
AdvoCATE: An Assurance Case Automation Toolset

Ewen Denney, Ganesh Pai, and Josef Pohl

SGT / NASA Ames Research Center
Moffett Field, CA 94035, USA

{ewen.denney,ganesh.pai,josef.pohl}@nasa.gov

Abstract. We present AdvoCATE, an Assurance Case Automation ToolsEt, to
support the automated construction and assessment of safety cases. In addition
to manual creation and editing, it has a growing suite of automated features.
In this paper, we highlight its capabilities for (i) inclusion of specific metadata,
(ii) translation to and from various formats, including those of other widely used
safety case tools, (iii) composition, with auto-generated safety case fragments,
and (iv) computation of safety case metrics which, we believe, will provide a
transparent, quantitative basis for assessment of the state of a safety case as it
evolves. The tool primarily supports the Goal Structuring Notation (GSN), is
compliant with the GSN Community Standard Version 1, and the Object Model-
ing Group Argumentation Metamodel (OMG ARM).

Keywords: Assurance cases, Safety cases, Metrics, Safety management, Safety
process, Safety toolset, Formal methods.

1 Introduction

Structured, evidence-based arguments are increasingly being adopted as a means for
assurance, e.g., as dependability or assurance cases [15], and more popularly as safety
cases [18], for safety assurance in several domains including automotive, medical de-
vices, and aviation. Safety cases have already been in use for some time in the de-
fense, rail, and oil & gas sectors. The practitioner has a broad choice of tools, e.g.,
[1, 13, 14, 17], to use in creating structured safety assurance arguments (manually) in a
variety of notations such as the Goal Structuring Notation (GSN) [10], and the Claims
Argument Evidence (CAE) notation. This is, by no means, a comprehensive list of
available safety case construction tools, each of which have different foci, e.g., linking
to type theory, use of different notations for graphical representation of safety cases, etc.
However, common to all the tools is manual safety case creation with limited support
for auto-generation or automatic assembly. Creating safety cases manually can be time
consuming and costly.

Our goal is to develop a framework for the automated creation and assembly of as-
surance cases, using model-based transformation. In particular, we want to (i) leverage
our earlier work on using the output of formal methods to create auto-generated safety
case fragments [3], and additionally (ii) automatically combine them with the results of
traditional safety analyses, also transforming these into safety case fragments [8]. The
latter is aimed at supporting lightweight, automatic assembly and integration of safety

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 8–21, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

AdvoCATE: An Assurance Case Automation Toolset 9

cases into traditional safety, and development processes [6]. We aim to support the more
general notion of assurance cases, although in this paper we focus on safety cases.

We present AdvoCATE, the Assurance Case Automation ToolsEt, a suite of tools
and applications based on the Eclipse platform1, to build and transform safety cases.
The core of the system is a graphical safety case editor, integrated with a set of model-
based transformations that provide functionality for translating and merging pre-ex-
isting safety cases from other formats, and for incorporating automatically generated
content from external formal verification tools. The tool metamodel (Section 2.1) ex-
tends the GSN, e.g., through the inclusion of metadata (Section 2.2). The tool (Sec-
tion 3) supports basic manual creation and editing (Section 4.1), and interoperability
with other safety case tool formats (Section 4.2). The metadata supports automation
in safety case creation, for assembly of safety case fragments that have themselves
been auto-generated using formal methods (Section 5), generation of safety case met-
rics (Section 6), and transformations to generate “to-do” lists, textual narratives, and
tabular representations (Section 7).

We are using AdvoCATE in the ongoing construction of a safety case for the Swift
Unmanned Aircraft System (UAS), under development at NASA Ames.

2 Extended Goal Structuring Notation

2.1 Metamodel

In AdvoCATE, we have defined and implemented an Extended Goal Structuring Nota-
tion (EGSN) metamodel, to extend “traditional” GSN with additional information, e.g.,
node metadata, to be used to define more features and operations. The EGSN meta-
model has been developed as a combination of several different safety and assurance
case models; it is compatible both with the GSN standard [10], and the Argumentation
Metamodel (ARM)2, from the Object Management Group. There is a mapping from
any EGSN-based model to ARM, and vice versa; the major difference is that EGSN
explicitly contains all of the standard constructs, and only the two relationships as de-
fined in the GSN. This is, of course, extensible and extra relationships and/or reasoning
elements (in ARM terminology), can be added as needed.

The top level of any safety case model based on the EGSN metamodel (Fig. 1) is a
SafetyCase element. Essentially, this is the container that holds all elements of the safety
case; it has no attributes, and children of SafetyCase can be concrete instances of either
of the the abstract elements Node or Link. A Node generalizes the different types of
GSN elements, i.e., Goal, Strategy, Assumption, Justification, Context, and Evidence3.
The attributes of a Node are:

– identifier, which holds a unique name for a given node.
– description, which is user-supplied content describing/defining the node.

1 http://www.eclipse.org
2 GSN is itself in compliance with ARM, which is available at:
http://www.omg.org/spec/ARM/

3 Strictly speaking, the GSN uses the term Solution. We use the term Evidence interchangeably
with Solution.

http://www.eclipse.org
http://www.omg.org/spec/ARM/

10 E. Denney, G. Pai, and J. Pohl

Fig. 1. EGSN metamodel in UML, representing model elements, attributes and relationships

– color, an attribute which is meant to indicate the color used for display; informally,
we use it to convey the relative importance, source, or node state.

– comment, which we use to give informal information about a node.
– toBeInstantiated, which we use to denote abstract GSN elements that require fur-

ther instantiation of specific content within the description, and
– attributes, which are used to hold extra metadata about the node, e.g., classification

of the node as a high- or low-level requirement, and merging points with auto-
generated content.

We can modify the attributes (above) as required and they are inherited by each node
specialization. The Goal and Strategy elements also contain an additional attribute,
toBeDeveloped, which denotes that the elements are yet to be developed, e.g., by us-
ing strategies to connect them to sub-goals/solutions. The GSN standard limits applying
the toBeDeveloped annotation to only Goal and Strategy elements, whereas the attribute
toBeInstantiated applies to any node.

A Link is also an abstract entity and contains the attribute identifier. Links have con-
tainment relationships, which relate the Node, from which the link comes, and to which
it goes. These relationships refer to the abstract entity Node and not directly to the
derived entities. The InContextOf link, represents a one-way association between the
Goal (Strategy) element, and the Context, Assumption or Justification elements respec-
tively; the IsSolvedBy link, denotes a one-way association between Goal, Strategy, and
Evidence elements.

2.2 Node Metadata

We tag nodes with metadata to convey meaning about the significance or provenance
of particular nodes in a safety case, such as whether they relate to the mitigation of a
specific hazard, or whether they represent requirements that can be formally verified
using external tools.

AdvoCATE: An Assurance Case Automation Toolset 11

Node metadata is expressed as a set of attributes associated with each node. We use
metadata to define transformations on the safety case and during metrics computation.
At present, we have a pre-defined list of attributes that may be used. Eventually, this will
be replaced with a user-definable dictionary of attributes based on an ontology. There
is a strict syntax for defining attributes, as below, and multiple attributes are comma-
separated.

1. High-level and Low-level requirements
– High-Level Requirement
– Low-Level Requirement

2. Risks
– Risk[Likelihood,Severity]

where
– Likelihood ::= Extremely Improbable | Extremely Remote | Remote | Probable
– Severity ::= Catastrophic | Hazardous | Major | Minor | No Safety Effect

3. Hazards
– Hazard[Identifier]

where identifier is a string giving a reference identifier in a hazard table.
4. Provenance

– autocert:n
where n is a number giving an AUTOCERT [9] requirement. The auto-generated
fragment produced by verifying the formal requirement number n, will be merged
into the safety case at this node (described in more detail in Section 5).

The tool has been designed so that different attributes affect the display (color) of the
nodes, e.g., the attributes Risk, Hazard, and Requirement affect node color. The idea is
to provide a visual indicator to the user to convey specific semantics.

For instance, for requirement attributes, High-Level Requirement will assign a red
node color, whereas Low-Level Requirement will assign a green color. The Hazard at-
tribute will turn a node red as well. For the Risk attribute, the color scheme is dependent
on the combination of Severity and Likelihood, and is based on a risk categorization ma-
trix, e.g., such as the one defined in [19]. Node color will turn red, green, or remain blue
depending on whether the risk region in the risk categorization matrix is high, medium,
or low. Once a color has been set by an attribute, it cannot be manually changed. In
the case of multiple attributes, the color set by the first attribute takes precedence. The
rules used to determine node colors are currently hard-coded, but we plan to make it
user-definable in future.

3 Tool Chain Architecture and Implementation

In this section, we briefly describe the different frameworks and components that com-
prise the AdvoCATE tool chain (Fig. 2), and their integration.

Eclipse. AdvoCATE is distributed as a set of plug-ins to the Eclipse platform. Eclipse
uses a number of utilities of the underlying frameworks, namely the Eclipse Mod-
eling Framework (EMF) and the Graphical Editing Framework (GEF). AdvoCATE

12 E. Denney, G. Pai, and J. Pohl

Eclipse Framework (Plugin development)

Eclipse Modeling Framework (EMF)

Graphical Editing
Framework (GEF)

Graphiti

AdvoCATE*

VIATRA2
(Model

Transformations)

Import Utilities -
Safety Case

Translation/Merge
Tool*

(Java and XSLT)

Transformation
machines*

* Implemented in AdvoCATE

Execution
stack

Safety case editor*

Fig. 2. Frameworks in the AdvoCATE tool chain architecture

uses the generated EMF editing tools. In principle, we could provide extension
points4 to extend AdvoCATE as well.

Graphical Editing. The graphical component, at the core of the safety case editor, per-
mits the addition and manipulation of elements of a safety case. It also provides a
visual representation of the relationships between the safety case model elements.
The safety case model created is maintained as a separate resource from its visual
representation, and the diagram. In this way, the model can be used and manipu-
lated separately without affecting the graphical representation. Similarly, none of
the information of the graphical representation affects the model except when ex-
plicitly specified, e.g., color can be stored as part of the properties. The two files
are combined to create the diagram that is rendered on the screen and is editable by
the user. Both representations are contained inside an Eclipse project. The model
data file is connected to the Ecore metamodel, i.e., it must be a well-formed repre-
sentation of that metamodel.

Graphiti. We built the graphical component in the Graphiti framework, an application
interface (API) built upon the GEF. As shown in Fig. 2, the GEF is itself built on
top of EMF. Graphiti simplifies the development of graphical tools for editing and
displaying models, by automating much of the low-level implementation used to
manipulate graphical objects such as rendering, moving, selecting, etc.

Translation. The tool uses XSLT to convert external data into the appropriate XML
format (such as the AUTOCERT-generated XML, Section 5), which can be merged
with a pre-existing assurance case. The file formats for assurance cases developed
in other tools, such as ASCE, are parsed using Java DOM XML libraries.

VIATRA2. VIATRA2 (VIsual Automated model TRAnsformations) [20], a project deve-
loped within the Generative Modeling Technology (GMT) framework, is a toolset
designed for engineering life-cycle support from specification to maintenance. In
the scope of AdvoCATE, it is used to hold intermediate model representations (such

4 Plug-ins typically will provide extension points, by connecting to any of which we gain access
to their functionality, e.g., the context menus and diagram creation utilities are extended from
the core Eclipse user interface.

AdvoCATE: An Assurance Case Automation Toolset 13

Fig. 3. AdvoCATE screenshot displaying auto-layout on the auto-assembled Swift UAS safety
case fragment, which contains both manually created and auto-generated fragments

as the EGSN Ecore representation) and enact transformations on those models.
Through the transformation system, we can manipulate and transform safety case
models into other models (such as text, a CSV table, or a modified safety case).

4 Basic Functionality and Interoperability

Although the primary goal of AdvoCATE is to support automation, it also contains the
basic manual functionality that one would expect from a safety case tool, i.e., creating
and editing. In this section, we describe this manual functionality, giving an overview
of some basic use-cases for the tool: to create a new safety case diagram/model, and
to open a pre-existing model (as a diagram) for further editing or manipulation. Ad-
ditional basic functionality includes saving, printing, translating from/to other formats,
and merging external data.

4.1 Creating and Editing Safety Cases

Fig. 3 shows a bird’s eye view of the structure of an end-to-end safety case fragment for
the Swift UAS. It has been automatically assembled/composed from a manually created
fragment and an auto-generated fragment, after which it underwent auto-layout.

Editing a diagram typically takes place within a more detailed view (Fig. 4) that
shows more node information, as well as the editing features. We can select, move and
resize nodes as required; node descriptions are editable either directly on the canvas,
or in the properties panel, whereas attributes are edited only via the latter. Edits are
reflected in the diagram in real-time, through automatic refresh. In Fig. 4, the canvas
shows that the goal with identifier N48087573 (at the top right of the canvas) is selected
and being edited. The properties panel beneath the canvas shows the corresponding

14 E. Denney, G. Pai, and J. Pohl

Fig. 4. AdvoCATE screenshot showing a zoomed-in view for editing, with a Properties panel
underneath the canvas, the Project explorer as the left panel, and the Palette containing EGSN
constructs in the right panel

attributes that can be edited, and we can add new values directly, as required. Attribute
editing uses specialized syntax (Section 2.2) to include pre-defined node metadata.

Safety cases can be split up into separate interconnected diagrams using the Goal
Developed Elsewhere symbol ([16], p. 66). Note that this does not provide true modu-
larity in the sense of the modular GSN notation [10], which we do not yet support, but
it does make large safety cases more manageable.

We can link to other documents such as webpages, spreadsheets, or text documents.
These documents can either be local to the system or remotely stored, e.g., on a web
server. We provide a specific syntax to make references to external documentation: in
the description attribute for a node, the reference to the external document is specified
as a fully qualified URL in the properties panel. The resource will be displayed in a web
browser or the user will be prompted to open/save the resource.

Diagrams can be exported as an image in scalable vector graphics (SVG) format, and
subsequently converted5 to portable document format (PDF).

4.2 Interoperability

AdvoCATE supports the import/export of a variety of safety case formats—currently
those produced from the ASCE [1], CertWare [13], and D-Case [14] tools. A translation

5 Using the Batik toolkit: http://xmlgraphics.apache.org/batik/

http://xmlgraphics.apache.org/batik/

AdvoCATE: An Assurance Case Automation Toolset 15

engine acts as an import/export utility translating file formats from these tools into
EGSN, and vice versa. If an EGSN file already exists it can be imported directly.

The translation works by using ARM as the interoperability metamodel, i.e., there
are bidirectional translations between ARM and the different safety case formats. Con-
sequently we only need to define a translation from each format to/from ARM rather
than defining point-to-point connections between each tool. The ARM is also conve-
nient for merging external information.

One of the challenges in model transformation, as between EGSN and other safety
case formats, is that each metamodel has different attributes, and sometimes differ-
ing model elements. To preserve information between translations, we annotate the in-
formation as comments in the EGSN metamodel. The annotations indicate the source
metamodel and what the information actually represents. For instance, in EGSN, we
label nodes with a user-modifiable identifier. In ASCE, there is both a unique “refer-
ence” and a user specified identifier. If, in ASCE, the user specified identifier is not
provided, the unique reference is used instead. This information is preserved by storing
it in the EGSN metamodel, tagging it as being from ASCE and by labeling it as the
“user-id”. This way, if translating back to ASCE, the information is preserved and the
ASCE model can be regenerated without information loss. There are a number of such
cases which we handle in a similar way.

The one exception to this is layout data; in most cases, the model is stored separately
from the layout. As a design decision, we decided not to preserve layout information.

5 Automated Assembly

AdvoCATE can automatically assemble safety cases by combining manually created
fragments with content produced by external tools. Currently, this is limited to the for-
mal verification tool AUTOCERT [9], though we plan further tool integrations in future.

Rather than perform formal verification itself, AdvoCATE integrates results from
formal verification or formal methods with safety case construction. In general, there
are two ways to achieve this: (i) the output of a tool can produce evidence or, depending
on the level of detail it provides, be transformed into an actual argument fragment of a
safety case [8], and (ii) safety case fragments can be transformed into formal specifica-
tions that are then input to a tool.

An AUTOCERT specification formalizes software requirements that we derive from
system safety requirements, during safety analysis. Formal verification takes place in
the context of a logical domain theory, i.e., a set of axioms and function specifications.
To verify the software, we use formal verification of the implementation against a math-
ematical specification and test low-level library functions against their specifications.

5.1 From Formal Proofs to Safety Cases

AUTOCERT generates a document (in XML) with information describing the formal
verification of requirements. The core of this is the chain of information relating re-
quirements back to assumptions.

Each step is described by (i) an annotation schema for the definition of a program
variable [4], (ii) the associated verification conditions (VCs) that must be shown for

16 E. Denney, G. Pai, and J. Pohl

the correctness of that definition, and (iii) the variables on which that variable, in turn,
depends. We derive the goals (and subgoals) of the safety case from the annotation
schema. The subgoals are the dependent variables from those annotation schema. We
represent each VC related to a goal as a subgoal. An argument for a VC is a proof,
generated using a subset of the axioms. This proof forms the evidence connected to the
VC goal, and includes the prover used as a context. Function specifications from exter-
nal libraries used in the software and its verification also appear as goals. Arguments
for these goals can be made with evidence such as testing or inspection. Each subgoal
derived from an annotation schema is a step in the verification process.

During the process of merging the manually created and the auto-generated safety
cases, we replace specific nodes of the manually created safety case with the tree frag-
ments generated from AUTOCERT; specifically, the top-level goals of the latter are
grafted onto the appropriate lowest-level nodes of the former. These nodes are denoted
with unique attributes, autocert:n, relating the node to a tree in the automatically
created file, meaning that the goal with tag n is to be solved with AUTOCERT. Addition-
ally, these nodes are formal equivalents of informally stated goals, developed through
an explicit strategy of formalization, though the formalization at this stage is both per-
formed and checked manually.

5.2 From Safety Cases to Formal Specifications

Often, a safety case fragment may be created before the software verification is com-
pleted. In this case, we can use the autocert:n annotations on the nodes to generate
a formal specification. Based on the type of node in which the identifier occurs, the
tool infers whether the labeled node is a requirement or an assumption. Thereafter, we
can transform and graft back onto the safety case the proofs that result after running
AUTOCERT on the generated specification.

6 Generation of Safety Case Metrics

6.1 Metrics Derivation

There has been some criticism of safety cases as lacking a measurement basis and,
therefore, impeding systematic, repeatable evaluation [21]. We attempt to address this
weakness of safety cases, using AdvoCATE, by defining and implementing a (prelimi-
nary) set of safety case metrics. Our goal is to create a transparent, quantitative founda-
tion for assessment/review. It is worth noting that metrics alone (including those given
here) do not necessarily constitute an assessment; rather, together with a model for
interpretation, they can provide a convenient mechanism for decision-making by sum-
marizing the state and key properties of a safety case during its evolution.

We distinguish between (i) base metrics, which express a direct measurement of,
or value assignment to, a safety case property, e.g., the number of claims in a safety
argument, and (ii) derived metrics, which are an analytical combination of base metrics,
expressing a measure of, or a value assignment to, a safety case property that is not
directly measurable, e.g., coverage.

AdvoCATE: An Assurance Case Automation Toolset 17

Table 1. (Excerpt) GQM based derivation of safety case metrics and their specification

Goal G1. Coverage of Claims: Analyze the argument structure for the purpose of establishing the
extent of coverage with respect to the claims made and the evidence presented from the viewpoint
of the assessment team in the context of the safety case of the Swift UAS.
Questions Metrics

Q1.1. What is the total number of claims made? BM1.1. Total #(Claims)
Q1.2. What is the total number of claims that end
in evidence, i.e., developed claims?

DM1.2. Total #(Developed claims)

Q1.3. What fraction of the total number of
claims are developed claims?

DM1.3. Coverage (Claims)

Specification:

– BM1.1. Total #(Claims) = C, C ≥ 1.
– DM1.2. Total #(Developed claims) = CD , CD ≥ 0.
– DM1.3. Coverage (Claims) = Fraction of developed claims = COVC = CD

C
.

We consider an underlying process for safety case assessment, e.g., based on inspec-
tions [11], or reviews [12] to get insights into where metrics can be useful for decision
making during assessment, and the interpretation models required. Thereafter, we use
the Goal-Question-Metric (GQM) method [2] to define appropriate measurement goals,
identify questions that characterize the goal, and specify the relevant metrics.

For instance, in a staged argument review [12], quantitative measures applied at the
step of checking well-formedness can summarize the relevant properties, e.g., the num-
ber of goals with missing evidence/strategies. This can be useful when assessing large
argument structures, where manual review of the entire structure, for well-formedness,
can be time consuming. Similarly, during the argument criticism and defeat step, cov-
erage of the top-level claim by evidence is a property for which metrics can be defined.

Table 1 gives an example of how GQM has been used to define metrics that, we be-
lieve, meet the goal of analyzing claims coverage. We state the measurement goal by
instantiating the GQM template (the italicized text in Table 1), identify questions that
characterize the goal, and define the metrics that answer the questions quantitatively. In
Table 1, the base and derived metrics are distinguished by the prefixes BM and DM re-
spectively. In this way, by defining additional measurement goals, we have specified6 a
preliminary set of safety case metrics (Table 2). For this paper, we have mainly focused
on metrics that address the structural and syntactical properties of argument structures
described using the GSN.

Note that although tool support can also be used to highlight violations, e.g., of
well-formedness properties, this is mainly useful during argument development, where
the intent would be to “find and fix”. From the perspective of an assessor, however,
the broad intent is to evaluate the argument for essential qualities [11]. When properly
defined and interpreted, we hypothesize that metrics can be indicators of these qualities.

6.2 Metrics Implementation

The generation of the safety case metrics, as given in Table 2, is an automated op-
eration, which uses some of the node metadata (Section 2.2) to count the nodes in the

6 The full GQM-based derivation of the metrics, and their formal specifications, are out of the
scope of this paper.

18 E. Denney, G. Pai, and J. Pohl

Table 2. Safety case metrics, with their valid values

Metric Symbol Type Valid Values

Measures of Size

Total #(Hazards considered in the safety case) H Base ≥ 0

Total #(Hazards identified in hazard analysis) HI Base ≥ 0

#(High-level safety requirements per hazard Hi) r(Hi) Base ≥ 0

Total #(High-level safety requirements) RHL Base ≥ 0

Total #(Low-level safety requirements) RLL Base ≥ 0

#(Developed claims per hazard Hi) cD(Hi) Base ≥ 0

#(Claims per high-level safety requirement HLRi) C(HLRi) Base ≥ 0

#(Claims per low-level safety requirement LLRi) C(LLRi) Base ≥ 0

Total #(Claims) C Base ≥ 1

Total #(Developed claims) CD Derived ≥ 0

Total #(Undeveloped claims) CUD Derived ≥ 0
Total #(Uninstantiated claims) CUI Derived ≥ 0
Total #(Strategies) S Base ≥ 0

Total #(Undeveloped strategies) SUD Derived ≥ 0
Total #(Uninstantiated strategies) SUI Derived ≥ 0
Total #(Contexts) K Base ≥ 0

Total #(Assumptions) A Base ≥ 0

Total #(Justifications) J Base ≥ 0

Total #(Evidence) E Base ≥ 0

Measures of Coverage

Coverage (Claims) COVC Derived [0, 1]

Coverage (High-level safety requirements) COVRHL Derived [0, 1]

Coverage (Low-level safety requirements) COVRLL Derived [0, 1]

Coverage (Hazards considered) COVCH Derived [0, 1]

Coverage (Hazards Identified) COVHI Derived [0, 1]

EGSN-based safety case model, e.g., counting the nodes containing “high-level require-
ment” as an attribute gives the value assignment for the metric RHL. Presently, only
certain node types can be distinguished based on node attributes and metadata. Conse-
quently, only a subset of the metrics identified in Table 2 have been implemented.

Fig. 5 shows the implemented metrics and the computed values when applied to the
Swift UAS safety case fragment [8] (also shown as a bird’s eye view in Fig. 3). As
we define more expressive/detailed node metadata, we can implement the remainder
of the metrics from Table 2, as well as additional metrics such as “confidence in a
claim” [7].

7 Transformation Operations

We describe three automated operations defined in AdvoCATE, for generating artifacts
that support safety case development and assessment:

To-do Lists. One simple form of assessment is determining those parts of the safety
case that need further development. AdvoCATE uses a Model2Text transformation
to create a simple to-do list, listing the undeveloped and uninstantiated nodes. Fig. 6
shows an excerpt of such a to-do list, for the Swift UAS safety case fragment.

AdvoCATE: An Assurance Case Automation Toolset 19

---SIZE METRICS---
Goals: 220

Developed: 157
Undeveloped: 63
Uninstantiated: 6

Strategies: 107
Undeveloped: 13
Uninstantiated: 0

Contexts: 133
Assumptions: 5
Justifications: 3
Evidence: 65
TOTAL NODES: 533

R_HL : Number of High-Level Requirements = 3
R_LL : Number of Low-Level Requirements = 2
R1_HL : Number of claims (High-Level Requirement 1) = 182
R2_HL : Number of claims (High-Level Requirement 2) = 1
R3_HL : Number of claims (High-Level Requirement 3) = 1
R1_LL : Number of claims (Low-Level Requirement 1) = 32
R2_LL : Number of claims (Low-Level Requirement 2) = 122

--- COVERAGE METRICS ---
COV_C : Developed claims to total claims = 0.71
COV_R_HL : Coverage of High-Level Requirements = 0.8
COV_R_LL : Coverage of Low-Level Requirements = 0.88

Fig. 5. AdvoCATE calculation of metrics for the Swift UAS safety case fragment

Undeveloped Goals To Do:
ID:N43752193 :: Failure hazards during Cruise phase are mitigated
ID:AC486 :: srcWpPos is a position in the NE frame (i.e. has_unit(srcWpPos, pos(ne)) holds.)
ID:N63112384 :: Modem interface is correct ID:N11943209 :: FMS design is correct
...

Uninstantiated Goals To Do:
ID:N87102962 :: Autopilot module satisfies {Higher-level Requirement X}
Derived from parent ID: N92654598 :: Argument that Autopilot module satisfies higher level

requirements
ID:N59408212 :: {Subsystem X} failure hazard during descent is mitigated
Derived from parent ID: N3143972 :: Argument over all Swift UAV subsystems (identified

failure hazards)

Fig. 6. (Excerpt) To-do list generated by AdvoCATE, for the Swift UAS safety case fragment

Narrative Form. The generation of a safety case narrative form, i.e., a structured doc-
ument providing the content of the safety case in a readable form, uses an inter-
mediate tree model. The safety case can then be flattened into a sequence that is a
pre-order traversal of the tree, giving a description of the content of the safety case
without the diagrammatic form.

Tabular Form. We generate a comma separated value (CSV) format of the document
(Fig. 7) using an intermediate model for the transformation. The CSV template
relates a goal with an arbitrary number of contexts and strategies. The strategies
are further related to any number of assumptions, contexts, justifications, and sub-
goals. For each goal the operation generates these relationships. The operation then
repeats the process for each sub-goal related to each strategy. The rationale for a
specific CSV format of a safety case, and the resulting tabular form, is based on the
experiences gained [5] from the ongoing creation of the Swift UAS safety case.

20 E. Denney, G. Pai, and J. Pohl

PARENT GOAL CONTEXT STRATEGY SUBGOAL/SOLUTION

 Strategy Type Context Assumptions Justifications

N27216417: SWIFT UAS
is safe

N80058283: Range
(Location and Site) of
operation

N18584532: Argument
of safety over all UAS
subsystems and
interactions between
subsystems

N91753638: SWIFT
UAS Design
Management Plan and
Design Documentation

N2946770: SWIFT UAS
Communication Infrastructure
is safe

N24389172: Specified
configuration

N20743322: Airborne system
(SWIFT UAV) is safe

N44679952: Weather
conditions

N83345544: SWIFT UAS
subsystem interactions are
safe

N86072314: Specified
Mission

N67094880: SWIFT Ground
stations are safe

N2946770: SWIFT UAS
Communication
Infrastructure is safe

N20743322: Airborne
system (SWIFT UAV) is
safe

N70618522: Argument
of hazard mitigation over
all identified SWIFT UAV
hazards

N49558532: Definition
of acceptable risk and
risk categories

N44519454: Interaction
hazards

N2965510: Identified
hazards and hazard
categories during Swift
UAV Hazard analysis

N69623828: SWIFT UAV
failure hazards are mitigated

N84863913: Definition
of hazard from MIL-
STD-882D

N40609843: Hazards arising
from the operating
environment of SWIFT UAV
are mitigated

Fig. 7. (Excerpt) CSV format of the Swift UAS safety case generated using AdvoCATE, subse-
quently imported into a spreadsheet, resulting in a tabular view

8 Conclusion

In this paper, we have described AdvoCATE, an Eclipse-based toolset that uses model-
based transformation and extended GSN to support the automated construction and
assessment of safety cases.

We have just begun to develop the wealth of functionality for automated construction
that can be implemented using transformations, e.g., a simple extension will be the
generation of traceability matrices linking requirements, hazards and evidence. A more
involved transformation will be argument refactoring. Our next step will be to include
modular extensions to GSN, patterns, and to provide automated features for their use. To
support safety case assessment, we have defined and implemented a preliminary set of
metrics based on the syntactic/structural properties of argument structures documented
using GSN. As future work, we intend to define integrated measures that combine the
metrics based on both syntactic and semantic properties, building on our previous work
on confidence quantification [7]. We will also define interpretation models based upon
which metrics can be used, during assessment, for decision making.

For tool validation, we continue regression testing of the interface and transforma-
tions, and we also plan to verify the algorithms that AdvoCATE implements. We be-
lieve that the capabilities of AdvoCATE, highlighted in this paper, are promising steps
towards cost-effective safety assurance, and transparency during assessment and cer-
tification. Eventually, our goal is to support “round-trip engineering” of safety cases,
linking safety-relevant, operational, and development artifacts.

Acknowledgements. This work was funded by the VVFCS element under the SSAT
project in the Aviation Safety Program of the NASA Aeronautics Mission Directorate.
We also thank Ábel Hegedüs and Michael Wenz for their help with VIATRA2 and
Graphiti, respectively, and Corey Ippolito for access to the Swift UAS data.

AdvoCATE: An Assurance Case Automation Toolset 21

References

[1] Adelard LLP: Assurance and safety case environment (ASCE),
http://www.adelard.com/asce/ (last accessed May 2011)

[2] Basili, V., Caldiera, G., Rombach, D.: Goal question metric approach. In: Encyclopedia of
Software Engineering, pp. 528–532. John Wiley (1994)

[3] Basir, N., Denney, E., Fischer, B.: Deriving Safety Cases for Hierarchical Structure in
Model-Based Development. In: Schoitsch, E. (ed.) SAFECOMP 2010. LNCS, vol. 6351,
pp. 68–81. Springer, Heidelberg (2010)

[4] Denney, E., Fischer, B.: Generating customized verifiers for automatically generated code.
In: Proc. Conf. Generative Programming and Component Eng., pp. 77–87 (October 2008)

[5] Denney, E., Habli, I., Pai, G.: Perspectives on software safety case development for un-
manned aircraft. In: Proc. 42nd Intl. Conf. Dependable Systems and Networks (June 2012)

[6] Denney, E., Pai, G.: A Lightweight Methodology for Safety Case Assembly. In: Ortmeier,
F., Daniel, P. (eds.) SAFECOMP 2012. LNCS, vol. 7612, pp. 1–12. Springer, Heidelberg
(2012)

[7] Denney, E., Pai, G., Habli, I.: Towards measurement of confidence in safety cases. In: Proc.
5th Intl. Symp. Empirical Soft. Eng. and Measurement, pp. 380–383 (September 2011)

[8] Denney, E., Pai, G., Pohl, J.: Heterogeneous aviation safety cases: integrating the formal
and the non-formal. In: 17th IEEE Intl. Conf. Engineering of Complex Computer Systems
(July 2012)

[9] Denney, E., Trac, S.: A software safety certification tool for automatically generated guid-
ance, navigation and control code. In: IEEE Aerospace Conf. Electronic Proc. (2008)

[10] Goal Structuring Notation Working Group: GSN Community Standard Version 1 (Novem-
ber 2011), http://www.goalstructuringnotation.info/

[11] Graydon, P., Knight, J., Green, M.: Certification and safety cases. In: Proc. 28th Intl. System
Safety Conf. (September 2010)

[12] Kelly, T.P.: Reviewing Assurance Arguments - A Step-by-Step Approach. In: Proc. Work-
shop on Assurance Cases for Security - The Metrics Challenge, Dependable Systems and
Networks (July 2007)

[13] Kestrel Technology LLP and NASA Langley Research Center: CertWare tool,
http://nasa.github.com/CertWare/ (last accessed May 2011)

[14] Matsuno, Y., Takamura, H., Ishikawa, Y.: Dependability case editor with pattern library. In:
Proc. 12th IEEE Intl. Symp. High-Assurance Systems Eng., pp. 170–171 (2010)

[15] National Research Council Committee on Certifiably Dependable Software Systems: Soft-
ware for Dependable Systems: Sufficient Evidence? National Academies Press (2007)

[16] Spriggs, J.: GSN - The Goal Structuring Notation. Springer (2012)
[17] Steele, P., Collins, K., Knight, J.: ACCESS: A toolset for safety case creation and manage-

ment. In: Proc. 29th Intl. Systems Safety Conf. (August 2011)
[18] UK Ministry of Defence (MoD): Safety Management Requirements for Defence Systems.

Defence Standard 00-56, Issue 4 (2007)
[19] U.S. Department of Transportation, Federal Aviation Administration: System Safety Hand-

book. FAA (December 2000)
[20] Varró, D., Balogh, A.: The model transformation language of the VIATRA2 framework.

Science of Computer Programming 68(3), 214–234 (2007)
[21] Wassyng, A., Maibaum, T., Lawford, M., Bherer, H.: Software Certification: Is There a

Case against Safety Cases? In: Calinescu, R., Jackson, E. (eds.) Monterey Workshop 2010.
LNCS, vol. 6662, pp. 206–227. Springer, Heidelberg (2011)

http://www.adelard.com/asce/
http://www.goalstructuringnotation.info/
http://nasa.github.com/CertWare/

	AdvoCATE: An Assurance Case Automation Toolset
	Introduction
	Extended Goal Structuring Notation
	Metamodel
	Node Metadata

	Tool Chain Architecture and Implementation
	Basic Functionality and Interoperability
	Creating and Editing Safety Cases
	Interoperability

	Automated Assembly
	From Formal Proofs to Safety Cases
	From Safety Cases to Formal Specifications

	Generation of Safety Case Metrics
	Metrics Derivation
	Metrics Implementation

	Transformation Operations
	Conclusion
	References

