
WSDM-Enabled Autonomic Augmentation

of Classical Multi-version Software
Fault-Tolerance Mechanisms

Roeland Dillen, Jonas Buys, Vincenzo De Florio, and Chris Blondia

University of Antwerp
Department of Mathematics and Computer Science
Performance Analysis of Telecommunication Systems

1 Middelheimlaan, B-2020 Antwerp, Belgium
Interdisciplinary Institute for Broadband Technology

8 Gaston Crommenlaan, B-9050 Ghent-Ledeberg, Belgium

Abstract. Web services are increasingly deployed in many enterprise
applications. For this type of applications, dependability issues are usu-
ally resolved by introducing some form of redundancy in the system.
Whereas hardware redundancy schemes have traditionally been defined
through static configurations based on worst-case analysis, the enhanced
flexibility and interoperability of web services allows for dynamic (self-)
management of redundancy at the application layer. Combining this ad-
vantage with service-oriented platforms such as OSGi facilitates the repli-
cation of software components and their integration within redundancy
schemes. The application of such redundancy schemes inevitably comes
at a price though — primarily due to the allocation of additional sys-
tem resources. It is often unknown to the service provider how much
redundancy and management complexity is required. Furthermore, the
degree of redundancy and the dependability strategy to be employed
may be restricted by the budget and requirements of the client, both
of which may vary. In this paper, we propose a solution to allow the
client to express a trade-off between its dependability requirements and
its available budget at request level. A dedicated service provider will
then attempt to honour these objectives — failing to do so would ob-
viously result in failure from the client point of view. Furthermore, we
show how classical multi-version software fault-tolerance techniques can
be augmented with advanced redundancy management leveraging the
Web Services Distributed Management standard.

1 Introduction

When constructing complex software systems, dependability issues will even-
tually unfold. In [1], Laprie defines dependability as the combination of relia-
bility, availability, safety, security and maintainability. Amongst the available
techniques to achieve dependability, and improve the reliability and availabil-
ity in particular, a great deal of attention has been paid in the literature to

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 294–306, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



WSDM-Enabled Autonomic Augmentation 295

fault-tolerant redundancy schemes leveraging design diversity. Two prevalent
examples of multi-version software fault-tolerance strategies are recovery blocks
and n-version programming [2,3]. Recovery blocks subject the response of a call
to a replica to an acceptance test, trying each replica in sequence until the out-
put passes the acceptance test or until there are no more replicas left to try.
In an n-version programming redundancy scheme, however, replicas are queried
in parallel and a decision algorithm is responsible for adjudicating the correct
result. Many different types of decision algorithms have been developed, which
are usually implemented as generic voters [4]. One example of such voting ap-
proaches is plurality voting: for each invocation of the scheme, the replicas will
be partitioned based on the equivalence of their results, and the result associated
to the largest cluster will be accepted as the correct result.

These classical fault-tolerant strategies have traditionally been applied with
a predetermined degree of redundancy on an immutable set of replicas. As such,
they are context-agnostic, i.e. they do not take account of changes in the opera-
tional status of any of the components contained within the redundancy scheme.
It was shown in [5] that this lack in flexibility may jeopardise the effectiveness of
the fault-tolerant unit from a dependability, timeliness as well as a resource ex-
penditure perspective. All dependability originating from the use of redundancy
inevitably comes at a price, which is primarily due to the additional expenditure
ensuing from the allocation of additional system resources. While a fixed amount
of redundancy is applicable to hardware systems, applying fault-tolerance strate-
gies at the application layer allows to incorporate advanced redundancy man-
agement capable of choosing the amount of redundancy autonomously.

In this paper, we formulate an approach to leverage the flexibility of service-
oriented architectures to show how classical multi-version software fault-tolerance
techniques can be augmented with advanced redundancy management. Firstly,
we propose a solution to allow the client to express a trade-off between its de-
pendability requirements and its available budget at request level. Accordingly,
the system will autonomously select the appropriate amount of redundancy, hon-
ouring the budgetary constraints stated. Secondly, the system is responsible for
maintaining a pool of instances — replicas — of a specific web service and is
capable of autonomously deploying additional replicas (if needed), or removing
or rejuvinating existing, poorly performing replicas.

The remainder of this paper is structured as follows: Section 2 provides an
overview of the technologies used for our service-oriented solution. The design
and architecture of the solution is then described in section 3. Next, the perfor-
mance of the system will be analysed in section 4, after which we conclude this
paper by a discussion and future work.

2 Key Technologies and Standards

In order to achieve its design goals, our solution relies on several key technolo-
gies. The first employed technology is web services. A web service is defined by
the W3C as “a software system designed to support interoperable machine-to-
machine interaction over a network” [6, Sect. 1.4]. XML-based web services in



296 R. Dillen et al.

particular offer a high degree of interoperability, which mainly stems from the
use of the Simple Object Access Protocol (SOAP) protocol to envelop messages
to be exchanged, and from the numerous standardisation initiatives.

One such standard is the Web Services Distributed Management [7] (WSDM)
family of specifications, which defines how networked resources can be managed
by exposing their capabilities and properties by means of a web service interface.
The constituent Management of Web Services (MoWS) specification describes
how web services themselves can be considered as resources, and require man-
ageability features as well [7, WSDM-MOWS]. More specifically, it defines a
number of metrics to expose information regarding the operational status of a
web service, which are of particular intrest within the scope of this paper.

Finally, the Java-based Open Services Gateway initiative (OSGi) framework
allows bundled applications and services to be remotely and dynamically de-
ployed, without necessitating a reboot of the system. This characteristic will be
exploited to automatically deploy new instances of a specific web services (i.e.
replicas) should the available amount of system resources prove to be insufficient.

3 Basic Principles and Components

In this section, we provide an overview of the architecture of our service-oriented
solution and elaborate on its design aiming to improve the effectiveness of tra-
ditional recovery strategies from the following three angles.

Firstly, our solution enables the dynamic and autonomic management of the
degree of redundancy of the system. The rationale for this objective is that a
predetermined degree of redundancy has traditionally been hardwired within
classical software fault-tolerance strategies. Changes in the operational status
of the system (i.e. its context) may result in the over- or undershooting of the
required degree of redundancy needed to sustain a certain level of dependabil-
ity [8,5]. It is also likely that the optimal degree of redundancy changes in time.

Secondly, the reliability of the fault-tolerant composite is largely dependent
on the quality of the constituent replicas [9]. Our architecture therefore includes
a monitor component, which was designed to observe changes in the operational
status of the available replicas. As such, replicas that consistently perform poorly
may be removed and replaced if necessary, which may further improve the reli-
ability of the composite.

Thirdly, for individual requests issued on the fault-tolerant composite, the
system will intelligently determine an appropriate degree and selection of repli-
cas honouring the dependability requirements expressed by the client, i.c. the
redundancy strategy to be used and timing as well as budgetary constraints. The
anticipated cost of invoking a redundancy scheme is primarily determined by the
resource allocation expenditure model and the operational status of the available
system resources maintained by the service provider though. We have therefore
chosen to implement the service provider as a WSDM-enabled resource, exposing
the expected cost for the various redundancy strategies it supports by means of
resource properties [10, WSRF-RP]. This allows the client to judiciously select
a service provider capable of delivering the requested service level.



WSDM-Enabled Autonomic Augmentation 297

An overview of the system architecture is shown in Fig. 1. The architecture
includes four dedicated components: a replicator, a dispatcher, a monitor and a
context data repository (CDR), each of which have been implemented asWSDM-
enabled web services. Any web service that will serve as version to be replicated
is required to expose a WSDM manageability interface.

In line with our second objective described hereabove, the replicator compo-
nent is responsible for maintaining a given amount of instances (replicas, that is)
of a specific web service (version). Deploying multiple instances of a particular
software component in a distributed system has proved successful in lowering
the risk of a complete system failure as the result of hardware failures [5]. It is
assumed that an increased degree of redundancy results in an increase of the
dependability, provided that badly performing replicas are removed. In order
to support the dynamic replication of a web service, the replicator will man-
age of a number of agents. Such utility application web services are deployed
on different network hosts and will periodically broadcast a heartbeat to the
replicator. When the replicator issues a command to replicate a web service,
one or more agents will be instructed to locally deploy a new instance of the
service. The replicator exposes a manageability interface for the manipulation of
replicas: new instances can be created, the amount of replicas for a given version
can be adjusted, and individual replicas can be disabled. Note how the replicator
maintains a registry of the system resources, federating different service groups,
each exposing the deployed instances of a specific web service [10, WSRF-SG].
This design permits WSDM advertisement messages to be broadcast upon ser-
vice creation or destruction, such that the monitor and the CDR components
can acquire the relevant context information.

The monitor component serves the purpose of monitoring the operational
status of the replicas in the system. It was implemented to automatically enrol
for participation in a publish-and-subscribe model, so as to receive notifica-
tions issued by the WSDM framework on behalf of a replica whenever the value
of some MoWS metric changes [11,7]. Notification messages reporting on the
change of the value of these metrics need to comply to the format as defined
in [10, WSRF-RP]. For instance, a replica that returns faulty responses all too
frequently, as can be deduced from the value of the mows:NumberOfFailedRequests

Fig. 1. Overview of the overall system architecture



298 R. Dillen et al.

metric, can be eliminated from the system and replaced by another. In this ca-
pacity, the monitor will use the replicator’s manageability interface.

Client transparency is attained by means of the dispatcher component that
exposes the redundancy scheme as a single web service, shielding the intrica-
cies of the redundancy management. The dispatcher exposes a manageability
capability to deploy an OSGi bundle in the system that creates replicas as well
as the composite service. Moreover, it can be fitted with support for different
fault-tolerance strategies. The dispatcher will select an appropriate degree and
selection of resources and integrate them within an appropriate fault-tolerant
redundancy scheme, attempting to honour the constraints and preferences ex-
pressed by the client. For instance, the client could specify that the dispatcher
should use a recovery block strategy, selecting an adequate selection of replicas
that does not exceed the budget, or that is guaranteed to return a result within
a given time span. We will explain this approach in further detail in Sect. 3.1.

The CDR can be set up acting as a receiver for third party metrics of par-
ticular interest, each of which are identified by the QName of the corresponding
resource property exposed through the WSDM manageability interface. By de-
fault, it will attempt to issue a subscription request so as to enrol in a publish-
and-subscribe scheme and receive notifications whenever the value of the relevant
metrics change [11,7]. Again, the payload of these messages is formatted as de-
fined in [10, WSRF-RP]. The system will attempt to establish such subscriptions
for all replicas registered within the system, driven by the WSDM advertisement
messages issued by the replication mechanism.

3.1 Budget Application Strategy (BAS)

We will now elaborate on the redundancy management provided by the dis-
patcher and how it was designed to determine an adequate selection of replicas
matching the requirements stated by the client. An overview of the overall pro-
cess can be found in Fig. 2.

The cost resulting from the invocation of a redundancy scheme is modelled by
two components: the cost to transfer the request message from the dispatcher to
the selected replicas and have the response returned accordingly, and the pro-
cessing cost charged for the use of an invoked replica. We will use an abstract
model to quantify the cost resulting from these two components, expressed in cur-
rency unit/byte, respectively currency unit/ms. The unit price is (dynamically)
set for individual replicas and can be retrieved from the CDR. An estimate of the
processing cost can be obtained when considering the average processing time,
which can be obtained from the mows:ServiceTime and mows:NumberOfRequests

metrics. Similarly, the cost originating from the use of a network datagram ser-
vice for the invocation of a replica can be calculated from resource properties
exposed by the CDR. A new metric was added to store the cumulative mes-
sage payload size of both the incoming request and the outgoing response. This
model, albeit simplistic, enables the dispatcher to rank the available system
replicas in terms of their total estimated usage cost, sorting them from cheap
to expensive. A subset is then iteratively chosen until the available budget has



WSDM-Enabled Autonomic Augmentation 299

been exhausted. Note that the budget is not necessarily entirely spent, for it
is not always necessary to actually use all the replicas selected — cf. recovery
blocks vs. n-version programming. Having determined an adequate selection of
system replicas, the dispatcher will then initialise the selected redundancy strat-
egy, integrating the selected replicas. Our dispatcher implementation currently
supports the following strategies:

1. Plain recovery block strategy: the selected replicas are queried in turn until
one of them has returned a response that passes the acceptance test.

2. Replicating recovery block strategy: similar to the plain recovery block strat-
egy. If the budget has not been entirely exhausted and all active replicas have
been tried, additional replicas will be created and invoked until a valid re-
sponse is obtained, or until the budget has been spent.

3. Active voting strategy: n-version programming scheme in which all replicas
are queried simultaneously; the first response acquired will be returned.

4. Plurality voting strategy: n-version programming scheme in which all repli-
cas are queried simultaneously. If the decision algorithm can establish the
existence of a consensus block that constitutes a plurality in the generated
partition based on the equivalence of the responses returned, the correspond-
ing response is returned.

<soap:Header xmlns:wsa="http:// www.w3.org/2005/08/addressing">
<wsa:To>http:// localhost:8888/dispatcher/services /service </wsa:To>
<wsa:Action>http:// adss.pats.ua.ac.be/service /version </wsa:Action>
...
<wsp:Policy xmlns:wsp="http: //schemas.xmlsoap.org/ws/2004/09/policy"

xmlns:rcfg="http: //adss.pats.ua.ac.be/dispatcher"
xmlns:ba ="http: //adss.pats.ua.ac.be/service ">

<ba:BudgetAssertion>
<ba:budget>

<ba:value>0.05</ba:value>
<ba:unit>ct</ba:unit>

</ba:budget>
</ba:BudgetAssertion>
<rcfg:RecoveryConfig>

<rcfg:RecoveryStrategy>
http:// adss.pats.ua.ac.be/strategies/PlainRecoveryBlockStrategy

</rcfg:RecoveryStrategy>
<rcfg:parameters>

<rcfg:parameter >
<rcfg:name>timeout </rcfg:name>
<rcfg:value>1000</rcfg:value>

</rcfg:parameter >
</rcfg:parameters>

</rcfg:RecoveryConfig>
<rcfg:AcceptanceTest>

contains (// versionResponse/text(),’i�carry�correct �result ’)
</rcfg:AcceptanceTest>

</wsp:Policy>
</soap:Header>

Listing 1.1. The dependability, timing and budgetary requirements of the client are
relayed by means of a WS-Policy element embedded in the SOAP header.

Which of the aforementioned fault-tolerance strategies will be employed is at the
behest of the client, a choice which will be conveyed to the dispatcher by means
of a special WS-Policy element embedded within a SOAP header block attached



300 R. Dillen et al.

to the issued request message, as is shown in List. 1.1 [12]. This WS-Policy
element contains a set of assertions, including the mandatory parameterised
assertion rcfg:RecoveryConfig. Its purpose is to identify the redundancy strat-
egy by means of a predefined Uniform Resource Identifier (URI), and to pro-
vide any additional parameters the chosen strategy may require. An optional
ba:BudgetAssertion can be included to state the available budget. Observe how
the acceptance test to be used for the recovery block strategies is relayed through
the parameterised rcfg:AcceptanceTest assertion, holding an XPath expression
that will be used to assess the validity of the response returned by each of the
probed replicas. Furthermore, an optional rcfg:parameter element can be set by
the client to hold a timeout parameter. It is, however, entirely up to the dis-
patcher’s implementation of the redundancy scheme to honour this constraint.

Client Dispatcher Replicator BAS SomeStrategyCDR Replicas

request

query

set of replica refs

request, set of replica refs

query

Replica costs

constrain replica set

request, constrained replica set

request

responseresponseresponseresponse

collect usage statistics

Monitor(s)

Metric Value Notification

prune replica

Fig. 2. Request handling overview: sequence diagram

It makes no use to squander the available budget on replicas that do not
significantly contribute to the effectiveness of the redundancy scheme. As an
additional measure to increase the overall availability of the requested service,
the monitor component is configured so as to automatically replace replicas with
a high degree of failed requests. In this capacity, the monitor will observe changes
in the values of the metrics defined in the MoWS specification so as to assess
the health of a replica. It does so by considering the relative number of requests
for which a given replica failed to return a valid response, i.e. for which a SOAP
fault was returned. When the ratio between the mows:NumberOfFailedRequests

and the mows:NumberOfRequests metrics is found to exceed a certain threshold,
the affected replica is considered to be unhealthy and the monitor will instruct
the replicator to remove the replica from the system. Note that this process is
fully transparent to the client and is driven by the monitor component. The
dispatcher allows the plain and replicating recovery block and plurality voting
strategies to be enhanced with this replica pruning procedure.



WSDM-Enabled Autonomic Augmentation 301

4 Performance Analysis

In this section, we will analyse the performance of each of the proposed strategies
in Sect. 3.1, assuming they are operating in an environment subject to transient
faults. Failures are injected into the system by means of a special service that will
affect the outcome of an acceptance test for strategies built on the recovery block
procedure, or that will affect the generated partition for voting-based strategies.

For a given replica, it is assumed the number of requests in between any two
successive failures is geometrically distributed with a constant parameter p. This
failure probability p is drawn from an exponential distribution with λ = 3.33.
As random variates drawn from an exponential distribution do not necessarily
generate values within [0, 1], all the mass above is truncated to 1. The rationale
behind the use of the exponential for sampling values for p as described is that
a replica is assumed to be affected by transient faults and will therefore only
fail periodically. Lower failure rates approaching 0 are more likely, as opposed to
permanent faults for which p = 1. The choice of λ will result in the generation
of probabilities high enough to be visualised easily but not excessively so. By
analogy with the findings in [13], variations in the response times of replica
invocations are simulated utilising a gamma distribution. In what follows, we will
analyse the performance for the following redundancy strategies when subject
to the failure model just described:

1. Simplex system: a single replica which obviously is not tolerant of failures.
2. Plain recovery block strategy: classical recovery block, as defined in Sect. 3.1.
3. Replicating recovery block strategy: extends the logic of the plain recovery

block in that additional replicas are automatically created if the initial set
of replicas to be used is exhausted and a sufficient share of the budget is left.

4. Plurality voting strategy: n-version programming scheme combined with plu-
rality voting, as defined in Sect. 3.1.

Furthermore, some of these strategies have been tested in combination with the
replica pruning feature introduced in Sect. 3.1. Replicas are judged unhealthy if
more than 20% of the requests previously handled have failed. The monitor will
instruct the replicator to remove such replicas from the system.

5. Plain recovery block with replica pruning, extending scenario 2.
6. Replicating recovery block with replica pruning, extending scenario 3.
7. Plurality voting strategy with replica pruning, extending scenario 4.

4.1 Results

We will now provide an overview of the performance of the strategies mentioned.
Each of the graphs below compares the basic scenario, without and with replica
pruning by the monitor component. Figures 3, 4 and 5 show the same metrics,
measuring the (in)effectiveness of a given redundancy strategy:

– Errors (plusses and crosses in the graphs at the right): indicative of the
percentage of the total number k of invocations of the composite that resulted
in failure (k = 4000).



302 R. Dillen et al.

Fig. 3. Scenarios 2 and 5: Plain recovery block strategies

– Costs (shown in the graphs at the left): indicative of the average, actual cost
for all requests. Graphs show average and standard deviation.

– Average replica quality (squares and asterisks): at the end of a run, all
remaining replicas in the system that were not pruned by the monitor are
asked for the probability with which they were struck by a failure. The
corresponding average is shown.

There is no need to actually simulate the first scenario, i.e. the simplex system,
as one can directly derive the percentage of the k invocations of the system
that will result in failure. As the error degree for each replica is chosen from an
exponential distribution with λ = 3.33, the mean failure probability is μ = 0.3.
One can then surmise that the Bernouilli process that describes the probability
of a failure affecting a request has probability parameter p = μ.

Figure 3 shows the results of scenarios 2 and 5. The percentage of failed invo-
cations is below 30%, for both scenarios with and without the monitor, and thus
an improvement compared to the simplex system. A growing degree redundancy
because of a bigger budget results in less failures of the scheme. Furthermore, the
advantage that the replica pruning appears to deliver diminishes as the budget
increases. The effect of the replica pruning is also visible on the average replica
quality. The quality of the replicas is distinctly less without replica pruning.
The actual cost of the recovery block strategy appears to be, on average, much
lower than the actual budget. The cost, however, appears to vary significantly,
although not to a degree that it will likely exceed the budget.

Figure 4 shows the results for the replicating recovery block, in which the
classical recovery block scheme is augmented with the possibility to create fur-
ther replicas. The error rate is well below the 30% benchmark for the simplex
system. Furthermore, it can be observed that a small advantage is gained from
utilising the monitor component. With respect to the cost, the same discrepancy
between the actual cost and the budget is noted, including a significant degree



WSDM-Enabled Autonomic Augmentation 303

Fig. 4. Scenarios 3 and 6: Replicating recovery block strategies

of variability. The same diminishing returns of the replica pruning mechanism
can be observed as in the previous experiment. As the budget and therefore the
number of replicas increases, their average quality worsens. This may be an ef-
fect of the abundance of replicas causing not all replicas to be queried frequently
enough for the monitor to confidently decide to prune a replica.

Fig. 5. Scenarios 4 and 7: Voting strategies, with and without replica pruning

Figure 5 shows the classical voting strategy augmented by the measures men-
tioned in Sect. 3.1. The voting strategy also performs better than the 30% bench-
mark set by a single service. It also benefits from the replica pruning by about



304 R. Dillen et al.

Fig. 6. Percentage of failed composite invocations

10% points in the lower budgets. As more budget becomes available — and there-
fore more replicas — this advantage diminishes as is also the case for scenarios
5 and 6 based on recovery blocks. This strategy seems to have an effect on the
overall replica quality: even in the higher budgets the average replica quality is
better in the monitor case. This is most likely caused by the fact that all selected
replicas that fit within the budget are actually invoked. This causes the monitor
to reach a good confidence about the health of the replica much faster.

Figure 6 shows a comparison of the ratio of invocations resulting in failure of
all transient scenarios. It shows that all the strategies provide the best results
when fitted with a replica pruning monitor. Of all the pruning strategies the
addition of direct replication capabilities in combination with replica pruning
as done by the replicating recovery block yields the best result for the smallest
budget. We have determined that the use of some simple MoWS features like
the mows:NumberOfFailedRequests metric already can provide some meaningful
improvement on the classical multi-version fault-tolerance strategies.

4.2 Discussion

The replicating recovery block strategy with replica pruning clearly yields the
best results. It must be noted though that devising a proper acceptance test
is usually very application-specific and may not always be possible due to the
limited information exposed in the service interface. Improving the applicability
of the recovery block mechanism, our system has been designed so that the
acceptance test can be configured at runtime, and is no longer hardwired within
the fault-tolerant unit.

The voting strategy can be more widely applied, as it employs a generic plu-
rality voter. The primary disadvantage of the voting system though stems from
the fact that all selected replicas will be invoked in parallel, incurring greater
actual cost. In this regard, the sequential iterative invocation of individual repli-
cas by the recovery block mechanisms show that, on average, not all replicas are



WSDM-Enabled Autonomic Augmentation 305

actually used. At the risk of sporadically overstepping the budget, much greater
redundancy — and therefore dependability — can be provided.

Because of the monitoring component and its ability to remove poorly per-
forming replicas, an increase in replicas will result in an increase in dependability,
provided that the replicas are used sufficiently; it takes a number of requests to
achieve sufficient confidence about the health of a replica.

5 Conclusions and Future Work

In this paper, we have shown how software fault-tolerance strategies can be
applied to XML-based web services, aiming to increase the dependability, and
in particular the availability of the overall service the system seeks to provide.
Furthermore, the design of dedicated WSDM-based web services can augment
these classical fault-tolerance strategies in that they can accommodate for ad-
vanced redundancy management. We have argued that poorly behaving replicas
can easily be detected leveraging some simple metrics provided by the MoWS
specification. Moreover, it was apparent from our experimentation that it is ad-
vantageous to prune such replicas and have them replaced by newly initialised
ones. A service-oriented architecture was introduced that builds on top of the
OSGi and Apache MUSE frameworks encompassing a monitor component that
keeps track of the operational status of the available system resources, and a
replicator utility service to ease the dynamic deployment of additional replicas.

The flexibility offered by the service-oriented architecture presented allows to
adaptively reconfigure the amount of redundancy and, accordingly, the selection
of resources for individual requests. Moreover, our experiments suggest that,
on average, combining the devised replica pruning and replacement features
with a classical recovery block strategy outperforms the other fault-tolerance
mechanisms tested, both in terms of cost and availability.

As part of future work, we envisage investigating more advanced detection
mechanisms for the monitor component, encompassing additional metrics ex-
tending beyond the set of metrics defined in MoWS. Furthermore, additional
experimentation is required to obtain a more general view on the performance
of the system using a wide range of failure injection models.

References

1. Laprie, J.C., Aviz̆ienis, A., Kopetz, H. (eds.): Dependability: Basic Concepts and
Terminology. Springer (1992)

2. Randell, B.: System structure for software fault tolerance. In: Proceedings of the
1st ACM International Conference on Reliable Software, pp. 437–449 (1975)

3. Aviz̆ienis, A.: The N-version approach to fault-tolerant software. IEEE Transac-
tions on Software Engineering 11(12), 1491–1501 (1985)

4. Lorczak, P., et al.: A theoretical investigation of generalized voters for redundant
systems. In: IEEE Digest of Papers on the 19th International Symposium on Fault-
Tolerant Computing (1989)



306 R. Dillen et al.

5. Buys, J., et al.: Towards Context-Aware Adaptive Fault Tolerance in SOA Appli-
cations. In: Proceedings of the 5th ACM International Conference on Distributed
Event-Based Systems, pp. 63–74 (2011)

6. W3C: Web Services Architecture (2004),
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

7. OASIS: Web Services Distributed Management (WSDM) 1.1 (2006),
http://www.oasis-open.org/committees/wsdm

8. De Florio, V.: Robust-and-evolvable resilient software systems: Open problems and
lessons learned. In: Proceedings of the 8th ACM Workshop on Assurances for Self-
Adaptive Systems, pp. 10–17 (2011)

9. De Florio, V., et al.: Software tool combining fault masking with user-defined
recovery strategies. IEE Proceedings – Software 145(6), 203–211 (1998)

10. OASIS: Web Services Resource Framework (WSRF) 1.2(2006),
http://www.oasis-open.org/committees/wsrf/

11. OASIS: Web Services Base Notification 1.3 (2006),
http://www.oasis-open.org/committees/wsn/

12. W3C: Web Services Policy 1.5 - Framework (2007),
http://www.w3.org/TR/ws-policy/

13. Gorbenko, A., et al.: Real Distribution of Response Time Instability in Service-
oriented Architecture. In: IEEE Symposium on Reliable Distributed Systems,
pp. 92–99 (2010)

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.oasis-open.org/committees/wsdm
http://www.oasis-open.org/committees/wsrf/
http://www.oasis-open.org/committees/wsn/
http://www.w3.org/TR/ws-policy/

	WSDM-Enabled Autonomic Augmentation of Classical Multi-version Software Fault-Tolerance Mechanisms
	Introduction
	Key Technologies and Standards
	Basic Principles and Components
	Budget Application Strategy (BAS)

	Performance Analysis
	Results
	Discussion

	Conclusions and Future Work
	References




