini-
tialization vector iv and key k: s(0) = finit(iv, k) and all subsequent states are
calculated according to s(i+1) = f(s(i)). Each state results in a different output
which is partitioned into otpmac(i) and otpenc(i). When the scheme is reinitial-
ized, a new iv is used by incrementing the old one. Assuming the size of the iv is
carefully chosen to prevent overflows, an iv is only used once. Thus, for each pl(i)
always a different otpenc(i) is used. This reduces the security of the scheme up to
the security of the used stream cipher. Since we assumed that the stream cipher is
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secure and protects the confidentiality of the transmitted messages, this is also
true for the generic scheme.

In the second case, the security of the MAC is solely based on the secrecy of
the used key since we assumed that the used MAC construction is secure. Thus,
an adversary can only forge a valid (x, mac) pair if he can derive the key k or
the correct otpmac(x). However, since we assumed the applied stream cipher is
secure, an adversary neither can get both of them by analyzing eavesdropped
pairs (c(0..n), mac(0..n)).

Thus, an adversary cannot successfully eavesdrop on telegrams or inject new
telegrams. Furthermore, an adversary cannot successfully replay telegrams, since
the freshness is ensured by changing the internal state after each correctly verified
telegram. Likewise the dropping of telegrams is detected and a resynchronization
initialized.

5 Implementation and Runtime Analysis

In our implementation, we have used Grain-128a [27] with 128 bit key and 96 bit
initialization vector as underlying stream cipher of the generic scheme. The
Grain-128a cipher is based on the well-analyzed cipher Grain [8] which can be
easily implemented in hardware, provides high performance, and has determin-
istic runtime. As MAC, we have chosen the Toeplitz matrix based approach,
which is easy to implement in hardware and also has deterministic runtime. We
chose a MAC length of 80 bit which provides a reasonable security level for most
applications. The telegrams are embedded as process data in regular EtherCAT
telegrams [10].

We have developed a corresponding prototype software implementation in C
[14]. The implementation is currently not optimized for speed. In future appli-
cations it might be possible to run the security stack in hardware in order to
reach higher performance. The master and slave were both running on the same
Microsoft Windows XP Professional SP3, Intel Core2Duo T7400@2.16 GHz,
2 GB RAM machine during the runtime measurements. This configuration re-
sembles widely used IPC. The slave controller is a Beckhoff FC1100 card [1].
For the proof-of-concept implementation, EtherCAT was used in a synchronous
mode, triggering the slave application to run once on each incoming datagram.
The master can not be executed in hard real-time (this is only possible with pro-
gramming languages defined in [9]), as a replacement for the missing real-time
capabilities, the multimedia timer of Microsoft Windows was used to achieve a
de-facto cycle-time of 1 ms.

The first measurements show, that the security layer only generates negligible
overhead, at a cycle-time of 10 ms, the non-secure slave application runs in 7 µs,
compared to the execution time of 8 µs of the slave application with enabled
security layer. The execution times for resynchronization are not significantly
longer. Those measurements do not consider the transmission-time overhead of
the MAC. More extensive measurements, also at shorter cycle-times, will be part
of future work.
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6 Conclusion

In this paper, we presented a protocol to secure the fieldbus communication of
automation systems while maintaining real-time requirements. The basis of the
protocol is a generic scheme which combines a stream cipher with a MAC to
ensure integrity, confidentiality, authenticity, and freshness of transmitted mes-
sages using only one key for cipher and MAC to facilitate key management.
The scheme relies solely on symmetric primitives, which are much more efficient
than asymmetric primitives, to support the use in resource-constrained systems
as well as to enable small cycle times for real-time communication. We chose a
stream cipher since they typically execute at a higher speed than block ciphers
and have lower hardware complexity. The security of our protocol relies on the
security of the used stream cipher and MAC construction. By adjusting the key
length, the protocol can be adapted according to the application requirements.
Our proof-of-concept implementation and the first results of our performed per-
formance analysis have shown the feasibility of our approach. As future work,
we plan to implement the protocol in hardware and perform more detailed per-
formance analyses. Another future topic is to provide exchangeability of SC and
MAC in the prototype.
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Abstract. Web applications have begun to be used in wide variety of
areas including social networks, shopping, online banking, control sys-
tems and other critical systems. Complexity of applications have raised
as well as requirements for security and traceability. Due to short delivery
times and changing requirements, quality assurance of web applications
is usually an informal process. Formal methods have been proven to be
safe approach to the specification, verification, and testing of systems.
The aim of the proposed research is to make formal methods applicable
to the web applications development. A technique that could extract ex-
tended finite state model by combination of static and dynamic analysis
is developed. This method supports both applications with transitions
between web pages and single-page applications with AJAX requests and
dynamic DOMmodifications. Two different algorithms are proposed that
simplify the state model by merging similar states to achieve a human
readable models even for the complex real world web applications. The
obtained model could be used to define formal requirements for the ap-
plication and to make model checking part of the continuous integration
process for web development.

Keywords: Model-based testing, FSM, Model Checking, Web
Applications.

1 Introduction

Continually increasing amounts of critical corporate and personal information
that are managed and exchanged by web applications has heightened the need for
approaches that verify safety and secutiry of web applications. Model checking
and model-based testing have been proven to be safe approaches to reduce the
time and effort associated with security testing of complex systems, but to apply
such methods a model of an application and a formal spefication are required.

While source code is the most accurate description of the behavior of a web
application, this description is expressed in the low-level program statements
and are hardly suitable for high-level understanding of an application’s intended
behavior. Moreover formal methods of quality assurance are hardly applicable to
the source code, as it is hard or almost impossible to formulate functional require-
ments. The goal of the presented research is to propose a method for automatic
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extraction of an extended finite state machine (EFSM) that would describe given
web application and would be suitable for writing formal specification require-
ments and their automatic verification using existing model checking tools.

A web application could be described as number of states and transitions
between these states. A transition between states occurs when an action was
triggered by the user of the application or by some server event (timer event,
push notification and etc.). Depending on the number of the parameters target
state of the transition for the same action may vary. Such trigger conditions may
both reside on the client side of the application (Javascript variables and user
form inputs) and on the server side (database values, user permissions, etc.).

The research aims to propose solutions for number of various tasks:

1. Discover as many different application states as it is possible.
2. Discover all variables and factors that define transition’s target state.
3. An algorithm that would reveal on which conditions a transition in the ex-

tracted model could be made.
4. An algorithm to measure similarity of the web application states.
5. A tool that would automatically build a human-readable EFSM of the web

application provided discovered states, transitions, conditions for these tran-
sitions and similarity measure function for states.

Extracted models of the web applications then can be used as the basis for
automated model-based test generation, writing better quality requirements for
design and implementation, applying model checking to verify a model against
the application requirements.

This paper is organized as follows. Section II contains a brief overview of the
related works and tools. In Section III details on the state discovery algorithm
are given. The model extraction method, simplification algorithms and the simi-
larity measure are introduced in Section IV. Section V describes an approach to
discover factors that define transitions’ target states. Overview of the developed
proof-of-concept tool and case studies are presented in Section VI. Section VII
concludes.

2 Related Work

Web applications are usually tested by manually constructed test cases using
unit testing tools with capture-replay facilities such as Selenium [1] and Sahi [2].
These tools provide functionality for recording the GUI actions performed by
a user in test scripts, for running a suite of tests, and for visualizing test re-
sults. However, even with such tool support, testing remains a challenging and
time-consuming activity because each test case has to be constructed manually.
Moreover any change in the web application’s structure may require manual
revision of all the test cases or creation of a new test suite.

Several techniques that propose automatic model extraction and verification of
the existing web applications have been presented in the literature. In [3] authors
survey 24 different modelling methods used in web site verification and testing.
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There is little research on the problem of extracting models from the existing web
applications in order to support their maintenance and evolution [4–6]. The com-
mon drawback of such approaches is that they aim to create a model, useful for
proper understanding of dynamic application behavior, but not a formal model
that can be verified against given requirements.

In [7] the authors propose a runtime enforcement mechanism that restricts the
control flow of a web application to a state machine model specified by the de-
veloper, and use model checking to verify temporal properties on these state ma-
chines. This approach implies manual development of a state model by developer,
which is time consuming and error prone, especially for complex web applications.

In [8] authors present an approach to model an existing web application using
communicating finite automata model based on the user defined properties to
be validated. Manual properties definition is required in order to build a specific
model, while in our approach we automatically build the model first, which
gives a user a convenient way for formal specification of the requirements. Also
models retrieved in this approach could contain up to thousands of states and
transitions, which would not be human-readable representation and therefore
not suitable for analysis.

An attempt to automate verification and model extraction is done in [9], but
they focus only on page transitions in web applications and are limited only to
web applications that have been developed using a web application framework,
such as Struts configuration files and Java Server Page templates. Our approach
supports a much wider range of web applications, due to the support of both
Java Server Page applications as well as Ajax Web applications that consist
of a single page whose elements are updated in response to callbacks activated
asynchronously by the user or by a server message.

The work most similar to our approach is described in [10]. Paper proposes
state-based testing approach, specifically designed to exercise Ajax Web appli-
cations. Test cases are derived from the state model based on the notion of
semantically interacting events. The approach is limited to single page applica-
tions and Ajax callbacks. Our approach handle all the possible state changes,
which include page transitions and Javascript page elements manipulation in the
event handlers triggered by user actions, as well as Ajax callbacks. Handling a
Web application in whole makes it possible to apply our approach to real world
applications and to achieve more accurate models.

Research on model checking of web applications [12–14] concentrates mostly
on the model checking process, but not on the model extraction. Model ex-
traction is critically important for complex real world web applications because
straight-forward model extraction would generate huge models with hundreds
of states and transitions for complex applications, which would be practically
useless. Creating the model manually is error-prone and time consuming. This
paper describes an approach that simplifies automatically extracted state and
transition information and generates human-readable models, which could sig-
nificantly improve processes of definition of the formal specification requirements
and model checking.
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3 Algorithm to Discover Possible Web Application States

Each application state defines a set of possible user actions: buttons or hyperlinks
to click, text inputs to fill, checkboxes or radio buttons to select, etc. Each action
could trigger a page update (JavaScript event handler) or a page transition. In
general it is impossible to guarantee discovery of all the web application states,
as there are infinite number of various user action sequences and possible Ajax
callbacks to these actions. Each action sequence potentially could lead to a new
unknown application state. In the current research we propose an algorithm of
the states discovery that is based on random user sequences generation. The
Selenium tool [1], which is able to emulate user actions, is employed to emulate
a user interaction with a web application and to record the discovered states.
Before and after each action snapshot of the web page’s Document Object Model
(DOM) is recorded. The Document Object Model is a platform- and language-
neutral interface that allows programs to dynamically access and update the
content, structure and style of documents [15]. The DOM describes HTML,
style sheets and scripts of a page and therefore is sufficient to identify the web
application’s state.

The proposed algorithm consists of the following steps:

1. Static analysis of the page source code is used to get a list of the available
actions actionlist, which consists of all the html items, that are present
on the page and could trigger a page transition or a Javascript code: a,
button, input or any other element with an action handler defined (onlick,
onmousedown, jQuery handlers etc.). Items, which action would trigger a
page transition to an external web site, are excluded from the list (they
are detected by checking href attribute of the link or the window.location
variable assignment values in the JavaScript action handlers).

2. Randomly select an action from actionlist and execute it. If an action re-
quires a user input, like filling in an input field, then a string value is
generated randomly or selected from a supplied list (the analyse tool is
not able to guess password/login/etc., so some values should be provided
explicitly).

3. The triad < state1, action, state2 > is appended to the execution trace.
4. Continue iterations if any of the last N actions has discovered at least one

new state. This stop condition would help if all the possible states were
discovered or the web application went to a dead end state or group of
states. The algorithm should be tuned for specific tasks and value for N
should be specified. The experimental results show that generally N around
20 could be sufficient.

Finally, the execution trace is stored as a sequence of triads < state1, action,
state2 >, where state holds the DOM tree of the page and action describes the
taken action and the action object referenced using the XPath language.
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4 Approach to Measure Similarity of Web Application
States

A web application could consist of hundreds or even thousands of pages with
different source codes. For example in a mail application an inbox page’s source
code depends on the number of messages that are currently in the inbox. An
inbox page with two messages differs from a page with three messages. Even two
inbox pages that display same number of messages but with different subjects
would differ. If we are building a model of such application all these pages should
be considered as one state, as they actually describe the same state of the ap-
plication from the user/developer point of view. Another example is a web page
that has an advertisement block that includes some code from other websites.
Same application page would have different source codes due to the different ad-
vertisement blocks included. All this insufficient page source codes’ differences
would lead to a huge number of different states discovered even for a simple web
application. A model that contains hundreds of states and transitions would be
practically useless as it would be impossible for a developer to understand the
application logic from this model or to define any formal requirements. A sophis-
ticated algorithm to merge similar states is required. Current section describes
an approach that makes it possible to detect similar states by analyzing corre-
sponding DOM trees and therefore to reduce number of states in the model to
achieve human-readable models even for complex real world web applications.

4.1 Filter out DOM Elements Page State Does Not Depend on

The DOM tree is traversed and all nodes of the following types are filtered
out: link, script, meta. Nodes of these types do not directly affect the page
state that the user could see or the set of actions that the user can make. Also
we propose to ignore text values of the elements, but compare only the DOM
structures. All the element attributes are ignored except the style attribute. The
style attribute may not be completely ignored as CSS could directly affect user’s
page perception: elements (including controls) could be made invisible or could
be disabled using CSS styles. For example an element could be present in the
source code but be unreachable for the user until he correctly fills some text
inputs. These two page states should be considered different as they support
different sets of the possible user actions. For example, due to this step following
nodes would be considered similar:

– <p class=’big-text’>text</p>;
– <p style=’color: red’>other text</p>.

As only DOM structures are compared then only different DOM nodes are con-
sidered to be different. The following two nodes would be considered different
even if in practice that could look similar:

– <span class=’big-text’>same text</span>;
– <div class=’big-text’>same text</div>.
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4.2 Filter Out External Dependencies

A web application could often contain links that lead to other web sites. It could
be information links for the user (e.g. Google’s search results page), links to
partner web sites or advertisement banners. It depends on the specific web site
if these external elements on the web page are part of the web application’s
business logic or are they unimportant and could be filtered out. For web sites
with advertisement blocks the case study showed that taking these external
elements into the account while comparing states leads to the multiple states
duplication problem. Same page of the application could be represented by the
different DOM trees as its source code is being generated on the server side
and from time to time it could contain one advertisement banner, two banners
or none of them. There is no way to automatically detect if the element is
important to the application logic or not. Therefore for some web applications
it is reasonable to exclude all external elements, for other applications this step
should be omitted.

External dependencies are elements that depend on the external web sites and
are detected by the following set of rules:

– img or iframe elements’ src attributes point to external web sites;
– link’s href attribute contains an external web site address;
– an element that is associated with (or initialized by) a JavaScript code, which

contains AJAX get requests to an external web site.

4.3 Recursive Node Similarity Definition

To discover similar states we introduce the following recursive definition of sim-
ilarity: for the DOM nodes A and B similar(A,B) == True if and only if they
have the same type and same number of children, where each child of A is similar
to the corresponding child of B.

4.4 Collapse Similar Node Sequences

An important feature of the proposed approach is the similar node “collapse”
step. Let’s illustrate this idea on the example of the inbox messages page of the
mail web application. A page with 10 messages and a page with 11 messages
would have different DOM trees, but, from the user or developer point of views,
they denote the same state of the application. As well as a page with 1000
messages displayed. The important difference would be only in case when no
messages are in the inbox that is an empty inbox page. The empty inbox page
is a different state as the user has a different set of the possible actions to make,
while pages with some messages present in the inbox are all the same from this
point of view. Same situation occurs in many other popular web applications:
different number of links in a list, search result items, task list todo items, etc.

A list of the consecutive nodes x1, ..., xn should be “collapsed” if ∀i, j ∈ [1;n]
similar(xi, xj) == True && xi.parent == xj .parent. In this case the list of
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nodes are replaced by one node, x1. Due to the “collapse” step pages like a mail
inbox or a task list, which differ only by number of the similar items, would
become similar and the extracted model would make much more sense.

The “Collapse” step is implemented be the following algorithm:

1. Traverse the DOM tree, starting from its leafs.
2. For a given node fetch list of the children nodes listc.
3. Check all the possible pairs xi, xj ∈ listc and if

similar(xi, xj) == True then remove xj node.

It should be noted that there could be more complex cases, where this algorithm
would not work. For example, if a repeating page item consists of more then
one DOM subtree, but a sequence of the same DOM subtrees. For example the
following listing gives an example of a list of the repeating items that should be
collapsed, but the proposed algorithm is not able to handle it:

<h1>Title1</h1>

<p>text1</p>

<h1>Title2</h1>

<p>text2</p>

...

<h1>TitleN</h1>

<p>textN</p>

The pattern discovery algorithms will be used to handle such situations.

4.5 Alternative Approaches to State Similarity Detection

One more approach to the pages similarity measure is proposed and tested in
the research. A web page has two main goals:

– deliver the information to a user: text, pictures, charts, etc.;
– provide controls for a user to make actions: add item to cart, send e-mail,

manage task list, go to another page, etc.;

We propose an action-based approach to the page similarity problem. Let’s define
that pages are similar, if they provide the same set of possible actions for the user.
Such approach ignores all the page elements that can not trigger an action. The
page source code is being analyzed and an actionset is created that contains only
links, form controls and elements with defined JavaScript action handlers. To
check whether the pages are similar or not the corresponding pages’ actionsets
are compared. The pages are denoted similar if their actionsets are equal, that
is they have same number of elements and each element from one set exists
in the other. This approach also requires filtering out external dependencies
and collapse steps that reduce pages’ source codes to the correct state for the
similarity detection.

Overall, the two different approaches to the similarity detection problem are
proposed in the current research:
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1. DOM trees comparison (DOM-All).
2. Action sets comparison (Action-Set).

Further the described algorithms may be referenced as DOM-All and Action-Set
correspondingly. There is no definite answer which one is better. The case study
section contains comparison of the results achieved by applying the proposed
approaches to the real world web applications.

5 Factors That Define Transition’s Target State

According to the state distinction algorithm proposed above a state of the ap-
plication depends on its DOM. Two documents with the identical DOMs would
always be recognized as one state. Therefore a state transition could be made
only if the DOM was modified. In section III a state model was extracted by the
analysis of the possible page actions and the dynamic analysis of these actions.
In the current section each of the possible actions would be an object of the
static code analysis and a set of the input factors would be retrieved for this
action. When an action occurs on a web page there are several ways it could be
handled:

1. Pure client side business logic: the javascript manipulates the DOM and
brings the application to a new state.

2. Mixed business logic: some part of the business logic is implemented on the
client side, while other part is implemented on the server side. The javascript
could both manipulate the state of the application on its own and pass the
data to the server and then parse its response.

While the proposed approach is not limited to any specific technologies it would
be more convenient to focus in this section on some concrete technologies. For
the server side examples PHP language was selected as it is popular in many
web-based systems . The client side code uses Javascript and jQuery library.

We propose to unite the client side code and the server side code and to
perform the static analysis in whole. The client-server communication could be
treated as the three consecutive function calls: client-function, server-function
and client-callback. The proposed idea is illustrated on the following example of
a simple client-server communication.

The client side click handler:

function click_handler() {

$.ajax({

url: "/ajax_get_book",

data: {’author’: book_author, ’title’: book_title},

success: function(data) {

get_book_callback_handler(data);

}

});

}
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The PHP server side code:

// parsing of REQUEST is made and then function is called

function handle_request($author, $title) {

...

business logic code

...

return $data;

}

The client side callback:

get_book_callback_handler(data) {

// DOM manipulation that changes application state

}

Our approach unites given client-server communication and represents it in the
form of the consecutive function calls, where result of the first function would
be an argument to the second function and so on.

United code:

get_book_callback_handler(

handle_request(

function click_handler(author, title, ..., otherVars)

)

)

If the client-server communication is synchronous than such operation on the
code would not change the result of the execution. In case of the asynchronous
communication the proposed code transformation could change the result of
the execution, as the DOM or the variable values could have been changed
simultaneously by some concurrent operations. Asynchronous calls that influence
each other could be example of a bad design and a source of different problems for
the application’s quality assurance and need to be detected separately by static
and dynamic analysis. Once the client-server communication is represented as
consecutive function calls it could be analyzed using different techniques of the
static code analysis and a set of the constrains, as well as a set of the variable
values for each execution path could be retrieved. The research on this topic was
held in the previous work of the authors [11].

6 Case Study

The proof-of-concept tool was developed using Python 2.7 programming lan-
guage, Selenium [1] and Graphviz [16] frameworks. Current version of the tool is
capable of the automated web application analysis. The tool currently provides
a console interface and produces an output in the form of an XML file, describ-
ing the extracted model in the form of a FSM and a PNG image. The XML
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Fig. 1. Tadalist.com application, DOM-
All algorithm

Fig. 2. Tadalist.com application,
Action-Set algorithm

description could be converted to the Promela language and used as an input to
the Spin model checker. Also the XML could be used for the model-based test
automation tools. The PNG image contains a human-readable representation
of the model. State labels contain page titles and transition labels that contain
description of the taken actions, like “click object L” or “type text A into field
B”. Object references are described using XPath language. The PNG model is
useful for developers to review the overall application design and to write down
formal specification requirements, using proposed states and transition ids.

Transition guards that represent factors and conditions on which a transition
could be made are generated by the separate tool and stored in a separate XML
file. The FSM model could be created for any existing web site and such tool
could be used for black-box analysis. Extracting conditions of the transitions
and generating an EFSM requires white-box analysis: not only the web pages’
source code needs to be analyzed, but also the server side implementation.

The developed tool was applied to a number of the existing popular web ap-
plications for black-box analysis. For each web application a random-driven state
exploration was run with the 10 minutes time limit. All the execution traces were
stored to the external files as sequences of the triads < state1, action, state2 >.
The trace files sizes vary from 1.5 MB to 30 MB depending on the complexity
of the application’s pages. Then each execution trace was simplified using the
two proposed algorithms, DOM-All and Action-Set, and corresponding models
were produced. Table 1 shows sample list of the web applications that have been
analyzed. Column “Original” shows number of states that appeared in the ex-
tracted model if no simplification algorithm was applied. Columns “DOM-All”
and “Action-Set” represent number of states in the models after the correspond-
ing algorithm was applied.

Fig. 1 and fig. 2 illustrate automatically extracted and simplified models for
the TadaList.com web application. The web application implements functionality
for creating and managing task lists online. Extracted models for the social
network VK.com web application are presented on fig. 3 and fig. 4.

The case study illustrates importance of the model simplification algorithms
proposed in section III. For all the examined real world web applications the
automatic exploration tool was able to discover more then 80 different states
in a reasonably short execution time (10 minutes). State models containing
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Fig. 3. Social network application
m.VK.com, DOM-All algorithm

Fig. 4. Social network application
m.VK.com, Action-Set algorithm

Table 1. Number of states in the extracted models

Web Application Original Action-Set Dom-All

tadalist.com 205 14 15

mail.ru 150 28 28

wikipedia.org 120 62 70

amazon.com 87 71 75

m.vk.com 145 18 19

80-200 states and transitions between them are useless in practice, as they are
not human-readable and it is impossible to write down any adequate formal re-
quirements using them. For the TadaList.com and m.VK.com applications the
proposed simplification algorithms were able to produce models that contain
less then 20 states. Such models are human-readable and would be useful for
developers and QA specialists. For more complex web sites models contain more
states and manual review of the proposed models is advisable. While the cor-
rectness of the models and completeness with respect to the source code could
not be proven, the models could be verified against specification requirements
or used to generate test suites with high state coverage.

7 Conclusion

In this paper we have presented an approach to extract an extended finite state
model of an existing web application. Such model would be suitable for writing
formal specification requirements. The extracted finite state model XML repre-
sentation can be automatically converted into the Promela format and served as
an input to the Spin model checker. Properties to be verified could be expressed
as Linear Temporal Logic (LTL) formulas. Navigational requirements, which are
often being an important concern for web applications developers, could be con-
veniently formulated in LTL. There are examples of common requirements that
would be useful to check for most of the applications: “On all paths from page
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Welcome to page Inbox, page Login is present”. Such requirement is expressed
with the following LTL: [] (Welcome && ! Inbox → ((! Inbox) U ((Login && !
Inbox) ‖ [] (! Inbox)))).

Further research is aimed at improving the similarity measure algorithms to
generate a better EFSM, using SAT-solvers and GA-based algorithms to reveal
all possible paths in the applications’ source code, both server and client side.
It should be noted, that extracted models could not be expected to cover all
the possible states and transitions of a web application, as such model could be
achieved only if an exhaustive execution trace is available. Such trace generally
is infeasible and the model only approximates the web application’s behavior.
Nevertheless such model could be used to automate model checking and to make
a step towards including Model Checking in continuous integration process and
significantly improving software quality and defect detection rate.
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Abstract. Failure Mode and Effects Analysis (FMEA) is a widely used
dependability and safety technique aiming at systematically identifying
failure modes, their generating causes and their effects on the system.

While FMEA has been mainly thought for hardware systems, its use
is also advocated for software (SW-FMEA). This involves several major
challenges, such as the complexity of functional requirements, the diffi-
culty to identify failure modes of SW components, the elusive nature of
faults.

We present an approach for efficient and effective manipulation of data
involved in the SW-FMEA process, introducing an ontological model
which formalizes concepts involved in the analysis. The methodology
provides a common conceptual framework supporting cohesion across
different stages of a development life-cycle, giving a precise semantics to
concepts collected in the artifacts of an industrial documentation process.

This also opens the way to the implementation of a tool, built on top
of a stack of semantic web technologies, for automating the SW-FMEA
process. Results of the application of the methodology and the tool to a
real scenario, in which activities and documents are regulated by well-
established standards, are reported. The experience proves the suitability
and the practical effectiveness of the approach, showing improvements
on SW-FMEA practices.

Keywords: SW-FMEA, ontologies, automated reasoning, SWEngineer-
ing, Reliability Availability Maintainability and Safety, V-Model.

1 Introduction

Failure Modes and Effects Analysis (FMEA) is an analysis method used in the
development of industrial systems subject to dependability and safety require-
ments, for the identification of failure modes, their causes and effects, in order
to determine actions reducing the impact of failure events [18]. The analysis is
carried out since the initial phases of the development process, when mitigating
actions can be more easily taken.

FMEA was first standardized by the US Department of Defense in the MIL-
STD-1629A standard [33], then it was extended to many other industrial contexts
[15,32]. Originally, FMEA was intended to be used in the development of hard-
ware systems. Due to the increasing number of critical functionalities assigned to
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software, several regulatory standards, addressing critical applications [4,7,21],
dictate use of FMEA also for software systems (SW-FMEA). The extension of
the analysis to SW context implies increased difficulties. In fact, requirements
allocated to SW are usually more complex than those allocated to hardware;
failure modes can’t be collected from datasheets resulting from tests and feed-
back of available operational experience (as in the case of hardware); SW faults
can remain hidden until some triggering conditions activate them [1,27] and they
cannot be traced back to ageing, wearing or stressing causes [23]. In addition,
existing tools [25,29] are mostly oriented towards hardware FMEA.

SW-FMEA is usually treated from the organizational point of view, focus-
ing on possible decompositions of the activities involved in the process [28,10],
and on the combination of the analysis with complementary approaches such as
Fault Trees Analysis (FTA) [19]. In [28], SW-FMEA is carried out during the
requirements analysis phase and is decomposed into two steps: first, an analysis
is performed to identify failure modes and their consequences, then counter-
measures for mitigation or elimination of failures are identified. The organiza-
tion of SW-FMEA into two phases is also suggested in [10], where System SW
FMEA is performed early in the design process, while Detailed SW FMEA is per-
formed later during the system design, when a description of SW components is
available.

Data needed for SW-FMEA come from a lot of activities scattered along the
SW life-cycle. Gathering such a large amount of diversified information may re-
sult too expensive and not-effective with respect to the quality of the outcomes
of the analysis. Efficient and effective management of the volume and the het-
erogeneity of data have motivated research on methodologies for a systematic
approach to SW-FMEA. To this end, ontologies have been introduced in many
works [8,17,5]. In [8], three ontological models are proposed to characterize rela-
tions among components, functions and attributes concerning Security, Privacy
and Dependability in complex embedded systems. The methodology introduced
in [17] is based on a knowledge engineering framework for integrating design
FMEA and diagnosis models around a central Domain Ontology in support of
multiple product-modeling environments. A reference model, unifying and for-
malizing FMEA concepts into an ontology expressed in F-Logic [16], has been
proposed in [5].

In this paper, we propose the application of ontologies in the formalization
of the SW-FMEA process, so as to provide a common conceptual framework
collecting concepts scattered along the life-cycle. We devise an ontological model
(Sect. 2), illustrating how the concepts are linked to the documents produced in
a standard development life-cycle, comprising a bridge between the document
process and the activities of SW-FMEA (Sect. 3). In particular, we show how
the generation of SW-FMEA worksheet can be accomplished through automated
reasoning on semantic data (Sect. 3.1) and how the analysis of the degree of rigor
attained in the development is supported (Sect. 3.2). We finally address how the
ontological formalization is exploited in the implementation of a SW tool based
on well-established semantic web technologies. In particular, we report results
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of the tool experimentation at Selex Galileo in Florence, our reference context,
where activities and artifacts are regulated by standards concerning product
assurance [7], life-cycle [3] and documentation [34] (Sect. 4).

2 Applying Ontologies to the SW-FMEA Process

Reflecting the practice of our reference context, the SW-FMEA process is subdi-
vided in three phases along the SW life-cycle: the Top Level Functional FMEA
is mapped on the SW Requirements Analysis; the Detailed Functional FMEA
is mapped on the SW Design and SW Coding activities; the SW Development
Assurance Level (SW-DAL) Evaluation is mapped on the SW Coding and HW-
in-the-loop Testing activities.

2.1 Ontologies Overview

An ontology is an explicit specification of a conceptualization [11]. The fun-
damental elements of an ontological model are classes and properties : classes
represent categories or sets of elements; properties specify the internal structure
of a class or the relations among classes. Classes and properties represent the
intensional part of the ontology, while their instances represent the extensional
part: individuals are realizations of concepts described by classes and attributes
are realizations of properties.

Ontological technologies comprise a rich framework of integrating compo-
nents, including ontological languages such as OWL [20], query languages, such
as SPARQL [24], and rule languages, such as SWRL [12]; in addition, off-the-
shelf reasoners are available [31]. Altogether, they devise a new paradigm for the
organization of systems [2].

In order to provide a visual representation of the ontology elements, we use
UML notation enriched with stereotypes for RDF and OWL concepts as stan-
dardized in the Ontology Definition Metamodel (ODM) [22]. Ontological entities
are represented as classes, datatype properties are represented as their attributes,
and object properties are represented as relations among classes.

2.2 Top Level Functional FMEA

The first phase of the process is performed in the early stages of the SW life-
cycle, where FMEA can help understanding system requirements and revealing
flaws in the system, thus avoiding expensive late design changes.

Fig. 1 shows the involved ontological concepts. A Computer SW Configuration
Item (CSCI) (i.e. an aggregation of SW with an individual configuration) is as-
sociated with Functional Requirements to be satisfied. Functional Requirements
are in turn associated with Operation Modes, specified by a Criticality Value,
and with some Failure Modes, that are the different ways in which the deliv-
ered service deviates from the correct implementation of the system function
[1]. Each Failure Mode is associated with the Failure Effects produced on the
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<<owlClass>>
CSCI

<<datatypeProperty>> SeverityLevel

<<owlClass>>
 Failure Effect

<<datatypeProperty>>CriticalityValue

<<owlClass>>
 Operation Mode

<<datatypeProperty>> CriticalityValue

<<owlClass>>
 Functional Requirement

<<datatypeProperty>> SeverityLevel

<<owlClass>> 
Failure Mode

<<objectProperty>> <<objectProperty>>

<<objectProperty>> <<objectProperty>>

has_FR has_FM

is_in_OP has_FE

*

1..* 1..*

Fig. 1. UML representation of the intensional part of the ontology modeling the con-
cepts involved in the Top Level Functional FMEA

system, classified through Severity Levels. Failure modes have their own Severity
Level, determined as the highest severity level of its Failure Effects. The num-
ber, the labeling and the characteristics of the severity levels are defined by the
standards adopted in the specific context [4,6,26] and involve the dependability
attributes (Reliability, Availability, Maintainability, Safety) for the considered
application.

Each functional requirement is characterized by its own Criticality Value
which, in our reference context, is defined as a function of both the severity
levels of associated failure modes and the criticality values of associated opera-
tion modes.

2.3 Detailed Functional FMEA

The second phase of the process is carried out when the SW architecture is
already designed.

<<owlClass>>
Item

<<owlClass>>
CSCI

<<objectProperty>>

*

<<owlClass>>
 SW Module

<<owlClass>>
Method

<<objectProperty>>

has_FR

<<objectProperty>>

<<objectProperty>>

1

<<objectProperty>>

has_method

has_component

has_module is_module_of

<<owlClass>>
Functionality

<<datatypeProperty>> SeverityLevel

<<owlClass>> 
Failure Mode

<<datatypeProperty>> SeverityLevel

<<owlClass>>
 Failure Effect

<<objectProperty>>
has_FE

1..*

<<objectProperty>>
has_FM

<<objectProperty>>
implements

<<objectProperty>>
is_used_by

*

<<objectProperty>>
is_cause_of

*

<<objectProperty>>
is_part_of

*

<<datatypeProperty>> SW-DAL

<<owlClass>>
 SW Component 

<<datatypeProperty>> CriticalityValue

<<owlClass>>
 Functional Requirement

*

Fig. 2. UML representation of the intensional part of the ontology modeling the con-
cepts involved in the Detailed Functional FMEA

Fig. 2 shows the involved ontological concepts which mostly model structural
SW elements, represented by class Item. An item can be the entire CSCI, a SW
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Component, a SW Module, or a Method. The model is hierarchically organized
from the entire CSCI to the methods, i.e. the smallest SW part with precise func-
tionalities. The CSCI is made of SW components, which are physically organized
in SW modules, containing methods written in some programming language,
which in our reference context are C and Assembly.

Structural elements are associated with the implemented functionalities. Each
Functionality is associated with one or more Failure Modes, which are in turn
associated with their Failure Effects, in the same way as in the Top Level Func-
tional FMEA.

Note that a SW Component has an attribute, SW-DAL, which represents
the required level of assurance to be attained in its development. The indirect
association between Functional Requirements and SW Components allows the
identification of the most critical functional requirement implemented by the
component. The component’s SW-DAL is taken as the level corresponding to
the criticality value of the identified functional requirement.

2.4 SW Development Assurance Level Evaluation

The last phase of the process is performed late in the life-cycle, after the SW
coding. The objective of this phase is obtaining information about values of
structural and process parameters which comprise an objective ground for a
qualitative evaluation of the level of rigor attained in the development of a SW
component. This permits to verify if the implementation achieves the required
level of assurance determined in the previous phases of the process.

Regulatory standards as [4,21,26] recommend to allocate assurance levels to
SW components according to consequences of failures referring to dependability
attributes (e.g. reliability, availability, safety) [1,30]. As stated in Sect. 2.3, in
our reference context, the required level of assurance of a SW component is
taken as the level corresponding to the highest value among the criticality values
associated with requirements implemented by the SW component.

Fig. 3 shows the involved ontological concepts. The association between Func-
tional Requirements and SW Components, not explicitly represented in Fig. 1,
here is an indirect association through the Usage Degree of the SW component.

Any Functional Requirement has a Criticality Value, computed during the
Top Level Functional FMEA (see Fig. 1), which represents the risk associated
with its implementation. Any SW Component has a SW-DAL, computed during
the Detailed Functional FMEA (see Fig. 2), which represents the required level
of rigor to be attained in its development. Each SW Component is physically
organized in SW Modules associated with SW Parameters and with Prevention
Mitigations (see Fig. 3). SW Parameters represent structural metrics of the code,
which, in our reference context, mainly consist of NLOC, level of nesting, and cy-
clomatic complexity. Prevention Mitigations account for non-structural process
metrics which are represented by volatility of requirements, testing coverage, use
of formal methods, use of defensive programming.
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Fig. 3. UML representation of the intensional part of the ontology modeling the con-
cepts involved in the SW-DAL Evaluation

3 Finding and Using Instances of Ontological Concepts

The proposed ontological formalization provides a systematic ground for the
connection of development and documentation process to SW-FMEA activities.
The extensional part of the ontological model is populated with the specific
instances of concepts reported in documents produced along the development
life-cycle, providing cohesion among them and enabling automatic production of
worksheets.

Concepts involved in the first phase of the SW-FMEA process come from the
SW Requirements Analysis. For each CSCI, the SW Requirements Specification
(SRS), i.e. the document specializing the IEEE-830 standard [13] for the given
industrial context, is produced. It contains the description of both functional
and non-functional requirements along with their failure modes. The document
allows to capture information about the effects on the system and consequently
the severity level of the failure modes.

Information pertaining the second phase of the process are mostly derived
from the SW Design activity. The organization of the SW structure is usually
described in the SW Design Description (SDD), i.e. the document specializing
the IEEE-1016 standard [14] for the application context.

Concepts related to the third phase of the process are derived from SW Coding
activity. In our reference context, the mapping between functional requirements
and SW components is reported at the end of the SDD document while structural
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and process metrics of SW modules are documented in the SW Product Assur-
ance Report, i.e. the document conforming to the European Space Agency (ESA)
standard ECSS-Q-80 [7].

Once the extensional part of the ontology is completed with the collected
information, several subsequent activities can be automated through the support
provided by an off-the-shelf reasoner, thus lowering the otherwise large manual
effort.

3.1 Filling the Worksheet

The most common activity of FMEA is the production of usually large work-
sheets, whose structure depends on the standard chosen. The format of a row in
the FMEA worksheet as defined in our reference context is reported in Fig. 4.

Item 
Number

Item / Block Functionality
Failure 

Mode (+ 
unique id)

Mission 
Phase/Op. 

Mode

Failure 
Effects

Severity
Failure 

Detection 
Method

Comp. 
Provisions

Correction 
Actions

Failure Modes and Effects Analysis - Worksheets
System ________________
Mission ________________

Remarks
Failure 
Cause

Fig. 4. The format of a row in the FMEA worksheet as defined in our reference context

Our model plays a fundamental role in automatizing the worksheet produc-
tion process, since part of the concepts contained in the ontology stands for
data categories contained in the worksheet. For instance, Item, Functionality,
Failure Mode, Operation Mode, Failure Effects correspond to classes of the on-
tology, while Item Number, Failure Cause, Severity, Failure Detection Method,
Compensating Provisions, Corrective Actions, Remarks correspond to proper-
ties. Thanks to a query language as SPARQL the ontology can be queried to
extract the concepts’ instances to fill the worksheet. As far as the ontology is
concerned, this is written in OWL and organized as triples (or statements) in
the form of 〈subject,predicate,object〉, where subject is the concept described by
the triple, predicate describes a relationship between subject and object which,
in turn, is a concept as well.

Listing 1.1 shows the SPARQL query generating the Detailed Functional
FMEA worksheet concerning the SW components of the system. The SELECT

clause identifies the variables used to indicate the data to be extracted, while
the WHERE clause defines the pattern to be matched against the OWL structure.
The list of triples in the WHERE clause represents a logical conjunction.

3.2 Assuring the SW Development through Reasoning

In the SW-DAL Evaluation the objective is verifying whether or not SW com-
ponent implementation attains the required level of assurance specified by the
SW-DAL. This is done through validation of a set of predicates on the values of
structural and non structural parameters. For example, considering two relevant
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SELECT ?idComponent ?component ?functionality ?failureMode ?failureCause
?opMode ?failureEffect ?detMethod ?severityLevel ?compProv ?corrAct
?remarks

WHERE { ?component rdf:type <urn:ramses#SWComponent > .
?component <urn:ramses#hasItemId > ?idComponent .
?component <urn:ramses#hasFunctionality > ?functionality .
?functReq <urn:ramases #isImplementedBy > ?component .
?functReq <urn:ramses#isInOperationMode> ?opMode .
?functionality <urn:ramses#hasFailureMode > ?failureMode .
?failureCause <urn:ramses #isCausesOf > ?failureMode .
?failureMode <urn:ramses #hasEffect > ?failureEffect .
?failureMode <urn:ramses #hasSeverityLevel > ?severityLevel .
?failureMode <urn:ramses #hasDetectionMethod> ?detMethod .
?failureMode <urn:ramses #hasCompensatingProvision> ?compProv .
?failureMode <urn:ramses #hasCorrectiveAction> ?corrAct .
?failureMode <urn:ramses #hasRemarks > ?remarks }

Listing 1.1. A SPARQL query producing a result set comprising the values for the
construction of the SW-FMEA woksheet

parameters in our reference context (i.e. McCabe’s cyclomatic complexity and
testing coverage), the corresponding set of predicates relative to the SW-DAL
associated with the criticality value c of a functional requirement f takes the
following form:

Pc,f = {CC < 5, TC = “all edges”}

where CC stands for the McCabe’s cyclomatic complexity and TC stands for the
testing coverage. CC, TC, 5, and “all edges” are instances of the classes SW Pa-
rameter, Prevention Mitigation, SW Parameter Accountability, and Prevention
Mitigation Accountability, respectively (Fig. 3). Now, if all the SW components
contributing to the realization of a functional requirement f , and not implement-
ing a functional requirement with a criticality value greater than c, are realized
with a cyclomatic complexity less than 5 and are tested with all edges cover-
age, then the required SW-DAL is attained and f is considered to be rigorously
implemented.

4 Practical Experimentation in an Industrial Context

The ontological organization has been directly captured in a tool, calledRAMSES
(Reliability Availability Maintainability and Safety Engineering Semantics), re-
sorting to well-established semantic web technologies. RAMSES provides several
functionalities: it enables the collection of concepts in SW-FMEA projects export-
ing and importing them in OWL format; it automatically produces worksheets
with information required by standards; it enables the verification of the level of
assurance attained in the SW development.

Specifically, we experimented the feasibility of the methodology and the effec-
tiveness of the tool within the project of the APS Autonomous Star TRacker SW
(AASTR SW), a star tracker developed by Selex Galileo for the Bepi Colombo
Mission under the control of Astrium Space Deutschland (ASD) and ESA.
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Fig. 5. Screenshot showing the tool interface provided to enter a new instance of Func-
tional Requirement in the ontological model

The tool provides an easy to use interface guiding the user through the pro-
cess outlined in Sect. 2. During the Top Level Functional FMEA, instances of
concepts illustrated in Sect. 2.2, are derived from artifacts and documents as
described in Sect. 3 and inserted in the ontological model through the tool in-
terface. For example, Fig. 5 shows the screenshot of the interface for entering
Functional Requirements instances. Once data have been loaded, severity lev-
els of failures and criticality values of functional requirements are automatically
computed by the reasoner, starting from severity levels of effects and critical-
ity values of operation modes. This results in the screenshot of Fig. 6, where
functional requirements whose criticality is greater than a given value are high-
lighted.

The Detailed Functional FMEA proceeds with the insertion of concepts, il-
lustrated in Sect. 2.3 and related to the SW architecture. For each SW compo-
nent the tool is able to derive the required SW-DAL according to the criticality
value of implemented requirements and to automatically generate the SW-FMEA
worksheet using the query of Listing 1.1.

In the SW-DAL Evaluation, instances of concepts, shown in Fig. 3 and re-
lated to structural and process parameters, are added to the ontology. In the
AASTR project, the considered metrics are those reported at the end of Sect.
2.4. However, new metrics can be dynamically added by the user. For each SW
component, the reasoner controls that the inserted values of structural and pro-
cess parameters satisfy predicates of the related SW-DAL.

Fig. 6 shows a screenshot with the list of functional requirements and their
description, coming from previous phases of the process. On the right hand,
the Assurance column is filled with the result of the SW-DAL Evaluation: if
the level of assurance requested in the implementation of a requirement has not
been attained, a warning signal is visualized in the column. In this way the tool
indicates that a deeper effort should be done in the development of the SW
components implementing that requirement.
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Fig. 6. Screenshot showing the (intermediate) results of SW-DAL Evaluation. Func-
tional requirements whose criticality is greater than a given value are highlighted. On
the right column, warning signals indicate a violation of the required SW-DAL of some
SW components implementing the corresponding requirement.

5 Conclusions

We proposed a methodology that formalizes concepts and data involved in SW-
FMEA process, giving them a precise semantics. The various SW-FMEA con-
cepts scattered along the development life-cycle and possibly contributed by
different parties, are captured by an ontological model robust enough to enable
their consistent organization and automated processing. The methodology can
be effectively tailored to different structures of the development life-cycle and to
the requirements of specific regulatory standards, leveraging on the extensibility
and the manageability provided by the ontological architecture.

The proposed framework allows the accomplishment of many effort-expensive
activities, including the production of worksheets as required by certification
standards. Furthermore, through the application of reasoning tools, the approach
enables the identification of the most critical requirements, permitting to verify
the level of rigor attained in their implementation.

The formalized model was integrated in a web application, called RAMSES,
built on top of well-established semantic-web technologies and standards. Ex-
perimentation in an industrial context has proved feasibility and effectiveness
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of both the approach and the tool, showing improvements on the SW-FMEA
practices.
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Abstract. This paper introduces a novel approach to failure prediction
for mission critical distributed systems that has the distinctive features to
be black-box, non-intrusive and online. The approach combines Complex
Event Processing (CEP) and Hidden Markov Models (HMM) so as to
analyze symptoms of failures that might occur in the form of anomalous
conditions of performance metrics identified for such purpose. The paper
describes an architecture named CASPER, based on CEP and HMM,
that relies on sniffed information from the communication network of a
mission critical system, only, for predicting anomalies that can lead to
software failures. An instance of CASPER has been implemented, trained
and tuned to monitor a real Air Traffic Control (ATC) system. An ex-
tensive experimental evaluation of CASPER is presented. The obtained
results show (i) a very low percentage of false positives over both normal
and under stress conditions, and (ii) a sufficiently high failure prediction
time that allows the system to apply appropriate recovery procedures.

1 Introduction

Context and Motivation.Distributed mission critical systems such as air traf-
fic control, battlefield or naval command and control systems consist of several
applications distributed over a number of nodes connected through a LAN or
WAN. The applications are constructed out of communicating software compo-
nents that are deployed on those nodes and may change over time. The dynamic
nature of applications is principally due to (i) the employed policies for resilience
to software or hardware failures, (ii) the adopted load balancing strategies or (iii)
the management of new comers. In such complex real time systems, failures may
happen with potentially catastrophic consequences for their entire functioning.
The industrial trend is to face failures by using, during operational system life,
supervision services that are not only capable of detecting and certificating a
failure, but also predicting and preventing it through an analysis of the overall
system behavior. Such services shall have a minimum impact on the supervised
system and possibly no interaction with the operational applications. The goal
is to plug-in a “ready-to-use observer” that acts at run time and is both non-
intrusive and black-box, i.e., it considers nodes and applications as black boxes.
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In mission critical systems, a large amount of data deriving from communica-
tions among applications transits on the network; thus, the ”observer” can focus
on that type of data, only, in order to recognize many aspects of the actual in-
teractions among the components of the system. The motivation to adopt this
non-intrusive and black-box approach is twofold. Firstly, applications change
and evolve over time: grounding failure prediction on the semantic of the appli-
cations’ communications would require a deep knowledge of the specific system
design, a proven field experience, and a non-negligible effort to keep aligned the
supervision service to the controlled system. Secondly, interactions between the
service and system to be monitored might lead to unexpected behaviors, hardly
manageable as fully unknown and unpredictable.

Contribution. In this paper we introduce the design, implementation and ex-
perimental evaluation of a novel online, non-intrusive and black-box failure pre-
diction architecture we named CASPER that can be used for monitoring mission
critical distributed systems. CASPER is (i) online, as the failure prediction is
carried out during the normal functioning of the monitored system, (ii) non-
intrusive, as the failure prediction does not use any kind of information on the
status of the nodes (e.g., CPU, memory) of the monitored system; only infor-
mation concerning the network to which the nodes are connected is exploited
as well as that regarding the specific network protocol used by the system to
exchange information among the nodes (e.g., SOAP, GIOP); and (iii) black-box,
as no knowledge of the application’s internals and of the application logic of the
system is analyzed. Specifically, the aim of CASPER is to recognize any devi-
ation from normal behaviors of the monitored system by analyzing symptoms
of failures that might occur in the form of anomalous conditions of specific per-
formance metrics. In doing so, CASPER combines, in a novel fashion, Complex
Event Processing (CEP) [1] and Hidden Markov Models (HMM) [2]. The CEP
engine computes at run time the performance metrics. These are then passed
to the HMM in order to recognize symptoms of an upcoming failure. Finally,
the symptoms are evaluated by a failure prediction module that filters out as
many false positives as possible and provides at the same time a failure pre-
diction as early as possible. Note that we use HMM rather than other more
complex dynamic bayesian networks [3] since it provides us with high accu-
racy, with respect to the problem we wish to address, through simple and low
complexity algorithms. We deployed CASPER for monitoring a real Air Traffic
Control (ATC) system. Using the network data of such a system in the presence
of both steady state performance behaviors and unstable state behaviors, we
first trained CASPER in order to stabilize HMM and tune the failure prediction
module. Then we conducted an experimental evaluation of CASPER that aimed
to show its effectiveness in timely predicting failures in the presence of memory
and I/O stress conditions.

Related Work. A large body of research is devoted to the investigation of
approaches to online failure prediction. [4] presents an error monitoring-based
failure prediction technique that uses Hidden Semi-Markov Model (HSMM) in
order to recognize error patterns that can lead to failures. This approach is
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event-driven as no time intervals are defined: the errors are events that can
be triggered anytime. [5] describes two non-intrusive data driven modeling ap-
proaches to error monitoring: one based on a Discrete Time Markov Model, and
a second approach based on function approximation. The difference between
our approach and these works is twofold: firstly we propose a symptoms mon-
itoring system in contrast to error monitoring, moreover, our approach is not
event-based but it can be defined period-based [6] as we use Hidden Markov
Models (discrete time) to recognize, in the short term, patterns of specific per-
formance metrics exhibiting the evidence of symptoms of failures. In the context
of symptoms monitoring mechanisms, there exist research works that use black-
box approaches [7]. [8] presents ALERT; an anomaly prediction system that
considers the hosts of the monitored system as black-boxes and that collects
metrics concerning CPU consumption, memory usage, input/output data rate.
The authors in [9] consider the problem of discovering performance bottlenecks
in large scale distributed systems consisting of black-box software components.
The system introduced in [9] solves the problem by using message-level traces
related to the activity of the monitored system in a non-intrusive fashion (pas-
sively and without any knowledge of node internals or semantics of messages).
[10] analyzes the correlation in time and space of failure events and implements
a long-term failure prediction framework named hPrefects for such a purpose.

We differ from the earlier mentioned works as we employ an approach that
is not only black-box but also non-intrusive. It is true that we use message-
level traces as [9]; however, we combine in a novel fashion both CEP for network
performance metrics computation and HMM to infer the system state. Note that
typically HMM is widely used in failure prediction to build a components’ state
diagnosis [11]. In our architecture the entire system state is modeled as a hidden
state and thus inferred by HMM.

Finally, there exist other types of researches [12] that apply online failure
prediction to distributed stream processing systems, mostly using decision tree
and classifiers. We do not specifically target these systems, and we use different
techniques (CEP and HMM) to predict failures.

Structure of the Paper. Section 2 presents the failure and prediction model
we adopt in the design of CASPER described in section 3. Section 4 introduces
CASPER implementation for a real ATC mission critical system. Section 5 dis-
cusses the experimental evaluation of CASPER we have conducted in ATC.
Finally, section 6 concludes the paper highlighting our future works.

2 Failure and Prediction Model

We model the distributed system to be monitored as a set of nodes that run
one or more services. Nodes exchange messages over a communication network.
Nodes or services can be subject to failures. A failure is an event for which
the service delivered by a system deviates from its specification [13]. A failure
is always preceded by a fault (e.g., I/O error, memory misusage); however, the
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vice versa might not be always true. i.e., a fault inside a system could not always
bring to a failure as the system could tolerate, for example by design, such fault.

Faults that lead to failures, independently of the fault’s root cause, affect the
system in an observable and identifiable way. Thus, faults can generate side-
effects in the monitored systems till the failure occurs. Our work is based on the
assumptions that a fault generates increasingly unstable performance-related
symptoms indicating a possible future presence of a failure, and that the system
exhibits a steady-state performance behavior with a few variations when a non-
faulty situation is observed [14,15,7]. In Figure 1 we define Time-to-failure the
distance in time between the occurrence of the prediction and the software failure
event. The prediction has to be raised before a time Limit, beyond which the
prediction is not sufficiently in advance to take some effective actions before
the failure occurs. We also consider the time-to-prediction which represents the
distance between the occurrence of the first symptom of the failure and the
prediction.

3 The CASPER Failure Prediction Architecture

The architecture designed is named CASPER and is deployed in the same sub-
network as the distributed system to be monitored. Figure 2 shows the principal
modules of CASPER that are described in isolation as follows.

Pre-processing Module. It is mainly responsible for capturing and decod-
ing network data required to recognize symptoms of failures and for producing
streams of events. The network data the Pre-Processing module receives as input
are properly manipulated. Data manipulation consists in firstly decoding data
included in the headers of network packets. The module manages TCP/UDP
headers and the headers of the specific inter-process communication protocol
used in the monitored system (e.g., SOAP, GIOP, etc) so as to extract from
them only the information that is relevant in the detection of specific symptoms
(e,g., the timestamp of a request and reply, destination and source IP addresses
of two communicating nodes). Finally, the Pre-Processing module adapts the
extracted network information in the form of events to produce streams for the
use by the second CASPER’s module (see below).
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Symptoms Detection Module. The streams of events are taken as input
by the Symptoms detection module and used to discover specific performance
patterns through complex event processing (i.e., event correlations and aggrega-
tions). The result of this processing is a system state that must be evaluated in
order to detect whether it is a safe or unsafe state. To this end, we divided this
module into two different components, namely a performance metrics computa-
tion component and a system state inference component.

The performance metrics computation component uses a CEP engine for cor-
relation and aggregation purposes. It then periodically produces as output a rep-
resentation of the system behavior in the form of symbols. Note that, CASPER
requires a clock mechanism in order to carry out this activity at each CASPER
clock cycle. The clock in CASPER allows it to model the system state using a
discrete time Markov chain and let the performance metrics computation com-
ponent coordinate with the system state inference one (see below). The represen-
tation of the system behavior at run time is obtained by computing performance
metrics, i.e., a set of time-changing metrics whose value indicates how the system
actually works (an example of network performance metric can be the round trip
time). In CASPER we denote symbols as σm (see Figure 3), wherem = 1, . . . ,M .
Each symbol is built by the CEP engine starting from a vector of performance
metrics: assuming P performance metrics, at the end of the time interval (i.e.
the clock period), the CEP engine produces a symbol combining the P values.
The combination of performance metrics is the result of a discretization and a
normalization: each continuous variable is discretized into slots of equal lengths.
The produced symbol represents the system status during the clock period1.

The system state inference component receives a symbol from the previous
component at each CASPER clock cycle and recognizes whether it is a correct or
an incorrect behavior of the monitored system. To this end, the component uses
the Hidden Markov Models’ forward probability [2] to compute the probability
that the model is in a given state using a sequence of emitted symbols and a
knowledge base(see Figure 2). We model the system state to be monitored by
means of the hidden process. We define the states of the system (see Figure 3)
as Safe, i.e., the system behavior is correct as no active fault [13] is present; and
Unsafe, i.e., some faults, and then symptoms of faults, are present.

Failure Prediction Module. It is mainly responsible for correlating the infor-
mation about the state received from the system state inference component of

1 For further details please refer to the technical report [16].



190 R. Baldoni et al.

the previous CASPER module. It takes in input the inferred state of the system
at each CASPER clock-cycle. The inferred state can be a safe state or one of the
possible unsafe states. Using the CEP engine, this module counts the number of
consecutive unsafe states and produces a failure prediction alert when that num-
ber reaches a tunable threshold (see below). We call this threshold window size,
a parameter that is strictly related to the time-to-prediction shown in Figure 1.

3.1 Training of CASPER

The knowledge base concerning the possible safe and unsafe system states of the
monitored system is composed by the parameters of the HMM. This knowledge is
built during an initial training phase. Specifically, the parameters are adjusted by
means of a training phase using the max likelihood state estimators of the HMM
[2]. During the training, CASPER is fed concurrently by both recorded network
traces and a sequence of pairs <system-state,time>. Each pair represents the
fact that at time <time> the system state changed in <system-state>2.

3.2 Tuning of CASPER Parameters

CASPER architecture has three parameters to be tuned whose values influence
the quality of the whole failure prediction mechanism in terms of false positives
and time-to-prediction. These values are (i) the length of the CASPER clock pe-
riod ; (ii) the number of symbols output by the performance metrics computation
module; (iii) the length of the failure prediction, i.e., window size.

The length of the clock period influences the performance metrics computa-
tion and the system state inference: the shorter the clock period is, the higher
the frequency of produced symbols is. A longer clock period allows CASPER to
minimize the effects of outliers. The number of symbols influences the system
state inference: if a high number of symbols is chosen, a higher precision for each
performance metrics can be obtained. The failure prediction window size corre-
sponds to the minimum number of CASPER clock cycles required for raising a
prediction alert. The greater the window size, the more the accuracy of the pre-
diction, i.e., the probability that the prediction actually is followed by a failure
(i.e. a true positive prediction). The tradeoff is that the time-to-prediction in-
creases linearly with the windows size causing shorter time-to-failure (see Figure
1); During the training phase, CASPER automatically chooses the best values
for both clock period and number of symbols, leaving to the operator the re-
sponsibility to select the windows size according to the criticality of the system
to be monitored.

4 Monitoring a Corba-Based ATC System with CASPER

CASPER has been specialized to monitor a real Air Traffic Control system.
ATC systems are composed by middleware-based applications running over a

2 As the training is offline, the sequence of pairs <system-state,time> can be created
offline by the operator using network traces and system log files.
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collection of nodes connected through a Local Area Network (LAN). The ATC
system that we monitored is based on CORBA [17] middleware. CASPER inter-
cepts GIOP messages produced by the CORBA middleware and extracts several
information from themin order to build the representation of the system at run
time. In this section we describe how the events are represented starting from
the GIOP messages and how the performance metrics representing the system
state are computed.

Event Representation. Each GIOP message intercepted by CASPER becomes
an event feeding the CEP engine of the performance metrics computation com-
ponent. Each event contains (i)Request ID : The identifier of a request-reply
interaction between two CORBA entities; (ii)Message Type: A field that charac-
terizes the message and that can assume different values (e.g., Request, Reply,
Close Connection) and (iii)Reply Status : It specifies whether there were excep-
tions during the request-reply interaction and, if so, the kind of the exception. In
addition, we insert into the event further information related to the lower level
protocols (TCP/UDP) such as source and destination IP, port, and timestamp.
In order not to capture sensitive information of the ATC system (such as flight
plans or routes), CASPER ignores the payload of the messages.

Performance Metrics. Events sent to the CEP engine are correlated online
so as to produce so-called performance metrics. After long time of observations
of several metrics of the ATC CORBA-based system, we identified the following
small set of metrics that well characterize the system, showing a steady behavior
in case of absence of faults, and an unstable behavior in presence of faults:

– Round Trip Time: elapsed time between a request and the relative reply;
– Rate of the messages carrying an exception: the number of reply messages

with exception over the number of caught messages;
– Average message size: the mean of the messages size;
– Percentage of Replies: the number of replies over the number of requests in

a given spatial or temporal window;
– Number of Requests without Reply: the number of requests expecting a reply

that do not receive the reply;
– Messages Rate: the number of messages exchanged in a fixed time.

To compute the performance metrics we correlate the sniffed network data using
the CEP engine ESPER [1]. This choice is motivated by its low cost of ownership
compared to other similar systems (e.g. [18]) and its offered usability.

5 CASPER Experimental Evaluation

We deployed CASPER so as to monitor an Air Traffic Control system of Selex
Sistemi Integrati, one of the major players of the ATC market. The first part of
the work on the field has been to collect a large amount of network traces from
the ATC underlying communication network when in operation. These traces
represented steady state performance behaviors. Additionally, on the testing
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environment of the ATC system we stressed some of the nodes till achieving
software failure conditions, and we collected the relative traces. In our test field,
we consider one of the nodes of the ATC system to be affected by either Memory
or I/O stress (according to the experience of the ATC designers, these two stress
conditions are typical of the observed system). After collecting all these traces,
we trained CASPER. At end of the training phase, we deployed CASPER again
on the testing environment of the ATC system in order to conduct experiments
in operative conditions. Our evaluation assesses the system state inference com-
ponent accuracy and the failure prediction module accuracy. In particular, we
evaluate the former in terms of Ntp (number of true positives) the system state is
unsafe and the inferred state is “system unsafe”; Ntn (number of true negatives):
the system state is safe and the inferred state is “system safe”; Nfp (number of
false positive): the system state is safe but the inferred state is “system unsafe”;
and Nfn (number of false negatives): the system state is unsafe but the inferred
state is “system safe”. Using these parameters, we compute the following metrics
that define the accuracy of CASPER: We evaluate the latter module in terms

Precision: p =
Ntp

Ntp+Nfp
Recall (TP rate): r =

Ntp

Ntp+Nfn

F-measure: F = 2× p×r
p+r

FP Rate: f.p.r. =
Nfp

Nfp+Ntn

of Nfp (number of false positive): the module predicts a failure that is not actu-
ally coming and Nfn (number of false negatives): the module does not predict a
failure that is coming.

Testbed. We deployed CASPER in a dedicated host located in the same LAN
as the ATC system to be monitored (see Figure 2). This environment is actually
the testing environment of the ATC system where new solutions are tested before
getting into the operational ATC system. The testing environment is composed
by 8 machines, 16 cores 2.5 GHz CPU, 16 GB of RAM each one. It is important
to remark that CASPER does not know the application nor the service logic nor
the testbed details.

5.1 Faults and Failures

The ATC testbed includes two critical servers: one of the server is responsible
for disk operations (I/O) and another server is the manager of all the services.
In order to induce software failures in the ATC system, we apply the following
actions in such critical servers: (i)memory stress ; that is, we start a memory-
bound component co-located with the manager of all ATC services, to grab
constantly increasing amount of memory resource; (ii)I/O stress ; that is, we
start an I/O-bound component co-located with the server responsible for disk
operations, to grab disk resources. In both cases we brought the system to the
failure of critical services. During the experiment campaign, we also considered
the CPU stress; however, we discovered that due to the high computational
power of the ATC nodes, the CPU stress never causes failures. For this reason
we decided not to show the results of these tests.
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5.2 Results

The results are divided in three subsections: the training of CASPER, the tuning
of the parameters (both before the deployment), and the failure prediction eval-
uation (using network traces and deploying the system). We considered three
performance metrics: Number of request without reply, Round Trip Time and
Message Rate, the more influenced by the stress conditions.

Training of CASPER.We trained CASPER (see Section 3.1) using the follow-
ing two types of recorded traces: a type of trace between 10 and 13 minute long
(5 traces in total) in which the ATC system exhibits a steady-state behavior.
These traces are taken from the ATC system when in operation; and a second
type of trace between 10 and 11 minute long (4 traces per each kind of injected
stress, i.e., memory and I/O stress) in which one of the services of the ATC
system fails. These traces are taken from ATC system’s testing environment.
During the training phase, the performance metrics computation component
produces a symbol at each CASPER clock cycle. Thanks to the set of pairs
<system-state,time> we are able to represent the emitted symbols in case of
safe and unsafe system states. Figure 4 illustrates these symbols. Each symbol
is calculated starting from a combination of three values. In this case, we have 6
possible values per each performance metric; the number of different symbols is
therefore 6× 6× 6 = 216. Observing Figure 4 we can notice that the majority of
the emissions belong to the interval [0, 2] for the Round Trip Time, and [0, 1] for
Number of Request Without Reply and Message Rate. Starting from the symbols
represented in Figure 4, the HMM-based component builds its knowledge base.

Tuning of CASPER Parameters: Clock Period and Number of
Symbols. After the training of HMM, CASPER requires a tuning phase to
set the clock period and number of symbols in order to maximize the accuracy
(F-measure, precision, recall and false positive rate) of the symptoms detection
module output. This tuning phase is done by feeding the system with a recorded
network trace (different from the one used during the training). We can see that
the best choice of the clock period is 800 milliseconds. CASPER tries 4 different
values of clock (100ms, 300ms, 800ms, 1000ms) and compute the F-Measure for
each value and for each possible number of symbols. A clock period of 800 mil-
liseconds yields a higher F-Measure value than the other clock values in most of
the number of symbols considered, thus, CASPER set the clock period to 800
milliseconds. Once fixed this clock period, the second parameter to define is the
number of symbols. Figure 5 shows the precision, recall, F-measure and false
positive rate of the symptoms detection module varying the number of sym-
bols. CASPER considers the maximum difference between the F-measure and
the false positive rate in order to choose the ideal number of symbols (ideally,
F-measure is equal to 1 and f.p.r. to 0). As shown in Figure 5, considering 216
symbols (6 values per performance metric) we obtain F = 0.82 and f.p.r. = 0.12
which is actually the best situation in case of memory stress.

Tuning of CASPER Parameters: Window Size. The window size is the
only parameter that has to be tuned by the operator according to the tradeoff
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discussed in Section 3.2. We experimentally noticed that during fault-free execu-
tions the system state inference still produced some false positives. However, the
probability that there exists a long sequence of false positives in steady-state is
very low. Thus, we designed the failure prediction module to recognize sequences
of consecutive clock cycles whose inferred state is not safe. Only if the sequence
is longer than a certain threshold CASPER rises a prediction. The length of
these sequences multiplied by the clock period (set to 800ms) is the window size.
The problem is then to set up a reasonable threshold in order to avoid false
positive predictions during steady-state. Figure 6 illustrates the number of the
false positive varying the window size. From this Figure it can be noted that
the window size has to be set to at least 16 seconds in order not to incur in
any false positives. Let us remark that the window size also corresponds to the
minimum time-to-prediction. All the results presented below are thus obtained
using a window size of 16 seconds.

Results of CASPER Failure Prediction. We run two types of experiments
once CASPER was trained and tuned. In the first type, we injected the faults
described in section 5.1 in the ATC testing environment and we carried out 10
tests for each type of fault3. In the second type, we observed the accuracy of
CASPER when monitoring for 24h the ATC system in operation. These types
of experiments and their related results are discussed in order as follows. As
first test, we injected a memory stress in one of the node of the ATC system
till a service failure. Figure 7 shows the anatomy of this failure in one test.
The ATC system runs with some false positive till the time the memory stress
starts at second 105. The sequence of false positives starting at second 37 is not
sufficiently long to create a false prediction. After the memory stress starts, the
failure prediction module outputs a prediction at second 128; thus, the time-to-
prediction4 is 23s. The failure occurs at second 335, then the time-to-failure is
207s, which is satisfactory with respect to ATC system recovery requirements. A
failure caused by I/O stress happens after 408 seconds from the start of the stress
(at second 190) and has been predicted at time 222 after 32 seconds of stress,
with a time-to-prediction equal to 376 seconds before the failure. In general,
we obtained that in the 10 tests we carried out, the time-to-failure in case of
memory stress varied in the range of [183s, 216s] and the time-to-prediction in
the range of [20.8s, 27s]. In case of I/O stress, in the 10 tests, the time-to-failure
varied in the rage of [353s, 402s] whereas the time-to-prediction in the range
of [19.2s, 24.9s]. Finally, we performed a 24h test deploying CASPER on the
network of the ATC system in operation. In these 24 hours the system exhibited
steady-state performance behavior. CASPER did not produce any false positive
along the day. Figure 8 depicts a portion of 400 seconds of this run.

3 The number of tests was limited by the physical access to the ATC testing environ-
ment. In fact, every experiment takes actually 2 hours to be completed due to data
storage, the stabilizing and rebooting of the ATC system after the failure.

4 The prediction time depends on how the system reacts to the injected stress and on
the injected stress itself.
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6 Conclusions and Future Work

We presented an architecture to predict online failures of mission critical dis-
tributed systems. The failure prediction architecture, namely CASPER, pro-
vides accurate predictions of failures by exploiting only the network traffic of
the monitored system. In this way, it results non intrusive with respect to the
nodes hosting the mission critical system and it executes a black-block failure
prediction as no knowledge concerning the layout and the logic of the mission
critical distributed system is used. To the best of our knowledge, this is the first
failure detection system exhibiting all these features together. Let us remark
that the black-box characteristic has a strategic value for a company developing
such systems. Indeed from a company perspective the approach is succeeding
as long as the failure prediction architecture is loosely bound to the application
logic as this logic evolves continuously over time. This non intrusiveness of our
approach has the advantage that no additional load to the monitored system is
introduced and it can be applied in all the existing middleware based systems
without modifications of the architecture. As future work we are developing a
CASPER version capable of executing online training. i.e., the training is done
just connecting to the monitored system without any human intervention. This
will make CASPER a complete “plug-and-play” failure prediction system. The
advantage of the online training solution is that CASPER can analyze a huge
amount of network data. The disadvantage is that the training phase can last
for long time as CASPER does not have any external clue concerning the safe
or faulty system state.
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Abstract. Technology scaling of integrated circuits is making transistors in-
creasingly sensitive to process variations, wear-out effects and ionizing par-
ticles. This may lead to an increasing rate of transient and intermittent errors in 
future microprocessors. In order to assess the risk such errors pose to safety 
critical systems, it is essential to investigate how temporary errors in the in-
struction set architecture (ISA) registers and main memory locations influence 
the behaviour of executing programs. To this end, we investigate – by means of 
extensive fault injection experiments – how such errors affect the execution of 
four target programs. The paper makes three contributions. First, we investigate 
how the failure modes of the target programs vary for different input sets. 
Second, we evaluate the error coverage of a software-implemented hardware 
fault tolerant technique that relies on triple-time redundant execution, majority 
voting and forward recovery. Third, we propose an approach based on assembly 
language metrics which can be used to correlate the dynamic fault-free beha-
viour of a program with its failure mode distribution obtained by fault injection.    

Keywords: microprocessor faults, fault injection, dependability assessment, 
software-implemented hardware fault tolerance, failure mode distributions. 

1 Introduction  

Technology and voltage scaling is making transistors increasingly susceptible to 
process variations, wear-out effects, and ionizing particles [ 1]. This is expected to  
in-crease the rate of transient, intermittent and permanent transistors faults in future 
integrated circuits. Modern microprocessors are therefore being equipped with increa-
singly sophisticated hardware mechanisms for fault tolerance, error masking and error 
detection. However, since such mechanisms cannot provide perfect error coverage, 
and due to the fact that the number of transistors per chip is steadily increasing, it is 
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likely that future microprocessors will exhibit an increasing rate of incorrect program 
executions caused by hardware related errors. 

A cost-effective way of reducing the risk that such incorrect program executions 
cause unacceptable or catastrophic system failures is to introduce a layer of software-
implemented error handling mechanisms. Numerous software techniques for detecting 
and masking hardware errors have previously been proposed in the literature [ 2,  3]. 
The effectiveness of these techniques are often evaluated, or benchmarked, by means 
of fault injection experiments that measure their ability to detect or mask single or 
multiple bit errors (bit flips) in CPU registers and main memory [ 4]. Bit flipping is 
used to emulate the effect of single event upset (SEU) errors caused by ionizing par-
ticles. The error coverage for software-implemented error handling techniques often 
depends on the input processed by the target system. Thus, to assess the variability in 
error coverage, it is essential to conduct fault injection experiments with different 
inputs [ 5,  6]. 

This paper presents the results of extensive fault injection experiments with four 
programs where single bit errors were injected in CPU registers and main memory of 
the target systems. The aim of the study is to investigate how error coverage varies for 
different inputs. We conducted experiments with programs protected by triple-time 
redundant execution with forward recovery [ 7], and programs without software-
implemented hardware fault tolerance (SIHFT). In addition, we propose a technique 
for identifying input sets that are likely to cause the measured error coverage to vary. 

The remainder of the paper is organized as follows. We describe the target work-
loads in Section  2 and the TTR-FR mechanism in Section  3. The fault injection expe-
rimental setup is described in Section  4. The analysis of the extensive fault injections 
conducted on the workloads with/without TTR-FR mechanism is presented in Section 
 5. Based on the obtained results, we present the input selection approach in Section  6. 

2 Target Workloads 

In this section, we present the four workloads used in our set of experiments: secure 
hash algorithm (SHA), cyclic redundancy check (CRC), quick sort (Qsort), and binary 
string to integer convertor (BinInt). SHA is a cryptographic hash function which ge-
nerates a 160-bit message digest. We use SHA-1 algorithm which is adopted in many 
security protocols and applications such as SSL, SSH and IPsec. The CRC that we use 
is a software implementation of CRC 32-bit polynomial which is mostly used to cal-
culate the end-to-end checksum. Qsort is a recursive implementation of the well-
known quick sort algorithm, which is also used as a target program for fault injection 
experiments in [ 6,  8]. Finally, BinInt converts an ASCII binary string, 1s and 0s, into 
its equivalent integer value. 

Even though the implementation of our workloads can be found in the MiBench 
suite [ 9], we only take CRC and BinInt from this suite. For the quick sort algorithm, 
the MiBench implementation uses a built-in C function named qsort whose source 
code is not available. This prevents us from performing detailed analysis. Further-
more, the MiBench implementation of SHA uses dynamic memory allocation which 
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is not necessary for an embedded system. Thus, we adopt another implementation of 
SHA1. The structure of these synthetic workloads profoundly differs in terms of lines 
of source code (LOC), number of functions, input types and executed assembly in-
structions. BinInt is the smallest workload with 7 LOC and is made of one function 
with one loop, whereas SHA measures 125 LOC and has 5 functions.  

2.1 Input Sets 

Nine different inputs are selected for each workload. The combination of an input and 
a workload is called an execution flow. Thus, for each workload, we have conducted 
experiments for 9 execution flows. On the basis of the length of the inputs, we group 
SHA and CRC execution flows into three categories of small, medium, and large 
inputs, see Table 1. These categories are chosen to represent input lengths that are 
common in real applications. For Qsort, the input vector consists of 6 integers. The 
execution flows use the same 6 integers with different permutations. In this way, the 
inputs cover a range of possibilities, including sorted, mostly sorted, partly sorted, and 
unsorted, see Table 2. The input of BinInt is a random string of 1s and 0s. Since an 
integer is a 32-bit data type, the length of the input string is limited to 32 characters. 

Table 1. The input space for CRC (left table) and SHA (right table) execution flows 

Category Input length 
(characters) 

Execution flow  Category Input length 
(characters) 

Execution flow 

Small 

0 CRC-1  
Small 

0 SHA-1 

1 CRC-2  1 SHA-2 

2 CRC-3  2 SHA-3 

Medium 
10 CRC-4 & CRC-5  

Medium 
10 SHA-4 & SHA-5 

46 CRC-6 & CRC-7  60 SHA-6 & SHA-7 

Large 99 CRC-8 & CRC-9  Large 99 SHA-8 & SHA-9 

Table 2. The input space for Qsort (left table) and BinInt (right table) execution flows 

Category 
# of sorted 

elements 
Execution flow Category 

Input length  

(characters) 
Execution flow 

Sorted 6 Qsort-1 Small 
0 BinInt-1 

9 
BinInt-2 & 

BinInt-3 

Mostly 
sorted 

4 Qsort-2 & Qsort-3 

Medium 

16 
BinInt-4 & 

BinInt-5 

Partly 
sorted 

3 Qsort-4 & Qsort-5 
24 

BinInt-6 & 
BinInt-7 2 Qsort-6 & Qsort-7 

Unsorted 0 Qsort-8 & Qsort-9 Large 31 
BinInt-8 & 

BinInt-9 

                                                           
1  http://www.dil.univ-mrs.fr/~morin/DIL/tp-crypto/sha1-c 
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3 Software-Implemented Hardware Fault Tolerance (SIHFT) 

In addition to the basic version of the workloads, we conducted experiments on the 
triple time redundant execution with forward recovery (TTR-FR) [ 7]. In TTR-FR, the 
target workload is executed three times and the result of each run is compared with 
the other two runs using a software-implemented voter. If only one run of the program 
generates a different output, the output of the other two runs will be selected (majority 
voting). In case the workload is state-full, the state of the faulty run moves forward to 
a fault-free point (forward recovery). If none of the outputs match, then error detec-
tion is signaled. 

The non-fault tolerance version of the workloads consists of three major code 
blocks; startup, main function, and core function. In the TTR-FR implementation we 
add the voter to the main function to perform the majority voting. The core function, 
which is called three times from the main function, performs the foremost functionali-
ty of each workload. As an example, in Qsort, the sorting procedure is done in the 
Qsort’s core function, whereas in CRC, the core function is responsible for the check-
sum calculations. 

4 Experimental Setup and Fault Model 

The workloads are executed on a Freescale MPC565 microcontroller, which uses the 
PowerPC architecture. Faults are injected into the microcontroller via a Nexus debug 
interface using Goofi-2 [ 10], a tool developed in our research group. This environ-
ment allows us to inject faults, bit flips, into instruction set architecture (ISA) regis-
ters and main memory of the microcontroller. Ideally, the fault model to adopt for this 
evaluation should exhibit real faults, i.e., it should account for multiple and single bit 
flips. However, there is no commonly agreed model for multiple bit flips. Thus, we 
adopt the single bit flip model as it has been done in other studies [ 11,  2,  3,  10]. 

The faults are injected in the main memory (stack, data, etc.) and all CPU registers 
used by the execution flows. The registers include general purpose registers, program 
counter register, link register, integer exception register, and condition register. As the 
machine code of our workloads is stored in a Flash memory, it cannot be subjected to 
fault injection. We define fault in terms of time-location pair, where the location is a 
randomly selected bit in the memory word or CPU register, while the time corres-
ponds to the execution of a given machine instruction (i.e., a point in the execution 
flow). Indeed, we make use of a pre-injection analysis [ 8] which is included in Goofi-
2. In this way, the fault injection takes place on a register or memory location, just 
before it is read by the executing instruction. A fault injection experiment consists of 
injecting one fault and observing its impact on a workload. A fault injection campaign 
is a series of fault injection experiments with a given execution flow. 

5 Experimental Results 

In this section, we present the outcomes of fault injection campaigns conducted on the 
4 workloads. We carried out 9 campaigns per workload which resulted in a total of 36 
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campaigns for the basic version and 36 campaigns for the TTR-FR version. The cam-
paigns consist of 25000 experiments except for CRC campaigns that are subjected to 
12000 experiments. The error classification scheme of each experiment is: 

• No Impact (NI), errors that do not affect the output of the execution flow. 
• Detected by Hardware (DHW), errors that are detected by the hardware exceptions. 
• Time Out (TO), errors that cause violation of the timeout2. 
• Value Failure (VF), erroneous output with no indication of failure (silent data cor-

ruption). 
• Detected by Software (DSW), errors that are detected by the software detection 

mechanisms. 
• Corrected by Software (CSW), errors that are corrected by the software correction 

mechanisms. 

When presenting the results, we also refer to the coverage (COV) as the probability 
that a fault does not cause value failures, which is calculated in equation (1): 

 COV = 1 - #VF/N (1) 

Here N is the total number of experiments, and #VF is the total number of experi-
ments that resulted in value failure. In addition to the experiments classified as de-
tected by hardware, the coverage includes no impact and timeout experiments. No 
impact experiments can be the result of internal robustness of the workload; therefore 
they contribute to the overall coverage of the system. Experiments that are resulted in 
timeout are detected by Goofi-2. In a real application, watchdog timers are used to 
detect these types of errors.  

5.1 Results for Workloads without Software-Implemented Hardware Fault 
Tolerance 

Table 3 presents failure distributions for all the workloads. Each row shows the per-
centage of experiments that fall in different error classifications. Due to the large 
number of experiments (25000 for SHA, BinInt, Qsort and 12000 for CRC), the 95% 
confidence interval for the measures in this section varies from ±0.08% to ±0.89%. 

For SHA and CRC, the percentage of experiments classified as value failures 
grows as the length of the inputs is increased. If we consider that the value failure is 
distributed as a normal variable with a mean value equals to the quotient between the 
number of value failure experiments and the total number of experiments, we can 
conduct one way analysis of variance (ANOVA). ANOVA is performed by testing the 
hypothesis H0 which states “there is no linear correlation between the length of the 
input and the percentage of value failure”. The results of ANOVA in Table 4 allow 
us to reject H0 with a confidence of 95%. The reason behind this correlation is that 
when the length of the input increases, the number of reads from registers and memo-
ry locations are increased as well. Therefore, there are more possibilities to inject 

                                                           
2  Timeout value is approximately 10 times larger than the execution time of the workload. 
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faults that result in value failure. Obviously, as the value failure increases linearly 
with the length, the coverage is linearly decreased (Table 3). 

Table 3. Failure distribution of all the execution flows (values are in percentage) 

Execution 
flow 

NI VF DHW TO COV  Execu-
tion flow 

NI VF DHW TO COV 

CRC-1 42.7 6.1 48.2 3.0 93.9  SHA-1 18.9 38.8 41.0 1.4 61.2 

CRC-2 32.9 17.9 46.7 2.4 82.1  SHA-2 17.8 40.1 41.0 1.1 59.9 

CRC-3 28.3 24.3 45.8 1.6 75.7  SHA-3 17.6 40.8 40.6 1.0 59.2 

CRC-4 20.8 34.3 44.0 0.8 65.7  SHA-4 16.8 42.1 39.7 1.4 57.9 

CRC-5 20.3 35.5 43.6 0.6 64.5  SHA-5 15.9 43.1 39.4 1.6 56.9 

CRC-6 17.1 39.6 43.0 0.3 60.4  SHA-6 11.5 47.1 39.5 1.9 52.9 

CRC-7 16.6 39.8 43.4 0.2 60.2  SHA-7 11.4 47.7 39.3 1.6 52.3 

CRC-8 15.7 41.2 42.7 0.4 58.8  SHA-8 10.7 48.8 38.8 1.7 51.2 

CRC-9 16.0 41.9 41.8 0.3 58.1  SHA-9 10.7 49.1 38.4 1.8 50.9 

 
Qsort-1 37.1 12.7 46.8 3.5 87.3  BinInt-1 44.1 3.5 49.9 2.5 96.5 

Qsort-2 32.8 17.1 46.9 3.2 82.9  BinInt-2 34.9 20.6 41.5 3.0 79.4 

Qsort-3 31.3 17.7 47.7 3.3 82.3  BinInt-3 34.7 20.6 41.6 3.1 79.4 

Qsort-4 31.7 18.1 46.8 3.9 81.9  BinInt-4 34.5 20.5 42.0 2.9 79.5 

Qsort-5 26.5 23.0 47.2 3.3 77.0  BinInt-5 35.3 21.2 40.5 3.0 78.8 

Qsort-6 29.0 20.7 46.0 4.3 79.3  BinInt-6 35.1 21.0 40.8 3.1 79.0 

Qsort-7 29.3 20.9 46.3 3.5 79.1  BitInt-7 34.8 21.5 40.5 3.2 78.5 

Qsort-8 27.2 22.1 46.6 4.2 77.9  BitInt-8 36.7 20.4 40.0 3.0 79.6 

Qsort-9 25.4 24.2 46.5 4.0 75.8  BinInt-9 35.5 20.9 40.5 3.1 79.1 

Table 4. Null Hypothesis test results for the workloads 

Null 
Hypothesis(H0) 

Input 
Characteristic Workload 

p-value 
(α=0.05) Result 

Linear Regression  
Equation 

No linear corre-
lation between 
VF and  input 
characteristic  

Length in 

characters 

CRC 0.029 Reject VF = 23.20 + 0.22length 
SHA <0.001 Reject VF = 40.64 + 0.09length 
BinInt 0.069 Accept -- 

Sorted elements Qsort 0.053 Accept -- 

No linear corre-
lation between 
DHW and input 
characteristic 

Length in 

characters 

CRC 0.01 Reject DHW = 45.84 - 0.04length 
SHA 0.034 Reject DHW = 40.46-0.019length 
BinInt 0.02 Reject DHW = 45.75 - 0.02length 

Sorted elements Qsort 0.12 Accept -- 

No linear corre-
lation between 
TO and input 
characteristic 

Length in 

characters 

CRC 0.046 Reject TO = 1.67 - 0.017length 
SHA 0.37 Accept -- 
BinInt 0.1 Accept -- 

Sorted elements Qsort 0.18 Accept -- 

 
Qsort and BinInt exhibit a non-linear variation of the value failure with, respective-

ly, the number of sorted elements and the input length (Table 4). For Qsort, this can 
be explained by considering that in addition to the number of sorted elements, the 
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position of these elements impacts Qsort’s behaviour. This causes different number of 
element comparisons and recursive calls to the core function. This effect is particular-
ly evident for Qsort-4 and Qsort-5. Even though both have 50% of the input elements 
sorted, there is a difference of 4.85 percentage points between their value failures. 
Although there is no linear correlation for Qsort, it is notable that the average value 
failures of the first five execution flows, which have more sorted elements, is 4.22 
percentage points lower than the next four execution flows. BinInt, however, is a 
small program with an input space between 0 to 32 characters; these inputs for such a 
small application do not cause a significant variation in the failure distribution.  

Results in Table 4 show that the proportion of failures detected by the hardware 
exceptions is almost constant for a given workload (the coefficient is 0.019 for SHA, 
0.04 for CRC, and 0.02 for BinInt). Analogously, the proportion of experiments clas-
sified as timeout is almost constant for all the workloads. 

It is worth noting that the startup code may vary in different systems. We therefore 
show the trend of value failures with/without the startup block in Fig. 1. We can see 
that the trends in the two diagrams are similar which is due to the fact that the startup 
code consists of significantly fewer lines of code compared to the other blocks. 

 

Fig. 1. The percentage of value failures for different execution flows of each workload 

5.2 Results for Workloads Equipped with TTR-FR  

Table 5a presents the average results for the 9 execution flows of each workload. The 
percentage of value failures for SHA, CRC and BinInt is less than 2%, while for Qsort 
there is a higher percentage of value failures, about 5%. 

The proportion of value failure varies for different code blocks. With respect to the 
core function, the main contributor to the lack of coverage is faults in the program coun-
ter register. These faults change the control flow in such a way that the voter is incor-
rectly executed or not executed at all. For instance, for the core function of SHA, around 
96% of the value failures were caused by faults in the program counter register. Faults 
injected into the other code blocks, including the voter, are more likely to generate value 
failures since they are not protected by the TTR-FR. For Qsort, the relative size of the 
core function is smaller compared to the other programs. This resulted in only around 
57% of the injections in this function, while in the other workloads more than 96% of 
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faults were injected in the core function. This can explain the higher percentage of value 
failures in Qsort compared to the other workloads. 

In order to evaluate the robustness of the voter, we conducted exhaustive fault in-
jections (i.e., we inject all possible faults) in the voter of each workload, see Table 5b. 
It is notable that even though TTR-FR mechanism decreases the percentage of value 
failure, the voter is one of the main contributors to the occurrence of value failure. 

The average percentage of errors detected by the hardware exceptions does not 
vary significantly between the versions extended with TTR-FR and those without this 
mechanism for SHA, CRC, and BinInt, while it differs about 5% for Qsort. 

Table 5. Average failure distributions for workloads with TTR-FR (values are in percentage) 

a) All code blocks    b) Voter code block 

Workload NI VF CSW DSW DHW TO COV  Workload VF 

CRC 20.78 1.65 33.43 0.19 43.22 0.73 98.35  CRC 12.32 

SHA 14.92 0.76 43.36 0.15 39.00 1.78 99.24  SHA 16.60 

Qsort 28.74 5.42 20.37 0.77 41.89 2.79 94.58  Qsort 17.05 

BinInt 34.69 1.45 20.21 0.09 40.60 2.96 98.55  BinInt 12.32 

6 Input Selection 

As we demonstrate in this paper, the likelihood for a program to exhibit a value fail-
ure due to bit flips in CPU registers or memory words depends on the input to the 
program. Thus, when we assess the error sensitivity of an executable program by fault 
injection, it is desirable to perform experiments with several inputs. 

In this section, we describe a method for selecting inputs such that they are likely 
to result in widely different outcome distributions. The selection process consists of 
three steps. First, the fault-free execution flows for a large set of inputs are profiled 
using assembly code metrics. We then use cluster analysis to form clusters of similar 
execution flows. Finally, we select one representative execution flow from each clus-
ter and subject the workload to fault injection. We validate the method by showing 
that inputs in the same clusters indeed generate similar outcome distributions, while 
inputs in different clusters are likely to generate different outcome distributions. 

6.1 Profiling 

We adopt a set of 47 assembly metrics corresponding to different access types (read, 
write) to registers and memory sections along with various categories of assembly 
instructions. Specifically, we group the PowerPC instruction set into 6 categories as 
shown in Table 6. For each group, we define the percentage of execution as the num-
ber of times that the instructions of that category are executed out of the total number 
of executed instructions. These 6 metrics are a proper representative of the metric set 
for our workloads. Therefore, these metrics are used as a signature for the fault-free 
run of each execution flow to be used in the clustering algorithm. 
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Table 6. Assembly metrics corresponding to different instruction categories 

Categories Instructions Metrics 

LOAD (LD) lbz, li, lwi, lmw, lswi,… PLD (percentage of load instructions) 

STORE  (ST) stb, stub, sth, sthx, stw,… PST (percentage of store instructions) 

ARITHMETIC(AI) add, subf, divw, mulhw,… PAI (percentage of arithmetic instructions) 

BRANCH (BR) b, bl, bc, bclr,… PBR (percentage of branch instructions) 

LOGICAL (LG) and, or, cmp, rlwimi,…  PLG (percentage of logical instructions) 

PROCESSOR(PR) mcrf, mftb, sc, rfi,… PPR (percentage of processor instructions) 

6.2 Clustering 

Cluster analysis divides the input set (the execution flow, in our case) into homogen-
ous groups based on the signature of execution flows. We adopted the hierarchical 
clustering [ 12] due to the fact that unlike other clustering techniques (e.g., K-means), 
it does not require a preliminary knowledge of the number of clusters. Thus, we can 
validate a posteriori if the execution flows are clustered as expected. The hierarchical 
clustering adopted in this work evaluates the distance between two clusters according 
to the centroid method [ 12]. A similar approach is used in [ 13]. 

6.3 Input Selection Results 

The clustering technique is applied to normalized values (mean equal to 0 and a va-
riance equal to 1) of the assembly metrics. In the case of non-normalized data, higher 
weights will be given to variables with higher variances. To prevent this effect, due to 
the significant variations in the metric values, e.g., the variance of “percentage of load 
instructions” is orders of magnitude larger than the variance of “percentage of proces-
sor instructions”, we use the normalized values.  

Fig. 2 depicts dendrogram representations of the results of the clustering technique 
for the non-TTR-FR implementation of SHA, CRC, and Qsort workloads (BinInt has 
already shown a roughly constant variation in its failure distribution, thus, we exclude 
it from the clustering analysis). Each dendrogram is read from left to right.  

At the first stage of the algorithm, the execution flows of each workload are either 
grouped in 2-dimension clusters (e.g., SHA-4 and SHA-5) or left isolated (e.g., SHA-
1). These groups can be easily linked to characteristics of the inputs in the case of 
SHA and CRC. Indeed, inputs with the same length (e.g., CRC-9 and CRC-8) or ap-
proximately the same length (e.g., CRC-2, CRC-3) belong to the same cluster. How-
ever in Qsort, this observation is not verified, since vectors with the same number of 
sorted elements are placed in different clusters (e.g., Qsort-8 and Qsort-9). At the next 
stage, different clusters are joined using vertical lines. The positions of these lines 
indicate the distance at which clusters are joined. In the case of our workloads, the 
algorithm groups the former clusters together by merging the inputs with “smaller 
size” (e.g., SHA-1, SHA-2, SHA-3 with SHA-4, SHA-5) and inputs with “larger size” 
(e.g., CRC-6, CRC-7 with CRC-8, CRC-9).  
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In order to validate the results of our approach, we need to show that execution 
flows with a “similar” failure distribution belong to the same cluster. The same clus-
tering algorithm can be used for identifying the execution flows that are similar in 
terms of failure distribution. This time, the error categories (VF, NI, DHW, TO) are 
used instead of the assembly metrics, see Fig. 3. Comparing Fig. 2 and Fig. 3, for 
CRC and SHA, we can observe that the first clusters from the left are grouped exactly 
in the same way. For these workloads, after the profiling, we can arbitrarily select one 
execution flow from each cluster for a fault injection campaign and consider its fail-
ure distribution as a representative of the other member of that cluster. In this way, the 
variation in failure mode distribution of a workload can be discovered by performing 
fault injection campaigns on fewer number of execution flows. 

 

  

Fig. 2. SHA, CRC and Qsort clusters on assembly metrics 

  

Fig. 3. SHA, CRC and Qsort clusters on the failure distributions 

We quantify the reduction, R, of fault injection campaigns in equation (2).  

 R = (1 – C/I)*100 (2) 

Here C indicates the number of clusters at the first stage, and I is the total number of 
execution flows. For CRC and SHA, the reduction is 45%, which means that we can 
save about 45% of time. Hence, for these workloads we can profile their execution 
flows and on the basis of the obtained clusters decide whether to conduct a fault injec-
tion campaign or not. It is notable that input selection requires very limited human 
interactions and it is mostly accomplished by a fault-free run of the execution flow 
performed by Goofi-2, a signature extractor tool, and a data analysis tool. In our expe-
rimental environment, profiling costs up to 5 hours, while a fault injection campaign 
costs up to 2 days. This is a significant benefit of the proposed approach. 

For Qsort there is no mapping between the clusters in the assembly space and the 
ones for the failure distribution. This might mean that for some applications like 
Qsort, where the failure distribution is dependent on more than just the length of in-
put, other suitable assembly metrics are required. We exclude that this result is tied to 
the choice of the clustering method since we also obtain identical results with other 
methods such as average and ward [ 12]. 
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7 Related Work 

Numerous works [ 14,  15,  16,  11] have assessed the effectiveness of hardware detection 
mechanisms in the presence of different fault models (such as pin level injection, stuck 
at byte, and bit flipping) while executing different workloads. In addition, an emerging 
research trend focuses on the implementation of software-implemented hardware fault 
tolerance mechanisms for detecting/correcting errors. Different implementation of soft-
ware mechanisms at source level [ 2,  7] as well as at the assembly levels [ 3,  4,  17] has 
been assessed. These studies targeted a large variety of workloads and fault tolerance 
mechanisms without investigating their behavior to different inputs. In dependability 
benchmarking workloads are executed with realistic stimuli, i.e., inputs that come from 
the domain. In this area, the study [ 18] investigates the dependability of an automotive 
engine control system targeted with transient faults. The system under study is totally 
different from ours and no input selection approach is proposed. To the best of our 
knowledge, there is a little literature aiming to investigate the effects of transient faults 
on workload variations. In [ 5], matrix multiplication and selection sort are fed with three 
and two inputs, respectively. The fault model includes zero-a-byte, set-a-byte and two-
bit compensation that differs from ours. Authors in [ 6] also estimated the error coverage 
for quicksort and shellsort, both executed with 24 different inputs. In addition, we study 
assembly level metrics with respect to the failure distribution (Section  6). While in per-
formance benchmarking some study [ 19] explore the correlation between metrics and 
performance factors (e.g., power consumption), in the dependability field there is a no 
investigation on this area.  

8 Conclusions and Future Work 

We investigated the relationship between inputs of a set of workloads and the failure 
mode distribution. The experiments, carried out on an embedded system, demonstrate 
that for CRC and SHA, the length of input is linearly correlated to the percentage of 
value failure. Even though Qsort and BinInt do not show such a relationship, it is still 
notable that the input affects the failure distribution. Results illustrate that the percen-
tage of faults detected by the hardware exceptions is workload dependent, i.e., it is not 
affected by the input. Additionally, a simple software-implemented hardware fault 
tolerant mechanism, TTR-FR, can successfully increase the coverage, on the average, 
to more than 97%, regardless of the input. As similar inputs (e.g., same length inputs) 
result in a similar failure distribution, we devised an approach to reduce the number of 
fault injections. Although the approach seems promising for workloads with a linear 
relation between the input property (e.g., length) and the failure distribution, addition-
al metrics might be required for other workloads. Looking forward, we would like to 
improve the confidence in our findings by extending the study with other workloads, 
fault tolerance mechanisms, fault models and different compiler optimizations. 
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Abstract. Ensuring fault tolerance of satellite systems is critical for
achieving goals of the space mission. Since the use of redundancy is
restricted by the size and the weight of the on-board equipments, the
designers need to rely on dynamic reconfiguration in case of failures of
some components. In this paper we propose a formal approach to devel-
opment of dynamically reconfigurable systems in Event-B. Our approach
allows us to build the system that can discover possible reconfiguration
strategy and continue to provide its services despite failures of its vital
components. We integrate probabilistic verification to evaluate reconfig-
uration alternatives. Our approach is illustrated by a case study from
aerospace domain.

Keywords: Formal modelling, fault tolerance, Event-B, refinement,
probabilistic verification.

1 Introduction

Fault tolerance is an important characteristics of on-board satellite systems.
One of the essential means to achieve it is redundancy. However, the use of
(hardware) component redundancy in spacecraft is restricted by the weight and
volume constraints. Thus, the system developers need to perform a careful cost-
benefit analysis to minimise the use of spare modules yet achieve the required
level of reliability.

Despite such an analysis, Space System Finland has recently experienced a
double-failure problem with a system that samples and packages scientific data
in one of the operating satellites. The system consists of two identical modules.
When one of the first module subcomponents failed, the system switched to the
use of the second module. However, after a while a subcomponent of the spare
has also failed, so it became impossible to produce scientific data. To not lose
the entire mission, the company has invented a solution that relied on healthy
subcomponents of both modules and a complex communication mechanism to
restore system functioning. Obviously, a certain amount of data has been lost
before a repair was deployed. This motivated our work on exploring proactive
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solutions for fault tolerance, i.e., planning and evaluating of scenarios imple-
menting a seamless reconfiguration using a fine-grained redundancy.

In this paper we propose a formal approach to modelling and assessment of on-
board reconfigurable systems. We generalise the ad-hoc solution created by Space
Systems Finland and propose an approach to formal development and assess-
ment of fault tolerant satellite systems. The essence of our modelling approach is
to start from abstract modelling functional goals that the system should achieve
to remain operational, and to derive reconfigurable architecture by refinement in
the Event-B formalism [1]. The rigorous refinement process allows us to establish
the precise relationships between component failures and goal reachability. The
derived system architecture should not only satisfy functional requirements but
also achieve its reliability objective. Moreover, since the reconfiguration proce-
dure requires additional inter-component communication, the developers should
also verify that system performance remains acceptable. Quantitative evaluation
of reliability and performance of probabilistically augmented Event-B models is
performed using the PRISM model checker [8].

The main novelty of our work is in proposing an integrated approach to formal
derivation of reconfigurable system architectures and probabilistic assessment
of their reliability and performance. We believe that the proposed approach
facilitates early exploration of the design space and helps to build redundancy-
frugal systems that meet the desired reliability and performance requirements.

2 Reconfigurable Fault Tolerant Systems

2.1 Case Study: Data Processing Unit

As mentioned in the previous section, our work is inspired by a solution proposed
to circumvent the double failure occurred in a currently operational on-board
satellite system. The architecture of that system is similar to Data Processing
Unit (DPU) – a subsystem of the European Space Agency (ESA) mission Bepi-
Colombo [2]. Space Systems Finland is one of the providers for BepiColombo.
The main goal of the mission is to carry out various scientific measures to explore
the planet Mercury. DPU is an important part of the Mercury Planetary Orbiter.
It consists of four independent components (computers) responsible for receiv-
ing and processing data from four sensor units: SIXS-X (X-ray spectrometer),
SIXS-P (particle spectrometer), MIXS-T (telescope) and MIXS-C (collimator).

The behaviour of DPU is managed by telecommands (TCs) received from the
spacecraft and stored in a circular buffer (TC pool). With a predefined rate, DPU
periodically polls the buffer, decodes a TC and performs the required actions.
Processing of each TC results in producing telemetry (TM). Both TC and TM
packages follow the syntax defined by the ESA Packet Utilisation Standard [12].
As a result of TC decoding, DPU might produce a housekeeping report, switch
to some mode or initiate/continue production of scientific data. The main pur-
pose of DPU is to ensure a required rate of producing TM containing scientific
data. In this paper we focus on analysing this particular aspect of the system
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behaviour. Hence, in the rest of the paper, TC will correspond to the telecom-
mands requiring production of scientific data, while TM will designate packages
containing scientific data.

2.2 Goal-Oriented Reasoning about Fault Tolerance

We use the notion of a goal as a basis for reasoning about fault tolerance. Goals
– the functional and non-functional objectives that the system should achieve –
are often used to structure the requirements of dependable systems [7,9].

Let G be a predicate that defines a desired goal and M be a system model.
Ideally, the system design should ensure that the goal can be reached “infinitely
often”. Hence, while verifying the system, we should establish that

M |= ��G.
The main idea of a goal-oriented development is to decompose the high-level
system goals into a set of subgoals. Essentially, subgoals define the intermediate
stages of achieving a high-level goal. In the process of goal decomposition we as-
sociate system components with tasks – the lowest-level subgoals. A component
is associated with a task if its functionality enables establishing the goal defined
by the corresponding task.

For instance, in this paper we consider “produce scientific TM” as a goal of
DPU. DPU sequentially enquires each of its four components to produce its part
of scientific data. Each component acquires fresh scientific data from the cor-
responding sensor unit (SIXS-X, SIXS-P, MIXS-T or MIXS-C), preprocesses it
and makes available to DPU that eventually forms the entire TM package. Thus,
the goal can be decomposed into four similar tasks “sensor data production”.

Generally, the goal G can be decomposed into a finite set of tasks:

T = {taskj | j ∈ 1..n ∧ n ∈ N1},

Let also C be a finite set of components capable of performing tasks from T :

C = {compj | j ∈ 1..m ∧m ∈ N1},

where N1 is the set of positive integers. Then the relation Φ defined below asso-
ciates components with the tasks:

Φ ∈ T ↔ C, such that ∀t ∈ T · ∃c ∈ C ·Φ(t, c),
where ↔ designates a binary relation.

To reason about fault tolerance, we should take into account component un-
reliability. A failure of a component means that it cannot perform its associated
task. Fault tolerance mechanisms employed to mitigate results of component fail-
ures rely on various forms of component redundancy. Spacecraft have stringent
limitations on the size and weight of the on-board equipment, hence high degree
of redundancy is rarely present. Typically, components are either duplicated or
triplicated. Let us consider a duplicated system that consists of two identical
DPUs – DPUA and DPUB. As it was explained above, each DPU contains four
components responsible for controlling the corresponding sensor.
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Traditionally, satellite systems are designed to implement the following sim-
ple redundancy scheme. Initially DPUA is active, while DPUB is a cold spare.
DPUA allocates tasks on its components to achieve the system goal G – pro-
cessing of a TC and producing the TM. When some component of DPUA fails,
DPUB is activated to achieve the goal G. Failure of DPUB results in failure of
the overall system. However, even though none of the DPUs can accomplish G
on its own, it might be the case that the operational components of both DPUs
can together perform the entire set of tasks required to reach G. This observation
allows us to define the following dynamic reconfiguration strategy.

Initially DPUA is active and assigned to reach the goal G. If some of its
components fails, resulting in a failure to execute one of four scientific tasks
(let it be taskj), the spare DPUB is activated and DPUA is deactivated. DPUB

performs the taskj and the consecutive tasks required to reach G. It becomes fully
responsible for achieving the goal G until some of its component fails. In this case,
to remain operational, the system performs dynamic reconfiguration. Specifically,
it reactivates DPUA and tries to assign the failed task to its corresponding
component. If such a component is operational then DPUA continues to execute
the subsequent tasks until it encounters a failed component. Then the control
is passed to DPUB again. Obviously, the overall system stays operational until
two identical components of both DPUs have failed.

We generalise the architecture of DPU by stating that essentially a system
consists of a number of modules and each module consists of n components:

C = Ca ∪ Cb, where Ca = {a compj | j ∈ 1..n ∧ n ∈ N1} etc.

Each module relies on its components to achieve the tasks required to accomplish
G. An introduction of redundancy allows us to associate not a single but sev-
eral components with each task. We reformulate the goal reachability property
as follows: a goal remains reachable while there exists at least one operational
component associated with each task. Formally, it can be specified as:

M |= �Os, where Os ≡ ∀t ∈ T · (∃c ∈ C ·Φ(t, c) ∧ O(c))

and O is a predicate over the set of components C such that O(c) evaluates to
TRUE if and only if the component c is operational.

2.3 Probabilistic Assessment

If a duplicated system with the dynamic reconfiguration achieves the desired
reliability level, it might allow the designers to avoid module triplication. How-
ever, it also increases the amount of intercomponent communication that leads
to decreasing the system performance. Hence, while deciding on a fault tolerance
strategy, it is important to consider not only reachability of functional goals but
also their performance and reliability aspects.

In engineering, reliability is usually measured by the probability that the
system remains operational under given conditions for a certain time interval. In
terms of goal reachability, the system remains operational until it is capable of
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reaching targeted goals. Hence, to guarantee that system is capable of performing
a required functions within a time interval t, it is enough to verify that

M |= �≤t Os. (1)

However, due to possible component failures we usually cannot guarantee the
absolute preservation of (1). Instead, to assess the reliability of a system, we need
to show that the probability of preserving the property (1) is sufficiently high.
On the other hand, the system performance is a reward-based property that can
be measured by the number of successfully achieved goals within a certain time
period.

To quantitatively verify these quality attributes we formulate the following
CSL (Continuous Stochastic Logic) formulas [6]:

P=?{G ≤ t Os} and R(|goals|)=?{C ≤ t }.
The formulas above are specified using PRISM notation. The operator P is used
to refer to the probability of an event occurrence,G is an analogue of �,R is used
to analyse the expected values of rewards specified in a model, while C specifies
that the reward should be cumulated only up to a given time bound. Thus, the
first formula is used to analyse how likely the system remains operational as
time passes, while the second one is used to compute the expected number of
achieved goals cumulated by the system over t time units.

In this paper we rely on modelling in Event-B to formally define the architec-
ture of a dynamically reconfigurable system, and on the probabilistic extension
of Event-B to create models for assessing system reliability and performance.
The next section briefly describes Event-B and its probabilistic extension.

3 Modelling in Event-B and Probabilistic Analysis

3.1 Modelling and Refinement in Event-B

Event-B is a state-based formal approach that promotes the correct-by-construc-
tion development paradigm and formal verification by theorem proving. In Event-
B, a system model is specified using the notion of an abstract state machine [1],
which encapsulates the model state, represented as a collection of variables, and
defines operations on the state, i.e., it describes the behaviour of a modelled sys-
tem. Usually, a machine has an accompanying component, called context, which
includes user-defined sets, constants and their properties given as a list of model
axioms. The model variables are strongly typed by the constraining predicates.
These predicates and the other important properties that must be preserved by
the model constitute model invariants.

The dynamic behaviour of the system is defined by a set of atomic events.
Generally, an event has the following form:

e =̂ any a where Ge then Re end,

where e is the event’s name, a is the list of local variables, the guard Ge is
a predicate over the local variables of the event and the state variables of the
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system. The body of the event is defined by the next-state relation Re. In Event-
B, Re is defined by a multiple (possibly nondeterministic) assignment over the
system variables. The guard defines the conditions under which the event is
enabled. If several events are enabled at the same time, any of them can be
chosen for execution nondeterministically.

Event-B employs a top-down refinement-based approach to system devel-
opment. Development starts from an abstract specification that nondetermin-
istically models the most essential functional requirements. In a sequence of
refinement steps we gradually reduce nondeterminism and introduce detailed de-
sign decisions. In particular, we can add new events, split events as well as replace
abstract variables by their concrete counterparts, i.e., perform data refinement.
When data refinement is performed, we should define gluing invariants as a part
of the invariants of the refined machine. They define the relationship between the
abstract and concrete variables. The proof of data refinement is often supported
by supplying witnesses – the concrete values for the replaced abstract variables
and parameters. Witnesses are specified in the event clause with.

The consistency of Event-B models, i.e., verification of well-formedness and
invariant preservation as well as correctness of refinement steps, is demonstrated
by discharging the relevant proof obligations generated by the Rodin platform
[11]. The platform provides an automated tool support for proving.

3.2 Augmenting Event-B Models with Probabilities

Next we briefly describe the idea behind translating of an Event-B machine into
continuous time Markov chain – CTMC (the details can be found in [15]). To
achieve this, we augment all events of the machine with information about the
probability and duration of all the actions that may occur during their execution,
and refine them by their probabilistic counterparts.

Let Σ be a state space of an Event-B model defined by all possible values of
the system variables. Let also I be the model invariant. We consider an event e
as a binary relation on Σ, i.e., for any two states σ, σ′ ∈ Σ:

e(σ, σ′) def
= Ge(σ) ∧Re(σ, σ

′).

Definition 1. The behaviour of an Event-B machine is fully defined by a tran-
sition relation →:

σ, σ′ ∈ Σ ∧ σ′ ∈
⋃

e∈Eσ

after(e)

σ → σ′ ,

where before(e) = {σ ∈ Σ | I(σ) ∧Ge(σ)}, Eσ = {e ∈ E | σ ∈ before(e)} and

after(e) = {σ′ ∈ Σ | I(σ′) ∧ (∃σ ∈ Σ · I(σ) ∧Ge(σ) ∧Re(σ, σ
′))}.

Furthermore, let us denote by λe(σ, σ
′) the (exponential) transition rate from σ

to σ′ via the event e, where σ ∈ before(e) and Re(σ, σ
′). By augmenting all the

event actions with transition rates, we can modify Definition 1 as follows.
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Definition 2. The behaviour of a probabilistically augmented Event-B machine

is defined by a transition relation
Λ−→:

σ, σ′ ∈ Σ ∧ σ′ ∈
⋃

e∈Eσ

after(e)

σ
Λ−→ σ′

, where Λ =
∑
e∈Eσ

λe(σ, σ
′).

Definition 2 allows us to define the semantics of a probabilistically augmented
Event-B model as a probabilistic transition system with the state space Σ, tran-

sition relation
Λ−→ and the initial state defined by model initialisation (for prob-

abilistic models we require the initialisation to be deterministic). Clearly, such
a transition system corresponds to a CTMC.

In the next section we demonstrate how to formally derive an Event-B model
of the architecture of a reconfigurable system.

4 Deriving Fault Tolerant Architectures by Refinement
in Event-B

The general idea behind our formal development is to start from an abstract goal
modelling, decompose it into tasks and introduce an abstract representation of
the goal execution flow. Such a model can be refined into different fault tolerant
architectures. Subsequently, these models are augmented with probabilistic data
and used for the quantitative assessment.

4.1 Modelling Goal Reaching

Goal Modelling. Our initial specification abstractly models the process of
reaching the goal. The progress of achieving the goal is modelled by the variable
goal that obtains values from the enumerated set STATUS = {not reached,
reached, failed}. Initially, the system is not assigned any goals to accomplish,
i.e., the variable idle is equal to TRUE. When the system becomes engaged
in establishing the goal, idle obtains value FALSE as modelled by the event
Activation. In the process of accomplishing the goal, the variable goal might
eventually change its value from not reached to reached or failed, as modelled
by the event Body. After the goal is reached the system becomes idle, i.e., a new
goal can be assigned. The event Finish defines such a behaviour. We treat the
failure to achieve the goal as a permanent system failure. It is represented by
the infinite stuttering defined in the event Abort.

Activation =̂
when idle = TRUE
then idle := FALSE
end

Body =̂
when idle = FALSE ∧ goal = not reached
then goal :∈ STATUS

end

Finish =̂
when idle = FALSE ∧ goal = reached
then goal, idle := not reached, TRUE
end

Abort =̂
when goal = failed
then skip

end
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Goal Decomposition. The aim of our first refinement step is to define the
goal execution flow. We assume that the goal is decomposed into n tasks, and
can be achieved by a sequential execution of one task after another. We also
assume that the id of each task is defined by its execution order. Initially, when
the goal is assigned, none of the tasks is executed, i.e., the state of each task
is “not defined” (designated by the constant value ND). After the execution,
the state of a task might be changed to success or failure, represented by the
constants OK andNOK correspondingly. Our refinement step is essentially data
refinement that replaces the abstract variable goal with the new variable task
that maps the id of a task to its state, i.e., task ∈ 1..n → {OK,NOK,ND}.

We omit showing the events of the refined model (the complete development
can be found in [13]). They represent the process of sequential selection of one
task after another until either all tasks are executed, i.e., the goal is reached, or
execution of some task fails, i.e., goal is not achieved. Correspondingly, the guards
ensure that either the goal reaching has not commenced yet or the execution of
all previous task has been successful. The body of the events nondeterministically
changes the state of the chosen task to OK or NOK. The following invariants
define the properties of the task execution flow:

∀l · l ∈ 2 .. n ∧ task(l) �= ND ⇒ (∀i · i ∈ 1 .. l − 1⇒ task(i) = OK),

∀l · l ∈ 1 .. n− 1 ∧ task(l) �= OK ⇒ (∀i · i ∈ l + 1 .. n⇒ task(i) = ND).

They state that the goal execution can progress, i.e., a next task can be chosen for
execution, only if none of the previously executed tasks failed and the subsequent
tasks have not been executed yet.

From the requirements perspective, the refined model should guarantee that
the system level goal remains achievable. This is ensured by the gluing invariants
that establish the relationship between the abstract goal and the tasks:

task[1 .. n] = {OK} ⇒ goal = reached,

(task[1 .. n] = {OK,ND} ∨ task[1 .. n] = {ND})⇒ goal = not reached,

(∃i · i ∈ 1 .. n ∧ task(i) = NOK)⇒ goal = failed.

Introducing Abstract Communication. In the second refinement step we
introduce an abstract model of communication. We define a new variable ct that
stores the id of the last achieved task. The value of ct is checked every time when
a new task is to be chosen for execution. If task execution succeeds then ct is
incremented. Failure to execute the task leaves ct unchanged and results only
in the change of the failed task status to NOK. Essentially, the refined model
introduces an abstract communication via shared memory. The following gluing
invariants allow us to prove the refinement:

ct > 0⇒ (∀i · i ∈ 1 .. ct⇒ task(i) = OK), ct < n⇒ task(ct+ 1) ∈ {ND,NOK},
ct < n− 1⇒ (∀i · i ∈ ct+ 2 .. n⇒ task(i) = ND).

As discussed in Section 2, each task is independently executed by a separate
component of a high-level module. Hence, by substituting the id of a task with
the id of the corresponding component, i.e., performing a data refinement with
the gluing invariant

∀i ∈ 1..n · task(i) = comp(i),
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we specify a non-redundant system architecture. This invariant trivially defines
the relation Φ. Next we demonstrate how to introduce either a triplicated archi-
tecture or duplicated architecture with a dynamic reconfiguration by refinement.

4.2 Reconfiguration Strategies

To define triplicated architecture with static reconfiguration, we define three
identical modules A, B and C. Each module consists of n components execut-
ing corresponding tasks. We refine the abstract variable task by the three new
variables a comp, b comp and c comp:

a comp ∈ 1..n → STATE, b comp ∈ 1..n → STATE, c comp ∈ 1..n → STATE.

To associate the tasks with the components of each module, we formulate a
number of gluing invariants that essentially specify the relation Φ. Some of these
invariants are shown below:

∀i · i ∈ 1 .. n ∧module = A ∧ a comp(i) = OK ⇒ task(i) = OK,

module = A⇒ (∀i · i ∈ 1 .. n⇒ b comp(i) = ND ∧ c comp(i) = ND),

∀i · i ∈ 1 .. n ∧module = A ∧ a comp(i) �= OK ⇒ task(i) = ND,

∀i · i ∈ 1 .. n ∧module = B ∧ b comp(i) �= OK ⇒ task(i) = ND,

∀i · i ∈ 1 .. n ∧module = C ⇒ c comp(i) = task(i),

module = B ⇒ (∀i · i ∈ 1 .. n⇒ c comp(i) = ND).

Here, a new variable module ∈ {A,B,C} stores the id of the currently active
module. The complete list of invariants can be found in [13]. Please note, that
these invariants allows us to mathematically prove that the Event-B model pre-
serves the desired system architecture.

An alternative way to perform this refinement step is to introduce a duplicated
architecture with dynamic reconfiguration. In this case, we assume that our
system consists of two modules, A and B, defined in the same way as discussed
above. We replace the abstract variable task with two new variables a comp and
b comp. Below we give an excerpt from the definition of the gluing invariants:

module = A ∧ ct > 0 ∧ a comp(ct) = OK ⇒ task(ct) = OK,

module = B ∧ ct > 0 ∧ b comp(ct) = OK ⇒ task(ct) = OK,

∀i · i ∈ 1 .. n ∧ a comp(i) = NOK ∧ b comp(i) = NOK ⇒ task(i) = NOK,

∀i · i ∈ 1 .. n ∧ a comp(i) = NOK ∧ b comp(i) = ND ⇒ task(i) = ND,

∀i · i ∈ 1 .. n ∧ b comp(i) = NOK ∧ a comp(i) = ND ⇒ task(i) = ND.

Essentially, the invariants define the behavioural patterns for executing the tasks
according to dynamic reconfiguration scenario described in Section 2.

Since our goal is to study the fault tolerance aspect of the system architecture,
in our Event-B model we have deliberately abstracted away from the represen-
tation of the details of the system behaviour. A significant number of functional
requirements is formulated as gluing invariants. As a result, to verify correctness
of the models we discharged more than 500 proof obligations. Around 90% of
them have been proved automatically by the Rodin platform and the rest have
been proved manually in the Rodin interactive proving environment.
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Note that the described development for a generic system can be easily in-
stantiated to formally derive fault tolerant architectures of DPU. The goal of
DPU – handling the scientific TC by producing TM – is decomposed into four
tasks that define the production of data by the satellite’s sensor units – SIXS-X,
SIXS-P, MIXS-T and MIXS-C. Thus, for such a model we have four tasks (n=4)
and each task is handled by the corresponding computing component of DPU.
The high-level modules A, B and C correspond to three identical DPUs that
control handling of scientific TC – DPUA, DPUB and DPUC , while functions
a comp, b comp and c comp represent statuses of their internal components.

From the functional point of view, both alternatives of the last refinement
step are equivalent. Indeed, each of them models the process of reaching the
goal by a fault tolerant system architecture. In the next section we will present
a quantitative assessment of their reliability and performance aspects.

5 Quantitative Assessment of Reconfiguration Strategies

The scientific mission of BepiColombo on the orbit of the Mercury will last for
one year with possibility to extend this period for another year. Therefore, we
should assess the reliability of both architectural alternatives for this period of
time. Clearly, the triplicated DPU is able to tolerate up to three DPU failures
within the two-year period, while the use of a duplicated DPU with a dynamic
reconfiguration allows the satellite to tolerate from one (in the worst case) to
four (in the best case) failures of the components.

Obviously, the duplicated architecture with a dynamic configuration min-
imises volume and the weight of the on-board equipment. However, the dynamic
reconfiguration requires additional inter-component communication that slows
down the process of producing TM. Therefore, we need to carefully analyse the
performance aspect as well. Essentially, we need to show that the duplicated
system with the dynamic reconfiguration can also provide a sufficient amount of
scientific TM within the two-year period.

To perform the probabilistic assessment of reliability and performance, we
rely on two types of data:

– probabilistic data about lengths of time delays required by DPU components
and sensor units to produce the corresponding parts of scientific data

– data about occurrence rates of possible failures of these components

It is assumed that all time delays are exponentially distributed. We refine the
Event-B specifications obtained at the final refinement step by their proba-
bilistic counterparts. This is achieved via introducing probabilistic information
into events and replacing all the local nondeterminism with the (exponential)
race conditions. Such a refinement relies on the model transformation presented
in Section 3. As a result, we represent the behaviour of Event-B machines by
CTMCs. This allows us to use the probabilistic symbolic model checker PRISM
to evaluate reliability and performance of the proposed models.

Due to the space constraints, we omit showing the PRISM specifications in
the paper, they can be found in [13]. The guidelines for Event-B to PRISM model
transformation can be found in our previous work [14].
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The results of quantitative verification performed by PRISM show that with
probabilistic characteristics of DPU presented, in Table 11, both reconfiguration
strategies lead to a similar level of system reliability and performance with in-
significant advantage of the triplicated DPU. Thus, the reliability levels of both
systems within the two-year period are approximately the same with the differ-
ence of just 0.003 at the end of this period (0.999 against 0.996). Furthermore,
the use of two DPUs under dynamic reconfiguration allows the satellite to han-
dle only 2 TCs less after two years of work – 1104 against 1106 returned TM
packets in the case of the triplicated DPU. Clearly, the use of the duplicated
architecture with dynamic reconfiguration to achieve the desired levels of relia
bility and performance is optimal for the considered system.

Table 1. Rates (time is measured by minutes)

TC access rate when the system is idle λ 1
12·60 SIXS-P work rate α2

1
30

TM output rate when a TC is handled μ 1
20

SIXS-P failure rate β2
1

106

Spare DPU activation rate (power on) δ 1
10

MIXS-T work rate α3
1
30

DPUs “communication” rate τ 1
5

MIXS-T failure rate β3
1

9·107

SIXS-X work rate α1
1
60

MIXS-C work rate α4
1
90

SIXS-X failure rate β1
1

8·107 MIXS-C failure rate β4
1

6·107

Finally, let us remark that the goal-oriented style of the reliability and per-
formance analysis has significantly simplified the assessment of the architectural
alternatives of DPU. Indeed, it allowed us to abstract away from the configura-
tion of input and output buffers, i.e., to avoid modelling of the circular buffer as
a part of the analysis.

6 Conclusions and Related Work

In this paper we proposed a formal approach to development and assessment
of fault tolerant satellite systems. We made two main technical contributions.
On the one hand, we defined the guidelines for development of the dynamically
reconfigurable systems. On the other hand, we demonstrated how to formally
assess reconfiguration strategy and evaluate whether the chosen fault tolerance
mechanism fulfils reliability and performance objectives. The proposed approach
was illustrated by a case study – development and assessment of the reconfig-
urable DPU. We believe that our approach not only guarantees correct design of
complex fault tolerance mechanisms but also facilitates finding suitable trade-offs
between reliability and performance.

1 Provided information may differ form the characteristics of the real components. It is
used merely to demonstrate how the required comparison of reliability/performance
can be achieved.
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A large variety of aspects of the dynamic reconfiguration has been studied
in the last decade. For instance, Wermelinger et al. [17] proposed a high-level
language for specifying the dynamically reconfigurable architectures. They focus
on modifications of the architectural components and model reconfiguration by
the algebraic graph rewriting. In contrast, we focused on the functional rather
than structural aspect of reasoning about reconfiguration.

Significant research efforts are invested in finding suitable models of triggers
for run-time adaptation. Such triggers monitor performance [3] or integrity [16]
of the application and initiate reconfiguration when the desired characteristics
are not achieved. In our work we perform the assessment of reconfiguration strat-
egy at the development phase that allows us to rely on existing error detection
mechanisms to trigger dynamic reconfiguration.

A number of researchers investigate self* techniques for designing adaptive
systems that autonomously achieve fault tolerance, e.g., see [4,10]. However,
these approaches are characterised by a high degree of uncertainty in achieving
fault tolerance that is unsuitable for the satellite systems. The work [5] proposes
an interesting conceptual framework for establishing a link between changing
environmental conditions, requirements and system-level goals. In our approach
we were more interested in studying a formal aspect of dynamic reconfiguration.

In our future work we are planning to further study the properties of dynamic
reconfiguration. It particular, it would be interesting to investigate reconfigura-
tion in the presence of parallelism and complex component interdependencies.
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Abstract. We present an experimental study in which we investigate the impact 
of particle induced soft errors occurring in the microprocessor of an experimen-
tal FADEC system. The study focuses on the impact of single bit faults in the 
instruction set architecture (ISA) registers. For such faults, we investigate the 
effectiveness of the error detection mechanisms included in the FADEC system, 
and determine the consequences of errors that escape detection. To this end, we 
injected single bit faults in the ISA registers of a Freescale MC68340 micropro-
cessor during execution of a prototype jet engine control program. Utilizing 
both random fault injection and partially exhaustive injections, we conducted 
six fault injection campaigns comprising in total more than 7000 injected faults. 
Twenty-three percent of the injected faults were effective, i.e., they affected the 
outputs of the control program. Of these, the system detected 91%. Of the 9 % 
that escaped detection, 7% caused a minor deviation in engine thrust that would 
be harmless to flight safety, while 2% caused severe or potentially catastrophic 
changes in engine thrust.  

Keywords: jet-engine, controllers, FADEC, soft errors, cosmic neutrons, error 
detection, coverage, fault injection. 

1 Introduction 

Digital control systems for turbo-jet engines have been in operational use for almost 
30 years. These systems are known as Full Authority Digital Engine Control systems, 
or FADEC systems. To ensure aircraft safety, FADEC systems must be highly relia-
ble and fault-tolerant. A basic requirement is that a failure of a single hardware unit 
should never cause the engine to deliver inadequate thrust. 

Most FADEC systems are provided with two redundant control channels configured 
as a primary/backup pair. Recently designed FADEC systems are typically equipped 
with two electronic channels, while older designs often use a single electronic channel 
with a hydro-mechanical backup. Regardless of whether the backup channel is electron-
ic or hydro-mechanical, it is essential that the primary electronic channel is provided 
with highly efficient error detection mechanisms so that a fail-over to the backup chan-
nel is performed immediately if the primary channel should fail. 
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One of the key challenges in designing a dual channel FADEC system is to provide 
the electronic channels with error detection mechanisms that can effectively detect 
hardware errors occurring in the microprocessor that executes the control software. 
These mechanisms must ensure that the FADEC does not exhibit critical failures. A 
critical failure occurs when the FADEC generates erroneous actuator commands that 
cause a significant change in the engine thrust.    

There are two main design options available for detecting microprocessor faults in 
a FADEC control channel. One is to execute the control program on two lock-stepped 
microprocessors (or cores). This solution achieves very high detection coverage since 
the errors are detected by comparing the outputs of the two processors. The other 
option is to use a single microprocessor monitored by a watch-dog timer and various 
software implemented assertions and reasonable checks. The latter solution has been 
successfully used in several FADEC systems, including the one that controls the 
RM12 engine produced by Volvo Aero. 

However, many existing FADEC systems were designed for microprocessors pro-
duced during the 1980’s and 1990’s. These microprocessors were manufactured in 
circuit technologies that are less sensitive to cosmic-ray induced soft errors and aging 
faults than current technologies are. It is expected that technology and voltage scaling 
will make future circuit technologies increasingly sensitive to these kinds of faults as 
well as process variations [1]. It is therefore an open question whether the classical 
design with a single microprocessor provides sufficient detection coverage for future 
FADEC systems.  

This paper presents the results of a fault injection study aiming to provide insights 
into the error sensitivity of a single processor control channel with respect to micro-
processor faults that manifest as transient bit errors in the instruction set architecture 
registers of the processor. Such errors can be caused by both transient and intermittent 
transistor level faults, including cosmic ray-induced soft errors [2] electromagnetic 
interference [3], intermittent faults caused by process variations [4], and aging effects 
such as NBTI [5], hot-carrier injection [6] and gate-oxide breakdown [7]. We con-
ducted the fault injection experiments with an engineering prototype of a single pro-
cessor control channel based on the Freescale MC68340 microprocessor. We injected 
single-bit faults in the instruction set architecture (ISA) registers of THE processor 
while it was executing a program controlling a software model of the Volvo Aero 
RM12 engine. To perform the experiments, we developed a fault injection tool called 
JETFI (JET Engine Fault Injection tool) [8]. 

The remainder of this report is organized as follows. Section 2 explains the basic 
operation of the RM12 jet engine including the main engine parameters, which we use 
to describe the failure modes of the engine. Section 2 also includes an overview of the 
main functions of the FADEC system. Section 3 describes the experimental system 
and the fault injection procedure. The results of our experiments are presented in Sec-
tion 4. A summary is provided in Section 5 and Conclusions and Future Work are 
given in Section 6. 
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3.1 System Overview  

The experimental system consists of a host computer and two computer boards, called 
the FADEC board and the Engine board, as shown in Fig. 2. The computer boards are 
identical and use the Motorola 68340 processor. The FADEC board executes the con-
trol software while the Engine board executes a software model of the RM12 engine. 
The software for the two computer boards has been generated from models developed 
with MATRIXx v6.1 [10] and compiled with GNU ADA. 

The host computer is used for controlling the fault injection experiments and for 
collection and analysis of experimental data. The RS232 serial link between the com-
puter boards and the host computer are used for program download and control of the 
fault injection campaigns. Actuator commands and sensor data are exchanged via a 
RS232 link between the FADEC computer board and the Engine board. Due to the 
limited processing power of the 68340 processors, the set-up executes the control 
program approximately 1000 times slower than a real system. 

 
 
 
 

 Host computer  
  RS232  RS232 

Computer board executing the 
FADEC software, “FADEC board”. 

 
RS232 

Computer board simulating the 
RM12 engine, “Engine board”. 

Fig. 2. Host computer and target system overview 

The FADEC control software executes in a cyclic control loop with prescheduled 
control tasks. It consists of 29 subsystems. A subsystem is a set of control tasks with 
the same execution rate. The execution rate varies from 200 Hz for Subsystem 1 down 
to 1 Hz for Subsystem 29. Subsystem 1 performs demanding control activities such as 
positioning of the guide vanes, fuel flow metering and setting the exhaust nozzle area. 
The other subsystems perform a variety of other control tasks and trim functions. 

The Engine board executes simulation models of the engine, sensors, actuators and 
the hydro-mechanical control system. We use a linearized model of the RM12 engine 
to minimize execution time. We believe the accuracy of this model is sufficient for 
the purpose of our experiments. The execution times would have become much longer 
if we would have used a more accurate non-linear engine model. 

The Engine board emulates a use case where the Power Lever Angle (PLA) in-
creases from 55º to 75º during one second of real-time execution. (Flight idle is at 28º 
and max dry thrust, i.e., without afterburner, is at 100º.)   

3.2 Error Detection Mechanisms  

The error detection mechanisms, EDMs, implemented in the experimental FADEC 
system include a watchdog monitor (WDM), hardware and software exceptions and 
software assertions shown in Table 1.  
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Table 1. Error Detection Mechanisms in the FADEC 

EDM Description 
WDM  A timer which must be reset periodically to prevent it from trip-

ping, i.e. signaling that an error has occurred  
Hardware exceptions Hardware EDMs supported by the Motorola 68340 processor.  
Software exceptions Software checks generated automatically by MATRIXx or by the 

programmer using the exception-clause in the ADA-language. They 
detect erroneous execution, erroneous calculations and other errors.  

Software assertions Range checks on engine parameters.  

Watch Dog Monitor  
The watchdog monitor is implemented in the host computer of the JETFI tool and 
detects if the FADEC computer board stops to produce output data for duration longer 
than 10 seconds. In our experimental setup, we consider a WDM-trip as a detected 
error.  

Hardware Exceptions  
The Motorola 68340 processor supports 256 hardware exception vectors numbered in 
the range 0 to 255. The exceptions that were triggered in the fault injection experi-
ments are Bus error, Address error, Illegal instruction, Line 1111 Emulator and For-
mat error, see Table 2.  

Table 2. Hardware Exceptions 

Hardware exception No Description 
Bus error 2 Occurs when the processor attempts to use information from 

an aborted bus cycle (illegal memory access). 
Address error 3 Occurs if a misaligned memory access is attempted. For 

instance a word transfer to an odd address. 
Illegal instruction 4 Occurs if the processor attempts to execute an unimple-

mented instruction. 
Line 1111 Emulator 11 A special case of illegal instruction. The name originates 

from the contents of the most significant bits for unimple-
mented instructions. 

Format error 14 This check ensures that the program does not make erroneous 
assumptions about information in the stack frame. 

Software Exceptions  
A software exception is a general check concerning calculations and program execu-
tion. The FADEC software implemented software exceptions are shown in Table 3. 

Software Assertions  
The software assertions perform range checks on engine parameters and are based on 
physical limitations of the jet engine and its environment. The software assertions 
shown in Table 4 can detect engine failures, errors in data from sensors and wrap-
around signals from actuators (torque motor currents).  
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Table 3. Software exceptions 

Software exception Description 
EXEC_ERROR Raised by execution checks generated by the MATRIXx-tool. 
MATH_ERROR Raised when the predefined ADA exception NUMERIC_ERROR or 

CONSTRAINT_ERROR is raised. This happens if a numeric opera-
tion is undefined or when a variable is erroneously assigned. 

TIME_ 
OVERFLOW 

Two types of scheduler errors can cause time overflow. 1) If the 
scheduler is interrupted while executing the non-interruptible critical 
section and 2) If a subsystem is ready to run but has still not finished 
running. Both are due to inconsistency in the scheduler. 

STOP_BLOCK This refers to a Stop Simulation Block.  
UCB_ERROR Error in a User Code Block.  
UNKNOWN_ 
ERROR 

An error that is not recognized by the code generated by MATRIXx. 
A possible cause is an incorrect user-written error condition. 

OTHERS Raised if an unexpected exception occurs, i.e. it is not identified as 
any of the other defined exceptions. 

Table 4. Software assertions in the FADEC 

S/W assertion Failure condition Possible cause Effect when not detected 
TT1 out of 
range  

The reading from the TT1 
sensor is not within range.  

Sensor or input data 
failure. 

Low engine thrust and even 
fan surge1. 

NH over-
speed  
(HP shaft) 

The measured speed of the 
compressor and high-
pressure turbine is too high. 

Overspeed of the 
HP shaft, failure in 
the input data.  

There is a risk for engine 
disintegration. 

NL sensor 
loss 

Missing pulses in the pulse 
train from the NL sensor. 

NL sensor failure 
detected by h/w.  

Fan overspeed. Possible  
engine damage. 

A8 or WFM 
LVDT/TM 
failure (actua-
tors) 

The relationship between 
demanded current and the 
position change of the 
actuator does not match.  

Sensor, actuator or  
mechanical failure 
of the actuation 
hardware.  

A missed detection will 
result in a low or high 
engine thrust. 

PS3 fails high 
 

Out of range failure of the 
comp. discharge pressure.  

Sensor failure. Incorrect fuel flow and 
erroneous thrust. 

Flame out Engine speed and turbine 
exhaust temp. decrease 
below allowed limits. 

Erroneous fuel 
metering. 

The engine may flame out, 
if this occurs. 

3.3 Fault Injection Tool 

The JETFI tool [8] can inject single and multiple bit-flip faults in the ISA registers of 
the CPU running the FADEC control program. In the experiments presented in this 
paper we injected one single bit-flip in each experiment. A fault is defined by an in-
jection time and a bit in an ISA register. The injection time is defined by the execu-
tion of a target machine instruction and an invocation counter. The injection time and 
the targeted bit can be selected randomly by the tool or deterministically by the tool 
user. 

                                                           
1 Fan surge causes an abrupt reversal of the airflow through the engine. 
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A fault injection experiment begins by replacing the target machine instruction in 
the program memory of the FADEC board with a trap instruction. This is done by a 
piece of code executed on the FADEC board. The host computer then orders the En-
gine board to start the RM12 simulator and the FADEC board to start the FADEC 
control program. 

Each time the FADEC control program executes the trap instruction, the corres-
ponding trap handling routine notes the number of times it has been called. If this 
number is lower than the value of the invocation counter, the trap handler executes the 
original machine instruction without any modifications and then directs the execution 
back to the control program. When the trap instruction has been executed the same 
number of times as stated by the invocation counter value, the trap handling routine 
injects the fault by inverting the value of the target bit, replaces the trap instruction 
with original machine instructions, and finally directs the execution back to that in-
struction. The JETFI tool then monitors the behavior of the continued simulation and 
automatically starts a new experiment as soon as the outcome from the previous expe-
riment has been recorded.  

4 Results 

This section presents the results of our fault injection experiments. Section 6.1 de-
scribes how we classify the outcomes of the experiments. Section 6.2 describes the 
results from five fault injection campaigns denoted A to F.  

4.1 Classification of Experiment Outcomes  

The outcome from an experiment is divided in five categories, Detected error, No 
effect, Non-critical failure, Critical failure and Failed experiment. An explanation of 
the categories is found in Table 6.  

Table 5. Outcome classification 

Category Description 
Detected error An error detected by the watchdog monitor (WDM), a hardware or 

software exception or a software assertion.  
No effect The outcome No effect occurs when nothing can be observed that is 

different from a fault free experiment. The injected error is either 
overwritten or remains in the system but does not have any impact on 
the outputs of the system (dormant error). 

Non-critical failure  A negligible deviation in the control system outputs caused by an 
undetected error. 

Critical failure  A significant change in engine thrust caused by an undetected error.  
Failed experiment A Failed experiment occurs when the fault injection routine uses a 

non-valid fault time. It can happen if the address for the injected fault 
is never executed by the software or if it is executed a fewer number 
of times than specified as condition for the fault injection routine. 
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In our experiments, undetected errors are identified by an automatic check in the 
JETFI-tool. The automatic check compares the control system outputs with reference 
data from an error-free (golden) experiment. We have defined an output signal that 
deviates more than 5% from the correct value as a critical failure.  

4.2 Description of Experiments and Presentation of Results 

Campaign A is used as a reference for comparison with the other campaigns. Each of 
the campaigns B to F has separate focus to investigate different aspects of fault injec-
tion and error detection. 

Campaign A – Random Fault Selection 
In Campaign A, we used random fault selection among instructions in all subsystems. 
The result from 991 experiments is shown in Table 6. The last row of Table 6 shows 
the relative frequency of each outcome with a 95% confidence interval bound.  Of all 
experiments, 715 were non-effective and 276 were effective. 

Table 6. Results of Campaign A (faults selected randomly). 

      Undetected 
 No  

effect 
Watch-

dog  
Hardware 
Exception

Software 
Exception

Software 
Assertion

Non-crit. 
failure 

Critical 
failure 

No. of faults 715  32 200 12 13 15  4  
Rel. freq. (%) 72.2±2.8 3.2±1.1 20.2±2.5 1.2±0.7 1.3±0.7 1.5±0.8 0.4±0.4 

 
The number of non-effective faults relative to the total number of injected faults is 

quite normal compared to other studies [11-13]. The distribution of experimental 
outcomes for the effective faults is also typical with hardware exception as the prima-
ry error detection mechanism. 

Campaign B – Scheduler Fault Injection 
In Campaign B, we injected faults in the control task scheduler. The purpose of this 
campaign was to investigate the sensitivity to faults in this part of the code. We se-
lected nine instructions in the initial part of the scheduler. For each of these, we ex-
haustively injected faults in the bits 0- 15 in the D0- D7 and A0- A7 CPU registers. 
The scheduler reads input data and calls the subsystems and output routine periodical-
ly. The fault injection was directed to the input reading part of the scheduler. The 
result of Campaign B is shown in Table 8. Most faults have no effect at all. Non-
effective faults were 86.1%. The corresponding number for Campaign A is 72.2%. 
This part of the code showed to be less sensitive to faults than other parts.  

Table 7. Results of Campaign B (target instructions in the initial part of scheduler) 

     Undetected 
No effect Watch-

dog 
Hardware 

Excep. 
Software 

Excep. 
Software 
Assertion 

Non-crit. 
failure 

Critical 
failure 

1983 (86.1%) 2 (0.9%) 267 (11.6%) 0 (0%) 20 (0.9%) 10 (0.4%) 2 (0.1%) 
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Campaign C – Control Subsystem Fault Injection 
In this campaign we injected faults in Subsystem 1, containing fuel metering control 
software and executing with the highest frequency. We selected seven target instruc-
tions and exhaustively injected faults in bits 0-31 in the D0-D7 and A0-A7 registers. 
A total number of 3584 experiments were performed. The result is shown in Table 8. 
Compared to Campaign A, the number of non effective faults is lower and the number 
of undetected errors is higher. 

Table 8. Results of Campaign C (target instructions in Subsystem 1) 

     Undetected 
No effect Watch-

dog 
Hardware 

Excep. 
Software 

Excep. 
Software 
Assertion 

Non-crit. 
failure 

Critical 
failure 

2465 (68.8%) 97 (2.7%) 739 (20.6%) 29 (0.8%) 103 (2.9%) 86 (2.4%) 65 (1.8%) 

Campaign D –Partially Exhaustive Fault Injection 
The objective of Campaign D was to investigate a fault selection technique that cov-
ers a selected fault space with a minimum of experiments. We apply a manual pre-
injection analysis to avoid injecting faults that have known effect. Only those registers 
that may change the behavior of the system compared to previous experiments are 
selected. At the first address in the fault space, all data and address registers are in-
jected with faults so that the outcome is known for any register bit flip. From that 
instruction and forward, only the registers that are used are injected with faults, since 
they are the only that can change the outcome from what is already known.  

The method was applied to a sequential piece of code in subsystem 1 consisting of 
28 addresses. With pre-injection analysis, the number of experiments was reduced to 
1664, instead of 14336 without pre-injection analysis. Table 9 shows the outcome.  

Table 9. Result from Campaign D 

     Undetected 
No effect Watch-dog Hardware 

Excep. 
Software 

Excep.
Software 
Assertion 

Non-crit. 
failure 

Critical 
failure 

11278 (78.7%) 308 (2.2%) 1640 (11.4%) 0 (0.0%) 780 (5.4%) 328 (2.3%) 2 (0.01%) 

Campaign E – Faults in the Program Counter and Status Register 
Campaign E was performed to investigate the effect of faults in the Program Counter 
(PC) and Status Register (SR). These registers have not been selected for fault injec-
tion in the campaigns B to D. For fault injection in the Program Counter, we used a 
subset of the address space used in Campaign B. The faults were injected in the 16 
lowest bits with a total of 64 experiments. The outcome in Table 10 shows that the 
distribution of detected and undetected errors differs a lot from the previous fault 
injection campaigns. The number of non-effective errors is considerably lower. The 
number of errors detected by Watchdog monitor and Hardware Exceptions are high. 
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Table 10. Results from Fault injections in the PC register (Campaign E) 

     Undetected 
No effect Watch-dog Hardware 

Excep. 
Software 

Excep. 
Software 
Assertion 

Non-crit. 
failure 

Critical 
failure 

7 (11.0%) 17 (26.6%) 32 (50.0%) 0 (0%) 2 (3.1%) 5 (7.8%) 1 (1.5%) 

It showed to be hard finding an address where fault injection in the Status Register 
was effective. Most instructions change the contents of the Status Register but only a 
few use the contents, for example branch instructions. The probability is therefore 
high that a fault in the SR is overwritten. One example of an outcome from one effec-
tive experiment was a software exception. No further experiments were performed. 

Campaign F – Fault Injection Time  
In fault injection campaigns A- E we injected faults at, or close to, the 90th loop 
count. In this campaign we set the fault injection time to 0.450, 1.015, 1.505 and 
2.035 seconds corresponding to the 90th, 203rd, 301st and 407th loop count. The total 
simulation time was the same as the other experiments (3.0 seconds/600 loop counts). 
The goal for this setup was to find a fault location for which the outcome changed due 
to injection time. We were especially interested to find out if the same fault location 
could produce undetected and detected errors depending on injection time. A change 
of outcome was observed in one experiment. At 0.450 seconds, the outcome was an 
undetected error, but at the other time instances, the outcome was a software assertion 
detection. The campaign was terminated when it was confirmed that the change of 
fault injection time can change the outcome. 

5 Summary 

The effects from soft errors in a prototype FADEC controller have been evaluated by 
injecting single bit-flip faults in the controller’s microprocessor while simulating a jet-
engine during an acceleration sequence. Of all experiments, 67% were non-effective. 
The distribution of the remaining 23% of effective errors is shown in Table 11.  

Table 11. Distribution of effective errors 

      Undetected 
Campaign  No. of 

eff. exp. 
Watch-

dog 
Hardware 

Excep. 
Software 

Excep. 
Software 
Assertion

Non-crit. 
failure 

Critical 
failure 

A (Random) 276 11.6%  72.5% 4.3% 4.7% 5.4% 1.4% 
B (Scheduler) 321 6.9%  83.2%  0%  6.2% 3.1%  0.6% 
C (Subsys 1) 1119 8.7%  66.0%  2.6%  9.2%  7.7% 5.8% 
D (Subsys 1) 3058 10.1%  53.6%  0%  25.5%  10.7% 0.1% 
E (PC reg.) 57 29.8%  56.1%  0%  3.5%  8.8%  1.8%  

Average  - 13.4% 66.3% 1.4% 9.8% 7.2% 1.9% 

The efficiency of the error detection mechanisms are (in descending order): 

1) Hardware Exception 
2) Watchdog Monitor and Software Assertion  
3) Software Exception 
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Hardware Exception is the most efficient mechanism (66.3%). Watchdog Monitor 
(13.4%) and Software Assertions (9.1%) have roughly the same efficiency. Of the 
undetected events (9.1%), Non-critical failures are dominating. It is worth to note that 
the ratio of errors and failures differ much between campaigns. 

6 Conclusions and Future Work 

The results of our fault injection experiments provide valuable insights into the rela-
tive effectiveness of the error detection mechanisms included in our FADEC proto-
type. They show that the hardware exceptions included in the MC68340 processor 
obtained the highest error coverage, in average 66.3%. This result is consistent with 
results obtained in several other fault injection studies. The results also show that the 
watchdog timer and the software assertions were quite effective obtaining average 
coverage values of 13.4% and 9.8%, while the software exceptions detected merely 
1.4% of the effective errors in average. Another important observation is that most of 
the undetected failures were non-critical. However, the percentage of critical failures, 
which varied between 0 and 6%, was higher than desirable. In particular, the high 
percentage of critical failure observed for errors injected into Subsystem 1 in Cam-
paign C, suggest that the code for that subsystem needs to be provided with additional 
error detection mechanisms. 

Our future work will focus on development and evaluation of software-
implemented error detection techniques that can complement the ones we have  
evaluated in this paper. Techniques that we plan to investigate include selective time-
redundant execution of sensitive code portions, software implemented control flow 
checking and new types of software assertions. Our aim is to reduce the likelihood of 
critical failure to below 0.01%. To this end, we plan to extend the JETFI tool to sup-
port test port-based fault injection and pre-injection analysis. We also plan to port our 
experimental setup to a new hardware platform with faster CPUs, so that we can run 
larger fault injection campaigns and thereby increase the confidence in our experi-
mental results. In addition, we also intend to evaluate our FADEC prototype with 
respect to multiple bit errors. 

Acknowledgements. This work has partially been supported by the research project 
Reliable Jet Engines funded by the NFFP programme. 
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Abstract. This paper presents how three kinds of automata can be used
in a complementary way to progressively design and assess the Failure
Detection Isolation and Recovery (FDIR) mechanisms of a satellite. Al-
taRica language and tools are chosen to investigate how discrete mode
automata can be used to assess the overall system architecture against
highest level safety and dependability requirements. SCADE language
and tools are chosen to model and verify the software part of the FDIR
with synchronous data flows. HyTech language and tools are used to
validate the hypotheses about the physical behaviours of components
thanks to hybrid automata. Each case tries to highlight the relevant
safety objectives, the granularity of model sufficient for these safety and
dependability objectives and the model tractability with the existing
tools.

Keywords: hybrid automata, model checking, FDIR.

1 Introduction

Space systems become more and more autonomous and complex, which consider-
ably increases the difficulties related to their validation. This is particularly true
for the FDIR functions – Failure Detection, Isolation and Recovery – which is an
essential and critical part of space systems, so as to prevent mission interruption
or loss.

This introduces several interacting phenomena. E.g., a fault occurs while the
system is in a given state (or behaviour mode) and propagates according to this
state. A recovery action occurs while a fault is detected and may modify the
state of the system (for instance, a recovery action may switch off the power
supply of an electronic device). As a consequence, the initial fault propagation
may be modified, interrupted, or activates other faults potentially existing and
previously hidden (passive faults).

Today, system specifications are generally produced in a textual form and
result from an intellectual process supported by analyses largely made by hand.
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This raises several issues in term of the correctness of the specifications as well
as the implementation with respect to the specifications.

Moreover, the development process is long and complex, it deals with hetero-
geneous concepts: architecture, physical laws, software. . .

It appears that it is not possible to validate through a single approach all
the needed concepts: hierarchy; different operating modes (nominal, degraded,
safe. . . ); reactive software to compute monitoring, recovery actions. . . ; and even
physical laws (the environment, fault propagation. . . )

We therefore propose a FDIR validation approach in following three steps, so
that each one focuses on complementary validation objectives and consequently
requires different minimal validation means.

– Architectural and limited behavioural automata for the validation of the
design principles of the overall FDIR system.

– Detailed behavioural automata for the unitary validation of the detailed
software specifications.

– Continuous and non-continuous detailed behavioural automata for the uni-
tary validation of the detailed specification of the physical devices.

2 Context

2.1 System Class and Case Study

We consider safety critical systems containing both physical devices and software
controllers. To illustrate our purpose, we will present the thermal system of a
satellite such as Venus Express from Astrium Satellites. This system and its
FDIR are quite simple but it is representative of all the issues we want to study.

The thermal system aims at keeping the temperature of some satellite areas
between a predefined range of values. It is made of a primary and a backup
heating lines (see the architecture given in the figure 1). A complete heating line
is composed by 15 devices, but the heating system of a satellite can manage up
to 13 different lines.

Each line contains some physical devices (heaters, thermoswitches. . . ) and a
software controller called “Thermal Monitoring Application Program” (TMAP).
The thermoswitches are switched ON or OFF at different thresholds to ensure

Fig. 1. The Thermal System with TMAP Architecture
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a coarse level of control. Then, the TMAP monitors the temperatures measured
by three thermistors, it performs a majority vote and it decides complementary
actions when needed (e.g. activation of the backup line when the primary one is
faulty).

Table 1 presents all the components of our case study and describes the failure
modes we consider for each one.

Table 1. Heating System Devices

2.2 Requirements and Process Overview

Various dependability requirements are assessed during the FDIR validation.
The system may verify qualitative requirements. For instance, an operation must
be prohibited; a failure mode should be hidden, so that catastrophic event cannot
occur; the system architecture has good properties (no single failure leads to a
catastrophic event. . . ). Risk may also be quantified. For example, the reliability
or the maintainability or the availability of a system. . . , can be calculated. Most
of these evaluations are actually probabilistic computations.

Many methods for assessing the dependability are used to cover all the re-
quirements. In the aerospace industry, the main tests and analysis achieved
are: Failure Mode and Effect Analysis (FMEA), Fault Tree Analysis (FTA),
fault injection, software validation, and Hardware-Software Interaction Analysis
(HSIA).

Let us now give more details about what can be achieved with the selected
formalisms and tools.
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3 Safety Assessment of the Systems Architecture with
Basic Mode Automata

At this stage, undesired events of the system are defined and the first hypothe-
ses about the fault models of the main functions are stated. The preliminary
definition of the FDIR identifies the available redundancies, the fault detection
means (specific sensors or software tests), the recovery actions and the overall
logic used to tolerate the dreaded events. The main goals, at this stage, are to
identify the combination of failures that lead to the undesired events.

We propose to explore the use of basic mode automata and related analysis
tools as alternative means of validation. This kind of automata is well suited
to model not only the dynamic of operational and degraded modes but also
the static dependencies between components in the various modes. The formal-
ism expressiveness is limited: boolean constraints are used to express the static
dependencies and the transition between modes cannot refer to timing informa-
tion. As a counterpart, the computation of combination of failures that lead to
an undesired event is reputed tractable for systems of significant size [2].

3.1 Failure Propagation Modelling with AltaRica

AltaRica is a modelling language developed by LaBRI (Laboratoire Bordelais de
Recherche en Informatique) in collaboration with major manufacturers such as
Dassault Aviation and Schneider Electric [1,7,17]. AltaRica models can represent
both functional and dysfunctional features of systems. Indeed, the dysfunctional
aspect is represented by the injection of faults in the model.

An AltaRica model is a network of interconnected components so called nodes.
Each node is specified using a finite number of flow, state, and event.

The flows are the inputs and the outputs variables of the node. They are observ-
able and they are used to link the node and its environment (other nodes). The
states are the internal variables which memorize current or previous functioning
mode. In our models, these variables (flow and state) belong to finite domains of
values (boolean or enumerated type). The events label the changes of the value of
the states. They model the occurrences of fault, environment action or a reaction
to a change of one input value. For instance, a heater component has at least one
boolean input flow Power prov (true when the heater receives electrical power)
and two states variables, temperature and status. status can take three values:
blocked up, blocked down (the heater failure modes) and ok (the nominal mode).
short circuit is the event that leads from an ok status to a blocked up status.

The temperature evolution is a physical process depending on thermal con-
duction, time, and other parameters. We cannot model the detailed physics
equations and we need only to reason about some intervals of temperatures val-
ues (frost, cold. . . ). So we discretized the temperature values and we introduced
nominal cooling and heating actions that increase or decrease the temperature.

The node dynamic is formally specified by transitions and assertions. Each
transition defines some conditions over the flows and the state variables (guard)
that shall be satisfied to enable the transition. It specifies also the new values of
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Fig. 2. AltaRica Model of a Heater

the state variables after the transition and it is labelled by an event name. The
transitions build the automaton part of the mode automaton. Figure 2 describes
for instance the automata built with the transitions related to the temperature
and status of the heater component. The event can also be associated with prob-
ability laws to complete the transition specification. For instance the Dirac(0)
law characterizes instantaneous events that shall be triggered as soon as their
guard is true. They characterized for instance the reconfigurations that are au-
tomatically triggered after failure detection in our case study. Exponential laws
are associated with stochastic events.

Finally, the assertions specify the values of the output flows according to the
constraints satisfied by the input flows in the current functioning mode.

The system model is made of several instances of generic nodes like the heater.
For the analysis purpose, the model may also contain special nodes, the observers
of the undesired events of the system. They monitor some components flows to
detect whether an undesired situation is reached.

3.2 FDIR Validation with AltaRica

As AltaRica is a formal language, its execution semantics is rigorously de-
fined and exploited by several assessment tools: Altatools by LaBRI, AltaR-
ica Dataflow Toolbox, Cecilia OCAS by Dassault Aviation, SIMFIA by EADS
Apsys, BPA-SD9 by Dassault Système. . .We chose Cecilia-OCAS, because we
already experimented it [2,15].

First, we debugged the model by interactive simulation. Then we used the
sequence generation to find the sequences that lead from one initial state to an
undesired event. We have to select a maximal sequence order (lenght) in each
case to limit the search adequately. The simulation was also used to play some
generated sequences and better understand the propagation paths.

It is worth noting that the generated sequences contain both nominal events
(like heating and cooling actions) and failures. Thus, the order of the sequences
– found by the checker – does not directly correspond to the number of failures
that will occur, but is a mix between non instantaneous actions and failures
(Dirac(0) events are not counted).
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We tried to reach the following failure state, Property 1: the temperature
of the component is “frosted” and radiators are not electrically powered.

To verify Property 1 we started from the initial state where the redundant
heater is “frozen” and the nominal heater is “cold”, the nominal line is supplied
and there is no failure. The nominal heater just has to cool down one time to
get to the “frosted” state, which is necessary to hold the property.

Computations were made with a Pentium Dual-Core E5300 @ 2.60 GHz and
3.21 GB of RAM.

There are sequences of order 3, which corresponds here to the occurrence of
two failures in the system (the other event is a nominal event). The number
of sequences which could be computed in 5 seconds is 108, out of which 38
correspond to the number of pair of failures.

Interesting failures are those caused by a failure of the electrical system. In
fact, focusing on the sequences, we can notice that if failures are spread by the
electrical system: “power off” or “overload” on both lines of the system, we reach
the dreaded event: Property 1. Also in our case, there is only one power bus
for the entire system. A single fault affecting the main bus results in loss of
the entire thermal system. We must ensure that the loss of the main bus is not
caused by a single failure.

To conclude, we prove that single failures are taken into account unless they
come from the power supply that feeds the nominal and the redundant parts
(common mode failure).

4 Verification of Control Software with Synchronous
Language

At this stage, the controller logic that was previously sketched is detailed. More-
over, the resulting control laws are discretized to provide a detailed software
specification. So, the resulting specification deals not only with the management
of the operational modes but also with arithmetic and discrete time. The vali-
dation of this detailed specification is usually achieved by simulation and fault
injection.

We propose to explore the use of synchronous languages to formalize such
a detailed software specification and the use of model-checking techniques to
verify the compliance of the detailed specification with the preliminary one. The
formalism is more expressive and the model of the software component is much
more detailed than previously. However, the proof seems to remain tractable for
controller of reasonable size with the technologies we used.

4.1 Failure Propagation Modelling with SCADE

SCADE Version 6 [5] is a synchronous data-flow language, based on Lustre
[4,8,9] and Esterel languages. It is now developed and maintained by Esterel
Technologies.
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In Lustre any variable or expression refers to a flow, which is a pair of:

– a (possibly infinite) sequence of typed values (boolean, integer, real. . . );
– a clock, which represents a sequence of so called instants.

Thus, if we consider the variable X and the expression E, the equation X = E
defines X to be the sequence (x0 = e0, x1 = e1, . . . , xn = en, . . .) where:
(e0, e1, . . . , en, . . .) is the sequence of values of E.

There are also, non-standard operators, called sequence operators, which ma-
nipulate the sequences.

– Memory or delay operator called pre (“previous”).
If X = (x0, x1, . . . , xn, . . .) then pre(X) = (nil, x0, x1, . . . , xn, . . .) where nil
is an undefined variable.

– The − > operator (“followed by”), to initialize the variable.
– The “when” operator
– The “current” operator

It is also possible to create “nodes”, Lustre subprograms which receive input
variables, compute output variables, and possibly local ones, by means of an
equation system. Node instantiation takes a functional form. Finally, Lustre is
very similar to temporal logics. This allows the language to be used for both
programming and expressing the system properties, which can be verified.

SCADE provides the possibility to code with state-machine formalisms (modes,
transitions. . . ), to describe the system behaviour. Then all state-machine fea-
tures are translated (compiled) to basic clocked data flow. That way, state-
machines bring useful syntactical facilities, but do not break the data-flow
principles.

In SCADE models, the system can be created with devices (hierarchy); states
represent different operating modes and degraded modes, as it has been done
with AltaRica. There is no variable required to specify a state; each component
has input/output variables. We use real variable to model the temperature and
other physical values, and we use boolean for reconfigurations; and transitions
can be represented without associated law.

4.2 FDIR Validation with SCADE

To compute Lustre models, we chose SCADE, which is the most complete tool to
compute these models, and one we already experienced. SCADE is very interest-
ing in the way that it has been developed to generate embedded code for safety
critical systems, including for applications subject to certification such as aero-
nautic, railway. . . It is used for example in aeronautic, railway. . . The main abil-
ities are: graphical editor, graphical simulator, graphical and textual conception
(with a mapping between both), code generator into C code, model-checker.

With SCADE, it is possible to check properties with a “observer”– a device
which determines if the property we test is true or false –. Then, the model-
checker confirms that the property is always true or proposes a counter-example.
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We tried to validate the TMAP program. This is a very simple program that
only takes the median value of thermistors and verifies that the value is in or out
of range. If the value is out of range, it uses a counter to filter transient faults,
and finally sends the reconfiguration actions. Thus, we checked the following
properties:

– Property 1: if all the values of thermistors are well within the bounds, then
there is no false alarm.

– Property 2: if the value of a thermistor is out of range, then there is no
false alarm.

– Property 3: if the value of a thermistor is out of range and a calculator is
down, then there is an alarm.

When first trying to check Property 1 and Property 2, they were not val-
idated. It was given a counter example where the filtering counters were at 0.
A quick analysis has shown that if filtering counters value is 0, there is always
an alarm, which can be a false one. We added some restriction on each prop-
erty: Filtering Counter > 0, and we restarted the model-checker, and it proved
Property 1 and Property 2. Similarly with Property 3, the first time we use
the model-checker, it proposed a counter-example, which showed that thermistor
limit values must be: Upper Limit > Lower Limit, otherwise the property is
false. With this change, we formally checked Property 3.

Thus these three properties make possible to find two conditions of incorrect
reconfiguration. These two conditions may seem simple, but it shows that small
errors can quickly lead us to greater problems. Moreover, the values of these
limits may be changed during a satellite lifetime by remote control, so it must
be sure that there are no mistakes about these values.

5 Continuous Dynamics of the Physical System with
Hybrid Automata

The numerical and timing parameters of the detailed software specification de-
pend on the physical laws of the controlled devices. So, other models and tools
are needed to characterize these parameters. The physical laws are still func-
tions of operational or failure modes but now, in each mode, the dependencies
between component parameters deserve to be modelled by equation over con-
tinuous time. In the classical process, the identification of parameters rely more
often on simulation.

Here we propose to explore the use of linear hybrid automata and related
model checker HyTech to reach this goal.

5.1 Modelling with HyTech

The theory of hybrid automata has been studied since 1990. In general, a hybrid
automaton is a state-machine (possibly infinite) whose variables have a behaviour
in IR .The key concepts were defined in [12].
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To be able to compute the models, we cannot use directly this theory. Indeed,
reachability problem cannot be decided in all cases. The restriction of hybrid
automata – linear hybrid automata – is decidable [14].

A hybrid automaton H is linear if the two restriction are met [12].

1. The initial, invariant, flow, and jump conditions of H are boolean combina-
tions of linear inequalities.

2. If X is the set of variables of H, then the flow conditions of H contains free
variables from Ẋ only.

In HyTech models, there is no hierarchy; states represent different operating
and degraded modes. The variables used to model each component are boolean
and real value. Moreover in each state, variables have a linear behaviour. The
range of the derivative can be specified; and there are no data-flows, but labelled
transitions help to synchronize events.

For this part, we decided to focus on a heater behaviour described in [16]. To
complete our example, failure modes have been added, and a monitor verifies if
the temperature is above or below a threshold. Figure 3 describes the different
automata.

Fig. 3. Hybrid Model of the Heater System and the Monitor

5.2 FDIR Validation with HyTech

Hybrid automata is the most expressive theory that we use in this paper, but
it has less tools to edit and compute the model easily. Moreover, the theory is
reduced to Hybrid Linear Automata. Some recent tools provide a user-friendly
graphical editor, like SpaceEx, but most of them are only textual. On the analysis
aspect, it is the same. These tools “only” perform reachability analysis, which
consist in calculating all the states that will be reached from an initial state.
Thus, it is possible to verify a property in each state and see if a forbidden state
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is reached. The difference between tools is mainly based on the algorithm which
computes reachability. To compute hybrid automata, few tools were created.
There is a very interesting overview from hybrid tools existing before 2006 in[3],
but we also want to mention SpaceEx [6], one from PHAVer successor. Its purpose
is to propose a real interface to design and compute hybrid automata reachability.
We decide to use HyTech [10,11,13](the first tool which has been developed),
while it seems to be the most accurate tool to perform reachability analysis and
express properties.

As we have seen in section 4, in the Lustre experimentations there are timed
requirements to validate or not a detected error (false alarm case). As the thermal
system has a continuous behaviour, and reconfigurations are periodic actions, the
temperature continues to change between reconfiguration periods. Thus we tried
to determine the different relations between the “minimum validation time”, the
“sample period”, and the temperature thresholds. To determine these relations,
a reachability analysis is computed from an initial state and we intersect the
reachable state with a final state. We choose:

init_reg := t=0 & x=0 & y=0 & Temp>T_thr_min & Temp<T_thr_max

& loc[heater]= heater_is_on;

out_reg := y>0 & Temp<T_thr_min;

The result of this analysis is computed in 0.34 s is (a description of the reachable
regions see Fig.4):

(a1)sample_period + T_thr_max <= Tmax & T_thr_min < T_thr_max

& Tmin < T_thr_max & (a1-b1)sample_period < (-b1)Min_Valid_Time

| T_thr_min < T_thr_max & Tmin < T_thr_max & T_thr_max <= Tmax

& (a2)sample_period + Tmax < (a2)Min_Valid_Time + T_thr_max

& Tmax <= (a2)sample_period + T_thr_max

& T_thr_max < (-b2)sample_period + Tmax

Thus, if the two expressions are verified, it is proved that the system will not
have false alarm.

This result is interesting because we can prove formally and exhaustively a
property, when today, in automatic control, these verifications are generally per-

Fig. 4. Reachable Heater’s Temperature on the High Threshold
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formed with tools such as Matlab/Simulink that can better model the behaviour
of these continuous and non-continuous systems. Nevertheless all the verifications
are mostly simulations. Even if we test a worst case to determine the parameters
of a system, it is possible to not see a non-trivial case that will leads the system
to an unsafe mode. An approach with HyTech seems better, but it is difficult to
handle complex systems and to model accurately the behaviour as it is possible
to do with Matlab/Simulink.

6 Conclusion

The paper reports how three kinds of automata were used to assess comple-
mentary features of satellites FDIR. The experiment shown that basic mode
automata are sufficient to handle efficiently assessments of the overall prelimi-
nary specifications of the FDIR.

More detailed specifications need to be addressed with dedicated tools. Here
we choose to address the verification of the control software with synchronous
language widely used. The experiment shown that the proof of the specification
is tractable on such a limited case and fruitful.

The control specification was tested in an open loop way. It would be interest-
ing to compare AltaRica models of the physical components with this specifica-
tion to close the loop. Indeed AltaRica expressiveness is compatible with Lustre
data-flow (see [18], a translator from AltaRica to Lustre).

Finally, the use of hybrid automata seems promising for rigorous validation
(see [16]). However, this kind of tool is much less mature than the two others
and so applications remain limited.
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Abstract. With the introduction of the automotive functional safety standard 
ISO 26262, several challenges related to the representation of dependability 
information has emerged. This paper addresses how safety requirements can be 
formalized; which is mandatory for high-integrity requirements. Particular 
focus is given to asymmetric failures. Such a failure can be caused by a 
communication fault, and implies that data in a distributed system will be 
inconsistent among system outputs or within the system (incorrect, corrupt or 
omitted, etc.). We investigate along two lines; 1) The EAST-ADL automotive 
architecture description language is extended with a capability to represent 
asymmetric faults and failures. 2) The Compute-Distribute Results (CDR) 
pattern is introduced to assist reasoning about distributed systems, in particular 
potential inconsistencies. We show how this can support architectural decisions 
regarding selection of communication topology and communication technology 
for a given distributed system. A brake-by-wire application and FlexRay bus 
are analysed to illustrate the concepts. 

Keywords: System modelling, Taxonomy, Failure model, Distributed system, 
Automotive, ISO 26262, Asymmetric failure, EAST-ADL, AUTOSAR, 
FlexRay. 

1 Introduction 

With the introduction of the ISO 26262 standard [1] for functional safety of E/E 
(Electric/Electronic) systems in road vehicles, a number of problems have arisen that 
must be solved in the industry in order to be compliant with the prescriptions of the 
standard. We address the entire reference life cycle of ISO 26262; looking at what 
support that is needed at the different stages. In particular we investigate the support 
needed when deciding both what communication topology and what communication 
technology to use for a given distributed system. One particular challenge of such 
systems is designing them to handle asymmetric failures. If unanticipated and 
unhandled, these failures cause inconsistency in the system and potentially unsafe 
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situations. An asymmetric failure can be caused when data is distributed e.g. due to a 
fault in the communication bus induced by external disturbance. Some receivers will 
have correct data while others have e.g. no data or data that is incorrect or corrupt. An 
example of a mitigation mechanism for asymmetric failures, is a membership 
agreement protocol [2]. 

According to the ISO 26262 reference life cycle, there are at least four architectural 
decision points when performing a design. The first one is part of the Functional 
Safety Concept in part three of the standard); the second one is part of the Technical 
Safety Concept (in part four); the remaining two relate to the hardware and software 
designs respectively (in part five and six). In each of these steps, all safety 
requirements shall be identified and allocated onto the elements of that architecture. 
Our concern in this paper is the safety requirements that address inconsistency 
between different architectural elements. Such inconsistencies can be due to 
asymmetric failures. 

We use service brake as an example item to illustrate the problem, see Fig. 1. Here 
there are requirements to address asymmetric failures already in the safety goals. For 
example, the safety goals could state that a certain integrity level is needed to avoid 
asymmetric braking of the four wheels of the vehicle. Then in every architectural 
design step, we may introduce distributed realization of the functionality, such as 
functionality in multiple distributed cooperating processes. This introduces the need 
for safety requirements on the integrity to avoid unsafe effects of these distributions, 
e.g. inconsistency of data. For example, if the Functional Safety Concept has a 
general functional architecture with two blocks for distributed calculation of the four 
braking forces, we need to add functional safety requirements to avoid unsafe 
inconsistencies between these two blocks. In the Technical Safety Concept the 
general system design is decided including the topology of electronic control units 
(ECU) and communication links between them. In the hardware design the 
technology to realize each ECU and communication link is then decided. Depending 
on what topology that is chosen and what bus technology that is used for the 
communication links, the safety requirements dealing with asymmetric failures are 
different. In this paper we present a guide to support the architectural choices and the 
formulation of the corresponding safety requirements related to asymmetric failures. 

In part eight of ISO 26262 there is a collection of requirements regarding the safety 
requirements applicable at all the different phases of the reference life cycle. It is 
stated in clause six that for integrity levels ASIL C and ASIL D, it is highly 
recommended to use semi-formal methods for the safety requirements. This means that 
the safety requirements are not adequately expressed by using only free text natural 
 

        

Fig. 1. Simple distributed brake system 
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language. That is why there is a need for at least some patterns to guide the system 
designer when identifying safety requirements including their allocations onto a system 
architecture. In this paper we address this need with respect to asymmetric failures. We 
show how the safety requirements can be described by semi-formal or formal 
representation in architecture description languages (ADL) such as AUTOSAR [3], 
EAST-ADL [4] and AADL [5, 6]. Then we introduce a dedicated modelling pattern 
(Compute and Distribute Result, CDR) suited for supporting decisions on bus topology 
and bus technology, and identifying the corresponding safety requirements. This CDR 
pattern is not dependant on any given ADL. Furthermore we give an example of 
analysis of a FlexRay bus with the CDR pattern. The outcome is a failure model for the 
FlexRay bus based on analysis according to the pattern.  

1.1 Contribution and Paper Organisation  

The contribution of the paper is threefold:  

1. We show how the EAST-ADL dependability support can be extended with safety 
constraints for asymmetrical failures. 

2. We introduce the CDR pattern for characterizing the nominal system and 
describing how it can fail. 

3. We propose how failure models compliant with the CDR pattern can support 
architectural exploration.  

A brake-by-wire application and FlexRay bus are used to illustrate the concepts.  
The remainder of this paper is organised as follows. Related work is presented in 

Section 2. The CDR pattern, Taxonomy of CDR failures and CDR Failure Model are 
presented in Section 3. The relation of the pattern to EAST-ADL and ISO 26262 are 
discussed in Section 4. Finally, conclusions are drawn and a summary is given in 
Section 5.  

2 Related Work 

EAST-ADL [4] is an architecture description language for automotive embedded 
systems. It represents engineering information from abstract feature models to the 
concrete system architecture. AUTOSAR elements [3] represent the realization of the 
EAST-ADL model and form a consistent model together with the more abstract 
EAST-ADL elements. 

Safety extensions to EAST-ADL make it possible to capture ISO 26262 
information in a model based manner [7, 8]. Hazards and safety goals are associated 
to the abstract features while functional and Technical Safety Concepts relate to the 
system architecture solution on analysis and design level. Hardware and software 
safety requirements relate to AUTOSAR elements on implementation level.  
The EAST-ADL system model and also the AUTOSAR elements can be extended 
with error models that formalise error propagation and the failures on interfaces 
within and on system borders.  
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AADL [5] is an architecture description language originating from the aerospace 
domain. It overlaps partly with AUTOSAR. AADL has the capability to model error 
propagation, but the structure and propagation paths of the error model are always 
coincident with the nominal architecture. AADL defines error behaviour using state 
machine semantics, as opposed to EAST-ADL that does not prescribe any specific 
failure logic. In EAST-ADL this can be chosen based on the analysis tool used, for 
example HiP-HOPS [9] or Altarica [10]. 

In EAST-ADL, safety constraints are used to define the criticality of faults and 
failures. However, simultaneous failures could not be represented until now, and 
therefore not asymmetric faults and failures. The typical pattern for error modelling in 
EAST-ADL is to define a structure which captures the perceived failure behaviour 
and error propagation in the nominal architecture. For the allocation-aware design 
level, separate error models are typically made for hardware and software, and the 
hardware failures propagates to the functional architecture. In order to assist 
reasoning about allocation alternatives, an error modelling pattern is useful, which 
captures both software (or functional) faults and hardware faults. This is achieved by 
applying the CDR pattern. 

3 CDR Pattern, Taxonomy and Failure Model 

A failure model (in the general sense) describes to the system designer the failure 
modes that are plausible at the system boundary. We will discuss in this paper how 
failures in the failure model are described according to the taxonomy of failure that is 
provided in this paper. The failure model is affected by the system model (node 
model, network model, processing model, environment, etc.). Each of the failures in 
the failure model is normally handled with different means, such as fault tolerance, to 
achieve dependability of the system [11]. When representing failures and how they 
propagate, the EAST-ADL is agnostic to the failure model chosen. It is part of the 
user model in the same way as a brake system or engine controller. Therefore the 
failure model from the CDR pattern can be chosen where suitable, and captured using 
the EAST-ADL Error Model structure. 

3.1 CDR Pattern 

The CDR pattern captures how the system operates. It includes a processing model 
for a distributed system where operation is divided into a number of sequentially 
executed primitive operations called CDR operations, where CDR means Compute 
and Distribute Result. Such an operation involves the computation of a result by a 
producer and the distribution of that result to consumer. The CDR operation thus ends 
by the delivery to the consumer, i.e. the model encompasses the producer (process), 
but not the consumer (process). In a concrete system a producer may be a process 
executing on a node and the consumer may be a process on the same or another node. 
In an allocated system there are several components involved between the producer 
and consumer in the distribution of the result, see Fig. 2. Examples are middleware 
software (sender and receiver service), the processor and network hardware. A failure 
of any of these intermediate components leads to failure of the CDR operation.  
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Fig. 2. One compute and distribute result (CDR) operation from producer to consumer 

 

Fig. 3. Consecutive CDR operations. Each independent chain of operations is denoted with a 
capital letter such as A. 

An advantage of modelling system operation in terms of CDR operations is that 
details in the path from producer to consumer are abstracted away. A fault in an 
intermediate components leads to failure of the operation, e.g. the results were not 
received at all consumers. This simplification removes the need to keep track of nodes 
and propagation of errors such as an erroneous result. For example, a process in a 
node can act as consumer in one CDR operation and then act as producer in the next 
CDR operation. Individual component failures, such as failures in incoming or 
outgoing links, do not have to be handled separately, but are rather handled as a 
failure of an entire CDR operation. A CDR operation is a one-shot operation, i.e. 
concerns the distribution of one single result. Continued service from a system can 
consist of consecutive staggered CDR operations, Fig. 3. In this example there are 
three independent chains of CDR operations, A, B and C, where each realise a service 

With the CDR pattern (or guideline) a system can be considered and the failure 
model for the system can be organised. In EAST-ADL terminology, CDR failure 
models describe a combination of FDA (Functional Design Architecture) and HDA 
(Hardware Design Architecture) failures for a specific function. The pattern can be 
applied to an unallocated FDA to explore failures of different implementations and 
thus to compare them. Although all involved elements affect the failure model, the 
focus in this paper is the choice of communication network. The CDR pattern and its 
related models are further investigated in [12]. 

3.2 Taxonomy of Failures 

We characterise CDR failures according to three main aspects: type, symmetry and 
detectability. Persistence is discussed later. 

The type of the CDR failure is further distinguished into:  

• Value failure - Corruption in the payload (data value) of a frame.  
• Timing failure - The delivery time of an expected frame deviates from the 

specification, i.e. the frame is either early or late.  
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• Send omission failure - The expected result or frame is not sent by a node.  
• Receive omission failure - The expected result or frame is not received by a node.  
• Signalled failure - The affected component in the system, e.g. a process or 

middleware, is unable to perform its service and instead sends an error frame.  
• Blocking failure - A node jams other traffic on the network, e.g. by sending too 

many frames, untimely frames or disturbance.  
• Addressing failure – A corruption in the frame affects the source or destination 

address, e.g. frame masquerading.  
• Insertion failure - A spurious unexpected frame is received, e.g. frame commission 

failure.  
• Repetition failure - An old result or frame is repeated.  
• Sequence failure - Frames are received in the wrong sequence. 

The symmetry aspect of a failure decides whether all nodes in the system experience 
the failure identically or not i.e. either symmetric or asymmetric. A symmetric failure 
is perceived identically by all non-faulty nodes. An asymmetric failure occurs when 
different nodes have different perceptions of the failure e.g. a message is omitted at 
some but not all nodes. 

Detectability decides whether the failure can or cannot be detected by the receiving 
node; the failure is often either detectable or undetectable. An undetectable failure 
implies that individual assessment based only on incoming frames does not suffice to 
resolve the failure. For example, a corrupt message can usually be detected with a 
CRC. Data from an erroneous producer is not necessarily detectable. 

Persistence, the timing characteristic of a fault or failure, does not apply to the 
CDR operation failure model since a CDR operation is a “single shot” operation. A 
fault is therefore always regarded as a single occurrence during one operation and 
leads to one CDR failure. However, when regarded at the perspective of sequential 
CDR operations, persistence is applicable. A single fault can cause multiple CDR 
failures. The persistence of a fault can be either transient – a single occurrence of the 
fault, intermittent – recurring presence of the fault or permanent – continuous 
presence of the fault. A transient fault will only affect a single CDR operation while a 
permanent fault affects consecutive CDR operations. A fault leads to a failure which 
is either temporary or permanent.  

3.3 A CDR Failure Model for FlexRay 

In this section we propose a simplified failure model based on the CDR model for a 
system with FlexRay [13]. The plausibility of failures assessed based on the 
specifications of the protocol and with the assumption of a “basic” system with only 
mitigation mechanisms that are intrinsic to FlexRay. In FlexRay a communication cycle 
consists of a static and a dynamic segment. These two communication modes are 
assessed separately. Insertion, addressing and timing failures are avoided in the static 
segment due to the time-triggered paradigm while the dynamic segment is susceptible.  

Both segments are prone to omission failures although these are assumed to always 
be detectable since processing in the system is basically synchronous. Here, each 
node has its own concept time and knows which results are expected by its processes. 
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The static segment also has knowledge of the communication schedule, i.e. expected 
arrival of each frame. In FlexRay, nodes have a common time-base due to clock-
synchronisation which implies that a receiving node always correctly concludes that 
an expected but not received frame is due to a failure, i.e. detectable. Timing failures 
in the dynamic segment are therefore assumed to be detectable.  

Table 1. CDR failure modes in a system with FlexRay 

 Asymmetric 
omission 
failure 

Symmetric 
 Insertion, 

Addressing 
failure 

Omission 
Repetition 
failure 

Blocking 
failure 

Timing 
failure 

Detectable and 
Undetectable 
Value failure 

Static X - X - - X 
Dynamic X X X X p X 

X: Susceptible; p: partial susceptible and –: not susceptible 
 

Value failures are either undetectable or detectable depending how the failure is 
caused. For example a frame CRC cannot mitigate an erroneous value caused by a 
faulty producer. A potential cause of blocking failure is interference due to a faulty 
node which sends a frame or nonsense in a communication slot which belongs to 
another node. This failure mode is sometimes known as babbling-idiot failure or 
interference failure. These failure modes are avoided by the use of bus-guardians in 
static FlexRay while dynamic is susceptible.  

Repetition failure can be caused e.g. by a fault in the sender service or sender node 
hardware which prevents the update of outgoing communication buffers. This can 
cause an old frame to be sent. All systems are susceptible to this failure but it can 
easily be avoided e.g. by the use of sequence counters in frames. Sequence failure is 
not applicable to the CDR operation failure model since a CDR operation is a “single 
shot” operation, but is applicable when regarded at the perspective of sequential CDR 
operations. All systems are susceptible to this failure but it can easily be avoided by 
the use of sequence counters in frames. 

Table 1 summarises the mappings between components faults and failure  
modes for static and dynamic FlexRay communication. Asymmetric failures are 
assumed to occur mainly due to faults in incoming link and the network. However a 
slightly-out-of-specification (SOS) fault [14] can also cause asymmetric omission 
failure. The cause can be external disturbance. SOS-faults can occur in the time-
domain and value domain. An example of the former is deviation of clocks in nodes 
e.g. due to faults affecting clock synchronisation – a service provided by FlexRay. 
The synchrony of clocks affects a node’s perception of what constitutes a timely 
frame, i.e. correct, and what is a late or early frame, i.e. omission. 

4 The CDR Pattern Applied to Architecture 

4.1 ISO 26262 Implications 

ISO 26262 part 8 clause 6, states that a semi-formal notation is highly recommended 
for Safety Requirements of ASIL C & D functions. This applies to Safety Goals, 
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Functional Safety Concept, Technical Safety Concept and Hardware/Software 
Requirements.  

In the Functional Safety Concept the task is to formulate safety requirements to 
allocate on abstract architectural elements i.e. without notion of hardware. In EAST-
ADL terminology this is the same as specifying the analysis architecture. Concerning 
the safety requirements related to communication, we should remember that it is a 
functional architecture, and not a physical architecture. This means that when we 
interconnect functional block with each other, there is nothing in this abstraction 
saying how such communication is realized e.g. by a bus or shared memory. 

In the Technical Safety Concept the main issue is to decide the architectures of 
software and hardware respectively, and also the allocation of software elements to 
the hardware elements. As in the Functional Safety Concept, safety requirements in 
the Technical Safety Concept can be both directly inherited from the previous phase 
and appear as a consequence of the architectural choices in this phase. What technical 
safety requirements that have to be dealt with are hence a direct consequence of the 
architectural choices.  

On the implementation level of abstraction (hardware/software requirements) we 
not only know where we have physical communication between the nodes, but also 
what kind of bus technology it is. The choice of bus also has a direct implication on 
the amount and formulation of the related safety requirements. When modelling such 
safety requirements, this is directly related to the failure models of the different bus 
technologies, respectively. When making the choice of what bus technology to use for 
different bus segments, it is hence important to understand what safety requirements 
that will be allocated on these segments, and what inherent mechanisms that are part 
of the buses themselves and what additional mechanisms are needed. For example, in 
CAN the sender of a message can monitor the bus simultaneously to sending and thus 
detect that its transmission has failed. This capability is not present in FlexRay; where 
the sender of a message cannot simultaneously monitor the bus [15]. The previous 
section described a failure model for FlexRay. 

The CDR pattern is mainly applicable for semi-formal description of the Technical 
Safety Concept and Hardware/Software requirements. At these two stages of 
requirement decomposition allocation to architecture and concrete bus is known. 

4.2 Application to EAST-ADL Models 

The CDR pattern can be applied to EAST-ADL functions, such that the function 
together with its outgoing connectors is considered as a CDR operation. This way, the 
error model for each function can be created according to the CDR pattern. 
AUTOSAR runnable entities together with data distribution can also be considered a 
CDR operation. This applies to “Category 1a” runnable entities which have run-to-
completion semantics. 

In Fig. 4 we illustrate a set of EAST-ADL functions which can be considered to be 
a CDR operation. Thus a CDR failure model can be defined. By applying the CDR 
assumption to EAST-ADL functions or AUTOSAR runnable entities, different sets of 
failure modes for each CDR operation can be applied depending on architectural 
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assumption. For example, local or distributed allocation, fault-tolerant or non-fault-
tolerant bus, etc. each result in different failure modes. The CDR generated failure 
model, thus serves as an aid for architectural exploration. A set of architectural 
decisions are valid if the applicable safety requirements are met for the corresponding 
CDR failure model.  

Fig. 4 shows four EAST-ADL safety constraints formalizing the ASIL C 
requirement that brake force shall not deviate more than 28 from the correct value. 
 

 

Fig. 4. Error Propagation and Safety Constraints on design level 
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Unit and dimension of this value is defined by the corresponding nominal port. The 
ASIL D constraint means that asymmetric deviation among brake forces shall not 
exceed 10. What these five constraints illustrate is that small asymmetric deviations 
(10) are more critical than large symmetric deviations (28). The figure also shows the 
hardware architecture, and suggests that the CDR pattern is used for the failure model 
to assess different allocation choices. 

5 Summary and Conclusions 

The CDR pattern has been presented and put in relation to EAST-ADL and to ISO 
26262. This pattern provides a recipe for creating an error model that describes how 
the nominal system can fail. Failures in the CDR pattern are described according to a 
taxonomy described in the paper. This is devised especially to capture asymmetric 
failures. The CDR pattern can be used to characterise the nominal system and 
supports architectural exploration so that architectural design decisions, such as 
choice of communication bus, can be compared. 

The pattern complements EAST-ADL with the capability to describe a 
combination of functional and hardware design architectures (FDA & HDA). We 
further show how the EAST-ADL dependability support can be extended with safety 
constraints for asymmetrical failures. It improves the capabilities to semi-formally 
describe safety requirements, such as the Technical Safety Concept and the 
Hardware/Software Safety Requirements, thus fulfilling ISO 26262 part 8 clause 6. 

A brake-by-wire application and FlexRay bus were used to illustrate the concepts. 
The outcome is a failure model for the FlexRay bus based on analysis according to the 
pattern. 
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Abstract. Model-based development has become a standard software develop-
ment approach in the automotive field. Evidence for this is provided by its  
incorporation in the ISO 26262 safety and process standard. This standard pro-
poses different measures and methods that can already be applied at model lev-
el. These techniques contribute towards ensuring and increasing the quality of 
the software that is finally generated and deployed on the embedded controller. 
The benefit of this approach is clear: Failures and defects are discovered earlier 
on in the development cycle. How quality measures and methods can be applied 
within development projects is however far from obvious. In this paper we in-
troduce best practices for model reviews of software models with the aim of en-
suring safety-related objectives and adherence to ISO 26262. We summarize the 
main benefits that can be achieved with our best practice approach, which is a 
combination of automated (tool supported) and manual reviews. Finally, we re-
port on our review experiences with Simulink and TargetLink models of safety-
related systems from serial projects.  

Keywords: Model review, ISO 26262, functional safety, quality assurance 
process, model-based development, model architecture, modeling guidelines. 

1 Introduction 

In the automotive domain, the approach for developing embedded software has 
changed in recent years. Executable graphical models are now used at all stages of 
development: from the initial design phase to the implementation. Model-based de-
sign is now recognized in process standards such as the ISO 26262 standard for the 
automotive domain and even in the DO-178C standard for the avionics sector.  
Software models are used for verifying functional requirements as an executable spe-
cification, and also as so-called implementation models used for controller code gen-
eration. The models are designed with common graphical modeling languages, such 
as Simulink and Stateflow from The MathWorks [6] in combination with automatic 
code generation with TargetLink by dSPACE [5] or the Real-Time Work-
shop/Embedded Coder by The MathWorks. Model-based development provides an 
efficient approach for the development of software for embedded systems. Figure 1 
illustrates the model-based development process in a simplified way. In the first stage, 
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the system to be build is modeled with a graphical modeling language. This model is 
created on the basis of the textual requirements and is therefore often called functional 
model at this stage. Since the functional model is focused on the design of the control 
function and on checking the functional behavior with regard to the requirements it 
cannot directly be used as a basis for production code creation. Implementation details 
which are the prerequisite for automatic code generation are not considered here. 
Therefore the functional model needs to be manually revised by implementation ex-
perts with respect to the requirements of the embedded target system (e.g. function 
parts are distributed to different software units, arithmetic is adapted to fixed-point 
target). Furthermore, it is often necessary to restructure the functional model with 
respect to a planned software design. The result of this manual conversion is the so 
called implementation model. Finally, the implementation model is automatically 
translated to source code by a code generator.  

Executable
specification 

(model) Implementation model
Generated

C Code

Fixed-point 
arithmetics

Model Verification


Requirements
specification

Floating-point
arithmetics

Object code

Code Verification

Proof: 
Model behavior is equivalent to the requirements

Proof: 
Code behavior is equivalent to model and requirements  

Fig. 1. Model-based Development Process 

A comprehensive survey of quality assurance for model-based development (mod-
el and code verification) is given in [9]. The modeling process is safeguarded by 
means of a two-stage verification approach: model verification and code verification. 
The first ensures that the model behavior fulfills the requirements, the latter that the 
code is equivalent to the model and consequently also fulfills the requirements. The 
main benefit of this approach is that it allows detecting possible errors very early in 
the development process. The contribution of this paper is two-fold. We firstly identi-
fy requirements on the quality assurance for model based development that result 
from the application of the ISO26262 standard. Our main focus lies on review tech-
niques that are required to comply with the ISO 26262. Since the standard does not 
define how the proposed methods and measures should be adopted, we, secondly, 
introduce best practices for model reviews of software models that aim at ensuring 
safety-related objectives. With our paper we aim at providing support for practitioners 
that are confronted with the task of ensuring compliance with the standard. 
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2 ISO26262 and Model-Based Development 

The ISO 26262 is an adaptation of the IEC 61508 functional safety standard to the 
development of safety-related automotive electric/electronic systems. The standard 
considers functional safety aspects of the entire development process. It provides an 
approach for identifying and classifying hazardous situations (risks). During the risk 
analysis, possible hazardous situations are identified and classified. As an outcome of 
the risk analysis and risk assessment, so-called Automotive Safety Integrity Levels 
(ASILs) are assigned to all HW and SW parts that could influence a hazardous situa-
tion. The standard defines for each ASIL specific measures that must be applied in 
order to achieve an acceptable residual risk. The process for developing safety-related 
software in compliance with ISO 26262 is based on the V-Model of software devel-
opment. For each development phase, requirements (1) on the development activities 
and (2) on the work products are defined and (3) obligations on the corresponding 
quality assurance methods are imposed. The standard recognizes model–based devel-
opment as a meaningful method in order to increase the quality of the software to be 
developed. In more detail, the seamless utilization of software models, as the central 
artifact in model-based development, “facilitate highly consistent and efficient devel-
opment”1.  

Quality Assurance for Design Phases
• Review of Requirements Specification (ISO26262-6/6.4.8)
• Review of SW Architecture (ISO26262-6/7.4.18)
• Review of SW Unit-Design (ISO26262-6/8.4.5)

6-6 Specification of 
software safety
requirements

6-7 Software
architectural design

6-8 Software unit
design and 

implementation

6-9 Software
unit testing

6-10 Software
integration and

testing

6-11 Verification of
software safety 
requirements

Requirements
traceability

 

Fig. 2. Phase-model for software development according to ISO26262 

Figure 3 shows the phase model of software development proposed by the stan-
dard. The standard specifies a two-part strategy in order to ensure functional safety. 
The design phases on the left-hand side of the V-Model include reviews that aim at 
ascertain compliance with the overall safety goals and at ensuring that the require-
ments will be correctly implemented. The testing phases on the right-hand side ensure 
that the safety requirements on the work-products are fulfilled. It is obvious that this 
approach is not a novelty. In particular, the testing process recommended by the  

                                                           
1  ISO 26262-1, Annex B.1. 
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standard is successfully implemented by many OEMs and suppliers of the automotive 
industry for many years. Apart from testing aspects, the main goal of the software 
design phase is to ensure that the software architecture realizes the safety require-
ments stated for the software. This goal can hardly be verified by testing. From our 
point of view, this can only be achieved efficiently by reviewing the software models 
used for code generation. 

3 Model Reviews According to ISO 26262 

The ISO26262 standard requires reviews for the work products that are created in the 
three design phases (ref. Fig. 2). The (1) safety requirements review investigates the 
safety requirements of the software in order to ensure their compliance and consisten-
cy with the overall safety requirements. Moreover, the hardware-software interface 
specification, which is refined during the specification phase, is validated to ensure 
consistency with the overall system design. The (2) SW architecture review con-
cludes the software architecture design phase. It aims at ensuring compliance of the 
software architecture with the software safety requirements defined in the preceding 
phase. Furthermore, the compliance of the architecture with the architecture design 
principles imposed by the standard is approved. The (3) SW unit review investigates 
the software unit design and implementation and has to show the fulfillment of the 
software safety requirements and the compliance of the software unit with the hard-
ware-software interface specification. Moreover, it has to be verified that the unit 
design is correctly implemented and that the implementation complies with the coding 
respectively modeling guidelines. The standard explicitly requires to provide evidence 
that the source code fulfills the safety requirements. An indispensable precondition 
for all three reviews that is imposed by the ISO26262 is the traceability for the soft-
ware safety requirements.  

Review procedures focused on verification of requirements specifications, e.g. Fa-
gan inspections [8], can be adapted to perform model reviews. The general objectives 
of model reviews are: (1) to check whether or not the textual specified functional 
requirements are realized in the model; (2) to ensure that relevant modeling guidelines 
are fulfilled (e.g. naming conventions, structuring, modularization); (3) to check to be 
sure that a number of selected quality criteria such as portability, maintainability, 
testability are met; (4) to check to be sure that the implementation model meets the 
requirements for the generation of safe code (e.g. robustness) and efficient code (e.g. 
resource optimizations). To handle the complexity of this task, model reviews are 
often guided by an in-house set of specific modeling and review guidelines. These are 
commonly summarized as a review check list. During the model review, a series of 
findings with suggestions and comments on individual model parts are gathered and 
recorded with a reference to the affected model elements. The references to the model 
elements enable the developer to track which parts of the model must be revised. 

Compliance with modeling guidelines is important to increase the comprehensibili-
ty (readability) of the model, to facilitate maintenance, to ease testing, reuse, and ex-
tensibility, and to simplify the exchange of models between OEMs and suppliers. 
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According to our experience, several benefits can be achieved by establishing model-
ing guidelines, particularly if modeling guideline violations can be checked and (part-
ly) corrected automatically by guideline checkers such as the Model Examiner [12] or 
the Model Advisor [6]. A major benefit is the reduction of the effort to carry out a 
manual model review. Furthermore, guideline adherence is a constructive quality 
assurance method. Typical failures, e.g. inconsistence usage of data types or signals, 
can be detected and avoided. Within a company, it can be ensured that software mod-
els are designed in a consistent and comparable manner such that the exchange of 
information is facilitated.  

Over the last few years, various guidelines have been developed. In the following 
we provide a short overview on the most popular guidelines. Guidelines and patterns 
for model design, such as those published by the MathWorks Automotive Advisory 
Board (MAAB) [10] are often adopted in order to increase the quality of models. 
However, the MAAB guidelines do not directly address model design issues relevant 
for production code generation; rather they focus on overall model quality aspects 
such as readability, maintainability, testability etc. In the context of serial production 
code generation for safety-related systems other modeling guidelines should be taken 
into account. These include: (1) the MISRA Autocode Simulink/Stateflow Guidelines, 
(MISRA AC SLSF [2]), published by MISRA, and the Strong Data Typing Guide-
lines for Simulink and TargetLink [1], published by MES. If a code generator is used 
for production code generation, the following guidelines are important. For the Tar-
getLink codegenerator, the dSPACE Modeling Guidelines for TargetLink [4] as well 
as the MISRA Autocode TargetLink guidelines (MISRA AC TL [3] should be consi-
dered; for the Embedded Coder, the Safety Integrity Guidelines [7] should be adhered 
to. Compliance with the modeling conventions, stated in the above guidelines, facili-
tates the translation of software models into safe and efficient code. In our experience, 
we strongly recommend carrying out guideline checking before any quality assurance 
method such as model review or testing; otherwise unnecessary high effort can be 
required due to e.g. reduced readability or subtle modeling failures. 

4 Our Model Review Approach 

Our best practice approach for model review presented in this paper is restricted to the 
second and third design phase of the ISO reference model (ref. Fig. 2). We provide an 
approach for the SW architecture review that concludes the software architectural 
design phase and the SW unit review that concludes the SW design and implementa-
tion phase. Our experience has shown that the development approach has no influence 
on the safety requirements review. In contrast to the other two reviews for safety re-
quirements reviews, it is not necessary to take specific aspects for model based devel-
opment into consideration. For this reason, we do not address safety requirements 
reviews to the full extent in this paper. In the following, we present an overview of 
our review approach. 

We aim to conduct the reviews required by ISO26262 as effective and efficient as 
possible. We achieve this goal by different means. First, we identify appropriate 
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review points for the different phases of the development cycle and select appropri-
ate review objects. Second, we seek for efficient tool support to automate review 
tasks. Third, we define entrance criteria (pre-conditions) for review objects that 
ensure minimum standards for review objects in order to avoid time-consuming ma-
nual reviews.  

Architecture Review

ISO Best Practice

Executable
specification 

(model) Implementation model
Generated

C Code

Fixed-point 
arithmetics

Requirements
specification

Floating-point
arithmetics

Object code

Architectural design
specification



Design Review

Best Practice ISO

6-7 Software
architectural design

6-8 Software unit design 
and implementation

 

Fig. 3. Overview on development phases with associated review points 

In Figure 3 the basic workflow for model-based development is shown together 
with the identified review points. We propose to begin the architecture review as soon 
as the architectural design specification and the safety requirements specification are 
created as required by ISO26262. To ensure that the review goals imposed by the 
standard are achieved, we complete this review when the implementation model is 
created. Unlike ISO 26262, we begin the unit review earlier as required and finish 
this review once the source code is available. It might first appear that this approach 
causes an unnecessary increase of costs - which is not the case. We exploit the fact 
that the models can be automatically analyzed by powerful tools (guideline checker, 
complexity analyzer, etc.). Depending on the review goal, we select the most appro-
priate development stage of the model as review object. This approach allows keeping 
the review costs as minimal as possible.  

In the first step we check whether all pre-conditions are fulfilled before the review 
can be carried out. These pre-conditions are: a model documentation report is gener-
ated with our internal MDoc tool, which analyzes the model for textual documenta-
tion (e.g. Simulink doc and info blocks) and indicates which subsystems are not  
documented properly. In the next step, we analyze the structure and complexity of the 
model with M-XRAY and generate a review sheet with it. We then use a predefined 
set of modeling guidelines, which aims to find modeling guideline violations with 
regard to architectural design issues. The advantage of the pre-condition check is, that 
possible obstacles can easily be identified, which would put too much burden on the 
manual review process. Typical findings of this procedure are: (1) missing model 
documentation is identified; (2) too complex Simulink subsystems and Stateflow 
charts are highlighted, which are subject to rework; (3) almost identical subsystems, 
which could later be implemented as reusable functions are identified; (4) naming 
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conventions for signal names, subsystems, etc. are checked; (5) architectural design 
patterns can be checked (e.g. every SW unit is realized as an atomic component and 
has a INMAP and OUTMAP for signal conditioning). The pre-condition check phase 
focuses already on some aspects of the architectural design review, which are check-
ing adherence of design guidelines (hierarchical structure, size of components and 
interfaces). Once the model is reworked, the pre-condition check procedure is carried 
out again, until specific quality values are reached, which are collected and assessed 
with another quality assurance tool suite, the Model Quality Assessment Center 
(MQAC) [13]. 

Table 1. Model review goals in compliance with ISO 26262 

 Architectural design review SW unit design review 
Key 
focus 

Non target-specific aspects Target-specific aspects 

Goals  Compliancy w/ SW safety 
req. 

 Coverage/traceability of 
safety req. 

 Partitioning of SW 
comp./units 

 Low complexity of SW units 
 Restricted size of interfaces 
 Coherence and coupling of 

units 

 Compliance w/ HW/SW interface 
specification 

 Coverage/traceability of safety req. 
(SW units) 

 Restricted use of interrupts 
 Adherence to modeling guidelines 

(implementation) 
 Adhere to coding guidelines 

Tool 
support 

 M-XRAY 
 Model Examiner 
 MQAC 

 M-XRAY 
 Model Examiner 
 MQAC 
 QAC 
 Code Inspector,  

 
In Table 1 a compact overview on both reviews is shown. It is not surprising, that 

aspects of the target ECU can only partially be reviewed during the architectural de-
sign review and must be mainly considered when the SW unit implementation is 
available. 

4.1 Review of the Software Architecture 

In order to ensure compliance of the software architectural design with the ISO 26262 
standard, the architecture review has to consider the following issues: 

1. Compliance with the software safety requirements  
2. Compatibility with the target hardware 
3. Adherence to design guidelines (hierarchical structure, size of components and in-

terfaces, coherence and coupling) 

The review objects that we consider for the architectural review are (1) the architec-
tural design specification, (2) the functional model and (2) the implementation model. 
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Experience shows that the architectural design specification is given as informal spe-
cification and consequently not amenable to automatic techniques. When reviewing 
this artifact we put the focus on the first two review goals. It must be checked that all 
software safety requirements are considered. The review must be carried out jointly 
by the persons responsible for the functional model and the software architecture in 
order to avoid model designs that lead to costly, i.e. manual transformations of the 
functional model into the implementation model. Especially the evaluation of the 
compatibility with the target hardware requires expert knowledge, since this goal 
requires estimations with respect to the target architecture although only limited data 
is available. We postpone to check the adherence of design guidelines on architectural 
level until the functional model is available. We analyze the model for inappropriate 
distribution of functionality that might lead to very complex components which are 
prone to errors. We must also review these architectural design guidelines on the im-
plementation model because in the functional model information on the mapping onto 
source code components is not available. We exploit the fact that this analysis can be 
carried out automatically by applying M-XRAY [11]. This tool measures the com-
plexity of models and analyzes the model hierarchy and function distribution. The 
first automatic review allows to identify model parts, which can result into too com-
plex code structures, very early in the development process. Because the analysis 
investigates the model architecture, the second automatic review of the implementa-
tion model is necessary in order to verify the software architecture and achieve com-
pliance with ISO26262.  

4.2 Review of the Software Unit Design and Implementation 

In order to ensure compliance of the software unit design and implementation with the 
ISO 26262 standard, the review has to consider the following issues: 

1. Compliance with the hardware-software interface specification  
2. Fulfillment of the software safety requirements as allocated to the software units 

through traceability  
3. Compliance of the source code with its design specification  
4. Compliance of the source code with the coding guidelines  
5. Compatibility of the software unit implementations with the target hardware  

We consider as review objects (1) the functional model, (2) the implementation model 
and (3) the source code. We perform a combined review: first, we carry out a static 
review on the functional and on the implementation model with the Model Examiner. 
In the next step, we conduct a manual review on the implementation model and the 
generated source code. The tool-assisted review ensures that the review artifacts are 
sufficiently documented and that they comply with modeling guidelines. This in-
cludes an in-depth check of the usage of data-types in order to check the compatibility 
with the target hardware. Our experience has shown that this approach eases the ma-
nual review considerably. ISO26262 requires verifying that the generated code is in 
compliancy with the safety goals and that the safety requirements can be traced down 
to code level. Especially the first requirement, i.e. compliancy with the safety goals, 



266 I. Stürmer, E. Salecker, and H. Pohlheim 

 

can only be achieved with a manual review. The traceability of the safety require-
ments can often be facilitated by tool support. We conduct the review by investigating 
the implementation model in parallel with the generated source code. This approach 
also eases the understanding of the generated code. 

5 Lessons Learned 

Our experience has shown that three conditions are extremely important to conduct 
the reviews required by ISO 26262: (1) the traceability of requirements, (2) the do-
cumentation of the model and (3) the compliance with modeling guidelines. The ef-
fort that is required for the documentation of the model and the traceability of  
requirements pays off. The same is true for the adherence to uniform guidelines. 
These conditions reduce the time required to understand the functionality of a model 
that is necessary to verify compliance with the safety requirements. Moreover, they 
expand the group of possible reviewers because they ease the review process for 
project-external personal.  It is realistic to establish them because these conditions 
can be checked automatically with tools that can be easily integrated into the devel-
opment process and employed by the model developer. The investment is also justi-
fied by the fact that they help to increase the overall quality of the models. 

In the SW unit design phase we analyzed the model manually for compliance with 
the software safety requirements. Here, it is important that the stated requirements can 
easily be traced down to the model (in this case by textual ID’s noted in the model). 
The check, whether a model part is compliant with the specified safety-requirement 
can often not easily be answered. The reason for this is that even if the realization of a 
safety requirement is available on model level, e.g. a function has been implemented 
in a redundant way, it has to be verified in the following testing phase, whether this 
approach has been implemented correctly. As a result, we decided that it is enough to 
identify the ‘logical’ realization of the safety requirement, which must be verified 
with so-called safety test cases afterwards. The biggest challenge is then to show that 
safety-relevant subsystems are decoupled and not functional dependent from the other 
model parts, which are not safety-relevant. If this cannot be shown, the whole model 
has to be associated to the highest ASIL level. This review procedure includes, that all 
incoming interface signals are checked manually. 

6 Conclusion 

The new ISO 26262 is the first development standard in the automotive sector that 
recognizes model-based development as a paradigm that improves the quality of the 
software to be developed. Model reviews are regarded as an important quality assur-
ance method in order to check the compliancy of the software model with the safety 
requirements. Several review tasks can be solved automatically because efficient tool 
support is available. However, it must be noted that the ISO26262 requires to validate 
that the generated source code fulfills the safety requirements. In this paper, we pro-
vide an approach for conducting the required reviews for model-based development. 
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Our approach is based on a combination of automatic and manual reviews. We identi-
fied the artifacts that should be reviewed in order to achieve the required review goals 
as efficiently as possible. Although many review tasks can be solved automatically a 
manual review is always required because the fulfillment of the safety requirements 
cannot be checked automatically. The biggest challenge in model design and model 
review according to ISO 26262, however, is to ensure that the safety-related software 
functions (units) are decoupled from the non-safety-related SW units and that they are 
not functional dependent.  
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Abstract. Traffic Management Systems are used in traffic technology for 
propagating information from a Higher Order Control Unit to the traffic 
participant. In today’s systems the user interface to the traffic participant is 
provided by actuators like Variable Message Signs. Such information can be 
either non-safety-critical (e.g., traffic jams warning) or safety-critical (e.g., 
green arrow opening the emergency lane on the motorway). According to 
international and national standards, software of Variable Message Signs 
displaying safety-critical information has to meet distinct safety requirements.  

This paper presents a general architecture of safety-related software in an 
actuator according to the product standard VDE 0832. It gives an introduction to 
the standard and the domain of traffic control. A hazard analysis is carried out and 
safety measures are derived. Afterwards, the corresponding software architecture 
is presented. Finally, a safety assessment is carried out to prove the concept. 

Keywords: Safety-related embedded software, safety standard, traffic system. 

1 Introduction 

The increasing traffic density in urban and inter-urban areas as well as the desire to 
increase road safety has resulted in a magnitude of measures. A possibility is the use 
of traffic management systems. Such a system does not decrease traffic per se, but 
supports the distribution of traffic in a more efficient way. Furthermore, it informs 
and guides drivers about upcoming dangerous situations like traffic jams. Both, 
optimizing traffic distribution and supporting road safety are accomplished by 
displaying aspects or textual information to drivers. The aspects are mostly shown by 
means of actuators – so-called Variable Message Signs (VMS). A typical VMS 
includes a graphical part, where speed limits or warning signs are displayed 
supplemented by a text part showing “traffic jam” or “accident”.  

According to European and national standards such as EN50556 [3] or the German 
standard VDE 0832 [2], actuators within traffic control systems have to fulfill a 
number of requirements relating to the hardware, the software, the application, the 
integration within an overall system and the engineering process. Requirements on the 
software and its process are very similar to the generic international standard 
IEC 61508 [5]. Objective of this paper is to present a software architecture of a VMS 
that meets the requirements of EN 50556 in general and of VDE 0832 in case traffic 
management systems in particular. 
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The remainder of the paper is therefore structured as follows: Section 2 gives an 
overview of the domain of traffic control and discusses relevant parts of the standards 
VDE 0832 and EN 50556, respectively. Section 3 presents a hazard analysis using 
HAZOP analysis. Section 4, in turn, introduces the safety-related software 
architecture derived from the safety and domain specific requirements. Moreover, 
Section 5 proves the software architecture by going through a typical use-case of a 
VMS. The main steps within the architecture are highlighted. Finally, Section 6 
concludes by summarizing the key facts of the work done. 

2 Related Work 

This section is split into two subsections. The first subsection gives information on the 
domain of traffic management systems in general and on actuators used in the systems 
with focus on VMS. The second subsection highlights challenges and the key facts of 
national standard VDE 0832 and European standard EN 50556 on road traffic signals. 

2.1 Traffic Management Systems 

Today’s traffic management systems are typically structured in a hierarchical way [1]. 
At the top there is the Traffic Management and Information Center. It collects data 
from underlying substations and provides it to the operator for global strategies 
regarding traffic monitoring and control. Substations, in turn, take care of 
intermediate data collection. They are linked to one or more Outstations where 
Actuators (e.g., VMS) and also Sensors (e.g., detector loops) are connected to. 
Outstations are responsible for data processing and autonomous control jobs. In the 
following, the aforementioned control entities are subsumed by the term Higher Order 
Control Unit (HOCU). 

 

Fig. 1. Traffic Management System 
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The VMS is composed of a graphical part and optionally of a text part below the 
graphical one as shown in [1]. LED modules equipped with LEDs of different colors 
(white, red, yellow or green) are in use to show different aspects. The LED modules 
include a LED driver and a hardware watchdog. Those modules are connected serially 
whereat the first module is connected via dedicated cables to a microcontroller. The 
controller runs software that includes functionality to receive commands via various 
protocols from a HOCU, and to process the commands and execute them by 
activating and deactivating aspects respectively. 

2.2 Standards and Related Work 

Challenges. The topic of safety-related software in traffic control systems was 
already tackled at the beginning of the 1990s by W. Reed [4]. This work outlines the 
following challenges regarding development of safety-related software which did not 
changed until today: 

• Increasing complexity of the system 
• High demands on quality from costume side 
• Development within acceptable time and cost limits 
• Rapid change of technology 

Thus, a lean and sustainable approach has to be undertaken in order to meet the 
requirements of a safety-related software for a VMS within tight cost and time limits. 
Up to now, no solution to that problem has been realized and is publically available. 

 
Standard. The German standard VDE 0832 consists of seven parts (100, 110, 200, 
300, 310, 400, 500) and defines requirements on the development, construction, 
validation and maintenance of road traffic signals. In contrast to generic standards like 
IEC 61508, this standard is relating to a defined product.  

Part 100 of the standard is identical with the German version of EN 50556 
including a national foreword. Part 400 is a prestandard and deals with the integration 
of VMS in traffic management systems. Additionally, it specifies requirements on 
VMS. Finally, the prestandard part 500 gives requirements on safety-related software 
of road traffic control systems. This part is referring to IEC 61508 and its 
requirements. 

According to VDE 0832, part 400, three failure modes must be considered in case 
of a VMS: 

1. Aspect unintentionally switched off: Due to a fault, the aspect is no longer shown 
although it was not switched off intentionally by the user. 

2. Corrupted aspect shown: Due to a fault, the aspect is not shown as defined. Either 
too many or too few LEDs are switched on. 

3. Aspect unintentionally switched on: Due to a fault, an aspect is shown although it 
was not switched on by the user. 
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Rigor of safety measures (i.e., level of safety integrity) is specified by five qualitative 
safety classes where ‘A’ is the lowest and ‘D’ the highest class. It depends on the 
aspect to be displayed as well as on the application of the traffic management system, 
which safety class is required. E.g., using a VMS in park a guidance system to show 
information requires safety class ‘A’, whereas operating a VMS to open or close a 
lane in a tunnel with two-way traffic makes safety class ‘D’ necessary. In contrast to 
IEC 61508, EN 50556 and VDE 0832 are not based on a risk-based approach. Hence, 
the following section only deals with a hazard analysis. 

3 Hazard Analysis 

Before starting with the hazard analysis, the scope of the VMS has to be specified as 
addressed e.g., in the IEC 61508-1 life-cycle model. The equipment under control to 
be looked at is the VMS. It shall display a “red cross”, “green arrow down”, “yellow 
arrow left” and “yellow arrow right”. The application area of the VMS shall be on 
roads with two-way traffic. Consequently, safety class ‘D’ is required according to 
VDE 0832, part 400. The basic overall architecture of the VMS is identical to the one 
presented in Section 2.1. The sign-controller runs safety-related software (see Fig. 2).  

Table 1. HAZOP of function “Switch on ‘red cross’” 

Guideword Deviation (Possible) Cause Effect 

MORE More LEDs than desired 
are switched on 

Broken driver on 
LED board 

Corrupted 
aspect shown 

LESS Fewer LEDs than 
desired are switched on 

Broken LED Corrupted 
aspect shown 

PART OF  Only part of the desired 
LEDs are switched on 

Wrong software 
configuration 

Corrupted 
aspect shown 

REVERSE All others but the desired 
LEDs are switched on 
(inverse display) 

Corrupted volatile 
memory 

Corrupted 
aspect shown 

NO No LEDs are switched 
on (“Red cross” is not 
displayed) 

Connection to 
LED board broken 

Aspect 
unintentionally 
switched off 

OTHER 
THAN 

Wrong LEDs are 
switched on (“Green 
arrow” instead of “red 
cross” displayed) 

Corrupted non-
volatile memory 

Aspect 
unintentionally 
switched off 

LATE LEDs are switched on 
too late (“Red cross” 
displayed too late) 

Blocking function 
in the software 
(deadlock) 

Aspect 
unintentionally 
switched on 
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The scope of the hazard analysis is relating to hazards causing harm to the user. 
Therefore, the display as interface to the user (e.g., a driver on the motorway) is of 
interest. Beyond the scope of the analysis is data exchange by means of a protocol 
between a HOCU and a VMS because various approaches and implementations are 
already available [8-10]. 

Since the impact of failures to the environment shall be investigated, a hazard and 
operability (HAZOP) study is a proper approach. A HAZOP study according to Def-
Standard 00-58 [6] is a well-defined method to analyze a system at its boundaries. 
The HAZOP includes pre-defined keywords that are applied to specify the deviation 
from the expected result, the cause of the deviation and the (negative) effect on the 
system or environment. 

In Table 1 the HAZOP of the function “Switch on ‘red cross’” is presented in a 
general way. The content of the column “effect” is linked to one of the three failure 
modes mentioned in Section 2.2. The column “possible cause” includes the typical 
faults that have to be address by safety measures.  

4 Safety-Related Software Architecture 

The software architecture is organized in three pillars as shown in Fig. 2.  

1. The protocol stack includes all functionality required to exchange messages with a 
HOCU and is the interface to an operator.  

2. The display control provides functionality to control the display. It is the interface 
to the user. 

3. The system control pillar consists of supporting functionality required to perform 
various tasks in the other two pillars. 

 

Fig. 2. Safety-related software architecture 

4.1 Protocol Stack 

The protocol stack is structured in three layers according to the OSI model (see  
Fig. 2). It includes functionality to receive commands via a protocol from a HOCU. 
Additionally, it responds to the commands or it sends messages spontaneously in case 
of event- or time-triggered actions. 
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In [13] typical failures and corresponding measures to be included in a protocol 
used to exchange safety-critical data are mentioned. Table 2 shows the 
failure/measure matrix. There are various protocols available in Europe, or North and 
South America such as TLS 2002 [10], PROFIBUS with various application profiles 
or NTCIP [16]. It stands for National Transportation Communications for ITS 
Protocol and is an IP-based application profile mainly in use in North and South 
America.  

Table 2. Safety measures to be included in protocol 

Measures 
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In this realization, TLS 2002 is applied as a proven-in-use example. It is a German 

guideline covering a specification of a serial protocol consisting of OSI 7 layer and 
being based on OSI 2 layer protocol standardized in IEC 60870-5 [12]. It uses a 
checksum for data protection, requires sending of OSI 2 telegrams periodically and a 
protocol watchdog at VMS side to detect delay of a message. A toggle bit to be 
considered as a simplified version of a sequence number is applied to detect 
repetition, loss and incorrect sequence of messages. 

4.2 Display Control 

The pillar display control is separated into a hardware interface and an application 
module (see Fig. 2). It includes all functionality to control the display e.g., switching 
on an aspect or checking the status of the LEDs. The hardware interface provides the 
possibility to send and receive a byte stream via cable lines to the LED modules 
connected. Bytes are sent to and received from the driver on these modules. 

The application module, in turn, is split into two major parts: 
 

Operation of the Display 

• Switch on/off aspect: This function switches on an aspect such as a “red cross” or 
switches off the current aspect respectively. The trigger for this function is sent 
from a HOCU via the communication protocol. Additionally, in case of a failure 
detected by a proof-test, the function “switch off” is used as well. 
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• Change brightness of aspect: Depending on the ambient luminosity, the brightness 
of the display is controlled via commands sent by the HOCU. During night time, 
the brightness is reduced whereas during day time the brightness is increased. 

• Start/stop/synchronize flashing of aspect: Albeit legal issues in some countries 
outlaw, flashing of aspects is another basic functionality of a VMS. The most 
sophisticated task is to provide a deterministic mechanism so that two or more 
VMS’ flash the same aspect synchronously (e.g., “orange arrow right”) after being 
triggered by the HOCU. 

Display Proof-Tests. As mentioned in Section 2.2, VDE 0832 mentions three failure 
modes that have to be addressed in the design of the VMS. Three time-triggered 
proof-tests are presented that detect the “possible cause” and avoid effects as listed in 
Table 1. In case of detecting a fault, the fail-safe state of the display is “switch off 
aspect”. 

• Cable test: In order to switch on or off aspects, a formatted byte stream has to be 
sent to the drivers on the LED modules. The connection from the microcontroller 
to the LED modules as well as the connection between two LED modules is 
provided by cables. To detect a broken cable, a predefined data stream is 
periodically sent from and received by the microcontroller. If the sent and received 
data stream match, the cable is not broken. Otherwise no data is received resulting 
stop of communication of the microcontroller and fail-safe state of the display, 
since the hardware watchdog on the LED modules (cf. Section 4.3) is not triggered 
any longer. 

• Check of display status: As outlined in [7], VMS are manifold in their design and 
hence are adapted to the specific customer needs by means of configuration 
parameters. A wrongly set parameter might lead to displaying another aspect than 
expected. Consequently, that proof-test reads back data from each driver on the 
LED boards periodically and compares the received data with the actual one. If 
data sent and received match, the right aspect is shown. Otherwise, the fail-safe 
state is entered. 

• LED test: The status of all LEDs is checked periodically to detect a broken LED or 
a broken driver. In most cases a predefined failure limit (e.g., above 5 or 10 broken 
LEDs) is specified. Only if the limit is exceeded, the fail-safe state of the display is 
entered. 

System Control 

The system control pillar is supporting functionality of the other two pillars. It is 
divided into three modules as illustrated in Fig. 2.  

• The Scheduler is running the software. Therefore, the functionality is encapsulated 
in different tasks such as the OSI 2 task or the sign control task. 

• The Watchdog comprises triggering the hardware watchdog on the LED boards 
periodically. In addition, it includes a software watchdog. Each task has to trigger 
it is own watchdog in equal time intervals. If the watchdog is not triggered by at 
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least one task, the software is most likely in a deadlock. In that case a software 
reset of the microcontroller is performed.  

• Memory access integrates all features to access the volatile (i.e., internal and 
external RAM) and the non-volatile memory. Two types of event-triggered proof-
tests are included in the module to ensure integrity of permanently and temporarily 
stored data. 

o Proof-test of the volatile memory at startup: After a reset of the 
microcontroller, the memory is checked with the help of a memory 
test to detect static faults leading to corruption of data. Typical tests 
are GALPAT or the Checkerboard test differing in their diagnostic 
coverage as mentioned in [11]. In case of a fault detected, the 
microcontroller is switched to fail-safe state (i.e., endless loop). 

o Proof-test during operation: Safety-critical data is protected by 
checksums. Every time data is read, the checksum is recalculated 
and compared with the stored one. If the calculated and stored result 
is equal, integrity of data is granted. If not, data is discarded or the 
microcontroller is reset. In case of three resets in a row due to the 
same event, fail-safe state is entered. 

5 Safety Assessment 

The objective of this section is to prove that the safety and safety integrity 
requirements are met. Consequently, it is demonstrated that adequate safety measures 
are implemented and hazards mentioned in Table 1 are sufficiently addressed. For that 
reason, the use-case “switch on ‘red cross’” is taken as an example. 

It is assumed that the VMS is installed on a gantry and is connected to a HOCU via 
a dedicated communication line. The protocol used to exchange messages is TLS 
[10]. The VMS includes predefined aspects “red cross”, “green arrow”, “orange arrow 
right” and “orange arrow left”. Every aspect has a unique ID.  

 

 

Fig. 3. Use-case “Switch on aspect” 
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An operator is triggering the command “switch on ‘red cross’” at the central 
station. The message with the ID and the command “switch on” is received by the 
VMS (see Fig. 3, input “operator”) and stored temporarily in a buffer in the volatile 
memory. The buffer is protected by a checksum provided by the memory access 
module. 

After processing the message in the protocol stack successfully, the ID of the 
aspect “red cross” and the command “switch on” is sent to the display control via a 
queuing mechanism. Again, data in the queue is protected with a checksum. The next 
step is to prove availability of the aspect and integrity of corresponding data. Data to 
show the chosen aspect is stored in the non-volatile memory and protected by a CRC. 
If so, the last result of the time-triggered LED test is evaluated to check the status of 
the LEDs. Only if the failure limit is not exceeded and the cable test returns a positive 
result, the corresponding data byte stream to display the required aspect is sent to the 
LED drivers on the modules to activate the desired LEDs. 

A further step is to check the display status. Thus, data of each driver on the LED 
modules is read back. That data is compared to the stored one in the non-volatile 
memory. If the comparison returns a positive result, the right aspect “red cross” is 
shown. Finally, a response message is transmitted to the HOCU including the result of 
the execution of the command returned by the display control to the protocol stack. 

In case of a fault is detected during memory access, data is discarded and a 
response message is sent. Faults on the display result in a fail-safe state where the 
display is switched off and a proper message is sent to the HOCU. 

Aforementioned safety measures and the presented flow of actions are an efficient 
solution where safety integrity of the VMS (see Table 3) is ensured according to 
requirements given by VDE 0832, part 400.  

Table 3. Measures to ensure safety integrity 

Integrity of 
display 

Integrity of 
communication line 

Data integrity Software integrity 

LED test Cable test with 
hardware watchdog 
mechanism 

Checksum Software watchdog 

Check of display 
status 

Startup memory test 

 
Finally, it has to be mentioned that developing safety-related software for these 

applications requires additional effort not covered by this work that is also part of a 
safety assessment. Whereas the paper presents a general technical solution, an overall 
safety development needs – among other things – detailed documentation of 
requirements and design. And a verification and validation approach has to be 
specified and executed as presented in [14]. Moreover, the installation and 
commissioning of the safety-related products is a crucial point. It has to be ensured 
that the right software and configuration parameters are uploaded correctly to the 
microcontroller. A possible solution of that problem is outlined in [15]. 



 Software Architecture of a Safety-Related Actuator in Traffic Management Systems 277 

 

6 Conclusion 

The importance of traffic management systems as a measure to increase road safety 
and distribute traffic load is constantly growing. Increasingly, these systems are 
responsible for functions directly or indirectly affecting people’s safety and health. 
Therefore, the products used are supposed to be developed in a way that harm to the 
user is reduced to an acceptable minimum. Additionally, societal aspects especially in 
Europe result in a demand on higher safety standards. 

The paper presented a general software architecture to be used for actuators such as 
VMS in traffic management systems being able to provide safety-critical 
functionality. The architecture fulfills requirements stated by standard VDE 0832 and 
European standard EN 50566, respectively. Therefore, the approach presented is a 
proper solution for designing safety-related software to be used in VMS. 
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Abstract. A more recent trend in Systems Engineering is architecture optimiza-
tion. Evermore complex aircraft systems make it harder and harder to deter-
mine, with reasonable time and effort, optimal architectures by traditional  
trial-and-error trade off studies. This can be alleviated by architecture optimiza-
tion techniques where System Engineers only defines boundaries for the design 
space and then an optimization solver finds the optimal solution automatically. 
If safety and reliability requirements are not considered during automatic archi-
tecture generation, given the high impact of safety on systems design, there is a 
high probability that the optimized architectures are not valid. Therefore, it is 
critical to model and take into account reliability and safety requirements during 
Design Space Exploration in early architectural stages.  

Traditional reliability calculations are both not denotational and not linear 
which significantly narrows possible optimization techniques. In this work we 
suggest a Mixed Integer Linear Programming (MILP) formulation of the relia-
bility calculus with the following features: (1) The order of magnitude of relia-
bility calculations is correct, (2) There exists an explicit theoretical bound on 
potential “optimism” of the proposed algebra, (3) For a pool of representative 
benchmark problems the proposed approximation provides highly accurate re-
sults compared to the classical reliability calculations. This paper presents an 
approximate algebra for the safety analysis problem with explicit bounds and 
provides representative examples of its application. 

Keywords: Model-based Safety Analysis, Architecture optimization, Mixed In-
teger Linear Programming, Reliability evaluation. 

1 Motivation and Related Work 

A more recent trend in Systems Engineering is architecture optimization [11]. Ever-
more complex aircraft systems make it harder and harder to determine, with reasona-
ble time and effort, optimal architectures by traditional trial-and-error methods. This 
can be alleviated by architecture optimization techniques where the System Engineer 
only defines boundaries for the design space and an optimization solver calculates the 
optimal solution automatically. However, if safety and reliability requirements are not 
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considered during this automatic architecture generation, given the high impact of 
safety on systems design, addressing safety requirements in later stages becomes ei-
ther impossible or very expensive.  

Traditional reliability calculations are rather operational than denotational, i.e., 
they define a procedure how to calculate failure probabilities for a given architecture. 
Denotational calculus defines a set of constraints depending on the architectural deci-
sion variables where the resulting failure probability is derived “automatically” from 
the constraints. An additional problem with the classical reliability algebra is that its 
calculations are combinatorial and highly non-linear. For example, [10] presents an 
approach for architecture optimization for aircraft roll systems. The design problem of 
a flight-control system on a large fly-by-wire airliner is to find combinations of actua-
tor(s), power circuit(s), computer(s) for each movable surface, so as to fulfill the con-
straints imposed by the safety regulations, while keeping the resulting system weight 
as low as possible. Instead of a direct formulation of the safety problem suitable for 
the optimization algorithm, they use a black-box function for the safety assessment of 
potential solutions. This function provides an accurate evaluation of the safety re-
quirements but is rather costly, so the optimization algorithm had to be tailored so that 
the safety assessment is not done for all possible solutions. The same limitation re-
mains for architectural design using evolutionary algorithms (see, e.g., [15]).  Anoth-
er approach is to define Constraint Programming model [16] which is less scalable 
than the best Mixed Integer Linear Programming (MILP) solvers available today, 
such as Cplex [17] and Gurobi [18]. 

In this paper we present an approximate reliability algebra and its MILP formula-
tion supported by most optimization solvers. This reliability calculus has the follow-
ing features:  

1. The order of magnitude of reliability calculations is correct.  
2. There exists an explicit theoretical bound on potential “optimism” of the proposed 

algebra.  
3. For a pool of representative benchmark problems the proposed approximation pro-

vides highly accurate results compared to the classical reliability calculations. 

The paper is organized as follows. In the next section we briefly describe the place of 
safety analysis in the whole design process, show which part we address and describe 
the gap versus existing methods. In Section 3, our modeling approach for safety re-
quirements is shown. In Section 4, the approximate reliability algebra is presented 
where safety requirements are transformed to a set of algebraic equations. In Section 
5 we check bounds of the approximation and in Section 6 the proposed algebra is 
implemented on a set of representative examples. Section 7 summarizes the paper and 
provides directions for future research. 

2  System Safety 

System safety uses systems theory and systems engineering approaches to prevent 
foreseeable accidents and to minimize the result of unforeseen ones. It is a planned, 
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disciplined, and systematic approach to identifying, analyzing, and controlling ha-
zards throughout the life cycle of a system in order to prevent or reduce accidents [1]. 
Whereas reliability deals with all potential failures, safety only deals with the hazard-
ous ones [2]. 

2.1 Safety in Design Process 

Safety assessment standards generally agree on a common framework for the deriva-
tion of safety requirements which combines hazard assessment and risk analysis tech-
niques. The aim of the analysis is to determine:  

• the critical system functions, i.e. functions which may cause a hazard when lost or 
malfunctioning, 

• the safety requirements for these functions, i.e. the maximum allowed failure prob-
abilities, 

• the demands, if any, for additional safety functions in order to achieve acceptable 
levels of risk for the system. 

In this work we focus on the system architecture development and the preliminary 
system safety assessment. 

2.2 Classical Methods 

The focus of classical safety analysis techniques is in general on supporting the rea-
soning of possible failures and on recording the causal relationships of failure events. 
The analysis normally requires a description of the functional and logical architecture 
of the system. 

Various causally based techniques for systems safety assessment based in known 
designs have evolved. Usually, these fall into two classes - methods which work from 
known causes to unknown effects (such as Failure Modes and Effects Analysis) [9] or 
those which work from known effects back to initially unknown causes (such as Fault 
Tree Analysis) [9]. 

The target usage of these techniques varies depending on the domain and the na-
ture of the problem. For example, fault trees are commonly used in the civil aerospace 
domain at the Preliminary System Safety Assessment (PSSA) phase to examine 
whether the system can achieve the safety requirements allocated from the hazard 
identification [2]. 

With the help of analytical methods Fault Trees can be evaluated to get the systems 
reliability [13]. But, since a Fault Tree can contain a component multiple times the 
overall failure probabilities cannot be determined directly. Instead, a so called minim-
al cut set of the Fault Tree has to be found that contains each element only once. A cut 
set is a "set of components which, when failed, [...leave] the system in a failed state 
"[12]. A minimal cut set is a "cut set for which no component can be returned in  
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working state without […] returning the system into a working state" [12]. The mi-
nimal cut set allows the direct calculation of the overall failure probability for a given 
failure case. 

3 Model-Based Safety Analysis and Systems Engineering 

To automate the activities and also to extend and complement the classical safety 
analysis techniques, a variety of formal safety analysis techniques has been proposed. 
One of the most prominent examples is the AltaRica [3][4] language. AltaRica mod-
els formally specify the behavior of systems when faults occur. These models can be 
assessed by means of complementary tools such as fault tree generator and model 
checker. This allows analysts to model the failure behavior of a system as design 
work progresses from the system architecture to the implementation level. 

With the increased acceptance of Model based Systems Engineering (MBSE)1 as the 
new systems engineering paradigm, it seems natural to combine MBSE and Model-
based Safety Analysis (MBSA). One possibility is to automatically extract minimal cut 
sets directly from detailed design models bypassing Fault Tree generation altogether. 
This approach [6] allows truly automated analysis of detailed design models thus mini-
mizing both the possibility of safety analysis errors and the cost of the analysis. 

Another possibility is to derive models suitable for safety analysis from the system 
development models. [7] and [14] provide examples for deducing analyzable AltaRica 
code from UML/SysML models. 

For our purpose, we extended the already existing meta model [13] for functional 
and systems architecture modeling with concepts from the safety domain as depicted 
by Fig. 1. Textual safety requirements are formalized as failure cases with attributes 
that define the maximum allowed probability for a failure case to occur. The failure 
case in turn is defined by its relation to one or more functions which have to fail in 
order for the failure case to occur.  

Note, that the function(s) that the failure case is related to serve as a starting point 
for recursively propagating that failure in the functional architecture. The basic as-
sumption here is that a function fails when one or more of the functions that it needs 
input from fail. Additional modifications on the relation between the failure case and 
the function allow the definition of how this propagation is done, e.g. propagation 
without restrictions, propagation up to a certain depth or no propagation at all. 

The functional architecture, consisting of functions and data exchanges via virtual 
links is mapped to the physical architecture, consisting of components that are in-
stances of component classes and connectors between these components. A virtual 
link is mapped to a number of components and connectors, e.g. network switches and 
cables. 

                                                           
1 The International Council on Systems Engineering defines MBSE as “the formalised applica-

tion of modelling to support system requirements, design, analysis, verification and validation 
activities beginning in the conceptual design phase and continuing throughout development 
and later life cycle phases”[11]. 
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Fig. 1. Safety meta model 

4 Approximate Reliability Algebra 

The idea of the approximate reliability algebra is taking into account failure probabili-
ties of all components in correct power, since failure probabilities of the most critical 
components, i.e. the ones with the highest failure probability, dominate the overall 
failure probability. For example, for a critical component without redundancy, the 
power should be 1. Now we define variables describing the redundancy of functions 
and the corresponding components that implement the functions and/or transfer data 
between them through input-output functional links.  Let  be the number of re-
dundant virtual paths for function/functional link l and pcl be the number of redundant 
virtual paths for function/functional link l component c participates. We assume 0,1,  , i.e., component c can either not participate at all in virtual paths of l, 
or participate just in one path or in all paths. This is the usual case where there is no 
redundancy ( ) for reliable components and there are independent channels for 
unreliable components ( 1). When components participate in 1 < pcl < pl redun-
dant virtual paths, there is no guarantee on the degree of redundancy. 

Let define  to be the degree of redundancy of component c for reliability re-
quirement r – the number of remaining virtual paths for reliability requirement r in 
case of failure of component c. Formally,   |  

where LRr is the set of functions and functional links effecting reliability requirement r. 
We define Fr to be the approximation of failure probability for requirement r: 

|  , :  
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where  is the failure probability of component , and C is the set of all compo-
nents. Then the reliability requirement becomes: 

 

where  be the maximal failure probability for reliability requirement ,  is the 
safety factor of reliability requirement  that strengthens the original requirement Rr 
to compensate the potential “optimism” of the approximate algebra. Initially, sr could 
be set to one and then interactively reduced if the optimized architecture does not 
satisfy requirement r. In the next section we derive theoretical bounds on sr. From our 
computational experience, sr = 1 was good for all examples with relatively reliable 
components (small failure probabilities). The approximate algebra replaces complex 
and nonlinear reliability calculations by a sum over all used components c of compo-
nents’ failure probability in power of one plus remaining redundancy in case of com-
ponent c failure. This equation can be linearized using auxiliary binary variables 1 if , and 0 otherwise, and additional constraints that enforce the cor-
rect behavior of  . Let kmax be the maximal possible k value. Then the require-
ment constraint in MILP formulation becomes as follows: 

.. , |  ,  

Let us consider the following small example, shown in Fig. 2, to demonstrate the 
approximate calculations and compare them with the classical one. 

 

Fig. 2. Small example 

We have two functions F1 and F2 where function F1 is an input for F2 by the func-
tional link between them. These functions are implemented, without redundancy, by 
components C1 and C8. The components C2 to C7 implement the functional link with 
redundancy 2. Therefore, the number of remaining redundant paths the component 
does not participate is equal to zero for components C1 and C2 and equal to one for 
the rest of the components. If all components have the same failure probability f, then 
the reference calculation, assuming  f 1, is 3 2 9 . The ap-
proximate calculation is 
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|  , …  

Both calculations are of the same order and for small f, both values will be the same 
and equal to 2 .  

5 Bounds on the Safety Factor 

The reliability approximation ratio Ar for requirement r is defined as the ratio between 
approximated, Fr, and reference, Br, failure probabilities for a given system D:    

 

Ar(D)>1 means that the approximated failure probability is larger than the reference 
failure probability, i.e. the approximation is conservative.  Ar(D)<1 means that the 
approximated failure probability is smaller than the reference failure probability, i.e., 
the approximation is optimistic. For typical systems, the most optimistic approxima-
tion is obtained when all failure probabilities are equal, i.e., the minimal Ar is obtained 
where  for all components  (see Lemma 1 below). 

The low bound on the reliability approximation factor is also the low bound on the 
safety factor sr. If one selects a safety factor sr less or equal to the bound, the resulting 
architecture D is guaranteed to satisfy the safety requirement Rr. In practice, if the 
safety factor is larger than the lower bound (e.g., sr=1), then the resulting failure prob-
abilities might exceed the requirements by no more than ratio between the used safety 
factor and the bound. 

In this paper we assume that the failure probabilities are very small by considering 
only terms with the lowest power of failure probabilities. In architectures where each 
participating component either appears in all redundant paths or in a single redundant 
path, Lemma 1 defines the lower bound on the reliability approximation ratio. In the 
first case the bound is approximately one, while in the second case it is inverse pro-
portional to the number of components in the longest redundant path in the power of 
the number of redundant paths minus one. The proof is based on standard reliability 
calculations for parallel composition of redundant paths. 

Lemma 1 

i) Let D be a system with multiple functional links. If there is at least one component 
that participates in all redundant paths of some link, then the reliability approximation 
ratio is approximately one: 

 

ii) If each of the components participates in a single redundant path in a single func-
tional link then the reliability approximation ratio low bound is as follows: 
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D :    

where pl and ml are the number of redundant paths and the number of components in 
the longest redundant path for a functional link l, respectively. Moreover, the bound is 
reached for the corresponding functional link when all components have the same 
failure probability and all redundant paths have the same number of components.  

Corollary 2 

For a single functional link, in common cases were the number of redundant paths is 
two or three, the reliability approximation is bounded by 2/ml or 3/ml

2, respectively. 

6 Application Examples 

The described method has been applied to several examples that are representative of 
real problems in the aerospace industry: 

• Networked Aircraft System 
• Fire Warning System 
• Stall Recovery System 

The Networked Aircraft System (NAS) is representative of current state-of-the-art 
systems in civil aircrafts. Sensors acquire information which is sent via a network to a 
central controlling application that is hosted on a shared computer. The control out-
puts of the control application are relayed via the network to actuators. The main chal-
lenge is the consideration of the possible virtual paths through the network and the 
high safety requirements which require a high degree of redundancy. 

 

Fig. 3. NAS functions and components 

Fig. 3 provides the functional architecture and the allocation of functions to compo-
nents whereas Fig. 4 and Fig. 6 depict concrete implementations of the NAS including a 
mapping of the virtual links that connect the components to the network switches. 
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Fig. 4. NAS implementation 1 

Three failure cases have been defined for the NAS as Fig. 5 shows. 

 

Fig. 5. NAS failure cases and functional dependencies 

Table 1 lists the comparison of the safety evaluation results using classical methods 
to the ones calculated using the approximate reliability algebra and the assumption 
that all components in the NAS have the same failure rate f. 
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1. Reliability results for the NAS example 

ensing No movement 
when required 

Wrong controller out
put 

RA Classic ARA Classic ARA 
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7f 7f 5f 5f 

 

Fig. 6. NAS implementation 2 

ystem (FWS) is a simple system consisting of a pow
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Two failure cases are defined for the FWS as shown by Fig. 8. 

 

Fig. 8. FWS failure cases and functional dependencies 

Table 2 lists the comparison of the safety evaluation results using classical methods 
to the ones calculated using the approximate reliability algebra. 

Table 2. Reliability results for the FWS example 

 Loss of detection False indication 
 Classic ARA Classic ARA 
FWS 1 9x10-6/h 9x10-6/h 4x10-5/h 4x10-5/h 
FWS 2 1.11x10-4/h 1.11x10-4/h 4x10-10/h 8x10-10/h 

The Stall Recovery System (SRS), also known as stick pusher, automatically 
pitches an aircraft down in order to build up speed if the crew failed to respond to the 
warning of a stall situation. The model of the system is based upon the real system 
from the Hawker Siddeley HS 121 Trident aircraft. 

Table 3 lists the results for the SRS example assuming all components have the 
same failure rate f. 

Table 3. Reliability results for the SRS example 

 Not available when required 
 Classic ARA 
SRS 1 14f + f² 14f+2f² 
SRS 2 6f + 17f2 6f + 10f² 

 
As we can see in all examples the approximate calculations were either conserva-

tive or very close to the classical reference calculations. This shows that the approxi-
mate reliability algebra developed is fit for its purpose. 

7 Conclusions and Future Research 

In this work we proposed approximate reliability calculations that can be used with 
most optimization solvers. The approximation has a theoretical bound on potential 
over optimistic results and was found very accurate for a large set of examples shown 
in the paper and in additional projects. This approximate algebra cannot and is not 



290 P. Helle, M. Masin, and L. Greenberg 

designed to replace the proper safety analysis using specialized tools required by the 
certification authorities but can significantly improve the design space exploration 
phase for driving the optimization to valid designs, from the safety perspective. For 
future research we can suggest a relaxation of the  0,1,  assumption and 
further exploration of the approach to different failure modes. 
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Abstract. Large asynchronous systems composed from synchronous compo-
nents (so called GALS—globally asynchronous, locally synchronous—systems)
pose a challenge to formal verification. We present an approach which abstracts
components with contracts capturing the behavior by a mixture of temporal logic
formulas and non-deterministic state machines. Formal verification of global sys-
tem properties is then done transforming a network of contracts to model check-
ing tools such as PROMELA/SPIN or UPPAAL. Synchronous components are
implemented in SCADE, and contract validation is done using the SCADE De-
sign Verifier for formal verification. We also discuss first experiences from an
ongoing industrial case study applying our approach.
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1 Introduction

State-of-the-art safety critical systems are often composed of other distributed (compo-
nent) systems (system of systems (SoS)). While industrial standards for the develop-
ment of safety-critical software systems highly recommend formal model-based
methods, application of those methods to SoS still remains a challenge when scalability
to real industrial applications is concerned.

In this paper we report on work in progress concerning the development of an ap-
proach to modeling and verification of SoS that is innovative for the industrial prac-
tice and addresses the scalability problem. In our approach the nodes of a distributed
system consist of controllers performing specialized tasks in hard real time by oper-
ating cyclically and in a synchronous way. For such a controller the model-based ap-
proach of SCADE1 is an attractive solution providing code generation and good support
for model simulation and (formal) verification. But for a distributed system, a syn-
chronous implementation is neither realistic nor desirable. Hence, we focus on the
model-based development and analysis of asynchronously communicating embedded

� This work was developed during the course of the project “Verifikation von Systemen syn-
chroner Softwarekomponenten” (VerSyKo) funded by the German ministry for education and
research (BMBF).

1 SCADE is developed and distributed by Esterel Technologies:
www.esterel-technologies.com

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012, LNCS 7612, pp. 291–304, 2012.
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control systems that are composed from components that operate synchronously; this is
known as a GALS (globally asynchronous – locally synchronous) architecture; this
goes back to Chapiro [8], and it is the preferred solution for complex safety relevant
control tasks.

The main idea to address the complexity issues of GALS systems is to provide for
each synchronous component an abstract model in the form of a contract that can be lo-
cally verified for the component (e. g. by SCADE Design Verifier, the formal verification
engine of SCADE). The network of component contracts then forms an abstract GALS
model against which a system requirement (called system-level verification goal) can
be formally verified. This is done by a model transformation of the abstract GALS model
into an appropriate formalism/tool for model checking—we use PROMELA/SPIN and
UPPAAL, respectively, for model checking system-level verification goals.

Integrating synchronous components within an asynchronous environment using the
GALS approach and using abstraction to handle system’s complexity are not new ideas.
What is new in our work is the combination of GALS verification with the idea of ab-
straction by contracts and its application to networks of synchronous SCADE models.
Hence, since SCADE is an industrial strength tool for synchronous controller software,
our framework contributes towards closing the methodological gap between the ap-
plicability of formal verification for single controllers and asynchronously composed
systems of such controllers in an industrial context.

In addition, the previous work on GALS systems pertains to systems whose compo-
nents were designed to interact synchronously but are later integrated asynchronously.
In our work we assume that GALS systems are designed to consist of synchronous
components that are intended to be composed asynchronously (GALS systems by de-
sign). We introduce a new specification language for GALS systems, and we design and
implement model transformations between our language and appropriate model check-
ing tools (PROMELA/SPIN, SCADE Design Verifier and UPPAAL). These are parts of
a larger framework for (formal) verification of GALS systems that also contains higher
level, user-friendly and domain specific (graphical) languages as well as methods and
tools for test automation and analysis. These other aspects of the framework cannot be
presented within the page constraints of this paper. More details on them can be found
in the technical report [33] and in [17]. We also do not discuss a systematic way to de-
rive suitable contracts for given components—this can be a challenging task in practise,
but we leave the solution of this problem for future work.

We begin in Sec. 2 with a discussion of our system level verification approach. In
Sec. 3 we introduce our modeling language for GALS systems—the GALS translation
language (GTL). Next we briefly describe the transformation algorithms used for local
and global verification of GALS systems (Sec. 4) and we provide a benchmark for the
verification back-ends using a simple example of a GALS system (Sec. 5). Finally, we
report about first experiences of our tools on an industrial case study in Sec. 6.

1.1 Related Work

Numerous publications are devoted to combining synchrony with asynchrony and the
verification of GALS systems. For example, Doucet et al. [11] describe how C-Code
generated from synchronous components in SIGNAL is integrated in PROMELA
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abstracting the communication framework by FIFO channels. Thivolle and Garavel [12]
explain the basic idea of combining a synchronous language and an asynchronous for-
malism, and they also show how synchronous components can be integrated into an
asynchronous verification tool and demonstrate this with one simple example. In these
works components are not abstracted by contracts as in our approach but synchronous
models are directly integrated in an asynchronous formalism. However, the results from
our case study clearly indicate that component abstraction is necessary.

A different approach follows Milner’s result [26] that asynchrony can be encoded
in a synchronous process calculus, see e. g. [20,22,28], and the tool Model build [5,6]
as well as the Polychrony workbench [25]. A disadvantage of these approaches is that
asynchrony and non-determinism are not built-in concepts in the underlying formalisms
and so verification tools may not be optimized for asynchronous verification.

Other approaches extend synchronous formalisms in order to deal with some de-
gree of asynchrony, e. g., Multiclock Esterel [29] or Communicating Reactive State
Machines [30,31]. Again, components are not abstracted in these approaches, and ac-
cording to [12]: “such extensions are not (yet) used in industry”.

Using contracts as specifications for parts of a program or system is also not a new
idea; see for example work on rely/guarantee logic [23]. Abstracting system compo-
nents by contracts appears recently, for example, in [15,14] and in [7]. The former
work uses component contracts in the form of time-annotated UML statecharts. So this
approach does not deal directly with synchronous components or GALS systems. In ad-
dition, component contracts cannot be specified by LTL formulas as in our framework.
The latter work [7] describes a way to use contracts to specify the behaviour and inter-
actions of hardware components. The focus is on the verification of contracts while our
work also considers formal verification of system-level verification goals of composed
contract-systems.

Alur and Henzinger [3] treat the semantics of asynchronous component systems,
their reactive modules can be used to give a semantics to our GALS system specifi-
cations. Reactive modules are also the basis for the tool Mocha [1] which uses Alter-
nating Temporal Logic (ATL) as a specification language for system requirements. In
our approach the specification language for contracts and global verification goals is
separate from the synchronous language in which components are implemented. So our
framework is more flexible—it allows to easily exchange the synchronous language for
components and it also allows to change the analysis tools used for formal verification.

Clarke et al. describe an automatic approach to generating contract abstractions [9].
We did not apply this technique in our framework (yet) because we believe there are
several difficulties with this approach: it can only generate abstractions with the same
expressive power as regular languages, while our approach can also handle LTL abstrac-
tions. Also, the number of iterations needed for finding the abstraction might outweigh
the performance gains of the abstraction itself. But this still needs to be investigated
systematically in the future.

To sum up, the various ingredients (contracts for abstraction, synchronous verifica-
tion, GALS systems) of our work are well-established in the literature. However, to the
best of our knowledge these ingredients have not been brought together in this form for
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the verification of GALS systems of synchronous SCADE models, and it is this gap we
intend to fill with our work.

2 Verification of GALS Systems

In this section we explain our general approach to system level verification of GALS
systems. Within our framework system verification proceeds along the following lines:

(1) System-level verification goals Φ are specified as (timed) LTL formulas expressing
the desired behavior of the complete GALS system.

(2) The behavior of each synchronous componentM is abstracted by its contractC. The
contract C contains an interface description of M , and to specify component behavior
we use a mixture of LTL formulas (“implicit modeling style”) and non-deterministic
state machines (“explicit modeling style”). Local verification then ensures that each
concrete component implements its contract which means that the traces matching the
concrete component are a subset of the traces matched by the contract, written:M � C.
Optionally, one may specify guaranteed behavior represented by additional LTL formu-
las. Guaranteed behavior are assertions of specific behavioral situations (“use cases”)
which have already been exhaustively verified on component level. This redundant in-
formation can be used during (manual) system-level validation to uncover flaws in con-
tract specifications or verification goals; for more details see [33].

(3) From the specification of all component contracts and their composition to a net-
work of components we derive an abstract GALS model CG; this model exhibits every
possible behavior allowed by the contracts.

(4) The assertion “system satisfies Φ”, i.e. MG |= Φ for the network MG of concrete
components is verified by property checking CG |= Φ instead.

In this approach, the handling of verification failures (i. e., the formal verification of
CG |= Φ produces a failure trace π) deserves attention: Because the abstract network
has (in general) more traces than the concrete one, it follows that the failure trace π of
the abstract network is possibly not a trace of the concrete one. We call this a false nega-
tive and it can be uncovered by running a simulation of the concrete network, restricted
to traces where the observable behavior matches π.2 If this simulation is successful, we
know that the failure trace π is indeed a witness to a failure in the concrete network
MG. Otherwise, we can conclude that at least one of the contracts is too weak and has
to be strengthened to achieve successful verification.

Finally, notice that a false positive, i. e., the formal verification of CG |= Φ succeeds
while MG �|= Φ for the concrete network MG of components, can happen because of an
inconsistency of a contract C with its concrete model M . However, this cannot happen
if local verification of M � C in item (2) above is successful. As usual, we assume that
Φ correctly formalizes its corresponding informal requirements.

2 This is possible because the abstracted GALS model CG operates on the complete concrete
interfaces specified for each component M , so that abstraction only introduces more general
behavior, but not abstracted data.



Formal Verification of GALS Systems 295

3 GALS Translation Language (GTL)

In this section we present our specification language for GALS systems. We show
how to specify for each component M its contract C, how components are instan-
tiated and composed to a GALS system and how system-level verification goals are
specified.

For illustration we use a simple mutual-exclusion specification in which three cli-
ents compete for a single resource (see Fig. 1). Each client is initially in its non-critical
section (state NC), may then want to acquire the resource (state ACQ), will then enter its
critical section (state CS) and must leave this section again after at most 5 synchronous
cycles (state REL). A server component which communicates with each client has to
ensure that only one client gets access to the resource at any time. We consider two
classic verification goals: the first one is a safety condition stating that at no point in time
more than one client is in the critical section, and the second one a liveness condition
stating that no client stays forever in its critical section.

3.1 Syntax

Each synchronous component type is introduced with a “model”-declaration (lines 1
and 25 of Fig. 1). This declaration states the synchronous formalism in which the
component is implemented (in this example as SCADE models), the unique name for
reference in the GTL-file and a list of parameters which are needed to extract the im-
plementation (e.g., the location of the file in which the model is implemented or its path
in a library of components).

The interface of the component is declared by specifying input-, output- and local
variables (see lines 2–3 and 26–27). While the input- and output-variables must be iden-
tical to the in- and outputs of the concrete (SCADE) component, the local variables may
be different.3 The GTL supports a wide range of types, including integers, booleans,
enumerations, arrays and tuples.

Initial values for the interface variables may be specified (lines 5 and 29), and for
each component type its cycle-time can be specified in (milli- or nano-)seconds.

Contracts for the model are also specified inside the model declaration. Each contract
can be either an automaton or an LTL formula. Automaton-contracts are a list of states
containing formulas which must hold for them and transitions into other states (lines 6–
22); the LTL formula in line 23 specifies that the critical section is left within 5 cycles,
and the server component is also specified by an LTL formula. One can form multiple
instances of models (lines 38–41), and instances may add contracts to their component
type. Guaranteed behavior can be specified by LTL formulas following the keyword
guaranteed.

To enable communication between instances, a connect statement is used to link
an output variable of one component to the input of another component of the same
type (lines 42–44).

3 Note that it is not necessary to declare input and output variables if a SCADE component is
used as the type information can be extracted from it.
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1 model [ s c a d e ] c l i e n t ( ” mutex . s c a d e ” , ” Mutex : : C l i e n t ” ) {
2 input boo l p r o c e e d ;
3 output enum { NC, ACQ, CS , REL } s t ;
4 cyc le −t ime 5ms ;
5 i n i t s t ’NC;
6 automaton {
7 i n i t s t a t e nc {
8 s t = ’NC or s t = ’REL ;
9 t r a n s i t i o n acq ;

10 t r a n s i t i o n nc ;
11 }
12 s t a t e acq {
13 s t = ’ACQ;
14 t r a n s i t i o n [ p r o c e e d ] cs ;
15 t r a n s i t i o n [ ! p r o c e e d ] acq ;
16 }
17 s t a t e cs {
18 s t = ’CS ;
19 t r a n s i t i o n nc ;
20 t r a n s i t i o n cs ;
21 }
22 } ;
23 always ( s t = ’CS => ( s t = ’CS u n t i l [5 cy ] s t = ’REL ) ) ;
24 }
25 model [ s c a d e ] s e r v e r ( ” mutex . s c a d e ” , ” Mutex : : S e r v e r ” ) {
26 input enum { NC, ACQ, CS , REL } ˆ3 p r o c s t a t e s ;
27 output boo l ˆ3 p r o c o u t s ;
28 cyc le −t ime 1ms ;
29 i n i t p r o c o u t s [ f a l s e , f a l s e , f a l s e ] ;
30 always ( p r o c s t a t e s [ 0 ] = ’ACQ and p r o c s t a t e s [ 1 ] != ’CS
31 and p r o c s t a t e s [ 2 ] != ’CS and p r o c o u t s = [ t r u e , f a l s e , f a l s e ] )
32 or ( p r o c s t a t e s [ 1 ] = ’ACQ and p r o c s t a t e s [ 0 ] != ’CS
33 and p r o c s t a t e s [ 2 ] != ’CS and p r o c o u t s = [ f a l s e , t r u e , f a l s e ] )
34 or ( p r o c s t a t e s [ 2 ] = ’ACQ and p r o c s t a t e s [ 0 ] != ’CS
35 and p r o c s t a t e s [ 1 ] != ’CS and p r o c o u t s = [ f a l s e , f a l s e , t r u e ] )
36 or ( p r o c o u t s = [ f a l s e , f a l s e , f a l s e ] ) ;
37 }
38 i n s t a n c e c l i e n t c0 ;
39 i n s t a n c e c l i e n t c1 ;
40 i n s t a n c e c l i e n t c2 ;
41 i n s t a n c e s e r v e r s ;
42 connect c0 . s t s . p r o c s t a t e s [ 0 ] ;
43 . . .
44 connect s . p r o c o u t s [ 2 ] c2 . p r o c e e d ;
45 v e r i f y {
46 always ( c0 . s t = ’CS => ! ( c1 . s t = ’CS or c2 . s t = ’CS ) ) ;
47 always ( c1 . s t = ’CS => ! ( c0 . s t = ’CS or c2 . s t = ’CS ) ) ;
48 always ( c2 . s t = ’CS => ! ( c0 . s t = ’CS or c1 . s t = ’CS ) ) ;
49 always ( c0 . s t = ’CS => f i n a l l y [30ms ] c0 . s t = ’REL ) ;
50 always ( c1 . s t = ’CS => f i n a l l y [30ms ] c1 . s t = ’REL ) ;
51 always ( c2 . s t = ’CS => f i n a l l y [30ms ] c2 . s t = ’REL ) ;
52 }

Fig. 1. GTL specification of the mutual exclusion example
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Finally, verification goals are specified as LTL formulas. These formulas can use all
in- and output variables of any component in the system (lines 45–52). It is usually
unclear which component of a composed GALS system makes a step in order for the
system to reach its successor state, so verification goals can use the temporal connec-
tives next[t]φ, finally[t]φ and φ until[t] ψ, where t is a specified time.

3.2 Semantics of GTL Specifications

Currently, the semantics of GTL specifications is purely transformational given by the
model transformations of Sec. 4. In the extended version [18] of our paper we sketch
how to give a transformation independent semantics of GTL specifications using reac-
tive modules of Alur and Henzinger [3], and we argue why our our approach to verifi-
cation of GALS systems in Sec. 2 is correct.

4 Model Transformations for Verification of GALS Systems

In this section we show how various model transformations implement local and global
verification as outlined in the previous sections. We also explain how a method for
detection of false negatives is implemented.

4.1 Local Verification

The purpose of local verification is to show that for each contract C and corresponding
SCADE model M we have M � C. This verification task is done by
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Fig. 2. Synchronous observer for client contract

transforming the contract into syn-
chronous observer nodes in SCADE

(cf. [19,21,10]). Each LTL formula con-
tained in the contract is first translated
to a state machine using the transla-
tion algorithm described by Gastin and
Oddoux [13]. Due to restrictions of the
SCADE Design Verifier, it is only pos-
sible to use safety- or time-constrained
liveness properties for this translation.
As a result, for each abstract component
C we obtain a set of automata. Each
of those automata is transformed into a
SCADE synchronous state machine (cf. [4]). This yields a set of observers that receive
the inputs and the outputs of M and generate boolean flows whose conjunction signifies
whether M implements its abstract component C. More precisely, the conjunction of
the outputs of the observers is true in a cycle iff the outputs produced by M on the in-
puts in that cycle are contained in the possible outputs admitted by the contract C given
the same inputs. Fig. 2 shows the synchronous observer generated from the contract of
the client component in our mutex example.
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4.2 Global Verification

In order to verify whether an abstract GALS model specified in GTL satisfies a ver-
ification goal Φ one generates from the GTL specification a PROMELA model CG

(cf. step (3) in Sec. 2). To this end each contract is transformed into a set of automata
as described above, and a PROMELA process for the contract is created by forming the
product automaton. The different processes asynchronously communicate via shared
variables that correspond to the connections of inputs and outputs of the synchronous
component; for each connect statement in the GTL model one shared variable is gen-
erated in the PROMELA model. There is no buffering; component outputs of previous
cycles are simply overwritten. Our model transformation also creates a scheduler for
the fair synchronous execution of the components: all component start at the same time
and then proceed according to their cycle times. If the verification goal Φ is an ordinary
LTL formula, it can simply be verified whether CG |= Φ by using SPIN. If Φ contains
temporal connectives, timers are introduced in the PROMELA model. For example, the
formula φ until[t] ψ is translated to

(c := t) ∧ ((φ ∧ c ≥ 0) until (ψ ∧ c ≥ 0));

and a timer variable c is created which is initialized with time t. Each time a syn-
chronous component (or rather its PROMELA process) makes a step, the timer c is
decremented by the amount of time that has passed since the last step was performed by
a (possibly different) synchronous component. For this translation to be sound, until[t]-
formulas must not be nested on the right-hand side.

The translation of the network of contracts in a GTL specification to UPPAAL works
similarly. However, it is not possible in general to translate all verification goals since
the supported logical language of UPPAAL is based on (timed) CTL [2]. However, if
we restrict ourselves to so-called safety properties, translation to CTL is both sound and
simple. While clearly inferior in the expressive power, this logical class of formulas is
sufficient for many practical purposes. Currently, translation of safety properties has to
be done manually.

4.3 Detection of False Negatives

We implemented a third transformation from GTL that can be used to validate verifica-
tion results for an abstract GALS model CG. Suppose we have CG �|= Φ for a verifica-
tion goal Φ and the formal verification produces the failure trace π. If each component
comes with a SCADE implementation, we can check whether this is a real failure trace
or a false negative as follows: using the GTL specification one generates the concrete
GALS model MG in PROMELA. This is done by composing the SCADE models of
the components (together with the scheduler) by integrating the C-code generated from
them. By using SPIN to simulate MG on the inputs from π we can verify whether π is
a trace of MG.4

4 Again, this simulation is possible since CG operates on the complete concrete interfaces spec-
ified by each component M .
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If so, we have found a real error, and one or several component implementations
need to be corrected. To support this process one can project the global failure trace π
on a local trace πM for each component M , which can be used in the ensuing analysis:
from each πM one can generate a SCADE simulator script which can be used to correct
the SCADE models of the components.

If the simulation finds that π is not a legal trace of the concrete GALS model MG,
then our verification result is a false negative, and one needs to analyze the contracts for
weaknesses or inconsistencies.

For a concrete example of a false negative let us consider our mutex example. If we
omit line 23 of the client contract, which prevents clients from staying forever in their
critical section, the global verification of the second verification goal in Fig. 1 will yield
a failure trace: a client remains forever in the critical section. However, this does not
happen in the concrete model; the SCADE model of the client (not shown here) will
leave its critical section after at most 5 cycles.

5 Benchmark: The Mutex Example

To evaluate the GTL transformation to back-end formalisms, we use the mutex example
from Sec. 3 as a benchmark.

To this end a sequence of GTL files is generated by increasing the numberN of client
processes that compete for the critical section. The server will (only) grant access to the
critical section to one requesting client (chosen non-deterministically), if no client is
currently in the critical section.

The state space of the system grows exponentially with increasing N . The property
that is model-checked for all instances is the previously mentioned classic safety condi-
tion: at no point in time more than one client is in the critical section. Since this is true,
the complete state space has to be analyzed.

The GTL representation is transformed to a model representation for SPIN and UP-
PAAL, respectively. For SPIN, a verifier is (gcc-) compiled and executed with run-time
options -a and -m9999999k. This guarantees exhaustive and maximally deep search.
Other than that, none of the numerous optimization options of the tools are activated.
We use the newest available (64bit-)releases of the tools.

Fig. 3 displays the time and memory consumption with increasing number N of
clients. Unmapped N correspond to out-of-memory situations. After an initial offset,
the resource usage shows a steady slope on the logarithmic scale, which corresponds to
the exponential growth of the state space. Both SPIN and UPPAAL follow mainly the
same slope, but maintain roughly constant distance, which corresponds to a constant
factor. The time plot shows this better than the memory plot, since the latter operates
with a basic offset of allocated main memory (up to N = 5, due to option -m).

Surprisingly, this factor is rather large: ≈ 53 for time without compiler optimizations
(≈ 23 with full optimization) and ≈ 87 for memory usage. Possibly, UPPAAL profits
substantially from the fact that only the reachable states have to be allocated at all, while
SPIN does provide (hash-compressed) memory for the full state space. More details can
be found in [27].
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Fig. 3. Time- and memory consumption for exhaustive search for N clients; measured on a
2.80GHz Intel R© Xeon R© CPU with 24GB of main memory

6 Case Study

In the previous section we showed that our approach works on small academic exam-
ples. To see whether our method scales up to realistic systems we are currently working
on an industrial case study—a level crossing system from the railway domain.

Fig. 4. Case study level crossing - system architecture

The level crossing consists of several components (traffic lights, supervision sig-
nals, barriers etc.). An overview of the architecture is given in Fig. 4. The components
have been implemented as synchronous SCADE models, and are of medium complex-
ity: Failures, recovery and supervision aspects are implemented in each component. A
detailed informal description of the requirements of the level crossing system and its
overall system architecture can be found in [32]. The implementation can be found at
the VerSyKo project web page.5 A main global requirement of the level crossing system
is to protect the road traffic from the train traffic and vice versa. Without abstraction,
the state space of the system is too large to be handled by model checkers like SPIN:
an experiment to integrate the C-code generated from the SCADE models and using the
model checker SPIN yields a too large state space. This outcome validates our expec-
tation that it is necessary to reduce state space by providing abstractions of the local
synchronous components using contracts.

5 See http://www.versyko.de

http://www.versyko.de
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As a next step, we have formulated contracts for each of the components of the level
crossing system and used SCADE Design Verifier to prove the contracts correct. Un-
fortunately, for the level crossing controller, SCADE Design Verifier did not succeed
in verifying our contract. The reason for this is yet unclear, but omitting one of the
three automata from the contract yielded a verifiable contract. We suspect that the third
automaton encodes a property that cannot be handled by the induction heuristics im-
plemented in SCADE Design Verifier. However, the Debug Strategy of SCADE Design
Verifier yielded no counterexamples unrolling the model up to depth 80. The results
of the contract verification can be seen in Table 1, which also shows the complexity
of both the SCADE model (estimated from the C-code generated from it) and the as-
sociated contract. The detection points in Fig. 4 do not appear because they are mere
sensors without controller software.

Table 1. Contract verification times

Component Model complexity Contract complexity Verification time
(no. of states) (no. of states) (s)

traffic light 5.92 · 1010 6 3.292
supervision signal 1.54 · 104 4 5.054
barrier 2.46 · 105 5 3.385
axle counter 2.88 · 103 3 4.103
level crossing controller 2.36 · 10138 32 543.5991

1 Verified up to depth 80 using bounded model checking.

For a first experiment with global verification we have formulated the main require-
ment mentioned above as a verification goal in GTL. Since we have not completed an
automatic translation of GTL verification goals into UPPAAL’s query language, we did
not experiment with global verification using UPPAAL yet. Using SPIN resulted, as
expected from our benchmark in the previous section, in complexity problems.

7 Conclusions and Future Work

We presented a framework for the formal verification of GALS systems built from
synchronous SCADE models. Contacts are used as abstractions of concrete synchonous
components in order to handle system complexity. The goal is to obtain an approach
that can handle the formal verification of such systems in an industrial context. We also
presented first results from an ongoing industrial case study.

Let us summarize our findings sofar. First of all, our first experiments confirmed our
expectation that abstraction of components is necessary to handle the formal verification
of global verification goals.

Our experience formulating contracts for the industrial case study showed that it can
be non-trivial to define a correct and adequate abstraction that is qualified for model
checking, and leads to a diagnostically conclusive result. It may be necessary to inves-
tigate the implementation in more depth. In addition, contracts may need to be tailored
towards formal verification of a particular verification goal.
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The local formal verification of contracts can be performed for small and medium
sized components using SCADE Design Verifier. But for bigger components one may
not be able to sucessfully complete formal verification. In such cases it is difficult to
analyze the reason for this as information on the details of the verification algorithm
of SCADE Design Verifier is not freely available. However, using the Debug Strategy
of SCADE Design Verifier one may still perform bounded model checking to uncover
errors in contract specifications and this way one can build trust in the correctness of
the contract. In addition, we saw that verifying contracts helps improving the compo-
nents’ quality. For example, for the traffic light controller the contract validation has
revealed a subtle error in the implementation. For two states in the SCADE model the
transition priorities were wrong—in a situation where the model must proceed to a fail-
ure state it will instead transition to a different state, this error has been corrected in the
implementation.

Our benchmark using SPIN and UPPAAL for global formal verification indicates
that those two analysis tools do not scale to real industrial applications and this is con-
firmed by our experiment with the industrial case study. Since it is necessary to gener-
ate a scheduler component to facilitate the synchronous execution (in both SPIN and
UPPAAL) of the abstract GALS models, the timing abstraction provided by timed au-
tomata in UPPAAL does not reduce the state space enough in order for this verification
method to scale up.

Ongoing Work. To address the above mentioned complexity problems, we are now in-
vestigating a different and new approach using bounded model checking and a model
transformation for global verification from GTL to an SMT-solver. Our first experiments
using this approach indeed look promising and allow to check the absence of counterex-
amples to our global verification goals up to a fixed number of steps performed by the
abstract GALS model. Details on this new approach and a more extensive investigation
of the case study will be reported subsequently. More details on the current verification
results can be found in [16].

Directions for future work include: (a) exploring possible alternatives to SCADE De-
sign Verifier for local verification—an approach using bounded model checking with an
SMT-solver similar to the KIND [24] model checker for LUSTRE will be investigated;
(b) further investigations using bounded model checking for global verification will be
made on our case study, in particular, the formalization of other requirements as global
verification goals and the formulation of appropriate contracts for them; (c) from the
point of view of applicability of our approach a systematic methodology how to find
suitable abstractions of components and to formulate good contracts is highly desir-
able. At the moment this is a creative process that needs expertise both with the system
under investigation and with the formal verification methods used in our framework.
Concerning this point, it should be investigated in how far tthe CEGAR approach of [9]
is applicable for automatic derivation of contracts.

Acknowledgments. We are grateful to ICS AG for providing the industrial case study,
and to Axel Zechner and Ramin Hedayati for fruitful discussions and their support to
formulate the contracts.
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Abstract. Safety arguments typically have some weaknesses. To show
that the overall confidence in the safety argument is considered accept-
able, it is necessary to identify the weaknesses associated with the aspects
of a safety argument and supporting evidence, and manage them. Confi-
dence arguments are built to show the existence of sufficient confidence
in the developed safety arguments. In this paper, we propose an approach
to systematically constructing confidence arguments and identifying the
weaknesses of the software safety arguments. The proposed approach is
described and illustrated with a running example.

Keywords: safety cases, confidence arguments, assurance deficits.

1 Introduction

A safety case is a structured argument, supported by a body of evidence, that
provides a compelling, comprehensible and valid case that a system is safe for
a given application in a given environment [17]. Although creating a structured
safety argument explicitly explains how the available evidence supports the over-
all claim of acceptable safety, it cannot ensure that the argument itself is ‘good’ or
the evidence is sufficient. A justification for the sufficiency of confidence in safety
arguments is essential. Any gap that prohibits perfect confidence is referred to
as an assurance deficit [11]. The argument about the assurance deficits is given
in a separate argument that is named confidence argument [11]. A confidence
argument demonstrates the existence of sufficient confidence in an element by
showing that the assurance deficits related to this element have been identified
and managed. Showing overall confidence in a safety argument would require
that all elements of the safety argument (such as evidence or contexts) have an
accompanying confidence argument.

In this paper, an approach to systematically identify the assurance deficits
in software safety arguments is proposed. Software safety arguments are safety
arguments that justify, based on evidence, that the software does not contribute
to the system hazards. Following a systematic approach would help in effectively
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identifying the assurance deficits. To show sufficient confidence in a specific el-
ement in a safety argument, a confidence argument developer first explores all
concerns about the confidence in this element, and then makes claims that these
concerns are addressed. If a claim cannot be supported by convincing evidence,
then a deficit is identified and should be addressed. However, one cannot define
a complete list for all concerns about all elements used in the safety arguments.

In this work, we are taking advantages of a commonality among elements
used in software safety arguments. For example, tool qualification is one of the
concerns for all tool-derived evidence [19]. Addressing a concern like this typi-
cally gives rise to several derived concerns. We collected common concerns for
common elements used in software safety arguments. We call the set of derived
concerns for a specific element characteristics of this element. We structured
this collection of common concerns in what we called the common characteris-
tics map. It is a map from a concern C from the characteristics set, to a set of
derived concerns that need to be argued about to justify sufficient confidence in
C. We also propose a common characteristic mechanism to construct confidence
arguments and identify assurance deficits by instantiating the map to specific
concerns. Any branch of the developed confidence argument not be supported
by evidence indicates an assurance deficit that needs to be addressed.

The paper is organized as follows: Section 2 gives a brief background on safety
cases. The related work is listed in Section 3. Section 4 explains the basic idea of
the proposed approach. The common characteristics map is presented in Section
5. The common characteristics mechanism is described and illustrated with a
running example in Section 6. The mechanism evaluation is given in Section 7.
Finally, the paper is concluded in Section 8.

2 Safety Cases

The safety of safety-critical systems is of a great concern. Many such systems are
reviewed and approved or certified by regulatory agencies. For example, medical
devices sold in the United States are regulated by the U.S. Food and Drug Ad-
ministration (FDA). Some of these medical devices, such as infusion pumps, can-
not be commercially distributed before receiving an approval from the FDA [18].
Which means that manufacturers of such systems are expected not only to
achieve safety but also to convince regulators that it has been achieved [20].
Recently, safety cases have become popular and acceptable ways for communi-
cating ideas and information about the safety-critical systems among the system
stakeholders. The manufactures submit safety cases (to present a clear, compre-
hensive and defensible argument supported by evidence) to the regulators to
show that their products are acceptably safe to operate in the intended con-
text [13]. There are different approaches to structure and present safety cases.
The Goal Structuring Notation (GSN) [13] is one of the description techniques
that have been proven to be useful for constructing safety cases. In this work,
we use the GSN notation in presenting safety cases. There is often commonal-
ity among the structures of arguments used in safety cases. This commonality
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motivates the definition for the concept of argument patterns [13], which is an
approach to support the reuse of arguments among safety cases.

A new approach for creating clear safety cases was introduced in [11]. This
new approach basically separates the major components of the safety cases into
safety argument and confidence argument. A safety argument is limited to give
arguments and evidence that directly target the system safety. For example,
claiming why a specific hazard is sufficiently unlikely to occur and arguing this
claim by testing results as evidence. A confidence argument is given separately
to justify the sufficiency of confidence in this safety argument. Such as ques-
tioning about the confidence in the given testing results (e.g., is that testing
exhaustive?). These two components are given explicitly and separately. They
are interlinked so that justification for having sufficient confidence in individual
aspects of the safety component is clear and readily available but not confused
with the safety component itself. This separation reduces the size of the core
safety argument. Consequently, this new structure is believed to facilitate the
development and reviewing processes for safety cases.

3 Related Work

There exists a widely used method for systematically constructing safety argu-
ments. This method is often referred to as the “Six-Step” method [12]. Although
this method has been used successfully in constructing many safety arguments,
it does not explicitly consider the confidence of the constructed safety argu-
ments [10]. In [16,19], lists of major factors that should be considered in de-
termining the confidence in arguments are defined. Questions to be considered
when determining the sufficiency of each factor are also given. We were inspired
by this work and focused on one of these factors (i.e., the trustworthiness).

Argument patterns for confidence are given in [11]. Those patterns are defined
based on identifying and managing the assurance deficits to show sufficient con-
fidence in the safety argument. It is necessary to identify the assurance deficits
as completely as practicable. However, it is not quite clear how to do that. This
motivates us to take a step back to reasonably identify the assurance deficits.
Then the list of the recognized assurance deficits can be used in instantiating
the confidence pattern given in [11]. The constructed confidence arguments can
be used in the appraisal process for assurance arguments (e.g., [6,14]).

There are attempts to quantitatively measure confidence in safety cases such
as [5,7]. We believe that qualitative reasoning about the confidence existence is
more consistent with the inherited subjectivity in safety cases.

4 Proposed Approach

The best practice for supporting the top-claim of safety arguments (i.e., the
system is acceptably safe) is to show that the identified system hazards are
adequately mitigated. We refer to this type of argument as a contrapositive ar-
gument, since it refutes attempts to show that the system is unsafe. To build
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this argument, one should first determine what could go wrong with this system
(i.e., identify the system hazards). Similarly, the top claim for a confidence ar-
gument is usually that sufficient confidence exists in an element E of the safety
argument. Such a claim can be supported by a contrapositive argument showing
that the identified assurance deficits associated with E are adequately miti-
gated [11]. Extending the analogy, one should first determine the uncertainties
associated with the element (i.e., identify the assurance deficits). Following sys-
tematic approaches helps in effectively identifying system hazards [1]. We believe
that following a systematic approach would also help in effectively identifying
assurance deficits.

The proposed systematic approach to identifying the assurance deficits results
in the construction of positive confidence arguments. A positive argument is a
direct argument that relies on the properties of the actions taken in the develop-
ment (e.g., a well-established development process has been followed, a trusted
tool has been used, etc.). This distinguishes our confidence arguments from the
contrapositive ones discussed above. We stress that the intent of our work is not
to replace contrapositive arguments, but to aid in the identification of deficits
that can then be argued over using a contrapositive argument. However, note
that if no deficits are identified through the construction of a positive argument,
the resulting argument can be used as the requisite confidence argument.

We propose a common characteristics map to provide guidelines for system-
atic construction for positive confidence arguments. Using the map, claims in the
positive confidence arguments can be decomposed until every goal is supported by
positive sufficient evidence. If all branches in the positive confidence arguments are
supported by convinced evidence, that means all assurance deficits are mitigated.
For each goal in the resulting confidence arguments that cannot be solvedwith suf-
ficient evidence, an assurance deficit is identified and needs to be addressed. After
identifying the assurance deficits in this way, the confidence pattern [11] can be
instantiated to demonstrate that the recognized assurance deficits are managed.

5 The Common Characteristics Map

As given in [11], the overall confidence in a safety argument requires confidence
arguments to be constructed for all context, all evidence and all inferences used
in the safety argument. There are several factors that influence our confidence in
system safety, such as appropriateness, independence, etc. In this paper, we con-
centrate on one of these factors, namely trustworthiness. Trustworthiness (i.e.,
the likelihood of freedom from errors) is a major factor that must be considered
in determining the assurance of evidence and contexts. According to [11], trust-
worthiness is not a confidence factor for inferences. So the proposed work is used
for context and evidence, but not inferences.

There are commonalities among contexts and evidences used within the soft-
ware safety arguments. For example, software safety arguments are likely to
cite tool-derived evidence. The tool qualification is one of the concerns for any
tool-derived evidence. Our observation is that elements used in software safety
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arguments can be categorized based on their common concerns. The categories
commonly used in software safety arguments are illustrated below:

– Created artifact : e.g., a system model, a fault tree
– Provided artifact : e.g., system requirements, results from technical literature
– Process results : e.g., the formal verification results, the testing results
– The use of a mechanism: e.g., a particular design or verification technique
– The use of a tool : e.g., a specific model-checking or code-generation tool

We note that this list is not complete, but identifies categories that cover a
collection of the more common elements used in software safety arguments. To
show that this list is reasonable, we collected the contexts and evidences used
in the argument patterns given in [2,3,10,13,19] and found that each of these
elements can be classified as one of the listed categories.

Table 1. Concerns regarding the outcomes of formal verification and testing

Process results Formal verification results Testing results

the used technique the used formal verification
technique

the used testing technique

the used tool the used formal verification
tool

the used testing tool

expertise of the human
involved in the process

expertise of the verification
engineer

expertise of the tester

correctness of the in-
volved artifacts

correctness of the system
properties

correctness of the test cases

the relation among the
involved artifacts

the coverage of the system
requirements

the test coverage

Mapping the confidence concerns. Elements belonging to the same category have
similar concerns about their trustworthiness, which need to be reasoned about in a
confidence argument. Table 1 illustrates this similarity with an example that com-
pares concerns regarding the outcomes of formal verification and testing, as ex-
amples of evidences cited by software safety arguments. The first column gives a
generalization for the next two columns. For example, the used tool is a general-
ization that covers the used formal verification tool and the used testing tool. The
formal verification results and the testing results can be categorized as process re-
sults as shown in the first row. We call this set of concerns characteristics of the
category.Arguments over the characteristics of a category are to support sufficient
confidence in the trustworthiness of elements that belong to this category. When
we start addressing a particular concern C from the characteristics set, it may, in
turn, give rise to a set of derived trustworthiness concerns, which correspond to the
category exhibited byC.We illustrate the notions of concern, category of concerns,
and characteristics of a category in Figure 1. For example, suppose we are address-
ing concern A1 that falls into the category A. Its derived concerns are B1 and C3,
that fall into categories B and C, respectively. Moreover, every concern in A will
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have derived concerns in B and C.We then say that B and C are the characteristics
of A. Several concrete examples of concerns and their categories are given below.

This relationship between categories of concerns based on the notion of char-
acteristics can be captured as a map. We constructed such a map, shown in
Figure 3, that relates each category to its characteristics that need to be ar-
gued about in order to justify sufficient confidence in elements that belong to
this category. Nodes in the map are categories, i.e., sets of concerns with simi-
lar characteristics, where each characteristic is a derived concern, as illustrated
above. Solid arrows connect each node to the nodes that represent categories of
its characteristics. To address a claim about the trustworthiness in a node, we
need to argue over the trustworthiness in all nodes reached by solid arrows from
this node. For example, to show that a process result is trustworthy, argument
about trustworthiness in all aspects of this process should be given, which in-
clude the use of a tool on which the process is based, the artifacts used in the
process, etc. In turn, to address the claim about the trustworthiness in the use
of a tool, we need to argue about the trustworthiness in the tool itself (the tool
category), the person who used this tool (the human factor category), etc.

To show that a created artifact is trustworthy, argument about trustworthiness
in its creation process should be given [9]. In addition, we need to argue that the
process of validating the artifact with respect to its requirements is trustworthy.
For example, both the artifact creation process and validation results exhibit the
characteristics of the process results category and, for each, we should explore
the derived concerns of that category. The dotted arrows are used in the map
to demonstrate that the connected two nodes have the same characteristics.
Note that we could eliminate dotted arrows altogether by combining together
the nodes connected by dotted arrows. However, we believe that keeping them
separate makes the map easier to follow and helps in map instantiation, described
in Section 6.

Evaluation. The proposed common characteristics map guides to what should
be argued for the confidence in the trustworthiness. We say that the map is con-
sidered reasonable if the concerns collected in the map cover at least all known
concerns. As mentioned in Section 3, some existing work suggests questions to be
asked and things to be considered for the trustworthiness factor. We collected
the concerns and questions given in [11,16,19], and made sure that all these
concerns and questions are covered in the common characteristics map. For ex-
ample, concerns listed in [16] for trustworthiness are covered by the common
characteristics map as follows:

– Was the evidence gathered in accordance with any documented standard?
This concern is covered by the category the use of a mechanism.

– Are the evidence-gathering personnel competent? Are they certified to an
appropriate standard? Have they performed the tests before? These concerns
are covered by the expertise of a person category.

– How valid are the assumptions and simplifications that were made? This
concern is covered by applicability of the tool assumptions and limitations
and applicability of the mechanism assumptions and limitations categories.
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6 The Common Characteristics Mechanism

The proposed mechanism starts by creating positive confidence arguments with
the help of the common characteristics map. The main steps of the common
characteristics mechanism are shown in Figure 2. In this section, a description
for each step is given and illustrated with a running example based on a recent
case study. The case study involved constructing a safety case for the imple-
mentation of a Patient Controlled Analgesic (PCA) infusion pump. The PCA
infusion pump is one of those medical devices that are subject to premarket ap-
proval requirements by the FDA [18]. We developed a PCA implementation by
using the model-based approach based on the Generic PCA model [8] provided
by the FDA. The details of our PCA development are given in [15]. Briefly, given
the GPCA Simulink/Stateflow model provided by the FDA, a UPPAAL timed
automata model [4] was constructed using a manual translation process. This
GPCA timed automata model is then used to synthesize the software for our
PCA implementation. In [3], we have presented part of the safety argument for
the resulting implementation. One of the contexts that is referenced in the PCA
safety argument is the GPCA timed automata model. The context of the GPCA
timed automata model is used here as a running example.

As shown in Figure 2, to construct a confidence argument for a given element
of the safety argument using the common characteristics map, we first instantiate
the map starting from the node in the map that corresponds to the category
of this element. For example, the map instance for the GPCA timed automata
model is given in Figure 4. In our example, this model falls in the created artifact
category. We then select the corresponding node from the map and instantiate
it. That is, created artifact node in Figure 3 is instantiated as the GPCA timed
automata model node in Figure 4. We then unroll the map following the solid
edges, and instantiate the reachable nodes: the creation process and validation
results. These two nodes are instantiated to the creation process for the GPCA
timed automata model and validation results nodes, respectively, in Figure 4
in the second layer. The characteristics of these nodes are the same as for the
process results category and, in the third layer in Figure 4, we instantiate those
nodes as well, and continue the instantiation process iteratively.

In the second step, we construct a positive confidence argument from the
instantiated map (e.g., Figure 4). Start from the root node (e.g., the GPCA timed
automata model node in Figure 4). Create the top-level goal claiming sufficient
confidence in the trustworthiness of this element (e.g., goal G:Trustworthiness
in Figure 5). For each node reached from the root node (i.e., layer 2 nodes in
Figure 4), we create a strategy to decompose the top-level goal (e.g., strategies
S:Trustworthy and S:Validation in Figure 5). Each node in layer 3 creates a goal
in the confidence argument, and so on.

We see that the element of the confidence argument created for a node in
the instantiated map depends on its layer. That is, we create goal elements for
nodes in odd layers and strategy elements for nodes in even layers in the map
instance. Actually the same map node can sometimes appear in even layer and
sometimes appear in odd layer. For example, process results node is in layer 1,
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but if it is driven from created artifact then it will be in layer 2. In the first
case, a goal will be created for it claiming the existence of sufficient confidence
in the trustworthiness of the process results. In the second case, a strategy will
be created with an argument by the process (e.g., argument by validation). Solid
shapes and arrows in Figure 5 show part of the developed positive confidence
argument for the GPCA timed automata model.

G:Trustworthiness
Sufficient confidence exists 
in the trustworthiness of the 
GPCA timed automata 
model

S:Validation
Argument by 
Validation

S:Creation
Argument over the 
trustworthiness in the 
GPCA timed automata 
creation process

G:TimedAutomata

Sufficient confidence exists in 
the trustworthiness of using the 
UPPAAL timed automata

S:TAHmmanFactor
Argument over the 
humman factor involved in 
the using of the UPPAAL 
timed automata

G:TADeveloper

Sufficient confidence exists in the 
trustworthiness of the expertise of 
the developer who used the 
UPPAAL timed automata description 
language

G:DevlopmentMechanism

Sufficient confidence exists in the 
trustworthiness of developing the 
GPCA timed automata model from 
the GPCA simulink/stateflow model

G:TAReviewer

Sufficient confidence exists in the 
trustworthiness of the expertise of 
the reviewer who reviewed the using 
of the UPPAAL timed automata 
description language

S:TimedAutomata
Argument over the 
UPPAAL timed 
automata

G:UPPAALTool

Sufficient confidence exists in 
the trustworthiness of using the 
UPPAAL tool

G:Relation

Sufficient confidence exists in the 
trustworthiness of the relation 
between the GPCA simulink/
stateflow model and the GPCA 
timed automata model

G:InvolvedArtifacts
Sufficient confidence exists in 
the trustworthiness of the 
artifacts involved in the GPCA 
timed automata creation 
process

S:Transformation

Argument over the 
transformation steps

S:SemanticDiffs
Argument over the 
semantic differences 
between the simulink/
stateflow and the UPPAAL 
timed automata

G:SemanticDiffs

Sufficient confidence exists in the 
trustworthiness of the handling of 
the semantic differences between 
the simulink/stateflow and the 
UPPAAL timed automata 

Fig. 5. Part of the positive confidence argument for the GPCA timed automata model

The decomposition for the confidence argument nodes continues until every
claim is supported with evidence. The dotted shapes and arrows in Figure 5 show
the elements that require further decomposition. Decomposition for G:Relation is
required to support the claim about the trustworthiness in the relation between
the GPCA Simulink/Stateflow model and the GPCA timed automata model. As
the GPCA Simulink/Stateflow model was transformed into the GPCA timed au-
tomata model, then this decomposition is given by two strategies S:Transformation
and S:SemanticDiffs. Any claim in the confidence argument that cannot be sup-
ported by evidence identifies an assurance deficit. For example, although we trans-
formed the GPCA simulink/stateflow model into an equivalent GPCA timed au-
tomata model, we do not have evidence to show this equivalence at the semantic
level. So the claim at G:SemanticDiffs is not supported and so an assurance deficit
is identified here.

For the identified assurance deficits, a contrapositive argument about their
mitigations needs to be constructed using the confidence pattern defined in [11].
In our case, exhaustive conformance testing between the GPCA Simulink/State-
flow model and the GPCA timed automata model may be a reasonable mitiga-
tion. We also have to instantiate the confidence argument for the trustworthiness
of conformance testing from the common characteristics map.
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7 Discussion

Observations. The proposed common characteristics map is not complete and
so it should not be used blindly. The generated confidence arguments may re-
quire additional elements. In particular, generated goals and strategies may need
contexts, assumptions, and/or justifications. For example, a justification node,
stating that the GPCA timed automata model was developed from the GPCA
Simulink/Stateflow model using a careful transformation process [15], should be
connected to goal G:DevelopmentMechanism in Figure 5. Note that if any context
or assumption is added then argument about sufficient confidence in it should
be also considered.

Nodes in the map instance cannot be omitted at will during the confidence
argument construction. Otherwise, confidence in the trustworthiness of the el-
ement under concern is questionable and that identifies a potential assurance
deficit. For example, if tool assumptions are not known, the tool assumptions
node indicates a weakness that should be addressed. However, not every pos-
sible derived concern has to be present. If we decide to omit a branch in the
instantiation, we have to supply appropriate justification.

Limitations. The common characteristics map presented in this paper covers
only the trustworthiness factor. However, similar maps can be constructed for
other factors such as appropriateness. To do this, we need to identity categories
of appropriateness concerns and their characteristics. We leave this as our future
work. The common characteristics mechanism is not an automatic approach, i.e.,
it needs human interactions and decisions (e.g., what nodes can be ignored with
justification and what parts should be added as mentioned above).

While the structure of the argument is directly derived from the map instance,
the created goals and strategies still need to be formulated correctly. For exam-
ple, goal G:TADeveloper in Figure 5 is derived from the node expertise of the
person in Figure 4. The statement of the goal in G:TADeveloper is formed as a
proposition following the rules given in [12].

8 Conclusions

It is important to identify the assurance deficits and manage them to show suffi-
cient confidence in the safety argument. In this paper, we propose an approach to
systematically construct confidence arguments and identify the assurance deficits
in software safety arguments. Although the proposed mechanism does not guar-
antee to identify all assurance deficits, it helps to identify deficits that may have
been overlooked otherwise. Similarly, following systematic hazard identification
mechanisms does not guarantee that all hazards are identified.

The paper focuses on constructing positive confidence arguments with the
help of a proposed map. However, the map can also be used in the reviewing
process to help regulators identify gaps in submitted confidence arguments.

Our preliminary experience of applying the proposed approach has revealed
that the common characteristics mechanism yields the expected benefits in ex-
ploring important uncovered assurance deficits in software safety arguments.
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Determining Potential Errors in Tool Chains 

Strategies to Reach Tool Confidence According to ISO 26262  

Martin Wildmoser, Jan Philipps, and Oscar Slotosch 

Validas AG, Munich, Germany 
{wildmoser,philipps,slotosch}@validas.de 

Abstract. Due to failures of software tools faults compromising the safety of 
the developed items may either be injected or not detected. Thus the safety 
norm for road vehicles, ISO 26262, requires to evaluate all software tools by 
identifying potential tool failures and measures to detect or avoid them. The re-
sult is a tool confidence level for each tool, which determines if and how a tool 
needs to be qualified. This paper focuses on tool failure identification and pro-
poses two strategies for this task. The function-based strategy derives potential 
tool failures from a functional decomposition of the tool. The artifact-based 
strategy analyzes artifacts only. We introduce an analysis tool to support these 
strategies and discuss their ability to produce lists of failures that are compre-
hensive, uniform and adequately abstract. This discussion is based on our expe-
rience with these strategies in a large scale industrial project. 

Keywords: ISO 26262, Tool Chain Analysis, Tool Qualification, HAZOP, po-
tential tool failure, potential tool error. 

1 Introduction 

The use of software to control technical systems – machinery, aircraft, cars - carries 
risks in that software defects may endanger life and property. Safety standards, such 
as the recent ISO 26262 [1] for the automotive domain aim to mitigate these risks 
through a combination of demands on organization, structure and development me-
thods. These standards and the practices they encode can also be seen as a sign of 
maturity, a shift from an anything-goes attitude of programming to a more disciplined 
engineering approach to software development.  

As in any discipline, with growing maturity more emphasis is put not only on the 
way of working, but also on the tools used. In safety standards, we can observe a 
similar development. Earlier standards put only little emphasis on tool use, perhaps 
roughly demanding an argument that each tool be "fit for use", mainly for tools used 
in generating or transforming code or in testing software or systems. Recent stan-
dards, such as the ISO 26262 take a more holistic viewpoint. Not only tools, but also 
their use in the development process must be analyzed, risks identified and counter-
measures employed. In this line of thinking, also requirement management tools, 
version control systems, and the plethora of little helper tools to integrate work flows 
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2 Tool Evaluation Process 

Tool evaluation is about determining the TCL for all tools used in the development 
process of a safety related product. The ISO 26262 defines what a tool evaluation 
report must contain, but leaves the process for tool evaluation largely open. The 
process we currently follow for tool evaluation consists of the following steps: 

1. Define list of tools 
2. Identify use cases 
3. Determine tool impact 
4. Identify potential tool failures 
5. Identify and assign measures for tool failure detection and -prevention 
6. Compute tool confidence level for each use case and tool 

First, we create a list of all tools used in the development process. Then by studying 
the development process and by interviewing tool users we identify and write down 
the use cases for each tool (why? who? when? what? how?). For each use case we 
then determine the tool impact (TI1, TI2) by answering two questions: 

1. Can a tool failure inject a safety-related fault into the product?  
2. Can a tool failure lead to the non-detection of a safety-related fault in the product?  

Only if both questions can be answered with “No” the tool has no impact (TI1). For 
every use case with impact (TI2) the potential tool failures need to be identified. For 
each potential tool failure we look for existing measures for detection or –prevention 
in the development process. If such measures are found we assign them to the corres-
ponding potential tool failure together with an estimated tool error detection level 
(TD1-TD3). From the TI and TD the we finally determine the TCL  according to 
tables in ISO 26262 (see Fig. 1). 
  To give a short example (see Fig. 2) assume a tool chain consisting of the tools Zip, 
Diff and Ls, which are used for release packaging.  

 

Fig. 2. Release Packaging Tool Chain 
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In this tool chain we have four use cases Zip / contract, Zip / extract, Diff / compare, 
and Ls / compare. Each use case has its own set of inputs and outputs, e.g. Zip / con-
tract takes a “File Tree” as input and delivers an “Archive” as output. Since the “Arc-
hive” contains product files the use cases Zip / contract and Zip / extract have tool 
impact (TI2) as they might inject faults into the product.  

These use cases need to be analyzed for potential tool failures, e.g. “File Content 
Corrupted” in use-case Zip / contract  and appropriate checks for these failures need 
to be assigned if possible, e.g. “Diff File Trees” in use-case Diff / compare. Note that 
in this tool chain the tools are not only sources for tool failures but can also act as 
sinks for tool failures by providing measures for failure detection or prevention. The 
effectiveness of these measures is expressed by the assigned TD level, which is omit-
ted in the figure above.  

3 Strategies for Potential Tool Failure Determination 

This section defines terminology, goals and strategies for determining potential tool 
failures. In analogy to Laprie’s fault/error/failure concept [6] and the ISO 26262 [1] 
vocabulary, we define the terms tool fault, tool error and tool failure as follows: 
 

• tool fault: defect in tool code or design 
• tool error: unexpected internal tool state at runtime, caused by tool fault or abnor-

mal operating condition 
• tool failure: unexpected tool output/result 
 

We also distinguish between concrete and potential tool errors and -failures: 
 

• Concrete tool error/failure: Specific tool error/failure, e.g. Zip v7.3 corrupts file 
contents with more than 4gb size in compression method “Ultra”. 

• Potential tool error/failure: Abstract tool error/failure, e.g. File Content Corruption. 
 

The aim of tool evaluation and -qualification is to counter Murphy’s law: that any-
thing that can go wrong will go wrong. Tool evaluation requires the determination of 
the potential tool failures. 

3.1 Goals for Potential Tool Failure Determination  

The determination of potential tool failures should achieve various goals, which we 
introduce next. A desirable goal would be completeness in the following sense. 
 

• Completeness: All concrete tool failures are subsumed by the determined potential 
tool failures. 
 

Completeness is a very attractive goal, but it has the drawback that in practice it is 
hardly measurable as the number of concrete tool failures is usually unknown. Hence, 
if one does not use extreme abstractions for potential tool failures like the term “Tool 
Failure”, which resembles the logical predicate “true” and covers the whole plane of 
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possibilities, one can usually not be sure if all known and currently unknown concrete 
tool failures are covered. What is measurable in practice is relative completeness of 
different strategies. One can apply various strategies and then compares the obtained 
potential tool failures with a previously disclosed list of concrete tool failures. One 
can count how many of these concrete tool failures are subsumed by the determined 
potential tool failures and use these ratios to compare the considered strategies.   
 A little less ambitious but still attractive are the following goals, which we will later 
use to judge the strategies introduced below: 
 

• Comprehensiveness: No blind spots. All potential tool failures can be determined. 
• Uniformity: All use cases are analyzed with the same method and same intensity. 
• Appropriate Abstraction: The error descriptions are neither too vague nor too de-

tailed. 
• Scalability: The effort is acceptable even for large tool chains. 

A determination strategy for potential tool failures is comprehensive if for every con-
crete tool failure it is able to determine a subsuming potential tool failure. In other 
words it is able to reach all concrete tool failures. If a strategy is not comprehensive 
the TCL might be inadequate.  

A potential tool failure determination is uniform if the same methods and the same 
levels of rigor are applied to all use cases of all tools. Using unbalanced methods and 
levels of rigor is a typical sign for poor process quality.  

The determined potential tool failures should also have an appropriate level of ab-
straction. If this level is too high no counter measures can be found and if it is too low 
unnecessary effort is introduced.  

Finally the strategy should be scalable in the sense that the effort spent on tool 
evaluation should be acceptable and not grow drastically with the complexity of the 
analyzed tool chain determined by the number of tools, use cases, artifacts and data 
flow dependencies. 

3.2 Different Views on Tool Failures 

From an abstract point of view (see Fig. 3) the purpose for using a tool is to map input 
data, e.g. files, streams, etc., to output data. A tool failure leads to wrong outputs for 
valid inputs. An output is wrong if some parts of it do not map correctly to certain 
parts of the input.  

 

Fig. 3. Tool errors in functions affect artifacts 
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One the other hand tool failures are caused by errors in tool functions. For example 
an error occurring in a function f3 might lead to a wrong mapping of input part D to 
output part d. In order to describe a tool failure one can take two angles of view: 

• describe what goes wrong inside the tool, e.g. error in function f3. 
• describe what is wrong in the produced outputs, e.g. wrong part d in output file. 

In the first description technique one refers to the internals of the tool, that is func-
tions needed to accomplish the use case, whereas in the second one refers to proper-
ties or structure of the output data. Both descriptions may in addition refer to the 
properties of tool inputs that trigger the error. Note that both descriptions refer to the 
same tool failure. They mainly characterize this tool failure from different views. 

These two views give rise for two tool failure determination strategies: Analyze 
what can go wrong in a tool or analyze what can be wrong with the artifacts.  

The first strategy systematically refines the abstract error “Tool Failure” by analyz-
ing the functions in the tool. We call this strategy Function-based failure determina-
tion. The second strategy only looks at the output data of tools and we call it thus 
Artifact-based failure determination. By going along the structure of output data one 
can systematically refine the abstract error “Artifact broken” into more concrete po-
tential tool failures, e.g. output part d broken. 

3.3 Function-Based Strategy for Potential Tool Failure Determination 

The function-based strategy analyses what can go wrong inside a tool and does this by 
decomposing the tool functionally. In this case functions can either be conceptual, e.g. 
sorting in a database, or in case the architecture or code of the tool are known also 
modeled from the internal structure of the tool.  

Note that the same functions may take part in different use cases. There are also 
functions that are used by many tools for standard activities, e.g. “Iterating Files”, and 
we call these standard functions. Standard functions characterize the tools and cause 
typical sets of potential tool errors. For examples in tools with the standard function 
“Iterating Files”, typical tool errors are “File Lost” or “Unwanted File Added”. 

For each function or standard function we can associate a set of potential tool er-
rors that may occur in tools having this function.  

Once the sets of potential tool errors for functions and standard functions are de-
fined, the function-based strategy essentially becomes a matter of selecting the appro-
priate functions or standard functions for each use case (see Fig. 4). 

The potential tool errors for a use case are simply the union of the sets of potential 
tool errors of the functions selected for this use case. Sometimes similar tool errors 
are introduced from different functions.  

Hence, after this selection phase the set of potential tool errors for a use case needs 
to be consolidated by subsuming similar tool errors. By now the function-based strat-
egy has produced sets of potential tool errors, but the aim of tool evaluation is to 
determine potential tool failures. Only the externally observable effects of tool errors 
in terms of wrong artifacts being produced matter. To transform the set of potential 
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tool errors into a set of resulting tool failures one can apply an FMEA like inductive 
thinking. What can happen if this function produces this tool error? If one traces this 
question along the dependencies of functions one can derive corresponding potential 
tool failures.  

 

Fig. 4. Assigning standard functions to use cases 

In the Zip example from the previous section we can decompose the use-case Zip / 
contract into the following functions: Iterating Files, Loading Files, Transforming 
Files, Writing Files. Each of these functions brings along its own set of typical poten-
tial tool errors, which can be consolidated (see Fig. 4) and then transformed to tool 
failures. 

3.4 Artifact-Based Strategy for Potential Tool Failure determination 

The artifact-based strategy identifies potential tool errors by decomposing the struc-
ture of the artifacts and looking for things that may break or get flawed. To do this 
systematically we can employ the guide word confrontation technique known from 
the HAZOP analysis.  

In this technique one creates a matrix where the columns are labeled with the 
things that may be faulty, that is the artifacts or their parts/properties, and the lines are 
labeled with guide words that describe certain kinds of faults, e.g. “Too many”, “Too 
few” or “Wrong” (correct amount, but wrong content).  

For every guide word - artifact pair one starts thinking if this combination is mea-
ningful and if so what typical potential tool failures might be associated with this 
combination. The resulting potential tool failures are then written into the correspond-
ing cell of the matrix (see Fig. 5).  

 

Fig. 5. Guide word – artifact confrontation 



324 M. Wildmoser, J. Philipps, and O. Slotosch 

 

Sometimes the potential tool failures that come out of such an analysis are too 
coarse. A way out is often to further decompose the artifacts by their structure or 
some other properties and then to confront each part/property with the guide words 
again.  

In our case we can decompose the artifact “Archive” into the parts “File Content” 
and “File Properties”. By doing this we do not end up with the potential tool failure 
“File Corrupted”, but with two finer potential tool failures “File Content Corrupted” 
and “File Properties Corrupted”, which can now be detected by different measures, 
e.g. “Diff File Trees” and “Compare ls -l” (see Fig. 2). 

3.5 Do These Strategies Achieve the Goals? 

Above we have stated comprehensiveness, uniformity, adequate error abstractions 
and scalability as  goals for potential tool failure determination. As every tool failure 
that is of interest must have a cause inside the tool and an effect on some artifact out-
side the tool, both strategies can principally identify every potential tool failure. 
Hence, both strategies are comprehensive.  

Since both strategies use systematic confrontation techniques (standard function to 
use-cases, guide word to artifact) they can also be regarded as uniform. 

According to our practical experience the abstractions of the identified potential 
tool failures are often inadequate in both strategies. Sometimes the descriptions are 
too coarse, e.g. “File Fault”, and one cannot assign an appropriate detection or pre-
vention measure. Sometimes the descriptions are unnecessarily detailed and one ends 
up with many slightly different tool failure descriptions that all  can be handled by 
the same detection or prevention measure. In our tool chain example the function-
based strategy in practice tends to give us many versions of the failure “File Content 
Corrupted” depending on the function that has failed, e.g. “File Content Corrupted 
due to false reading”. In the end it does not matter if the corruption happens while 
reading, transforming, or writing files as all these corruptions can be detected by the 
same check (Diff File Trees).  

Nevertheless there is a way to deal with inadequate abstractions. If appropriate 
measures for detection or prevention are in sight, but the current failure descriptions 
are too coarse for them one can refine the decomposition of functions or artifacts and 
re-apply the  identification strategy for potential tool failures.  

If the tool failure descriptions are too detailed one can subsume a multitude of de-
tailed descriptions with one more abstract tool failure description. If we include the 
decomposition refinement and the failure consolidation as a post processing step for 
both strategies, we can achieve the goal of having failure descriptions with an ade-
quate level of abstraction. 

What about scalability? In theory both strategies should scale well for large tool 
chains as they only analyze isolated pieces of a tool chain, one tool/use-case or one 
artifact at a time. In practice we observed the function-based strategy to cause signifi-
cantly more effort. One reason was tool error consolidation. We typically had to  
assign many standard functions to use cases and ended up with large sets of similar 
potential errors that had to be subsumed. A second reason was the difficulty to  
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Second, the TCA computes the TD for a use case by taking the worst TD for any 
potential failure identified for this use case. Third, by combining the TD for a use case 
with the TI of this use case according to the ISO 26262 table the TCA derives a TCL 
for this use case. Finally, the TCL of a tool is the worst TCL for any use case.  

 

Fig. 7. Inputs and outputs of the TCS 

The TCA also offers lots of plausibility checks for the tool chain and confidence 
model. For example if an detection measure from Tool B is assigned to a potential 
failure of tool A then there must be a data flow in terms of input/output artifacts from 
tool A to tool B, otherwise the assignment of this detection measure is invalid. 

The TCA can also generate a MS Word report, which contains detailed tables and 
figures for each identified potential tool failure, such that the computed TCL becomes 
plausible, comprehensible and checkable by review. The structure of this word report 
is designed such that it can be directly used as a part for the tool criteria evaluation 
report required by ISO 26262. 

5 Conclusion 

Tool evaluation is a critical step that comes before tool qualification. Besides deter-
mining the TCL the tool evaluation often identifies ways to rearrange or extend the 
existing work flow such that tool qualification becomes obsolete. 

We have applied both the function-based and the artifact-based  identification 
strategies for potential tool failures in a large scale industrial project using the TCA. 

Our experience is that the function-based strategy tends to yield failure descrip-
tions that are too detailed or overlapping. While having very detailed tool failure de-
scriptions is useful for tool qualification, it is unnecessary for tool evaluation, which 
is only concerned with TCL determination. We experienced the artifact-based strategy 
to produce failure descriptions with more adequate levels of abstractions right away. 
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In contrast to a tools internals the structure of artifacts is often known and allows to 
refine failure descriptions on demand.  

Our experience with the tool TCA is that it greatly helps to improve the quality of 
the obtained evaluation report. In particular the support it offers in form of plausibility 
checks, review assistance and refactoring helps to iteratively develop a comprehen-
sive and consistent model of the tool chain. 

However, both the strategies and the tool have potential for further research and 
improvements. For the strategies further experience is required, e.g. measuring rela-
tive completeness and the reproducibility of results by letting multiple people with 
different backgrounds apply the strategies.  

Also the TCA could be improved, e.g. by establishing reusable catalogues for stan-
dard functions, patterns for functional decompositions for various kinds of tools or 
appropriate structural decompositions for various kinds of artifacts, e.g. source code 
files or object code files. Nevertheless the current TCA forms a good platform for 
analyzing tool chains and confidence models and to try out various approaches. 
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research grant 1IS10001A. 
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Abstract. Open Integrated Architectures like AUTOSAR or IMA en-
able a flexible deployment, which can potentially help to reduce the
number of computer platforms in a distributed embedded system, and
therefore reduce weight, energy consumption and costs. Finding a bene-
ficial deployment is, however, a complicated, multi-criteria optimization
problem. One criterion that requires exceptionally careful examination
is safety, since an adverse deployment can compromise system safety and
inflict significant costs. In this paper we present a technique that assists
the developer in optimizing a deployment from the safety perspective.
The technique consists of two metrics to evaluate the safety-related costs
of a deployment that have been tested and evaluated in an industrial con-
text using a genetic algorithm. System developers can use these metrics
to evaluate and optimize a specific deployment with respect to safety.

Keywords: safety, deployment optimization, distributed embedded sys-
tems, integrated architectures, IMA, AUTOSAR.

1 Introduction

Architectures, like AUTOSAR[1] in the automotive domain, and IMA in the avi-
ation domain (civil: ARINC 653[2], military: Def Stan 00-74[12] are often called
integrated and open. In contrast to the term “federated”, the term “integrated”
refers to the architectures’ characteristic of allowingmultiple applications to share
computational resources and to collaborate via shared communication networks.
As a consequence, the developer can reduce the number of computer platforms,
and thus reduce weight, energy consumption and costs. The term “open” refers
to the fact that the architectures have a public application programming inter-
face (API), standardizing the way applications interface with the platform’s mid-
dleware to access the platform’s shared resources. As a consequence, applications
and platforms are portable, which allows exchanging computer platforms to fight
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hardware obsolescence, adding new applications to upgrade a system’s function-
ality or deploying the applications into the system’s computer infrastructure in a
beneficial way.

Finding a beneficial deployment, however, is a challenging task. The developer
has to consider various criteria like response time, bus load, maintainability, or
safety, while at the same time being confronted with a large solution space.
Especially the criterion of safety requires careful consideration. A deployment
that is adverse regarding safety can invalidate safety concepts and increase the
criticality classification of software-components, resulting in additional costs.

Therefore, we present a technique to support the developer in optimizing a
deployment with respect to safety-related costs. The technique is based on two
metrics that are combined and subsequently optimized using a genetic algorithm
(GA). Both the metrics as well as the technique itself were evaluated in an
industrial context showing that the choice of metrics and the projection to costs
are applicable and expressive.

This paper is organized as follows. Chapter 2 contains an overview of the re-
lated work in the field of deployment optimization. Chapter 3 provides a detailed
description of the problem addressed by our approach and introduces an exam-
ple. We present the deployment evaluation in chapter 4, and the deployment
optimization with the GA in chapter 5. We conclude the paper and present our
plans for future work in chapter 6.

2 Related Work

Deployment optimization is an active field of research, especially since object
orientation and standards like the Common Object Request Broker Architecture
(CORBA) have been providing deployment flexibility. In this context, the Object
Management Group (OMG) standardized a meta-model to specify deployment
characteristics [6], upon which our meta-model (see chapter 3) is loosely based.

For these systems, which are typically non-safety-critical, deployment opti-
mization considers criteria like effective platform utilization, schedulability, bus
traffic load or other resource constraints [8][3]. All these aspects are important
for safety critical embedded system as well, but safety criticality adds another
set of relevant criteria.

The approach presented in [4] combines the optimization of non-safety-specific
criteria with the optimization of system reliability. To do so, the authors evaluate
failure rates of nodes and communication links that are involved in the imple-
mentation of a system service. Redundancy is not regarded. On the contrary, [7]
focuses on the efficient use of redundancy, as the proposed technique allows for
a design space exploration to find an optimal redundancy/cost trade-off.

Our optimization metrics do not regard fixed failure rates of communication
links or platforms. We approached the problem from a different angle since we
developed our technique for the early concept phase of system development. At
this phase, we assume that every component can be developed as reliable as
required, at the expense of higher costs.
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3 Detailed Problem Description

The OMG defines deployment in [6] as a five step process encompassing installa-
tion, configuration, planning, preparation and launch. Our technique addresses
the optimization of the mapping of applications into the platform topology, which
relates to the planning step in the OMG process. In order to narrow down our
scope to Open Integrated Architectures and safety, we tailored the deployment
problem. A meta-model capturing the resulting deployment problem is shown
in Fig. 1. The depicted model is described in the following paragraphs: Charac-
teristics specific to the architecture are described in section 3.1, safety specific
characteristics are described in section 3.2. Section 3.3 introduces an example.
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Fig. 1. Deployment meta model

3.1 Problem Characteristics Specific to Open Integrated
Architecture

Referring to RTCA/DO-297 [10], an application is defined as “software and/or
application-specific hardware with a defined set of interfaces that, when integrated
with a platform, performs a function”. Typical applications are, for example, the
autopilot in a plane or the cruise control in a car. On the other hand, platforms
are defined as a combination of software and hardware to “provide computational,
communication, and interface capabilities for hosting at least one application.
[. . .] Platforms by themselves do not provide any [. . .] functionality”.

In such a scenario, applications do not have to be deployed onto platforms
as a whole. Applications may consist of several individual application-software-
components (ASWC1), which can be deployed separately. Equally, there are
platforms that provide not only one indivisible deployment target, but several
individual compartments called partitions. A partition provides fault contain-
ment capabilities such that faults of an application in one partition cannot affect

1 If the name of the modelled element does not directly correspond to the name of the
respective model element, we denote the name of the model element in parenthesis.
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the platform’s capability to provide shared resources in such a way that there is
an interference with applications in other partitions.

Resulting from this refinement, we define deployment as the mapping of
ASWCs onto the partitions of the platforms. A second feature of a deployment
is the mapping of the logical signals exchanged by ASWCs onto the communi-
cation channels (ComChannel) connecting the platforms. Here, we differentiate
between channels that allow inter-platform communication and the local com-
munication channel that allows inter-partition communication.

From now on, we will refer to a tuple consisting of a platform topology and
an application network (ASWCNetwork) as a specific deployment problem. A
solution for a specific deployment problem is given by a set of mappings assigning
ASWCs to partitions (ASWCMapping) and signals to communication channels
(SignalMapping).

It is possible to describe a deployment on a more fine-grained level such that
the deployment specifies the application’s requirement on capabilities of specific
platform resources like I/O devices, non-volatile memory (NVRAM) or the as-
signment of signals to messages or ASWCs to operating system (OS) tasks [11].
Since our technique is meant to be used during early design-time when the plat-
form topology is defined, we are convinced that the chosen degree of detail is
appropriate to the available information.

3.2 Problem Characteristics Specific to Safety

The concept of safety integrity levels (SIL), or comparable concepts like develop-
ment assurance level (DAL) [9], is used in safety standards across most domains.
Integrity levels categorize hazards according to the level of risk they pose and
tailor the safety standards in such a way that the risk reduction provided by
the system is appropriate. The higher the integrity level, the stricter and more
numerous are the requirements made by the standard. As a consequence, the
integrity level significantly regulates the development costs of a system.

During system development, it is common to allocate integrity levels to com-
ponents, if a component has failures that may lead to a hazard. Simply tagging
a component with an integrity level can be regarded as a simplification, as it
abstracts from the specific failure leading to the hazard that has to be avoided
or controlled. Still, standards specify deployment rules that are based upon in-
tegrity levels, which is why we assign integrity levels (IntLevel) to ASWCs.

The same is true for signals. We assign integrity levels to signals, meaning
that there is at least one failure mode related to the transmission of the signal
(like corruption, delay, insertion, masquerading, etc.) that may lead to a hazard
that poses the corresponding level of risk.

As a prerequisite for our approach, we assume that there is an initial specifi-
cation of a functional network of applications, including an integrity level clas-
sification of each ASWC, identified by an early safety analysis. Furthermore, we
assume that the required integrity level of the platform solely results from the
integrity levels of the allocated ASWCs.
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3.3 Running Example

Fig. 2 shows the specific deployment problem that we will use as our running
example. It consists of two redundant channels with medium criticality, brought
together by a comparator component with a higher criticality. Furthermore, the
function network contains two uncritical, but complex components. The platform
topology consists of two platforms connected by a single communication channel.
Each platform comprises two partitions. The running example shown does not
describe a deployment yet.
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Fig. 2. The running example: ASWCs are characterized by three strings, from top to
bottom: name, criticality, complexity. Signals are characterized by name and criticality.

4 Deployment Evaluation

This chapter introduces two metrics to evaluate from the safety perspective, a
solution for a specific deployment problem. The metrics implement a cost func-
tion that is minimized by the optimization algorithm presented in chapter 5. In
particular, the metrics evaluate negative effects caused by two core characteris-
tics of integrated architectures. The cohesion metric is presented in section 4.1
and focuses on the aspect of shared computational resources, as the metric evalu-
ates the costs of interferences between ASWCs. The coupling metric is presented
in section 4.2 and evaluates the costs caused by safety mechanisms to protect
against communication failures. In addition to the quantitative evaluation with
the metrics, we allow for the specification of constraints to limit the deployment
solution space. These constraints are introduced in section 4.3. Finally, section
4.4 introduces a mechanism to parameterize the metrics and the transformation
of the costs functions and the constraints to a fitness function for the GA.

4.1 Cohesion Metric

A major disadvantage of integrated architectures is the lack of natural fault con-
tainment barriers. If an application fails in a federated architecture, the failure
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propagates to other applications via functional dependencies because different
applications are hosted on separated platforms. However, in an integrated archi-
tecture, failures of an application can affect the host platform, and from thereon,
affect other applications on the same platform, even if the concerned applications
share no functional dependencies. This effect is called interference.

If there is the possibility that a set of ASWCs interferes with each other, safety
standards typically demand that all ASWCs in the set are developed according
to the highest integrity level amongst all ASWCs in the set. This is done to
avoid that failures of lower criticality components, developed according to less
strict development requirements, cause higher criticality applications to fail and
therefore, indirectly cause hazards with a higher criticality.

In section 3.1 we already introduced the concept of partitioning. Partition-
ing separates the platform into virtual compartments and prevents interferences
across the border of partitions. Inside a partition, however, there is no freedom
from interference. As a consequence, ASWCs allocated to the same partition
must be developed according to the highest integrity level of all the ASWCS
allocated to the partition.

If this rule causes a rise of the original integrity level of an ASWC, the devel-
opment costs grow. The cohesion metric quantifies this effect, based on an esti-
mation of the resulting additional costs. To our experience, the costs for safety
critical development are not added to the regular development costs like a con-
stant, but rather affect the costs like a factor. Therefore, we define cfintLevel(x)
to be the cost factor for the development of an ASWC with integrity level x,
compared to the development of an identical but uncritical ASWC.

Let xorg be the original integrity level of an ASWC and xnew be the increased
integrity level of the ASWC caused by deployment. Then the cost factor differ-
ence dcf is calculated as:

dcf(xorg, xnew) = cfintLevel(xnew)− cfintLevel(xorg) (1)

To evaluate the impact of the cost factor difference we have to estimate the
development costs of the affected component. To this end, we define the com-
plexity of an ASWC as a qualitative scale, and cfcompLevel(y) as the cost factor
for complexity level y. The complexity categorization of an ASWC is based on
expert judgement.

If we let iL(aswc) be the integrity level, and cL(aswc) be the complexity level
of ASWC aswc, the cost difference dc for upgrading the criticality of aswc to
level xnew is defined as:

dc(aswc, xnew) = dcf(iL(aswc), xnew) ∗ cfcompLevel(cL(aswc)) (2)

Finally, the cohesion metric results from summing up the cost differences for all
applications in all partitions. Let P be the set of all partitions of the platform
topology and maxintLevel(part) be the maximum integrity level amongst the
applications in part. Then, cohesion is calculated as:

coh(P ) =
∑

part∈P

∑
aswc∈part

dc(aswc,maxintLevel(part)) (3)
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Fig. 3 shows two solutions for deploying the running example side by side. The
left one shows a deployment yielding no cohesion costs, since there are only
equally critical ASWCs in each partition. The deployment shown on the right
yields a much worse cohesion, since both uncritical, complex components are
deployed to the same partition as the critical comparator component.
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Fig. 3. Two example deployments illustrating the cohesion metric. The deployment of
an ASWCs to a partition is indicated by equal fill color and pattern of the respective
shapes. The deployment of signals is not indicated.

4.2 Coupling Metric

In an integrated architecture, computer platforms are interconnected via commu-
nication buses. This allows the system developer to spread the components of an
application over multiple platforms and to integrate applications to provide new
or improved functionalities. Nevertheless, the resulting information exchange is
also a source of failure.

In a safety critical system, these communication failures can potentially cause
hazards, which is why protection mechanisms are necessary in order to detect
and control them. Typical protection mechanisms include sending redundant
information to detect corruptions, message counters to detect lost messages,
or deadline monitoring to detect delayed signals. These mechanisms cause bus
workload, use computational resources and may also increase end-to-end delay.
Furthermore, communication protection mechanisms typically detect, but do
not prevent failures. The necessary failure reaction often lowers the utility or
availability of the system. The coupling metric evaluates the costs of safety
critical communication.

In section 3.2 we abstracted from specific communication failure modes, and
classified each signal by assigning to them an integrity level. With increasing
risk, standards typically demand increasingly rigorous protection mechanisms.
To achieve a high diagnostic coverage, for example, the ISO 26262 recommends
complete bus redundancy, whereas multiple redundant bits optimally allow for
medium diagnostic coverage. Therefore, we evaluate the costs for protecting a
signal as a function cfintLevel(x) of the signal’s integrity level x.
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The costs for protecting signals from communication failures do not solely
depend on integrity levels. They also depend on the communication channel
the signal is transmitted on. This is because some types of channels already
come with protection mechanisms or have a design that makes certain failures
less likely. In this paper we only differentiate between intra-platform communi-
cation, in case the collaborating ASWCs are located in different partitions of
the same platform, and inter-platform communication in case they are located
on different platforms. Channel type specific costs can be differentiated further
by adding more channel types to the meta-model and extending the function
cfchannelType(cT ), which yields the cost factor of a channel type cT .

If we let s be the evaluated signal, cT (s) be the type of the communication
channel that s is assigned to, and iL(s) be the integrity level of s. Then, the cost
function for protecting the communication of s is defined as:

cc(s) = cfchannelType(cT (s)) ∗ cfintLevel(iL(s)) (4)

If we let aswcNet be the set containing all applications and oS(aswc) be the
outgoing signals of the ASWC aswc. Then, coupling is defined as:

coup(aswcNet) =
∑

aswc∈aswcNet

∑
s∈oS(aswc)

cc(s) (5)

Fig. 4 shows two solutions for deploying the running example side by side. The
deployment shown on the left side yields low coupling costs, since only the signal
s 2.3 is deployed to a inter-platform channel. The deployment shown on the
right side, however, requires the inter-platform communication of five additional
signals, which results in much higher coupling costs.
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Fig. 4. Two example deployments illustrating the coupling metric. The deployment of
ASWCs is indicated as in Fig. 3. The deployment of a signal is indicated as follows:
Locally exchanged signals are shown with a dotted line. Signals deployed to the re-
spective intra-platform channel are shown with a dashed line. Signals deployed to the
inter-platform channel CH 1 are shown with a solid line.
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4.3 Constraints

This section introduces two constraints that allow the designer to restrict the
deployment solution space. Whereas the aspects evaluated in the previous two
sections have quantifiable effects on system development, solutions that violate
constraints are infeasible and will, therefore, be discarded.

The first constraint allows the designer to specify fixed mappings of an ASWC
to a platform or certain platform types. Restricting the mapping of an ASWC to
a specific platform is, for example, necessary if the ASWC is an I/O conditioning
component that must run on the platform that is hard-wired to the respective
sensor or actuator. Restricting the mapping of an ASWC to a platform type is
necessary if the ASWC requires specific resources that only this platform type
provides.

The second constraint is used to represents dissimilarity relations between
typically two or three ASWCs, which means that the corresponding ASWCs
have to be developed heterogeneously to avoid systematic common cause fail-
ures. This also means that the platforms the ASWCs are deployed to must not
have systematic common cause failures either. Consequently, the dissimilarity
constraint is violated if the type of the host platforms of at least two dissimilar
ASWCs is the same.

Most of the existing deployment evaluation approaches allow specifying the
above-mentioned, or comparable constraints. There are, however, many other
possible ways for restricting the deployment solution space. Every objective func-
tion can, for example, be used to implement a constraint if the user defines a
pass/fail criterion using a minimum or a maximum threshold (e.g. workload
>66%).

4.4 Metric Parametrization and Integration

If we assume to have three complexity levels, two kinds of communication channels
(inter and intra-platform channels) and the the common number of five criticality
levels (including the uncritical level) for ASWCs as well as for signals, we end up
with a sum of fifteen parameters to customize the cost functions. We have chosen
to leave these cost factors variable since exact acquisition of specific safety-related
costs is usually not available and different domains and organizations will most
probably reach different conclusions with regard to parametrization.

Since it is usually difficult for the developers to acquire the respective cost-
relations, we allow for an alternative way to parametrize the metrics: A deploy-
ment expert is confronted with an artificial but humanly manageable calibration
deployment problem. The deployment expert is allowed to change the parame-
ters, and after each change, the optimizer immediately calculates a deployment
solution and presents it to the expert. This cycle is repeated until the optimizer
comes to a solution that the expert expects.

The parameter set that produced the expected solution for the calibration
deployment problem can then be used for real world deployment problems.
Please note that the quality of the resulting parameters depend on the expert’s



Safety-Focused Deployment Optimization in Open Integrated Architectures 337

estimation and might not correlate with the real cost factors. To our experi-
ence, however, this process yields better parameters than a completely manual
parametrization.

If a parameter set is found, the cohesion and coupling cost functions can be
calculated. Since we want to use a GA to evaluate our objective functions, we
have to transform the cost functions into a fitness function. To that end we
define a function to pessimistically estimate the worst case costs for a specific
deployment problem and subtracted the cost functions to get a non-negative
fitness function.

Let sdp be a specific deployment problem. Then parts(sdp) yields all par-
titions of all platforms, and aswcs(sdp) yields all ASWCs in sdp. Further-
more, wce(sdp) is defined as the corresponding worst case cost estimation and
const(sdp) as a function that yields 1 if no constraint is violated and 0 if at least
one constraint is violated. Then, we define the fitness function as:

fit(sdp) = const(sdp) ∗ (wce(sdp)− coh(parts(sdp)) − coup(aswcs(sdp))) (6)

Using a number of exemplary architectures and corresponding deployments, we
conducted a qualitative analysis of the fitness function with practitioners in
the automotive domain. During the analysis, several iterations were necessary in
order to adapt the problem description and the metrics, such that we were able to
model the relevant aspects of the deployment and to evaluate them appropriately.
After a final evaluation of the technique, the metrics were identified as adequately
expressive and the expert estimations allowed for an applicable parametrization
of the metrics.

5 Deployment Optimization

In this section we present a deployment optimization algorithm based on the
introduced fitness function and a GA. As stated before, the focus of our work
lies on the presented metrics and not on the selection of this specific optimization
algorithm. We used a GA to test and evaluate our metrics, because they were
integrated in a larger scale optimization running a GA as well. Other techniques
like linear programming, however, are also suitable for deployment optimization.

A GA is a stochastic search algorithm using techniques adopted from natural
evolution to find near optimal solutions for complex optimization problems[5].
The optimization process starts with a number of typically randomized solutions,
the so-called initial population. After initialization, each member of the popula-
tion is evaluated for its fitness, and then a new population is reproduced from
the old population using techniques like crossover and mutation. Members with
a higher fitness are more likely to participate in the reproduction than members
with a low fitness. After the new population is generated, it is evaluated for its
fitness which is followed by another reproduction of the next new population.
This optimization loop typically terminates after a fixed number of cycles or
when one individual reached a sufficient predefined fitness.
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To be able to use standard algorithms like crossover and mutation, solutions
of a specific problem have to be represented by so called chromosomes. A chro-
mosome is divided into several genes, each gene representing a distinct part of
a potential solution. In our case, the intuitive chromosome for a specific de-
ployment problem with k ASWCs and n signals would be an array of k genes
representing ASWC mappings, concatenated with n genes representing signal
mappings.

Nevertheless, we decided to include only the ASWC mappings into the chro-
mosome and let the GA optimize only the ASWC mappings. This is because
the signal mapping highly depends on the ASWC mapping and, we are able to
calculate the optimal signal mapping directly when the ASWC mapping is de-
termined. For a specific deployment problem with k ASWCs and m partitions,
our chromosome therefore consists of the genes gj ∈ {1, . . . ,m} , j ∈ {1, . . . , k}.
Each of the k genes is represented by an integer between 1 and m, where ga = b
denotes that ASWC a is assigned to partition b. This results in a slightly adapted
version of the aforementioned GA optimization loop, since we have to add the
signal mappings to the ASWC mappings generated by the GA for our fitness
function to work. The resulting loop consists of three steps: (1) calculate the
fitness for each individual, (2) reproduce a new set of ASWC mappings, (3) cal-
culate optimal signal mappings for each individual. The optimization stops if
the fitness improvement within the last 30 generations was below 5%.

The optimal signal mapping can be determined in a straight forward fashion,
since the costs for individual signal mappings do not influence each other. First,
we check the deployment of the receiver and sender ASWC of each signal. If
both are in the same partition, no channel is needed, and if both are on the
same platform, we deploy the signal to the local channel. If both are hosted on
different platforms, we search for all available channels connecting the respective
platforms. In case there is no such channel, we flag the ASWCmapping as invalid.
In case there is more than one channel, we search for the channel that yields the
lowest costs and deploy the signal accordingly.

Optimizing the running example presented in Fig. 2, the GA converged in
average within 2.3 seconds. Optimizing a real-world example based on a real-
world system consisting of 27 ASWCs, 51 signals, 13 platforms and 2 channels,
the GA terminated in average within 18.5 seconds. All measurements were taken
on a commercially available mobile CPU running with 2.40 GHz. The GA is
implemented using the Java Genetic Algorithms Package (JGAP) and a Java-
based implementation of our fitness function.

6 Conclusion and Future Work

As open integrated architectures are gaining more and more ground, developers
of safety-critical embedded systems are confronted with the possibility to flexibly
deploy their component-based applications. Therefore, we presented a technique
that assists the developer in finding an optimal deployment with respect to
safety-related costs. We first introduced a meta-model tailored to the specifics of
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safety-critical open integrated architectures, that allows a developer to specify
deployment scenarios. Based on this model, we presented two cost functions and
a set of constraints to evaluate solution candidates. Finally, we showed how to
use the evaluation algorithms together with a genetic algorithm to calculate an
optimized deployment solution.

In the future, we plan to extend the functionality of our evaluation algorithm
to include aspects like communication gateways. Furthermore, we are working
on the integration of our current work with the approach presented in [13]. This
approach allows for a contract-based specification of safety-related dependencies
between applications and platform in an integrated architecture, which enables
a more detailed, failure-mode specific deployment evaluation.
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Abstract. Modern safety standards designed to ensure safety in em-
bedded system products often take a descriptive approach, focusing on
describing appropriate requirements on management, processes, methods
and environments during development. While the qualification of soft-
ware tools has been included in several such standards, how to handle the
safety implications of tools integrated into tool chains has been largely
ignored. This problem is aggravated by an increase both in automation
of tool integration and the size of development environments.

In this paper we define nine safety goals for tool chains and suggest
a qualification method that takes a systems approach on certifying soft-
ware tools as parts of tool chains. With this method, software tools are
developed and pre-qualified under the assumption that certain proper-
ties will be supported by the development environment they are to be
deployed in. The proposed method is intended to (1) achieve a stronger
focus on the relevant parts of tool chains in regard to safety and (2) sep-
arate the extra effort these parts imply from the effort already stipulated
by safety standards.

Keywords: Certification, Safety, Tool Integration.

1 Introduction

The development of embedded systems is a multi-disciplinary effort, undertaken
by organizations working with software tools provided by external suppliers.
These tools are often Commercial Of The Shelf products, i.e. generic software
programs designed to function on as many operating systems as possible, built to
support a multitude of different use cases, etc. This generalization has its cost in
relation to safety, since it makes it harder to ensure that tools operate flawlessly
when deployed in a specific context. There is a risk that software tools introduce
errors in the development artifacts during the development process. These errors
may then lead to hazards1 in the end product. This has prompted the introduc-
tion of guidelines on the qualification of software tools in several safety standards
[1]. Unfortunately the guidelines focus on qualifying tools in isolation, leaving the
importance of the interaction between tools largely ignored. This omission has

1 A hazard can be defined as a system state or set of conditions that, together with a
particular set of worst-case environmental conditions, will lead to an accident.
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been of less importance in the past, since related safety issues could then be han-
dled by restrictions on the processes used by the operators2 manually handling
these interactions. However, modern development environments are introducing
an increased support for automated tool integration, decreasing the possibility
for operators to monitor and act on safety issues due to tool integration.

In this paper we present nine safety goals and propose a method for qualify-
ing software tools as parts of tool chains, which together highlight the hitherto
obscured safety issues caused by tool integration and allow for being more ex-
act when identifying software in need of qualification during certification. The
safety goals and method build upon systems thinking [2] to approach a modern
development environment as a whole, i.e. they do not analyze parts of develop-
ment environments in isolation (which would risk failing to take the relationships
between the parts into account).

In Section 2 we present the relevant State of the Art to orient the reader within
the field of software tool qualification. In Section 3 we describe the domain of
tool integration and the possibilities to take a systems approach to allow for the
qualification of software tools as parts of tool chains. This is followed in Section
4 by a summary of a technical report in which we explored the relationship
between tool integration and safety through a detailed case study. The results
from this report, after being put into a system context in Section 4 through a
mapping into safety goals, allow us to propose a method for qualifying software
tools as parts of tool chains in Section 5. Conclusions are found in Section 6.

2 State of the Art

Several modern safety standards such as IEC 61508:2010 [3] (and domain adap-
tations of this standard such as IEC 61511:2003 [4], ISO 26262:2011 [5] and
EN 50128:2001 [6]) and DO-178C [7] increasingly deal with the issue of software
tool qualification (noticeable both when comparing between standards and when
comparing between different versions of the same standard). This has lead to a
large effort by the scientific community on analyzing tools, categorizing tools,
discussing how to certify tools, etc. ([8] gives examples related to DO-178B).
Much of the effort seems to be focused on finding a good combination of tools
and then enabling them to communicate in a reliable way, while the safety impli-
cations of the tool integration is not explicitly discussed (see [9] for an example).

This is not surprising, since either the safety standards themselves or the dis-
cussion in relation to them try to limit qualification efforts to avoid software
associated primarily with tool integration (see Subsection 3.1 for a detailed dis-
cussion on this subject). This means that there is a limited number of approaches
on how to benefit from the fact that tools are deployed in tool chains. In fact,
we could only identify one such approach, which suggests the use of reference

2 This text uses the word operators in the generic sense, i.e. to indicate anyone who
at some point of time is involved in the day-to-day matters of a development effort
(such as engineers, tool chain developers, managers, etc.).
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tool chains3 [1]. There has been little effort to analyze the implications on safety
due to tool integration, leaving methods and metrics for evaluating different
approaches to tool integration for qualification purposes largely unknown.

3 Tool Integration and Software Tool Qualification

To develop an embedded system there is typically a need for a multitude of engi-
neering tools, i.e. tools that provide functionality to fulfill one or more activities
without which the end product cannot be cost-efficiently developed. Examples
of engineering tools include requirements tools, design tools and test tools.

Each engineering tool executes in the context of a development environment,
defined as the integrated set of all other tools and any supporting software used
during development. An important aspect of a development environment is that
the development processes it supports will define orderings of the engineering
tools it contains, i.e. tool chains, which the development of a product will tran-
sit through. Tool integration can be defined as what supports the development
process in correctly moving from one engineering tool to another in a tool chain.
Examples of tool integration include data transformation tools, scripts that react
to the actions of a user and process engines. When discussing tool chains, tool
integration software is usually implicitly included as something needed “behind-
the-scenes” to enable the transition between engineering tools.

3.1 Qualification of Software Tools

There are a number of classification schemes for safety standards, although stan-
dards are not always possible to strictly assign to one category. For the discussion
in this paper we differ between two types of safety standards, those that take a
primarily prescriptive approach and those that take a primarily descriptive ap-
proach on how to enforce safety. By prescriptive standards we refer to those that
focus on giving an exhaustive list of product features that a safety-critical prod-
uct should exhibit (for instance CS-VLR:2008 [10]). By descriptive standards we
refer to those that instead focus on defining requirements on appropriate environ-
ments, methods and processes to develop safety-critical products (for instance
ISO 26262:2011, EN 50128:2001 and DO-178C).

Due to the fact that malfunctions in tools during development can lead to the
introduction of hazards in the end product, some of the descriptive standards
contain guidelines on qualification of software tools. For this reason, we focus in
this paper on the latter set of standards, where assurance is partly provided by
an evaluation on how the product was developed. For certification according to
the former set of standards the discussion in this paper is only of reference value,
since assurance according to these standards is typically provided by inspection
or a means detailed in the standard itself.
3 A reference tool chain is a pre-qualified set of tools and an associated workflow,

which only requires a limited qualification effort in regard to the changes made
during deployment.
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Tool qualification guidelines can take different forms, such as requiring tools to
be suitable and of a certain quality [6], or requiring the development of relevant
tools to fulfill the same objectives as the development of the products handled
by the standard itself [7], etc. The many different forms are not surprising, since
the standards state different objectives for qualifying tools. Nevertheless, from
such standards as ISO 26262:2011 and DO-178C one can deduce generic safety
goals for software tool qualification:

– No tool shall introduce errors in development artifacts that may lead to
hazards in the end product.4

– No tool shall fail to detect errors in development artifacts it is designed to
analyze or monitor that may lead to hazards in the end product.5

In practice one can discern between two approaches to tool integration in relation
to these safety goals.

– The approach that allows a stricter limitation of the qualification effort, ex-
emplified by for instance DO-178C. In DO-178C the objective of the qualifi-
cation effort is only to ensure that tools provide confidence at least equivalent
to that of relevant process(es) they eliminate, reduce or automate [7].

– The approach that strives towards the same generic applicability, exemplified
by ISO 26262:2011. One could interpret this standard to indicate that almost
everything in the development environment has to be qualified [11] (including
all tool integration mechanisms6).

Both of these approaches are associated with practical problems.
In the first approach one needs to draw a line between tools that need to be

qualified and other parts of the development environment that only warrant at-
tention in an indirect fashion. In traditional development environments this was
acceptable, since they consisted of separate tools between which users handled
the transition of the development manually. This meant that the control of pro-
cesses and methods could ensure safety to a high degree. Modern development
environments can consist of several hundreds of tools [11] (albeit the number
of engineering tools is probably far less). Hazards can, in such a development
environment, be introduced into the end product from such diverse sources as
contradicting data transformations between artifacts at different development
phases, scripts causing tools to be executed in the wrong order, the wrong ver-
sion of data being handed over to the next process activity, etc. These sources
can be difficult to identify when the focus of a qualification effort is primar-
ily focused on separate tools, since they are not necessarily directly associated
4 The introduction of errors in development artifacts can lead to hazards in a direct

fashion (i.e. if the artifact is used directly, like the output from a compiler) or in an
indirect fashion (i.e. if the artifact is used indirectly, like the output of a high-level
design tool).

5 Tools can be assigned to handle the output of other tools or include functionality to
verify its own output.

6 A tool integration mechanism is a tool integration software (or a part of it) that
provides a distinct integration functionality.
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with any of the actions of a particular tool (if the output of a certain tool is
later transformed, that action does not necessarily have to be associated with
the tool itself during qualification). Furthermore, the control of these sources
through processes and methods is aggravated by the difficulty users usually have
with comprehending automation [12]. This leads to the problem that as devel-
opment environments scale up and become more integrated, the first approach
becomes less sufficient for ensuring safety.

In the second approach the qualification effort becomes tremendous in a mod-
ern development environment [11]. If one keeps to this approach the likely outcome
is sweeping generalizations of the danger posed by most parts of the development
environments at hand. This leads to the problem that as development environ-
ments scale up and become more integrated, the second approach also becomes
less sufficient for ensuring safety.

The reason for these mutually exclusive approaches sharing the same practical
problem is that they stem from the miscomprehension that the increased integra-
tion of software tools through automation is nothing more than the introduction
of more software. To overcome this miscomprehension we need a third approach
which analyzes the result of the increased integration of tools as a whole (i.e. as
highly integrated tool chains) and not simply as a collection of separate parts.
We need to take a systems approach to tool integration.

3.2 A System Approach to Tool Integration

To take a systems approach to tool integration we have defined a hierarchy of
levels of organization7, which reflects the state of a likely development effort.
In such a hierarchy, an upper level is more complex than the one below and
characterized by having emergent properties8. These properties are given by the
relationships of the components at the lower levels, which in turn are controlled
by the upper levels through the constraints they impose. Our hierarchy is illus-
trated by the conceptual illustration of Figure 1.

– The top level of our hierarchy consists of the management of the development
effort. This management level imposes constraints on the next level, the
operator level, by for instance establishing a safety culture.

7 We recommend [2] for an overview of systems theory, [12] for how systems theory
relates to safety and [13] as an introduction to hierarchy theory.

8 In systems theory an emergent property at one level of organization cannot be pre-
dicted even by a thorough understanding of the parts of lower levels. Such a property
is meaningless at lower levels, i.e. it is irreducible. The opposite are composable prop-
erties, which can be shown to originate from one or several parts clearly discernible
at lower levels. Checkland uses the genetic coding of DNA as an example of an emer-
gent property [2], since it cannot be explained at the level of the bases (i.e. at the
chemistry level any arrangement of nucleobases is allowed, yet not all are meaningful
at the higher level of biology). A related composable property is the inability of hu-
mans to cope with too much ultraviolet light, since this can be directly attributed to
the way two adjacent thymine or cytosine nucleobases may form pyrimidine dimers
(which cause skin cancer).
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Fig. 1. A hierarchy of levels of organization for development efforts

– The operator level consists of the separate operators. It imposes constraints
on the next level, the tool chain level, through for instance the processes
actually used during development.

– The tool chain level consists of the tool chains used during development. It
imposes constraints on the next level, the tool level, by for instance specifying
the order of the engineering tools.

– The tool level consists of the tools and any supporting software used during
development (such as tool integration mechanisms). At the tool level safety
is ensured by software qualification, constrained by the requirements on this
activity by higher levels (as mentioned in Subsection 3.1).

In earlier publications we have searched for safety-related characteristics of tool
chains [14],[15], i.e. properties that both decrease the possibility of introducing
hazards into end products and are relevant for more than one part of a tool chain
(i.e. more than an individual tool). In the next section we put these characteris-
tics into the context of certification and then continue with proposing a method
for qualifying software tools as parts of tool chains in Section 5.

4 From Characteristics to Safety Goals

In [15] we performed a System-Theoretic Process Analysis (STPA) [12] of three
different versions of a tool chain used in an industrial case study for the de-
velopment of embedded, closed-loop control systems ([15] includes a detailed
account of a tool chain that exhibits the safety issues discussed below, an ac-
count which could not be included here due to space limitations). STPA defines
generic risks for inadequate control or enforcement of safety constraints that can
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lead to hazards. We first translated these generic risks into risks associated with
tool integration by use of a reference model for tool integration that takes tool
integration related to platform, control, data, presentation and process into ac-
count (the details of this reference model are given in [16]). The risks associated
with these aspects of tool integration were then further translated into program-
matic risks (i.e. risks associated with the specific tool chain we were analyz-
ing). Based on programmatic risks, STPA provides guidance on identifying their
causes through general casual factors defined for the various parts of a generic
control loop. We substituted this generic control loop for context-specific ones,
for instance one through which operators and tool integration mechanisms (the
controllers) can introduce hazards in the end product (the controlled process)
through development artifacts (the actuators), hazards which can be identified
through verification and validation activities (the sensors). Analysis of the sub-
sequently identified causes allowed us to define nine safety-related characteristics
of tool chains [15].

To put the characteristics in the context of certification we below map each
characteristic to a safety goal for which assurance could be required. Addition-
ally, we also prepare for the discussion on assurance in Section 5 by grouping
the safety goals into subcategories. First we divide all safety goals according
to whether they are fully composable or emergent [17]; secondly we divide the
fully composable safety goals according to whether they support manual tool
integration or automate it.

Examples of risks identified in [15] are provided below together with the safety
goals which will mitigate the causes of said risks. These risks are often critical
research areas in themselves, but to discuss them in detail are outside the scope
of this paper.

4.1 Fully Composable Safety Goals for Operator Support

The safety goals in this subsection are fully composable to subgoals at the tool
level and support manual tool integration (i.e. ensuring them will require an
effort to ensure relevant properties of distinct parts at the tool level and the
proper behavior of involved operators).

Traceability for Completeness and Consistency (TCC). Relevant parts of a
tool chain shall support the possibility to trace between artifacts to ensure that
those artifacts are consistent and complete in regard to each other. An associated
risk is the limitation of feedback on which parts of the development artifacts
correspond to parts of the end product where hazards have been introduced.

Well Defined Data Semantics (WDDS). Relevant parts of a tool chain shall
use unambiguous data semantics. An associated risk is inconsistencies in de-
velopment artifacts due to uncertainty on the part of operators regarding the
semantics of other engineering domains.

Possibility to Create Customized GUIs (PCCG). Relevant parts of a tool chain
shall support the creation of additional GUIs for tools, GUIs that are either sim-
plified or adapted to operators from a different engineering domain (for instance
a customized GUI for a requirement tool that simplifies the interaction for use
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by operators other than requirement engineers). An associated risk is the in-
troduction of errors in development artifacts due to unsafe experimentation by
non-expert operators.

Coherent Time Stamp Information (CTSI). Relevant parts of a tool chain
shall support common time stamps on development artifacts. An associated risk
is the use of incomplete versions of artifacts by operators who misunderstand
how recently they were created.

Process Notifications (PN). Relevant parts of a tool chain shall support event
notification to operators. An associated risk is the use of obsolete development
artifacts by operators unaware of the release of new versions.

4.2 Fully Composable Safety Goals for Automation

The safety goals of this subsection are also fully composable to subgoals at the
tool level, but their implementation will not involve operators (i.e. they only
require an effort to ensure relevant properties of distinct parts at the tool level).

Automated Transformations of Data (ATD). Relevant parts of a tool chain
shall support the automated transfer of data between tools. An associated risk
is the incorrect reproduction of artifacts by tired or untrained operators.

Possibility to Automate Tool Usage (PATU). Relevant parts of a tool chain
shall support the automation of tool usage. An associated risk is the introduction
of errors in development artifacts due to untrained operators.

4.3 Emergent Safety Goals

The safety goals in this subsection are emergent at the tool chain level. These
safety goals cannot be fully ensured through the properties of different parts at
the tool level, since they depend on the interaction of parts at that level.

Data Integrity (DI). A tool chain shall ensure that the data used reflects the
current state of the development. An associated risk is that obsolete or erroneous
versions of development artifacts lead to the incorrect reproduction of data. DI
can manifest itself locally (for instance when a file is corrupted by a file system
service or a database updates the wrong parameters), but also emerge from how
tools are used or interact with each other (for instance when a process engine
chooses the wrong version of a data artifact).

Data Mining (DM). A tool chain shall ensure that it is possible to (1) extract
all the data necessary to handle all safety goals correctly during development and
(2) present this data in a human-understandable form. An associated risk is that
operators are not aware that project deadlines are forcing the premature release
of artifacts and fail to take mitigating action. Which data needs to and can
be extracted emerge from the dynamic interaction between tools (for instance
through different sequences of service calls that determine what data can be
gathered and when).
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5 A Method for Qualifying Software Tools as Parts of
Tool Chains

The safety goals defined in Section 4 highlight the hitherto obscured safety issues
caused by tool integration, but they would be of limited value if they (1) could not
solve the problems with current software tool qualification approaches described
in Subsection 3.1 or (2) could not be combined with the qualification efforts
stipulated by modern safety standards. In this section we suggest a method for
dealing with each of the subcategories mentioned in Section 4 while taking both
of these issues into account. This means the safety goals detailed in Section 4
that are relevant to a particular part of a tool chain first need to be identified
and then associated with a limited part of the development environment (a part
that then needs to be qualified).

5.1 Fully Composable Safety Goals for Operator Support

Fully composable safety goals for operator support could be ensured by the
brute-force approach of analyzing each and every tool integration mechanism
that fulfills a related subgoal, but with similar disadvantages to those described
for the second approach in Subsection 3.1. To limit and guide the qualification
effort we take inspiration from the tool chain approach in [1] and the Safety
Element out of Context concept from [5] and suggest the following four steps:

1. Pre-qualification of engineering tools is performed by tool vendors based on
representative tool use cases and a relevant safety standard.

2. Pre-qualification at the tool chain level by tool vendors or certification agen-
cies is made possible by the deduction of requirements on which safety goals
need to be supported at which points of tool chains to avoid unacceptable
risks. This is (at least partially) based on the information defined in step
1 and one or several reference workflows. These requirements, the points in
the tool chains where they apply and mitigating efforts required (for instance
qualification means, qualification of tool integration mechanisms, guidelines
for processes and requirements for operator training) are documented and
included in reference tool chain descriptions. In effect, one is decomposing
the relevant safety goals at the tool chain level to the relevant subgoals at
the tool level.

3. Qualification of the tool chain identifies the differences between the assump-
tions of step 2 and the actual use cases, workflow and development environ-
ment used when deploying the tool chain.

4. Qualification at the tool level is based on the actual use cases, workflow and
development environment used when deploying the tool chain and performed
according to a relevant safety standard. Three issues could therefore require
further efforts at this step:
(a) An engineering tool has not been qualified by the tool vendor.
(b) The relevant safety standard differs between tool vendors and tool users

and requires additional efforts in regard to engineering tools if the vendor
and user are different (an example of such a standard is DO-178C).
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(c) The actual use cases, workflow or development environment are different
from those assumed during pre-qualification, which means that tools
and/or tool integration mechanisms will have to be (re)qualified by the
tool user.

These four steps allow qualification of a development environment to be dis-
tributed, but one can of course envision the tool user performing all these steps.
What is important is that these steps do not have the problems mentioned in the
introduction to this section. They both allow (1) a stronger focus on the relevant
parts of tool chains in regard to safety and (2) a clear separation of the engi-
neering tool qualification stipulated by safety standards (step 1, 4.a and 4.b are
consistent with safety standards such as ISO 26262:2011, IEC 61508:2010 and
DO-178C) and extra efforts to ensure safety goals relevant to tool integration.
They also have the additional benefits of allowing comparisons between different
setups for mitigating safety issues already after step 2 (giving an early indication
of the effort required) and favoring early planning in regard to the development
environment (helping to avoid fragmentation of the development environment
into several islands of automation [16]).

5.2 Fully Composable Safety Goals for Automation

Fully composable safety goals for automation can also be qualified according to
the steps described in Subsection 5.1. The difference is primarily the implications
on step 2. Fully composable safety goals for operator support will indicate what
parts of the development environment require qualification efforts, but as long
as an operator is still providing oversight these qualification efforts could focus
more on reliability. Efforts at the operator level could instead ensure that more
complicated risks are handled properly.

Automation, on the other hand, will require additional efforts to transfer
expert knowledge from tool chain users to tool chain developers. An example is
when ATD is supported to mitigate the lack of training of application designers,
but then requires tool chain developers to be trained to understand the domains
to a corresponding level of detail. One can argue that this will be more difficult
to achieve than simply assuring that the manual handling is correct, however,
the automation can be verified more formally through analysis and comparison.

5.3 Emergent Safety Goals

Safety related to the emergent safety goals at the tool chain level cannot be fully
ensured only by efforts at the tool level, because there will always remain some
uncertainty in regard to how to decompose these safety goals [17]. However,
if a safety goal is not fully composable, it may still be possible to isolate some
portion of the goal behavior that is partially composable [17]. We have focused on
the safety implications of modern, highly integrated development environments,
i.e. the way increased automation of tool integration hides what occurs to the
operators, rendering efforts (such as processes) at high levels of organization
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less effective. Based on this new problem, we below define relevant, partially
composable safety goals of the emergent safety goals. Another focus could define
more parts of the development environment as important to qualify for DI and
DM. Partially composable safety goals therefore have to be defined during step
2 of a qualification effort, based on any considerations specific to the domain of
the development effort.

Data Integrity. A tool chain shall ensure that development artifacts cannot
become corrupted or handled inappropriately without detection in automated,
unsupervised process activities. This safety goal can be partially decomposed
into the requirement for qualified tool integration mechanisms for verification
of version handling and avoidance of data corruption (for instance a qualified
version control system that can notify operators of such things as file corruption).

Data Mining. A tool chain shall ensure that data regarding safety-related
development artifacts that is not handled by operators directly is automatically
gathered, analyzed and presented to operators. This safety goal can be partially
decomposed into the requirement for qualified tool integration mechanisms for
data mining and analysis (for instance a qualified project dashboard).

6 Conclusions

The implications on safety due to tool integration are largely ignored, even
though it leads to practical problems for the approaches stipulated by modern
safety standards in regard to software qualification. Based on previously defined
safety-related characteristics of tool chains we are able to identify nine safety
goals for ensuring safety in regard to tool integration. Based on these safety
goals, we suggest a systems approach to qualification for dealing with software
tools as reusable entities deployed in the context of different tool chains.

This approach allows for a stronger focus on the relevant parts of tool chains
in regard to safety, solving the problems that current safety standards have with
either stipulating a too wide or a too narrow qualification effort in regard to tool
integration. The approach also provides a clear separation of the engineering tool
qualification stipulated by current safety standards and extra efforts to ensure
safety goals relevant to tool integration, allowing for combining the approach
with said standards.

Important issues in need of validation and elaboration in future publications
include quantifying the effects of the method on cost efficiency by distributing
the software qualification effort, allowing a stronger focus on software which
actually has implications for end product safety and a stronger focus on early
planning.
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Abstract. Software Product Line Engineering (SPLE) is a software de-
velopment paradigm that aims at reducing the development effort and
shorting time-to-market through systematic software reuse. While this
paradigm has been successfully applied for the development of embed-
ded systems in various domains, new challenges have emerged from the
development of safety critical systems that require certification against
a specific standard. Existing SPLE approaches do not explicitly consider
the various certification standards or levels that products should satisfy.
In this paper, we focus on several practical issues involved in the SPLE
process, establishing an infrastructure of a product line engineering for
certified products. A metamodel is proposed to capture the entities in-
volved in SPL certification and the relationships among them. ProLiCES,
which is a model-driven process for the development of SPLs, was mod-
ified to serve as an example of our approach, in the context of the UAV
(Unmanned Aerial Vehicle) domain.
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1 Introduction

The development of safety critical systems often requires certification under pre-
established standards, and this poses several challenges to software engineers:
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besides balancing costs, schedule and performance, it is necessary to produce
all the evidences to prove that required quality goals have been achieved during
the process. In this type of system, failures can cause catastrophic results that
would involve loosing lives or large amounts of money.

Software product line engineering (SPLE) has been successfully used in the
development of embedded systems, in particular safety critical systems [13,5,8].
A software product line (SPL) [17] explores commonalities within a family of
products by developing and maintaining a set of core assets. Our work is mainly
concerned with the avionics domain, more specifically avionics for Unmanned
Aerial Vehicles (UAV). For this domain we have developed a SPL [3] based on
our SPL approach named ProLiCES [4].

Although quality is a very important concern in the SPL development, avion-
ics certification has some peculiarities. The number of possible configurations of
different avionics for UAV products grows in such a way that certifying all of
them would be not feasible (or at least, very difficult). Besides, not all products
need the same certification level, as each product is for a different market seg-
ment with different usage context. The DO-178B [14] and its new release, the
DO-178C1, are the current standards adopted for certifying avionic systems in
several countries. They focus on single system certification and do not present
guidelines to certify SPLs.

Standards like the DO-178B normally do not dictate a process itself, but only
establish the objectives to be met to get the certification, listing activities to be
performed and expected evidence to show that the objectives were accomplished.
This makes possible the inclusion of certification activities in a SPL development
process such as ProLiCES [4], FAST [17], FORM [10], etc.

SPL development processes are customizable according to project needs. In
general, they are composed of phases or steps, where a set of activities are per-
formed by people playing certain roles, with input and output artefacts (e.g.
analysis and design models, code, testing artefacts, etc.). Some phases or activi-
ties can be optional depending on the specific project, so this is how customiza-
tion takes place. In the context of our current research, it is important to know
which activities/artefacts of the process are required to achieve a certain certifi-
cation level. We also want to avoid unnecessary activities for a low certification
level, e.g. the choice of the most adequate testing process for a certain certifica-
tion level. Moreover, certain optional or alternative features of the SPL might
affect software quality, leading to get certification easier (e.g., a master-slave,
dual controller may contribute to achieve certification). Thus, the knowledge
about mapping features to possible certification levels is also important.

The goal of this paper is to propose an infrastructure to adapt SPL develop-
ment processes considering certification, exemplified through a real world SPL
for UAVs. A metamodel is proposed to capture the entities involved in SPL cer-
tification and the relationships among them. This metamodel is the first step
towards the creation of a tool to support certifiable SPLs.

1 www.rtca.org

www.rtca.org
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The remainder of this paper is organized as follows. Section 2 presents re-
lated work concerning SPLs for UAVs and certification. Section 3 discusses how
SPL development should be conducted to ease certification and, based on this
discussion, it is proposed an infrastructure to support SPL development and
the associated metamodel. Section 4 illustrates how adaptations can be carried
out in a SPL development process, using ProLiCES [4] as an example. Finally,
section 5 presents our concluding remarks and future work.

2 Related Work

Several works regarding avionics systems certification have been published
[11,16,1]. Schoitsch et al. [15] present an integrated architecture for embedded
systems development that includes a complete test bench to ease validation and
verification (V&V) according to existing standards. It provides guidance for the
integration of external tools, for example to format input data for V&V tools
using model transformation. Abdul-Baki et al. [1] also use the avionics domain
to illustrate their approach to V&V, which comprises specification-based test-
ing, analysis tools and associated processes in the context of a system to avoid
collisions. This system is specified using a formal language, and the system gen-
erated is compliant with DO-178B. They are, however, mainly concerned with
single systems, i.e., a software component that is part of an aircraft system.

SPLs require a different approach to certification, as the complete validation of
SPLs requires a lot of effort. Indeed, validating all combinations of features that
could produce a particular SPL instance is often an impossible (or at least a very
difficult) task. Several approaches are beginning to emerge to support SPL certifi-
cation, as for example the work by Hutchesson andMcDermid [8,9], which aims at
the development of high-assurance SPLs based on model transformations. Model-
based transformations are applied to instantiate variabilitymodels of a large avion-
ics SPL, ensuring that the transformation does not introduce errors. The approach
can be useful during certification, as it is able to generate some evidences required
for certification. However, they still need integration and system testing.

We did not find related works where the focus is on associating certification
requirements to a SPL development process, which is the key idea of our ap-
proach. The closest we could find was the work proposed by Habli and Kelly [7],
where a notation was proposed to capture safety cases variations and tracing
these variations to an architectural model. This allows the explicit definition of
the possible behaviours of a derived product and how the safety case deals with
the variation. Nothing was mentioned about the process itself or the decisions
made to achieve particular certification levels or standards.

3 SPL Certification

3.1 Description of Our Case Study

The motivation for this work is originated from a real world problem regarding
a UAV SPL. A UAV is an aerial vehicle where no human operator is physically
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present in the aircraft and, thus, it flies autonomously or is controlled by a remote
pilot on the ground. UAVs are often thought of as part of an Unmanned Aircraft
System (UAS), where other elements such as the payload, ground control station
and communications links [6] are considered.

Tiriba [3] is a family of small, electric powered UAVs that were designed
for civilian applications, especially for agriculture, environment monitoring and
security. Examples of applications include the detection of crop diseases, to-
pographical surveys, traffic monitoring, urban planning and transmission line
inspection. Tiriba was initially designed as a single system, but the demand for
several slightly different versions motivated the development of its product line
assets based on a SPL process named ProLiCES [4].

Avionics software is mainly regulated by DO-178B [14] and its updated ver-
sion, DO-178C2. They were developed by the Radio Technical Commission for
Aeronautics (RTCA) and were adopted by many government entities to support
the certification process for airborne systems. The ANAC (National Agency for
Civil Aviation) in Brazil is also considering its adoption for the development and
use of UAVs, although previous certification is not required yet3. Therefore, this
work is being done in anticipation for the future release of these rules.

After the deployment of several members of the Tiriba family, we started a new
project, named Sarvant, involving a heavy and more complex UAV system. The
resulting software is estimated to be ten times bigger than Tiriba, as new features
have to be included to provide a more reliable aircraft with better performance
and safety. Both Sarvant and Tiriba products will need certification in the near
future.

3.2 SPL Development Processes and Certification

From the development process point of view, we face two major problems to
achieve certification: 1) standards such as DO-178B do not ask to follow a spe-
cific process, but define a set of activities with corresponding evidences that
they were performed properly. Thus, the organization should adapt its processes
in accordance with the standards; and 2) when a SPL is developed to leverage
software reuse, standards such as DO-178B do not provide any recommenda-
tion to certification agencies about how to certify reusable assets. Only concrete
products are considered for certification.

At the same time, organizations do not want to waste resources in activi-
ties/artefacts that are not required, or for parts of a system that do not need
high certification levels. As such, the relationships between SPL development
process activities/artefacts and the certification level to be achieved must be
captured and documented, as this knowledge can be highly valuable for future
developments. In the specific case of SPLs, as there are many variations of pos-
sible activities/artefacts depending on several factors such as context, design
decisions, etc., their use can be weighted according to the importance to achieve
the desired certification level.
2 http://www.rtca.org
3 http://www.anac.gov.br

http://www.rtca.org
http://www.anac.gov.br
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The key idea of our work is to identify the activities of the SPL development
process that have impact on the certification of products instantiated from the
SPL. The knowledge associated with the certification of products of a SPL for a
particular domain could be stored to support decision making when new products
are developed. Decisions can be associated either with activities or artefacts
to be produced during the instantiation process, e.g., a mandatory test report
accordingly with a specific standard, or with features that should or should
not be included in the product e.g., a flight termination controller based on
parachute deploying. Feature models [10] are an essential means of representing
SPL commonalities and variabilities. Features refer to abstractions that both
customers and developers understand, such as functional and non-functional
characteristics of the products. In this paper, we adopt the features classification
proposed by Lee and Kang [12], where a feature model is split in three models:
usage context, quality attribute and product (this last itself split into capabilities,
operating environment and domain technologies/implementation techniques).

In the following, we discuss several issues concerning certification in a SPL
for UAVs:

– I1 - Certification level of complex products: A product from the SPL
can be complex, so it could be split into smaller components, each of which
does not necessarily need the same certification level. For example, a UAV
can be equipped with several types of payloads, e.g., cameras, weapons or
first-aid kits. A fault in the component that controls the payload not always
leads to a dangerous situation. Therefore, it could require a lower certification
level than other components in the system.

– I2 - Usage context and the certification level:Usage of the product also
affects the certification level. For example, a UAV flying over crowded areas
certainly requires a higher certification level than a UAV used in agricultural
applications flying over a private farm. These different contexts could imply
different certification levels. Further, in some contexts the system must be
equipped with special sensors/equipment or specific algorithms to guarantee
a safe operation. More details about how feature modelling can be done
considering certification can be found elsewhere [2].

– I3 - Additional features and certification levels: Some features of the
SPL could be specially designed to help achieving a particular certification
level. For example, in UAVs, a quality feature like Data Integrity Checking
could be an optional feature in the feature model, but it must be selected
when higher certification levels need to be attained, being not an option for
the level.

– I4 - Features can contribute (positive/negatively) to obtain a par-
ticular certification level: Some features can facilitate certification, while
others can hinder or retard certification. For example, a Weather resistance
feature contributes to certification, but a Cost effective airframe may not.

– I5 - Features associated to design decisions can impact certifica-
tion: The alternative choice among domain technologies or implementation
techniques are provided specifically to enable higher certification levels. If
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alternative cheaper solutions exist, they can be used for parts of the product
that require lower certification levels, helping balance the product cost. For
example, the system architecture can have two alternative designs, with or
without redundancy to improve reliability and this decision impacts certifi-
cation.

– I6 - The development process should be adapted according to the
certification level: In issues I1 to I5, product features have impact on the
certification level. But, to achieve a certain level, the development process
must comply with pre-established standards. Thus, the development process
is also subject to changes according to the targeted certification level or
standard. Examples include: 1) requirements engineering activities can be
performed in different ways, with varying costs and time depending on the
documentation to be produced. For example, to attend DO-178B levels A
and B, it is required that high level requirements are compatible with the
target hardware, so an activity to verify this should be included in the pro-
cess. Alternatively, formal techniques could be used, but they would require
certified tools that can be quite expensive considering the available budget.
2) testing activities should be conducted using certified tools to guarantee its
effectiveness when high certification levels are targeted. Alternative verifica-
tion processes can be chosen, e.g., verifying the source code is different from
verifying the object code, because errors could be introduced by the compiler
[16]. So, when it is decided to perform the verification based on source code,
the compiler tool should also be certified. 3) model based checking techniques
should be employed to validate the design for certain levels, while for others
a conventional inspection is enough.

3.3 Infrastructure for SPL Processes Aiming at Certification

Based on the discussions provided in Section 3.2, we propose an infrastructure
to support SPL development processes and its mapping to certification activ-
ities. Figure 1 shows the several elements used to help aligning certification
with the SPL development process. A repository of SPL development processes
stores metadata about existing processes and how they are related to standards
during certification. For certain domains, it is possible that more than one stan-
dard is required by certification agencies. This mapping between processes and
standards is continually updated according to the feedback supplied by SPL de-
velopers and certification agencies, to incrementally build a knowledge base to
support decision making. SPL products can be divided into smaller products
(components in the figure). Since products are implemented by SPL assets and,
consequently, are associated to features, it is possible to establish a relationship
between features and certification levels. Additionaly, as SPL commonalities and
variabilities are indirectly mapped to activities/artefacts, it is also possible to
make different choices of activities/artefacts according to a specific project and
the targeted certification level/standard.

The metamodel shown in Figure 2 is a more refined version of our solution,
representing the entities involved in SPL development and how they can be
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Fig. 1. Illustration of the proposed solution

associated to certification levels. This metamodel will be used in a future work for
the development of a computational tool to support the development of certifiable
SPLs. The idea is to promote automatic use of meta-information regarding SPLs,
allowing recommendations during product development and cost calculations for
different stakeholders.

The most important entity in Figure 2 is the Development Process, which
represents any SPL development processes that an organization could adopt,
such as ProLiCES [4], FAST [17], FORM [10], etc. A process is composed by
Activities (which in turn can have sub-activities, sub-sub-activities, etc) that
produce Artefacts. We are particularly interested in artefacts related to VV&T
of assets produced for the SPL, but other artefacts could be added as well. An
activity can be Mandatory, Alternative (a choice is made between two or more
activities) or Optional.

A Standard used by certification agencies to certify products imposes Objec-
tives to be met and, in general, establishes several Levels, for example A to E
in DO-178B. Objectives are accomplished by performing process activities (this
is where these two parts of the metamodel are linked). The left hand side of the
metamodel represents the SPL feature model. A feature can also be categorized
according to its presence on final products, originating Mandatory, Optional,
and Alternative features. There are relationships among features, as for exam-
ple, a feature that requires the presence of another feature, or a feature that,
if included, excludes the presence of another feature. The model also allows the
mapping between features and certification levels, as stated in items I2 to I5 in
Section 3.2. Finally, the Product is modelled and linked to both: the Features
that it contains and to the Certification level that it received from the certifi-
cation agencies. As each product can be composed by several components, each
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Fig. 2. Metamodel to support certifiable SPL development processes

of which possibly requiring a different certification level, our metamodel can
represent components as sub-products.

4 Case Study - Process Adaptation

In this section, we show the adaptations that can be done in a general SPL devel-
opment process to allow its compatibility with our approach. Most SPL processes
are composed of two big phases: domain engineering, in which reusable assets for
a particular domain are specified and implemented, and application engineering,
where these assets are combined to create products. It is also very common to
have an activity during domain engineering where a feature model is produced
to capture commonalities and variabilities of the SPL. In this section, we ex-
emplify how to adapt such processes, using ProLiCES [4] as an example, which
is an approach to develop Product Lines for Safety-Critical Embedded Systems
proposed by our research group. Like most other SPL processes, ProLiCES also
has a two-path parallel life cycle, composed by domain and application engineer-
ing. The software engineer can choose what activity is done first, depending on
the context. A concrete product can be created first (application engineering),
and then the SPL is developed extractively or reactively (domain engineering)
based on one or more products. Alternatively, the SPL can be developed in a
proactive approach, i.e., a domain analysis is conducted to design the SPL based
on possible products to be created later.
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The following modifications were made in ProLiCES domain engineering phase
to make it compliant with our proposal:

– DE1 - to attend issue I1, during feature modelling, group features into sub-
groups (or components), such that each subgroup is highly cohesive and the
instantiation of its composing features derives a well defined part of a prod-
uct, for which we can assign a desirable certification level, e.g., the feature
abnormal flight termination controller encompassing the feature parachute
should have level A;

– DE2 - in accordance with issue I6, establish an initial set of mandatory
activities that will be required in the application engineering, independently
of the certification level to be obtained, e.g. economic feasibility analysis,
planning, etc. This set can be further changed according to the feedback
obtained during application engineering;

– DE3 - in accordance with issue I6, look at the components defined in step
DE1 and establish an initial set of activities and artefacts that are required
to obtain the certification level for each component, according to the certifi-
cation standard being used. DO-178B shows several tables with indications
of processes and corresponding objectives to be met that can be mapped
to the SPL development process. This mapping can also be further changed
according to the feedback obtained during application engineering (activities
and/or artefacts not considered important to certain levels of certification
can be considered important to other). Figure 3 illustrates this mapping;

– DE4 - to attend issues I2 to I5, consider giving weights to activities/artefacts
that could help to guarantee quality attributes. As some artefacts can be
completely or partially implemented depending on the certification level,
the check marks in Figure 3 could be replaced by weights according to the
importance of a particular activity/artefact to a specific certification level.
For example, a requirements document should be considered totally imple-
mented when rigorous templates are followed, or partially implemented when
less formal text documents are presented;

– DE5 - considering that the feature model contains different types of feature
(e.g. the classification mentioned in Section 3.2), analyse the relationships
(dependencies) between features and the targeted certification level for each
component, based on issues I2 to I5. A mapping table is produced, but is
not shown due to space restrictions.

We also have made adaptations in ProLiCES application engineering phase:

– AE1 - the mapping table created during steps DE2 to DE4 should be used
during the application engineering process. Mandatory activities that are
always executed, independently of the certification level, should be done in
the conventional way. For example, most requirements engineering activities
are always required, even though with less rigour in some cases.

– AE2 - determine the certification level for each product component (products
are instantiated from the feature model, so a pre-definition of components
can be done in domain engineering too).
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Fig. 3. Illustration of mapping between SPL process and certification levels

– AE3 - during feature selection, observe mapping tables created in step DE5,
which can help decision making. Features required to achieve the correspond-
ing certification level should be included. Features that work for or against
certain certification levels should be analysed to identify advantages and
drawbacks in the particular context.

– AE4 - throughout the development, only execute mandatory activities that
are required for the component with the maximum certification level among
all the product components. Optional activities are executed only when the
respective component certification level requires so. For example, if the sys-
tem requirements verification results are only needed for certification levels
A to C, then probably the requirements analysis could be isolated for each
component, so that this verification is only done for components with levels
A to C, while other components skip this activity.

The modifications suggested to ProLiCES can be easily adapted to other ex-
isting SPL development approaches. Since ProLiCES itself was based on exist-
ing approaches, the only preconditions to use the same modifications are: 1)
the SPL approach has phases that are equivalent to domain and application
engineering; 2) a feature model is produced during domain engineering and in-
stantiated in application engineering; and 3) the process has mandatory and
optional activities that can be customized for each particular project. Addi-
tionally, the modifications proposed are not exclusively related to the DO-178B
standard. They could be adapted to other standards required by specific domain
regulations.
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5 Conclusion

This paper presented an infrastructure to support SPL development in domains
where certification will be required. After identifying the activities of the SPL
development process that have potential to help the certification of instantiated
products, the software engineer can store this knowledge to support decision
making when new products are developed.

The main advantages of the approach are: 1) a knowledge base is incremen-
tally built to ease the customization of the development process, according to
specific certification needs of each project. Thus, there is less risk that impor-
tant information is lost during the process; 2) the certification process is more
straightforward, as the required activities established by pertinent standards are
performed and features related to safety are included in the product; and 3) the
approach helps balance the product cost, as only the activities and artefacts that
effectively contribute to the specific certification needs are performed.

At the time of this writing, an adapted version of ProLiCES is being used
in the development of the SARVant avionics, a distributed and redundant flight
control system composed by tens of processor boards. It is expected more than
200.000 lines of code to be automatically generated, split among several compo-
nents certified under DO-178B and deployed in one or more processor boards.
The validation of the approach, where we will try to collect evidences that it
eases certification, is also an ongoing work.
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Abstract. Socio-technical systems rely on technological artefacts as
well as human and professional practices in order to achieve organi-
sational safety. From an organisational viewpoint of analysis, different
safety barriers are often put in place in order to mitigate risks. The com-
plexity of such systems poses challenges to safety assessment approaches
that rely on simple, identifiable cause and effect links. Failure Mode
and Effects Analysis (FMEA), for instance, is an established technique
for the safety analysis of technical systems, but the assessment of the
severity of consequences is difficult in socio-technical settings like health-
care. This paper argues that such limitations need to be addressed by
combining diverse methodologies in order to assess vulnerabilities that
might affect complex socio-technical settings. The paper describes the
application of FMEA for the identification of vulnerabilities related to
communication and handover within an emergency care pathway. It re-
views and discusses the applicability of the Functional Resonance Analy-
sis Method (FRAM) as a complementary approach. Finally, a discussion
about different aspects of emerging technological risk argues that taking
into account socio-technical hazards could be useful in order to over-
come limitations of analytical approaches that tend to narrow the scope
of analysis.

Keywords: Failure Mode and Effects Analysis (FMEA), Functional
Resonance Analysis Method (FRAM), Healthcare.

1 Introduction

Since the publication of the Institute of Medicine report “To err is human” in
1999 [1], the safety of patients has received unprecedented attention. Researchers
and healthcare organisations have turned to high-risk industries [27] such as com-
mercial aviation for inspiration about appropriate theories and methods through
which patient safety could be improved. For example, learning from past expe-
rience through incident reporting systems and Root Cause Analysis are now
standard practices through-out the National Health Service (NHS) in the UK,
triggered by the influential Department of Health Report, “An organisation with
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a memory” [2]. The report led to the foundation of the National Patient Safety
Agency (NPSA) and the development of the National Reporting and Learning
System (NRLS), a national system to collect patient safety incidents and to share
relevant learning throughout the NHS. In addition to such reactive approaches,
healthcare policy makers have recognised the need for proactive assessments
of threats to patient safety. In particular, the use of Failure Mode and Effects
Analysis (FMEA) is now recommended widely in healthcare as an appropriate
tool for proactive safety analysis. For example, the Joint Commission in the US
— the organisation that accredits hospitals — requires from participating or-
ganisations evidence that they carry out at least one proactive assessment of a
high-risk process every year [3], FMEA being the approach recommended. The
US Department of Veterans Affairs (VA) has developed an FMEA version tai-
lored to healthcare, Health Care Failure Mode and Effects Analysis (HFMEA)
[4]. During the past few years FMEA has been used in healthcare to assess the
risks associated with, for example, organ procurement and transplantation [5],
intravenous drug infusions [6], and communication in emergency care [7].

As healthcare organisations are gaining experience in using FMEA, there
starts to become available documented evidence of some of the problems that
practitioners experience with the application of the method. Habraken and col-
leagues carried out a large evaluation of HFMEA in the Netherlands [8]. While
they concluded that the method might be useful in Dutch healthcare, they re-
marked that practitioners commonly felt that the method was very time con-
suming, the identification of failure modes was poorly supported and the risk
assessment part was very difficult to carry out. FMEAwas also used as part of the
Health Foundation’s Safer Patient Initiative in the UK, and a study evaluating
the perceptions of participating healthcare professionals found that participants
felt that while the structured nature of the process was beneficial, there were
negative aspects that may prevent the useful adoption of the method in the NHS,
including the time required to perform the analysis and the subjective nature of
the risk evaluation [9].

This paper addresses some of the difficulties related to the use of FMEA in
healthcare settings by investigating the application of an alternative, comple-
mentary methodology in order to conduct a proactive safety analysis. It argues
that some issues of adopting FMEA can be eased by combining diverse method-
ologies in order to assess vulnerabilities in complex socio-technical settings. This
paper is organised as follows. Section 2 summarises some of the research findings
around communication and handover failures in emergency care. Section 3 de-
scribes the application of FMEA for the identification of vulnerabilities related
to communication and handover within a specific emergency care pathway. It
then discusses the suitability of FMEA to assess risks in healthcare settings, and
investigates its possible combination with an alternative approach, the Func-
tional Resonance Analysis Method (FRAM). It also discusses and argues that
taking into account socio-technical hazards could be useful in order to overcome
limitations of analytical approaches that tend to narrow the scope of analysis.
Section 4 draws some concluding remarks.
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2 Communication and Handover Failures

Communication failures are a recognised threat to patient safety [10]. Handover
denotes “the transfer of professional responsibility and accountability for some
or all aspects of care for a patient, or group of patients, to another person or
professional group on a temporary or permanent basis” [11]. Handover may oc-
cur between members of the same profession, for example during nursing shift
change, or between individuals belonging to different medical professions or even
different organisations, such as the Ambulance Service handover to the Emer-
gency Department. Handover is a frequent and highly critical task in clinical
practice as it ensures continuity of care and provides clinicians with an opportu-
nity to share information and plan patient care [12]. Ideally, handover should be
thought of as a dialogue that creates shared awareness and provides an opportu-
nity for discussion and recovery as participants bring different perspectives and
experiences to this interaction [13, 14]. There is now a large body of evidence and
a number of systematic reviews that suggest that inadequate handover practices
are putting patients at risk [15–19]. Inadequate handover can create gaps in the
continuity of care and contribute to adverse events [20]. Some of the adverse
events associated with inadequate handover include in-creased length of stay
[21], treatment delays [13, 22], repetition of assessments and confusion regarding
care [23]. In time-critical environments such as Emergency Departments, the ad-
ditional burden put on already stretched resources due to inadequate handover
poses a risk not only to the individual patients handed over, but also to other
patients in need of urgent care [13].

3 Proactive Risk Analysis

As described in the previous section, communication and handover failures are
a significant threat to patient safety. This has been recognised and organisations
are experimenting with different solutions to the problem, including standard-
ised communication protocols, electronic handovers and electronic documenta-
tion available on PDAs or tablets at the point of handover. In the research project
that provides the background to this paper, it was decided to conduct a system-
atic risk assessment prior to the adoption of any technological or procedural
solution in order to ensure that risks have been properly understood.

3.1 Description of the Emergency Care Pathway

For the purpose of our case study, the emergency care pathway consists of the
Ambulance Service bringing a patient to hospital (typically two paramedics in an
ambulance), the Emergency Department (ED), and hospital departments that
receive patients from the ED – in the UK often a Clinical Decision Unit (CDU)
or Medical Assessment Unit (MAU). As part of the FMEA process, staff work-
ing within the pathway were invited to participate in a process mapping session
in order to describe the pathway for the subsequent risk analysis. Participants
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included doctors, paramedics, ED and MAU nurses. Figure 1 shows the result-
ing process description for highly critical patients (resuscitation patients). Such
simple, sequential process maps are commonly used in healthcare. The figure
shows steps in the process and information that is produced or communicated
(shown with background colour). The process in terms of communication and
handover consists essentially of a pre-alert by the Ambulance Service that a pa-
tient is about to be brought in (for highly critical patients), preparatory activities
within the ED, a handover between paramedic and the ED team, completion of
documentation and the negotiation of the onward transfer of the patient out
of the ED. A similar process description was produced for patients that have
severe but less critical injuries (majors cases), the main differences being that
there is no pre-alert and that the paramedics hand over to the triage nurse or
nurse coordinator rather than to the resuscitation team.

Fig. 1. Emergency Care pathway description

3.2 FMEA to Identify Major Vulnerabilities

Following the process mapping activity described above, two further meetings
were organised to identify failure modes and to perform the risk analysis. As
healthcare professionals tend to have limited time available to participate in such
safety activities, the meetings started with a quick review of the process map
and a discussion around which steps should be looked at in more detail based on
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the experience of the participants (rather than an analysis of all process steps as
would be the proper way to apply the method in technical settings). The groups
identified the steps that required to be analysed in greater detail and that were
perceived the most critical steps: (1) pre-alert, (2) handover between paramedic
and team, and (3) onward negotiation. The groups also analysed majors cases
and included the handover between paramedic and triage nurse as a critical
activity (4). Table 1 presents for illustration the results of this FMEA for Step
(1): Telephone pre-alert (ambulance crew or control centre to Nurse-in-Charge
or ED staff closest to red phone).

Table 1. FMEA of communication and handover in the emergency care pathway

Step (1) Pre-alert

Failure Mode Likelihood Severity Causes Mitigation

a. Not pre-alert 4 5: delay in get-
ting the right
people, bed
(trauma / airway
patients)

Poor mobile
phone connec-
tion; ED phone
not working;
possibly inexpe-
rienced staff

Improved radio
link; reduction in
ED overcrowding

b. Misinterpret-
ing information,
numbers, abbre-
viations

4 2-3: ED is pre-
pared but may
require different
/ additional re-
sources when pa-
tient arrives

Inexperienced
staff; commu-
nication comes
from control cen-
tre who cannot
answer clinical
questions

Cautious ED
planning; com-
munication
coming from
ambulance crews

c. Fragmented in-
formation

4 2-3: similar to (b) Similar to (b) Cautious ED
planning

d. Failure to no-
tify of deteriorat-
ing patient con-
dition

3 4-5: ED is pre-
pared but patient
may be a lot
sicker than ex-
pected and right
people may not
be around

Too little time;
failure to recog-
nise deteriora-
tion

e. Failure to no-
tify of improving
patient condition

4 2: Resuscitation
team / room
needlessly pre-
pared and not
available for
other patients

Failure to recog-
nise improve-
ment; lack of
understanding of
impact on ED

Increase aware-
ness among
ambulance crews

Table 2 explains the categories for assessing the likelihood of occurrence and
the severity of the consequences that were used.
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Table 2. Scores for likelihood of occurrence and severity of the consequences

Value Likelihood Severity

1 Less than once a year No harm, no increased length of stay

2 Less than once a month Non-permanent minor harm
or increased length of stay

3 Less than once a week Non-permanent major harm
or permanent minor harm

4 Less than once a day Permanent major harm

5 Once a day or greater Death

A major risk identified relates to the failure of the pre-alert when the ambu-
lance crew is unable to establish a communication link with the ED, for example
because they are in an area where there is no mobile phone reception or – in
very rare cases – due to unreliability of the ED communication equipment. Par-
ticipants felt that this happened fairly regularly and that patients may die if
upon arrival critical team members such as airway management specialists were
unavailable. Another major risk relates to the failure of the handover between
the paramedic and the resuscitation team, when the team are starting to treat
the patient before the para-medic has had the chance to complete the handover.
This is a frequent occurrence, since ED staff are keen to start treatment of crit-
ically ill patients as quickly as possible. However, in some cases this may lead
to a situation where medication is given that has already been given by the
paramedic on scene or in the ambulance. Factors that contribute to this failure
include the perceived need to act quickly, a sense of hierarchy that may pre-
vent the paramedic from challenging the senior ED doctor, and high levels of
stress.

3.3 Establishing the Worst Credible Consequences

The aim of approaches such as FMEA is the identification of single failures that
carry high risk. This is reasonable and the method has been applied success-
fully in industrial settings for decades. FMEA requires assessment of the worst
credible consequences of any particular failure. This is difficult in most but very
simple systems, but it is even more complicated in healthcare, typically a com-
plex socio-technical system with a lot of uncertainty arising from contextual
factors and the patient condition. There is a risk of overlooking the limitations
of FMEA by over-relying on it, while excluding other possible complementary
approaches. When asked about assessing the severity of the consequences of a
particular failure mode as part of an FMEA exercise, participants will usually
reply that this depends on the condition of the patient and other contextual fac-
tors. If the condition of the patient is sufficiently critical, even minor failures may
lead to death. The problem with FMEA in such settings is that it assumes fairly
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immediate cause and effect links and does not by itself encourage consideration
and differentiation of contextual factors. In the FMEA example above, clinicians
often contextualised the consequences of a particular failure mode by adding
statements such as “if we have a trauma patient”, or “when a patient comes in
and their airway is difficult to manage”. But even with this additional patient-
related information, it was difficult to establish the worst credible effect, since
single failures rarely kill patients, but usually have the potential to do so in
conjunction with other circumstances.

FMEA works well for technical systems and there is also scope for its appli-
cation in healthcare. However, the particular way of looking at a system and
of representing risk that is inherent in the method needs to be properly under-
stood by people applying it in healthcare. The method can be applied usefully
when these characteristics are taken into account, and when the method is com-
plemented by other approaches. This highlights some of the problems of using
FMEA in healthcare. The complexity and richness of the domain expose the lim-
itations of FMEA. Combining FMEA with complementary methodologies that
extend technical approaches could address such limitations. The next section
uses FRAM to identify vulnerabilities that may result from the propagation of
variation rather than from single failures.

3.4 From Failure Modes to Functional Resonance

An alternative approach has been described by Hollnagel [28] based on the con-
cept of functional resonance. Functional resonance is defined as the detectable
signal that emerges from the unintended interaction of the everyday variability
of multiple signals. The variability is mainly due to the approximate adjustments
of people, individually and collectively, and of organisations that are the basis
of everyday functioning. Each system function has a normal, weak variability.
The other functions constitute the environment for this particular function, and
their variability can be represented as random noise. However, on occasion the
pooled variability of the environment may lead to a situation of resonance, i.e. to
a detectable signal that emerges from the unintended interaction of the normal
variability of many signals. The Functional Resonance Analysis Method (FRAM)
proposes to model the functions of a system with six aspects, namely input, out-
put, time, resources, control and preconditions (I: Input, O: Output, T: Time,
R: Resources, C: Control, P: Precondition). The application of FRAM then tries
to establish the variability of the output of functions and the propagation of this
variability. System failures may emerge not necessarily as a result of failures,
but due to the propagation and resonance of variability. We have modelled for
simplicity only five steps of the above emergency care pathway as functions: (1)
Provide pre-alert to emergency department, (2) Prepare emergency department,
(3) Bring patient to the emergency department, (4) Hand over relevant infor-
mation to emergency department team, (5) Treat patient. FRAM prompts the
analyst to consider the effect of variability on the output of a function. Figure 2
shows a very simple example of FRAM resulting model of analysis.
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Fig. 2. FRAM representation

Table 3, for example, describes the possible effect of variability on function 2
(prepare emergency department).

Table 3. Possible effect on the variability of the output of function 2

Type of variability Aspect and its effect on output variability

Timing Input Resource Control Time

On time Dampening Dampening Dampening Dampening

Too early Dampening Increase - Increase

Too late Increase Increase Increase Increase

Never Increase Increase Increase Increase

Precision Input Resource Control Time

Optimal Dampening Dampening Dampening -

Acceptable No effect No effect No effect -

Imprecise Increase Increase Increase -

In this case, if the output of function 1 (pre-alert) is late or does not take
place, this may lead to an increase in the variability of the output of function 2.
Likewise, if team members arrive late or are unavailable (resource), then vari-
ability may increase. If on the other hand, team members arrive on time and
the function is completed before the patient arrives, then variability may be
dampened. In this way, a more complex model allows the analyst to consider
the propagation and the possible dampening or reinforcing effect of variability
without the need to relate the observed effect causally to failures of any kind.
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3.5 Learning Generated by FRAM

The application of FRAM as part of this project was experimental in order to
investigate whether there is some potential for alternative methods to comple-
ment FMEA during proactive risk analysis in healthcare. The way the method
was used, was first of all to model the functions with their aspects, then to de-
termine their potential variability (see above), and in a final step to mentally
simulate with practitioners how variation could propagate and lead to situations
of resonance. Practitioners were able to reflect on common situations and how
they deal with variability and how this may affect patient safety. For example,
it is common that the pre-alert received from the ambulance service is either at
short notice or does not reflect perfectly the patient’s condition (variation in the
output of function 1 in terms of timing and precision). Neither of these are con-
sidered failures by practitioners. This has a knock-on effect on the preparatory
activities (function 2), because there is less time to alert the specialist teams
required and not all specialists may be contacted. This function may further
vary due to the fact that no resuscitation bed is available (resource aspect), and
hence a patient needs to be moved out of this area quickly prior to the arrival
of the pre-alerted patient. The output of this function can, therefore, vary in
terms of timing and precision because the bed may not be available by the time
the patient arrives and specialists may arrive late. Once the patient arrives, the
handover between paramedic and ED staff may be affected due to this previous
variation, for example because specialists have not yet arrived (precondition)
and the handover takes place without them. Further variation can be intro-
duced through incomplete clinical assessments by the paramedics (resource) or
incomplete or imprecise communication (control — the ATMIST communication
protocol). Finally, the assessment and treatment of the patient should start only
once the handover has been completed (precondition), but variability could be
introduced here as the ED starts attending to the patient straightaway. Likewise,
imprecise handover may affect the assessment and treatment.

When practitioners compared the application of FRAM with FMEA, they
noted essentially two differences. First, FRAM forces consideration of the differ-
ent contextual aspects that are usually not included in such a systematic way
in the simple sequential process maps that form the basis for the application of
FMEA in healthcare. Second, FRAM felt more intuitive because it does not re-
quire consideration of failures and absolute consequences. Practitioners felt more
comfortable reasoning qualitatively about possible sources of variation. This way
of reasoning could provide some further insights into the severity classification
derived by the application of FMEA. For example, the application of FMEA to
the pre-alert provided estimates that not receiving a pre-alert could lead to the
death of the patient. However, using FRAM, practitioners were able to structure
their reasoning about what happens when the pre-alert is not perfect and provide
insights of how the dynamic of the system may be affected. This is, of course,
different and complementary to the assessment of the worst credible outcome.
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3.6 Socio-technical Classification of Hazards

The proactive risk analysis obtained by combining FMEA and FRAM analy-
ses identified vulnerabilities in the emergency care pathway and provided an
assessment of their potential impact. This section investigates the nature of
such vulnerabilities, and whether it could provide useful insights for deploying
technological artefacts in the future. Drawing on research collaborations in de-
pendability, it was possible to identify classes of socio-technical hazards that
are usually overlooked, or misinterpreted, by narrow, technology based assess-
ments, rather than involving wider social-organisational perspectives [24, 25].
It is possible to extend technological risk analyses by taking into account three
main classes of socio-technical hazards [24, 25]: Boundary Hazards, Evolutionary
Hazards and Performativity Hazards. Boundary Hazards characterise technol-
ogy that supports different communities of practice. Technological integration
strategies often undermine differences between communities of practice giving
rise to tensions resulting into ‘failures’. Evolutionary Hazards characterise a lack
of understanding of the evolutionary nature of technology. Technology innova-
tion involves an extent of evolving work practice. Assessing technology and its
impact involves dealing with knowledge uncertainty. Unfortunately, engineering
methodologies often struggle to cope with uncertainty. Performativity Hazards,
finally, characterise the interplay between technology and social behaviour. This
section uses such classes to classify the vulnerabilities and impacts identified by
combining FMEA and FRAM analyses. A similar classification analysis has been
useful to to analyse the findings drawn from clinical trials [26].

The feedback collected during clinical trials of telemetry-enabled healthcare
systems. was classified according to such classes of socio-technical hazards. The
medical trials summarise findings according to different categories of users: Pa-
tient and Care Personnel. Some feedback collected by pilot trials related directly
to the classes of socio-technical hazards. Taking these classes of socio-technical
hazards as a starting point can provide an analysis of potential vulnerabili-
ties affecting technology deployments and work practice in healthcare organisa-
tions [24–26]. The proactive risk analysis combining FMEA and FRAM analyses
highlights specific failure modes and vulnerabilities. All of them fall into the
class of Boundary Hazards [25]: “highlight the vulnerabilities of organisational
boundaries. Technology often exposes organisations to the propagation of haz-
ards across organisational boundaries. Moreover, the risk lays also in the shift
of responsibilities across organisational boundaries and in the raising of mistrust
across divisions of labour.”

4 Conclusions

The application of FMEA in healthcare is useful in order to understand some of
the potential vulnerabilities of healthcare processes, but in practice it is difficult
to determine the consequences of failures as these depend on the context and the
patient’s condition. The combination of FMEA with other methods could be a
promising way of analysing risk in socio-technical systems. In this paper we have
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described the additional application of FRAM to analyse a healthcare process.
FRAM focuses on variability and possible situations of resonance rather than
on failures and cause-effect links. FRAM provided insights into how the system
dynamic is affected by small variations in system functions. While practitioners
felt that FRAM added useful new insights, further work is required to deter-
mine how the findings generated by diverse methods should be integrated in a
systematic way for proactive risks analysis.
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A STAMP Analysis on the China-Yongwen Railway 
Accident 
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Abstract. Traditional accident models regard accidents as resulting from a li-
near chain of events. They are limited in their ability to handle accidents in 
complex systems including non-linear interactions among components, soft-
ware errors, human decision-making, and organizational factors. A new acci-
dent model called Systems-theoretic Accident Modeling and Processes 
(STAMP) has been developed by Leveson to explain such accidents. In this pa-
per, we will use the STAMP accident model to analyze the China-Yongwen 
railway accident for a more comprehensive view of the accident and propose 
some improvement measures to prevent similar accidents in the future. 

Keywords: accident model, STAMP, railway accident. 

1 Introduction 

On July 23, 2011, a very grave railway accident happened in the suburbs of Wenzhou, 
Zhejiang Province, China. Train D301 from Beijing to Fuzhou rear-ended train 
D3115 from Hangzhou to Fuzhou at 20:30 China Standard Time (CST) on a viaduct 
in the suburbs of Wenzhou. The two trains derailed each other, and four cars fell off 
the viaduct. The accident caused 40 fatalities and 172 injuries [1].  

Accident models explain why accidents occur and lie at the foundation of accident 
investigation and prevention. Traditionally, accidents have been viewed as resulting 
from a linear chain of events. But as in this case, many more factors were involved in 
the accident, including environment factors, component failures, design flaws, human 
errors, and organizational factors, the interactions between system components were 
complex and the relationships between events were non-linear. Traditional accident 
models are limited in their ability to handle these important factors in the accident. 

A systems-theoretic approach to understanding accident causation allows more com-
plex relationships between events (e.g., feedback and indirect relationships) to be consi-
dered and also provides a way to look more deeply at why the events occurred [2]. A new 
accident model called Systems-theoretic Accident Modeling and Processes (STAMP) has 
been developed by Leveson. In STAMP, accidents are conceived as resulting from  
inadequate enforcement or violation of safety-related constraints on the design, develop-
ment, and operation of the system. STAMP uses hierarchical structures to model socio-
technical systems considering technical, human and organizational factors. In this paper, 
we will use the STAMP accident model to analyze the China-Yongwen railway accident 
and propose some improvement measures to prevent similar accidents in the future. 
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2 STAMP Model of Accidents 

In STAMP, the most basic concept is not an event but a constraint. Safety is viewed 
as a control problem. Accidents are conceived as resulting from inadequate control 
and enforcement of safety constraints. Safety constraints are enforced by the system 
hierarchical control structure. Accidents occur when the hierarchical control structure 
cannot adequately maintain the constraints [2]. 

Each hierarchical level of the control structure represents a control process and 
control loop with actions and feedbacks. Fig.1 shows a basic control process in the 
railway safety control structure. The control processes that enforce the safety con-
straints must limit system behavior to the safe states implied by the safety constraints. 
According to system control theory, to effectively control over a system requires four 
conditions: (1) the controller must has a goal or goals, e.g., to maintain the safety 
constraints. (2) The controller must be able to affect the state of the system in order to 
keep the process operating within predefined limits or safety constraints despite inter-
nal or external disturbances. (3) The controller must contain a model of the system. 
The process model is used by the human or automation controller to determine what 
control actions are needed, and it is updated through various forms of feedback. (4) 
The controller must be able to ascertain the state of the system from information 
about the process state provided by feedback [2]. 

Corresponding to the four conditions, ways for constraints to be violated in the 
control process can be classified as the following control flaws: (1) Unidentified  
hazards. Hazards and the safety constraints to prevent them are not identified and 
provided to the controllers. (2) Inadequate enforcement of constraints. The control 
actions do not adequately enforce the constraints because of inadequate control algo-
rithms, inadequate execution of control actions or inadequate coordination among 
multiple controllers. (3) Inconsistent process models. The process models used by the 
automation or human controllers (mental models refer to humans) become inconsis-
tent with the process and with each other. (4) Inadequate or missing feedback. The 
controller is unable to ascertain the state of the system and update the process models 
because feedback is missing or inadequate [3]. 

 

Fig. 1. A basic control process in the railway safety control structure 
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So the process that leads to accidents can be understood in terms of flaws in con-
trol structures to enforce constraints during design, implementation, manufacturing, 
and operation. Therefore, to analyze an accident, the system hierarchical control 
structure must be examined to determine why the control process for each component 
at each hierarchical level was inadequate to maintain the safety constraints [2]. The 
procedure of STAMP-based accident analysis can be described as follows: (1) Identi-
fy the system hazards and related safety constraints involved in the accident. (2) Con-
struct the system hierarchical safety control structure and identify safety constraints 
for each controller. (3) Identify the inadequate actions that violated the constraints and 
the control flaws in the control structure. In the following sections, we will use the 
STAMP approach to analyze the China-Yongwen railway accident and propose some 
improvement measures.  

3 STAMP-Based Analysis on the China-Yongwen Railway 
Accident 

3.1 Accident Chronology 

The accident happened On July 23, 2011, in the suburbs of Wenzhou, Zhejiang Prov-
ince, China. 

At about 19:30, a fuse in the power supply circuit of the data acquisition drive unit 
in Wenzhou South Station train control center fused after a thunder strike. Before the 
fusing, the rails controlled by the Wenzhou South Station train control center were not 
occupied by trains. With a serious design flaw in the equipment, while the rails were 
occupied after the fusing, the outputs of the train control center still remained in the 
state before the fusing (not occupied) and the passing signal controlled by the equip-
ment remained green. Lightning also caused the communication failure between track 
circuit 5829AG and the control center, which resulted the code sent by the 5829AG 
was abnormal. As a result, a red band was showed on the computer terminal in the 
Wenzhou South Station. The red band indicated the track section was occupied by a 
train or in a failure state.  

At 19:39, the watchman in Wenzhou South Station noticed the red band and re-
ported the problem to the train dispatcher in Shanghai railway bureau. He also in-
formed the engineer of the signaling branch to do inspection and maintenance.  

At about 19:45, the engineers of the signaling branch started to deal with the prob-
lem. They replaced some transmitters of 5829AG in Wenzhou South Station train 
control center without putting the equipment out of service. The code was turned to 
green at the time of the accident. 

At 19:54, the train dispatcher found displays on the terminal in the dispatching of-
fice were inconsistent with the actual conditions. According to the regulations, he 
turned Wenzhou South Station into the emergency control mode.  

At 20:09, the assistant train dispatcher in Shanghai railway bureau informed the 
D3115 driver: there is a red band failure near the Wenzhou South Station, and the 
signals for movement authority are closed. If the train stops as a result of missing 
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signals, switch to the visual driving mode and continue driving. The driver confirmed 
this with the train dispatcher.  

At 20:12, D301 stopped at Yongjia Station (the station before Wenzhou South Sta-
tion) waiting for the signals (it was 36 minutes behind schedule). At 20:14, D3115 left 
Yongjia Station. 

At 20:17, the train dispatcher informed the D3115 driver to switch to the visual 
driving mode to drive at the speed less than 20 km/h when the passing signal was red. 
At 20:21, because of the track circuit failure, the Automatic Train Protection (ATP) 
system on D3115 activated the automatic braking function. D3115 stopped in the 
faulted 5829AG track section. From 20:21 to 20:28, the D3115 driver had failed 3 
times to drive in visual mode due to abnormal track circuit code.  

From 20:22 to 20:27, the D3115 driver had called the train dispatcher 6 times and 
the watchman in Wenzhou South Station had called the D3115 driver 3 times but all 
failed due to communication failure. 

At 20:24, D301 left Yongjia station heading for Wenzhou South Station. 
At 20:26, the train dispatcher asked the watchman in Wenzhou South Station about 

D3115’s information, the watchman replied: “D3115 is close to the faulted track sec-
tion but the driver is out of reach, I will continue to contact him.” 

At 20:27, the watchman reached the driver of D3115, and the driver reported: the 
train is 3 block sections to the Wenzhou South Station, but I failed to switch to visual 
driving mode due to abnormal track signals. I cannot reach the train dispatcher be-
cause the communication system has no signal and I will try again.  

From 20:28 to 20:29, the driver of D3115 called the dispatcher twice but both 
failed. At 20:29:26, D3115 succeeded in starting the train by switching to the visual 
driving mode. 

At 20:29:32, the engineer in Wenzhou South Station called the D301 driver and 
said: D301 you must be careful, train D3115 is in the same block section (the call was 
interrupted unfinished).At the same time, D301 entered the faulted track section. The 
driver of D301 saw the slowly moving D3115 and launched emergency brake.  

At 20:30:05, D301 travelling at the speed of 99km/h collided with D3115 travel-
ling at the speed of 16km/h. 

3.2 Accident Analysis 

The first step of a STAMP analysis is to identify the system hazards and related safety 
constraints. The system hazard related to the China-Yongwen railway accident is the 
rear-end collision between two trains. The safety constraint to this hazard is: the train 
safety control structure must prevent the collision between two trains. 

Fig.2 shows the basic safety control structure in the accident. Each component of 
the railway safety control structure plays a role in enforcing the overall system safety 
constraint. And they also have their own safety constraints to enforce related to their 
particular function in the overall system. Together, the safety constraints enforced by 
all of these system control components must be adequate to enforce the overall system 
safety constraints. 
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Fig. 2. The basic railway safety control structure in the accident 

To understand the role each component played in the accident, the contribution to 
the accident of each component is described in terms of the safety constraints, the 
inadequate control actions and the control flaws. For human controllers, the mental 
model flaws and context in which decisions were made are considered. 

Analysis on the Physical Process. The safety constraint at this level is that the Chi-
nese Train Control System (CTCS) must keep the trains free from collisions. The 
CTCS installed on the Yongwen railway line is CTCS-2. (CTCS has four levels, and 
CTCS-2 is installed on Chinese 200 km/h to 250 km/h high speed lines). It has two 
subsystems: ground subsystem and onboard subsystem. The ground subsystem in-
cludes track circuit, Global System for Mobile communications-Railways (GSM-R) 
and station train control center. The station control center enforces track circuit en-
coding, passing signals control in block sections and confirmation of movement au-
thorities. The GSM-R is a wireless communication network used by the drivers, train 
dispatchers and station staff to communicate with each other. The track circuits en-
force railway occupation and track integrity monitoring, and continually transmit 
track information to the vehicle as a movement authority. The onboard subsystem is 
the ATP system. The ATP system controls the operation of train according to the 
signals provided by the ground systems. When ATP receives no signal or abnormal 
signals, it will adopt automatic braking to stop the train. If the train needs to move on, 
it has to wait for 2 minutes to turn ATP into visual driving mode to travel at less than 
20 km/h. In visual driving mode, if normal signals are received, ATP will automati-
cally convert into full monitoring mode.  

In the accident, the train control center didn’t get the information that 5829 block 
section was occupied by D3115 because the data acquisition loop lost its power after 
the lightning. The passing signal in the 5829 section was green and no occupation 
code was sent to the ATP on D301 while the section was occupied by D3115. The 
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data sending to the computer of the train control center after the fusing was collected 
before the failure, and the computer kept controlling the passing signal and track cir-
cuits coding based on the outdated data. The control flaws in the control process are 
as follows: (1) the information of track occupation is vital to the whole train safety 
control structure, but wrong feedback information was provided to the computer due 
to the power loss of the data acquisition loop (inadequate or missing feedback). (2) 
The design of the equipment must enforce the safety constraints in face of an envi-
ronmental disturbance or a component failure. In the accident, the data acquisition 
loop in train control center just had a single power supply and lost its power after the 
thunder strike. The driving unit of the data acquisition loop kept sending the computer 
data collected before the failure. The computer kept accepting the outdated data and 
controlling the passing signals and track circuits coding based on the outdated data 
(inadequate control algorithm). 

In the accident, the ATP on D3115 automatically stopped the train in the faulted 
5829AG track section and the ATP on D301 didn’t take any actions to prevent the 
train from entering the block section occupied by D3115. The control flaws existed in 
the control process are: (1) the code sent to the ATP on D3115 by the 5829AG track 
circuit was abnormal because of the communication failure between the track circuit 
and the control center (inadequate feedback). (2) The process model of the ATP con-
troller in D301 was inconsistent with the actual process. The ATP on D301 received 
green signals, which mean there was no train in the forward 3 sections. But in fact, the 
train D3115 was moving slowly in the front section (inconsistent process models). 

Fig.3 summarized the roles of the train control center and the ATP systems in the 
accident. 

 

Fig. 3. The physical controllers and their roles in the accident 

Analysis on the Operations. The D3115 driver was informed that there was a red 
band failure near Wenzhou South Station. And he was told to switch to the visual 
driving mode and continue driving if the ATP system automatically stopped the train 
as a result of missing signals. But when this happened, the D3115 driver failed 3 
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times to drive in visual mode due to abnormal track circuit code. And he also failed to 
report to the dispatcher due to communication failure. The driver of D301 didn’t 
know that D3115 was trapped in the 5829 section and didn’t take any actions to pre-
vent the train from entering the section. The control flaws existed in the control 
processes are: (1) the train has two controllers, the ATP and the driver. The ATP 
stopped the D3115 automatically due to abnormal signals, but for the same reason, the 
driver failed to drive the train in visual mode (inadequate coordination among control-
lers). (2) The D3115 driver tried to report to the dispatcher but failed due to commu-
nication flaw (inadequate execution of control actions). (3) The display on the D301 
ATP system indicated there was no train in the forward 3 sections. And the driver 
wasn’t informed by the dispatcher or Wenzhou South Station about the situation of 
D3115. So his mental model thought there was no train ahead and controlled the train 
according to this process model. Because of an inadequate feedback in the control 
loop, the mental model of the driver became inconsistent with the actual process. The 
usual performance of the driver was no longer safe (inconsistent process models). 

The dispatcher turned the Wenzhou South Station into the emergency control mode 
after receiving the report of the “red band” problem according to regulations. But he 
didn’t take further insight into the problem. He didn’t look into the situation of the 
maintenance by the signaling branch and didn’t know the passing signal was wrong. 
Moreover, he didn’t monitor the situation of D3115 carefully. Before the collision, the 
watchman in Wenzhou South Station reported to the dispatcher: “D3115 is close to 
the faulted track section but the driver is out of reach. I will continue to contact him.” 
But the dispatcher didn’t take any measures. When D3115 was moving slowly and 
D301 entered the same section, he didn’t give a warning to the D301 driver. There 
may be several reasons for the mistakes. First, high work intensity increased the pos-
sibility of ignorance of paying attention to monitoring the situation of D3115. Accord-
ing to the investigation report, during 20:17 to 20:24, the dispatcher had confirmed 
the equipment conditions in stations along the line, learned the information about 
another train, and done the reception and departure work of 8 trains. Second, it may 
be a result of inadequate training. The dispatcher did not take his responsibility care-
fully. His safety consciousness was weak and ignored the importance of the problem. 
Third, the feedback to the dispatcher was missing due to the communication failure 
between the driver and the dispatcher.  

Before the collision, Wenzhou South Station was in the emergency control mode. 
In this mode, the railway station was responsible for implementing the “Vehicle Inte-
grated Control” with the passing trains and confirming the safety information with the 
drivers in standard phrases using wireless communication equipment according to the 
regulations. But the watchman in Wenzhou South Station didn’t implement the “Ve-
hicle Integrated Control” with the D301driver. In addition, the watchman had failed 3 
times to connect the D3115 driver. When he reached the driver finally, the driver 
reported: “The train is three sections to Wenzhou South Station. I failed to drive in 
visual driving mode due to abnormal track signals. I cannot reach the train dispatcher 
because GSM-R has no signals and I will try again.” However, the watchman didn’t 
report the situation of D3115 to the dispatcher in time. The watchman didn’t perform 
his duty correctly due to inadequate training or weak safety consciousness. 
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Informed of the failure of track circuits, the workers of the signaling branch replaced 
some track circuits transmitters without reporting and putting the equipment out of ser-
vice, and turned the code sent by the 5829AG to green, which violated the railway sig-
nal maintenance regulations. The workers of the signaling branch didn’t perform their 
duties correctly due to inadequate training or weak safety consciousness.  

Fig.4 summarized the role of the operators involved in the accident. 

 

Fig. 4. The operators and their roles in the accident 

Analysis on the Management. Fig.5 summarized the role of management compo-
nents in the accident. 

The Shanghai railway bureau has primary responsibility for enforcing safety regu-
lations and working standards in its dominated railways. However, safety manage-
ment in Shanghai railway bureau was weak. Emergency management regulations and 
operation standards were not effectively enforced. The inspection and supervision on 
the fulfillment of job responsibilities and compliance of regulations was not suffi-
cient. In the accident, the relevant personnel didn’t take effective actions to control 
the component failure adequately and avoid the accident after the thunder strike. As 
we described above, the dispatcher, the watchman in Wenzhou South Station and the 
workers of the signaling branch didn’t perform their duties correctly according to the 
regulations. Moreover, the Shanghai railway bureau didn’t provide sufficient training 
to the staff to ensure they were competent to carry out their responsibilities. The weak 
safety consciousness was a widespread problem in the staff.  
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The Ministry of Railways has primary responsibility for enforcing legislation, reg-
ulations, and policies that apply to the construction and operation of railway systems.  
For the operation aspect, the Ministry of Railways didn’t provide adequate inspection 
and supervision on the safety management of Shanghai railway bureau. The existing 
problems in Shanghai railway bureau were ignored. For the construction aspect, the 
Ministry of Railways is also responsible for implementing technical review and  
the certification of the equipment to be used on Chinese railways. In the accident, the 
ministry of railways had illegal operation in the technical review and certification 
process, resulted in the faulted train control center equipment was used in Wenzhou 
South Station. In addition, the Ministry of Railways didn’t establish explicit rules for 
the technical review process.  

With a rapid growth in economy, China has strived to develop high speed railways. 
The Chinese government has invested billions of dollars in the rapid expansion of  
 

Ministry of Railways
Safety constraints:
(1)Make regulations and standards on safe operation of trains.
(2)Provide oversights on the execution of regulations and standards.
(3)Implement technical review and the certification of the equipment to be used on Chinese 
railways.
Inadequate control actions:
(1)Inadequate inspection and supervision of the safety management for Shanghai railway 
bureau.
(2) Did not establish explicit rules for technical review
(3)Illegal operation in the technical review and certification process.
Context in which decisions were made:
(1)Rapid expansion of Chinese high speed railways.
(2)The technology of the signaling system was imported and the system was redesigned by 
local companies.
(3)A culture of seeking quick success and instant benefits 
Mental model flaws:
Insufficient attention was paid to safety

Shanghai railway bureau
Safety constraints:
(1) Enforce safety regulations and working standards in its dominated railways. 
(2) Provide adequate education and training to the staff.
(3) Oversee the railway operation and report the incidents and accidents to the ministry. 
Inadequate control actions:
(1) Did not provide sufficient training to the staff.  
(2) Emergency management regulations and operation standards were not effectively enforced. 
(3) Did not provide sufficient supervision on the fulfillment of job responsibilities  and 
compliance of regulations.
Context in which decisions were made:
Weak safety management
Mental model flaws:
Insufficient attention was paid to safety

Regulations
Standards

Supervision
Reports

 

Fig. 5. The role of Ministry of Railways and Shanghai railway bureau in the accident 
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high-speed railway network in recent years. China’s high speed railways now stretch 
across more than 10,000 km, expanding to 13,000 km by the end of 2012, and is 
planned to reach about 16,000 km by 2020 according to the Chinese railway network 
planning programs. But with a culture of seeking quick success and instant benefits in 
the Chinese government, the Ministry of Railways pursues construction speed rather 
than the safety in railway construction.  China's initial high speed trains were im-
ported or built under technology transfer agreements with foreign companies. Then 
Chinese engineers absorbed foreign technology in building indigenous train sets and 
signal systems. The type of the defective station train control center equipment in 
Wenzhou South Station is LKD-T1. It was designed by Beijing National Railway 
Research &Design Institute of Signal & Communication and manufactured by 
Shanghai Railway Communication Co. Ltd. The design was flawed and field testing 
was not performed. The documentation of the design was incomplete and non-
standard. However, the Ministry of Railways let it pass the technical review and put it 
into use in just a few months. 

3.3 Improvement Measures 

In the sections above, we analyzed the role each component played in the accident. In 
this section, by examining the control flaws in the railway safety control structure, 
improvement measures that might be taken to prevent future accidents are discussed.  

(1) The design of the signal system must be robust enough to withstand strong 
thunder strikes. The data acquisition loop in train control center should have two  
independent power supplies in case of power off. When a failure occurred in the sys-
tem, train control center should handle the failure adequately instead of keeping work-
ing based on the outdated data. 

Rationale: The design of the equipment must enforce the safety constraints in face of 
an environmental disturbance or a component failure (inadequate control algorithm).  

(2) When the signal system fails, the driver should have access to control the train.  
Rationale: In the accident, the driver failed to drive the train in visual mode several 

times. The ATP system relies too much on the signals. When the ATP system stops 
the train due to abnormal signals, the driver should have priority to control the train 
(inadequate coordination among controllers). But give priority to the driver to control 
a train may give rise to new hazards. In this situation, new safety constraints may be 
added and further measures should be taken to control the risk at an accepted level. 

(3) More effective communication channels between drivers and dispatchers 
should be added in the control structure.  

Rationale: In this accident, the D3115 driver failed to report to the dispatcher be-
cause the GSM-R wireless network was out of signal (missing feedback). The com-
munication between drivers and dispatchers is critical to safety, and alternative ways 
for communication should be established to ensure smooth communication. 

(4) Shanghai railway bureau must improve safety management, enforce regulations 
and standards more effectively and provide sufficient supervision on the job responsi-
bility fulfillment and regulation compliance. It must provide adequate training to the 
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staff to ensure they are competent to carry out their responsibilities and emphasize 
railway safety culture. 

Rationale: The related personnel in the accident didn’t fulfill their duties adequate-
ly and violated the regulations. The weak safety consciousness was a widespread 
problem in the staff (inadequate execution of control actions). 

(5) The safety and reliability of new technology and equipment should be empha-
sized to ensure the safe development of high speed railways in China. 

Rationale: The Ministry of Railways pursues the advancement of technology and 
the speed of railways in the development of high speed railways in China (insufficient 
attention was paid to safety). 

4 Conclusions 

In this paper, by analyzing the safety control structure and the role each component 
played in the China–Yongwen railway accident happened on July 23, 2011, we ac-
quired a better understanding of the accident and proposed some improvement meas-
ures to prevent similar accidents in the future. 

The results of the STAMP analysis are consistent with the accident investigation 
report. But instead of just identifying the causal factors and who to be punished, the 
STAMP analysis provides a more comprehensive view to understand the accident. 
The STAMP model used in this paper is effective in modeling complex socio-
technical systems. The use of STAMP provides the ability to examine the entire so-
cio-technical system to understand the role each component played in the accident. 
Modeling the entire control structure helped in identifying different views of the acci-
dent process by designers, operators, managers, and regulators—and the contribution 
of each to the loss. STAMP leads to a more comprehensive understanding of the acci-
dent by incorporating environment factors, component failures, design flaws, human 
errors, social and organizational factors in the model. The modeling also helped us to 
understand the relationships among these factors. The heart of STAMP analysis lies in 
identifying the safety constraints necessary to maintain safety constraints and acquir-
ing the information of the way safety constraints are violated. This information can be 
used in an accident investigation to identify the flaws in an existing structure and 
changes to prevent future accidents. And recommendations for changes to prevent 
future accidents were directly linked to the analysis and the STAMP model of the 
accident. 

In applying the STAMP approach, we also encountered some difficulties and found 
some limits of the method. First, the modeling method is not clearly defined. But The 
STAMP method has little guidance on how to create the model and conduct the anal-
ysis. And it also lacks ways to validate the validity of the model and the analysis. 
Second, it is difficult to build the control structure representing the complex  
relationships among components. It is also hard to present the relationships among 
components between different hierarchical levels. Third, the control flaws are not 
explicitly defined and classified. It may cause confusion in some situations. Fourth, in 
order to acquire a better understanding of the accident, more detailed information and 
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professional knowledge are required. But we found some critical information was 
missing due to the news embargo by the government. 
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Abstract. The development of software components to be reused in safety-
critical systems involves a number of challenges. These are related to both the 
goals of using the component in several systems, with different definitions of 
system-specific hazards, and on the high demands of today’s safety standards, 
which assume a top-down system and software development process. A large 
part of the safety-related activities is therefore left for integrator, and there is a 
risk that a pre-existing component will neither be feasible nor more efficient to 
use than internal development of the same functionality. In this paper we ad-
dress five important challenges, based on an empirical study consisting of inter-
views with experts in the field, and a case study. The result is twelve concrete 
practices found to improve the overall efficiency of such component develop-
ment, and their subsequent reuse. These are related to the component architec-
ture and configuration interface, component and system testing and verification, 
and the information to be provided with the component.  

1 Introduction 

Safety-critical systems are systems which may, should they fail, harm people and/or 
the environment – such as vehicles, power plants, and machines. To develop such 
systems, one must demonstrate that potential hazards have been analyzed, and that all 
prescribed activities listed in an applicable safety standard have been performed. 
There are generally applicable safety standards, such as the IEC-61508, and domain-
specific standards, such as IEC-61511, ISO-15998, ISO-26262, RTCA DO-178B/C, 
EN50126/8/9, ISO-13849, and IEC-62061. In the daily development work, achieving 
a sufficient level of safety boils down to adhering to the relevant standard(s). 

These standards are based on an assumed top-down approach to system construc-
tion. Each system must be analyzed for its specific hazards and risks in its specific 
environment, and the system requirements must be traced throughout the development 
to design decisions, to implementation units, to test cases, and to final validation. The 
standards’ general approach to the inclusion of pre-existing software components in a 
system is to present them as being an integrated part of the development project, and 
let them undergo the same close scrutiny as newly developed software for the specific 
system (which is inefficient). The standards in general provide very little guidance for 
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potential developers of software components, intended for reuse in several safety-
critical systems – with the main exceptions of the recently issued ISO-26262 and the 
advisory circular AC20-148 complementing RTCA DO178B. 

For a reusable component to be included in a safety-critical system, the component 
developer needs to not only comply with the relevant standard throughout the life 
cycle, but also ensure that the integrator saves effort by reusing the component. In 
safety-critical systems, the actual implementation is just a small part of the “compo-
nent” being reused and savings are lost if the integrator has to re-perform much or all 
of the safety-related work (e.g. verification, traceability, adaption of documentation).  

This paper takes an overall view and intends to identify the most important chal-
lenges, as perceived by practitioners, and provide some guidance on how to address 
these challenges. Five specific challenges are (Åkerholm & Land, 2009): 

• Component interface. The challenge is to define a well-specified interface (in a 
wide sense, including e.g. configuration parameters, restrictions on tools, 
assumptions on usage etc.) which does not unnecessarily restrict the integrator. 

• Component abstraction. The challenge is to create a component which is general 
enough to provide the expected functionality in many different systems, while 
addressing e.g. traceability and deactivation of unused code.  

• Activities left for the integrator. Many analyses and verification activities will 
necessarily be left for the integrator, and the challenge is to make this easy. 

• System level traceability. Each system requirement has to be traced throughout all 
relevant project artifacts such as documents, design models, source code, and test 
cases; a challenge is to define a “traceability interface” so that component design 
decisions and assumptions can easily be linked to system hazards and contexts.  

• Certified or certifiable. The challenge is to make the strategic decision whether to 
aim at certifying a component, or to develop it according to a standard and provide 
all relevant information with the component, packaged in a format so that the 
integrator easily can certify the system including the component. 

This paper presents an empirical study, consisting of interviews and a participatory 
case study, resulting in twelve practices that address these challenges. 

The research method is further described in section 2, and section 3 describes  
related work. Section 4 is organized per the challenges listed above and presents iden-
tified practices the component developer should perform. Section 5 concludes the  
paper. 

2 Research Method 

The purpose of the study is to collect valuable experience, but the extent to which the 
suggested practices improve efficiency is not independently validated. First four 
open-ended interviews were performed (see section 2.1). Secondly, as action research 
we used an industrial project (see section 2.2), applying some of the findings from the 
interviews. All observations were compiled (qualitatively), and the synthesized result 
is presented here, with the source of each observation indicated in the text. 
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2.1 First Phase: Interview Study 

The four interviewees are listed in Table 1. We used AC20-148 as a template to con-
struct the interview questions, added further open-ended discussion topics. The inter-
views lasted approximately two hours, with more than one author participating. The 
interviewees approved the interview notes after minor clarifications, additions, and 
corrections. The interview data is not intended for statistical analysis; the purpose was 
to collect valuable experiences. 

Table 1. The interviewees and their background and experience 

Interviewee # Background and experience 
1 Experience as developer as well as independent assessor from a number 

of projects, according to e.g. IEC61508. 
2 Experience as independent assessor from a number of projects in various 

domains, in particular railways (standards IEC-50126/8/9. Experience 
from development of safety-certified operating system. 

3 Technical expert; the company develops a software component for avio-
nics applications, approved under DO-178B / AC20-148. 

4 Safety expert; the company develops a HW/SW platform, certified to 
several standards (IEC61508, IEC61511, ISO13849, and IEC62061). 

2.2 Second Phase: Industrial Project 

The development project was action research in the sense that it was from the start 
explicitly set up as a case study for our research, where we intended to implement 
some of the findings of the interviews. A reusable component was developed, imple-
menting mechanisms to handle all data communication failures as specified in IEC 
61784-3. The component was developed according to SIL3 of IEC61508. Some fur-
ther technical details are described under each topic heading in section 4. 

The authors were heavily involved throughout the project, as project manager, de-
signer, reviewer, and verifier, together with other staff as well. This gives us first-
hand insight into the project, but is also a potential source of bias. During the project, 
observations and ideas were recorded in a research log, which was studied at the end 
together with other project documentation. AC20-148 was used as a template for (part 
of) the safety manual of the component, describing e.g. activities left for the integra-
tor. A limitation is that the component has not yet been included in a certified system. 

3 Related Work 

From the area of component-based software engineering, it is known that predicting 
or asserting system properties from component properties is difficult in general  
(see e.g. (Hissam, Moreno, Stafford, & Wallnau, 2003) (Larsson, 2004)), and particu-
larly difficult for safety (Voas, 2001), partly because the safety argument is not em-
bedded in the component itself but in the surrounding documentation and the rigor of 
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the activities during its development. Among the few attempts to describe reuse of 
software in safety-critical software from a practical, industrial point of view, we most 
notably find descriptions of components pre-certified according to the AC20-148 
(Lougee, 2004) (Khanna & DeWalt:, 2005) (Wlad, 2006), which describe some of the 
potential benefits of reusing pre-certified software, rather than provide guidance on 
how to develop a reusable software component efficiently as we do in this paper. 

Common challenges of software reuse (Karlsson, 1995) also hold true for reuse of 
safety-critical software components; for example, there are various methods and prac-
tices addressing the need of designing a system with potential components in mind 
(Land, Blankers, Chaudron, & Crnković, 2008) (Land, Sundmark, Lüders, Krasteva, 
& Causevic, 2009). In general, there is more data and experiences on development 
with reusable components than development of reusable components (Land, 
Sundmark, Lüders, Krasteva, & Causevic, 2009), while the present study takes a 
broad perspective and includes both. 

Literature on modularized safety argumentation provide several promising research 
directions, such as how to extend e.g. fault tree analysis (Lu & Lutz, 2002) and state-
based modeling (Liu, Dehlinger, & Lutz, 2005) to cover product lines, that should in 
principle work also for composition of component models. A bottom-up, component-
based process is described in (Conmy & Bate, 2010), where internal faults in an 
FPGA (e.g. bit flips) are traced to its output and potential system hazards. Such ana-
lyses should be possible to apply to components being developed for reuse, leading to 
a description at the component interface level, e.g. of the component’s behavior in the 
presence. In the direction of modularized safety arguments, there are initiatives re-
lated to GSN (Goal Structuring Notation) (Despotou & Kelly, 2008) and safety con-
tracts (Bate, Hawkins, & McDermid, 2003). 

4 Twelve Practices That Address the Challenges 

This section contains the observations made in the study, based both on the interviews 
and the development project, formulated as concrete practices the component devel-
oper should perform. The section is organized according to the five challenges listed 
in (Åkerholm & Land, 2009) and in the introduction of the present paper. 

4.1 Addressing Challenge #1: Component Interface 

The component’s interface in a wide sense must be fully specified, including not only 
input and output parameters but also configuration parameters, restrictions on tools, 
the requirements on memory, execution time and other resources, and communication 
mechanisms (see e.g. AC20-148) (Åkerholm & Land, 2009). 

Identification of Documentation Interface. A large amount of documentation re-
lated to the reusable component must be integrated into the integrator’s life cycle 
data; the AC20-148 lists e.g. plans, limitations, compliance statement, and software 
approval approach.  To make this as straightforward as possible, interviewees #2 and 
#3 give the advice to both component developers and integrators to follow the rele-
vant safety standard as closely as possible with regards to e.g. terminology and  
required documents. According to the experience of interviewee #2, companies  



392 R. Land, M. Åkerholm, and J. Carlson 

 

unnecessarily create a problem when using an internal project terminology and then 
providing a mapping to the standard. Interviewee #4 on the other hand, describes such 
a mapping from the platform’s terminology to that of the standards it is certified 
against; however, since the same assessor (i.e. the same individual person at the certi-
fication authority) is appointed for all standards, this poses no major obstacles. 

Still, the safety standards assume that the documentation structure is a result from a 
top-down system construction, and a component will need to specify for which part of 
this structure it provides (some of) the required documentation, and how it should be 
integrated into the system’s documentation structure. When we followed the structure 
outlined in (Åkerholm & Land, 2009) in our project, we observed that the documenta-
tion interface is highly dependent on the technical content, due to the fact that design 
decisions on one level are treated as requirements on the level below. When defining 
a component for reuse, there are some specific challenges involved: the perhaps not 
obvious distinction between the architecture and requirements of the component, and 
it was realized in the project that the documentation needs to distinguish these more 
clearly than we did at the outset. Hazard and risk analysis for the component need to 
be performed backwards and documented as a chain of assumptions rather than as a 
chain of consequences; this needs to be documented very clearly to make the hazard 
analysis and safety argumentation of the system as straightforward as possible. Fur-
ther research is needed to provide more detailed suggestions on how to structure the 
component documentation in order to provide an efficient base for integration. 

Practice I: Follow the requirements of the standard(s) on documentation structure and 
terminology as closely as possible. Two important parts of a component’s documentation 
interface are the component requirements and the component hazard and risk analysis, 
which should aim for easy integration into the system’s design and hazard/risk analysis. 

Identification of Configuration Interface. A reusable component should have a 
modular design and configuration possibilities, so that “hot spots” where future antic-
ipated changes are identified and isolated (Interviewee #3; see also e.g. (Lougee, 
2004)). Knowledge of the specific differences between customers and systems is re-
quired; interviewee #3 describes that their operating system has support for different 
CPUs, its ability to let the integrator add specific initialization code, and its support 
for statically modifying the memory map. With configurability come requirements on 
verification and testing of a specific configuration of a component in a specific system 
(interviewees #1 and #3). In our industrial project, we clearly separated the user con-
figurable data from other data in the system, by setting up a file structure where only 
two files with a strict format are user modifiable. We used mechanisms provided by 
the source code language to both provide an easy-to-use configuration interface and 
the possibility of being able to statically include this data into the program with ap-
propriate static checks (see also section 4.3 for construction of adaptable test suites). 

Interviewee #3 describes that with configuration variables which are read from 
non-volatile memory during startup, the integrator needs to show that the parameters 
cannot change between startups. See section 4.2 on deactivation of dead code. 

Practice II: Create a modular design where known points of variability can be easily 
expressed as configuration settings which are clearly separated and easy to understand 
for the user. 
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4.2 Addressing Challenge #2: Component Abstraction 

Components suitable for reuse, in particular for safety-critical systems, need to ad-
dress well-defined, commonly occurring design problems or commonly needed ser-
vices (Khanna & DeWalt:, 2005). The product of interviewees #3 and #4 are indeed 
“platforms”, in the sense that their components provide basic services on top of which 
applications are built. As such, the services they provide are of a general nature, such 
as partitioning of memory, which are not directly connected to a system’s functional 
requirements. In the industrial project case, our main functional requirements come 
from the IEC 61784-3 standard on data communication in industrial networks, which 
defines all conceivable communication errors that need to be addressed, and which 
will be the same in many different systems, independently of the safety-critical func-
tions they perform. All these components, as well as the published examples (Khanna 
& DeWalt:, 2005) (Wlad, 2006) of components constructed according to AC20-148, 
provide general functionality needed to address needs at the design level.  

Practice III: Define the component functionality as well-defined abstractions solving 
commonly recurring problems on the system design level, rather than on the system 
requirements level. 

Deactivation and Removal of Unused Code. Some of the features of a reusable 
component may not be used. In safety-critical systems, there is a very important dif-
ference between “dead code”, i.e. unreachable statements left by mistake, and “deac-
tivated code”, i.e. program code deactivated with a hardware switch, configuration 
parameter in the program, or a runtime parameter (see e.g. RTCA DO-178B). Al-
though it is preferable to identify unexecuted code and remove it altogether from the 
executable, the interviewees refer to the standards which do not prohibit deactivated 
code per se (e.g. RTCA DO-178B). In such cases, however, the interviewees stress 
that an argument must be provided showing that the code will not cause harm even if 
executed, and this must be supported by careful testing, including fault injection tests. 
Also, one must reason about possible side effects such as I/O operations and writes to 
shared variables or permanent storage in deactivated code (interviewee #2). The inte-
grator also needs to provide an argument that the parameters cannot change between 
startups (interviewee #3; see also section 4.1); such argumentation is avoided if the 
code is statically excluded (interviewee #3 and case study). In our project, the source 
code used only by either senders or recipients are protected with macro definitions. 

Practice IV: For deactivated code, base the safety argumentation on the avoidance of 
hazards, and be particularly observant on code with side effects. Whenever possible, 
replace runtime mechanisms for deactivating code with static mechanisms to remove 
the code completely from the executable. (Related to Practice II.) 

Definition of High-Level Design/Architecture. Although some of the design of a 
reusable component is hidden from the integrator, and should remain so, the defini-
tion of a reusable component’s high-level design is also, to a large extent, a definition 
of the architecture of an assumed system: interaction paradigms (i.e., messages, func-
tions, etc.), execution models (i.e., passive libraries, active tasks, etc.), expected  
interaction patterns, semantics of the source code functions, etc. Standardization of 
these aspects have led to the definition of formalisms such as AADL(As-2 Embedded 
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Computing Systems Committee, 2009), EAST-ADL, AUTOSAR, SysML and 
MARTE1. Interviewee #1 stresses that the architecture of the component reflects what 
the component developer believes to be useful for the integrator. This is strongly sup-
ported by our experiences from the industrial project, where we investigated four 
conceivable execution models on the receiving side of the communication:  

• Time-triggered. Execution of a task is started periodically, which retrieves all 
newly arrived messages and processes them; this is suitable approach for a node 
with a real-time operating system. 

• Event-triggered (using hardware interrupts). Execution of code is trigged by 
hardware interrupts, which are either “a message has arrived” or a timeout. This is 
suitable for an otherwise interrupt-driven system. 

• Event-triggered (infinite loop with blocking wait). The code hangs on a “wait 
for message” function call, which returns when a message has arrived or when a 
timeout limit has been reached. This blocking approach may be suitable when 
communication with other tasks is limited. 

• Continuous polling. The application implements an infinite loop, that first reads 
data (if any) from the bus and then handles it, in one single thread without any de-
lays or interrupts. This “busy waiting” approach is suitable for a node which have 
no other tasks to do, or where those tasks can also be performed in the same loop. 

Our component is a passive library component to be called by the application to 
process messages rather than an abstraction layer.  

Practice V: Define the execution models, interaction paradigms, etc., of the compo-
nent, to support the assumed architecture(s) of many potential target systems.  

To verify in the design phase that our designed API would support the four execu-
tion models, we a) wrote pseudocode for each of these (this later became part of the 
component’s usage documentation), and b) let developers review the design given the 
question: “Could you create a good system design with this component?” Through 
this somewhat iterative analysis and design work, we were able to create an API, i.e. 
functions and rules for interaction, supporting all four execution models. However, 
due to the lack of firm boundaries in terms of requirements from a specific system, 
this activity required significantly more effort than expected. 

Practice VI: Allocate a team to evaluate the feasibility and usefulness of your com-
ponent at the early conceptual and architectural design stage. Allocate sufficient time 
in this phase for the necessary development and iterations of design proposals. 

Structure of Component Design Artefacts. In our project, we first planned for one 
single software architecture document. We realized later in the project that the archi-
tecture of a reusable component is a mixture of both 1) inputs to the requirements 
(e.g., “the component shall support the following four execution models”) and 2) 
implementation decisions made to fulfill the requirements (e.g. definition of data 

                                                           
1 http://www.autosar.org/, http://www.sysml.org/, 
http://www.omgmarte.org/ 
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structures and functions, including traceability information to requirements). This 
caused an unnecessary circular dependency between requirements and architectural 
design documents. We therefore recommend that these two types of architectural 
information are kept distinct in separate documents, one being an input document to 
the requirements specification and one being a downstream document. However, this 
was perceived to be a clarity issue, not a real threat to safety or project efficiency. 

Practice VII: Use separate documents for the external architecture (the assumed ar-
chitecture of the system) and the component’s internal architecture and design. 

4.3 Addressing Challenge #3: Activities Left for the Integrator 

There will remain a number of activities for the integrator, related to the context and 
environment of the component in a specific system. The challenge for the component 
developer is to aid the integrator in these activities by providing the component with 
certain information and artefacts. In the studies, we identified what can be labeled 
“analysis interface”, and adaptable test suites as two important means for this. 

Identification of Analysis Interface. Data coupling analysis, control coupling analysis, 
and timing analysis are examples of activities that can only be performed by the integra-
tor, when the complete software is available (AC20-148). However, some analyses may 
in principle be partially performed at the component level, or some useful data or evi-
dence may be constructed at the component level. In spite of research on composing 
system properties from component properties (see e.g. (Hissam, Moreno, Stafford, & 
Wallnau, 2003) (Larsson, 2004) and the TIMMO project2), the challenge remains to 
identify such analysis interfaces, including assertions that need to be made by the com-
ponent developer, properties that need to be specified, and how to use these automatical-
ly in a system-level analysis. In the study, interviewees #3 and #4 mentioned timing 
issues to be especially important. With a simple application design, and certain compo-
nent information, it may be sufficient to perform timing measurements of the integrated 
system, given that the component developer makes assertions on the behavior of the 
component. The current state of practice includes, according to interviewees #3 and #4, 
component assertions that the function calls are non-blocking, or information that the 
component disables interrupts, which is valuable for the integrator’s more detailed tim-
ing analysis. Also, a specification of input data which will cause the longest path 
through a function to be executed, and/or the path that includes the most time-
consuming I/O operations, is useful for finding upper bounds on the timing within a 
specific system and on a specific hardware.  

Practice VIII: Provide information on the component’s (non-)blocking behavior, 
disabling and enabling of interrupts, and input data which is likely to cause the upper 
bounds on timing, to facilitate the integrator’s system level analysis of e.g. timing. 

Adaptable Test Suites. The component of our project is delivered with a module test 
suite which automatically adapts itself to the configuration. The component configu-

                                                           
2  http://www.timmo.org/ 
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ration is made through macro definitions and filling static data structures with values, 
and the test suite is conditionally compiled based on the same macros, and uses the 
actual values of the data structures to identify e.g. boundary values to use in testing, 
and of course determine the expected correct output. The test suite includes all neces-
sary fault injection in order to always achieve sufficient code coverage (for the SIL 3 
according to IEC-61508).  

The creation of a module test suite on this higher level of abstraction forced us to 
reason about many boundary values, possible overflow in computations, and similar 
border conditions. Also, it helped us identify user errors, such as what would happen 
if the component is configured with empty lists or inconsistent configuration parame-
ters. In addition, the resulting number of actual tests executed on a single configura-
tion is significantly higher than we would otherwise have created, which also  
increases our confidence in the component, although strictly the number of test cases 
can never in itself be an argument for testing being sufficient. Thus, as a side effect, 
this greatly helped us to design for testability, and to design good test suites.  

The main purpose of providing adaptable test suites is that the integrator easily can 
perform module tests on the specific configuration used in the system. To verify the 
configuration mechanisms and the test suite itself, we created a number of configura-
tions and re-executed the tests with very little effort (a matter of minutes). This in-
creased our confidence, not only in the component itself but in that we are saving a 
significant amount of effort for integrators. (However the integrator must learn and 
understand how to run the test suite correctly for a specific configuration, and how to 
interpret the test output (including verification of the code coverage reached).) Anoth-
er extra benefit is that some changes (e.g. addition of messages on the bus) can be 
made late in the development process and easily re-tested. 

The test suite is written in ANSI-C and is therefore as portable as the component 
itself, but the fault injection mechanism and the code coverage analysis rely on exter-
nal tools and therefore somewhat restrict the integrator’s freedom. To account for this, 
we have designed the test suite and test environment so that adapting the suite to 
another tool set should not be too effort-consuming.  

Practice IX: Deliver an adaptable test suite with the component, so that the integrator 
can (re-)perform configuration-specific testing with little effort. 

4.4 Addressing Challenge #4: System Level Traceability 

Demonstrating traceability means tracing each requirement to design items, imple-
mentation items, test cases, etc. This requires extra attention when a part of the system 
is developed by an external company prior to and/or independently of specific system 
requirements since the traceability chain goes across organization boundaries. 

Identification of Traceability Interface. Some steps towards defining a traceability 
interface were identified in the study: if the component provides an abstraction with 
error handling (such as operating systems, communication layers, or platforms in 
some other sense), it may be sufficient to demonstrate that the component’s functional 
interface solves some of the design goals of the system (e.g., that it handles certain 
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types of communication failures with a certain level of integrity) without introducing 
new hazards, that the component is verified sufficiently (e.g. using code coverage 
metrics), and that it is used as intended and its safety manual has been followed (in-
terviewee #4; our project). Interviewee #2 in particular stresses that the objective 
when arguing safety is to perform the argumentation in relation to the system hazards; 
if a fault analysis (e.g. a fault tree analysis) shows that a component does not contri-
bute to a specific hazard, the tracing may stop there. 

Practice X: Specify component requirements and functional interface, so that a de-
tailed traceability analysis is not required when integrated into a system. This includes 
providing a safety manual with assumptions and rules for component usage. 

Standardization of Traceability Tools. Often traceability is managed manually as 
tables in electronic documents, and even if a traceability tool is used, there are prob-
lems to share the same database, and it is also likely that the component developer 
uses a different tool than its customers (interviewee #1). This is a challenge for stan-
dardization and tool developers, rather than for component developers or integrators. 

Meeting the Requirements on System Hazard and Risk Analysis. Normally, the 
system hazards are used, with their estimated frequency, consequence etc., to deter-
mine the SIL level (or similar; the standards have different classifications), which 
influences all downstream activities. When developing a component for reuse, the risk 
analysis is instead performed backwards: a target market is selected, and the compo-
nent is developed according to common requirements and a SIL level which it is  
believed that integrators will require. It is only in a system context safe external beha-
viors in case of detected failures can be determined (e.g. to shut down the unit imme-
diately, apply a brake, or notify the operator; it may or may not be safe and desirable 
to first wait for X more messages in case the communication recovers; etc.). It is al-
ways the responsibility of the system developer to focus the argumentation around the 
hazards and show that they cannot conceivably occur. “A general software component 
does not have safety properties, but a quality stamp. Only in a specific context do 
safety properties exist.” (interviewee #2). 

In the case study we performed some analysis based on assumed, realistic, values 
for usage and disturbances to demonstrate that an average system or application using 
our component also meets the hardware requirements at the target SIL level. (It may 
be noted that there is no major differences in the requirements on development of 
software between SIL2 and SIL3 according to IEC61508; the requirements on hard-
ware however typically impose more expensive solutions including redundancy etc.) 

Practice XI: Lacking a definition of system hazards, identify component error-
handling, fault tolerance mechanisms, and behavior that are common for many systems, 
as independently as possible of the specific system hazards. (See also Practice III.) 

4.5 Addressing Challenge #5: Certified or Certifiable? 

A developer of a component intended for reuse needs to make a decision between 
certifying the component, or developing the component according to a target standard 
and handing over all the safety-related documentation for the certification of each 
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system. This decision is dependent on the situation of the component developer. This 
section lists the goals that were mentioned by the interviewees in the study, and de-
scribes some of their considerations in meeting these goals. 

Goal 1: Saving Effort, Time and Money for the Integrator. Since component de-
velopment is carried out according to the standard, and much of the required docu-
mentation and evidence is created, the integrator may potentially save the same effort 
(interviewee #1; see section 4.1). However, for interviewees #3 and #4, the effort 
savings for the integrator are not so significant. Interviewee #4 shared his experience 
of a component not developed according to the required safety standards, which 
brought a significant additional cost to construct the required evidence and document-
ing it. Interviewee #3 states that with AC20-148, the effort spent by the certification 
authority is decreased since only changes of the component have to be investigated. 

Goal 2: Reducing Risk for the Integrator. Interviewees #1, #3, and #4, all state that 
with a pre-certified component (or a certifiable component, which has been used in 
another, certified, system), the confidence is high that the component will not cause 
any problems during system certification. Interviewee #3 specifically mentions that 
the customers using the component from his organization do it because the compo-
nent is pre-certified according to AC20-148 and thus is a low-risk choice. 

Practice XII: If the main goal is to present a component as risk-reducing, the compo-
nent developer should consider certifying the component. If the main goal is to save 
efforts for the integrator, it may be sufficient to develop it according to a standard, 
and address effort savings in the ways outlined in this paper. 

5 Conclusions and Future Work 

Twelve practices for development of reusable software components for safety-critical 
systems were identified in an empirical study with interviews with industrial experts 
and an industrial case study. Being based on five previously identified challenges 
(Åkerholm & Land, 2009), they potentially represent important effort savings. 

Further empirical studies, complemented by theoretical research, are needed, to 
further define many of the details relevant for a component interface, such as guaran-
teed behavior in the presence of (certain) faults, or a demonstration that “component-
level hazards” have been appropriately analyzed and addressed. 

Not to be underestimated is the potential gain in efficiency through standardiza-
tion of platforms, tools, languages, etc. In the long term, safety standards also need 
to evolve to recognize the possibilities of reusable software components, while con-
tinuing to ensure systems’ safety integrity. Our participation in the large European 
SafeCer3 project provides an opportunity to study also other industrial cases in order 
to collect further good practices and to validate the conclusions brought forward in 
the present paper. Methods and notations to support modularized safety argumenta-
tion, such as those described in the related work section, will also be further devel-

                                                           
3  http://www.safecer.eu 
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oped, applied, and evaluated. Finally, the project aims at influencing future editions 
of safety standards to incorporate sound practices and methods that will make it easi-
er and more economical to build safety-critical systems from pre-existing compo-
nents, while ensuring that they are still at least as safe as with the current standards. 
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CrossControl, ARTEMIS Joint Undertaking, and Vinnova. 

References 

1. Åkerholm, M., Land, R.: Towards Systematic Software Reuse in Certifiable Safety-
Critical Systems. In: RESAFE - International Workshop on Software Reuse and Safety, 
Falls Church, VA (2009) 

2. Hissam, S.A., Moreno, A.G., Stafford, J., Wallnau, K.C.: Enabling Predictable Assembly. 
Journal of Systems & Software 65(3) (2003) 

3. Larsson, M.: Predicting Quality Attributes in Component-based Software Systems. Ph.D. 
Thesis. Mälardalen University (2004) 

4. Voas, J.: Why Is It So Hard to Predict Software System Trustworthiness from Software 
Component Trustworthiness? In: 20th IEEE Symposium on Reliable Distributed Systems, 
SRDS 2001 (2001) 

5. Lougee, H.: Reuse and DO-178B Certified Software: Beginning With Reuse Basics. 
Crosstalk – the Journal of Defense Software Engineering (December 2004) 

6. Khanna, V., DeWalt, M.: Reusable Sw components (RSC) in real life. In: Software/CEH 
Conference, Norfolk, VA (2005) 

7. Wlad, J.: Software Reuse in Safety-Critical Airborne Systems. In: 25th Digital Avionics 
Systems Conference (2006) 

8. Karlsson, E.-A., Software Reuse : A Holistic Approach. John Wiley & Sons Ltd. (1995) 
ISBN 0 471 95819 0 

9. Land, R., Blankers, L., Chaudron, M., Crnković, I.: COTS Selection Best Practices in 
Literature and in Industry. In: Mei, H. (ed.) ICSR 2008. LNCS, vol. 5030, pp. 100–111. 
Springer, Heidelberg (2008) 

10. Land, R., Sundmark, D., Lüders, F., Krasteva, I., Causevic, A.: Reuse with Software 
Components - A Survey of Industrial State of Practice. In: Edwards, S.H., Kulczycki, G. 
(eds.) ICSR 2009. LNCS, vol. 5791, pp. 150–159. Springer, Heidelberg (2009) 

11. Lu, D., Lutz, R.R.: Fault Contribution Trees for Product Families. In: 13th International 
Symposium on Software Reliability Engineering, ISSRE 2002 (2002) 

12. Liu, J., Dehlinger, J., Lutz, R.: Safety Analysis of Software Product Lines Using State-
Based Modeling. In: 16th IEEE International Symposium on Software Reliability 
Engineering, ISSRE 2005 (2005) 

13. Conmy, P., Bate, I.: Component-Based Safety Analysis of FPGAs. IEEE Transactions on 
Industrial Informatics 6(2) (2010) 

14. Despotou, G., Kelly, T.: Investigating The Use of Argument Modularity To Optimise 
Through-Life System Safety Assurance. In: 3rd IET International Conference on System 
Safety (ICSS), Birmingham (2008) 

15. Bate, I., Hawkins, R., McDermid, J.: A Contract-based Approach to Designing Safe Systems. 
In: 8th Australian Workshop on Safety Critical Systems and Software, SCS 2003 (2003) 

16. As-2 Embedded Computing Systems Committee, "Architecture Analysis & Design 
Language (AADL)," Standard Document Number AS5506 (2009)  



Author Index
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Schäbe, Hendrik 137
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