

Lecture Notes in Computer Science 7613
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Frank Ortmeier Peter Daniel (Eds.)

Computer Safety,
Reliability, and Security
SAFECOMP 2012Workshops: Sassur,ASCoMS,
DESEC4LCCI, ERCIM/EWICS, IWDE
Magdeburg, Germany, September 25-28, 2012
Proceedings

13

Volume Editors

Frank Ortmeier
Otto-von-Guericke-Universität, Fakultät für Informatik
Institut für Technische und Betriebliche Informationssysteme (ITI)
Universitätsplatz 2, 39106 Magdeburg, Germany
E-mail: frank.ortmeier@ovgu.de

Peter Daniel
SELEX ELSAG, Liverpool Innovation Park
Edge Lane, Fairfield, Liverpool, L7 9NJ, UK
E-mail: ewicstc7@prdaniel.co.uk

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-33674-4 e-ISBN 978-3-642-33675-1
DOI 10.1007/978-3-642-33675-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012947423

CR Subject Classification (1998): K.6.5, D.2, C.2, F.3, H.4, D.3, I.2

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Safety, reliability, and security are becoming vital in almost all technical domains.
The reason is that computer pervasion is steadily increasing and more and more
systems are becoming networked. This often leads to the term of cyber-physical
systems, i.e., systems influencing our environment that are connected by mod-
ern computer networks. Examples are smart traffic guidance, intelligent power
lines, or autonomous vehicles. Despite the commonality in safety challenges, each
domain has very specific stakeholders, requirements, standards, etc.

To account for this, we decided to give various domain experts a common
meeting place in the form of domain-specific workshops at SAFECOMP. The
common theme is safety and security. Bringing these experts together at one
place and collecting their articles in one volume fosters collaboration and the
exchange of ideas.

For SAFECOMP 2012, we accepted five domain-specific, high-quality work-
shops. Each workshop had well-known chairs and an international program com-
mittee. Altogether 69 researchers from 15 countries reviewed the following 44
articles.

Architecting safe collaborative mobile systems was the aim of the ASCoMS
workshop (chairs: António Casimiro and Jörg Kaiser). Building autonomous
mobile systems is already challenging. However, for transition from academia
to real-world scenarios, safety guarantees are mandatory and a prerequisite for
acceptance.

Our daily life heavily depends upon the correct functioning of many com-
plex large-scale infrastructures such as communication, power, or water sup-
ply. The DESEC4LCCI workshop (chairs: Christian Esposito, Marco Platania,
and Francesco Brancati) focused on dependable and secure computing for such
systems. Until recently, security for such systems could be reduced to physical
security (i.e., protecting the infrastructure by security personal). As systems be-
come widely connected, this is no longer sufficient and new approaches must be
developed.

The emergence of cyber-physical systems is speeding up exponentially. The
ERCIM/EWICS/DECOS workshop (chairs: Erwin Schoitsch and Amund
Skavhaug) brought together stakeholders from many major European research
projects and programs to exchange ideas on making such systems safer and more
reliable.

Design and operation of most technical systems is no longer only an engineer-
ing challenge. It requires the interaction of mechanical, electrical, and software
engineers for digitally engineering such a system. The 3rd International Work-
shop on Digital Engineering – IWDE (chairs: Gunter Saake and Veit Köppen)
brought together researchers from these domains, which share the common vision
of jointly digitally engineering safe and secure systems.

VI Preface

Safety assurance and certification are amongst the most expensive and time-
consuming tasks in the development of safety-critical systems. The SASSUR
workshop (chairs: Alejandra Ruiz, Tim Kelly, Mehrdad Sabetzadeh, and Didier
Van den Abeele) focused exactly on bridging this gap. It covered new methods,
approaches, and tools on tackling this problem.

Summarizing, I have to say that correspondence and organization of these
five workshops for SAFECOMP took a lot of my time. But when looking at the
program now, I would like to express my deepest thanks to all workshop chairs.
You did a fantastic job. The program was very tempting and a great extension to
SAFECOMP 2012. I would also like to thank in particular Michael Lipaczewski,
who did a great job in organizing this volume and collecting all the articles,
introductions, copyright forms, etc.

I hope you are all enjoying this volume and are maybe even benefitting from
some new ideas and achievements presented here.

August 2012 Frank Ortmeier

Organization

Next Generation of System Assurance Approaches for
Safety-Critical Systems Workshop (Sassur 2012)

Chairs
Didier Van Den Abeele Alstom Transport, France
Tim Kelly University of York, UK
Alejandra Ruiz Tecnalia, Spain
Mehrdad Sabetzadeh Simula Research Laboratory, Norway

Steering Committee

Annie Combelles Inspearit, France
Javier Dı́az University of Granada, Spain
Huascar Espinoza TECNALIA, Spain
John Favaro Intecs, Italy
Paolo Panaroni Intecs, Italy
Fulvio Tagliabò Centro Ricerche FIAT, Italy

Program Committee

Katrina Attwood University of York, UK
Fabien Belmonte Alstom, France
Ronald Blanrue EADS/Eurocopter, France
Marc Born ikv++ technologies ag, Germany
Sergio Campos Tecnalia Research & Innovation, Spain
Daniela Cancilla Atego, France
Cedric Chevrel Thales Avionics, France
C. Michael Holloway NASA Langley Research Center, USA
Olaf Kath ikv++ technologies ag, Germany
Andreas Keis EADS/Innovation Works, UK
Uwe Kremer TÜV SÜD, Germany
Xabier Larrucea TECNALIA, Spain
Mark Nicholson University of York, UK
Jürgen Niehaus Safetrans, Germany
Kenji Taguchi AIST, Japan
Jose Luis De La Vara Simula Research Laboratory, Norway
Harold Weffers Eindhoven University of Technology,

The Netherlands

VIII Organization

Workshop on Architecting Safety in Collaborative Mobile
Systems (ASCoMS 2012)

Chairs
António Casimiro University of Lisbon, Portugal
Jörg Kaiser Otto-von-Guericke-University of Magdeburg,

Germany

Program Committee

Luis Almeida FEUP, Portugal
Leandro Becker UFSC, Brazil
Andrea Bondavalli University of Florence, Italy
Thomas Fuhrman GM, USA
Karl Goeschka Vienna University of Technology, Austria
Rolf Johansson SP, Sweden
Marcelo Lemes EMBRAER, Brazil
Priya Narasimhan Carnegie Mellon University, USA
Edgar Nett Otto-von-Guericke-University of Magdeburg,

Germany
Stefan Schemmer RT Solutions, Germany
Elad Michael Schiller Chalmers University of Technology, Sweden
Paulo Verissimo University of Lisbon, Portugal

Workshop on Dependable and Secure Computing
for Large-scale Complex Critical Infrastructures
(DESEC4LCCI 2012)

Chairs
Francesco Brancati Resiltech, Italy
Christian Esposito Institute of High Performance Computing

and Networking (ICAR), Italy
Marco Platania Sapienza University of Rome, Italy

Program Committee

Angelo Corsaro PrismTech, UK
Michele Colajanni University of Modena, Italy
Bojan Cukic West Virginia University, USA
Francesco Flammini University “Federico II” of Naples, Italy
Felicita Di Giandomenico ISTI-CNR, Italy

Organization IX

Abdelmajid Khelil TU Darmstadt, Germany
Catello Di Martino University of Illinois at Urbana-Champaign, USA
Edgar Nett Otto-von-Guericke-University of Magdeburg,

Germany
Ricardo Jimenez Peris Universidad Politecnica de Madrid, Spain
Sara Tucci Piergiovanni CEA LIST, Italy
Luigi Romano Parthenope University of Naples, Italy
Nuno Silva Critical Software SA, Portugal
Paulo Verissimo University of Lisbon, Portugal
Marco Vieira University of Coimbra, Portugal

ERCIM/EWICS/Cyberphysical Systems Workshop

Chairs
Erwin Schoitsch Austrian Institute of Technology, Austria
Amund Skavhaug NTNU, Trondheim, Norway

Program Committee

Friedemann Bitsch Germany
Sandro Bologna Italy
Wolfgang Ehrenberger Germany
Francesco Flammini Italy
Robert Genser Austria
Janusz Gorski Poland
Maritta Heisel Germany
Floor Koornneef The Netherlands
Peter Ladkin Germany
Meine van der Meulen Norway
Odd Nordland Norway
Frank Ortmeier Germany
Thomas Pfeiffenberger Austria
Francesca Saglietti Germany
Christoph Schmitz Switzerland
Erwin Schoitsch Austria
Rolf Schumacher Germany
Amund Skavhaug Norway

X Organization

International Workshop on Digital Engineering
(IWDE 2012)

Chairs
Veit Köppen Otto-von-Guericke-University Magdeburg,

Germany
Gunter Saake Otto-von-Guericke-University Magdeburg,

Germany

Program Committee

Abdel-Badeeh M. Salem Ain Shams University, Egypt
Andreas Brenke HS Niederrhein, Germany
Raimund Dachselt TU Dresden, Germany
Matthias Güdemann Inria, Grenoble, France
Frank Ortmeier Otto-von-Guericke University Magdeburg,

Germany
Dirk Reiners University of Louisiana at Lafayette, USA
Hermann Rohling TU Hamburg, Germany
Michael Schenk FhG IFF Magdeburg, Germany
Gunter Saake Otto-von-Guericke University Magdeburg,

Germany

Table of Contents

Next Generation of System Assurance Approaches
for Safety-Critical Systems Workshop (Sassur 2012)

Introduction to Sassur 2012 . 3
Alejandra Ruiz, Tim P. Kelly, Mehrdad Sabetzadeh, and
Didier Van Den Abeele

AdvoCATE: An Assurance Case Automation Toolset 8
Ewen Denney, Ganesh Pai, and Josef Pohl

Towards a Case-Based Reasoning Approach for Safety Assurance
Reuse . 22

Alejandra Ruiz, Ibrahim Habli, and Huáscar Espinoza

Modeling for Safety in a Synthesis-Centric Systems Engineering
Framework . 36

Jasen Markovski and J.M. van de Mortel-Fronczak

A Model Based Approach for Safety Analysis . 50
Fabien Belmonte and Elie Soubiran

Towards a Model-Based Evolutionary Chain of Evidence for Compliance
with Safety Standards . 64

Jose Luis de la Vara, Sunil Nair, Eric Verhulst, Janusz Studzizba,
Piotr Pepek, Jerome Lambourg, and Mehrdad Sabetzadeh

A New Approach to Assessment of Confidence in Assurance Cases 79
Xingyu Zhao, Dajian Zhang, Minyan Lu, and Fuping Zeng

An Unified Meta-model for Trustworthy Systems Engineering 92
Eric Verhulst and Bernhard H.C. Sputh

A Preliminary Fault Injection Framework for Evaluating Multicore
Systems . 106

Anna Lanzaro, Antonio Pecchia, Marcello Cinque,
Domenico Cotroneo, Ricardo Barbosa, and Nuno Silva

Meeting Real-Time Requirements with Multi-core Processors 117
Daniel Kästner, Marc Schlickling, Markus Pister,
Christoph Cullmann, Gernot Gebhard, Reinhold Heckmann, and
Christian Ferdinand

Assessing Software Interference Management When Modifying
Safety-Related Software . 132

Patrick J. Graydon and Tim P. Kelly

XII Table of Contents

Workshop on Architecting Safety in Collaborative
Mobile Systems (ASCoMS 2012)

Introduction to ASCoMS 2012 . 149
António Casimiro and Jörg Kaiser

Towards Dependable and Stable Perception in Smart Environments
with Timing and Value Faults . 151

Lúıs Marques and António Casimiro

An Approach Supporting Fault-Propagation Analysis for Smart Sensor
Systems . 162

Sebastian Zug, Tino Brade, Jörg Kaiser, and Sasanka Potluri

Use of Quality Metrics for Functional Safety in Systems of Cooperative
Vehicles . 174

Kenneth Östberg and Rolf Johansson

From Autonomous Vehicles to Safer Cars: Selected Challenges for the
Software Engineering . 180

Christian Berger

Modelling of Safety-Related Timing Constraints for Automotive
Embedded Systems . 190

Oscar Ljungkrantz, Henrik Lönn, Hans Blom, Cecilia Ekelin, and
Daniel Karlsson

Workshop on Dependable and Secure Computing
for Large-Scale Complex Critical Infrastructures
(DESEC4LCCI 2012)

Introduction to DESEC4LCCI 2012 . 205
Christian Esposito, Marco Platania, and Francesco Brancati

Quantitative Security Evaluation of a Multi-biometric Authentication
System . 209

Leonardo Montecchi, Paolo Lollini, Andrea Bondavalli, and
Ernesto La Mattina

Protecting the WSN Zones of a Critical Infrastructure via Enhanced
SIEM Technology . 222

Luigi Romano, Salvatore D’Antonio, Valerio Formicola, and
Luigi Coppolino

On Securing Communications among Federated Health Information
Systems . 235

Mario Ciampi, Giuseppe De Pietro, Christian Esposito,
Mario Sicuranza, Paolo Mori, Abraham Gebrehiwot, and
Paolo Donzelli

Table of Contents XIII

How Secure Is ERTMS? . 247
Richard Bloomfield, Robin Bloomfield, Ilir Gashi, and Robert Stroud

International Cooperation Experiences: Results Achieved, Lessons
Learned, and Way Ahead . 259

Craig Gibson, Matteo Melideo, Luigi Romano, and
Salvatore D’Antonio

A Federated Simulation Framework with ATN Fault Injection Module
for Reliablity Analysis of UAVs in Non-controlled Airspace 271

Magali Andreia Rossi, Jorge Rady de Almeida Junior,
Andrea Bondavalli, and Paolo Lollini

HSIENA: A Hybrid Publish/Subscribe System . 282
Fabio Petroni and Leonardo Querzoni

WSDM-Enabled Autonomic Augmentation of Classical Multi-version
Software Fault-Tolerance Mechanisms . 294

Roeland Dillen, Jonas Buys, Vincenzo De Florio, and Chris Blondia

Formal Verification of a Safety Argumentation and Application to a
Complex UAV System . 307

Julien Brunel and Jacques Cazin

Electronic Reliability Estimation: How Reliable Are the Results? 319
Nuno Silva and Rui Lopes

Model-Based Assessment of Multi-region Electric Power Systems
Showing Heterogeneous Characteristics . 328

Silvano Chiaradonna, Felicita Di Giandomenico, and Nicola Nostro

ERCIM/EWICS/Cyberphysical Systems Workshop

Introduction to the ERCIM/EWICS Cyberphysical Systems
Workshop 2012 . 343

Erwin Schoitsch and Amund Skavhaug

The Cyber-Physical Attacker . 347
Roberto Vigo

Dependable and Secure Embedded Node Demonstrator 357
Przemys�law Osocha, João Carlos Cunha, and Fabio Giovagnini

Towards Secure Time-Triggered Systems . 365
Florian Skopik, Albert Treytl, Arjan Geven, Bernd Hirschler,
Thomas Bleier, Andreas Eckel, Christian El-Salloum, and
Armin Wasicek

XIV Table of Contents

Towards a Framework for Simulation Based Design, Validation
and Performance Analysis of Electronic Control Systems 373

Alexander Hanzlik and Erwin Kristen

Compiling for Time Predictability . 382
Peter Puschner, Raimund Kirner, Benedikt Huber, and
Daniel Prokesch

Towards the Automated Qualification of Tool Chain Design 392
Fredrik Asplund, Matthias Biehl, and Frédéric Loiret

A Systematic Elaboration of Safety Requirements in the Avionic
Domain . 400

Antoaneta Kondeva, Martin Wassmuth, and Andreas Mitschke

Parallel NuSMV: A NuSMV Extension for the Verification of Complex
Embedded Systems . 409

Orlando Ferrante, Luca Benvenuti, Leonardo Mangeruca,
Christos Sofronis, and Alberto Ferrari

Supporting Assurance by Evidence-Based Argument Services 417
Janusz Górski, Aleksander Jarz ↪ebowicz, Jakub Miler,
Micha�l Witkowicz, Jakub Czyżnikiewicz, and Patryk Jar

Towards Composable Robotics: The R3-COP Knowledge-Base Driven
Technology Platform . 427

Erwin Schoitsch, Wolfgang Herzner, Carmen Alonso-Montes,
P. Chmelar, and Lars Dalgaard

Addressing the Needs of an Aging Population: An Experiment
for Monitoring Behaviour in a Domestic Environment 436

Marte E.B. Skjønsfjell, Aslak R. Normann, Dag Sjong, and
Amund Skavhaug

International Workshop on Digital Engineering
(IWDE 2012)

Introduction to IWDE 2012 . 449
Veit Köppen and Gunter Saake

Modeling the Effects of Software on Safety and Reliability in Complex
Embedded Systems . 454

Max Steiner, Patric Keller, and Peter Liggesmeyer

Towards Artificial Perception . 466
André Dietrich, Sebastian Zug, and Jörg Kaiser

Table of Contents XV

A Case Study of Radio-Based Monitoring System for Enhanced Safety
of Logistics Processes . 477

Michael Soffner, Mykhaylo Nykolaychuk, Friederike Adler, and
Klaus Richter

Visual Approach Facilitating the Importance Analysis of Component
Fault Trees . 486

Yi Yang, Patric Keller, and Peter Liggesmeyer

Simulation of Structural Effects in Embedded Systems and Visualization
of Dependencies According to an Intended Attack or Manipulation 498

Sven Kuhlmann, Jana Fruth, Tobias Hoppe, and Jana Dittmann

From Discrete Event Simulation to Virtual Reality Environments 508
Sebastian Nielebock, Frank Ortmeier, Marco Schumann, and
André Winge

Program Comprehension in Preprocessor-Based Software 517
Janet Siegmund, Norbert Siegmund, Jana Fruth, Sven Kuhlmann,
Jana Dittmann, and Gunter Saake

Author Index . 529

Next Generation of System Assurance

Approaches for Safety-Critical
Systems Workshop (Sassur 2012)

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 3–7, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Introduction to Sassur 2012

Alejandra Ruiz1, Tim P. Kelly2, Mehrdad Sabetzadeh3, and Didier Van Den Abeele4

1 ICT-European Software Institute, TECNALIA, Parque Tecnológico Ed. 202, Zamudio, Spain
2 Department of Computer Science, University of York, York, United Kingdom

3 Simula Research Laboratory, Norway
4 Alstom Transport, France

alejandra.ruiz@tecnalia.com, tim.kelly@york.ac.uk,
mehrdad@simula.no, didier.van-den-abeele@transport.alstom.com

Abstract. Safety assurance and certification are amongst the most expensive
and time-consuming tasks in the development of safety-critical systems. The in-
creasing complexity and size of these systems combined with their growing
market demand requires the industry to implement a coherent reuse strategy. A
key difficulty appears when trying to reuse products from one application
domain in another, because different domains are subject to different safety
regulations. Subsequently, for a reused product, the full safety assurance and
certification process has to be applied, just as for a new product. This reduces
the return on investment of such reuse. Further, market trends strongly suggest
that many future safety-critical systems will be comprised of heterogeneous,
dynamic coalitions of systems of systems. For this type of systems, it is crucial
to develop sound strategies that would allow safety assurance and certification
to be done compositionally.

1 Overview

The innovation and productivity in the market of safety-critical embedded systems is
curtailed by the lack of affordable safety assurance and (re)certification approaches.
Major problems arise when evolutions to a system entail reconstruction of the entire
body of certification arguments and evidence.

Modern engineering and business practices use massive subcontracting and Com-
mercial Off The Shelf (COTS) component-based development that provide little visi-
bility into subsystem designs. In the aerospace domain, experience shows that despite
the difficulties and costs incurred over the certification of COTS components, these
components pose relatively few problems, and in most cases, with only minor nega-
tive impact. This observation suggests that the required levels of safety can be met by
adopting broadly-used COTS products, thus laying the groundwork for a reuse strat-
egy in aerospace system design. In the automotive domain, ISO 26262 has introduced
the concept of SEooC (Safety Element out of Context) where a component is evalu-
ated against “presumed” operational context conditions. Once the component be-
comes part of a specific system in an actual operational context, the evaluation is

4 A. Ruiz et al.

optimised by comparing assumed context conditions against actual context condi-
tions. This is in the right direction though it deserves to be investigated further.

Incremental and modular certification is a hot topic on the different European R&D
agendas. For instance, the ARTEMIS platform of embedded systems has included this
topic as one of the most challenging and influential for the next generation of systems
and systems of systems (Annual Programme 2012 and Strategic Research Agenda).
The EU FP7 program has recently launched several projects on safety certification as
result of its Call 7 for embedded systems.

2 Objectives

SASSUR aims at bringing together experts, researchers, and practitioners, from di-
verse communities, such as safety and security engineering, certification processes,
model-based technologies, software and hardware design, safety-critical systems and
applications communities (railway, aerospace, automotive, health, industrial manufac-
turing).

The topics of the proposed workshop are extremely important from an economical
and social view and yet some of them still constitute emerging research areas, possi-
bly without well-established or recognized results and require integration of knowl-
edge and cross fertilization from different domains. SAFECOMP is an excellent op-
portunity to bring together people from diverse critical systems communities, such as
automotive, avionics, railway... Jointly, these communities can help create a critical
mass of research, development and innovation in safety critical areas. An open ex-
change of ideas and experiences will benefit the global community, leading to new
insights and stimulating further development.

The SASSUR workshop is intended to explore new ideas on compositional and
evolutionary safety assurance and certification. In particular, SASSUR will provide a
platform for thematic presentations and in-depth discussions about reuse and compo-
sition of safety arguments, safety evidence, and contextual information about system
components, in a way that makes assurance and certification more cost-effective,
precise, and scalable.

3 Topics

Contributions were sought in (but are not limited to) the following topics:

• Industrial challenges for cost-effective safety assurance and certification
• Cross-domain product certification
• Integration of process-centric and product-centric assurance
• Compliance management of standards and regulations
• Evidence traceability
• Transparency of the safety assurance and certification processes: metrics and busi-

ness cases
• Evolutionary approaches for safety and security assurance and certification

 Introduction to Sassur 2012 5

• Case-based assurance approaches
• Open-source tools for supporting of safety assurance
• Mixed-criticality systems and multi-core platforms
• Model-based methods and tools for safety assurance and certification support .

4 Workshop Contributions

Safety assurance and safety certification processes are some of the main concerns on
the industry. On one hand industry needs to be competitive so new technologies are
being included on the developments. The Integrated Modular Avionics (IMA) archi-
tecture on the avionics domain is becoming popular but still innovative and brings
questions for the reuse of the certification artefacts. Also multi-core technologies are
an important issue while dealing with certification and continue being an area for
research. Also on the certification topic evidence evolution is an open issue.

Model based developments are emerging on critical systems, and new frameworks
and methods need to be discussed to help decrease the entrance barrier on the indus-
try.

For safety assurance, the use of safety cases is very popular however this area is
willing to improve on confidence and some support on automation.

The papers presented on SASSUR deal with the topics mentioned before and create
topics for discussion and address new areas for research. Overall 6 long presentations
and 4 short presentations have been accepted for the workshop. A synopsis of each
presentation is given below.

AdvoCATE: An Assurance Case Automation Toolset : It introduces a tool suite for
construction of safety cases and further provides a number of quantitative metrics to
analyze the progress of safety case construction. An architectural view of the tool
suite is provided and explained, along with illustrations and interoperability features.
While the paper is focused primarily on tooling aspects, it manages to provide a con-
cise outline of some of the authors' earlier work on automated generation of safety
cases from proofs, and how that work blends into the tool suite. Behind the descrip-
tion of the tool capabilities, authors introduce a number of principles supporting the
toolset. Among them, interoperability of the specification is a topic carefully consid-
ered in AdvoCATE, both with similar tools (e.g. for safety case specification) and
with complementary tools (e.g. formal verification tools). Finally, authors present the
measurement capabilities built on metrics derivation

Modelling for Safety in a Synthesis-Centric Systems Engineering Framework: This
paper presents a framework for model-based systems engineering relying on formal
methods to automatically synthesize control designs. It gives an overview about the
principles of Supervisory Control Synthesis, describes the systems engineering
framework and a case study involving control of theme park vehicles (3 other case
studies are briefly mentioned, too).

Towards a Case-Based Reasoning Approach for Safety Assurance Reuse: The authors
address certification issues for Modular Avionics (IMA) platform and presents an

6 A. Ruiz et al.

approach using case-based reasoning (CBR) to facilitate the production of safety cas-
es. In order to take into account new challenges, which are related to the use of multi-
core and mixed-criticality technologies, the authors discuss the importance of tech-
niques based on modular argumentation.

A model based approach for safety analysis: This paper describes a model-based
safety analysis approach applied to the railway domain. It covers Preliminary Hazard
Analysis (PHA) and Failure Mode and Effect Analysis (FMEA) as two safety engi-
neering activities running in paralell with development activities. The approach is
based on SysML and some extensions incrementally done in the IMOFIS and
VERDE projects. The paper presents the on-going work to define the modeling
bridges between the proposed graphical modeling language (SysML-based) and the
Altarica language. The focus of the paper is the adds to support FMEA in the SysML-
based language extensions and the formalization of the model transformation.

A Preliminary Fault Injection Framework for Evaluating Multicore Systems: The
paper describes an experimental fault injection mechanism and framework for evalu-
ating multicore systems. The general background of multicore architecture issues
compared to single core architectures is being introduced, followed by an intro to the
framework itself and its application in two scenarios with Linux as application. A
preliminary case study using the Machine Check Architecture of the Intel Core i7 to
analyse error handling in the Linux Operating System is provided.

Meeting Real-Time Requirements with Multi-Core Processors: The paper concerns
WCET analysis for multi-core systems, an open industrial challenge and obstacle to
the adoption of multicore architectures for safety-critical embedded systems. The
papers reviews timing anomalies due to concurrent access to shared resources and
high-performance architectural features and techniques, provides experimental results
and summarize some important recommendations for obtaining predictable multi-core
architectures for hard real-time systems.

A New Approach to Assessment of Confidence in Assurance Cases: This paper pre-
sents an approach to assessing the confidence in safety arguments through converting
ARM-based representations into Toulmin form and then using Hitchcock's reasoning
assessment criteria as the basis of a of Bayesian Belief Networks model of confi-
dence.

An Unified Meta-Model for Trustworthy Systems Engineering: The paper aims to
provide the theoretical principles and associated meta-model of systems engineering.
It presents and explains a meta (meta) model for Systems Engineering of potentially
safety-critical systems. It talks around a number of concepts including requirements
vs. specifications, product vs. process views.

Assessing Software Interference Management When Modifying Safety-Related Soft-
ware: This paper is about an important issue in safety-related software development,
unintended interference, and its associated assessment. It introduces and refines a
workflow to identify interference and how to manage it systematically.

Towards a Model-Based Evolutionary Chain of Evidence for Compliance with Safety
Standards: The development and evolution of chains of evidence underlying a com-
pliance / safety case are clearly of high relevance to industry. Making the way that

 Introduction to Sassur 2012 7

elements are addressed to be as standardised as possible across multiple regulators in
a domain is laudable and challenging. This paper gives a clear overview of the current
state of a number of issues that need to be addressed with respect to evidence chains.
It is not so detailed on solutions and validations of these solutions.

We hope that you enjoy SASSUR 2012.

General Chairs:
Mehrdad Sabetzadeh - Simula Research Laboratory, Norway
Tim Kelly - University of York, UK
Didier Van Den Abeele - Alstom Transport, France
Alejandra Ruiz - TECNALIA, Spain

Steering Commitee
Annie Combelles - Inspearit, France
John Favaro & Paolo Panaroni - Intecs, Italy
Huascar Espinoza - TECNALIA, Spain
Fulvio Tagliabò - Centro Ricerche FIAT, Italy
Javier Díaz - University of Granada, Spain

Program Committee:
Fabien Belmonte - Alstom Transport Information Solution, France
Jose Luis De La Vara - Simula Research Laboratory, Norway
Kenji Taguchi - AIST, Japan
Daniela Cancilla – Atego, France
Olaf Kath - ikv++ technologies ag, Germany
Harold Weffers - Eindhoven University of Technology, Holland
Sergio Campos – TECNALIA, Spain
Marc Born - ikv++ technologies ag, Germany
C. Michael Holloway - NASA Langley Research Center, USA
Ronald Blanrue - EUROCOPTER
Uwe Kremer – TUEV, Germany
Jürgen Niehaus- Safetrans, Germany
Xabier Larrucea – TECNALIA, Spain
Andreas Keis – EADS, Germany
Mark Nicholson - University of York, UK

Acknowledgment. We would like to give special thanks to OPENCOS Project (FP7
programme) and to RECOMP Project (ARTEMIS programme) that have kindle spon-
sor this workshop.

AdvoCATE: An Assurance Case Automation Toolset

Ewen Denney, Ganesh Pai, and Josef Pohl

SGT / NASA Ames Research Center
Moffett Field, CA 94035, USA

{ewen.denney,ganesh.pai,josef.pohl}@nasa.gov

Abstract. We present AdvoCATE, an Assurance Case Automation ToolsEt, to
support the automated construction and assessment of safety cases. In addition
to manual creation and editing, it has a growing suite of automated features.
In this paper, we highlight its capabilities for (i) inclusion of specific metadata,
(ii) translation to and from various formats, including those of other widely used
safety case tools, (iii) composition, with auto-generated safety case fragments,
and (iv) computation of safety case metrics which, we believe, will provide a
transparent, quantitative basis for assessment of the state of a safety case as it
evolves. The tool primarily supports the Goal Structuring Notation (GSN), is
compliant with the GSN Community Standard Version 1, and the Object Model-
ing Group Argumentation Metamodel (OMG ARM).

Keywords: Assurance cases, Safety cases, Metrics, Safety management, Safety
process, Safety toolset, Formal methods.

1 Introduction

Structured, evidence-based arguments are increasingly being adopted as a means for
assurance, e.g., as dependability or assurance cases [15], and more popularly as safety
cases [18], for safety assurance in several domains including automotive, medical de-
vices, and aviation. Safety cases have already been in use for some time in the de-
fense, rail, and oil & gas sectors. The practitioner has a broad choice of tools, e.g.,
[1, 13, 14, 17], to use in creating structured safety assurance arguments (manually) in a
variety of notations such as the Goal Structuring Notation (GSN) [10], and the Claims
Argument Evidence (CAE) notation. This is, by no means, a comprehensive list of
available safety case construction tools, each of which have different foci, e.g., linking
to type theory, use of different notations for graphical representation of safety cases, etc.
However, common to all the tools is manual safety case creation with limited support
for auto-generation or automatic assembly. Creating safety cases manually can be time
consuming and costly.

Our goal is to develop a framework for the automated creation and assembly of as-
surance cases, using model-based transformation. In particular, we want to (i) leverage
our earlier work on using the output of formal methods to create auto-generated safety
case fragments [3], and additionally (ii) automatically combine them with the results of
traditional safety analyses, also transforming these into safety case fragments [8]. The
latter is aimed at supporting lightweight, automatic assembly and integration of safety

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 8–21, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

AdvoCATE: An Assurance Case Automation Toolset 9

cases into traditional safety, and development processes [6]. We aim to support the more
general notion of assurance cases, although in this paper we focus on safety cases.

We present AdvoCATE, the Assurance Case Automation ToolsEt, a suite of tools
and applications based on the Eclipse platform1, to build and transform safety cases.
The core of the system is a graphical safety case editor, integrated with a set of model-
based transformations that provide functionality for translating and merging pre-ex-
isting safety cases from other formats, and for incorporating automatically generated
content from external formal verification tools. The tool metamodel (Section 2.1) ex-
tends the GSN, e.g., through the inclusion of metadata (Section 2.2). The tool (Sec-
tion 3) supports basic manual creation and editing (Section 4.1), and interoperability
with other safety case tool formats (Section 4.2). The metadata supports automation
in safety case creation, for assembly of safety case fragments that have themselves
been auto-generated using formal methods (Section 5), generation of safety case met-
rics (Section 6), and transformations to generate “to-do” lists, textual narratives, and
tabular representations (Section 7).

We are using AdvoCATE in the ongoing construction of a safety case for the Swift
Unmanned Aircraft System (UAS), under development at NASA Ames.

2 Extended Goal Structuring Notation

2.1 Metamodel

In AdvoCATE, we have defined and implemented an Extended Goal Structuring Nota-
tion (EGSN) metamodel, to extend “traditional” GSN with additional information, e.g.,
node metadata, to be used to define more features and operations. The EGSN meta-
model has been developed as a combination of several different safety and assurance
case models; it is compatible both with the GSN standard [10], and the Argumentation
Metamodel (ARM)2, from the Object Management Group. There is a mapping from
any EGSN-based model to ARM, and vice versa; the major difference is that EGSN
explicitly contains all of the standard constructs, and only the two relationships as de-
fined in the GSN. This is, of course, extensible and extra relationships and/or reasoning
elements (in ARM terminology), can be added as needed.

The top level of any safety case model based on the EGSN metamodel (Fig. 1) is a
SafetyCase element. Essentially, this is the container that holds all elements of the safety
case; it has no attributes, and children of SafetyCase can be concrete instances of either
of the the abstract elements Node or Link. A Node generalizes the different types of
GSN elements, i.e., Goal, Strategy, Assumption, Justification, Context, and Evidence3.
The attributes of a Node are:

– identifier, which holds a unique name for a given node.
– description, which is user-supplied content describing/defining the node.

1 http://www.eclipse.org
2 GSN is itself in compliance with ARM, which is available at:
http://www.omg.org/spec/ARM/

3 Strictly speaking, the GSN uses the term Solution. We use the term Evidence interchangeably
with Solution.

http://www.eclipse.org
http://www.omg.org/spec/ARM/

10 E. Denney, G. Pai, and J. Pohl

Fig. 1. EGSN metamodel in UML, representing model elements, attributes and relationships

– color, an attribute which is meant to indicate the color used for display; informally,
we use it to convey the relative importance, source, or node state.

– comment, which we use to give informal information about a node.
– toBeInstantiated, which we use to denote abstract GSN elements that require fur-

ther instantiation of specific content within the description, and
– attributes, which are used to hold extra metadata about the node, e.g., classification

of the node as a high- or low-level requirement, and merging points with auto-
generated content.

We can modify the attributes (above) as required and they are inherited by each node
specialization. The Goal and Strategy elements also contain an additional attribute,
toBeDeveloped, which denotes that the elements are yet to be developed, e.g., by us-
ing strategies to connect them to sub-goals/solutions. The GSN standard limits applying
the toBeDeveloped annotation to only Goal and Strategy elements, whereas the attribute
toBeInstantiated applies to any node.

A Link is also an abstract entity and contains the attribute identifier. Links have con-
tainment relationships, which relate the Node, from which the link comes, and to which
it goes. These relationships refer to the abstract entity Node and not directly to the
derived entities. The InContextOf link, represents a one-way association between the
Goal (Strategy) element, and the Context, Assumption or Justification elements respec-
tively; the IsSolvedBy link, denotes a one-way association between Goal, Strategy, and
Evidence elements.

2.2 Node Metadata

We tag nodes with metadata to convey meaning about the significance or provenance
of particular nodes in a safety case, such as whether they relate to the mitigation of a
specific hazard, or whether they represent requirements that can be formally verified
using external tools.

AdvoCATE: An Assurance Case Automation Toolset 11

Node metadata is expressed as a set of attributes associated with each node. We use
metadata to define transformations on the safety case and during metrics computation.
At present, we have a pre-defined list of attributes that may be used. Eventually, this will
be replaced with a user-definable dictionary of attributes based on an ontology. There
is a strict syntax for defining attributes, as below, and multiple attributes are comma-
separated.

1. High-level and Low-level requirements
– High-Level Requirement
– Low-Level Requirement

2. Risks
– Risk[Likelihood,Severity]

where
– Likelihood ::= Extremely Improbable | Extremely Remote | Remote | Probable
– Severity ::= Catastrophic | Hazardous | Major | Minor | No Safety Effect

3. Hazards
– Hazard[Identifier]

where identifier is a string giving a reference identifier in a hazard table.
4. Provenance

– autocert:n
where n is a number giving an AUTOCERT [9] requirement. The auto-generated
fragment produced by verifying the formal requirement number n, will be merged
into the safety case at this node (described in more detail in Section 5).

The tool has been designed so that different attributes affect the display (color) of the
nodes, e.g., the attributes Risk, Hazard, and Requirement affect node color. The idea is
to provide a visual indicator to the user to convey specific semantics.

For instance, for requirement attributes, High-Level Requirement will assign a red
node color, whereas Low-Level Requirement will assign a green color. The Hazard at-
tribute will turn a node red as well. For the Risk attribute, the color scheme is dependent
on the combination of Severity and Likelihood, and is based on a risk categorization ma-
trix, e.g., such as the one defined in [19]. Node color will turn red, green, or remain blue
depending on whether the risk region in the risk categorization matrix is high, medium,
or low. Once a color has been set by an attribute, it cannot be manually changed. In
the case of multiple attributes, the color set by the first attribute takes precedence. The
rules used to determine node colors are currently hard-coded, but we plan to make it
user-definable in future.

3 Tool Chain Architecture and Implementation

In this section, we briefly describe the different frameworks and components that com-
prise the AdvoCATE tool chain (Fig. 2), and their integration.

Eclipse. AdvoCATE is distributed as a set of plug-ins to the Eclipse platform. Eclipse
uses a number of utilities of the underlying frameworks, namely the Eclipse Mod-
eling Framework (EMF) and the Graphical Editing Framework (GEF). AdvoCATE

12 E. Denney, G. Pai, and J. Pohl

Eclipse Framework (Plugin development)

Eclipse Modeling Framework (EMF)

Graphical Editing
Framework (GEF)

Graphiti

AdvoCATE*

VIATRA2
(Model

Transformations)

Import Utilities -
Safety Case

Translation/Merge
Tool*

(Java and XSLT)

Transformation
machines*

* Implemented in AdvoCATE

Execution
stack

Safety case editor*

Fig. 2. Frameworks in the AdvoCATE tool chain architecture

uses the generated EMF editing tools. In principle, we could provide extension
points4 to extend AdvoCATE as well.

Graphical Editing. The graphical component, at the core of the safety case editor, per-
mits the addition and manipulation of elements of a safety case. It also provides a
visual representation of the relationships between the safety case model elements.
The safety case model created is maintained as a separate resource from its visual
representation, and the diagram. In this way, the model can be used and manipu-
lated separately without affecting the graphical representation. Similarly, none of
the information of the graphical representation affects the model except when ex-
plicitly specified, e.g., color can be stored as part of the properties. The two files
are combined to create the diagram that is rendered on the screen and is editable by
the user. Both representations are contained inside an Eclipse project. The model
data file is connected to the Ecore metamodel, i.e., it must be a well-formed repre-
sentation of that metamodel.

Graphiti. We built the graphical component in the Graphiti framework, an application
interface (API) built upon the GEF. As shown in Fig. 2, the GEF is itself built on
top of EMF. Graphiti simplifies the development of graphical tools for editing and
displaying models, by automating much of the low-level implementation used to
manipulate graphical objects such as rendering, moving, selecting, etc.

Translation. The tool uses XSLT to convert external data into the appropriate XML
format (such as the AUTOCERT-generated XML, Section 5), which can be merged
with a pre-existing assurance case. The file formats for assurance cases developed
in other tools, such as ASCE, are parsed using Java DOM XML libraries.

VIATRA2. VIATRA2 (VIsual Automated model TRAnsformations) [20], a project deve-
loped within the Generative Modeling Technology (GMT) framework, is a toolset
designed for engineering life-cycle support from specification to maintenance. In
the scope of AdvoCATE, it is used to hold intermediate model representations (such

4 Plug-ins typically will provide extension points, by connecting to any of which we gain access
to their functionality, e.g., the context menus and diagram creation utilities are extended from
the core Eclipse user interface.

AdvoCATE: An Assurance Case Automation Toolset 13

Fig. 3. AdvoCATE screenshot displaying auto-layout on the auto-assembled Swift UAS safety
case fragment, which contains both manually created and auto-generated fragments

as the EGSN Ecore representation) and enact transformations on those models.
Through the transformation system, we can manipulate and transform safety case
models into other models (such as text, a CSV table, or a modified safety case).

4 Basic Functionality and Interoperability

Although the primary goal of AdvoCATE is to support automation, it also contains the
basic manual functionality that one would expect from a safety case tool, i.e., creating
and editing. In this section, we describe this manual functionality, giving an overview
of some basic use-cases for the tool: to create a new safety case diagram/model, and
to open a pre-existing model (as a diagram) for further editing or manipulation. Ad-
ditional basic functionality includes saving, printing, translating from/to other formats,
and merging external data.

4.1 Creating and Editing Safety Cases

Fig. 3 shows a bird’s eye view of the structure of an end-to-end safety case fragment for
the Swift UAS. It has been automatically assembled/composed from a manually created
fragment and an auto-generated fragment, after which it underwent auto-layout.

Editing a diagram typically takes place within a more detailed view (Fig. 4) that
shows more node information, as well as the editing features. We can select, move and
resize nodes as required; node descriptions are editable either directly on the canvas,
or in the properties panel, whereas attributes are edited only via the latter. Edits are
reflected in the diagram in real-time, through automatic refresh. In Fig. 4, the canvas
shows that the goal with identifier N48087573 (at the top right of the canvas) is selected
and being edited. The properties panel beneath the canvas shows the corresponding

14 E. Denney, G. Pai, and J. Pohl

Fig. 4. AdvoCATE screenshot showing a zoomed-in view for editing, with a Properties panel
underneath the canvas, the Project explorer as the left panel, and the Palette containing EGSN
constructs in the right panel

attributes that can be edited, and we can add new values directly, as required. Attribute
editing uses specialized syntax (Section 2.2) to include pre-defined node metadata.

Safety cases can be split up into separate interconnected diagrams using the Goal
Developed Elsewhere symbol ([16], p. 66). Note that this does not provide true modu-
larity in the sense of the modular GSN notation [10], which we do not yet support, but
it does make large safety cases more manageable.

We can link to other documents such as webpages, spreadsheets, or text documents.
These documents can either be local to the system or remotely stored, e.g., on a web
server. We provide a specific syntax to make references to external documentation: in
the description attribute for a node, the reference to the external document is specified
as a fully qualified URL in the properties panel. The resource will be displayed in a web
browser or the user will be prompted to open/save the resource.

Diagrams can be exported as an image in scalable vector graphics (SVG) format, and
subsequently converted5 to portable document format (PDF).

4.2 Interoperability

AdvoCATE supports the import/export of a variety of safety case formats—currently
those produced from the ASCE [1], CertWare [13], and D-Case [14] tools. A translation

5 Using the Batik toolkit: http://xmlgraphics.apache.org/batik/

http://xmlgraphics.apache.org/batik/

AdvoCATE: An Assurance Case Automation Toolset 15

engine acts as an import/export utility translating file formats from these tools into
EGSN, and vice versa. If an EGSN file already exists it can be imported directly.

The translation works by using ARM as the interoperability metamodel, i.e., there
are bidirectional translations between ARM and the different safety case formats. Con-
sequently we only need to define a translation from each format to/from ARM rather
than defining point-to-point connections between each tool. The ARM is also conve-
nient for merging external information.

One of the challenges in model transformation, as between EGSN and other safety
case formats, is that each metamodel has different attributes, and sometimes differ-
ing model elements. To preserve information between translations, we annotate the in-
formation as comments in the EGSN metamodel. The annotations indicate the source
metamodel and what the information actually represents. For instance, in EGSN, we
label nodes with a user-modifiable identifier. In ASCE, there is both a unique “refer-
ence” and a user specified identifier. If, in ASCE, the user specified identifier is not
provided, the unique reference is used instead. This information is preserved by storing
it in the EGSN metamodel, tagging it as being from ASCE and by labeling it as the
“user-id”. This way, if translating back to ASCE, the information is preserved and the
ASCE model can be regenerated without information loss. There are a number of such
cases which we handle in a similar way.

The one exception to this is layout data; in most cases, the model is stored separately
from the layout. As a design decision, we decided not to preserve layout information.

5 Automated Assembly

AdvoCATE can automatically assemble safety cases by combining manually created
fragments with content produced by external tools. Currently, this is limited to the for-
mal verification tool AUTOCERT [9], though we plan further tool integrations in future.

Rather than perform formal verification itself, AdvoCATE integrates results from
formal verification or formal methods with safety case construction. In general, there
are two ways to achieve this: (i) the output of a tool can produce evidence or, depending
on the level of detail it provides, be transformed into an actual argument fragment of a
safety case [8], and (ii) safety case fragments can be transformed into formal specifica-
tions that are then input to a tool.

An AUTOCERT specification formalizes software requirements that we derive from
system safety requirements, during safety analysis. Formal verification takes place in
the context of a logical domain theory, i.e., a set of axioms and function specifications.
To verify the software, we use formal verification of the implementation against a math-
ematical specification and test low-level library functions against their specifications.

5.1 From Formal Proofs to Safety Cases

AUTOCERT generates a document (in XML) with information describing the formal
verification of requirements. The core of this is the chain of information relating re-
quirements back to assumptions.

Each step is described by (i) an annotation schema for the definition of a program
variable [4], (ii) the associated verification conditions (VCs) that must be shown for

16 E. Denney, G. Pai, and J. Pohl

the correctness of that definition, and (iii) the variables on which that variable, in turn,
depends. We derive the goals (and subgoals) of the safety case from the annotation
schema. The subgoals are the dependent variables from those annotation schema. We
represent each VC related to a goal as a subgoal. An argument for a VC is a proof,
generated using a subset of the axioms. This proof forms the evidence connected to the
VC goal, and includes the prover used as a context. Function specifications from exter-
nal libraries used in the software and its verification also appear as goals. Arguments
for these goals can be made with evidence such as testing or inspection. Each subgoal
derived from an annotation schema is a step in the verification process.

During the process of merging the manually created and the auto-generated safety
cases, we replace specific nodes of the manually created safety case with the tree frag-
ments generated from AUTOCERT; specifically, the top-level goals of the latter are
grafted onto the appropriate lowest-level nodes of the former. These nodes are denoted
with unique attributes, autocert:n, relating the node to a tree in the automatically
created file, meaning that the goal with tag n is to be solved with AUTOCERT. Addition-
ally, these nodes are formal equivalents of informally stated goals, developed through
an explicit strategy of formalization, though the formalization at this stage is both per-
formed and checked manually.

5.2 From Safety Cases to Formal Specifications

Often, a safety case fragment may be created before the software verification is com-
pleted. In this case, we can use the autocert:n annotations on the nodes to generate
a formal specification. Based on the type of node in which the identifier occurs, the
tool infers whether the labeled node is a requirement or an assumption. Thereafter, we
can transform and graft back onto the safety case the proofs that result after running
AUTOCERT on the generated specification.

6 Generation of Safety Case Metrics

6.1 Metrics Derivation

There has been some criticism of safety cases as lacking a measurement basis and,
therefore, impeding systematic, repeatable evaluation [21]. We attempt to address this
weakness of safety cases, using AdvoCATE, by defining and implementing a (prelimi-
nary) set of safety case metrics. Our goal is to create a transparent, quantitative founda-
tion for assessment/review. It is worth noting that metrics alone (including those given
here) do not necessarily constitute an assessment; rather, together with a model for
interpretation, they can provide a convenient mechanism for decision-making by sum-
marizing the state and key properties of a safety case during its evolution.

We distinguish between (i) base metrics, which express a direct measurement of,
or value assignment to, a safety case property, e.g., the number of claims in a safety
argument, and (ii) derived metrics, which are an analytical combination of base metrics,
expressing a measure of, or a value assignment to, a safety case property that is not
directly measurable, e.g., coverage.

AdvoCATE: An Assurance Case Automation Toolset 17

Table 1. (Excerpt) GQM based derivation of safety case metrics and their specification

Goal G1. Coverage of Claims: Analyze the argument structure for the purpose of establishing the
extent of coverage with respect to the claims made and the evidence presented from the viewpoint
of the assessment team in the context of the safety case of the Swift UAS.
Questions Metrics

Q1.1. What is the total number of claims made? BM1.1. Total #(Claims)
Q1.2. What is the total number of claims that end
in evidence, i.e., developed claims?

DM1.2. Total #(Developed claims)

Q1.3. What fraction of the total number of
claims are developed claims?

DM1.3. Coverage (Claims)

Specification:

– BM1.1. Total #(Claims) = C, C ≥ 1.
– DM1.2. Total #(Developed claims) = CD , CD ≥ 0.
– DM1.3. Coverage (Claims) = Fraction of developed claims = COVC = CD

C
.

We consider an underlying process for safety case assessment, e.g., based on inspec-
tions [11], or reviews [12] to get insights into where metrics can be useful for decision
making during assessment, and the interpretation models required. Thereafter, we use
the Goal-Question-Metric (GQM) method [2] to define appropriate measurement goals,
identify questions that characterize the goal, and specify the relevant metrics.

For instance, in a staged argument review [12], quantitative measures applied at the
step of checking well-formedness can summarize the relevant properties, e.g., the num-
ber of goals with missing evidence/strategies. This can be useful when assessing large
argument structures, where manual review of the entire structure, for well-formedness,
can be time consuming. Similarly, during the argument criticism and defeat step, cov-
erage of the top-level claim by evidence is a property for which metrics can be defined.

Table 1 gives an example of how GQM has been used to define metrics that, we be-
lieve, meet the goal of analyzing claims coverage. We state the measurement goal by
instantiating the GQM template (the italicized text in Table 1), identify questions that
characterize the goal, and define the metrics that answer the questions quantitatively. In
Table 1, the base and derived metrics are distinguished by the prefixes BM and DM re-
spectively. In this way, by defining additional measurement goals, we have specified6 a
preliminary set of safety case metrics (Table 2). For this paper, we have mainly focused
on metrics that address the structural and syntactical properties of argument structures
described using the GSN.

Note that although tool support can also be used to highlight violations, e.g., of
well-formedness properties, this is mainly useful during argument development, where
the intent would be to “find and fix”. From the perspective of an assessor, however,
the broad intent is to evaluate the argument for essential qualities [11]. When properly
defined and interpreted, we hypothesize that metrics can be indicators of these qualities.

6.2 Metrics Implementation

The generation of the safety case metrics, as given in Table 2, is an automated op-
eration, which uses some of the node metadata (Section 2.2) to count the nodes in the

6 The full GQM-based derivation of the metrics, and their formal specifications, are out of the
scope of this paper.

18 E. Denney, G. Pai, and J. Pohl

Table 2. Safety case metrics, with their valid values

Metric Symbol Type Valid Values

Measures of Size

Total #(Hazards considered in the safety case) H Base ≥ 0

Total #(Hazards identified in hazard analysis) HI Base ≥ 0

#(High-level safety requirements per hazard Hi) r(Hi) Base ≥ 0

Total #(High-level safety requirements) RHL Base ≥ 0

Total #(Low-level safety requirements) RLL Base ≥ 0

#(Developed claims per hazard Hi) cD(Hi) Base ≥ 0

#(Claims per high-level safety requirement HLRi) C(HLRi) Base ≥ 0

#(Claims per low-level safety requirement LLRi) C(LLRi) Base ≥ 0

Total #(Claims) C Base ≥ 1

Total #(Developed claims) CD Derived ≥ 0

Total #(Undeveloped claims) CUD Derived ≥ 0
Total #(Uninstantiated claims) CUI Derived ≥ 0
Total #(Strategies) S Base ≥ 0

Total #(Undeveloped strategies) SUD Derived ≥ 0
Total #(Uninstantiated strategies) SUI Derived ≥ 0
Total #(Contexts) K Base ≥ 0

Total #(Assumptions) A Base ≥ 0

Total #(Justifications) J Base ≥ 0

Total #(Evidence) E Base ≥ 0

Measures of Coverage

Coverage (Claims) COVC Derived [0, 1]

Coverage (High-level safety requirements) COVRHL Derived [0, 1]

Coverage (Low-level safety requirements) COVRLL Derived [0, 1]

Coverage (Hazards considered) COVCH Derived [0, 1]

Coverage (Hazards Identified) COVHI Derived [0, 1]

EGSN-based safety case model, e.g., counting the nodes containing “high-level require-
ment” as an attribute gives the value assignment for the metric RHL. Presently, only
certain node types can be distinguished based on node attributes and metadata. Conse-
quently, only a subset of the metrics identified in Table 2 have been implemented.

Fig. 5 shows the implemented metrics and the computed values when applied to the
Swift UAS safety case fragment [8] (also shown as a bird’s eye view in Fig. 3). As
we define more expressive/detailed node metadata, we can implement the remainder
of the metrics from Table 2, as well as additional metrics such as “confidence in a
claim” [7].

7 Transformation Operations

We describe three automated operations defined in AdvoCATE, for generating artifacts
that support safety case development and assessment:

To-do Lists. One simple form of assessment is determining those parts of the safety
case that need further development. AdvoCATE uses a Model2Text transformation
to create a simple to-do list, listing the undeveloped and uninstantiated nodes. Fig. 6
shows an excerpt of such a to-do list, for the Swift UAS safety case fragment.

AdvoCATE: An Assurance Case Automation Toolset 19

---SIZE METRICS---
Goals: 220

Developed: 157
Undeveloped: 63
Uninstantiated: 6

Strategies: 107
Undeveloped: 13
Uninstantiated: 0

Contexts: 133
Assumptions: 5
Justifications: 3
Evidence: 65
TOTAL NODES: 533

R_HL : Number of High-Level Requirements = 3
R_LL : Number of Low-Level Requirements = 2
R1_HL : Number of claims (High-Level Requirement 1) = 182
R2_HL : Number of claims (High-Level Requirement 2) = 1
R3_HL : Number of claims (High-Level Requirement 3) = 1
R1_LL : Number of claims (Low-Level Requirement 1) = 32
R2_LL : Number of claims (Low-Level Requirement 2) = 122

--- COVERAGE METRICS ---
COV_C : Developed claims to total claims = 0.71
COV_R_HL : Coverage of High-Level Requirements = 0.8
COV_R_LL : Coverage of Low-Level Requirements = 0.88

Fig. 5. AdvoCATE calculation of metrics for the Swift UAS safety case fragment

Undeveloped Goals To Do:
ID:N43752193 :: Failure hazards during Cruise phase are mitigated
ID:AC486 :: srcWpPos is a position in the NE frame (i.e. has_unit(srcWpPos, pos(ne)) holds.)
ID:N63112384 :: Modem interface is correct ID:N11943209 :: FMS design is correct
...

Uninstantiated Goals To Do:
ID:N87102962 :: Autopilot module satisfies {Higher-level Requirement X}
Derived from parent ID: N92654598 :: Argument that Autopilot module satisfies higher level

requirements
ID:N59408212 :: {Subsystem X} failure hazard during descent is mitigated
Derived from parent ID: N3143972 :: Argument over all Swift UAV subsystems (identified

failure hazards)

Fig. 6. (Excerpt) To-do list generated by AdvoCATE, for the Swift UAS safety case fragment

Narrative Form. The generation of a safety case narrative form, i.e., a structured doc-
ument providing the content of the safety case in a readable form, uses an inter-
mediate tree model. The safety case can then be flattened into a sequence that is a
pre-order traversal of the tree, giving a description of the content of the safety case
without the diagrammatic form.

Tabular Form. We generate a comma separated value (CSV) format of the document
(Fig. 7) using an intermediate model for the transformation. The CSV template
relates a goal with an arbitrary number of contexts and strategies. The strategies
are further related to any number of assumptions, contexts, justifications, and sub-
goals. For each goal the operation generates these relationships. The operation then
repeats the process for each sub-goal related to each strategy. The rationale for a
specific CSV format of a safety case, and the resulting tabular form, is based on the
experiences gained [5] from the ongoing creation of the Swift UAS safety case.

20 E. Denney, G. Pai, and J. Pohl

PARENT GOAL CONTEXT STRATEGY SUBGOAL/SOLUTION

 Strategy Type Context Assumptions Justifications

N27216417: SWIFT UAS
is safe

N80058283: Range
(Location and Site) of
operation

N18584532: Argument
of safety over all UAS
subsystems and
interactions between
subsystems

N91753638: SWIFT
UAS Design
Management Plan and
Design Documentation

N2946770: SWIFT UAS
Communication Infrastructure
is safe

N24389172: Specified
configuration

N20743322: Airborne system
(SWIFT UAV) is safe

N44679952: Weather
conditions

N83345544: SWIFT UAS
subsystem interactions are
safe

N86072314: Specified
Mission

N67094880: SWIFT Ground
stations are safe

N2946770: SWIFT UAS
Communication
Infrastructure is safe

N20743322: Airborne
system (SWIFT UAV) is
safe

N70618522: Argument
of hazard mitigation over
all identified SWIFT UAV
hazards

N49558532: Definition
of acceptable risk and
risk categories

N44519454: Interaction
hazards

N2965510: Identified
hazards and hazard
categories during Swift
UAV Hazard analysis

N69623828: SWIFT UAV
failure hazards are mitigated

N84863913: Definition
of hazard from MIL-
STD-882D

N40609843: Hazards arising
from the operating
environment of SWIFT UAV
are mitigated

Fig. 7. (Excerpt) CSV format of the Swift UAS safety case generated using AdvoCATE, subse-
quently imported into a spreadsheet, resulting in a tabular view

8 Conclusion

In this paper, we have described AdvoCATE, an Eclipse-based toolset that uses model-
based transformation and extended GSN to support the automated construction and
assessment of safety cases.

We have just begun to develop the wealth of functionality for automated construction
that can be implemented using transformations, e.g., a simple extension will be the
generation of traceability matrices linking requirements, hazards and evidence. A more
involved transformation will be argument refactoring. Our next step will be to include
modular extensions to GSN, patterns, and to provide automated features for their use. To
support safety case assessment, we have defined and implemented a preliminary set of
metrics based on the syntactic/structural properties of argument structures documented
using GSN. As future work, we intend to define integrated measures that combine the
metrics based on both syntactic and semantic properties, building on our previous work
on confidence quantification [7]. We will also define interpretation models based upon
which metrics can be used, during assessment, for decision making.

For tool validation, we continue regression testing of the interface and transforma-
tions, and we also plan to verify the algorithms that AdvoCATE implements. We be-
lieve that the capabilities of AdvoCATE, highlighted in this paper, are promising steps
towards cost-effective safety assurance, and transparency during assessment and cer-
tification. Eventually, our goal is to support “round-trip engineering” of safety cases,
linking safety-relevant, operational, and development artifacts.

Acknowledgements. This work was funded by the VVFCS element under the SSAT
project in the Aviation Safety Program of the NASA Aeronautics Mission Directorate.
We also thank Ábel Hegedüs and Michael Wenz for their help with VIATRA2 and
Graphiti, respectively, and Corey Ippolito for access to the Swift UAS data.

AdvoCATE: An Assurance Case Automation Toolset 21

References

[1] Adelard LLP: Assurance and safety case environment (ASCE),
http://www.adelard.com/asce/ (last accessed May 2011)

[2] Basili, V., Caldiera, G., Rombach, D.: Goal question metric approach. In: Encyclopedia of
Software Engineering, pp. 528–532. John Wiley (1994)

[3] Basir, N., Denney, E., Fischer, B.: Deriving Safety Cases for Hierarchical Structure in
Model-Based Development. In: Schoitsch, E. (ed.) SAFECOMP 2010. LNCS, vol. 6351,
pp. 68–81. Springer, Heidelberg (2010)

[4] Denney, E., Fischer, B.: Generating customized verifiers for automatically generated code.
In: Proc. Conf. Generative Programming and Component Eng., pp. 77–87 (October 2008)

[5] Denney, E., Habli, I., Pai, G.: Perspectives on software safety case development for un-
manned aircraft. In: Proc. 42nd Intl. Conf. Dependable Systems and Networks (June 2012)

[6] Denney, E., Pai, G.: A Lightweight Methodology for Safety Case Assembly. In: Ortmeier,
F., Daniel, P. (eds.) SAFECOMP 2012. LNCS, vol. 7612, pp. 1–12. Springer, Heidelberg
(2012)

[7] Denney, E., Pai, G., Habli, I.: Towards measurement of confidence in safety cases. In: Proc.
5th Intl. Symp. Empirical Soft. Eng. and Measurement, pp. 380–383 (September 2011)

[8] Denney, E., Pai, G., Pohl, J.: Heterogeneous aviation safety cases: integrating the formal
and the non-formal. In: 17th IEEE Intl. Conf. Engineering of Complex Computer Systems
(July 2012)

[9] Denney, E., Trac, S.: A software safety certification tool for automatically generated guid-
ance, navigation and control code. In: IEEE Aerospace Conf. Electronic Proc. (2008)

[10] Goal Structuring Notation Working Group: GSN Community Standard Version 1 (Novem-
ber 2011), http://www.goalstructuringnotation.info/

[11] Graydon, P., Knight, J., Green, M.: Certification and safety cases. In: Proc. 28th Intl. System
Safety Conf. (September 2010)

[12] Kelly, T.P.: Reviewing Assurance Arguments - A Step-by-Step Approach. In: Proc. Work-
shop on Assurance Cases for Security - The Metrics Challenge, Dependable Systems and
Networks (July 2007)

[13] Kestrel Technology LLP and NASA Langley Research Center: CertWare tool,
http://nasa.github.com/CertWare/ (last accessed May 2011)

[14] Matsuno, Y., Takamura, H., Ishikawa, Y.: Dependability case editor with pattern library. In:
Proc. 12th IEEE Intl. Symp. High-Assurance Systems Eng., pp. 170–171 (2010)

[15] National Research Council Committee on Certifiably Dependable Software Systems: Soft-
ware for Dependable Systems: Sufficient Evidence? National Academies Press (2007)

[16] Spriggs, J.: GSN - The Goal Structuring Notation. Springer (2012)
[17] Steele, P., Collins, K., Knight, J.: ACCESS: A toolset for safety case creation and manage-

ment. In: Proc. 29th Intl. Systems Safety Conf. (August 2011)
[18] UK Ministry of Defence (MoD): Safety Management Requirements for Defence Systems.

Defence Standard 00-56, Issue 4 (2007)
[19] U.S. Department of Transportation, Federal Aviation Administration: System Safety Hand-

book. FAA (December 2000)
[20] Varró, D., Balogh, A.: The model transformation language of the VIATRA2 framework.

Science of Computer Programming 68(3), 214–234 (2007)
[21] Wassyng, A., Maibaum, T., Lawford, M., Bherer, H.: Software Certification: Is There a

Case against Safety Cases? In: Calinescu, R., Jackson, E. (eds.) Monterey Workshop 2010.
LNCS, vol. 6662, pp. 206–227. Springer, Heidelberg (2011)

http://www.adelard.com/asce/
http://www.goalstructuringnotation.info/
http://nasa.github.com/CertWare/

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 22–35, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Towards a Case-Based Reasoning Approach
for Safety Assurance Reuse

Alejandra Ruiz1, Ibrahim Habli2, and Huáscar Espinoza1

1 ICT-European Software Institute, TECNALIA, Parque Tecnológico Ed. 202, Zamudio, Spain
2 Department of Computer Science, University of York, York, United Kingdom

{alejandra.ruiz,huascar.espinoza}@tecnalia.com,
ibrahim.habli@york.ac.uk

Abstract. The increasing complexity and size of electronic systems in the aero-
space industry, combined with the growing market demand, requires the
industry to implement an efficient safety assurance strategy. Reuse of safety ar-
gumentation and evidence for certification is one of the potential means for
achieving such a strategy. Typically, major problems arise when the evolution
of complex avionics entails the reconstruction of the entire body of safety justi-
fication, often resulting in expensive and time-consuming assurance and certifi-
cation processes. This paper investigates the use of Case-Based Reasoning
(CBR) as a strategy for representing, retrieving and reusing previously assured
safety cases. This is supported by the existence of patterns of safety cases,
which determine a unified knowledge representation scheme for retrieving
further safety cases. We illustrate the approach with the development of modu-
lar argumentation for an Integrated Modular Avionics (IMA) platform.

Keywords: cased-based reasoning, safety assurance, avionics, certification.

1 Introduction

In the aerospace industry, safety-critical systems are increasingly more reliant on
software, with millions of lines of software code running onboard advanced aircraft.
The higher complexity and size of software combined with the growing market de-
mand requires the industry to implement a coherent and an efficient safety assurance
strategy. Driven by these considerations, the avionics domain in particular is transi-
tioning from federated architectures to Integrated Modular Avionics (IMA) architec-
tures. IMA defines a logically centralized and shared computing platform, which is
physically distributed on the aircraft to meet redundancy requirements [10]. IMA
promotes flexibility and enforces temporal and physical segregation of application
components that are integrated in a single system. More precisely, IMA aims at reduc-
ing space, weight and power requirements. Further, it aims at reducing maintenance
and certification costs by allowing incremental certification of avionics building
blocks.

As described in [23], one of the most important issues in the reuse of an IMA
platform in a given project is to reuse as much certification credit as possible from

 Towards a Case-Based Reasoning Approach for Safety Assurance Reuse 23

previous projects. DO-297/ED-124 is the current guidance document for IMA, but it
still lacks sufficient support for dealing with changes made in existing IMA systems
or when reusing design elements of an IMA. The number of acceptance criteria (e.g.,
safety requirements and characteristics such as fault/error handling and failure modes)
and the combination of safety arguments and evidence that need to be considered in a
new integration project, strongly suggest that the pre-qualification documents of an
IMA platform are not reusable without a appropriate justification.

The concept of reuse is not limited to the reuse of software and hardware compo-
nents. It is also applicable to the reuse of safety assurance artefacts, including safety
argumentation used for certification. Over recent years, there has been an increasing
interest in the use of safety cases for providing justification for system safety. A
safety case provides a means to "communicate a clear, comprehensive and defensible
argument that a system is acceptably safe to operate in a particular context” [4]. The
development of a safety case has been a common practice for the assurance of safety-
critical systems, particularly in the UK [19]. Recently, the requirement for a safety
case has been included in emerging standards, e.g. the new automotive functional
safety standard ISO 26262 [20], the US Food and Drug Administration’s guidance on
the production of infusion pump systems [21] and the aerospace guidelines for the
development of civil aircraft and system ARP 4754A [22].

One of the goals of the underlying work, which is still in its early stages, is to de-
fine a framework to manage the reuse of safety assurance artefacts –evidence, argu-
mentation and contextual information – from system components across IMA-based
systems. The intention is to reuse the safety arguments across different IMA configu-
rations. There are a number of barriers affecting reuse of safety assurance in this con-
text. For instance, if the knowledge of the rationale behind safety-case construction is
not explicit and is owned by only a few experts, the reuse opportunity is quite low.
Safety case patterns [5] are considered to be one of the main approaches for managing
reuse of safety assurance. A safety case pattern provides a means of explicitly and
clearly documenting common elements found in safety cases, and it also promotes the
reuse of best practices for safety assurance.

This paper presents our preliminary research on the use of safety case patterns in
combination with Case-Based Reasoning (CBR) as a reuse strategy that could be used
to represent and retrieve previously examined safety cases. CBR is a knowledge-
based technique for solving new problems by referring to similar previously experi-
enced concrete problems and solutions, captured as cases [25]. This is supported by
the existence of repeatable patterns of safety cases, which emerge through common
approaches to arguing safety. These patterns determine a unified knowledge represen-
tation scheme which will be used to retrieve further safety cases. We illustrate the
approach with the development of modular argumentation for an IMA platform.

This paper is organised as follows. Section 2 describes the domain background and
related work. Section 3 provides details on the proposed approach as well as the chal-
lenges of using CBR for safety assurance. Finally, Section 4 presents our preliminary
conclusions.

24 A. Ruiz, I. Habli, and H. Espinoza

2 Background and Related Work

2.1 Regulatory Scenario in the Avionics Domain

The avionics domain is highly regulated where multiple standards apply in the proc-
ess of safety certification. Fig. 1. shows some of these standards (more precisely
guidelines and guidance documents).

Fig. 1. Standards in the avionics domain

ARP 4754A [11] and ARP 4761 [12] provide guidelines for the development and
safety assessment of aircraft and aircraft systems, targeting reduction of the number
and severity of failure conditions in aircraft/system designs. These processes iterate
down through systems and subsystems but at some point they establish requirements
for hardware and software items. DO-254/ED-80 [9] and DO-178 [8] are quite similar
in concepts and application but one is related to the production of hardware and the
other to software. Both standards are objective-based and process-centred. They de-
fine objectives that should be satisfied by the chosen development, verification and
support processes.

One important concept from these standards is the risk criteria. A Functional Ha-
zard Assessment (FHA) should be conducted at the beginning of the aircraft/system
development lifecycle. The result of the failure conditions addressed in the FHA will
determine the assurance levels. The Development Assurance Level (DAL) “is the
measure of rigor applied to the development process to limit, to a level acceptable for
safety, the likelihood of errors occurring during the development process of air-
craft/system…” [12]. The DAL, ranging from Level A (the highest) down through
Levels B, C, D to E, is assigned in correspondence with the severity classification of
failure conditions. These levels will affect to the number of objectives to comply with.
For instance, DO-178B describes 66 objectives and requires that all of them must be
applied to Level A, 65 to Level B, 57 to Level C, and 28 to Level D.

 Towards a Case-Based Reasoning Approach for Safety Assurance Reuse 25

DO-297 [10] applies where IMA architecture is deployed. IMA is the term used for
a distributed computing network aboard aircraft, which supports avionics applications
of many different assurance levels, and is designed for flexibility in configurations
and modularity. It supports assurance evidence reuse to reduce effort required when
reusing components in different systems.

IMA technology has introduced the possibility to fragment the certification process
into several tasks: (a) module and/or platform acceptance, (b) application acceptance
(software and hardware), (c) IMA system acceptance (integration of multiple applica-
tions), (d) aircraft integration (e) change of modules or applications and (f) reuse of
modules or applications.

2.2 The Multi-Core and Mixed-Criticality Technology Case

A challenging issue in the aerospace industry is that in some cases, new technologies
emerge before certification processes can be adapted. This is the situation of multi-
core technologies. In the avionics domain, functions are allocated to systems and
subsequently to items. Some critical functions are supposed to work independently on
a single core with their dedicated resources. When this is not the case, partitioning is
used for which an argument is needed in order to justify that spatial and temporal
independence exist between each partition.

With the introduction of multi-core computers into IMA architectures, multiple
partitions may run concurrently on a single computing card all accessing memory or
I/O interfaces at the same time. As a consequence, such deployments may exhibit
mutual influences at the IMA execution platform, which has to be addressed by sys-
tem and application designers.

The use of multi-core technologies is particularly a challenge in mixed-criticality
IMA configurations. Mixed criticality is the concept of allowing applications at
different levels of criticality to co-exist on the same computational platform. In a
mixed-criticality system, low-critical and high-critical applications coexist and must
therefore share processing time in a ‘safe’ way. Unfortunately, certification of such
systems is more difficult, because it requires that even the components of less critical-
ity be certified at the highest criticality level. An alternative is to present sufficient
evidence so as to show that lower-critical applications do not interfere with the high-
critical applications. This is one of the objectives of the underlying work.

2.3 Argumentation and Modular Safety Cases

The idea behind a safety case [4] is that the application of an argumentation approach
to the concept of target compatibility would require definitions, assumptions, and
limitations to be made visible. This allows a much clearer evaluation for the contribu-
tion and limit to the overall correctness of the software and therefore its contribution
to safety of the system. The underlying work subscribes to the view of using such
kind of argumentation in the avionics domain as a basic pre-condition to improve
safety assurance reuse.

26 A. Ruiz, I. Habli, and H. Espinoza

As systems are becoming more and more complex, so does the safety assurance
process. One of the solutions in the context of safety argumentation is the concept of
modular safety cases. In [16], Kelly proposes a contract-based approach for assuring
safety across the argument modules within the safety cases. Modular safety cases can
increase its reuse level by means of patterns. Kelly in [4] proposes the use of safety
case patterns as a way for reusing successful safety strategies. Several patterns have
been published [5]. In [6] a different approach to safety case patterns is presented,
where patterns are related to certification objectives and how they help introducing
conformance items for the IEC 61508 [7] standard on safety cases and improving
transparency in certification processes.

2.4 The Case-Based Reasoning Approach

Case-based reasoning is an analysis technique for solving new problems by referring
to similar previously experienced concrete problems and solutions, captured as cases.
This is based on the hypothesis that similar problems are likely to have similar solu-
tions [24]. Case-based reasoning is an effective analysis technique when it is infeasi-
ble to rely solely on general domain knowledge or generic associations between prob-
lem attributes and conclusions. Research has shown that experts in technical fields
such as medicine, engineering, planning and finance rely on past cases to generate
hypotheses about new situations.

There are a number of reasons for choosing CBR as a safety assurance reuse strat-
egy. The main requirement for our problem context (certification in avionics and
IMA) is that the solution should be able to support a significant variability from one
project to another in terms of justification diversity (See Section 2.3). Additionally the
reuse solution is intended to deal with a fairly wide range of kinds of arguments and
certification data. Traditional rule-based knowledge approaches are not suitable for
this requirement, as they require strong domain knowledge and representation. In
CBR, as opposed to rule-based approaches, knowledge about the domain is acquired
and maintained through unrelated but similar cases and does not need a domain expert
or knowledge about the problem domain. The generic concept of our approach hence
moves away from a rule-based implementation, as for each type of IMA platform and
company context, specific rule-sets would need to be encoded.

CBR applied to safety assurance is new and few published work exists in this area.
However some examples on how these techniques have been applied to safety related
topics have been reviewed. A web-based system is presented in [1] for managing the
Hazard and Operability (HAZOP) analysis based on a case based reasoning support
The system shows the end user previous result from HAZOP analysis on similar envi-
ronments so it can be adapted for the new case. Instead of doing the analysis from the
scratch, the system tries to reuse the best practices from previous situations.

PHASUITE [2] is another CBR system for HAZOP analysis in a systematic way.
PHASUITE framework consists of four main parts: information sharing, representa-
tion, knowledge base and reasoning engine. CBR techniques are used for the man-
agement of models which capture the knowledge concerning the system.

The work in [3] explains a framework that shows the first results for an industrial
application where their conceptual semantic case-based framework for safety analysis
is tested. Their framework facilitates the reuse of previous HAZOP and FMEA
experiences in order to reduce the time and effort associated with these analyses.

 Towards a Case-Based Reasoning Approach for Safety Assurance Reuse 27

A prototype is described in [17] for a semantic-case framework used in the aerospace
domain, using a specific ontology. The prototype is able to guide the user for the defi-
nition of well-structured requirements.

3 Outlining a CBR Approach for Safety Assurance Reuse

3.1 Problem Description

We were particularly interested in evaluating a CBR approach for a case study on
certification activities related to IMA platform integration, including computing and
networking. The input of this certification activity is the qualification data of hard-
ware and software components (e.g. computing unit or operating system) of IMA
platforms. The outcomes of this incremental activity in certification will be used to
build the certified IMA system’s certification data (this includes the IMA platform
plus applications on top of it).

In this context, the IMA platform architect role establishes a certification baseline
about sizing hypothesis (memory, processor throughput), certification standards ap-
plicable (DO254, DO178), and functionality expected (e.g. API A653). The IMA
platform architect also fixes the execution platform perimeter for the module supplier,
including hardware (e.g., processing unit, IO units, and memory units) and software
(OS, drivers, platform system functions, etc.). The module supplier provides what
DO-297 calls the usage domain (characteristics and usage constraints). The module
supplier also provides qualification material for certification demonstrations. Finally,
the IMA platform architect validates the module supplier’s data and provides formal
acceptation. Acceptance of a module can only be performed in the context of the air-
craft or engine certification program or modification project [10].

(a)

Process Arguments Product Arguments

Process Arguments Product Arguments

IMA System Arguments

IMA Platform Arguments

Process Arguments Product Arguments

Module Arguments

(b)

Fig. 2. Relationship of IMA elements and the incremental certification concept

28 A. Ruiz, I. Habli, and H. Espinoza

Fig. 2.a describes the incremental aspects that are related to the IMA concept. The
IMA platform (certification domain #2) that is built from modules (certification do-
main #1) and associated configuration tools are in correlation with the IMA platform
Usage Domain. The usage domain defines the set of rules and constraints that allow
the customization of the IMA platform for a specific use while keeping the certifica-
tion credits obtained for the platform.

In this case study, we focus on the development of safety argumentation and pat-
terns to demonstrate compliance with avionics standards, as part of the justifications
needed to integrate the module into the IMA platform. The strategy is to define a set
of claims related to IMA platform level hazards. The claims are decomposed using
sub-claims, evidence, and other argumentation elements that are represented using the
Goal Structuring Notation (GSN) [13].

As the argumentation in GSN models must reflect a modular approach of the refer-
ence IMA architecture, it is necessary to identify possible architectural elements that
could be used to construct a specific IMA assurance argumentation. Fig. 2.b shows
the hierarchy of argumentation and its link to the IMA architecture. We have also
added two kinds of arguments: process arguments and product arguments [25]. Proc-
ess arguments are related to the assurance processes that should be used, the interme-
diate artefacts to be produced (requirements, specifications, test plans etc.), the kinds
of reviews, tests, and analyses that should be performed, and the documentation re-
quired to tie all these together. The product arguments consider the potentially haz-
ardous behaviours exhibited by the system and how they are mitigated.

Table 1. DO-297 objectives and hazards regarding partitioning associated

 Towards a Case-Based Reasoning Approach for Safety Assurance Reuse 29

For example, when building the safety argument for IMA platform/modules, we
take advantage of a Certification Authorities Software Team (CAST) document [18]
that gives some guidelines for assuring partitioning. Given these guidelines, we can
align our argumentation to the assessment required by the standards. The decisions
made on the architecture implementation have effects on the structure of the fault tree
so they will be part of the features analysed in the case representation. One of the most
dependable decisions made on architecture is how partitioning and sharing resources
are implemented. In order to work in a methodical way, we propose that architecture
services can be mapped with an IMA module and so they should follow the DO-297
requirements for certification.

Table 1 shows the objective of the DO-297 standard regarding partitioning and the
lifecycle data required for the certification of IMA platform modules. Associated with
the hazards there are the items that can be considered as the causes of hazards. These
items need to be taken into account for satisfying that specific objective. In order to
deal with these elements, we should offer evidence that the resources are accessible in
time and space. How each resource is accessible depends on the architecture design
and implementations decisions.

While the previous table describes a generic set of hazards extracted from standards
and guidelines, the project-specific hazards define technology-specific arguments iden-
tified from preliminary hazard analyses. In Fig. 3, we show an excerpt of safety argu-
mentation used for safe access to shared resources.

Fig. 3. Excerpt of safety argumentation used for safe access to shared resources

One of the ideas that were implemented in this approach is the use of safety case
patterns. This is the key to reuse the good practices accepted by experts in the sector.
Patterns are widely used in engineering, and in relation to safety, some catalogues
have been designed [5] [6]. The same methodology is applied while representing the
knowledge for the domain. The cases are represented by the procedure follow in order
to fulfil the standard’s objectives and the product, that is, safety requirements that the
platform implementation must fulfilled.

For the next step, we propose to define a common pattern regarding sharing re-
sources so all instantiations of the pattern will have a similar structure that will help
the system on a future step to compare decisions from past cases and how the deci-
sions have affected the arguments. On Fig 4 a preliminary pattern used an example of
the proposal.

30 A. Ruiz, I. Habli, and H. Espinoza

Fig. 4. Preliminary pattern and its use on an example for shared resources

For the case characterization in a CBR approach, we will use the elements de-
scribed before (safety case patterns and hazards) as case and knowledge bases.

3.2 Case Characterization

The phases for CBR are shown in Fig. 5. The process starts when a new case arrives
and needs to be processed and finalized when the case is solved and the information
learned from the process is stored back in the knowledge repository.

Fig. 5. CBR general flow

One of the main tasks that should be done and is not described in the figure is case
characterization and how the knowledge for the cases is represented in the repository.
The cases should represent information balancing complexity and richness with
efficiency. Case descriptions are not just a feature vector with some values, but a
representation of an argumentation (goals, claims and evidence). This is one of the
challenges that must be achieved in order to apply these techniques to safety
assurance reuse.

 Towards a Case-Based Reasoning Approach for Safety Assurance Reuse 31

Before defining the case characterisation, we identify all the “resources” to build
the CBR approach. These should be at least three:

1. New project data (new case). The set of data used to certify an IMA Platform by
integrating: (i) pre-qualification data of an IMA Platform (e.g., owned by the Plat-
form Integrator), and (ii) Module data (certification data for module acceptance)

2. Safety case patterns (general knowledge). The set of “experience” information to
be used as initial case base in the form of modular arguments organized in safety
case patterns.

3. Previous projects’ safety cases (case repository). The set of “experience” infor-
mation to be used in future projects as case base in the form of safety cases. They
must also contain “context” information.

Additionally, we identify the inputs and outputs in a specific CBR reuse project:

1. Inputs (new case): The set of data related to the module pre-qualification, which
must be adapted in the form of an “IMA module safety case”. The adapted inputs
(target) must be structured: safety cases plus additional structure (argument vari-
ables, arguments ontology).

4. Outputs (validated solution): The set of candidate safety cases related to the IMA
platform with a trust measure for each, which will be the “IMA platform safety
cases”. These may be incomplete safety cases that will provide a basis to humans
for completing the final safety case. This means that CBR does not need provide
conclusive solutions but at least advice to humans in decision making and reusing
as much previous experience as possible. The outputs must be also structured:
safety cases plus additional structure (argument variables, arguments ontology)

As a starting point to characterize cases, we take typical safety cases as they may be
presented for argumentation of product assurance or compliance with standards.
Typical safety cases will have the following concept types:

1. Types of goals as organized by the type of argumentation modules: conformance
arguments, risk reduction arguments, etc.

5. Types of claims as described in the current version of the paper (arguments to
demonstrate IMA segregation, partition, distribution, integration, etc.)

6. Types of evidences that may be based on an ontology/taxonomy and their charac-
teristics.

Within each of these three elements, we may find additional aspects, including:

─ A lexical structure given by the textual information. This may lead to a struc-
tured textual language. This also raises the question of converting the textual
information (inputs) in the structured format required for a kind of propositional
language.

─ Variables. Some of the elements of a safety case would need to be variables taking
values from a value space (variable types) which will include dependencies be-
tween variables. E.g., the “evidence” (option branch in a use case) to be provided
depends on the “DAL” identified for the function.

32 A. Ruiz, I. Habli, and H. Espinoza

─ Values for variables. These could be extracted from safety cases for previous
projects or a library of possible values specific to a given company. For instance:
concrete means of compliance used by a company, technical information on IMA
platform (size, time constraints, computing capacity, etc)

─ Relations between the aspects above. The main challenge is to find a way to keep
consistency between the three aspects above when authoring a safety case. The de-
cisions on how to build a safety case in a specific project may depend on the intri-
cate relation between all these aspects.

3.3 Case Retrieving and Reuse

The system should learn how the similarity among cases is defined and assessed in
order to retrieve the cases whenever a new situation arises. Commonalities should be
studied in each of the attributes that conforms and identifies the cases. At the same
time it should analyse the weight that each attribute should have when calculating the
general similarity.

The first step is to identify what will be the elements that will help index cases: ba-
sically they will be the types of goals, claims and evidences. Then we need to estab-
lish a voting approach to select the best similar cases.

Once the cases are retrieved, general knowledge also plays its part, as among the
retrieved cases, the system should be able to suggest a possible solution for the new
situation. When a past case matches exactly with the new situation, there is no need
for the retrieved solution to be adapted. However as it has been mentioned, this is not
a frequent situation. The information on how cases are reused is directly related to the
information on how the matching between cases is done.

The suggested solution is presented but must be validated with information. As the
domain where the system is intended to apply is avionics, information on how the
authorities understand the assessment. In this domain it is difficult to validate a solu-
tion in an automatic way, safety argumentations and evidence depth could vary from
one project to another and from one assessor to another.

The information on why a solution is valid or not will help to improve the match-
ing process and the task to adapt retrieving cases to a new situation in order to make a
plausible solution.

3.4 Discussion

One of the reasons that validate the CBR approach is that while dealing with certifica-
tion, standards can be vague and need interpretation. The quantity of evidence and/or
the depth needed could vary from one project to another. The use of past experiences
is informally applied in industry and argumentation about past experiences is accepted
by some authorities. A CBR system could help certification related teams to store and
share the knowledge gathered on previous projects to future situations even when the
team change.

The approach presented here is intended to decrease the efforts needed while de-
signing safety cases. According to [15], it is the argument that, product testing has
some limitations and so many regulatory authorities have recommended the use of
process-based techniques. However the process-oriented approach do not guarantee
the elimination of all potential risk. We plan to balance both approaches, use a

 Towards a Case-Based Reasoning Approach for Safety Assurance Reuse 33

process oriented approach to fulfil the objectives of the standards and product-
oriented while testing the safety of a specific platform implementation.

The IMA architecture will be referenced for all cases on the example developed to
validate the case based reasoning approach. Although the same architecture is main-
tained, the implementation from one to another could differ and even different hard-
ware implementation will be under study for this example. Habli in [18] indicates that
architecture design and its variations are key to discover the elements that could con-
tribute to system failure conditions.

The methods and techniques used for gathering evidence have been selected for the
safety method database that is mentioned in [14]. The database relates to the different
methods not only with the domain but also with the different stages if the safety as-
sessment when they are used.

New cases are defined by the safety goal that should be in the argument, and the
design decisions taken for the implementation of the specific safety requirement. The
case based reasoning approach should provide the safety argumentation related to
those decisions that have been used on previous cases that have certain level of simi-
larity. It is also considered the different types of evidence which can support the ar-
gumentation planned; it is in this aspect where the safety database could play an im-
portant role.

For the retrieval activity, we propose a list of ranked similar cases, those will be
the cases to base the reuse of argumentation. The only case where the reuse will be
direct will be those cases where the similarity is total and all features have equal val-
ues. On the cases where this similarity is not complete, we should study the sum of
similarities among all from the features that identify the case and weigh those simi-
larities in correspondence with the importance of each feature.

The revision in the proposed example is always done manually where the sug-
gested solution is shown to the user who should be an expert on safety assessment and
certification. The solution shows a safety case which integrates the safety argumenta-
tion about the platform implementation, the certification objectives that should be
fulfilled and the possible evidences that support those arguments. The end user should
validate the solution or modify it to adjust it to the requirements. This validated solu-
tion will be stored on the cases repository to serve for future enquires.

This approach only serves when the patterns are used and integrated in the way it is
explained. When we have a safety case that does not follow that structure this ap-
proach cannot be followed.

If a new hazard is identified then the architecture pattern should be updated and
consequently all the cases that use it.

4 Conclusions

CBR techniques provide a promising approach for assisting engineers in their assur-
ance task while creating safety argumentations in relation with a specific architecture
for a specific standard. A CBR system could help in creating a methodology for safety
assessment and in this way decrease the time needed for assessing certain products,
particularly those developed in a modular way. This approach could help engineers to
maintain the best practice updated and at the same time helps engineers to focus on
the safety implications that one design could have compared to other.

34 A. Ruiz, I. Habli, and H. Espinoza

Future work, beyond solution implementation, is to define a propositional language
based on a domain-specific language. The expected CBR user interface to collect
inputs and show safety case as outputs would be as a graphical interface for safety
cases but with support of this propositional language (auto-completion assistant, type
checking, semantic checking).

Acknowledgment. The research leading to these results has received funding from
the FP7 programme under grant agreement n° 289011 (OPENCOSS) and from the
ARTEMIS programme under the project RECOMP. We would also like to thank
Integrasys, 7 solutions and University of Granada that are part of the project and have
conceived the ACP platform that was key for the pattern example described here.

References

1. Sahar, B., Ardi, S., Kazuhiko, S., Yoshiomi, M., Hirotsugu, M.: HAZOP Management
System with Dynamic Visual Model Aid. American Journal of Applied Sciences 7(7),
943–948 (2010)

2. Zhao, C., Bhushan, M., Venkatasubramanian, V.: PHASUITE: An automated HAZOP
analysis tool for chemical processes Part I: Knowledge Engineering Framework. Process
Safety and Environmental Protection 83(B6), 509–532 (2005)

3. Daramola, O., Stalhane, T., Moser, T., Biffl, S.: A conceptual framework for semantic
case-based safety analysis. In: 2011 IEEE 16th Conference on Emerging Technologies &
Factory Automation (ETFA), pp. 1–8 (2011)

4. Kelly, T.: Arguing Safety - A Systematic Approach to Managing Safety Cases. PhD thesis,
Department of Computer Science, The University of York (1998)

5. Hawkins, R., Kelly, T.: A software Safety Argument Pattern Catalogue, Department of
Computer Science, The University of York (2008)

6. Stensrud, E., Skramstad, T., Li, J., Xie, J.: Towards Goal-based Software Safety Certifica-
tion Based on Prescriptive Standards. In: International Workshop on Software Certifica-
tion, WoSoCER (2011)

7. IEC61508, 61508 - Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-Related Systems. International Electrotechnical Commission (2011)

8. RTCA DO-178/EUROCAE ED-12, Software Considerations in Airborne System and
Equipment Certification

9. RTCA DO-254/EUROCAE ED-80 Design Assurance Guidance for Airborne Electronic
Hardware

10. RTCA DO-297/EUROCAE ED-124 Integrated Modular Avionics (IMA) Development
Guidance and Certification Considerations

11. SAE ARP4754/EUROCAE ED-79, Certification Considerations for Highly Integrated or
Complex Aircraft Systems

12. SAE ARP4761, Guidelines and Methods for Conducting The Safety Assessment Process
on Civil Airborne Systems and Equipment

13. Origin Consulting GSN Community Standard Version 1 (2011)
14. Everdij, M.H.C., Blom, H.A.P., Kirwan, B.: Development of a structured database of safe-

ty methods. In: 8th International Conference on Probabilistic Safety Assessment and Man-
agement, PSAM8 (2006)

 Towards a Case-Based Reasoning Approach for Safety Assurance Reuse 35

15. Johnson, C.W., Robins, D.A.: Mith and barriers to the Introduction of Safety Cases in
Space-Based Systems

16. Kelly, T.: Using Software Architecture Techniques to Support the Modular Certification of
Safety-Critical Systems. In: Cant, T. (ed.) Proceedings of Eleventh Australian Workshop
on Safety-Related Programmable Systems, Melbourne, Australia. CRPIT. ACS (August
2005)

17. Hayhurst, K.J., Maddalon, J.M., Miner, P.S., Szatkowski, G.N., Ulrey, M.L., DeWalt,
M.P., Spitzer, C.R.: Preliminary Considerations for Classifying Hazards of Unmanned
Aircraft Systems. NASA (2007)

18. Certification Authorities Software Team (CAST): Guidelines for Assessing Software Parti-
tioning/Protection Schemes. FAA (2001)

19. Bloomfield, R., Bishop, P.: Safety and Assurance Cases: Past, Present and Possible Future
– an Adelard Perspective. In: 18th Safety-Critical Systems Symposium (SSS 2010), Bris-
tol, UK (2010)

20. International Organization for Standardization (ISO), ISO26262 Road vehicles – Func-
tional safety, ISO (November 2011)

21. U.S. Food and Drug Administration, Guidance for Industry and FDA Staff - Total Product
Life Cycle: Infusion Pump – Premarket Notification, Draft Guidance (April 2010)

22. Aerospace guidelines for the development of civil aircraft and system ARP 4754A
23. Eveleens: Integrated Modular Avionics Development Guidance and Certification Consid-

erations (2006)
24. Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodological Var-

iations, and System Approaches. Artificial Intelligence Communications 7(1), 39–52
(1994)

25. Habli, I., Kelly, T.: Process and Product Certification Arguments – Getting the Balance
Right. Workshop on Innovative Techniques for Certification of Embedded Systems, the
Proceedings of 12th IEEE Real-Time and Embedded Technology and Applications Sym-
posium, San Jose, California, USA (April 2006)

Modeling for Safety in a Synthesis-Centric

Systems Engineering Framework

Jasen Markovski� and J.M. van de Mortel-Fronczak

Eindhoven University of Technology,
P.B. 513, 5600MB, Eindhoven, The Netherlands

{j.markovski,j.m.v.d.mortel}@tue.nl

Abstract. The ever-increasing complexity of safety-critical systems puts
high demands on safety assurance and certification. We focus on the de-
velopment of control software, where safety) requirements engineering
plays a crucial and delicate role. Nowadays, most of the safety features
are ensured by the (embedded) control software and, consequently, a
great deal of the operational failures primarily originate from require-
ment errors. We apply formal methods to systematically specify, model,
and validate safety (control) requirements, which we then employ to
automatically synthesize a control design based on a formal model of
the system at hand. The synthesized designs are correct by definition,
provided that the models capture all safety aspects of the system. We
structure the process in a synthesis-centric model-based systems engi-
neering framework that we apply in an industrial case study involving
safe coordination of movement of theme park vehicles. The framework
provides rigorous means for modeling of safety requirements, and it sup-
ports evolvable product design, requirement reuse, and early integration
with hardware prototypes for validation and testing.

1 Introduction

The constant increase in complexity of safety-critical systems combined with
the growing market demand for products with improved quality promotes safety
assurance and certification amongst the most costly undertakings in product de-
velopment. To cope with complex systems and reduce development costs, most of
the global safety requirements are ensured by coordinating (off-the-shelf) system
components, which themselves ensure local safe behavior by embedded control
software. This puts pressure on requirements engineering, which plays a cru-
cial role in determination of the quality of the end product. According to the
overview of [1], nearly three quarters of failures found in operational software
originate from errors or oversights in (safety) requirements. Cases in point are
many, cf. [33], some with catastrophical consequences, furthermore fortifying the
need for high-quality requirements specifications and rigorous analysis.

� Supported by Dutch NWO project ProThOS, no. 600.065.120.11N124.

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 36–49, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Modeling for Safety in a Synthesis-Centric Systems Engineering Framework 37

Formal Methods for Safety-Critical Systems. On the one hand, formal methods
are advocated by [16,29] as cost- and time-effective alternative for formal and
rigorous specification, modeling, verification, validation, and testing of safety re-
quirements. Moreover, they are already encouraged as appropriate, even manda-
tory, methodologies in the development of safety-critical software by several stan-
dards, like [32,38]. However as noted in [17], relatively little emphasis is placed
on how formal methods integrate into the safety-critical system development
process, despite their successful application in multiple industrial cases studies
for the purpose of verification and validation like [20,9,21]. On the other hand,
it has been recognized in [23] that traditional approaches to software develop-
ment employing (re)coding-(validation-)testing loops have proven not entirely
adequate to handle the challenge, as safety (control) requirements frequently
change during the design process inducing a large number of time-consuming
design iterations. Thus, simply employing formal methods for certain product
design and development phases alongside or supporting the main design process
might not suffice, calling in [4] for a shift from process-based towards model-
based development from early stage to certification, deployment, evaluation,
evolution, and decommission of the system.

Supervisory Control. Our proposal for a synthesis-centric model-based systems
engineering framework partly addresses some of these issues in the develop-
ment of supervisory controllers for high-tech complex machines. Supervisory
controllers observe and coordinate high-level discrete(-event) system behavior.
They observe the discrete-event behavior of the uncontrolled system, make a de-
cision on which activities the system can safely perform, and send back control
signals that actuate the system. We note that the layer of supervisory control is
on a high level of abstraction, residing between the user and the resource con-
trol of the machine [8]. The automated synthesis of control designs is supported
by supervisory control theory of [31,8], which investigates synthesis of models
of supervisory controllers based on the models of the uncontrolled system and
the safety or control requirements. Thereafter, the synthesized models can be
employed to generate the control software or, alternatively, they can be directly
coupled with the prototype hardware using appropriate interfaces.

The models of supervisory controllers are referred to as supervisors, whereas
the model of the uncontrolled hardware is referred to as plant. Typically, it is
assumed that the supervisory controller can react sufficiently fast on system
sensory input, which enables modeling of the supervised system as a synchro-
nization between the plant and the supervisor, known as supervised plant. Plants
are usually represented by sets of sequences of events, or discrete-event automata
that generate formal languages, which model and correspond to sequences of ob-
served activities of the uncontrolled system. In the following, we simplify the
role of events for the sake of a more gentle introduction to the topic. The events
are split to uncontrollable events, which model activities like observations of sen-
sors, and controllable events, which model actions like interaction with actuators
of the plant. Consequently, supervisors cannot disable uncontrollable events,
as controllers cannot change sensor signals and need the feedback they carry.

38 J. Markovski and J.M. van de Mortel-Fronczak

On the other hand, they can disable controllable events in order to actuate the
machine in a safe manner, i.e., to prevent potentially unsafe state of the system
or dangerous situations. The safe behavior of the system is prescribed by a model
of the safety or control requirements.

Consequently, the supervisory controller synthesis problem is to synthesize
models of software controllers that observe discrete(-event) system behavior and
ensure their safe execution by disallowing activities of the system that might
lead to dangerous or otherwise undesired situations. The advantage is that the
synthesized controllers are correct by definition, i.e., the supervised system ad-
heres to all prescribed safety rules, provided that the plant and the control
requirements were correctly modeled. Therefore, validation of the synthesized
control software is always required, but the focus of the designers is no longer
on interpreting informal requirement specifications, coding, and testing, but on
analyzing requirements, their correct modeling, and validating system behavior.

Motivation and Contributions. Supervisory control has already been successfully
applied in a broad range of industrial cases: in [37] to ensure safety of patients
in a patient support system of Philips MRI scanners, in [19] to prevent dead-
lock behavior of parallel programs, in [10] to enable safe and secure access of
web services, or in [27] to guarantee proper maintenance of high-tech Océ print-
ers. We noted that the control designs, which implement the modeled safety
requirements, describe unambiguously the safety aspects of the control system.
Therefore, they can serve as means of communication between the industrial
producer of the equipment and the client that makes the order.

Here, we focus on the formal modeling of safety requirements and the val-
idation of the control design. We illustrate the application of our framework,
directly applied in an industrial case study involving safe movement coordi-
nation of theme park vehicles. We developed control design that successfully
coordinated the movement of the vehicles. The flexibility and advantage of su-
pervisory controller synthesis was highlighted by a last minute addition of a
new sensory component. It took us only four hours to model the new compo-
nent, add it to the existing models, adjust the control requirements, synthesize a
supervisor, and validate it by directly interfacing it with the vehicle prototype.

The remainder of this paper is organized as follows. We present and discuss
the proposed systems engineering framework in the following section. Then, we
present the industrial case study and summarize the whole process from specifi-
cation to validation of control designs with early integration of prototype hard-
ware. We finish with a discussion involving challenges in supervisory control and
its integration with system safety engineering.

2 Synthesis-Centric Model-Based Systems Engineering

To structure the process of supervisory control synthesis we employ the frame-
work of [34,26,5] depicted in Fig. 1. The modeling process begins with an informal
specification of the desired system, written by domain engineers. A design of the

Modeling for Safety in a Synthesis-Centric Systems Engineering Framework 39

design

Model
Safety

Requirements

Specification
Desired
System

Architectural
Design Desired

System

define

Specification
Safety

Requirements

Specification
Uncontrolled

System

define
define

Design
Uncontrolled

System

m
odel

design

m
odel

synthesize Model
Supervisory
Controller

Realization
System

(Hardware)

simulate realize

validate validate

remodelredefineredesign validate validate

redesignredefineredefine redesign

abstraction

refinement
Discrete-Event

Model
Plant

Hybrid
Model
Plant

integrate
integrate

integrateintegrate

redefine

Realization
Control
Software

remodel

realize
realize

Document Realization Software/Model engineerDomain engineer Automated step

Interface

Model

Fig. 1. Model-based engineering framework for supervisory controller synthesis

architecture of the system follows, contrived by domain and software engineers
together. The design most importantly defines the modeling level of abstraction
and the control architecture. Subsequently, it is used to separate the plant and
the control or safety requirements, a joint task of domain and software engineers.
Here, a decision is made to which extent the control is managed by the software,
and which part is implemented in hardware. The resulting informal documents
specify the plant and control requirements, respectively. In the following, we
omit the roles of the engineers as they are clear from the context.

Most plants typically exhibit hybrid (discrete-event and continuous) behavior,
whereas supervisor synthesis requires a discrete-event abstraction. The hybrid
model is suitable for simulation purposes, and it can be abstracted to a discrete-
event model for synthesis purposes, required by [31,8]. This abstraction only
eliminates timing behavior, while preserving the sequencing of the events and
their consequence on the control design. In the design of the plant, decisions are
made on the level of abstraction that is used, and what is significant discrete-
event and hybrid behavior. Moreover, in many cases, the hardware prototype
of the system is already in place, and it only needs to be modeled for synthesis
purposes, or it has already been modeled for simulation and validation of its
components, resulting in a hybrid model that needs to be abstracted. In par-
allel, a model of the control requirements is made following the specification
documents, referring to the plant. The discrete-event version of the plant to-
gether with the model of the control requirements are input to the synthesis
tool, which automatically generates a supervisor.

Software-in-the-loop simulation can be used to validate the supervisor cou-
pled with the hybrid plant, and hardware-in-the-loop simulation can be used to
validate the supervisor against a hardware prototype. The latter offers an early
integration alternative before the actual control software is built as in [7]. If the
validation is not satisfactory, the control requirements and/or the plant model
need to be remodeled or redefined. In certain cases, a complete revision proves to
be necessary, which might even require redefining the specification of the whole
system. Finally, the control software is generated automatically, based on the

40 J. Markovski and J.M. van de Mortel-Fronczak

validated models. Note that software engineers in the framework act more as
‘model’ engineers, shifting their focus from writing code to modeling.

Related Work. Model-based systems engineering methods are state-of-the-art
approaches towards reducing development time and cost, while retaining high
level of confidence in the correctness and safety of designs. The most promi-
nent commercially available frameworks are IBM Telelogic Harmony-SE, IN-
COSE Object-Oriented Systems Engineering Method, IBM Rational Unified
Process for Systems Engineering for Model-Driven Systems Development, Esterel
Technologies SCADE System, and Vitech Model-Based Systems Engineering
Methodology. They achieve a paradigm shift from traditional document-based
to model-based approach by focusing on design model formulation, as discussed
in [12]. These frameworks do provide methodologies and tools that support the
process of (manual) development of system models, but they do not support
automated model derivation as enabled by supervisory control synthesis. Our
academic framework is still under development and the way of specifying safety
requirements comes closest to the approach of Event-B, described in [2]. To spec-
ify models in Event-B, safety invariants need to be defined similar to the ones
that we employ in our framework. In Event-B, it is a task of the modeler to prove
these invariants correct with the available tools, whereas in our approach correct
models are synthesized automatically, satisfying specified safety requirements.

Framework Implementation. The proposed framework can be coupled to several
specification, synthesis, and verification state-of-the-art tools, depending on the
control architecture, the form of the safety requirements, and the additional
progress or liveness and performance requirements. For the traditional approach
to supervisory control, we employ discrete-event models in the form of automata.
The safety requirements are also given in the form of automata, which generate
the allowed sequences of events. To this end, we employ tools like TCT [13]
and Supremica [3] for monolithic synthesis, or the techniques introduced in [36]
for synthesis of distributed supervisors. We noticed in [26,27], however, that
specifying safety requirements in terms directly in terms of states provides high-
quality transparent safety formal specifications, supported by the tools NBC [24]
and the extended finite automata with data of Supremica [30].

As the supervision caters only for safe system behavior, and it does not
guarantee liveness properties of the supervised system, so several extensions
of the theory were proposed to extend modeling convenience and to increase
the expressiveness of the control requirements. To this end, standard safety con-
trol requirements are reinforced with liveness requirements, which specify in-
tended activities the supervised system should be capable of performing. The
work of [39] extends the NuSMV model checker for synthesis employing the
branching temporal logic CTL∗. Similarly, control requirements in CTL∗ are
proposed and analyzed in [18]. In [35] a proposal to translate temporal logic to
standard event-based control requirements is presented, subsequently enabling
the usage of standard synthesis tools. However, all of these approaches suffer
from (doubly-)exponential complexity due to enforcing of liveness requirements

Modeling for Safety in a Synthesis-Centric Systems Engineering Framework 41

during the synthesis procedure. Consequently, the proposed frameworks can han-
dle only systems with 104 − 105 states reported in [39,18,35,11].

Industrial Applications. Thus, for industrial application we remain in the do-
main of event-based [8,3] or state-based properties [24], decoupling supervisor
synthesis and liveness verification, and employing the most efficient special-
ized tools. To this end, we developed several transformation tools that align
the synthesis tool Supremica [3] with the model checkers UPPAAL [22] and
mCRL2 [15], which can be employed for the purpose of verification of progress
properties of the supervised plant. The supervised plant is transformed to an
input model for the corresponding tool, preserving both state- and event-based
information in the format required by the temporal logic supported by the tool.
For UPPAAL the same data-structures can be employed, whereas for mCRL2,
we have to encode the state-based information into events. In any case, the
post-synthesis verification is a valuable tool that provides relatively early feed-
back to the modeler, bringing higher confidence in the control design. The
synthesis-based systems engineering framework has been applied to several in-
dustrial case studies like [37,27,14]. The synthesized supervisors have been suc-
cessfully tested using hardware-in-the-loop integration, where the hardware is
directly supervised by the model of the supervisory controller. Control software
has also been generated and integrated within the software architecture of the
machines, but this step is not yet fully automated and it requires a manual
intervention.

The goal of the case study reported in [37] is safe positioning of patients inside
a Philips MRI scanner. To this end, models of the patient support system and
the user interface of the machine have been made, comprising 6.3 · 109 states
of the uncontrolled system. The control requirements that ensure patient safety
among else define the conditions for manual and automatic movements of the
tabletop on which the patient lies, prevent collisions of the tabletop with the
magnet, and enable the operator to safely control the system by means of the
user interface. The case study of [27] deals with coordination of maintenance
procedures of the printing process of a high-tech Océ printer. The printing pro-
cess applies a toner image onto a paper sheet. To maintain high printing quality,
several maintenance operations have to be carried out after a certain number of
prints. However, if possible, the execution of the maintenance operations should
not interrupt an ongoing printing procedure. Still, print quality must not be
compromised and, if necessary, a print job can be interrupted. The plant model
consist of the printing process comprised 25 automata with 2 to 24 states. For
this case, we employed parameterized state-based control requirements, which
translated to 500 state-based expressions as required for input to the synthesis
tool NBC [24]. In addition, several re-iterations of this case study has led us
to a framework based on the tool Supremica [3], which provides an extension
with performance evaluation in [25,28], bringing additional confidence to the
design.

42 J. Markovski and J.M. van de Mortel-Fronczak

3 Industrial Case Study: Theme Park Vehicle

The case study elaborated in [14] illustrates industrial application of supervisory
control theory, in which safety plays a prominent rôle. Using this case study, we
explain how safety requirements can be modeled and coped with in the synthesis-
centric systems engineering framework described in Section 2.

The multimover, a theme park vehicle shown in Fig. 2, is a relatively new
concept in the amusement park business. It is an Automated Guided Vehicle
that drives around following an invisible track: an electrical wire integrated in
the floor. It offers the possibility for new rides with crossings, switches, junctions
and driving into and out of dead-end tracks, as opposed to the conventional roller
coaster or ferris wheel. It acts and drives according to a scene program that is
specified by the theme park. The track wire produces a magnetic field that can
be measured by sensors. Next to the track wire, floor codes are positioned that
can be read by means of a metal detector. These floor codes give additional
information about the track, e.g. the start of a certain scene program, a switch,
junction or a dead-end. The scene program, which is read by the scene program
handler, defines at what speed the vehicle should ride at a certain position, when
it should follow other vehicles, stop, rotate or play music, and in which direction
the vehicle should move at a junction. An operator is responsible for powering up
and deploying vehicles into the ride manually. He also controls the dispatching
of the vehicles in the passenger boarding and outboarding area. Ride Control
coordinates all vehicles and sends start/stop commands. The messages are sent
as wireless signals or by means of the track wire. Multimovers can interact with
each other so that passengers have influence on the ride experience, for example
with target shooting systems and similar competitive features. By gaining a
certain score, new scenes can be unlocked. This interactivity and the fact that the
passengers cannot see the actual track makes the ride more exciting because of
the unexpectedness of the vehicle’s actions. This concept makes the multimover
a very flexible vehicle that can be used in theme parks, museums and in other
recreational activities.

Safety is the most important aspect of this vehicle. Therefore, several sensors
are integrated in it to avoid collisions. Proximity sensors are used to avoid physi-
cal contact with other objects. We can distinguish two types of proximity sensors.
A long proximity sensor that detects obstacles in the vicinity of six meter and a
short proximity sensor that detects obstacles in the vicinity of one meter. The
vehicle should ride slower when an object is only detected by a long proximity
sensor and stop when an object is detected by the short proximity sensor. This
stop is not an emergency stop. When the short proximity sensor does not detect
an object any more, the vehicle should start riding automatically. Additionally,
a bumper switch is mounted on the vehicle that can detect physical contact with
other objects. The vehicle should respond to such a situation with an emergency
stop. After the emergency stop, the operator has to deploy the vehicle back into
the ride. Finally, an emergency stop has to executed when the battery power is
too low or when a system failure occurs. The vehicle should not become active
when the bumper switch is still active or the battery power is still too low.

Modeling for Safety in a Synthesis-Centric Systems Engineering Framework 43

4 Proximity Sensors
(on/off)

Bumper Switch
(on/off)

Battery
(empty/OK)

User Interface
(3 LEDs/3 buttons) (on/off)

Steer Motor
(on/off)

Scene Program Handler
(on/off)

Ride Control
(start/stop)

Drive Motor
(on/off/stopped)

Fig. 2. Multimover and its components

LED Button Motor

LED RC Button RC Motor RC

Supervisory controller

Fig. 3. Control architecture

Safety Requirements. The functionality described above refers to the closed-loop
system, that is, the hardware and the controller. To facilitate further discussion
on safety requirements, we give an overview of the control architecture in Fig. 3.

At the lowest level, the components (transducers) of the multimover are de-
picted: a LED, a button and a motor. The next level is the level of resource
control. This resource control contains feedback control of these individual com-
ponents, e.g. a PID-controller for a motor. The upper level, supervisory control,
coordinates the discrete behavior of all components so that safety requirements
are satisfied. Specifically, two aspects are taken into account:

– Proximity handling. The supervisory controller has to assure that the
multimover does not collide with other vehicles or obstacles. To this end,
proximity sensors are integrated at the front and back which can detect an
obstacle if it is within a certain range of the multimover. To avoid collisions,
the multimover should drive with a safe speed and stop if the obstacle is too
close to it.

– Emergency and error handling. The system should stop immediately
and should be powered off to prevent any further wrong behavior when a
collision or a system failure occurs (e.g. a malfunction of a motor). To detect
collisions, a bumper switch is mounted on the multimover. The same applies
when the battery level is too low. The LED interface should give a signal
when an emergency stop has been performed. The multimover should be
deployed back into the ride by an operator manually.

To structure the control problem and enable distributed synthesis techniques,
we divide the control problem of the multimover into following five subproblems:

– LED actuation. The operator must be able to check in which state the
multimover is by looking at the Interface LEDs. This means that the states
of the LEDs represent the current state of the multimover. It is a task of the
supervisor to actuate the LEDs according to the state of the multimover, as
defined in Table 1.

44 J. Markovski and J.M. van de Mortel-Fronczak

Table 1. LED actuation

Emergency Reset Active

ResetLED On Off Off
ForwardLED Off On Off
BackwardLED Off On Off

– Motor actuation. The drive motor, the steer motor and the scene program
handler have to be switched on and off according to the state of the multi-
mover. If the multimover is in the state Active, the motors can be switched
on. If the multimover is in the state Reset or Emergency, the motors have
to be switched off.

– Button handling. The user interface of the multimover contains three but-
tons. First, the reset button is used to reset the vehicle if the multimover
is active and deployed into the ride or is in the state Emergency. Subse-
quently, the forward button and the backward button is used to deploy the
vehicle into a certain direction. A control task of the supervisor is to enter
the corresponding state when a button is pushed.

– Proximity and Ride Control handling. On each side of the multimover,
two proximity sensors are mounted: one long proximity sensor and one short
proximity sensor. If the long proximity sensor detects an object in the trav-
eling direction, the multimover should slow down to a safe driving speed. If
an obstacle is detected by the short proximity sensor, the multimover should
stop to prevent a collision.

Ride Control can send a ‘general start/stop’ command to all multimovers
in order to stop and start the complete ride. Since a ‘general stop’ command
of Ride Control can be considered as a short proximity stop, this control task
is similar to proximity handling. If Ride Control is sending a ‘general start’
command again, the multimover should start riding automatically (depend-
ing of the state of the proximity sensors in the current driving direction).

The control task of the supervisor is to slow down or stop the multimover
if a proximity sensor is activated in the travelling direction of the multimover
or if Ride Control is sending a ‘general stop’ command.

– Emergency handling. To guarantee passenger safety, the multimover
should be deactivated immediately when an emergency situation occurs. We
can distinguish the following emergency situations: battery power too low,
bumper switch collision detection, drive motor driver failures (including not
connected or defect motor), wire signal lost, steering motor driver failures
(including not connected or defect motor).

It should not be possible to reset the multimover if the bumper switch
is still activated or the battery power is still too low. A control task of the
supervisor is to enter the Emergency state of the multimover when an
emergency situation occurs.

Models of Safety Requirements. To guarantee that the closed-loop system satis-
fies safety requirements, the supervisor can be synthesized based on the models

Modeling for Safety in a Synthesis-Centric Systems Engineering Framework 45

bs press

bs release

mm reset
mm active

(a)

ba empty

ba ok

mm reset
mm active

(b)

sm error
dm error
sh error
ba empty
bs press

mm reset

mm reset

sm error
dm error
sh error
ba empty
bs press

mm emergency

(c)

Fig. 4. Requirement models of the emergency handling module

of components and requirements mentioned previously. The component models
represent the actual behavior of the transducers and their resource (low-level)
control. For supervisory control synthesis, component models are defined by
automata. Each transducer including its resource control is modeled by one au-
tomaton. Automata consist of states and transitions labeled by controllable and
uncontrollable events. States of the component models represent all relevant
states of each resource (e.g. on, off, empty, active). Controllable events represent
relevant discrete commands/tasks (function calls) to the resource control (e.g.
enable, disable). These actions are controlled by the supervisor. Uncontrollable
events represent messages that are sent from the resource control layer to the
supervisory controller (e.g. a failure notification, a sensor event). These events
are not controlled by the supervisor. The component models are made with the
assumption that the resource control of the multimover is working correctly.
This means that if a command is given, the command is carried out correctly.
For example, if a command is sent to enable the drive motor, we assume that
in response the drive motor is switched on by its resource controller. Further-
more, we assume that the communication between the resource layer and the
supervisor is fast enough so that if an event occurs, e.g a button is pressed,
the supervisor timely receives the information about this occurrence. This also
means that events cannot overtake each other and cannot get lost.

As already mentioned, requirements have to be modeled by automata in the
event-based approach. The state-based approach allows the user to define re-
quirements also by logical specifications. As an example, we discuss the automata
modeling the requirements of the emergency handling module depicted in Fig. 4.
The first requirement, Fig. 4a, specifies that the events mm active (represent-
ing the transition from the Reset state to the Active state of the multimover)
and mm reset (representing the transitions from the Active and Emergency
states to the Reset state of the multimover) are only allowed to take place if the
bumper switch is not activated. The second requirement, Fig. 4b, specifies that
the events mm active and mm reset are only allowed to take place if the power
level of the battery is sufficient. The last requirement, Fig. 4c, specifies that the
event mm emergency (representing the transitions from the Reset and Active
states to the Emergency state of the multimover) is only allowed to occur after

46 J. Markovski and J.M. van de Mortel-Fronczak

activation of the bumper switch (bs press), the power level of the battery becom-
ing too low (ba empty), a parse error of the scene program (sh error), a failure of
the drive motor (dm error) or a failure of the steering motor (sm error). If one
(or a sequence) of these ‘emergency events’ takes place, the requirement allows
the occurrence of the event mm emergency. If the event mm reset takes place,
occurrence of the event mm emergency is not allowed. Note that this require-
ment only puts restrictions on the occurrence of the event mm emergency, all
other events are allowed to take place without restrictions.

Within the state-based supervisory control framework, requirements can be
modeled by logical expressions and automata. [26] proposes three generalized
state-based expressions, described as logical expressions based on propositional
logic. In the emergency handling module, we are only using one type of general-
ized state-based expression, namely a generalized transition-state formula:

→ { mm reset, mm active } ⇒ BS Released ↓ ∧ BA OK ↓

This generalized transition-state formula specifies that the multimover may only
switch to active or reset (mm active or mm reset) if the battery level is ok
(BA OK) and the bumper switch is released (BS Released).

Supervisor Synthesis, Implementation, Validation, and Testing. Based on the
component and requirement models, an optimal supervisor is synthesized, val-
idated and implemented. Both a centralized (monolithic) supervisor and a dis-
tributed supervisor are synthesized for the supervisory control problem of the
multimover. A centralized supervisor has been synthesized with the state-based
framework based on state tree structures of [24]. Furthermore, a distributed
supervisor has been synthesized with an aggregated approach of [36]. Both su-
pervisors guarantee that the supervised system fulfills the requirements specified.

We validated the control design in several phases as outlined in [26]. First,
the control requirements where checked for conflicts. Then, the synthesized su-
pervisors were evaluated to check whether the models of the controlled system
are consistent with the intended behavior. For this purpose, discrete-event sim-
ulation was used persistently. Specifically, the state-space stepper was used to
check whether the supervisor disables the right transitions in the right states
when evaluating the closed-loop system behavior. The toolset described in [6]
was used for discrete-event simulation. Moreover, validation of the models was
performed by interfacing the supervisor with a hardware prototype. Finally, a
prototype of a supervisory controller with the synthesized supervisors is imple-
mented in the existing control software of the multimover. This implementation
is first tested by means of simulation, and thereafter, on the existing implemen-
tation platform where the developed control software is tested.

The synthesis-centric framework was employed in parallel with the traditional
approach in the development of the movement controller for the theme park
vehicle. The flexibility of the approach and the advantage of the automated
synthesis and early integration capabilities was highlighted when the number of
proximity sensors was to be extended. The engineering process used presently

Modeling for Safety in a Synthesis-Centric Systems Engineering Framework 47

requires approximately two days for making necessary changes to the control
system and software testing. The synthesis-based engineering process described
in this paper requires approximately four hours to cope with the same change
and deliver a validated control design.

4 Concluding Remarks

We gave a compact overview of a model-based engineering framework relying on
supervisory controller synthesis, as we find it employed in systems engineering.
We find that the use of formal models is a key element for successful application
of a synthesis-based systems engineering process. Model-based specifications are
consistent and less ambiguous than informal specification documents, forcing
the engineers to clarify all aspects of the system early in the design process. The
proposed framework most importantly affects the control design development
process, switching the focus from interpreting requirements, coding, and testing
to analyzing requirements, modeling, and validating the behavior of the system.
It is typically remarked that introducing formal models early in the development
process prolongs the production time of initial control design, but it greatly
improves the validation phase, reducing the number of reiterations needed for
correct control design and mitigating testing costs. Moreover, the framework
provides for automated synthesis of supervisory controllers, which implement
the safety requirements by definition, so one can directly proceed with model
validation and test the control design by integration with the prototype of the
hardware early in the design process. Finally, the proposed framework is flexible,
as it gives early feedback to the modeler regarding conflicting requirements and
wrongful assumptions, and it can easily withstand changes in the control design
or validation and testing errors.

The promise of automatic control software generation captured the interest
of the industry, with supervisory control becoming even more captivating as
engineers nowadays are familiar with building models for simulation and valida-
tion purposes. Moreover, this technique enables rapid prototyping, i.e., the ob-
tained models can be coupled with (prototype) hardware components to evaluate
the control requirements before building and testing expensive control software.
However, we foresee the need for deeper integration with the design process, as
we believe that the developed models provide a sound basis for ensuring safety
and quality of the developed products. Since we are developing our systems engi-
neering framework for application in an industrial environment, we are working
towards supporting the process of safety certification as well, based on the de-
veloped models of the system and the safety requirements.

References

1. A systematic literature review to identify and classify software requirement errors.
Information and Software Technology 51(7), 1087–1109 (2009)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

48 J. Markovski and J.M. van de Mortel-Fronczak

3. Akesson, K., Fabian, M., Flordal, H., Malik, R.: Supremica - an integrated envi-
ronment for verification, synthesis and simulation of discrete event systems. In:
Proceedings of WODES 2006, pp. 384–385. IEEE (2006)

4. Anderson, S., Felici, M.: Safety, reliability and security of industrial computer sys-
tems. Reliability Engineering & System Safety 81(3), 235–238 (2003)

5. Baeten, J.C.M., van de Mortel-Fronczak, J.M., Rooda, J.E.: Integration of Super-
visory Control Synthesis in Model-Based Systems Engineering. In: Proceedings of
ETAI/COSY 2011, pp. 167–178. IEEE (2011)

6. Baeten, J., van Beek, D., Cuijpers, P., Reniers, M., Rooda, J., Schiffelers, R.,
Theunissen, R.: Model-based engineering of embedded systems using the hybrid
process algebra Chi. ENTCS 209, 21–53 (2008)

7. Braspenning, N., van de Mortel-Fronczak, J., Rooda, J.: A model-based integration
and testing method to reduce system development effort. ENTCS 164(4), 13–28
(2006)

8. Cassandras, C., Lafortune, S.: Introduction to discrete event systems. Kluwer Aca-
demic Publishers (2004)

9. Cha, S., Son, H., Yoo, J., Jee, E., Seong, P.H.: Systematic evaluation of fault
trees using real-time model checker UPPAAL. Reliability Engineering & System
Safety 82(1), 11–20 (2003)

10. Darondeau, P., Dubreil, J., Marchand, H.: Supervisory control for modal specifi-
cations of services. In: Proceedings of WODES 2010, pp. 428–435. IFAC (2010)

11. D’Ippolito, N.R., Braberman, V., Piterman, N., Uchitel, S.: Synthesis of live be-
haviour models. In: Proceedings of SIGSOFT 2010, pp. 77–86. ACM (2010)

12. Estefan, J.: Survey of Model-Based Systems Engineering (MBSE) methodologies.
Tech. rep., INCOSE (2008), http://www.incose.org

13. Feng, L., Wonham, W.M.: TCT: A computation tool for supervisory control syn-
thesis. In: Proceedings of WODES 2006, pp. 388–389. IEEE (2006)

14. Forschelen, S.T.J., Mortel-Fronczak, J.M., Su, R., Rooda, J.E.: Application of su-
pervisory control theory to theme park vehicles. Discrete Event Dynamic Systems,
1–30 (to appear, 2012)

15. Groote, J.F., Mathijssen, A.H.J., Reniers, M.A., Usenko, Y.S., van Weerdenburg,
M.J.: Analysis of distributed systems with mCRL2. In: Process Algebra for Parallel
and Distributed Processing, pp. 99–128. Chapman & Hall (2009)

16. Hinchey, M., Bowen, J.: Applications of Formal Methods. International Series in
Computer Science. Prentice Hall (1995)

17. Iwu, F., Galloway, A., McDermid, J., Toyn, I.: Integrating safety and formal anal-
yses using UML and PFS. Reliability Engineering & System Safety 92(2), 156–170
(2007)

18. Jiang, S., Kumar, R.: Supervisory control of discrete event systems with CTL*
temporal logic specifications. SIAM Journal on Control and Optimization 44(6),
2079–2103 (2006)

19. Kelly, T., Wang, Y., Lafortune, S., Mahlke, S.: Eliminating concurrency bugs with
control engineering. Computer 42(12), 52–60 (2009)

20. Kim, T., Stringer-Calvert, D., Cha, S.: Formal verification of functional properties
of a SCR-style software requirements specification using PVS. Reliability Engineer-
ing & System Safety 87(3), 351–363 (2005)

21. Lahtinen, J., Valkonen, J., Bjorkman, K., Frits, J., Niemela, I., Heljanko, K.: Model
checking of safety-critical software in the nuclear engineering domain. Reliability
Engineering & System Safety (to appear, 2012)

22. Larsen, K.G., Pettersson, P., Yi, W.: Uppaal in a Nutshell. International Journal
on Software Tools for Technology Transfer 1(1-2), 134–152 (1997)

http://www.incose.org

Modeling for Safety in a Synthesis-Centric Systems Engineering Framework 49

23. Leveson, N.: The challenge of building process-control software. IEEE Soft-
ware 7(6), 55–62 (1990)

24. Ma, C., Wonham, W.M.: Nonblocking Supervisory Control of State Tree Struc-
tures. LNCIS, vol. 317. Springer (2005)

25. Markovski, J.: Towards supervisory control of Interactive Markov chains: Control-
lability. In: Proceedings of ACSD 2011, pp. 108–117. IEEE (2011)

26. Markovski, J., van Beek, D.A., Theunissen, R.J.M., Jacobs, K.G.M., Rooda, J.E.:
A state-based framework for supervisory control synthesis and verification. In:
Proceedings of CDC 2010, pp. 3481–3486. IEEE (2010)

27. Markovski, J., Jacobs, K.G.M., van Beek, D.A., Somers, L.J.A.M., Rooda, J.E.:
Coordination of resources using generalized state-based requirements. In: Proceed-
ings of WODES 2010, pp. 300–305. IFAC (2010)

28. Markovski, J., Reniers, M.A.: Verifying performance of supervised plants. In: Pro-
ceedings of ACSD 2012. IEEE (to appear, 2012)

29. Mertke, T., Menzel, T.: Methods and tools to the verification of safety-related
control software. In: Proceedings of SMC 2000, vol. 4, pp. 2455–2457 (2000)

30. Miremadi, S., Akesson, K., Lennartson, B.: Extraction and representation of a
supervisor using guards in extended finite automata. In: Proceedings of WODES
2008, pp. 193–199. IEEE (2008)

31. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete-event
processes. SIAM Journal on Control and Optimization 25(1), 206–230 (1987)

32. RTCA Inc. and EUROCAE: DO-178B: Software considerations in airborne systems
and equipments certification (1992)

33. Schauf, A.: Safety implications of software in safety-critical devices. Journal of
System Safety 47(6), 1–5 (2011)

34. Schiffelers, R.R.H., Theunissen, R.J.M., van Beek, D.A., Rooda, J.E.: Model-based
engineering of supervisory controllers using CIF. Electronic Communications of the
EASST 21, 1–10 (2009)

35. Seow, K.T.: Integrating temporal logic as a state-based specification language for
discrete-event control design in finite automata. IEEE Transactions on Automation
Science and Engineering 4(3), 451–464 (2007)

36. Su, R., van Schuppen, J.H., Rooda, J.: Aggregative synthesis of distributed su-
pervisors based on automaton abstraction. IEEE Transactions on Automatic Con-
trol 55(7), 1627–1640 (2010)

37. Theunissen, R.J.M., Schiffelers, R.R.H., van Beek, D.A., Rooda, J.R.: Supervisory
control synthesis for a patient support system. In: Proceedings of ECC 2009, pp.
1–6. EUCA (2009)

38. UK Ministry of Defence: Defence standard 00-55 – The procurement of safety
critical software in defence equipment (1997)

39. Ziller, R., Schneider, K.: Combining supervisor synthesis and model checking. ACM
Transactions on Embedded Computing Systems 4(2), 331–362 (2005)

A Model Based Approach for Safety Analysis

Fabien Belmonte and Elie Soubiran

Alstom Transport, 48 rue Albert Dhalenne
93484 Saint-Ouen cedex, France

{fabien.belmonte,elie.soubiran-ext}@transport.alstom.com

Abstract. This paper deals with model based safety engineering in
Railway signaling systems development. Recently, model based system
engineering (MBSE) has brought new specification means for large in-
dustrial system. Alstom Transport develops its own MBSE methodology
supported by the SysML notation. In this context, a domain specific mod-
eling language (DSML) has been developed for the safety studies enabling
tight coupling with the MBSE environment. The paper describes a model
to model translation. The translation developed takes the functional part
of the system model and the dysfunctional viewpoint modeled within the
safety DSML to generate an Altarica model of the system. The generated
Altarica model is formal and allows, one from another, the dysfunctional
simulation of the system and the generation of sequences of events leading
to accidents.

1 Introduction

In Railways domain, signaling systems are highly safety critical. Those systems
are intended to prevent the trains from colliding and from derailing. The devel-
opment life-cycle of signaling systems is regulated by process-and-performance
oriented norms defined (for Europe but widely used around the world) in CEN-
ELEC standards (EN 50126 [2], EN 50128 [3], EN 50129 [4]). Concretely, the
development life-cycle is twofold, on one hand the designers develop a safe sys-
tem by observing a safety methodology, on the other hand the safety engineers
identify the accidental scenarios and insure that the system hazards leading to
these scenarios are mitigated within the design of the system.

Up to now, system design is generally described with textual requirements in
large documentation and the safety analyses are also performed within textual
documentation. But the documentation reveals only the result of system design
activity and the rationale of the retained solution is not recorded. Furthermore,
the results included in documentation are difficult to trace and to reuse because of
the manual operations required by the safety engineers. Recently, Alstom Trans-
port introduced a MBSE methodology, supported by the SysML notation [8] to
tackle the limitations of the textual approach. Given the fact that the SysML no-
tation does not fit the specific dysfunctional1 semantic required to perform safety

1 A dysfunctional viewpoint highlights the way a system or function does not work
properly.

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 50–63, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Model Based Approach for Safety Analysis 51

analysis, a Domain Specific Modeling Language (DSML) has been developed for
the safety activities [5]. It enables the traceability between each safety model el-
ement with its corresponding object element in the model of the system. This
DSML has been developed during the French IMOFIS R&D research programand
further extended during the ITEA2 R&D research program VERDE. In particu-
lar, the work presented here extends the IMOFIS safety DSML to apply formal
analysis and enables early validation. The remainder of this paper is the following:
the first part gives an overview of the safety process, the second part describes our
MBSE approach, finally the last part proposes a formal model to model transfor-
mation that targets the Altarica language.

2 Overview of the Safety Analysis

The safety process stems from the system development process. More precisely,
each safety step depends on a corresponding system development step (cf. Fig-
ure 1). The aim of the overall safety analysis is to preserve traceability within a
deep causal analysis (from elementary faults to system accidents) and to allow
analysts to provide explanation of causation link from cause to effect at every
levels of the V descendant phase. Firstly, a Preliminary Hazard Analysis (PHA)
is performed to identify the accidental scenarios, secondly an iterative System
Hazard Analysis is conducted at each level of description of the system. These
are twofold, a causal and a consequence analysis insures an exhaustive analysis
of the events leading to the accidents.

In the PHA, accidents are identified by the hazardous situation and by the
operational concept in which they occur; this is the consequence analysis. Then
a causal analysis is performed in order to identify the barriers that prevent
hazards to be developed into accident. Accident is the result of the conjunction
of the hazard occurrence event and the barrier failure event both conditioned by
a specific operational context.

At the end of the PHA, the system designers start the definition of the func-
tional breakdown structure (FBS). The Figure 2 presents a typical hierarchy of
activities and operations that represent the FBS of a system. The tree structure
of the FBS ranges from high-level abstract functions allocated to (sub)systems

Fig. 1. Parallel and collaborative V process for system and safety

52 F. Belmonte and E. Soubiran

Fig. 2. FBS

to concrete functions allocated to software or hardware components. Then, a
detailed failure mode analysis is applied systematically to every single function
of the FBS. This is the role of the Failure Mode and Effect Analysis (FMEA)
technique [1]. Each system’s function shall be analyzed in order to discover its
failure modes. A failure mode of a function is the manner by which a failure is
observed; it generally describes the way the failure occurs. Then for each fail-
ure mode of a function their causes and their consequences are identified. This
analysis uses inductive reasoning: from particular established fact (the failure
mode occurs) the analyst entails a more general fact (what could be deduce on a
larger set, in our case the system). Up to now this safety process was performed
within documentation. The traceability between system specification artifacts
and safety artifacts was established manually. Since the system specification
uses semi-formal modeling language (SysML), the use of a safety DSML offers
the following opportunities:

– To share a single repository of requirements;
– To formalize the traceability links between system and safety model artifacts;
– To generate part of the safety model;
– To automate the top-down part of the safety analysis.

3 Model Based Safety

This section presents the MBSE approach of this work and is split in four parts.
The first part concerns the system modeling approach, the second part presents

A Model Based Approach for Safety Analysis 53

the contributed safety DSL, the third part proposes Altarica as the formal target
of safety modeling and the last part describes the proposed process.

3.1 SysML and MARTE

SysML is now widely accepted as the general-purpose modeling language for sys-
tem engineering. In contrast to UML, it provides a requirement-driven approach
and proposes modeling elements, like blocks and constraint blocks, that miti-
gates the software-centered vision of UML. However, it stays interoperable with
other modeling languages since it is based on the XMI interchange format [7].
Hence, SysML can be used with specific modeling languages or profiles like our
DSML or MARTE [6].

In order to tackle the complexity of system modeling, Alstom decomposes
system models into several viewpoints. Each one has a clearly defined purpose
and the whole allows to present all facets of the system. We find, beyond others,
an operational view, a functional view, and a constructional view. For safety
analysis purpose, we are mainly interested by the operational and functional
views. Indeed, the operational view identifies for each subsystem the external
entities, the contexts, and the operational missions. On its side, the functional
view describes services and functions the system and subsystems must realize,
and results in the FBS presented above. Concretely, we get from these views
a structured description of the system environment and a data/control flow
oriented description of the functions. Finally, the MARTE profile allows us to add
to the system model real-time artifacts that can be exploited for safety analysis.
For instance, the loose semantic of SysML can be greatly enriched by adding VSL
based constraints on activities and sequences that will be furthermore traced in
the safety model for dysfunctional analysis purpose. A typical example consists
in a constraint that expresses the validity time of a message. These real-time
specification artifacts together with the requirements management of SysML
are mandatory to conduct a precise safety analysis.

3.2 The Safety DSML

The risk assessment starts with the identification of accidental scenarios. This
analysis is called Preliminary Hazard Analysis (PHA). Based on the definition of
accidental scenarios, fault trees are built to identify the causes of the accidents,
this is the deductive phase of the risk assessment called System Hazard Analysis -
Fault Tree (SHA-FT). Then, the safety analysts take into account the elementary
failures of the system one by one and identify their effects on the system. This
is the inductive process named SHA-FMEA. The PHA is modeled with event
tree formalism, the SHA-FT with fault-trees and SHA-FMEA with transition
systems. PHA needs to be linked with structural and operational model elements
of the system design model, and SHA are linked to structural and functional
model elements of the system design model. A DSL supported by semi-formal
modeling tool for risk assessment has been developed. It is able to communicate

54 F. Belmonte and E. Soubiran

with any system engineering modeling language as long as the model follows the
Eclipse Modeling Framework format. The main features are:

– Graphical representation of PHA and SHA;
– One model serialized, many views are available;
– Serialization of the global risk analysis into one fault tree;
– Requests on system design model and references of model element into risk

assessment;
– Customization of requests based on system engineering method used in sys-

tem design (e.g. which model element represents function?);
– Automatic layout of graphical representation (very useful for large model);
– Requirements repository and traceability purpose.

Structure of the PHA. The PHA aims at identifying the accidental scenarios
of the system. A scenario is defined by a hazard event that may develop into
accident. The consequence of this accident is identified. The principle of the
PHA is then to identify the barrier that prevents the hazard to be developed
into accident and the barrier that reduces the severity of the consequence of the
accident. The PHA (all the scenarios) are encoded in the model with a fault tree
formalism. One scenario is shown to the user within an event tree formalism
(The reader interested [5]).

Structure of the SHA-FMEA. The Safety meta-model (MM) has been
extended during the Verde project to enhance its expressiveness relatively to
FMEA modeling. The basic idea is to bring an adequate semantic, closely re-
lated to the Altarica’s one, for FMEA constructions. The SHA-FMEA is built
as a hierarchy of FMEAs, where each FMEA is associated to an activity or an
operation of the system model (cf. Figure 3). The relations sub/super FMEA,
depicted as dashed arrows, follow the relation induced by the use of callBe-
haviorAction and callOperationAction objects in the FBS. In other words, the
overview diagram gives the hierarchical presentation of the system from a safety
point of view. The top level node is the previously presented PHA, at depth 1
we have the system FMEA, at depth 2 the subsystems FMEAs and so on until
software FMEAs. Furthermore, the causes of a failure at depth i are explained
by failures at depth i + 1. These cross-level references gives the ability to the
safety analyst to navigate quickly between related FMEAs. Finally, it allows us
to have, in our safety models, both a vertical traceability (system/subsystem/...)
of failure modes and a horizontal traceability (subsystem1/subsystem2...) that
is mainly supported by the dataflow part of the system model. The overview
diagram also allows one to edit the dysfunctional characterization of the data,
by default we propose a three valued characterization: correct, erroneous, and
void, it then can be extended with custom values (TooHigh, TooLate...).

As shown in Figure 4, a FMEA object is roughly a transition system. For a
given system object, the states of the associated FMEA are the nominal state
and the failure states, transitions from nominal to failure states are guarded by

A Model Based Approach for Safety Analysis 55

Fig. 3. The overview diagram

constraints and/or events, they represent the causes of a failure. More precisely, a
failure mode is characterized by a system effect and a local effect. Beside natural
language descriptions, the system effect references a failure mode of the super
level2, on its side the local effect characterizes outputs of the considered system
component from a dysfunctional point of view. A failure cause may reference
one or part of the following objects:

– Atomic events, for instance “bug”, “shutdown”...

– Input events, they associate to parameters or ports of the system model a
dysfunctional value. The event is raised if the value is observed on the port.

– System model constraints expressed in VSL or OCL. The guard is true if
the constraint evaluates to false.

– Failure states of lower levels for hierarchical propagation and traceability of
failures.

– An operational context that narrows the scope of a failure

From this short presentation, one may notice the high density of traceability
links within and between models (system and safety). The systematic use of
cross-reference allows us to gain in productivity since information is always one-
click distant, but also in completeness and coherence since it becomes quite easy
to write a set of OCL rules to perform ad hoc checking on models.

Finally, we propose for models that are conforms to our Safety MM a transla-
tion based semantic that targets Altarica’s guarded transition system. The main
benefit in fixing a precise semantic is that it allows us to automatize a part of
the safety analysis.

2 For the system FMEA, the system effects reference either hazards or barrier failures
that are used in accident cases of the PHA.

56 F. Belmonte and E. Soubiran

Fig. 4. FMEA diagram for an operation

3.3 The Need of Formal Language: Altarica

The DSML presented above allows one to describe the dysfunctional viewpoint
of the system, but does not provide a formal semantic that enables automated
computational analysis. The scientific dependability community developed in
the 90’s a formal language, called Altarica, to perform such analysis [9]. Altarica
language provides a way to describe constrained automata. Furthermore, these
automata can be interfaced together through a concept of flow and hierarchically
organized by instantiating sub-automata. Hence this language is able to answer
the challenge of modeling together the functional behavior of the system, the
triggering of failures, and their propagation. An Altarica model consists in a set
of interrelated nodes. A node is composed of sub-nodes, flow and state variables,
events, transitions, and assertions. The meaning given, in this work, for each
item is the following:

– Sub-nodes provide a mean to describe the functional hierarchy (FBS).
– Flows encode the functional interfaces, but are typed with dysfunctional

values.
– States correspond to the failure modes described in FMEAs.
– Events are the failure occurrences.
– Transitions encode the condition to trigger a failure occurrence and the re-

sulting failure mode of the function.
– Assertions allow to specify the values of the outputs of the node considering

the values of the input and the failure modes.

A Model Based Approach for Safety Analysis 57

Fig. 5. The process

Traditional safety formalism, such as Fault Trees, Event trees, Petri Nets, etc. can
be extracted from the Altarica model of the system. Furthermore, the executable
semantic of Altarica allows to compute directly the traditional safety analysis
result sets (e.g. minimal cut-sets and accident sequences). Today, FMEAs are
performed manually. Since it is an exhaustive and inductive technique, hand-
made production are highly cost-consuming. By designing a safety DSML and
a system model transformation to Altarica, a productivity and quality gain is
expected. The following sections describes the methodology to achieve this goal.

3.4 The Proposed Process

In order to generate the Altarica model, the following process is proposed. The
figure shows a sub-system development phase. It is assumed that the above
systemmodel is available. The first task of the sub-system designer is to refine the
requirements of the system level specification. Then the modeling phase aims at
specifying within three viewpoints (operational, functional and constructional)
the system to be developed. The parallel safety life-cycle depends on the SysML
model of the sub-system. Then, the SHA-FMEA is performed by the safety
engineer with the safety DSML workbench. Finally, the model transformation
developed in this work takes the functional specification of the model of the sub-
system and the FMEA of each function and generates the Altarica model. A
dedicated tool is used to perform the analyses of the Altarica model. As a result,
the set of accident sequences and the fault-tree of the sub-system is generated.
With this result-set the safety engineers validates the safety criteria. The case
should arises that some criteria are not fulfilled, the safety engineer requests
changes in the design of the system.

4 Model Transformation

In this section we present the model transformation developed during the Verde
project. It aims at providing an automatic and transparent translation tool
which is able to extract an Altarica model from both safety and system models.

58 F. Belmonte and E. Soubiran

The Altarica model can be then analyzed by dedicated fault tree and sequence
generation tools available on the market.

4.1 Overview of the Targeted Altarica Models

A model generated by our transformation is composed of four kinds of nodes:

1. The context node, it provides to all other nodes the current operational
context.

2. The environment nodes, they correspond to activities or operations which
are not dysfunctional specified in SHA-FMEA. They are useful to close the
model relatively to its dataflow specification. They basically send data which
can be corrupted to the rest of the model.

3. The FMEA nodes, they are the core of the Altarica model. They encode
the dysfunctional specification given in the safety model and the dataflow
specification given by the system model.

4. The PHA node, it is the top level node of the model. It acts as an observer
that checks if the state of the whole system triggers an accident.

The model transformation takes into account both system and safety viewpoint.
This allows us to extract the dataflow part from activities and the control part
from FMEAs. More precisely, pins and parameters are mapped to flow variables,
object flow to assertion on flow variables, while FMEAs provide guards, events,
and states to specify transitions.

4.2 Formalization of the Model Transformation

In this section, we assume that an Altarica model is a set of nodes and that a
node can be expressed as an octuple (l, SI, F, S,E, I, T, A) where:

– l is an identifier, it represents the name of the node
– SI is a set of subnode instances. A subnode instance is represented as a pair

of identifiers, the first projection is the name of the instance, and the second
projection is the name of the node.

– F is a set of flow definitions. A flow is defined by an identifier and a type3.
– S is a set of state variable definitions. Like flows, state variables are defined

by an identifier and a type.
– E is a set of identifier and represents the set of events.
– I is an initial state, it associates to each state variable an expression.
– T is a set of guarded transitions. A guarded transition is made of a boolean

expression acting as the guard, a triggering event, and a valuation of state
variables.

– A is a set of boolean assertions, linking flow values to states of the node.

3 Models generated by the proposed translation only use enumerated type.

A Model Based Approach for Safety Analysis 59

Notation:

i. || . || (resp. || . ||foo) denotes the translation function (resp. the foo subfunc-
tion)

ii. The rule ||X || → Y expresses “the translation applied to X evaluates into
Y ”

iii. We denote by M the system model, m ranges over elements of M and A0 ∈
M is the top level activity

iv. We denote by S the safety model, P is the PHA, F is the SHA-FMEA and
L the library

v. We say that m ∈ M and f ∈ F are in relation if and only if the FMEA f
describes the dysfunctionnal behavior of m, and we write m ∼ f

vi. X.a denotes the attribute a of the element X . In the following, we have tried
to give self-explanatory names for attributes.

Translation Rules:
In the following, we use two type abbreviations:

Ctxt := ||L.ownedCtx||ident
Ddys := ||L.dataDys||ident

Ctxt is the datatype which represents the operationnal context of the system.
Ddys is datatype that abstracts system data to dysfunctionnal data (correct,
erroneous, too high...). The translation subfunction ident is given at the end of
rules description.
• The main rule:

||(M,S)|| → ||L||ctxt ∪ ||(A0, F)||env ∪ ||(M,F)||fmea ∪ ||(A0, P)||pha
The main translation rule is applied to a pair composed of a system model
and a safety model. It evaluates to a set of Altarica nodes computed by four
subfunctions. The first one computes the context node and is applied to the
library of the safety model. The second one computes the environment and takes
as arguments both top level activity and SHA-FMEA. The third one computes
the set of nodes that encodes the dysfunctionnal behavior of the system. The
last one translates the PHA.
• The ctxt rule produces the singleton node CtxtProvider:

||L||ctxt → (CtxtProvider, ∅, Fl, Sl, El, Il, Tl, Al)
4

The state variables, flow variables and events range over the operationnal con-
texts of the model:

Fl := (Cflow, Ctxt)

Sl := (Cstate, Ctxt)

El := ||L.ownedCtx||event
4 We intentionally omit braces for singleton sets.

60 F. Belmonte and E. Soubiran

Il := (Cstate, c1)c1∈Ctxt

The transitions define a complete transition system over operationnal contexts:

Tl := {. . . , (
, ||ci||event, (Cstate, ||ci||ident)), . . .}∀ci∈L.ownedCtx

Finally, the assertion links the state of the node to its output flow:

Al := (Cstate = Cflow)

• The env rule gathers operations and behaviors that are called in A0 but are
not dysfunctionally specified in the safety model. It then generates a set of nodes
that closes the Altarica model relatively to its dataflow part.

||(A0, F)||env →
∀m∈A0⋃

st ∀f∈S, !m∼f

||(m, f)||env

||(m, f)||env → (m.name, ∅, Fe, Se, Ee, Ie, Te, Ae)

The flow and state variables correspond to the output parameters of system
component m and are typed by the dysfunctionnal datatype. Assertions enforce
the equality between state, initialized with the correct dysfunctionnal value, and
flow variables

Fe := {. . . , (||pi||flow, Ddys), . . .}∀pi∈m.parameter st isout(pi)

Se := {. . . , (||pi||ident, Ddys), . . .}∀pi∈m.parameter st isout(pi)

Ae := {. . . (||pi||flow = ||pi||ident) . . .}∀pi∈m.parameter st isout(pi)

Ie := {. . . , (||pi||ident, d1), . . .)}d1∈Ddys

We define events as the cartesian product of the set of output parameters and
the set of dysfunctionnal values, and we map it to a set of labels. Guarded
transistions map each event to the corresponding valuation of the state variable:

Ee := {. . . , (||pi||ident + dj), . . .)}∀(pi,dj)∈m.parameter×Ddys
5

Te := {. . . , (
, ||pi||ident + dj , (||pi||ident, dj)), . . .)}∀(pi,dj)∈m.parameter×Ddys

• The fmea rule produces the set of node which elements correspond to the
pairs (system component, safety component) of the input models:

||(M,F)||fmea →
∀m∈M⋃

st ∃f∈S,m∼f

||(m, f)||fmea

||(m, f)||fmea → (m.name, SIf , Ff , Sf , Ef , If , Tf , Af)

5 The + operator denotes identifier concatenation.

A Model Based Approach for Safety Analysis 61

The subnode instances are given by the subFMEA of f in the safety model:

SIf := {. . . , (||mi||inst, ||mi||ident), . . .}∀fi∈f .SubFmea st mi∼fi

The flow variables correspond to the parameters of the system component, the
state variable of the node ranges over failure and nominal modes specified in the
FMEA:

Ff := {(Cflow, Ctxt) . . . , (||pi||ident, Ddys), . . .}∀pi∈m.parameter

Sf := (Fstate, ||f.failMod||ident ∪ ||f.nominalMode||ident)
If := {(FState, ||f.nominalMode||)}

The events are the atomic events and constraint failures defined in the failure
causes:

Ef := ||f.failureCause.AtomicEvent||ident
∪||f.failureCause.Constraintfailure||ident

The guarded transitions of the node correspond to failure causes of the FMEA.
Input events, operationnal context restrictions, subsystem failures are translated
as guards while atomic event and constraint failure are trigering events.

Tf := {. . . (gi, ei, (FState, ||fci.dest||ident)) . . .}∀fci∈f .failureCause

gi := (Cflow = ||fci.opCtx||ident ∧ ||fci.inEv||input
∧||fci.SubFail.owner||ident.F sub

state = ||fci.SubFail||ident)
ei := (||fci.AtomEvent||ident)fci.AtomEvent�=Null

ei := (||fci.CstrFail||ident)fci.CstrFail �=Null

For assertions, we need to consider two cases, either the system component m is
an activity either it is an operation. If it is an activity then the assertions will
encode the object flows of the activity:

Af := {. . . (||o.target||ident = ||o.source||ident) . . .}∀o∈m.edge
6

∪{. . . (||mi||ident.Cflow = Cflow) . . .}∀fi∈f .SubFmea st mi∼fi

If it is an operation then the local effect description of the failures modes gives
the specification of outgoing flows.

Af := {. . . (||pi||ident = ||(pi, f.failMod)||case) . . .}∀pi∈m.parameter st isout(pi)

The case rule produces conditionnal branching represented here as a set of pair
condition value. In the current context, the conditionnal branching expresses that

6 The long names that are mandatory to access subnode flows are not specified here
but can be easily extracted from o.target.owner.behavior or o.target.owner.operation

62 F. Belmonte and E. Soubiran

if the node is in a given failure mode the flow variable takes the value specified
in this failure mode. The default branch always returns the correct value.

||p, FM ||case → {. . . (Fstate = ||fmi ||ident, ||fmi .ouput(p)||ident) . . .}∀fmi∈FM

• The PHA rule produces the node PHA, it is the main node of the model:

||(A0, P)||p → (PHA, SIp, ∅, Sp, ∅, Ip, Tp, Ap)

The set of instances of subnode in PHA is composed of a context provider, the
nodes forming the environment, and the FMEA nodes associated to (sub)sytem.

SIp := (ctxtInst, CtxtProvider)
∪{(||m||inst, ||m||)}∀f∈P.SubFmea,m∼f

∪{(||m||env, ||m||)}∀m∈A0 st ∀f ,!m∼f

The state variable of PHA node is typed by the set of accident bounded in the
accident cases of the PHA, and the initial state is the ”no accident” state ā.

Sp := (AcState, ā ∪ ||P.AccidentCase||ident)
Ip := (AcState, ā)

In the PHA context, guarded transitions encode the accident scenarios. A guard
is then the conjunction of a hazard, a functionnal issue and an operationnal
context. Both hazard and issue result from failures at subsystem level.
Tp := ⋃

∀(h,i,c,a)
∈P.AccidentCase

(Cflow = ||c||ident ∧ ||h||cause ∧ ||i||cause, ε, (AcState, ||a||ident))

Where the cause rule builds the disjunction of possible causes for a given hazard
or issue:

||x||cause →
∀fm∈P .subfmea.failMod∨

st fm.syseffect=x

||fm .owner||ident .F sub
state = ||fm ||ident

Finally, the assertion translation scheme is roughly the same as in fmea:

Ap := {. . . (||o.target||ident = ||o.source||ident) . . .}∀o∈A0.edge

∪{. . . (||mi||ident.Cflow = CtxtProvider.Cflow) . . .}∀f∈P.SubFmea,mi∼fi

• The ident rule extracts identifiers from named elements of the model:

||N ||ident →
⋃

∀ni∈N

||ni||ident

||ni||ident → ni.name

The event (resp. inst, flow) rule is a variant of the ident rule and appends
”ev” (resp. ”inst”, ”flow”) to the generated identifier.
• The input rule translates input events to a boolean expression. It is used by
the fmea rule

||InEv||input →
∧

∀(pi,di)∈InEv

||pi||ident = ||di||ident

A Model Based Approach for Safety Analysis 63

5 Conclusion

This work is an on-going research activity related to the overall MBSE method-
ology within Alstom Transport and will pursue in the Artemis MBAT project.
This work follows the development of a specific modeling environment for safety
activities. Based on the existing DSML for safety, the system hazard analysis
viewpoint has been improved in order to enable translation of the safety model
conjointly with the functional specification of the system to a dysfunctional
model of the system. This later, modeled with the Altarica language, allows the
computation of the fault-tree analysis, the accident sequences and allows the
simulation of dysfunctional events. For the safety engineers, it improves both
its productivity and the accuracy of its study. Indeed, the MBSE approach, by
enabling tight coupling of the engineering environment, facilitates the informa-
tion traceability application and maintenance. Document based FMEA describes
only one level of consequence of failure occurrences, the formalization of all these
one-shot causal events with Altarica allows the analyze of the propagation of the
failure in the system. Additionaly, the results of Altarica analyses provide feed-
backs to the safety engineer on the criticity of the functions at each description
levels of the system. Hence, justifications of the Safety Integrity Level of the
barrier functions are provided to the safety case. The next step of this work will
be the validation of the overall transformation chain from specifications to mini-
mal cut-sets and accecibility sequences generation. The functional validation will
stem from the formal transformation presented in this paper.

References

1. Villemeur, A.: Reliability, availability, maintainability, and safety assessment. Wiley
J. (1992)

2. CENELEC, Railway applications. The specification and demonstration of reliability,
availability, maintainability and safety (RAMS), EN50126

3. CENELEC, Railway applications. Communications, signalling and processing sys-
tems. Software for railway control and protection systems, EN50128

4. CENELEC, Railway applications. Communication, signalling and processing sys-
tems. Safety related electronic systems for signalling, EN50129

5. Belmonte, F., Blas, A., Mejia, L.-F., Thomas, F.: Risk Evaluation in Railway Sys-
tems Supported By Modeling Languages and Tools. Lambda-Mu, 17ème Congrès
de Mâıtrise des Risques et de Sûreté de Fonctionnement. IMDR, La Rochelle (2010)

6. OMG. UML Profile for MARTE: Modeling and Analysis of Real-time Embedded
Systems, v1.1 (June 2011), http://www.omg.org/spec/MARTE

7. OMG. MOF 2 XMI Mapping, v2.4.1 (August 2011),
http://www.omg.org/spec/XMI/

8. OMG. OMG Systems Modeling Language (OMG SysML), v1.2,
http://www.omg.org/spec/SysML

9. Point, G.: AltaRica: Contribution à l’unification des méthodes formelles et de la
sûreté de fonctionnement. LaBRI, Université Bordeaux I (January 2000)

http://www.omg.org/spec/MARTE
http://www.omg.org/spec/XMI/
http://www.omg.org/spec/SysML

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 64–78, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Towards a Model-Based Evolutionary Chain
of Evidence for Compliance with Safety Standards

Jose Luis de la Vara1, Sunil Nair1, Eric Verhulst2, Janusz Studzizba3,
Piotr Pepek3, Jerome Lambourg4, and Mehrdad Sabetzadeh1

1 Simula Research Laboratory,
P.O. Box 134, 1325 Lysaker, Norway

{jdelavara,sunil,mehrdad}@simula.no
2 Altreonic

Gemeentest. 61A, B3210 Linden, Belgium
eric.verhulst@altreonic.com

3 Parasoft S.A.
Kielkowskiego 9, Krakow, 30-704, Poland
{januszst,piotr}@parasoft.com

4 AdaCore
46 rue d’Amsterdam, 75009 Paris, France

lambourg@adacore.com

Abstract. Compliance with safety standards can greatly increase the
development cost and time of critical systems. Major problems arise when
evolutions to a system entail reconstruction of the body of safety evidence.
When changes occur in the development or certification processes,
identification of the new evidence to provide, the evidence that is no longer
adequate, or the evidence that can be reused poses some challenges. Therefore,
practitioners need support to identify how a chain of evidence evolves as a
result of the changes. Otherwise, execution of the above activities can be very
costly, and it can even result in abandonment of certification efforts. This paper
outlines a solution to deal with these challenges. The solution is based on the
use of model-driven engineering technology, which has already been applied
for safety certification but not from an evolutionary chain of evidence-based
perspective. The paper also sets the background for developing the solution,
describes real situations in which the solution can help industry, and discusses
possible challenges for developing it. The solution will be developed as part of
OPENCOSS, a research project on cross-domain evolutionary certification.

Keywords: safety, safety certification, evidence, chain of evidence, evidence
evolution, model-driven engineering, impact analysis, OPENCOSS.

1 Introduction

Most critical systems in domains such as avionics, railways, and automotive are
subject to some form of safety assessment as a way to ensure that the systems do not
pose undue risks to people, property, or the environment. The most common type of

 Towards a Model-Based Evolutionary Chain of Evidence for Compliance 65

assessment is safety certification [18], whose goal is to provide a formal assurance
that a system is deemed safe by a licensing or regulatory body. Certification is
typically performed based on one or more standards that apply in a given domain.
Examples of standards include IEC61508, DO-178C for avionics, the CENELEC
standards for railways, and ISO26262 for the automotive sector [7, 13].

Demonstrating compliance with a safety standard involves the provision of
evidence to show that the relevant criteria in the standard are met. This imposes
unavoidable, high costs on companies [15]. Furthermore, system evolution often
becomes costly because it entails regenerating the entire body of evidence. The
evidence should be re-examined whenever the system is modified and, if the evidence
is no longer adequate, new evidence should be generated. This is closely related to
(change) impact analysis [4], which aims at identifying the potential consequences of
a change, or at estimating what needs to be modified to accomplish it.

As a result, when a system is certified, subsequent modifications are usually
avoided. This can also hinder innovation, as use of new technologies would require
re-certification. Consequently, new approaches centred on evidence evolution,
including chains of evidence (Section 2.1), are necessary.

This paper presents a solution sketch for managing evolutionary chains of evidence
and thus how to deal with the above challenges for safety certification. The solution
will be developed as part of the work in OPENCOSS [26], a large-scale European
research project whose goal is to devise a common certification framework for the
railway, avionics and automotive domains, addressing evidence evolution.

The solution is based on the use of model-driven engineering (MDE) [37], thus it
supports a model-based evolutionary chain of evidence. As we discuss below, MDE is
an enabler for performing several tasks related to evidence and chains of evidence
management. For example, MDE can facilitate standard interpretation, electronic
evidence management, and identification of chains of evidence.

In addition, the paper (1) sets the background on which the solution is based and
that makes us believe that it is necessary and feasible, (2) describes realistic situations
in which evidence and thus chains of evidence evolve, and (3) outlines the challenges
that we might face. The set of challenges are related to both technology issues and
business issues (e.g., industrial acceptance).

The rest of the paper is organized as follows. Section 2 presents background work.
Section 3 describes situations in which evidence evolves. Section 4 outlines the
envisioned solution, whereas Section 5 discusses the challenges that we foresee.
Finally, Section 6 summarises our conclusions and future work.

2 Background

This section introduces: (a) safety certification; (b) OPENCOSS; (c) two surveys on
certification and evidence management; (d) past work on evidence management and
on model-based safety certification, and; (e) some related projects and initiatives.
Overall, past work has not focused enough on evolution of chains of evidence.

66 J.L. de la Vara et al.

2.1 Safety Certification

Safety-critical systems are typically subject to a rigorous safety certification process.
The purpose of certification is to provide assurance that the system is safe to use in a
specific environment under specific conditions [7].

Satisfaction of safety objectives according to a specific standard involves gathering
convincing evidence during the lifecycle of the system. In general, evidence can be
defined as “the available body of facts or information indicating whether a belief or
proposition is true or valid” [28]. However, one can seldom argue that evidence for
safety certification serves as a definitive proof of the truth or validity of safety claims,
but only whether the evidence is sufficient for building (adequate) confidence in the
claims. Hence, we define evidence for safety certification as “information or artefacts
that contribute to developing confidence in the safe operation of a system”. Such
information or artefacts must also be linked to the requirements/objectives of the
safety standard(s) that need to be met.

A chain of evidence is a set of pieces of evidence that are related (e.g., the agent
that has created a requirements specification, the test cases derived from the
requirements, etc.). Therefore, traceability between these pieces of evidence exists.
By evolutionary, we mean that a chain of evidence can suffer changes (e.g., a
requirement is modified), and thus it can evolve. As a result, the chain of evidence
might not be adequate anymore (e.g., the related test cases might have to be updated).

Safety evidence can be supported by argumentation. Safety arguments are a set of
inferences between claims and evidence that leads from the evidence forming the
basis of the argument to a top-level safety claim. This claim is typically that the
system is safe to operate in its intended environment [7].

2.2 OPENCOSS

OPENCOSS [26] is a FP7 European project that aims (1) to devise a common
certification framework that spans different vertical markets for railway, avionics and
automotive industries, and (2) to establish an open-source safety certification
infrastructure. The ultimate goal of the project is to bring about substantial reductions
in recurring safety certification costs, and at the same time increase product safety
through the introduction of more systematic certification practices. Both are expected
to boost innovation and system upgrades considerably. The project consortium
consists of 17 partners from 9 different countries.

The problems that OPENCOSS addresses are: (1) lack of precision and large
variety of certification requirements; (2) lack of composable/system view for
certification; (3) high and non-measured costs for (re)certification, and; (4) lack of
openness to innovation and new approaches. The project will deal with: (1) creation
of a common certification language (metamodel); (2) compositional certification; (3)
evolutionary chains of evidence (whose envisioned solution is outlined in this
paper); (4) transparent certification process, and; (5) compliance-aware development
process.

 Towards a Model-Based Evolutionary Chain of Evidence for Compliance 67

2.3 Earlier Surveys on Certification Issues and Evidence Management

This section summarises part of the results of two surveys that have been conducted at
the beginning of OPENCOSS in order to gain an overall understanding of practices
related to the project.

In the first survey [1], a total of 85 valid responses were obtained on certification
issues. The main conclusions related to this paper are:

• Certification was considered as important for 68% of the respondents.
• The demotivating factors for certification are:

o Effort, cost, complexity, inconsistency, bureaucratic (paperwork)
(60.7%)

o Change management (evolving standards, evolving products),
differences national/ international (21.4%)

o Rigidity, lagging market and technology (17.9%)

In the second survey [25], a total of 15 responses were obtained from OPENCOSS
partners. It aimed to set a baseline concerning the state of the practice on safety
certification within the consortium. The main conclusions related to this paper are:

• Traceability between evidence was acknowledged as a major concern for
safety certification by most of the partners.

• 11 partners selected MDE as a suitable way to manage traceability, and only
matrices were selected more times.

• Most of the partners recommended using models to structure certification
documentation.

• 27 types of traceability between types of evidence were identified.

The results of the surveys suggest (1) the need of mitigating the demotivating factors
for certification, (2) the importance of chains of evidence (traceability), and (3) the
suitability of using MDE technology for evidence management.

2.4 Safety Evidence Management and Evolution

This section reviews some existing research and tools that have dealt with safety
evidence, its management, and its evolution.

Some works on the nature of safety evidence (e.g., [17]) have discussed process-
based evidence (i.e., about the process followed) and product-based evidence (i.e.,
about system characteristics), and what type of evidence can be regarded as better
suited for demonstrating safety. In general, the conclusion is that both types of
evidence are necessary and are related.

Other works have defined evidence items for IEC61508 [35] and for the nuclear
domain [16], have provided classifications of artefacts that can be used as evidence
(e.g., [12]), or have proposed ways to structure evidence in certification
documentation (e.g., [39]). Within OMG, there are two initiatives aimed at
standardizing the notion of and the concepts related to assurance evidence [22] and
arguments [24]. In relation to this paper, the main weakness of these works is that

68 J.L. de la Vara et al.

they have not dealt with chains of evidence. Other works have modelled standards
such as IEC61508 [29] and DO-178B [42], identifying their main concepts and
relations. However, they have not dealt with evolutionary chains of evidence.

Research-based prototypes have been developed for (1) specification of certificates
associated to source code [34], V&V activities [38], and the activities of the
development process [41], and (2) expert judgement-based quantification of
confidence on evidence [35]. MDE-based prototypes for evidence management are
presented in the following subsection.

Some existing commercial tools that directly or indirectly deal with evidence
management are:

• Atego Workbench [3], which supports traceability, impact analysis, and
versioning of software development work products.

• GoedelWorks [2], which supports IEC61508, IEC62061, ISO26262,
ISO13849, ISO-DIS25119 and ISO15998, supports the specification of
dependencies between (evidence) entities, and provides an entity lifecycle
(Defined, InWork, FrozenForApproval, and Approved).

• Medini Analyze [19], which supports ISO 26262 and allows specification of
traceability to express dependencies between (evidence) elements.

• Parasoft Concerto [33], which supports management (i.e., lifecycles) of
requirements, test and defects, as well as traceability between them and impact
analysis.

In summary, we consider that new research efforts that address and study in detail
chains of evidence (of more types) and their evolution are necessary.

2.5 Model-Driven Compliance with Safety Standards

MDE can be a suitable and very useful technology for safety evidence management
[32]. It is based on the use of models as main artefacts for concept representation and
for communication, and of supporting tools for model verification and transformation.

MDE supports: (1) creation of interpretations of standards; (2) specialization of
standards to industrial contexts (Fig. 1); (3) alignment of standards to organizational
practices; (5) planning for certification; (6) electronic evidence management, and; (7)
evidence reuse. Future, open issues to be addressed are: (1) facilitation of analysis and
determination of the correspondence between different standards; (2) link of MDE-
based safety certification with MDE-based development; (3) link of MDE-based
evidence with argumentation, and; (4) use of MDE for management of evolutionary
chains of evidence. The latter point would be the main contribution of the envisioned
solution presented in this paper.

MDE has been used as basis for the development of prototypes aimed at: (1)
facilitating the agreement upon the evidence to provide [9]; determining traceability
between requirements and design [21]; (3) creating evidence repositories [30], and;
(4) tailoring standards to specific companies, systems, and projects [31].

 Towards a Model-Based Evolutionary Chain of Evidence for Compliance 69

Fig. 1. Example of IEC61508-baed evidence information [29]

Model-based impact analysis is also related to MDE-based evolutionary chains of
evidence. Various techniques exist for this purpose, with often differing requirements
about the traceability links that need to be defined and also the semantics of the links.
For example, a traceability information model and an algorithm based on this model
for automatically analysing the impacts of change in UML models have been
proposed in [5]. While useful, the conceptualization of the traceability links in most of
the existing work is at a coarse level of abstraction, hindering their application for
safety certification. A reference, better-suited approach can be found in [21], which
addressed impact analysis regarding requirements and design.

2.6 Related Projects and Initiatives

When reviewing existing work on evidence management as a part of the work in
OPENCOSS, and in addition to some works mentioned above, we have found several
projects and initiatives that addressed or are addressing this issue:

• DECOS [6], which dealt with reuse of pre-validated hardware and software
components and of functional blocks for design and certification purposes.

• EVOLVE [8], which aimed to create of a methodological framework for
early V&V of evolutionary products.

• FormalSafe [11], which provided a framework to reuse development
artefacts targeted at providing evidence for safety certification.

• ModelME! [20], which studied the use of MDE technologies for supporting
safety certification.

• Open-DO [27], which aims to build a community around certification-
oriented free software tools and libraries, addressing continuous certification.

• SafeCer [36], which aims to increase system development efficiency and
reduce time-to-market by facilitating compositional certification.

More details about these and other projects can be found in [25]. Although they have
addressed evidence evolution and/or management, application of MDE for
evolutionary chains of evidence has seldom been explored.

70 J.L. de la Vara et al.

3 Situations in Which Evidence Evolves

This section presents seven situations that practitioners can face during the
development and certification processes, that might make a chain of evidence become
inadequate for safety certification, and that can increase development time and cost.
The situations have been discovered on the basis of previous experience on safety
certification, and on input from and discussions with practitioners and researchers.

Situation 1) Incomplete set of evidence
This is probably the most basic situation in which a chain of evidence might not be
adequate. It corresponds to the development scenario in which evidence is gathered
and structured for a non-certified system. Therefore, evidence is collected, or at least
structured, progressively. Until all the pieces of evidence that are part of a chain of
evidence have not been gathered and structured, such a chain is inadequate.

This situation is related to other scenarios reported in research such as incremental
certification and compositional/modular certification [10]. Nonetheless, the
envisioned solution presented in this paper does not address adequate composition of
evidence, beyond having all the necessary pieces of evidence of a chain. That is, the
envisioned solution will not deal with composition adequacy assessment in a semantic
way, but simply in a syntactic way (i.e., a chain of evidence must be complete). Such
a semantic analysis will also be addressed in OPENCOSS, but not mainly by the
authors of this paper.

Situation 2) System modification and recertification
This situation corresponds to a development scenario in which an already-certified
system is modified and thus a new certification (i.e., recertification) is required. For
example, a new system can be developed on the basis of an existing one (system
modification). Such a new system can include, for instance, some new component.

In relation to tools for development of critical system, the safety assessment of the
tools is not referred to as certification, but as qualification [18]. A tool is not certified
“as safe”, but qualified in the sense that its results (e.g., source code) can be used as
evidence for safety certification without needing, for instance, to review them.

For these tools, the situation outlined would be referred to as requalification. For
example, a tool aimed at verifying coding standards can require requalification as new
versions are released, or clients request configurations of the tool that have not been
qualified before. Qualification documentation consists of a tool qualification plan, the
tool operation requirements and test cases, and the test results. Requalification would
require identification of the necessary changes in these documents, based on new
evidence to provide.

Situation 3) Modifications during the development process of a system
While a critical system is developed, and even though a waterfall process is followed,
changes in a system and its associated documentation (which can be used as evidence)
can occur at any moment. For example, (a) a new hazard might be identified as a
result of an accident in another system. Such a hazard should be analysed, and would
impact other artefacts (safety requirements, design, test cases, etc.). Another scenario

 Towards a Model-Based Evolutionary Chain of Evidence for Compliance 71

is, for instance, (b) a necessary change in the architecture of system. This might
impact other artefacts such as design specifications, test cases, or even source code,
which might become inadequate.

In this situation, a chain of evidence might become inadequate because of (a)
missing pieces of evidence or (b) the impact of the change of other piece of evidence.

Situation 4) Change in the confidence on evidence
Another situation in which evidence can evolve and thus a chain of evidence can
become inadequate is the result of the change of the confidence on a piece of
evidence. Confidence refers to how adequate the piece is on the basis of some
criterion. For example, an expert can judge evidence adequacy, or evidence linked to
an argument can be regarded as stronger (i.e., more adequate). A piece of evidence
can be considered better or worse than another based on adequacy assessment.

The simplest way of adequacy assessment is probably to determine if a set of
evidence is complete (i.e., it allows justification of the fulfilment of all the criteria of
a safety standard). Such a type of approach can be found, for instance, in [31].
Nonetheless, there are cases in which adequacy assessment can be more complex,
based on specific pieces of evidence that are qualitative or quantitative assessed (e.g.,
[35]). In these cases, a change in the adequacy of a piece of evidence can affect the
adequacy of the rest of pieces of a chain of evidence. For example, a change during
the development of a system (e.g., related to requirements specification) that is made
by an agent whose competence is not “high” (no “top confidence” on the agent) can
negatively affect the confidence of the related pieces of evidence (e.g., a test case).

Situation 5) New context for a system
When an already certified system is to be used in a context other than what the system
was certified for, then some pieces of evidence might become inadequate or new
evidence might have to be provided. For example, a system for a type of train and a
specific line (e.g., from Brussels to Paris) that is to be reused for the same type of
train but in another line (e.g., from Rome to Milan) would not be certified per se, but
new evidence (or arguments) would have to be provided. In the railway domain, this
situation also matches the use of generic, certified applications in a specific train or
line, in which impact analysis is necessary in order to determine what chains of
evidence are not adequate and thus what new evidence must be generated.

Another situation related to context change is certification against another safety
standard. That is, adequate evidence and chains of evidence for a standard might not
be so for another (second standard). The second standard could correspond to a new
standard, a new version of a standard, or a different interpretation of a standard (e.g.,
by a different certification authority). For example, new evidence might have to be
provided for a system certified against DO-178B because of the release of DO-178C.

Situation 6) Agreement with a certification authority
This situation corresponds to scenarios in which new or different evidence is
requested by a certification authority. For example, an authority might request new
evidence for some safety criteria at some moment, after having agreed previously
upon how to show compliance with such criteria, in order to gain more confidence on

72 J.L. de la Vara et al.

the global safety of a system. As a result, a chain of evidence might be inadequate, for
instance, in relation to Situation 1 (incomplete evidence).

Situation 7) Component reuse
The last situation presented and in which evidence for safety certification can evolve
is related to component reuse in a system. Although closely related to Situation 1,
they are not exactly the same. As a result of component reuse, new evidence might
have to be provided in order to have an adequate set of chains of evidence. For
example, reuse of an event recorder system for different trains might require provision
of different evidence, or new evidence about the system might have to be provided.

As mentioned in Situation 1, semantic analysis (of a component-based chain of
evidence) is out of the scope of the envisioned solution presented in this paper.

4 Envisioned Solution

This section outlines the envisioned solution for model-based evolutionary chains of
evidence. More concretely, a (research) process for realising the solution is presented.
In addition, MDE technologies such as those described in [30, 31] will be used as a
reference for the development of the tool support resulting from the solution. These
technologies might be also combined with non-MDE ones (e.g., with [41]).

The process consists of six activities: (1) specification of the lifecycle of a chain of
evidence; (2) identification of chains of evidence in safety standards; (3) impact
analysis of the change of a piece of evidence on the rest of pieces of a chain; (4)
validation of the chains identified; (5) analysis of the chains of evidence in actual
projects, and; (6) determination of how the chains can be mapped into the common
certification language specified in OPENCOSS. An activity that is not described is the
evaluation of the (improvement) effect of the solution on practice.

Although the process is presented sequentially, backward steps might be necessary
as the solution is developed. For example, “validation of the chains identified” might
result in the discovery of some new piece of evidence of a chain. Some activities
might also be performed in parallel. For example, “determination of how the chains
can be mapped into the common certification language” can be executed at any
moment of the process, which will be performed in parallel to the OPENCOSS tasks
aimed at specifying the language.

The activities of the process are described as follows.

1) Specification of the lifecycle of a chain of evidence
The first activity will be to define and model a lifecycle for chains of evidence.
Although no proposal for such a lifecycle exists yet, we plan to base it on existing
proposal for evidence lifecycle. We will focus on the lifecycle proposed in the safety
assurance evidence metamodel by OMG [24] because of being a standard.
Nonetheless, we will also analyse other alternatives in order to try to specify the most
suitable lifecycle for chains of evidence. We will study current practice (i.e., other
lifecycles for evidence or chains of evidence used in industry, such as the one
proposed by GoedelWorks [2]) and the notion of (software) certificate [34, 38].

 Towards a Model-Based Evolutionary Chain of Evidence for Compliance 73

The main issue for this activity will be to determine how evidence lifecycle relates
to the lifecycle of a chain of evidence, having to address the possible needs found. In
addition, since automation of management of chains of evidence is planned, we will
have to analyse which transitions between states might be fully automatic. Others
might require validation by users. In this sense, we think that fully automation will
depend on the chains of evidence (i.e., the evidence types of its pieces). For example,
a change in a requirement can automatically make its associated test case inadequate.
Indeed, tools such as Parasoft Concerto [33] provide this functionality. However,
human intervention might necessary, for instance, in scenarios related to the change
of the confidence on a piece of evidence.

2) Identification of chains of evidence in safety standards
The second activity will aim to discover chains of evidence. For this purpose, (1)
existing metamodels of safety standards (e.g., [29, 42]) will be used, and/or (2)
metamodels for relevant standards will be created (e.g., for CENELEC standards of
the railway domain), and subsequently used.

For each relation between two entities of the metamodel, it will have to be
determined if the change of one of the entities can affect the other. For example, and
using Fig. 2 as a reference, if (an instance of) “Source Code” changes, then its
associated “Software Module Testing” will not be adequate. In addition, a finer
analysis might be necessary. Once the chains of evidence have been identified, we
will have to analyse what characteristics of the evidence types (i.e., attributes of the
entities) can make a chain inadequate as a results of a change. That is, a change in
some attributes might not have any impact on the adequacy of a chain of evidence.

Fig. 2. Fragment of an IEC61508-based metamodel regarding software module testing [29]

3) Impact analysis of the change of a piece of evidence on the rest of pieces of a
chain of evidence
After identification of the chains of evidence, mechanisms for model-based impact
analysis must be determined in order to assess the effect that the change of a piece of
evidence of a chain will have on the rest of pieces of the chain.

The most basic mechanism will be the specification of constraints (probably in the
form of OCL [23]) aimed at enforcing the syntactic correctness of a chain of
evidence. Evaluation of such constraints can automatically detect if some piece of
evidence of a chain is missing.

74 J.L. de la Vara et al.

Impact analysis related to, for instance, the change of the confidence on a piece of
evidence will require further study. Using existing works as a reference (e.g., [5, 21]),
we will have to decide on the most suitable and precise way to assess change impact.
Probabilistic-based approaches such as the one proposed in [35] seem to be a
promising possibility. However, it is based on quantitative assessment, which might
pose challenges related to elicitation of expert knowledge. An alternative is
qualitative assessment (e.g., [24]). Even a combination of both types of approaches
might be the most suitable solution.

For deciding on the final alternative to adopt, we think that we will need input from
practitioners in relation to (1) how they assess evidence adequacy, and (2) how they
would like to do it, if they consider that improvements are necessary. At the end, the
goal is to develop a solution that fits practice and meets industry needs and wishes.

4) Validation of the chains of evidence identified
Another activity that will follow the identification of chains of evidence is their
validation. Even though we find (potentially) relevant chains, they might not be so in
practice. At the same time, we might miss some chain when analysing the
metamodels of the standards.

Two tasks are planned for validation of the chains of evidence. First, we will aim
to obtain feedback from practitioners (both suppliers and certifiers). They will
indicate if the chains identified are so in practice, as well as how they deal with their
evolution. Second, we will aim to analyse data from real projects in order to
determine if the chains can be found in documentation of past projects, and how
traceability was kept (e.g., by means of hyperlinks in electronic documentation).

When interacting with practitioners, we will also study the development tools that
they use and allow them to generate evidence (e.g., V&V tools). The tool support
resulting from the development of the solution will be integrated with tools used in
the development process (external tools) in order to automatically collect evidence.

5) Analysis of the chains of evidence in actual projects
The next activity will aim to analyse how the chains of evidence are instantiated in
new, actual projects. This activity will be facilitated in OPENCOSS, in which three
different case studies will be conducted to initially evaluate the solutions proposed in
the project (including the one presented in this paper).

In addition, we will try to reach other companies that might be interested in the
solution developed. For this purpose, we will make use of our industry network, for
instance, in the maritime and energy domain.

We expect that it will be necessary to tailor (the metamodels of) the safety
standards to the specific projects used in this activity. That is, specific interpretations
and instantiations of the standards will be necessary.

6) Determination of how the chains of evidence can be mapped into the common
certification language
The last activity will correspond to the mapping of the chains of evidence identified in
specific standards to the common certification language defined in OPENCOSS.
Otherwise, a cross-domain solution would not be provided.

 Towards a Model-Based Evolutionary Chain of Evidence for Compliance 75

The chains of evidence must be reflected and supported, in an abstract way, by the
common certification language. In addition, the solution must be flexible and
customizable, allowing adaptation of the chains of evidence to the specific
characteristics of a development/certification project (e.g., requirements imposed by a
certification authority).

A goal of the common certification language is to facilitate cross-domain (or cross-
standard) certification. The language must help practitioners to determine, on the
basis of a set of evidence compliant with a given standard, the degree of compliance
with another standard. As a result, the need of providing new evidence could be
indicated. In relation to chains of evidence, the common certification language must
make their cross-domain correspondence possible. Therefore, (1) the language must
support (cross-domain) chains of evidence (i.e., the relations between evidence types
of a chain must be reflected in the language), and (2) it must be possible to determine,
for a given standard, how its chains of evidence correspond to the ones of the
common certification language.

5 Challenges

The previous section has outlined our envisioned solution for model-based
evolutionary chains of evidence. However, a realisation of the solution might be
curtailed because of the existence of challenges (and open issues) related to execution
of the process described and to the adoption of the solution.

We have identified the following eight main challenges.
1) Involvement of practitioners. Practitioners (both system suppliers and

certifiers) will have to participate in the project for (1) validation of the interpretations
of the standards, (2) validation of the chains of evidence identified, and (3) provision
of input about current industry practices and needs. Otherwise, the solution might not
fit practice and thus might not be accepted in industry.

2) Development of a common, cross-standard, and cross-domain solution.
OPENCOSS aims to provide common solutions for the railway, avionics and
automotive domain. Therefore, this aspect must be taken into account in the solution,
which must be suitable for the three domains. Each domain has its own standards,
with a different approach and terminology. There is certainly an overlap, but they are
different from a certification point of view.

3) Need of agreement with certification authorities. Also in relation to their
involvement, it is essential that certifiers agree upon the solution. For example, they
should agree upon and accept the results of impact analysis provided by the solution.

4) Intellectual property issues. This challenge is related to the need of (1) using
data from actual projects, and (2) being provided with suppliers and certifiers’ know-
how. In both cases, sensitive information must be properly handled.

5) Immature MDE technology. Based on past experience, we think that some
problems might arise as a result of the use of some MDE technologies. For example,
we might face problems regarding model scalability, transformation and management.

76 J.L. de la Vara et al.

6) Evidence collection from external tools. Although this challenge has been and
is being addressed in other projects (e.g., [14]), the need of collecting evidence from
external tools can pose interoperability problems in the tool support for the solution.

7) Impact of changes in a chain of evidence on arguments, and vice versa. An
aspect that will require further study is the possible relationships between chains of
evidence and arguments, and how their changes can affect each other. This might also
affect safety case development and maintenance.

8) Determination of the best-suited perspective for impact analysis. So far, we
have focused on information-based impact analysis (i.e., based on the information
provided as evidence). However, it must be determined if an activity-based
perspective would be more suitable for industry. That is, practitioners might prefer to
explicitly know what activities they have to (re)execute for having adequate evidence.

Finally, Table 1 shows a summary of the impact of the challenges on the solution.
Such an impact indicates if the corresponding challenge can hinder development,
validation, or acceptance by industry of the solution.

Table 1. Summary of the impact of the challenges

 Challenge
Aspect affected 1 2 3 4 5 6 7 8

Development X X X X X X X

Validation X X X
Industry Acceptance X X X X X X

6 Conclusions and Future Work

Safety assurance and certification can become very costly as a result of changes in the
development and certification processes of a system, or in the system itself. Industry
thus needs effective and efficient means that support identification of the evidence
that becomes inadequate after such changes, and of the new evidence to provide.

This paper has presented a possible solution to deal with evidence and chain of
evidence evolution. The solution will be developed as part of the OPENCOSS project,
and is mainly based on the use of model-driven technology. The suitability of this
technology can be argued on the basis of current practice and past research.

For realising the solution, we plan to (1) define the lifecycle of a chain of evidence
(2) identify chains of evidence in safety standards, (3) analyse the impact of the
changes of a piece of evidence on the rest of pieces of a chain, (4) validate the chains,
(5) analyse the chains in actual projects, and (6) determine how the chains of evidence
can be translated in an abstract, common certification language. We have also
identified eight challenges that could hinder development, validation, and acceptance
by industry of the solution.

As future work, we plan to continue working on the development of the envisioned
solution presented in this paper. Therefore, modifications might be made based on, for
instance, the challenges faced. Once the solution has been implemented, it will be

 Towards a Model-Based Evolutionary Chain of Evidence for Compliance 77

validated in case studies as part of the work in OPENCOSS. Validation will allow us
to assess the actual, potential improvements that the solution can provide to industry.

Acknowledgments. The research leading to these results has received funding from
the FP7 programme under grant agreement n° 289011 (OPENCOSS) and from the
Research Council of Norway under the project Certus SFI. The authors would also
like to thank the OPENCOSS partners who have provided information and feedback
about evidence evolution, chains of evidence, and possible solutions to manage them,
and Leon Moonen for his suggestions regarding impact analysis literature.

References

1. Altreonic: Survey on Certification Issues,
http://www.altreonic.com/content/survey-certification-issues
(accessed May 15, 2012)

2. Altreonic: Trustworthy Systems Engineering with GoedelWorks,
http://www.altreonic.com/category/products/goedelworks (accessed
May 15, 2012)

3. Atego Workbench, http://www.atego.com/products/atego-workbench/
(accessed May 15, 2012)

4. Bohner, S.A., Arnold, R.S.: Software Change Impact Analysis. IEEE Press (1996)
5. Briand, L., Labiche, Y., Yue, T.: Automated traceability analysis for UML model

refinements. Information & Software Technology 51(2), 512–527 (2009)
6. DECOS project, http://www.decos.at (accessed May 15, 2012)
7. Ericson, C.A.: Concise Encyclopedia of System Safety. Wiley (2011)
8. EVOLVE project, http://www.evolve-itea.org (accessed May 15, 2012)
9. Falessi, D., et al.: Planning for Safety Evidence Collection. IEEE Software 29(3), 64–70

(2012)
10. Fenn, J., et al.: The Who, Where, How, Why and When of Modular and Incremental

Certification. In: 2nd IET International Conference on System Safety (2007)
11. FormalSafe project,

http://www.dfki.de/web/research/projects/base_view?pid=456
(accessed May 15, 2012)

12. Habli, I.M.: Model-based assurance of safety-critical product lines. PhD thesis, University
of York (2009)

13. Herrmann, D.S.: Software Safety and Reliability. IEEE Press (1999)
14. iFEST project, http://www.artemis-ifest.eu (accessed May 15, 2012)
15. Jackson, D., Thomas, M., Millet, L.I.: Software for Dependable Systems. NAP (2007)
16. Johansson, M., Nevalainen, R.: Additional requirements for process assessment in safety–

critical software and systems domain. J. Softw. Maint. Evol. (2010), doi: 10.1002/smr.499
17. Kelly, T.P.: Can Process-Based and Product-Based Approaches to Software Safety

Certification be Reconciled? In: Improvements in Systems Safety. Springer (2008)
18. Kornecki, A., Zalewski, J.: Certification of software for real-time safety-critical systems:

state of the art. Innovations in Systems and Software Engineering 5(2), 149–161 (2009)
19. Medini Analyze,

http://www.ikv.de/index.php/en/products/functional-safety
(accessed May 15, 2012)

78 J.L. de la Vara et al.

20. ModelME! project, http://modelme.simula.no/ (accessed May 15, 2012)
21. Nejati, S., et al.: A SysML-Based Approach to Traceability Management and Design

Slicing of Safety Certification. Info. & Software Technology (accepted paper, 2012)
22. OMG: Argumentation Metamodel (ARM) 1.0 – Beta 1 (2010),

http://www.omg.org/spec/ARM/ (accessed May 15, 2012)
23. OMG: Object Constraint Language (OCL) Version 2.3.1 (2006),

http://www.omg.org/spec/OCL/2.3.1/ (accessed May 15, 2012)
24. OMG: Software Assurance Evidence Metamodel (SAEM) 1.0 – Beta 1 (2010),

http://www.omg.org/spec/SAEM/ (accessed May 15, 2012)
25. OPENCOSS: Deliverable D6.1 - Baseline for the evidence management needs of the

OPENCOSS platform (2012)
26. OPENCOSS, http://www.opencoss-project.eu/ (accessed May 15, 2012)
27. Open-DO initiative, http://www.open-do.org/ (accessed May 15, 2012)
28. Oxford Dictionaries: evidence,

http://oxforddictionaries.com/definition/evidence?q=evidence
(accessed May 15, 2012)

29. Panesar-Walawege, R.K., et al.: Characterizing the Chain of Evidence for Software Safety
Cases: A Conceptual Model Based on the IEC 61508 Standard. In: ICST 2010 (2010)

30. Panesar-Walawege, R.K., Skyberg Knutsen, T., Sabetzadeh, M., Briand, L.: CRESCO:
Construction of Evidence Repositories for Managing Standards Compliance. In: De
Troyer, O., Bauzer Medeiros, C., Billen, R., Hallot, P., Simitsis, A., Van Mingroot, H.
(eds.) ER Workshops 2011. LNCS, vol. 6999, pp. 338–342. Springer, Heidelberg (2011)

31. Panesar-Walawege, R.K., Sabetzadeh, M., Briand, L.: Using UML Profiles for Sector-
Specific Tailoring of Safety Evidence Information. In: Jeusfeld, M., Delcambre, L., Ling,
T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 362–378. Springer, Heidelberg (2011)

32. Panesar-Walawege, R.K., Sabetzadeh, M., Briand, L.: Using Model-Driven Engineering
for Managing Safety Evidence: Challenges, Vision and Experience. In: WoSoCER 2011
(2011)

33. Parasoft Concerto,
http://www.parasoft.com/jsp/products/concerto/home.jsp (accessed
May 15, 2012)

34. Programatica project, http://programatica.cs.pdx.edu/index.html
(accessed May 15, 2012)

35. Sabetzadeh, M., et al.: MODUS: A goal-based approach for quantitative assessment of
systems, http://modelme.simula.no/assets/modus.pdf (accessed May 15,
2012)

36. SafeCer project, http://www.safecer.eu/ (accessed May 15, 2012)
37. Schmidt, D.C.: Model-Driven Engineering. IEEE Computer 39(2), 25–31 (2006)
38. Sherriff, M., Williams, L.: DevCOP. In: ISSRE 2006 (2006)
39. Sommerville, I.: Software Engineering, 7th edn. Pearson (2004)
40. Squair, M.J.: Issues in the Application of Software Safety Standards. In: SCS 2005 (2005)
41. The Qualifying Machine: In: [27]
42. Zoughbi, G., Briand, L., Labiche, Y.: Modeling safety and airworthiness (RTCA DO-

178B) information: conceptual model and UML profile. SoSyM 10(3), 337–367 (2011)

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 79–91, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A New Approach
to Assessment of Confidence in Assurance Cases

Xingyu Zhao, Dajian Zhang, Minyan Lu, and Fuping Zeng

School of Reliability and System Engineering, Beihang University, Beijing, P.R. China
{zhaoxingyu,djz}@dse.buaa.edu.cn, {lmy,zfp}@buaa.edu.cn

Abstract. An assurance case is a body of evidence organized into an argument
demonstrating that some claims about a system hold. It is generally developed
to support claims in areas such as safety, reliability, maintainability, human
factors, security etc. Practically, both argument and evidence are imperfect,
resulting in that we can hardly say the claim is one hundred percent true. So
when we do decision-making against assurance cases, we need to know how
much confidence we hold in the claims. And the quantitative confidence would
provide benefits over the qualitative one. In this paper, an approach is proposed
to assess the confidence in assurance cases (mainly arguments) quantitatively.
First we convert Argument Metamodel based (ARM-based) cases into a set of
Toulmin model instances; then we use Hitchcock’s evaluative criteria for solo-
verb-reasoning to analyze and quantify the Toulmin model instances into
Bayesian Belief Network (BBN); running the Bayesian Belief Network, we get
quantified confidence from each claim of the assurance case. Finally, we
illustrate our approach by using a simplified fragment from safety cases and
discuss several future work.

Keywords: Assurance case, quantified confidence, informal logic, Toulmin
model, Bayesian Belief Network.

1 Introduction

The increasing complexity of software-intensive systems raises a new question that
how manufacturers and regulators could gain confidence in the dependable operation
of such software-intensive systems. Instead of assessing manufacturer compliance
with process-based regulations and standards, recently the industry areas have paid
much attention to the assurance cases which focused on demonstrating the
dependability of product-specific system. An assurance case is a body of evidence
organized into an argument demonstrating that some claims about a system hold [1].
As arguments and evidences are practically imperfect, we are difficult to determine
that the claim is true with 100 percent. So when we do decision-making against
assurance cases, we may ask questions like: How confident are we that the claim is
true? How do we express confidence quantitatively [9]?

Argument is the most commonly used concept in the area of both assurance cases
development and informal logic [2]. Borrowing ideas from the informal logic area to

80 X. Zhao et al.

assess and review cases qualitatively or quantitatively is not innovation. In [2], Yuan
argued that the informal logic argument schemes have important roles to play in
safety arguments construction and review process. In [3], Goodenough et al. outlined
an approach for determining the confidence based on the notion of defeasible
reasoning which is a concept from informal logic. We propose an approach based on
Hitchcock’s Toulmin model [5] arguments assessment criteria to quantitatively assess
the confidence of assurance cases.

In the next section of this paper, some related work and backing theories are briefly
introduced. After that, a detailed description of our approach to assess the confidence
in assurance cases is presented. First we convert the ARM-based [4] cases into the
Toulmin model instances. Then we use Hitchcock’s arguments assessment criteria to
analyze the Toulmin models and construct the basic structure of BBN. Furthermore,
we quantify the BBN and calculate the confidence of each claim in the assurance
cases. Finally, in section 4, a case study on a simple fragment of safety case is
discussed. The conclusion and future work to improve this approach are presented in
Section 5.

2 Related Work

2.1 Assurance Case and Its Confidence

Assurance cases are generally developed to support claims in areas such as safety,
reliability, maintainability, human factors, operability, and security, although these
assurance cases are often called by some more specific names, e.g. safety case or
reliability and maintainability (R&M) case. The assurance case has one or more top-
level claims in which confidence is needed and has supporting arguments connecting
the top-level claims with multiple levels of sub-claims. The sub-claims are in turn
supported by evidences and, where appropriate, assumptions. An assurance case is a
means to provide the grounds for confidence and to assist decision making [7]. One
typical application is the decision-making processes of safety certification in medical
device industry [1].

As both arguments and evidences are practically imperfect, we could never say the
claims in our assurance case are 100 percent true. So we consider the confidence of
each claim in the case should be provided as other elements (e.g. assumptions,
context) to facilitate the decision making. In addition, we need confidence due to we
need to work on ‘stopping rules’ of the case, i.e. when to stop expanding claims. This
is related to the degree of confidence that the claim is correct without the need for any
further supporting evidence, as stated by Bloomfield [8].

Currently the confidence in a safety case is often assessed by appealing to
qualitative reasoning. However, as indicated in [8], expressed in simplistic terms (e.g.
using traffic lights) is not clear how a lack of confidence will propagate through to
higher level claims. In addition, without quantitative confidence, we could not
provide guidance about how much benefit will ensue, or how confident one would be
in a claim after taking steps to enhance an assurance argument e.g., by adding
additional argument legs to support a claim [9]. So it is more than nature that we want

 A New Approach to Assessment of Confidence in Assurance Cases 81

a claim with a quantified confidence rather than a qualified one. Once a proper
method which could quantify the confidence of claims is accepted, the quantified
claims could be merged into a wider assessment of system quantitative risk analysis
and play an important role in decision making under uncertainty. Especially, it will be
the basis to support the As Confident As Reasonably Practicable (ACARP) principle
[9], which will in turn affect the software certification and engineering process.

Littlewood, Bloomfield, Bishop and Wright have done a series of work related to a
formal quantitative treatment of confidence since 2003 [10] [11] [12]. After their
work, Denney et al. proposed an approach for measuring the confidence by
integrating probabilistic reasoning with Bayesian Networks for uncertainty modeling
and assessment [13]. Goodenough et al. outlined an approach for determining the
confidence based on the notion of eliminative induction and the defeasible reasoning.
In other words, they use Baconian probability to provide a measure of confidence
based on how many defeaters have been eliminated [3]. In this paper, we use the
Hitchcock’s evaluative criteria for solo-verb-reasoning as guidance to construct BBN
more systematically and then quantify the confidence with traditional Pascalian
probability instead of Baconian probability.

2.2 Good Reasoning on Toulmin Model

Toulmin model addresses all types of reasoning such as scientific, legal, aesthetic,
colloquial and management. Its general shape is shown in Figure 1. The claim is a
conclusion which is to be demonstrated. The data is the facts that we appeal to as a
foundation for the claim. The warrant links data and other grounds to the claim. The
qualifier represents the degree of confidence that can be placed on the claim. The
rebuttal represents counter arguments that can be used. Toulmin introduces the notion
of backing to support the warrant.

Fig. 1. Toulmin’s Argument Model

Case method has a close relationship with Toulmin’s model which is the basis of
the Adelard goal-based justification approach ASCAD [14]. Also following Toulmin,
Kelly proposed a graphical argumentation notation - Goal Structuring Notation [15]
and Gorski proposed an argument model for trust cases which had been implemented
in Trust-IT framework [16].

82 X. Zhao et al.

As stated by Hitchcock [6], Toulmin’s model applies not only to argumentations
(authors address verbalized reasoning to someone else) but also to solo verbal
reasonings in which reasoners draw conclusions for themselves from information at
their disposal. Hitchcock proposed an evaluative criterion for solo verbal reasoning
[6], which we choose as the guidance in our approach. Such reasoning is good if and
only if its grounds are justified and adequate, its warrant is justified, and the reasoner
is justified in assuming that no defeaters apply. These four conditions are individually
necessary and jointly sufficient for good solo reasoning aimed at working out a
correct answer to a question. Further explanation of these four conditions could be
found later in this paper. Why Hitchcock’s solo verbal reasoning criteria instead of
argumentation assessment criteria? First, the basis is the common view that case
should be developed by all stakeholders (such as designers, operators, maintainers,
managers, the public, government etc.) [20] rather than only system manufacturers.
So the concept of solo verbal reasoning is in line with the reality of how we should
develop and use the assurance cases, i.e. aiding decision-making for all stakeholders
instead of merely convincing other stakeholders for system manufacturers. Second,
we believe, when assessing assurance cases, one should pay more attention to the
logic and pragmatic aspects than rhetoric and dialectics aspects. As all stakeholders
are case developers, the different viewpoints of stakeholders and argumentation
among stakeholders could be treated as self-argumentation which could be reflected
in Hitchcock’s solo verbal reasoning criteria.

3 Proposed Approach

Following [17], where a safety case comprises two complementary arguments: safety
argument and qualitative confidence argument, we propose an approach to construct
the confidence argument through BBN. In our confidence argument, Hitchcock’s
reasoning assessment criteria is the decomposition strategy. As shown in Figure 2,
more detailed steps of our approach could be found later in this paper.

Fig. 2. Overview Steps to Assess Confidence in Assurance Cases

3.1 Convert ARM-Based Case to Toulmin Model Instance

In [4], Object Management Group (OMG) defined a meta-model, i.e. ARM, for
representing structured arguments, as illustrated in Figure 3. The scope of ARM is to
allow the interchange of structured arguments between diverse tools by different

 A New Approach to Assessment of Confidence in Assurance Cases 83

vendors. So both CAE style cases and GSN style cases can be treated as ARM-based
cases instances. To generalize the application scope of our method, we propose a
rough convert framework from ARM-based Case into a set of Toulmin model
Instances, as illustrated in Figure 4.

Fig. 3. Overview of Argument Metamodel

Fig. 4. Convert Framework from ARM-based Case into Toulmin Models

84 X. Zhao et al.

Rectangles in the framework are the classes of ARM. The Data (Premise, Ground)
could be directly observed evidence or claims which are justified in related lower
level Toulmin model instance, respectively linked by the AssertedEvidence class and
AssertedInference class to the Claim of this Toulmin model instance. As there are two
kinds of warrants, namely the warrant can be self-evident and the warrant can be
further justified by its own argument, we use the class ReasoningElement which is an
abstract class that could derive class Claim and ArgumentReasoning to
present Warrant. When the warrant is a claim itself and need be justified by Backing,
the Backing is in the same situation with Data. The rebuttal could be an
exception of the warrant or count-evidence, linked by AssertedChallenge and
AssertedCounterEvidence respectively.

When this framework is iterated until every element in the ARM-based case is
analyzed, a set of Toulmin model instances is obtained. One practical difficulty when
apply this framework is to explicitly present a proper warrant in a uniformed form. To
facilitate our work, we treat warrants as special claims, so they are formed into a
proposition form ‘XX property is XX value’ as claims. Now it is just a rough
framework and more systematic, automatic one will be proposed in future work

3.2 Construct the Structure of Basic BBN

Under the guidance of Hitchcock’s reasoning assessment criteria, for each argument
in the set of Toulmin model instances which obtained earlier, we construct a basic
structure of BBN, as shown in Figure 5. Then all basic BBNs are connected through
interface nodes ‘Justified Premises’, ‘Justified Claim’ and sometimes ‘Justified
Applicable Warrant’, we get a whole BBN for the assurance case. The basic BBN for
leaf nodes in the assurance case shall be different with the non-leaf nodes, but we do
not explicitly distinguish them here for simplify. Precisely speaking, when the
‘Justified Premises’ directly represents the evidence, the node ‘Justified Premises’
should be further developed to facilitate the assessment of trustworthiness of
evidence, so what we do here is mainly to systematically measure the confidence
from arguments rather than evidences.

As there are four conditions—justified premises, adequate information, justified
applicable warrant, justified assumption that no exceptions apply—in Hitchcock’s
criteria, we get 4 main branches in our basic BBN structure respectively. For each
branch, combined with the domain knowledge of dependability of computer-based
systems, the deeper structure is depicted and discussed as below.

Justified Premises. First, we must be justified in accepting the ultimate grounds on
which we base our reasoning. To have some assurance of reaching our goal, we need
justification for our starting-points. For a single Toulmin model instance, there are
two types of premises – evidences which come from observation, written records,
history data etc. and claims which are justified in other Toulmin model instance. For
the latter, it is enough that there is just one node ‘Justified Premises’ in the first
branch, as all we need to do is to find the corresponding ‘Justified Claim’ node in
other basic BBN and replace it. If the ‘Justified Premises’ node represents an
evidence (i.e. a leaf node in the case), we directly quantify it with expert opinion at
the present stage.

 A New Approach to Assessment of Confidence in Assurance Cases 85

Fig. 5. Basic BBN Structure for Each Toulmin Model Instance

Adequate Premises. If one tries to answer a question correctly on the basis of
obtainable information, one needs to take into account all the good relevant
information that is practically obtainable. So we develop two sub-nodes of ‘Adequate
Premises’, namely the node ‘Whether Unprovided Premise is Obtainable’ and the
node ‘Coverage of Equivalence Partition of Premises’.

The node ‘Whether Unprovided Premise is Obtainable’ is easily to be understood
that we could not provide all the relevant premises due to the time and cost in
practical engineering project. So if we provide all obtainable premises we could to
some extent say the adequate premises condition is justified.

Second, the premises must be relevant, in the sense that it could make a difference
to the answer one reaches. That is, considering all the new and old information, to
answer the question that could be different than the one justified by the information
already obtained. We grasp it with an example in software testing activity. Assume
that we have tested the target software with 5000 test cases without any failure, so the
tester may have a ‘confirmation bias’ that the software is good enough. But are these
5000 test cases adequate? The answer depends on the coverage of equivalence
partitions of test cases. If the 5000 test cases come from all different equivalence
partitions, we have high confidence to say the software is good enough. In contrary, if
the 5000 test cases represent only one equivalence partition, we are hardly to say the
software is good and we need generate more test cases. We need relevant test cases,
namely from different equivalence partitions which could make the test result fail,
instead of irrelevant test cases from the same equivalence partition which we know
will pass the test. So we add a node ‘Coverage of Equivalence Partition of Premises’
which will affect the adequate premises condition. We believe this idea is a possible
way to solve the ‘confirmation bias’ problem [18] of case method.

86 X. Zhao et al.

How to determine the equivalence partition of premises? It depends on what
warrant links the premise to claim. To be exact, we can extract equivalence partition
principle from the specific warrant. We could use the interesting argument in
Hitchcock’s paper [6] as an example, as shown in Figure 6. To support the claim that
all swans are white, one could use the warrant (which is well supported by direct and
reported observation) that birds of a single sex in a single species have uniform
coloring. So one will provide premise that those observations of swans of both sexes
in each of known species: mute swans, trumpeter swans, whistling swans, and
whooper swans were seen to be white. Through analyzing the warrant, we could
extract equivalence partition principle from the perspective of species and sex, i.e.
both sex in different species are different equivalence partitions. So we need to
obverse both sex in as many species of swans as possible to provide adequate
premises to the conclusion. Observing more swans of any one of those known species,
of either sex, is irrelevant (i.e. nothing to do with the adequate promises condition),
although it will increase the confidence that the premise is justified (i.e. this should be
reflected by the node ‘Justified Premises’). Once we found a new species of swan in
New Zealand, observing swans of this new species is relevant, which probably could
turn over the conclusion. So as the equivalence partition principle indicates, we
should observe swans of both sexes, of as many species as possible to provide the
adequate premises.

Fig. 6. Toulmin Model Instance

Justified Applicable Warrant. Conclusion must follow from one’s premises in
accordance with a justified general warrant. Hitchcock first emphasized that the phase
‘in accordance with’ means that the warrant actually applies to the inference. In other
words, the warrant is semantically equivalent to some generalization of the
reasoning’s associated conditional ‘if p1 and ... and pn, then c’, where p1 ..., pn stand
for the premises and c for the conclusion. We do not present this idea in our basic
BBN structure, as we believe this work should be correctly done in the framework
which converts the ARM into Toulmin model, to be specific, when refining the
ReasoningElement class of ARM into a warrant. As aforementioned, there are two
kinds of warrants, namely warrant can be self-evident and warrant can be further
justified by its own argument. For the former, like the situation that premises
represent evidence in the assurance case, we directly quantify it. For the latter, we just
treat it as a claim which could be found justified in another Toulmin model instance,

 A New Approach to Assessment of Confidence in Assurance Cases 87

so in this situation the node ‘Justified Applicable Warrant’ becomes an interface when
connecting the whole BBN.

Justified Assumption That No Exceptions Apply. As stated in [6], a well-known
feature of Toulmin’s model is that many warrants come with rebuttals, or exceptional
conditions under which the conclusion is incorrect. If the warrant which justifies
one’s inference is not universal, it must be justified by assuming that no exceptional
condition exists. Such exceptional conditions include not only the circumstances that
show the conclusion is incorrect but also the circumstances that show the warrant is
inapplicable to a particular system.

In order to aid quantify this last condition of Hitchcock’s criteria in BBN, we have
to ask ourselves, how to systematically find the exceptional circumstances? Or in
other words, what are the factors that could make these exceptional circumstances
different from the ideal circumstances? When consider this question in the field of
quality of computer-based systems, the question may be transformed into what factors
could make the product (in case) different from the ideal product where the general
warrant will be smoothly applied? Borrowing ideas from the product quality control
and management, 5M1E analysis method is the answer we proposed, namely
machine, man, material, method, measurement and environment factors. For instance,
one general warrant may be ‘a component with correct input and correct computation
process could provide correct output’. This self-evidence warrant is justified
applicable on most programmable electronic component. But when the operation
environment is full of electromagnetic interference, the warrant is no longer
applicable in this exceptional circumstance. In other words, there is exception from
the perspective of environment factors. Following this idea, the last branch of basic
BBN structure is constructed.

3.3 Quantify BBN and Measure Confidence

To quantify the BBN and measure confidence for each claim in the assurance case,
we need assign a conditional probability table (CPT) to each non-leaf node of BBN,
and assign the prior probabilities or set observed evidence probabilities for the leaf
nodes and then connect the basic BBN into a whole BBN.

As Toulmin stated, criteria for evaluating arguments has strong field and context
dependency, which we believe becomes unquestionably true when there is an attempt
to quantitatively assess the argument. All the parameters used to quantify the BBN
should be obtained from the field-related statistical data, and inevitably domain expert
judgments, in the context of the target system. Here, combined with our structure of
basic BBN, we only propose brief, general guidelines on how to quantify the basic
BBN.

• Guideline 1: For the CPT of node ‘Justified Claim’, we could use the Noisy-And
[19] function to quantify it. So the parameters, 4 link probabilities and the leakage
k, should be discussed by stakeholders and settled down. The same for the CPT of
the node ‘Justified Assumption that No Exceptions Apply’ with Noisy-Or function.

88 X. Zhao et al.

• Guideline 2: For the CPT of node ‘Adequate Premises’, we only concern how to
give P(Adequate Premises| Obtainable= obtainable, Coverage =not complete), as
the other 3 conditional probabilities we could simply set 100% present.

• Guideline 3: For the nodes ‘Justified Premises’ and ‘Justified Applicable
Warrant’, how to quantify them depends on whether they present the leaf nodes in
the assurance case, i.e. whether they are the claims which need further argument or
they are self-evidence. For the former, we quantify the node with parameters read
from the corresponding node in other basic BBN. For the latter, it is to some extent
equal to give the trustworthiness of evidence, so we directly quantify them with
domain expert judgments at the present stage. Intuitively, we should go deeper into
the taxonomy of evidence and self-evidence warrants. For example, if a warrant is
mathematic theorem or settled law items, we could treat it as 100 percent justified.
If a warrant is a common sense concluded from history data, then we should use
the statistical probability to quantify it.

• Guideline 4: For the serials of nodes which find exceptions from perspective of
5M1E, we should quantify them with the likelihood probability that the exceptions
happen in this case. Still, the likelihood probability comes from domain experts or
statistical data, which should be discussed and accepted by all stakeholders.

4 Simplified Case Study

In this section, a simplified case study on a fragment of safety case is discussed. The
scalability of this proposed approach will be tested upon a big example in the future
work.

Figure 7 is a typical argument in safety cases. It is not hard to convert this case into
Toulmin model instance where the premise is ‘hazard A and B of system S are both
eliminated’, the warrant is ‘systems without any hazards are safe’ and the conclusion
is ‘system S is safe’. Given an argument shown in figure 7, how confident should we
believe that the system is actually safe and what is the basis for this confidence? To
answer this question, we adopt the approached depicted above. And the corresponding
basic BBN for this typical safety argument is shown in Figure 8.

Fig. 7. Simplified Typical Safety Argument

 A New Approach to Assessment of Confidence in Assurance Cases 89

Fig. 8. Corresponding Basic BBN for the Typical Safety Argument

In this case, for simplify, the CPT of the node ‘system S is safe’ is quantified by
the traditional logical AND operator, i.e. only when all the 4 main branches - justified
premises, adequate information, justified applicable warrant, justified assumption that
no exceptions apply -are presented, the claim is 100 percent justified, and in any other
conditions the claim is 100 percent not justified. Similarly, when quantify the CPT of
the node ‘Justified Assumption that No Exceptions Apply’, only in the condition that
all the 5M1E factors are not presented, we 100 percent no exceptions presented, and
in any other conditions the node is quantified 100 percent ‘NotPresent’. The CPT for
node ‘Adequate Premises’ is shown in Figure 9. It is very arbitrary here and in
practice it should be discussed by experts and stakeholders.

Fig. 9. CPT for Node ‘Adequate Premises’

Now we assign prior probabilities to leaf nodes. For the node ‘Hazard A, B Have
Been Eliminated’ we just get the numbers from two low level basic BBN which
support claims like ‘Hazard A has been eliminated’ (0.94 justified) and ‘Hazard B has
been eliminated’ (0.96 justified), and then multiply them and quantify the node
(0.94*0.96=0.9024 justified). In this case, the prior probabilities for ‘Coverage of
Equivalence Partition of Premises i.e. Hazard Identify Scale’ and ‘Whether
Unprovided Hazard Information is Obtainable’ directly comes from hazard analysis
expert. In practice they also could come from statistic data against some forecast
algorithm, like based on the lines of codes to predict the defects in software. As the
warrant ‘system without any hazards is safe’ has no exceptions in any circumstances

90 X. Zhao et al.

i.e. no factors from 5M1E could influence the application of the warrant, so all the 6
nodes relating to this are assigned as 100 percent ‘NotPresent’. Run the BBN we get
the confidence of the claim ‘system S is safe’, 89% justified.

5 Conclusion

As assurance case has become a hot research topic, many researchers question the
whole efficiency of an assurance (safety) case, one of their reasons is the lack of
measurement of confidence. In this paper, we try to solve this problem with the aid of
theories from informal logic. To this extent, we move forward the interplay between
research in informal logic and research in computer system engineering. At present
stage, we only propose an initial framework of this approach and we deem it to be a
potentially helpful way towards the measurement of confidence in assurance cases.

Further examples and applications are needed to determine how helpful it will be
in practical cases. To improve the approach, we identify some future work. Firstly, as
indicated in [4], both CAE case and GSN case could smoothly convert into ARM-
based case. So an automatic convert tool could be developed to help convert the CAE,
GSN, ARM-based cases and Toulmin model instance. Secondly, combining with
domain knowledge (e.g. safety, security), the basic BBN structure should be further
developed and refined. Thirdly we should closely integrate domain knowledge with
the guideline of how to quantify the BBN. Domain statistics data and expert will
definitely play an important role here, and only go deeper into different fields we get
better efficiency. Finally and more significantly, once we got an acceptable
confidence, how should we use it to facilitate our decision-making e.g. perfect the
ACARP principle. Existing certification process might be modified accordingly.

References

1. Weinstock, C.B., Goodenough, J.B.: Towards an Assurance Case Practice for Medical
Devices. CMU/SEI-2009-TN-018 (2009)

2. Yuan, T., Kelly, T.: Argument Schemes in Computer System Safety Engineering. Informal
Logic 31(2), 89–109 (2011)

3. Goodenough, J.B., Weinstock, C.B., Klein, A.Z.: Assessing Confidence in an Assurance
Case. CMU/SEI-2011-TR-Draft (2011)

4. Argumentation Metamodel (ARM). OMG Document Number: ptc/2010-08-36. Standard
document (2010), http://www.omg.org/spec/ARM

5. Toulmin, S.: The Uses of Argument. Cambridge University Press (1958)
6. Hitchcock, D.: Good Reasoning on the Toulmin Model. Argumentation 19(3), 373–391

(2005)
7. ISO/IEC TR 15026-1:2010, Systems and Software Engineering - Systems and Software

Assurance – Part 1: Concepts and Vocabulary (2010)
8. Bloomfield, R., Bishop, P.: Safety and Assurance Cases: Past, Present and Possible Future

- an Adelard Perspective. In: Making Systems Safer, pp. 51–67 (2010)
9. Bloomfield, R., Littlewood, B., Wright, D.: Confidence: Its Role in Dependability Cases

for Risk Assessment. In: International Conference on Dependable Systems and Networks,
Edinburgh, pp. 338–346 (2007)

 A New Approach to Assessment of Confidence in Assurance Cases 91

10. Bloomfield, R., Littlewood, B.: Multi-legged Arguments: the Impact of Diversity Upon
Confidence in Dependability Arguments. In: International Conference on Dependable
Systems and Networks (DSN 2003), pp. 25–34 (2003)

11. Littlewood, B., Wright, D.: The Use of Multilegged Arguments to Increase Confidence in
Safety Claims for Software-based Systems: A Study Based on a BBN Analysis of an
Idealized Example. IEEE Trans. Soft. Eng. 33(5), 347–365 (2007)

12. Bishop, P., Bloomfield, R., Littlewood, B., Povyakalo, A., Wright, D.: Towards a
Formalism for Conservative Claims about the Dependability of Software-based Systems.
IEEE Trans. Soft. Eng. 37(5), 708–717 (2011)

13. Denney, E., Pai, G., Habli, I.: Towards Measurement of Confidence in Safety Cases. In:
2011 International Symposium on Empirical Software Engineering and Measurement, pp.
380–383 (2011)

14. Bloomfield, R., Bishop, P., Jones, C., Froome, P.: ASCAD-Adelard Safety Case
Development Manual. Adelard (1998) ISBN 0953377105

15. Kelly, T.: Arguing safety-a systematic approach to managing safety cases. York,
University of York. PhD thesis (1998)

16. Górski, J.: Trust-IT - a Framework for Trust Cases. In: Workshop on Assurance Cases for
Security - The Metrics Challenge, DSN 2007, Edinburgh, UK (2007)

17. Hawkins, R., Kelly, T., Knight, J., Graydon, P.: A New Approach to Creating Clear Safety
Arguments. In: Safety Critical Systems Symp. (2011)

18. Leveson, N.: The Use of Safety Cases in Certification and Regulation. Journal of System
Safety 47(6) (2011)

19. Hobbs, C., Lloyd, M.: The Application of Bayesian Belief Networks to Assurance Case
Preparation. In: Achieving Systems Safety, pp. 159–176 (2012)

20. Sun, L., Zhang, W., Kelly, T.: Do Safety Cases Have a Role in Aerospace Certification?
In: 2nd International Symposium on Aircraft Airworthiness, Beijing, China (2011)

An Unified Meta-model

for Trustworthy Systems Engineering

Eric Verhulst and Bernhard H.C. Sputh

Altreonic NV, Gemeentestraat 61A Bus 1, B3210 Linden, Belgium
{eric.verhulst,bernhard.sputh}@altreonic.com

http://www.altreonic.com

Abstract. This paper describes the theoretical principles and associ-
ated meta-model of a unified trustworthy systems engineering approach.
Guiding principles are “unified semantics” and “interacting entities”.
Proof of concept projects have shown that the approach is valid for any
type of process, also non technical engineering ones. The meta-model was
used as a guideline to develop the GoedelWorks internet based platform
supporting the process view (focused on requirements engineering), the
modelling process view as well as the workplan development view. Of
particular interest is the integration of the ASIL process, an automotive
safety engineering process that was developed to cover multiple safety
standards.

Keywords: unified semantics, interacting entities, systems engineering,
safety engineering, systems grammar.

1 Introduction

Systems Engineering (SE) is considered to be the process that transforms a
need into a working system. Discovering what the real need is, is often already
a challenge as it is the result of the interaction of many stakeholders, each of
them expressing their “requirements” in the language specific to their domain
of expertise. The problem is partly due to the fact that we use natural language
and that our domain of expertise is always limited. In order to overcome these
obstacles, formalization is required. The meta-model we developed is an attempt
to achieve this in the domain of SE. In terms of the guiding principles, unified
semantics comes down to defining univocal and orthogonal concepts. The in-
teracting entities paradigm defines how these concepts are linked. The result is
called a “systems grammar” in analogy with the rules of language that allow us
to construct meaningful sentences (an entity), a chapter (a system) or a book
(a system of systems). It defines the SE terms (standing for conceptual entities)
and the rules on how to combine the conceptual entities in the right way to
obtain a (trustworthy) system. What complicates the matter is that a system
in the end is defined not only by its final purpose but also by its history (e.g.
precursors), by the process that was followed to develop it and by the way its

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 92–105, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.altreonic.com

An Unified Meta-model for Trustworthy Systems Engineering 93

composing entities were selected and put together. Each corresponds to a differ-
ent view and it is the combination of these views that result in a unique system.
Note, that a process can also be considered as a system. The main difference
with a system that is being developed is that the composing entities and they
way they interact are different. For example humans will communicate and ex-
ecute a process that delivers one or more results. The system being developed
will be composed of several sub-systems that in combination execute a desired
function, often transforming inputs into outputs. A process can therefore be seen
as a meta-level system model for a concrete project.

An important aid in the formalisation of SE is abstraction, an activity whereby
lower level concepts are grouped in separate, preferably orthogonal meta-level
entities and whereby the specific differences are abstracted away. One could call
this categorisation, but this ignores that the meta-level entities still have meta-
level links (or interactions). This process can be repeated to define a next higher
level, the meta-meta-level, until only one very generic concept is left. The exer-
cise is complete if the reverse operation allows to derive the concrete system by
using refinement. One could say that this is not different from what modelling
defines. There is certainly an overlap, but what makes the approach different is
that our approach does not just try to describe what exists, but tries to find the
minimum set of conceptual entities and interactions that are sufficient to be used
as meta-models across different domains. This is often counter intuitive because
it doesn’t align with our use of natural language. The latter is often very flexible,
but therefore also very imprecise. Natural language is also associative whereby
human communication is full of unspoken context information. Engineers have
here a source of a fundamental conflict. To prove the “correctness” of a system,
it must be described in unambiguous terms. At the same time even when using
formal techniques, the use of natural language is unavoidable to discuss about
the formal properties and architecture of the system. Precise mathematical ex-
pressions are by convention bounded with imprecise natural language concepts.
In this paper we present a middle ground. As a full mathematical approach is
not yet within reach of the scale of systems engineering in general, we defined a
meta-model that formalises the SE domain in a generic way. Only 17 orthogonal
concepts were needed to define most SE domains. The resulting framework was
proven to be capable importing a specific safety engineering process. Also many
explicit guidelines or requirements of traditional safety engineering standards
are found back.

1.1 Related Work

The work presented in this paper is closely related with work going on in other
domains, such as architectural modelling. This has resulted in a number of graph-
ical development tools and modelling languages such as UML [1] and SysML [2].
Without examining them in detail, these approaches suffer from a number of
shortcomings:

– Often architectural models are developed bottom-up, e.g. as a means of rep-
resenting graphically what was first defined in a textual format. Hence, such

94 E. Verhulst and B.H.C. Sputh

approaches are driven by the architecture of the system and its implemen-
tation. As we witnessed often, even when formal methods are used, such an
approach biases the stakeholders to think in terms of known design patterns
and results in less optimal system solutions [3].

– Many modelling approaches focus only on a specific domain, requiring other
tools to support the other SE subdomains. This poses the problem of keeping
semantic consistency and hence introduces errors.

– Most of the tools have no formal basis and hence have too many terms
and concepts that semantically overlap. In other words, orthogonality and
separation of concerns is lacking.

Despite these short comings, when properly used, architectural modelling con-
tribute to a better development process. The approach we propose and imple-
mented in GoedelWorks [4,5] emphasizes the cognitive aspect of the SE process
whereby the different activities are actually just different “views” on the system
under development.

Note that the issues GoedelWorks aims to address are more and more being
recognised as revelant. Safety is an increasingly necessary property of systems,
but at the same time certification costs are escalating. A project that in par-
ticular looks at reducing certification costs by taken a cross-domain approach is
OPENCOSS [6].

The remainder of the paper is organized as follows. The motivation behind
the formalization of concepts and their relations are described in the next sec-
tion, which also presents the link between the abstract, domain independent
meta-ontological level, and the domain specific ontological level. The concepts
and the unified systems grammar itself are further described in section 3. This
formalization can also guide the definition and implementation of a concrete in-
stantiation of a SE process. We conclude by a short description of the import
of a large automotive focused safety engineering process flow, called ASIL [7].
Other pilot projects were executed as well, but not included by lack of space.

2 A Generic Framework for Systems Engineering

Here we give an introduction to our view on Systems Engineering, which provides
the framework of understanding the 17 concepts of System Engineering detailed
in section 3.

2.1 Intentional Approach to Systems Engineering

Systems Engineering is the process that transforms a “need” into a working
system. Initially we describe the system from the “intentional” perspective. Ex-
ample: “We want to put a human on the moon”. From this perspective we can
derive what the system is supposed to be (or to do). Another perspective is the
architectural one. This perspective shows us how the system can be implemented.
Part of the systems engineering work is to make the right trade-off decisions.

An Unified Meta-model for Trustworthy Systems Engineering 95

The “mission” is the top level requirement that the system must meet. In
order to achieve the mission, a system will be composed of sub-elements (often
called components, modules or subsystems). We call these elements “entities”
and the way they relate to each other are called “interactions”. The term system
is used when multiple combined interacting entities fulfil a functionality, that
they individually do not fulfil.

Note, that any system component has often been developed in a prior project,
hence the notion of “System of Systems” emerges naturally. Similarly an embed-
ded system is often assembled from standardised hardware and software compo-
nents, but it’s only when put together and an application specific layer is added
that the embedded system can provides us with the required functionality.

As entities and interactions form a system architecture, all requirements
achieve the mission of a system as an aggregate. Unfortunately, requirement
statements are often vague or imprecise, because they assume an unspoken con-
text. To be usable in the engineering domain we need to refine them into quan-
tifiable statements. We say that we derive specifications. In doing so, we restrict
the SE state space guided by the constraints that we must be able to meet by
selecting from all the possible implementations the ones that meet all our re-
quirements. In the SE domain we link specifications with test cases allowing us
to confirm that a given implementation meets the derived specifications in a
quantifiable way. An example requirement statement could be “a fast car”. The
derived specification could be “Topspeed 240 km/hr, 0 to 100 km/hr in 6 sec-
onds”. We can then define a test that will measure a given implementation. The
specification also defines boundary conditions (e.g. cost, size) for the implemen-
tation choices and the context in which the system will meet the requirements.
Hence, the input for the architectural design is taken from the specifications and
not directly from the requirements.

In practice the use of the terms requirements and specifications is not always
consistent and the terms are often confused. Even the term “requirement speci-
fications”, a rather ambiguous one, is often used. Hence, we consistently use the
term “Requirement” when the required systems properties are not linked with
a measurable test case. Once this is done, we can speak of a “Specification”.

From the structural or architectural perspective a system is defined by entities
and interactions between entities. An entity is defined by its attributes and
functional properties. Attributes reflect intrinsic qualitative and quantitative
properties of an entity (e.g. colour, speed, etc.) and have their own names, types
and values. A function defines the intended behaviour of an entity. An entity
can have more than one function. We use the term function in two ways:

1. The traditional “use case” of entities (corresponding with the intentional
view above);

2. The entities’ internal behaviour.

Functions define the internal behaviour as opposed to external interactions. In a
first approach, interactions are defined using a partial order, i.e. implemented as a
sequence of messages. Interactions are caused by events and are implemented by
messages. An interaction structure corresponds to a protocol and can be defined

96 E. Verhulst and B.H.C. Sputh

with inputs and outputs in form of a functional flow diagram. State diagrams
can be used to show event-function pairs on the transition lines between states.

An event is any transition that can take place in a system. An event can
be the result of an entity attribute change (i.e. of changing the entity’s state).
A message can cause and can be caused by an event whereby the interaction
between entities results in changes to their attributes and their state.

Interfaces belong to the structural part of an entity. An interface is the bound-
ary domain of interaction between an entity and another entity. Interfaces can
have input or output types, which define data, energy or information directions
at interaction areas between the entities.

Interfaces and interactions are related by the fact that an interface transforms
an entity internal event into an external message. A second entity will receive
such a message through its interface, transforming the external message into
an internal form. An interface can also filter received messages and invoke the
appropriate entity internal functions. It should be noted that while an interaction
happens between two entities, the medium, that enables the interaction, can be
a system in its own right. We also need to take into account that its properties
may affect the system behaviour. One should also note that the use of the terms
“events”, “messages” and “protocol” is more appropriate for embedded systems,
but an interaction can also be an energy or force transfer between mechanical
components. Or even two people discussing a topic.

Another important view in systems engineering is the project development
view, which is derived from the architectural decomposition of the system. In
this view, once all entities have been identified, they are grouped into work
packages for project planning. Each work package is divided into tasks with at-
tributes, such as: duration, resources, milestones, deadlines, responsible person,
etc. Defining the timeline of the workplan and the workplan tasks are important
system development stages. Selecting such metrics and attaching them to work
packages leads to the workplan specification.

2.2 Intentional Requirements, Concrete Specifications

As mentioned previously, a system is described at the highest level by its re-
quirements. Requirements are captured at the initial point of the system def-
inition process and must be transformed into measurable specifications. These
specifications are to be fulfilled by structured architectural elements (i.e. entities-
interactions, attributes-values, event-function pairs).

This means that at the cognitive level the qualitative requirements produce
entities, interactions (i.e. architectural descriptions) and specifications (i.e. nor-
mal cases, test cases, failure cases), work plans, and also issues, to be resolved.
The order of this sequence is essential and constitutes a process of refinement
whereby we go from the more abstract to the more concrete. Fig. 1 illustrates
this dependency using an extract of a ‘Shift by Wire’ project, done as part of
the ASIL project [7].

Using a coherent and unified systems grammar provides us with the basis for
building cognitive models from initially disjoint user requests. Requirements and

An Unified Meta-model for Trustworthy Systems Engineering 97

Fig. 1. Graphical Representation of Dependency Links in a GoedelWorks Project

specifications are not just a collection of statements, but represent a cognitive
model of the system with a structure corresponding to the system grammar’s
relations.

Capturing requirements and specifications is a process of system description.
Specifications are derived from the more general requirements. This is necessary
in order to make requirements verifiable by measurements.

Specifications are often formulated with the (hidden) assumption that the sys-
tem operates without observable or latent problems. We call these the “normal
cases”. However, this is not enough. Specifications are met when they pass “test
cases”, which often describe the specific tests that must be executed to verify
the specifications. In correspondence to test cases we define “failure cases”, i.e.
a sequence of events that can result in a system fault and for which the system
design should cater. Note that security properties are considered as a sub-type
of safety cases.

3 The Notion of a Systems Grammar as a Meta-model

In this section we outline the meta-model and its 17 concepts. We first list and
define these concepts. To differentiate from the natural language terms, we use
upper case for the first letter. Next we discuss the relationships between the
concepts, the different views in SE and how this results in a process flow.

3.1 Overview of the Meta-model

When we use the term System we assume it is being developed in the context
of a Project. During the Project a defined Process is followed. The Meta-Model
consists of the following 17 concepts:

98 E. Verhulst and B.H.C. Sputh

1. System: The System is considered to be the root of all concepts. It identifies
a System as being defined by a (development) Project on the one hand and
a (Systems Engineering) Process on the other hand.

2. Project: The set of activities that together result in the system becoming
available and meeting all requirements. The Project is executed by following
a defined Process.

3. Process: A set of partially ordered activities or steps that is repeatable and
produces the System.

4. Reference: Any relevant information that is not specific to the system under
development but relevant to the domain in general.

5. Requirement: Any statement about the system by any stakeholder who is
directly or indirectly involved.

6. Specification: Specifications are derived from Requirements by refinement.
The criterion for the derivation is that the resulting Specification must be
testable.

7. Work Product: The result of a Work Package.
8. Model: A model is a specific system-level implementation of a partial or full

set of specifications. A model is composed of Entities and is a Project related
Work Product.

9. Entity: An Entity is a composing subset of a model. The interactions create
the emerging system properties.

10. Work Package: A set of Tasks that, using Resources, produce a Work Product
which meets its Requirements and Specifications. A Work Package shall at
least have a Development-, a Verification-, a Test- and a Validation-Task.

11. Development-Task: A Task that takes as input the specifications and devel-
ops the Work Products.

12. Verification-Task: A task that verifies that the work done in the Development-
Task meets the Process related Requirements and Specifications.

13. Test-Task: A Task that verifies that the result of a verified Work Product
meets the System related Specifications.

14. Validation-Task: A Task that verifies that the tested Work Product meets
the System related Requirements after integration with all Work Products
constituting the System.

15. Resource: A Resource is anything that is needed for a Work Package to be
executed.

16. Issue: An issue is anything that comes up during development that requires
further investigation, mainly to determine if the issue is a real concern.

17. Change Request: A Change Request is an explicit request to modify an
already approved Project Entity.

We make abstraction here from often domain specific sub-typing (often intro-
duced by qualifying attributes). One must be careful to keep the subtypes to
a minimal and orthogonal set. Otherwise, the terminology confusion creeps in
again.

The attentive reader will notice that the definitions above might not
fully agree with his own notions and still leave some room for interpretation.

An Unified Meta-model for Trustworthy Systems Engineering 99

This is largely due to the ambiguities of natural language and established but
not necessarily coherent practices in how people use the natural language terms.

While we cannot really change language we stick to the terms as they are but
clarify the definitions and why they were chosen. In addition, in the GoedelWorks
environment the structure helps to enforce a specific meaning.

3.2 Requirements vs. Specifications

It might come as a surprise, but many but bot all safety standards don’t even use
the term “specification”. Most standards use the term “requirement” often with
a qualifying prefix. An example are the High Level Requirements (HLR) and
Low Level Requirements (LLR) in DO-178C.[8] In ISO-26262 [9] a specification
is defined as a set of requirements which, when taken together, constitute the
definition of the functions and attributes of item or element.

To eliminate the ambiguity we clearly distinguish between Requirements and
Specifications. A Requirement only becomes a Specification when it is sufficiently
precise and constrained that we can define a way to test it. We can say that a
Specification is a quantified Requirements statement. It comes into being by
a refinement process that often will include trade-off decisions driven by the
Project constraints. The point is that development engineering activities can
really only start when the Specification stage has been reached, else we have
too many degrees of freedom. The latter does not exclude early proof-of-concept
prototypes.

3.3 Development, Verification, Testing and Validation

Another distinction is in the terms used to differentiate the Work Package Tasks.
Verification is here linked with Process Specifications whereas Development and
Testing are linked with System or Project Specifications. In the case of Devel-
opment, Specification statements are necessary input to guide the Development.
Although, we say that Testing verifies that the system Specifications were met,
we reserve the term Verification for verifying the way the Development was done.
The logic behind this is that testing should not be used to find the errors and
deviations of the development activities but to find the deviations from the Sys-
tem’s specified properties. Similarly, Validation comes after Testing and is meant
to verify that the System as a whole (which implies that it includes Integration)
meets the original Requirements statements. Note, that Validation will include
Testing activities, typically by operating the System in its intended environment.

3.4 The Main Complementary Views in SE

The meta-model we introduced covers three main views that together define
the system being developed. Before we elaborate on these, we should clarify
what we mean with the term “System”. In the SE context, the System is what
is being developed in a SE Process. However, a System is never alone, it is
an Entity that always interacts with two other Systems. The first one is the

100 E. Verhulst and B.H.C. Sputh

environment in which it will be used. This can literally be the rest of the real-
world or a higher level system. The second one is the (human) operator actively
interacting with the System. When developing a System, one must always take
these two other Systems into account. Their interactions influence the System
under development (typically by changing the System’s state, either by changing
its energy level, either by changing the operating mode). The reader will notice
that both Systems are characterised by the presence of elements that one never
has fully under control. A human operator can be assumed to always give correct
commands, but this cannot be guaranteed. The same for the environment. It can
be anticipated, but not predicted, how these two systems will behave. This is
the essence of safety engineering.

In the end SE can be seen as the converge of three views. The first one is the
well known requirements view. It is concerned with the properties that Systems
should and must have and relates to the well known question of “What is the
right System?”. The second is the Work Plan view. It consists of the activities
that centered around the development that produces the system. It is related
to the “what system?” question. The third one is the Process view. It answers
the question: “How is the System to be developed?”. It defines on the one hand
a partial order for the different Work Packages of the Work Plan, but it also
defines the evidence that needs to be present at the end of a SE Project. What
is less understood is that the deliverables of a SE engineering project are on the
one hand the System itself (a collection of Entities that create the System after
integration) and on the other hand the Process Work Products. In a systematic,
controlled SE Project all these Work Products together define the System. The
Work Products document it and together with the dependency chain provide the
evidence that it meets the Specifications and Requirements. The Process Work
Products are sometimes called the artefacts as if they were by-products, which
underestimates their value. They make the difference between development as
an engineering activity and development as a crafting activity.

3.5 Morphing Work Products as Templates, Resources and
Deliverables

Another important aspect to see is that a Process is also something that has to
be developed like any other System. Developing a Process also requires a Work
Plan and a set of Process Requirements resulting in Process Specifications. The
deliverables of such a Process developing Project are on the one hand the Pro-
cess itself (i.e. defined activities) and on the other hand the Specifications for
the Work Products to be developed in a concrete Project. In essence, a Pro-
cess will define Templates that need to be filled in during a concrete Project.
Hence, the Template becomes a Resource in a concrete Project whereby the De-
liverable is again a Work Product. A simple example is a test plan. A Process
will define what we can expect from a test plan in generic terms (e.g. complete-
ness, confidence, etc.). It acts as a Reference for further instantiation. Therefore,
an organisation will have to derive an organisation, often domain specific test
plan, but still a template enhanced with organisation specific procedures and

An Unified Meta-model for Trustworthy Systems Engineering 101

guidelines. In a concrete Project this enhanced template is a Resource. After the
Work Package developing an Entity has been approved it becomes part of the
evidence that the Entity meets the Requirements and Specifications.

This “morphing” of entities is another reason why terminology can be confus-
ing. It is related to implicit or explicit reuse of previously developed “Entities”
and actually this is what engineering does all the time. All new developments
somehow always include prior knowledge or reuse previously developed Enti-
ties that become components or Resources for new Projects. On the other hand
it simplifies the understanding of SE by being aware that the finality of a SE
Project is always a (coherent) set of Work Products. The Project and the Pro-
cess are never the finality but the main means to reach the approved state of
the Work Products.

3.6 Links and Entity Dependencies

In a real Project, the number of Entities grows quickly. This induces the need to
group and structure them. Therefore, we define “structural” links, i.e. an Entity
can be composed of sub-Entities. This is not an operation of refinement but one
of decomposition.

If we now make these Requirements concrete, we obtain Specifications that
are derived from them by refinement. For example, we can first build a phys-
ical simulation Model that given parameters allow us to determine the Entity
Specifications. The exercise of linking Specifications with Model Entities is one
of mapping.

The different Process steps actually create dependency relationships. The
Specifications depend on the Requirements. The Work Package related to devel-
oping will also depend on Resources. The composing Tasks also define depen-
dency relationships. The Validation will depend on the Testing with the Testing
depending on the Verification and the Verification depending on the Develop-
ment.

These dependency relationships give us also the traceability requirements, al-
lowing to trace back e.g. from the source code back to the original Requirements.
If the dependency chain is broken, we know that something was overlooked or
not fully analysed. This property is further discussed in the next section.

Using a car as example, we illustrate another aspect that is tightly related
with Requirements management. Assume that we have Requirements saying
“The car shall drive like a sports car“, “Fuel consumption shall be the lowest on
the market” and “The car must be bullet proof”. These Requirements are likely
in conflict. While the examples are straightforward, in practice this conclusion
is less trivial. This is why different Models are needed. Simulation modelling or
virtual prototyping allows us to verify the consistency of the Requirements in
view of the available technology (found back as parameters of the model). For
example, the designer will have to make trade-offs between either a fuel-efficient
and light car, either a powerful and light car but with a higher fuel consumption
or a very safe but heavy and fuel-inefficient car. Similarly, when using formal
models we use them to verify critical properties. Often there is a relationship

102 E. Verhulst and B.H.C. Sputh

between being able to prove such properties and the complexity, read: architec-
ture, of the System. For example if safety properties can’t be proven, often the
System will need to be restructured and simplified.

3.7 State Transitions and Process Flow

The dependency chains identified earlier seem to indicate that a Project always
proceeds top-down, from Requirements till implementation. When taken literally
(like in the waterfall process model), this cannot work because as we have seen
that Requirement statements do not necessarily form a coherent set and at least
some modelling will be needed to weed out overlapping or to make the trade-off
decisions. In practice, some Entities will already exist or have been selected (e.g.
when using COTS) and the dependency link is created later on. The way to
introduce iterative processes is by assigning a “state” to the Project entities and
combining them with the dependency relationships. Typically a Project entity
will be created and becomes “Defined”. At some point in time it will become
“In Work” and when it has been properly worked on, it can become “Frozen
for Approval”. Following a subsequent review, it can then become “Approved”.
More subtler states can be defined but we illustrate the principle using the main
ones.

The state “Approved” can only be reached if we follow the dependency chain
in the reverse order. An entity can only be approved if the preceding entities in
the chain have been approved. If any of them is not, or loses that status, e.g.
because of an approved Issue or Change Request, all depending entities loose
that status as well. The result is that we have for each Work Product (that
includes Models) a separate iterative flow, even if the overall Process flow is
following a V-model, illustrated in Fig. 2. The order doesn’t come from having
predefined a temporal partial order between the Work Packages but from the
precedence-dependency chains. Nothing prevents us from starting to work on
all entities concurrently. The only order that is imposed is the order in which
entities can be approved.

4 Unified SE vs. Domain Specific Engineering

Another aspect that is worth highlighting is that the unified Process flow and
meta-model we described is not specific to a particular domain. The reasoning
applies to business processes, which can be classified as social engineering pro-
cesses, as well as to technical engineering processes. In all cases, once we have
agreed on what we need, we can define what will meet the needs and how we
will reach that goal.

In the industry, much attention goes to supporting the development of safety
critical systems and as such safety standards often define for each domain which
process to follow. Each of them also has it own terminology. By introducing the
generic meta-model (actually a meta-meta-model) we can cater for the different
domains by defining subtypes. We illustrate this by analysing Requirements.

An Unified Meta-model for Trustworthy Systems Engineering 103

Fig. 2. The overall V-Model Process Flow of GoedelWorks

Requirements are often obtained by defining “use cases”, often descriptions of
scenarios that highlight some operational aspect of the system. We subtype a
Requirement into three classes, i.e. the “normal case”, the “test case” and the
“fault case”, as refinements of the generic “use case”. These are defined as follows:

– Normal case: This related to a Requirement that covers the normally ex-
pected behaviour or properties.

– Test case: This relates to a Requirement that covers a mode in which the
system is “tested”. Test cases do not modify the “normal case” Requirements
but have an impact on the architectural design.

– Fault case: This relates to a Requirement whereby faults in the system are
considered. Faults are defined as occurrences whereby some components no
longer meet their “normal case” Specifications (derived from “normal case”
Requirements). Safety engineering then prescribes what we expect of the
System when these occur. Hence we can consider a “safety case” as a subtype
of a “fault case”.

The approach whereby we start from a higher level more abstract meta-model
allows us also to e.g. consider security aspects as a fault case. We can say that e.g.
a security case is a fault case whereby the fault is maliciously injected versus a
safety case whereby the fault is often physical in origin. This allows us to reuse a
safety engineering approach (for which documented standards exist) to a security
engineering approach (for which documented standards are often lacking).

4.1 GoedelWorks as a Supporting Environment

While the unifoied SE approach this paper presents, provides us with a coherent
framework, it’s applicability can only be validated by applying it to a real project

104 E. Verhulst and B.H.C. Sputh

whereby we have the issue that real projects very rapidly generate 1000’s of
entities. In addition we were of the opinion that such an environment needed to
support distributed multi-user project teams.

Therefore, first prototype environments were build, leading to early versions
called OpenSpecs and OpenCookBook [5]. They allowed to refine the system
grammar further, execute small test projects, but most importantly to find a
suitable web based implementation. The latter was not so trivial as the com-
plexity of a project database is rather high (largely due to the various links
between the entities) and because of the ergonomic needs.

The final implementation in GoedelWorks was therefore entirely based on a
client-server architecture using a browser as client and a database server. Addi-
tional requirements mostly relate to the useability:

– International multi-user support with entity specific access rights;
– Security and privacy of the project data;
– Capability to define, modify import and export processes and projects;
– Manage process and project entities following the system grammar;
– Change and entity state management;
– Queries and dependency analysis;
– Creating “snapshot” documents (in HTML or PDF format);
– Resource and Task planning.

Without going into detail, such an environment acts as a unique and central
repository for Processes and Projects, facilitating concurrent team work and
communication from early Requirements capturing till implementation.

4.2 Importing the ASIL Automotive Centered Safety Integrity
Level Process Flow

While in principle GoedelWorks can support any type of Project and Process,
its meta-model was tuned for Systems engineering Projects with a particular
emphasis on safety critical Processes and certification, hence the importance of
traceability links. Organizations can add and develop their own Processes as
well.

To validate the approach an existing safety engineering process was imported,
called ASIL. It is a Process based on several safety engineering standards, but
with a focus on the automotive and machinery domain. It was developed by
a consortium of Flanders Drive [7] members and combines elements from IEC
61508, IEC 62061, ISO DIS 26262, ISO 13849, ISO DIS 25119, ISO 15998, CMMI
and Automotive Spice. These were obtained by dissecting the standards in semi-
atomic Requirement statements and combining them in a iterative V-Model
Process. It was enhanced with templates for the Work Products and domain
specific guidelines.

In total the ASIL Process identified about 3800 semi-atomic Requirement
statements and about 100 Process Work Products. Also 3 Process domains were
identified (Organizational Processes. Safety engineering and development Pro-
cesses, Supportive Processes. More details can be found in [4].

An Unified Meta-model for Trustworthy Systems Engineering 105

The imported ASIL still needs to be completed to create an organization or
Project specific Process. It is also likely that organization specific Processes will
need to be added. As each Entity in GoedelWorks can be edited, this is directly
possible on a GoedelWorks portal. Without going into details, the import of
ASIL proved that the meta-model approach works and is consistent. For the
interested reader, we refer to a generic description of the ASIL process flow in
the reference document [4].

5 Conclusions

This paper presented a unified meta-model to develop and execute System Engi-
neering Processes and Projects. SE was formalized through the use of a unifying
paradigm based on the observation that systems, including a process, can be
described at an abstract level as a set of interactions and entities. A second ob-
servation is that a key problem in SE is the divergence in terminology, hence the
use of unified semantics by defining a univoque and orthogonal set of concepts.
GoedelWorks as a practical implementation of a supporting environment was
developed. It was validated by importing a generic automotive focused process
flow.

References

1. Object Management Group: UML, http://www.uml.org/
2. OMG Systems Modeling Language, http://www.omgsysml.org/
3. Verhulst, E., Boute, R.T., Faria, J.M.S., Sputh, B.H.C., Mezhuyev, V.: Formal De-

velopment of a Network-Centric RTOS. Software Engineering for Reliable Embedded
Systems. Springer, Amsterdam (2011)

4. Trustworthy Systems Engineering with GoedelWorks. Booklet published by Altre-
onic NV (January 2012),
http://www.altreonic.com/sites/default/files/Systems

%20Engineering%20with%20GoedelWorks.pdf

5. Mezhuyev, V., Sputh, B., Verhulst, E.: Interacting entities modelling methodology
for robust systems design. In: 2010 Second International Conference on Advances
in System Testing and Validation Lifecycle (VALID), pp. 75–80 (August 2010)

6. Espinoza, H., Ruiz, A., Sabetzadeh, M., Panaroni, P.: Challenges for an open and
evolutionary approach to safety assurance and certification of safety-critical sys-
tems. In: 2011 First International Workshop on Software Certification (WoSoCER),
November 29-December 2, pp. 1–6 (2011)

7. Automotive Safety Integrity Level Public Results (2011),
http://www.flandersdrive.be/ js/plugin/ckfinder/userfiles/files/

ASIL%20public%20presentation.pdf

8. Software Considerations in Airborne Systems and Equipment Certification (2012),
http://en.wikipedia.org/wiki/DO-178C

9. Automotive functional safety (2012), http://en.wikipedia.org/wiki/ISO_26262

http://www.uml.org/
http://www.omgsysml.org/
http://www.altreonic.com/sites/default/files/Systems%20Engineering%20with%20GoedelWorks.pdf
http://www.altreonic.com/sites/default/files/Systems%20Engineering%20with%20GoedelWorks.pdf
http://www.flandersdrive.be/_js/plugin/ckfinder/userfiles/files/ASIL%20public%20presentation.pdf
http://www.flandersdrive.be/_js/plugin/ckfinder/userfiles/files/ASIL%20public%20presentation.pdf
http://en.wikipedia.org/wiki/DO-178C
http://en.wikipedia.org/wiki/ISO_26262

A Preliminary Fault Injection Framework

for Evaluating Multicore Systems

Anna Lanzaro1, Antonio Pecchia1, Marcello Cinque1, Domenico Cotroneo1,
Ricardo Barbosa2, and Nuno Silva2

1 Dipartimento di Informatica e Sistemistica
Universitá degli Studi di Napoli Federico II

Via Claudio 21, 80125, Naples, Italy
2 ASD-T Aeronautics, Space, Defense and Transportation

Critical Software SA
Parque Industrial de Taveiro, Lt 48, Coimbra, Portugal

{anna.lanzaro,antonio.pecchia,macinque,cotroneo}@unina.it,
{rbarbosa,nsilva}@criticalsoftware.com

Abstract. Multicore processors are becoming more and more attractive
in embedded and safety-critical domains because they allow increasing
the performance by ensuring reduced power consumption. However, mov-
ing to multicore systems raises novel dependability challenges: the num-
ber of cores, concurrency issues, shared resources and interconnections
among cores make it hard to develop and validate software deployed on
the top of multicore processors.

This paper discusses a preliminary fault injection framework, which
aims to investigate dependability properties of multicore-based systems.
The proposed framework leverages the error reporting architecture pro-
vided by modern processors and has been instantiated in the context of
the Intel Core i7 processor. Fault injection campaigns have been con-
ducted under the Linux OS to show the benefits of the framework.

Keywords: Dependability, Multicore, Fault Injection, Machine Check
Error, Intel Core i7.

1 Introduction

High performance, reduced size and weight, and power efficiency are key features
that make multicore processors desirable for several industrial domains. Re-
cent market trends indicate that safety-critical and embedded system domains,
such as avionic [4], [3], automotive [1], [2] and medical [5], are moving towards
multicore-based solutions. Even of more relevance, the adoption of multicore can
support achieving safety requirements imposed by standards (e.g., ISO-26262,
IEC-61508, and DO-178B) because it makes it possible running independent
tasks on each core so to ensure properties such as, space and temporal isola-
tion. Furthermore, the inherent presence of replicated cores allows implement-
ing fault-tolerant solutions by means of virtualization [8]. Overall these features

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 106–116, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Preliminary Fault Injection Framework for Evaluating Multicore Systems 107

exacerbate the need for strategies to evaluate dependability characteristics of
multicore systems.

Modern processors, e.g., Intel, AMD, ARM, IBM, Freescale, incorporate
hardware-implemented detection and fine-grained error-reporting architec-
ture to notify problems affecting processor units, such as memory and caches
hierarchy, TLB, bus. These mechanisms produce precise notifications and con-
text information about the errors reported by the hardware, which are valuable
to the software components running on the top of the processor. Among them,
software addressing recovery and isolation capability plays a key role in the de-
velopment of multicore systems due to the complexity introduced by the number
of cores, concurrency issues, shared resources and interconnections among cores.
Evaluating the overall system behavior under errors is crucial and requires spe-
cific methodologies in the context of multicore systems.

This paper proposes a preliminary fault injection framework to support
dependability evaluation of multicore systems. The key idea underlying the
framework is emulating machine check errors, i.e., errors occurring when
the processor detects problems affecting hardware components. Emulation is ac-
complished by writing into the registers of the error reporting architecture of the
processor rather than physically interfering with the actual hardware units. In
this way, the approach allows performing low-cost and controllable fault injec-
tion campaigns. The proposed framework has been instantiated in the context
of the Intel Core i7 processor. Explorative fault injection campaigns have been
conducted under the Linux OS to validate and to show the benefits of the frame-
work.

The rest of the paper is organized as follows. Section 2 introduces related work
in the area of fault injection. Section 3 discusses the framework and design chal-
lenges concerning its functional components. Section 4 introduces the reference
processor adopted in the study. Section 5 describes a preliminary implementa-
tion of the fault injection framework and results obtained in the context of the
Linux OS. Section 6 concludes the work and indicates future research directions.

2 Related Work

Fault injection is a well-established technique for dependability evaluation of
systems in both industry and academia. It allows introducing faults into a given
system with the aim of observing its dependability behavior and assessing fault
tolerant mechanisms. More important, fault injection is currently recommended,
if not mandatory, and regulated by many international standards, to support
the system validation and certification process and to develop robust software.
For example, fault injection is an important constituent of the ISO 26262 [10]
standard to supplement software unit and integration testing.

Several fault injection techniques were proposed in order to inject hard-
ware faults. Hardware-based fault injection techniques insert into the system
real hardware errors by means of special-purpose and architecture-dependent
equipment or by interfering with the physical unit (e.g., by lowering the de-
vice voltage, increasing the temperature, radiations introducing electromagnetic

108 A. Lanzaro et al.

interferences) [9], [11]. This approach has the advantage of reproducing real hard-
ware faults, but it is costly and risky to implement. Moreover, it makes it hard
the observation of the effect of the faults in the processor because of the interfer-
ences caused by the injectors. For these reasons, software-implemented fault
injection (SWIFI) techniques, which are closer to our work, have gained popu-
larity. SWIFI consists of reproducing via software the effects of hardware errors.
The injection can be performed at compile time inserting the effects of hardware
errors in the target code or at run time using time-out, exceptions or code in-
sertion to trigger the fault injection. Tools implementing SWIFI technique are
[12] [13], [14], [15].

The use of fault injection techniques for the assessment of multicore sys-
tems is still recent. Appropriate fault models encompassing faults that were
not a concern in single-core architectures (e.g., adopting SWIFI technique, the
execution of additional software for the injection could affect the scheduling of
the system tasks impacting real-time requirements) are required to guarantee
effective and low cost fault injection campaigns. Challenges in tolerating faults
in parallel execution on multicore systems are discussed in [6]. In [16], mSWAT
is presented. It is a detection and diagnosis technique for permanent and tran-
sient hardware faults in multicore architectures running multithreaded software.
The authors adopt fault injection by simulation in order to validate the detec-
tion mechanisms. However, assuming that at most one core is faulty, the fault
model encompasses only in-core faults and not faults that can occur in I/O con-
troller, memory sub-system, etc. In both [18] and [7] a simulation-based fault
injection analysis for multicore is presented. In [17] the use of NFTAPE tool for
the evaluation of operating system behavior running on multicore processor is
proposed. In [20], the authors describe a method for predicting failures based on
the monitoring of the execution units in a Quad-core Intel processor.

3 Proposed Framework

Machine check errors (MCE) indicate the occurrence of problems affecting hard-
ware units of the processor. Modern processors usually notify MCEs by means
of an error-reporting architecture (exemplified in Fig. 1) composed by a set of
global and per-core registers. The idea underlying our proposal is emulating
the occurrence of MCEs by writing into the registers of the error-reporting
architecture rather interfering with the device, such as in the mentioned hard-
ware fault injection approaches. The knowledge about MCEs and error codes
reported by the processor during the execution is inferred from the documenta-
tion provided by the manufacturer of the processor [19]. Modifying the registers
of the error-reporting architecture allows implementing a low-cost and control-
lable fault injection framework.

Fig. 1 shows the functional components of the framework implementing the
injection approach. The system under test is composed by the multicore proces-
sor and a target workload. The latter could be an operating system, software
for embedded systems, or a virtualization-based solution, and represents the soft-
ware whose robustness is assessed under the occurrence of MCEs. The role of

A Preliminary Fault Injection Framework for Evaluating Multicore Systems 109

Fig. 1. Proposed fault injection framework

the remaining components depicted in Fig. 1 is described in the following along
with relevant design challenges:

• MCE generator is the entity that automates the generation of the faultload,
i.e., the set of MCEs that will be injected in the target system during the
campaign. It should be noted that the number of combinations representing
all the possible error codes reported by the processor is extremely large.
The faultload generation should be optimized with criteria aiming to narrow
down the number of experiments. For examples, experiments might focus on
a given hardware unit or specific border values assigned to the error-reporting
registers of the processor.

• Injector is the component responsible for injecting MCEs into the error-
reporting architecture of the target processor, as shown in Fig. 1. The injector
should not distort the actual behavior of the system under test. For this
reason, if injection is accomplished via a software module, isolation between
the injector and the injection target can be achieved by running them on
different cores. A better solution is represented by the use of specialized
hardware supports, such as a debugger; however, this might not always be
available to analysts and requires additional costs. Even of more relevance,
injector must address spatial and timing features of the experiment.

• Monitor is responsible for collecting data concerning the fault-injection
outcomes. Data might include notifications reported in the system log, out-
put produced by the target workload, or state variables. Monitor should cope
with data loss caused by experiments leading to critical system failures, such
as reboot or panic. Again, monitoring and data collection features should not
impact the behavior of the target system.

• Controller is the entity responsible for iterating fault injection experi-
ments and coordinating the described components. For each experiment
it activates/deactivates the injector module, and stores monitoring data.
Moreover, controller should ensure that the workload is actually running at
the time injection is performed. To this objective, controller might leverage

110 A. Lanzaro et al.

Fig. 2. Intel Core i7 architectural block diagram

operating system support (e.g., Linux OS get/set CPU affinity mask) to cope
with processes scheduling issues.

4 Case Study

The multicore processor targeted by the study is the Intel Core i7 2670QM [21].
Fig. 2 shows a simplified block diagram of the architecture. It is a distributed
shared memory system consisting of 4 physical cores integrated on the same
chip. Cores are connected by a point-to-point and high-speed communication link
(Quick Path Interconnect). Each core appears to software as two logical cores
by means of the Hyper Threading Technology (e.g. Intel’s implementation of
Simultaneous Multi-Threading). Moreover, the processor introduces several new
features (e.g., integrated memory controller for each core, a memory hierarchy
with 3 caches levels) that assure high performance and power efficiency.

The processor provides a sophisticated error-reporting architecture calledMa-
chine Check Architecture (MCA). The MCA is composed by a set of registers
(Machine Specific Register - MSR) for reporting errors detected by hardware
components, such as memory, caches, and buses. As shown in the Fig. 3, the
MCA consists of 9 banks of registers replicated for each core and associated
to specific hardware units. Each bank is composed by 5 registers for reporting
hardware errors: two control registers (MCi CTL and MCi CTL2), a status register
(MCi STATUS), an address register (MCi ADDR), and a miscellaneous error infor-
mation register (MCi MISC). By means of the bank of registers, the MCA notifies
different category of errors:

• uncorrected errors (UC): errors not corrected by the processor;
• uncorrected recoverable errors (UCR): errors not corrected by the pro-
cessor and for which system software can attempt recovery actions. In par-
ticular, the recovery actions can be required (SRAR), optional (SRAO) or
not required (UCNA).

• corrected errors (CE): errors corrected by the processor without impacting
running processes.

Additional information about the type of errors affecting hardware units of the
processor is available in the first 16 bits of the status register (again, MCi STATUS).

A Preliminary Fault Injection Framework for Evaluating Multicore Systems 111

Fig. 3. Machine Check Architecture

Details about the error codes adopted in the study are reported in the Table 1,
which has been taken from the processor documentation. This information sup-
ported the definition of realistic fault model for the target processor. Moreover,
3 global registers are provided by the processor: MCG CAP, MCG STATUS and
MCG CTL registers. In the context of our work, we considered the MCG CAP reg-
ister, which gives information about the capabilities of the MCA available in
the processor (e.g., bit SER P of such register indicates if the processor supports
recovery actions) and MCG STATUS register, which reports the status of the pro-
cessor at the time a MCE occurs.

Table 1. Status Register [15:0]

Type Format*
Generic Cache hierarchy 0001 0000 0000 11LL
TLB 0001 0000 0001 TTLL
Memory controller 0001 1MMM 11LL CCCC
Cache hierarchy 0001 0001 RRRR TTLL
Bus and interconnections 0001 1PPT RRRR IILL
*TT - Type of transaction

LL - Level in the memory hierarchy

RRRR - Type of action associated with the error

MMM and CCCC - Memory transaction type and Channel

PP and T - Partecipation and Timeout

II - Memory or I/O

112 A. Lanzaro et al.

(a) Machine check error (b) Linux severity levels

Fig. 4. MCE description file and severity levels

5 Preliminary Application

A preliminary implementation of the framework described in Section 3 has been
developed under the Linux OS. Implementation has been used to conduct ex-
plorative fault-injection campaigns to validate the proposed approach in a real
testbed adopting the Intel i7 processor.

In the proposed implementation the injector consists of mce-inject [22],
which is a well-known tool in Intel/Linux community. Each MCE is represented
by a textual description providing information about the location (i.e., cpu and
bank number) where theMCEwill be injected and values assigned to MCG STATUS,
MCi STATUS, MCi ADDR, and MCi MISC registers of the MCA architecture. Fig. 4a
provides an example of MCE to be injected in the bank 8 of the cpu 2. It emu-
lates an uncorrected error affecting data of L2 cache during the snoop protocol
by means of the error code 0x0186 that will be written in the status register. A
bash script has been implemented to automatically generate the faultload, i.e., the
set of MCEs that are injected during a campaign. Given the textual description,
mce-inject sets the values of the registers of the MCA by means of a specific kernel
module of the Linux OS.

The workload is represented by the Linux OS (kernel version 3.1.10) run-
ning on the top of the Intel i7 processor. Preliminary experiments aim to explore
the Linux error-handling capabilities initiated by the do machine check proce-
dure. This is the OS exception handler that is actually triggered when a real
machine check occurs (interrupt 18 in the case of Intel processors). For each
MCE-injection experiment, the monitor component collects the error severity
determined by the kernel as a result of the injected MCE and the recovery ac-
tion triggered by the kernel based on the severity level. Values assumed by the
severity parameter under the Linux OS are reported in Fig. 4b.

5.1 Campaign #1

The faultload of the first campaign consists of 4,096 MCEs. It emulates cache,
memory controller, and TLB errors by changing the bits of the status registers
according to the codes reported in Table 1. The set of emulated errors contains
uncorrected recoverable errors (UCR), uncorrected recoverable errors with action

A Preliminary Fault Injection Framework for Evaluating Multicore Systems 113

(a) Severity (b) Recovery actions

Fig. 5. SER P=0: recovery actions not supported by the processor

(a) Severity (b) Recovery actions

Fig. 6. SER P=1: recovery actions supported by the processor

required (SRAR), optional (SRAO) or not required (UCNA). Moreover, the same
faultload has been injected into two different scenarios, i.e., (i) with the processor
not supporting recovery actions (i.e., the bit SER P is clean); (ii) with processor
supporting recovery by software (i.e., the bit SER P is set).

Fig.5a and Fig.5b show the MCEs severities and related recovery actions
provided by the Linux OS, when the bit SER P is clean. All the errors have
classified as uncorrectable; however, this set of experiments did not cause the
triggering of any specific a recovery action.

The same set of 4,096 errors has been emulated with the bit SER P set.
Experiments made it possible to highlight a rather different behavior of the error
handling mechanism indicated by Fig. 6a and Fig. 6b, respectively. Fig. 6a shows
the severity levels. The 50% of the injected MCEs is classified as PANIC: as a
result, the injection of this subset of errors actually caused the panic of the
machine, such as reported in Fig. 6b. Errors causing SOME and AO severities
represent total 24% and the 0.8%, respectively. These errors did not trigger
any specific action of the handler. Only 2 error codes affecting the cache unit,
i.e., 0x0134 - data load error and 0x0150 - instruction fetch error were actually
recognized by the handler, i.e., AR severity, and caused the 2 process kills shown
in Fig. 6b.

More important, experiments revealed a possible bug in the code that deter-
mines the error severity (Fig.6a). Around 25% of experiments caused a spurious
severity value, i.e., a numeric value that is not a severity level according to Fig.
4b. Spurious values prevent to correctly determine the severity of errors leading

114 A. Lanzaro et al.

(a) Memory controller (b) TLB

Fig. 7. Severity and recovery actions grouped by error categories

to unexpected behaviors and were attributed by the handler to the NO PANIC
category Fig. 6b. We also observed that the kernel does not strongly differenti-
ate among errors affecting different hardware units. Fig. 7a and Fig. 7b report
the distribution of the severities observed for memory controller and TLB errors
with the bit SER P being set. In both cases, the 50% of the errors causes a
system panic regardless of the nature of the injected errors. Again, total 25% of
errors caused a spurious severity.

5.2 Campaign #2

Because of the inability of the handler to differentiate among error codes, a
further campaign has been performed to explore its recovery behavior. In this
campaign, rather than exhaustively trying different error codes, we used different
combinations of the diagnostic information provided by the MCA along with the
error notification (such as, the error is recoverable or not, an action is required
to recover from the error, the error corrupted or not the processor state, etc).

The campaign encompassed 192 MCEs injected when the bit SER P is set, i.e.,
recovery actions are supported. Results reported in Fig. 8a and 8b confirm that
the target handler mainly provides coarse-grained recovery actions, i.e., system
panic (82%) and process kill (3%). Again, the handler was not able to correctly
manage around 11% of the errors due to the presence of spurious severity values,
possibly causing an improper recovery action.

(a) Severity (b) Recovery actions

Fig. 8. Severity and recovery action for Campaign #2

A Preliminary Fault Injection Framework for Evaluating Multicore Systems 115

6 Conclusion

This paper proposed a fault injection framework developed for supporting de-
pendability analysis of multicore systems. The approach leverages the notion of
machine check error and the error-report mechanism implemented by modern
processors. So far, fault injection campaigns have been conducted to test the
functionalities of the framework under the Linux OS running on the top of the
Intel i7 processor.

In the future, we will improve the framework by addressing the emulation of
simultaneous errors affecting different cores, burst of errors, errors propagation
among cores. The framework will be used to validate error handling of differ-
ent operating systems, to analyze fault-tolerant mechanisms implemented across
cores, to assess the resiliency of a given system under errors, and to benchmark
the dependability behavior of different solutions adopting multicore.

Acknowledgment. This work has been supported by the European project
CRITICAL Software Technology for an Evolutionary Partnership (CRITICAL
STEP, http://www.critical-step.eu),Marie Curie Industry-Academia Part-
nerships and Pathways (IAPP) number 230672, in the context of the EU Seventh
Framework Programme (FP7).

References

1. Aussaguès, C., Chabrol, D., David, V.: PharOS, a multicore OS ready for safety-
related automotive systems: results and future prospects. In: Software and Systems,
pp. 1–10 (2010)

2. Navet, N., Monot, A., Bavoux, B.: Multi-source and multicore automotive
ECUs-OS protection mechanisms and scheduling, vol. 2010 (2010)

3. Agrou, H., Sainrat, P., Gatti, M.: A design approach for predictable and efficient
multi-core processor for avionics. Digital Avionics (2011)

4. Kinnan, L.: Use of multicore processors in avionics systems and its potential impact
on implementation and certification. In: Avionics Systems Conference, DASC 2009
(2009)

5. Zhu, Y.: Medical Image Viewing on Multicore Platforms Using Parallel Computing
Patterns. IT Professional 12(2), 33–41 (2010)

6. Mushtaq, H., Al-Ars, Z., Bertels, K.: Survey of fault tolerance techniques for shared
memory multicore/multiprocessor systems. In: 2011 IEEE 6th International Design
and Test Workshop (IDT), pp. 12–17 (December 2011)

7. Lee, D., Na, J.: A Novel Simulation Fault Injection Method for Dependability
Analysis. IEEE Design & Test of Computers 26(6), 50–61 (2009)

8. Leveraging virtualization in Aerospace and Defense applications, Radisys white
paper (November 2011)

9. Madeira, H., Rela, M., Moreira, F., Silva, J.G.: RIFLE: A General Purpose Pin-
Level Fault Injector. In: Echtle, K., Powell, D.R., Hammer, D. (eds.) EDCC 1994.
LNCS, vol. 852, pp. 199–216. Springer, Heidelberg (1994)

10. International Organization for Standardization. Product Development: Software
Level. ISO/DIS 26262-6 (2009)

116 A. Lanzaro et al.

11. Gunneflo, U., Karlsson, J., Torin, J.: Evaluation of Error Detection Schemes Using
Fault Injection by Heavy Radiation. In: Proceedings of the Fault Tolerant Com-
puting Symposium - FTCS-19, pp. 340–347 (1989)

12. Segall, Z., Vrsalovic, D., Siewiorek, D., Kownacki, J., Barton, J., Dancey, R., Robin-
son, A., Lin, T.: FIAT - Fault Injection Based Automated Testing Environment. In:
Proceedings of the 18th IEEE International Symposium on Fault Tolerant Com-
puting - FTCS 1988, pp. 102–107 (1988)

13. Kanawati, G.A., Kanawati, N.A., Abraham, J.A.: FERRARI: A Tool for the Val-
idation of System Dependability Properties. In: Proceedings of the 22nd IEEE In-
ternational Fault Tolerant Computing Symposium, FTCS-22, pp. 336–344 (1992)

14. Kao, W.-L., Iyer, R.K., Tang, D.: FINE: A Fault Injection and Monitoring Envi-
ronment for Tracing the UNIX System Behavior under Faults. IEEE Transactions
on Software Engineering 19, 1105–1118 (1993)

15. Carreira, J., Madeira, H., Silva, J.G.: Xception: Software Fault Injection and Mon-
itorintg in Processor Functional Units. IEEE Transactions on Software Engineer-
ing 24 (1998)

16. Hari, S.K.S., Li, M.-L., Ramachandran, P., Choi, B., Adve, S.V.: mSWAT: Low-
Cost Hardware Fault Detection and Diagnosis for Multicore Systems. In: MICRO
2009, New York (December 2009)

17. Jacques-Silva, G., Kalbarczyk, Z., Iyer, R.K.: Dependability Assessment of Oper-
ating Systems in Multi-core Architectures. In: Fast Abstract in the 38th Int. Symp.
on Dependable Systems and Networks, Anchorage, Alaska (June 2008)

18. Faraji, I., Didehban, M., Zarandi, H.R.: Analysis of Transient Faults on a
MIPS-Based Dual-Core Processor. In: Int. Conf. on Availability, Reliability, and
Security - ARES 2010, Krakow, Poland (2010)

19. Lanzaro, A., Cotroneo, D., Duraes, J., Silva, N., Barbosa, R.: Multicore Systems:
Challenges for creating a representative fault model for fault injection. In: DASIA
Int’l Space System Engineering Conference, Dubrovnik, Croatia (May 2012)

20. Salfner, F., Troger, P., Tschirpke, S.: Cross-Core Event Monitoring for Processor
Failure Prediction. In: Int. Conf. on High Performance Computing & Simulation,
HPCS 2009, Leipzig, Germany (2009)

21. Intel 64 and IA-32 Architectures Software Developer’s Manual vol. 3: System Pro-
gramming Guide, http://www.intel.com/

22. Kleen, A.: Machine check handling on Linux. SUSE Labs (August 2004)

http://www.intel.com/

Meeting Real-Time Requirements

with Multi-core Processors

Daniel Kästner, Marc Schlickling, Markus Pister, Christoph Cullmann,
Gernot Gebhard, Reinhold Heckmann, and Christian Ferdinand

AbsInt GmbH, Science Park 1, D-66123 Saarbrücken, Germany

Abstract. Many multi-core processors exhibit characteristics that make
it difficult or even impossible to use them in safety-critical real-time sys-
tems. To prevent sporadic failures and late-stage integration problems,
the hardware properties of the processor and its peripherals have to be
checked for their real-time capability at an early project stage. Selecting
a configuration which enables predictable performance is an important
requirement to achieve compliance with current safety standards, e.g.,
ISO-26262, IEC-61508, EN-50128, or DO-178B.

For timing-predictable hardware configurations safe worst-case execu-
tion time bounds can be computed by static analysis tools. Combined
with scheduling analysis at the system level the correct end-to-end timing
can be guaranteed. This article gives an overview of hardware features
leading to predictability problems, shows examples of predictability-
oriented multi-core configurations, and describes a tool-based methodol-
ogy to ensure the correct timing behavior.

1 Introduction

In recent years multi-core processing has evolved to be the predominant hardware
paradigm for desktop computers. Performing parallel computations by several
cores per chip makes it possible to significantly accelerate systems consisting of
multiple independent threads. Moreover compared to single-core processors the
lower clock rates contribute to a better energy efficiency of multi-core processors.
Also in embedded systems multi-core processors are increasingly used – a trend
facilitated by availability considerations and a significant price drop.

Whereas for desktop applications the predominant goal is to achieve a high av-
erage performance, safety-critical embedded systems impose other requirements.
A real-time system not only has to be logically correct, it must also exhibit the
correct timing behavior. A real-time task missing its deadline can cause severe
damage. In order to show that a task always terminates before its deadline its
worst-case execution time (WCET) has to be known. In multi-tasking systems
tasks can be preempted or blocked. This is considered in the worst-case re-
sponse time of the task (WCRT) which is computed from the WCET and the
time penalties due to preemptions or task blocking.

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 117–131, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

118 D. Kästner et al.

With direct timing measurements by using logic analyzers, debuggers, or hard-
ware simulators timing information is only determined for one concrete input.
However, usually no full test coverage can be achieved and there is no safe test
end criterion. With modern processors the timing behavior of an instruction
depends on the instructions previously executed, e.g., due to cache or pipeline
effects. In consequence even MC/DC coverage is not enough to determine WCET
information since different execution paths cannot be distinguished and there is
no control which paths have been covered. Techniques based on code instrumen-
tation modify the code which can significantly change the cache behavior. The
times measured for the instrumented software do not necessarily correspond to
the timing behavior of the original software at all.

A safe method for timing analysis is static analysis by Abstract Interpretation
which provides guaranteed upper bounds for the WCET of tasks [19]. Static anal-
ysis based on Abstract Interpretation is recommended by many safety standards
and can be considered as the state-of-the-art for verifying non-functional pro-
gram properties. Combined with a system-level scheduling analysis guaranteed
upper bounds for the WCRT can be derived. Static analysis tools for computing
WCET and WCRT are in industrial use, like AbsInt’s aiT WCET Analyzer [17]
and Symtavision’s scheduling analyzer SymTA/S [8]. Dedicated tool couplings
enable a seamless timing analysis from code to system level [11].

Static WCET analyzers are available for complex processors and yield precise
results. However, a basic requirement is that the timing behavior of the processor
is predictable: it must be possible to determine an upper bound of the maximal
execution time which is guaranteed to hold. Additionally the behavioral variance,
i.e., the influence of processor state or execution history on the execution time
should be as low as possible.

In general, the main obstacle to predictable performance is resource sharing.
Even in single-core processors accesses to shared resources by concurrent tasks
can cause interferences since the ordering of accesses can vary significantly. With
speculative hardware mechanisms like caches, out-of-order pipelining, or branch
prediction predictability degrades.

On multi-core processors not only the interferences within each core have to
be considered. Now there may be additional interferences due to concurrent ac-
cesses to shared resources by different applications executed on different cores.
Existing multi-cores typically have not been developed with the goal of achieving
predictable performance unless configured for lockstep execution. Interferences
may be caused by accesses to common caches, common memory banks, or com-
mon flash memory prefetch buffers. Since different applications usually are only
combined in the integration phase there is the risk of severe timing problems
detected very late in the development process.

For a given multi-core architecture interferences have to be carefully exam-
ined. Then a configuration can be determined which enables or facilitates pre-
dictable performance. Developing multi-core processors with predictable timing
is an active area of research (cf. the research projects PREDATOR, MERASA,
CERTAINTY, or T-CREST).

Meeting Real-Time Requirements with Multi-core Processors 119

This article gives an overview of predictability challenges when using multi-
core architectures for applications with real-time constraints. Whereas [4] focuses
on the consequences of hardware features for static timing analysis this article
discusses the requirements of current safety standards and provides guidelines
for predictable hardware designs and configurations. Experiments are reported
which demonstrate the timing variance on multi-core architectures induced by
interferences between different cores.

2 Requirements of Safety Standards

All current safety standards, including DO-178B [14], DO-178C, IEC-61508 [9],
ISO-26262 [10], or EN-50128 [2], require the WCET and the WCRT of real-time
tasks to be known. Task interferences both in the spatial and temporal domain
have to be addressed. In mixed-criticality applications the entire software is sub-
ject to the highest criticality level used unless spatial and temporal independence
of all safety functions can be demonstrated. This has significant consequences for
hardware selection and system configuration: it has to be ensured that there are
no unpredictable timing-related interferences that might affect real-time safety
functions. Cache-related preemption costs, pipeline effects, and timing anoma-
lies have to be taken into account. For multi-core processors it has to be shown
that there are no inherent timing interferences between the cores. The latter as-
pect is especially important for standardized development frameworks focusing
on integrating components from different suppliers on Electronic Control Units
(ECUs). Examples are IMA in the avionics and AUTOSAR in the automotive
domain.

From a methodological perspective, all safety standards discuss the limitations
of dynamic tests and measurements methods. According to the DO-178B for
verification testing alone is not enough since testing cannot show the absence of
errors. The ISO-26262 points out typical limitations of dynamic testing: it has
to be shown that sufficient coverage has been achieved and it has to be argued
that code modification and instrumentation does not affect the test results. IEC-
61508 and EN-50128 take similar positions. In general, the standards recommend
to use static techniques to determine safe upper bounds on the WCET.

3 Static Timing Analysis

Static program analyzers compute information about the software under analysis
without actually executing it. Semantics-based static analyzers use an explicit (or
implicit) program semantics that is a formal (or informal) model of the program
executions in all possible or a set of possible execution environments. In general,
the state space of input data and initial states is too large to exhaustively explore
all possible executions for determining the exact worst-case execution times. The
theory of abstract interpretation [3] offers a semantics-based methodology for
static program analyses where the concrete semantics is mapped to a simpler
abstract model, the so-called abstract semantics. The static analysis is computed

120 D. Kästner et al.

with respect to that abstract semantics. Compared to an analysis of the concrete
semantics, the analysis result may be less precise, i.e., overestimate the exact
WCET, but the computation may be significantly faster. This means that upper
bounds for the execution times of basic blocks are determined, from which upper
bounds for the whole system’s execution time are derived. The most important
characteristics of static analyzers is whether they are sound or unsound. A static
analyzer is called sound if the computed results hold for any possible program
execution. The WCET bounds computed by a sound WCET analyzer will never
be exceeded by any possible program execution.

In addition to soundness, further essential requirements for static WCET an-
alyzers are efficiency and precision. The analysis time has to be acceptable for
industrial practice, and the overestimation must be small enough to be able to
prove the timing requirements to be met.

Over the last few years, a more or less standard architecture for timing analysis
tools has emerged [5, 6] which is composed of three major building blocks:

– control-flow reconstruction and static analyses for control and data flow,

– micro-architectural analysis, computing upper bounds on execution times of
basic blocks,

– path analysis, computing the longest execution paths through the whole pro-
gram.

The data flow analysis of the first block also detects infeasible paths, i.e., pro-
gram points that cannot occur in any real execution. This reduces the complex-
ity of the following micro-architectural analysis. There, basic block timings are
determined using an abstract processor model (timing model) to analyze how
instructions pass through the pipeline taking cache-hit or cache-miss informa-
tion into account. This model defines a cycle-level abstract semantics for each
instruction’s execution yielding in a certain set of final system states. After the
analysis of one instruction has been finished, these states are used as start states
in the analysis of the successor instruction(s). Here, the timing model introduces
non-determinism that leads to multiple possible execution paths in the analyzed
program. The pipeline analysis has to examine all of these paths.

The commercially available tool aiT by AbsInt GmbH implements this archi-
tecture. The tool is successfully employed in the avionics [7, 6, 17] and automotive
[13] industries to determine precise bounds on execution times of safety-critical
software (visit http://www.absint.com/ait for more information).

4 Predictability Challenges

The notion of timing predictability encompasses two important aspects:

– It must be possible to determine an upper bound of the maximal execution
time which is guaranteed to hold. This guarantee has to be statically deter-
mined which means that the hardware architecture has to be amenable to
static analysis techniques.

http://www.absint.com/ait

Meeting Real-Time Requirements with Multi-core Processors 121

– The behavioral variance, i.e., the different states the hardware can accept,
e.g., due to different cache fillings, or internal pipeline states, should be as
low as possible. This is important for timing measurements: the larger the
behavioral variance is

• the more the execution time depends on the execution history,

• the less meaningful is a measurement in a given execution context, and

• the larger can be the gap between the largest measured execution time and
the true worst-case execution time.

In fact, both aspects are related: the higher the behavioral variance of an archi-
tecture is the more complex will be the internal state of a static WCET analyzer.
In the following we will give an overview of hardware features affecting timing
predictability, first focusing on single-core architectures, then on multi-cores.

Modern embedded processors try to maximize the instruction-level parallelism
by the implementation of specific and sophisticated performance enhancing fea-
tures. For non-pipelined architectures one can simply add up the execution times
of individual instructions to obtain a bound on the execution time of a basic
block. Pipelines increase performance by overlapping the executions of consecu-
tive instructions. Hence, a timing analysis cannot consider individual instructions
in isolation. Instead, they have to be analyzed collectively – together with their
mutual interactions – to obtain tight timing bounds.

In general, the challenges for a timing analysis of single-core architectures
originate from the complexity of the particular execution pipeline and the con-
nected hardware devices. Commonly used performance-enhancing features are
caches, static/dynamic branch prediction, speculative execution, out-of-order ex-
ecution, branch history tables, or branch target instruction caches. Many of these
hardware features can cause timing anomalies [16] which render WCET analysis
more difficult. Intuitively, a timing anomaly is a situation where the local worst-
case does not contribute to the global worst-case. For instance, a cache miss –
the local worst-case – may result in a globally shorter execution time than a
cache hit because of hardware scheduling effects. In consequence, it is not safe
to assume that the memory access causes a cache miss; instead both states have
to be taken into account. An especially difficult class of timing anomalies are
domino effects [12]: A system exhibits a domino effect if there are two hardware
states a, b s.t. the difference in execution time (of the same program starting in
a, b respectively) may be arbitrarily high. E.g., given a program loop, the execu-
tions never converge to the same hardware state and the difference in execution
time increases in each iteration. In consequence, loops have to be analyzed very
precisely and the number of machine states to track can grow high.

As the runtime of embedded control software often is dominated by load/store
operations, memory subsystems nowadays introduce queues before the caches to
buffer them and overcome stall conditions like cache misses. Often this is com-
plemented by fast data forwarding for consecutive accesses into cache lines that
have already been requested by previous pending instructions, where the re-
quested data might already be present in the core. This reduces the number of
transactions over the system bus. In the abstract model of the timing analysis,

122 D. Kästner et al.

the representation of these features has to be close to the concrete hardware to
achieve satisfactory analysis precision. Due to their size especially the dynamic
branch prediction and the branch history tables consume a mentionable number
of bits in the abstract state representation which increases the memory con-
sumption of the analysis. Unknown or not precisely known effective addresses
of memory requests further increase the timing analysis search space due to the
number of possible scenarios (cache hit/miss, fast data forward or not, . . .).

Concerning processor caches, both precision and efficiency depend on the pre-
dictability of the employed replacement policy [15, 4]. The Least-Recently-Used
(LRU) replacement policy has the best predictability properties. Employing
other policies, like Pseudo-LRU (PLRU), or First-In-First-Out (FIFO), or Ran-
dom, yield less precise WCET bounds because fewer memory accesses can be
precisely classified. Furthermore, the efficiency degrades because the analysis has
to explore more possibilities. Another deciding factor is the write policy. Typi-
cally there are two main options: write-through where a store is directly written
to the next level in the memory hierarchy, and write-back where the data is
written into the next hierarchy level if the concrete memory cell is evicted from
the cache. Here, the write-back policy is difficult to analyze because due to un-
certainties in the cache analysis, the precise occurrence of such a write-back
operation is not known, increasing the search space. This complexity multiplies
in the presence of multiple cache levels.

Another timing analysis challenge is to model processor external devices which
are typically connected with the caches over the system bus. Such devices are
memory controllers for static (SRAM, Flash) or dynamic memory (SDRAM,
DDR) or controllers for communication (CAN, FlexRay, AFDX). The corre-
sponding bus protocol and memory chip timing have to be modeled precisely.

Individually, each of the above features can be modeled without complexity
problems. Only their combination actually could result in a huge number of
possible system states during the abstract simulation of a basic block. However,
a smart configuration can decrease analysis complexity (cf. Sections 4.2 and 4.3).
Then, timing analysis is feasible even for modern and complex processors like
the Freescale MPC7448. Other space-reducing approaches like local worst-case
considerations cannot be used in general due to the presence of timing anomalies.

Some events in modern architectures are either asynchronous to program exe-
cution (e.g., interrupts, DMA) or not predictable in the model (e.g., ECC errors
in RAM, hardware exceptions). Their effect on the execution time has to be
incorporated externally, i.e., by adding penalties based on the computed WCET
and the worst-case occurrence of the events or by statistical means.

4.1 Multi-core Processors

Whereas timing analysis of single-core architectures already is quite challenging,
multi-core architectures are even more complex to predict. A multi-core proces-
sor is a single computing component with two or more independent cores; it is
called homogeneous if it includes only identical cores, otherwise it is called het-
erogeneous. Thus, all characteristic challenges from single-cores are still present

Meeting Real-Time Requirements with Multi-core Processors 123

in the multi-core design, but the multiple cores can run multiple instructions at
the same time. Some multi-core processors can be run in lockstep mode where
all cores execute the same instruction stream in parallel. This typically elimi-
nates interferences between the cores, so from a timing perspective the processor
behaves like a single-core.

When the processor is not run in lockstep mode, the inter-core parallelism
becomes relevant. To interconnect the several cores, buses, meshes, crossbars,
and also dynamically routed communication structures are used. Most multi-
core architectures offer a sophisticated memory hierarchy including private L1
caches, but also some shared caches. Access to the interconnect usually requires
an arbitration of accesses from the different cores. The shared physical address
space requires additional effort in order to guarantee a coherent system state:
Data resident in the private cache of one core may be invalid since modified
data may already exist in the private cache of another core, or data might have
already been changed in the main memory. Thus, additional communication
between different cores is required. In general, access to a shared resource might
cause the following traffic to appear on the processor’s interconnect:

A cacheable read access issued by one core

– may cause no communication in case of a cache hit,

– may initiate a read request in case of a cache miss, and

– may initiate a write access first to evict modified data from the cache.

A write access to a cacheable memory area issued by one core

– may cause no traffic in case of a cache hit,

– may cause coherency traffic in case of a cache hit to update directories of
other cores,

– may initiate a read access in case of a cache miss, and

– may initiate a write access first to evict modified data from the cache.

Hence, interconnect traffic initiated by one core in order to process an instruction
is composed of data traffic, eviction traffic, and coherency traffic.

To summarize, depending on the system configuration a single-core timing
analysis is feasible even for modern and complex systems. In general, the com-
plexity arising from the cross-product between processor pipelining features and
synchronization overhead between the different cores multiplies the search space
of the single-core case and may degrade the observable average case performance
(cf. Section 5). When all available performance-enhancing hardware features are
freely used the resulting timing bounds would prohibitively overestimate the
concrete WCET. This overestimation originates in the combination of execu-
tion paths with events that cannot happen in the real execution, but, due to
core synchronization uncertainties, cannot be statically excluded from the anal-
ysis. However, such systems would also exhibit a significant observable timing
variance which makes them unsuitable for hard real-time systems.

The next two sections now give examples for smart system configurations that
increase the predictability of WCET bounds on multi-core systems.

124 D. Kästner et al.

4.2 Configuring the MPC5668G

The Freescale MPC5668G is a dual-core processor designed for automotive ap-
plications that integrates several automotive features on a single chip, e.g., CAN
and FlexRay support. It comprises an e200z6 core and an e200z0 core, which
is a stripped-down version of the e200z6. The e200z6 core utilizes a seven-stage
pipeline for single-issue in-order execution and retirement of instructions. The z6
core uses an eight entry branch target buffer (BTB) for branch prediction. The
BTB entries are updated using the FIFO replacement algorithm. The cache is
unified, 32KB large, and 4-way (or 8-way) set-associative.

The MPC5668G offers significant leeway for configuration. To improve pre-
dictability we recommend the following:

No unified cache. The cache can be configured as a unified cache, used for
storing instructions and data, or as a disjoint cache where instructions and
data are separated. Unified caches are more challenging to analyze: If there is
a memory access whose address cannot be statically determined the analyzer
has to assume that both instruction and data cache are affected, causing a
further loss of precision. Hence the cache should be configured s.t. disjoint
ways are available for code fetches and data accesses (disjoint cache).

Cache locking. The cache uses a pseudo round-robin replacement algorithm to
determine which cache line to evict upon a miss. There is a single replacement
counter for all cache sets. This design is prone to high performance variations
and can have domino effects [1]. To avoid this, we recommend to lock the cache
down to one way for code and one way for data. The locked ways should be
filled with frequently accessed data or code. This improves the analysis results.

Disable Branch Target Buffer. The e200z6 core uses a branch target buffer
(BTB) for dynamic branch prediction, which is updated using the FIFO
replacement policy. As FIFO has domino effects, the BTB should be entirely
disabled to make the core more predictable.

No shared SRAM. In general the whole memory is shared among the two
cores. However, the hardware allows for some partitioning s.t. conflicts on the
internal SRAM memory modules can be avoided. The MPC5668G features
two disjoint SRAM memory modules: an 80KB module, and a 512KBmodule.
To avoid any interferences on the internal SRAM, the application software
could be designed s.t. one SRAM module only is used by the z0 core, whereas
the z6 core solely uses the other SRAM module.

Handle flash prefetch buffers. To reduce access delays on the internal Flash
memory, the MPC5668G core implements four prefetch buffers that allow for
zero-cycle access delays in case a buffer already contains the requested data.
The prefetch buffers are shared between the two processors, and are used for
both instruction and data accesses. For predictability reasons, the prefetch
buffers should only be enabled for one of the cores, to avoid any interferences.
Furthermore, the prefetch buffers should be split up s.t. disjoint buffers are
used to satisfy instruction fetches and data accesses. This configuration does
not redeem the Flash module of all interferences. An access of any of the
cores might still be delayed by an access of the other one (address pipelining).

Meeting Real-Time Requirements with Multi-core Processors 125

To get rid of those inferences as well, the code executed by one core should
be put into the privately used SRAM module – where applicable.

The above configuration allows for an efficient static WCET analysis that yields
results that are quite precise.

4.3 Configuring the MPC8641D

The MPC8641D is a dual-core derivate of the MPC7448, which is a complex
single-core architecture employed in the avionics industry. The MPC7448 con-
sists of an e600 core with a complex, eight-level pipeline that allows out-of-
order and speculative execution and features first- and second-level caches with
PLRU and random replacement. Already as a single-core, this architecture is
non-compositional, exhibiting both domino-effects in the pipeline and the caches.
The MPC8641D tightly couples two such cores with a single shared bus. Each
access, either for the instruction fetches or any data access must pass this one
shared resource. Given the non-compositionality of the two cores, any clash on
the shared bus during execution could trigger a timing anomaly or even a domino
effect. This makes the timing behavior of the entire system very unpredictable,
unless interference on the shared bus can be avoided.

The individual cores can be made more predictable by configuration:

L1 Caches. Locking down the first level caches to have a LRU replacement
policy and using the write-through policy.

L2 Cache. Completely locking the random replacement second level cache for
use as scratchpad memory.

Performance Features. Deactivate non-predictable features like the dynamic
branch prediction.

Still the domino-effects which are possible in the complex e600 pipelines are
not avoidable. Therefore, to get a predictable multi-core system, clashes on the
shared bus need to be avoided. Two features of the IMA architecture and the
employed cores are very helpful for this goal:
Long Time Slices. The IMA architecture features time slices for the individual

tasks in the ten milliseconds range. Inside each time slice, the input/output
activities, which only make up a fraction of the slice, can be moved to the
beginning and the end of the individual time slice to create local copies of the
working set. Then the largest remaining fraction of the time slice can be used
for lengthy computations on the local copies of the data. This is beneficial
compared to the one millisecond time slices typically seen in the automotive
domain.

Private L2 Caches. The two cores are supported by private 1MB second level
caches. One of the cores can use its cache as local private memory for instruc-
tions and data by locking it. This avoids bus accesses by this core during the
long computation phases of its tasks. During this time, the other core has
interference-free bus access.

Given the above design of the system, in which one core works on its private
memory most of the time and only short time slices are needed for bus accesses, a

126 D. Kästner et al.

clever scheduling can completely avoid clashes of accesses. Therefore, the normal
static timing analysis, which assumes continuous execution without interferences,
can be used to deal with each of the cores separately.

4.4 Other Multi-core Architectures

Whereas the processors described above require quite extensive modifications
in the hardware configuration there exist multi-core architectures whose off-
the-shelf hardware configuration is better suited for static timing analysis. An
example of such an embedded architecture is the Freescale MPC5643L, which is
designed for applications that require a high level of safety and provides lock-
step execution. This processor comprises two e200z4 cores that, contrary to the
e200z6, feature a less versatile, dual-issue five-stage in-order execution pipeline.
Both cores feature private L1 instruction caches, which use the pseudo-round
robin cache replacement policy similar to the unified cache of the MPC5668G.

To enable a static analysis with high precision it is advisable to use the same
cache locking approach as described above (see 4.2). The user may also choose
to disable the lockstep computation mode and allow the two cores to operate
in decoupled parallel mode so that they execute independently from each other.
However from the timing predictability point of view the decoupled parallel mode
is not advisable, because all internal memories and I/O channels are shared
between both cores.

5 Experimental Observations

This section describes an experiment using the MPC8641D processor (cf. Sec-
tion 4.3) conducted at THALES Research and Technology within the CER-
TAINTY research project. It clearly demonstrates the execution time variance
of tasks executed on one core induced by parallel activities on the second core.

The experiment is composed of two parts. First, the second core of the pro-
cessor is disabled by setting the DEVDISR[e600 1] bit to 1. By doing so, the core
enters its stop state, in which it does not respond to interrupts. Also instruction

Table 1. Runtime increase of parallel running tasks compared to the isolated runtime.

bezier bsort canny fdct mult ndes qsort vecadd vecsum

bezier 38.8% - - - - - - - -
bsort 30.8% 38.1% - - - - - - -
canny 20.6% 21.2% 21.8% - - - - - -
fdct 39.9% 32.1% 24.8% 55.9% - - - - -
mult 30.8% 30.1% 21.9% 28.4% 31.6% - - - -
ndes 34.6% 30.4% 21.5% 47.8% 27.4% 43.4% - - -
qsort 28.7% 30.0% 20.2% 31.6% 32.8% 30.3% 33.0% - -
vecadd 29.7% 33.4% 22.1% 30.7% 32.1% 28.6% 30.4% 33.3% -
vecsum 28.3% 29.8% 19.5% 26.8% 27.0% 25.6% 28.2% 31.1% 26.7%

Meeting Real-Time Requirements with Multi-core Processors 127

fetching is stopped, snooping is disabled, and clocks are shut down to all func-
tional units of the core. Thus, it is guaranteed that the core does not have any
influence on shared resources of the processor.

The remaining core is now utilized to execute several benchmark programs
(e.g., bezier, ndes, etc.) in isolation and their runtimes are recorded. To guaran-
tee reliability of the measured runtimes, the core is brought to a deterministic
starting state before executing a task Ti, and runtime measurement is repeated
several times leading to an average isolated runtime for the executed task rti.

Afterwards, the second core is re-enabled, and the benchmark programs are
duplicated forming benchmark groups BI and BII . Each task from BII is ad-
justed to guarantee full spatial isolation from all tasks BI , i.e., by providing dis-
joint data and address spaces. The experiment described above is now repeated
with the tasks of BI running on the first core and the tasks of BII running on
the second core. Tasks running on both cores are started synchronously. Again,
the runtime of the tasks in BI running on core 1 – where each task is exactly the
same as in the first experiment – is measured and the experiment is repeated
several times. Then the resulting average runtime rtij for the task Ti ∈ BI when
executed in parallel with task Tj ∈ BII is computed.

Using the runtime rti from above, i.e., the runtime of task Ti running in
isolation on core 1, and the runtime rtij of task Ti ∈ BI when executed in
parallel with task Tj ∈ BII , the percentage of deviation is formed by

Δij =

(
rtij
rti

− 1

)
∗ 100.

The results are given in Table 1. Tasks from the first benchmark group BI are
listed in rows, tasks from the second group BII are given in columns. Compared
to the isolated runtime of the tasks, an average runtime increase of 30% is
observed. The largest increase of 56% was observed when running one instance
of task fdct on each core.

Even though an increase in execution time was to be expected, an increase by
56% is surprisingly high. Note that there was full spatial isolation between all
tasks executed in parallel. Each task was started with a deterministic hardware
state. The MPC8641D has two DDR controllers, and L1/L2 caches are fully
private to each core. Data and address space of the concurrently executed tasks
are separated. Hence, the observed increase in runtime was mostly caused by
bus conflicts on the MPX bus and can be considered an ideal-case scenario.

Furthermore, note that the experiment considers the average task execution
times, not the WCETs. Obviously the gap between the isolated WCET bound
wceti and the concurrent WCET bound wcetij will be greater or equal to the
gap Δij described above.

If additional conflicts could occur, e.g., due to accesses to shared caches or
DDR controllers, by variations of the hardware start state, or by asynchronous
execution, not only the penalty Δij would be much higher. Also the overestima-
tion of the WCET analysis induced by uncertainties will be higher.

The experimental observation clearly shows that both minimizing accesses to
shared resources and using deterministic arbitration mechanisms are essential

128 D. Kästner et al.

for guaranteeing safe and precise bounds on the execution time of tasks within
multi-core environments.

The results are not specific for the MPC8641D processor, but illustrate the
potential performance impact of interferences due to shared resources. In [18]
similar results have been reported for the Intel SCC and the Texas Instruments
TMS320-C6678 processors.

6 Design for Predictability

Whereas the preceding sections mostly dealt with existing multi-core architec-
tures, here we will summarize how to assess predictability and list criteria for
predictable multi-core designs.

Most of the challenges of static timing analysis for multi-core architectures are
caused by the interference on shared resources. Resources are shared for cost, en-
ergy, and communication reasons. Even if the sharing of a resource only slightly
increases the concrete execution times of a task, it might be difficult for a static
analysis to prove this: If a resource is shared among several (resource-)users,
their accesses to this resource may be interleaved in a huge amount of ways, in
particular if the users are not tightly synchronized. Different access sequences
may result in different states of the shared resource. In addition to the different
interleaved access sequences that may already exhibit different execution times,
the resulting resource states may cause even more differences in the future tim-
ing behavior. This behavior is not a technical limitation of the static analysis
approach. Also dynamic measurement-based approaches would be difficult to
apply because of the high observable variance in execution time.

It is an open problem how to limit the information loss about concurrently
running tasks by suitable abstractions. Hence, limiting interferences must be a
high-priority design goal. If there can be no interferences at all in the concrete
system, it is easy for an analysis to exclude interferences even when abstracting
completely from other tasks. One obvious solution for multi-core processors is to
run them in lockstep mode – however, this means that the potential parallelism
of the processor is not exploited. To avoid this, it is essential to strive for a
good compromise between cost, performance, and predictability, concerning the
sharing or duplication of resources.

6.1 Design Principles

The PROMPT (PRedictability Of Multi-Processor Timing) design principles [4]
aim at embedded hard real-time systems in the avionics and automotive industry
requiring efficiently predictable good worst-case performance.

Often, the inherent amount of sharing within the set of applications is very
small. This makes it possible to design a target architecture with little inter-
ference on shared resources and thus little variance of execution times and high
predictability. According to the PROMPT principles the architecture is designed
in a multi-phase process. It starts with the design or the selection of the cores
that exhibit good predictability. Then the set of applications is considered:

Meeting Real-Time Requirements with Multi-core Processors 129

– Hierarchical privatization decomposes the set of applications according to
their sharing characteristics on the shared global state. The resulting par-
titioning of the set of applications can be used to define an isomorphically
structured target architecture with no more shared resources than required
by the set of applications.

– Sharing of lonely resources introduces sharing of costly and infrequently ac-
cessed resources. Input/output devices will most likely have to be shared, for
cost and space reasons.

– Controlled socialization tries to satisfy cost constraints with an acceptable
loss of predictability by the introduction of sharing.

We conjecture that without this or a similar design discipline the required mod-
ular development process will not be realizable without an unacceptable loss of
guaranteed performance. The improved precision of the execution-time bounds
will increase the chance to show the satisfaction of timing requirements, and
thereby avoid the need of over-commissioning and save resources.

6.2 Design Guidelines

In the following we will summarize some important recommendations for ob-
taining predictable multi-core architectures for hard real-time systems. The first
three guidelines aim at the predictability of a single core, whereas the remaining
guidelines discuss the predictability of the overall system.

1. A fully timing compositional architecture: Since an exhaustive enumeration
of architectural states is practically infeasible an abstract hardware model of
the analyzed architecture has to be used in static timing analysis. Timing
anomalies in combination with interferences on shared resources introduce a
high computational complexity and lead to imprecise WCET bounds. Ide-
ally an architecture without any timing anomalies – a so-called fully timing-
compositional architecture – is used.

2. Disjoint instruction and data caches : When unified instruction and data
caches are used, in case of uncertainty about the address of a memory access
or about the order between a data and an instruction cache access the in-
terferences between data and instruction accesses impairs the precision and
additionally leads to an inefficient analysis. Therefore, if possible, the hard-
ware should be configured for disjoint instruction and data caches.

3. Caches with LRU replacement policy: Employing replacement strategies like
FIFO or PLRU yields less precise WCET bounds and less efficient timing
analysis than when using LRU. Employing such strategies even introduces
domino effects. The recommended cache replacement strategy is LRU.

4. A shared bus protocol with bounded access delay: An unbounded access de-
lay leads to a potentially unbounded execution time of tasks that access
the shared resource. Guaranteeing the timing constraints is only possible for
bounded access delays.

5. Private caches : The uncertainty about cache contents of shared caches im-
pairs the precision and leads to a complexity explosion of the analysis. Each
core should have separate, private caches.

130 D. Kästner et al.

6. Private memories, or, only share lonely resources : The delay to access a
shared resource depends on the utilization of the resource. Too much sharing
may lead to a system that is not schedulable. Ideally each core should have
a private memory.

7 Conclusion

Ensuring the correct timing behavior of real-time systems is an essential part
of overall system correctness. Static analyzers based on Abstract Interpretation
provide safe upper bounds for the WCET of tasks. From these bounds response
time guarantees can be computed by schedulability analysis at the system level.
Abstract Interpretation based static analyzers can be considered as the state of
the art for WCET analysis and are recommended by all current safety standards.
Especially on multi-core architectures for safety-critical real-time systems the
hardware has to be carefully examined with respect to predictable performance
and has to be appropriately configured to avoid timing and stability problems.
The most important aspect is to eliminate interferences induced by shared re-
sources. In this paper we have given an overview of WCET analysis by Abstract
Interpretation and discussed the perspective of the current safety standards. We
have analyzed the relevant features of contemporary single-core and multi-core
processors with respect to predictability and examined the timing variance of
a typical multi-core processor. Configuration and design recommendations are
presented to enable predictable performance.

Acknowledgements. The work presented in this paper has been supported by the

European FP7 projects PREDATOR and CERTAINTY, and by the ARTEMIS-JU

project MBAT. The authors would like to thank THALES Research and Technology

for permitting use of the benchmark results within CERTAINTY.

References

[1] Berg, C.: PLRU Cache Domino Effects. In: Proceedings of the International Work-
shop on Worst-Case Execution Time Analysis, WCET (2006)

[2] CENELEC DRAFT prEN 50128. Railway applications – Communication, sig-
nalling and processing systems – Software for railway control and protection sys-
tems (2009)

[3] Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: Pro-
ceedings of the 4th ACM Symposium on Principles of Programming Languages,
pp. 238–252 (1977)

[4] Cullmann, C., Ferdinand, C., Gebhard, G., Grund, D., Maiza, C., Reineke, J.,
Triquet, B., Wilhelm, R.: Predictability Considerations in the Design of Multi-
Core Embedded Systems. In: Proceedings of Embedded Real Time Software and
Systems, pp. 36–42 (May 2010)

[5] Ermedahl, A.: A Modular Tool Architecture for Worst-Case Execution Time Anal-
ysis. PhD thesis, Uppsala University (2003)

Meeting Real-Time Requirements with Multi-core Processors 131

[6] Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F., Schmidt, M., Theiling,
H., Thesing, S., Wilhelm, R.: Reliable and Precise WCET Determination for a
Real-Life Processor. In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001.
LNCS, vol. 2211, pp. 469–485. Springer, Heidelberg (2001)

[7] Ferdinand, C., Wilhelm, R.: Fast and Efficient Cache Behavior Prediction for
Real-Time Systems. Real-Time Systems 17(2-3), 131–181 (1999)

[8] Henia, R., Hamann, A., Jersak, M., Racu, R., Richter, K., Ernst, R.: System
Level Performance Analysis – the SymTA/S Approach. IEEE Proceedings on
Computers and Digital Techniques 152(2) (March 2005)

[9] IEC 61508. Functional safety of electrical/electronic/programmable electronic
safety-related systems (2010)

[10] ISO/FDIS 26262. Road vehicles – Functional safety (2011)
[11] Kästner, D., Ferdinand, C., Heckmann, R., Jersak, M., Gliwa, P.: An Integrated

Timing Analysis Methodology for Real-Time Systems. In: Embedded World
Congress (2011)

[12] Lundqvist, T., Stenström, P.: Timing Anomalies in Dynamically Scheduled Mi-
croprocessors. In: Real-Time Systems Symposium, RTSS (December 1999)

[13] NASA Engineering and Safety Center. Technical Support to the National Highway
Traffic Safety Administration (NHTSA) on the Reported Toyota Motor Corpora-
tion (TMC) Unintended Acceleration (UA) Investigation (2011)

[14] Radio Technical Commission for Aeronautics. RTCA DO-178B. Software Consid-
erations in Airborne Systems and Equipment Certification

[15] Reineke, J., Grund, D., Berg, C., Wilhelm, R.: Timing Predictability of Cache
Replacement Policies. Real-Time Systems 37(2), 99–122 (2007)

[16] Reineke, J., Wachter, B., Thesing, S., Wilhelm, R., Polian, I., Eisinger, J., Becker,
B.: A Definition and Classification of Timing Anomalies. In: Proceedings of the
International Workshop on Worst-Case Execution Time Analysis (2006)

[17] Souyris, J., Le Pavec, E., Himbert, G., Jégu, V., Borios, G., Heckmann, R.: Com-
puting the Worst Case Execution Time of an Avionics Program by Abstract In-
terpretation. In: Proceedings of the 5th Intl Workshop on Worst-Case Execution
Time (WCET) Analysis, pp. 21–24 (2005)

[18] Verhulst, E., Sputh, B.: Hard Real-Time on Multicores: Shared Resources are the
Challenge. White paper, Altreonic (2012)

[19] Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P., Staschulat, J., Stenström, P.: The Worst-Case Execution-Time
Problem – Overview of Methods and Survey of Tools. ACM Transactions on
Embedded Computing Systems 7(3), 1–53 (2008)

Assessing Software Interference Management

When Modifying Safety-Related Software

Patrick J. Graydon and Tim P. Kelly

University of York, York, YO10 5GH, UK
{patrick.graydon,tim.kelly}@cs.york.ac.uk

Abstract. Many systems deliberately manage interference between soft-
ware components, e.g. through partitioning. When engineers modifying
such software determine which items of verification evidence have been
invalidated by changes, they consider interference management measures.
A complete understanding of interference and its management is crucial
when engineers re-use evidence. In prior work, we suggested: (a) a guided
process for identifying interference and means of managing it; and (b) a
strategy for arguing about interference management. In this paper, we
present the results of a case study meant to answer two questions raised
by this prior work: (i) which views of the system engineers should con-
sider when identifying interference and its management; and (ii) whether
our argument pattern captures a practical way to argue about interfer-
ence management.

Keywords: software partitioning, interference, software change man-
agement, safety argument.

1 Introduction

Many software systems deliberately manage interference between software com-
ponents. For example, many operating systems provide spatial partitioning based
on hardware memory management. When modifying software, engineers assess
change impact and decide what evidence to regenerate. Complete understanding
of interference and how well it is managed is essential for making these choices.

Interference is typically assessed using ad hoc means. In some cases, engineers
use standardised partitioning schemes or refer to lists of considerations derived
from experience. A systematic method of assessing interference and its manage-
ment would both provide more rigour than ad hoc means and be better suited to
systems built on novel architectures. In prior work, we suggested such a method
and proposed patterns for arguing about interference management [8]. In this
paper, we present the results of a case study intended to drive further refinement
of the approach with a view toward eventual evaluation of its efficacy relative to
existing approaches.

In prior work, we suggested that analysts assessing interference systematically
consider the system from multiple views [8]. For completeness, we proposed
using each of the four views in a standard architectural model: (1) a conceptual

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 132–145, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Assessing Software Interference Management 133

view describing software in terms of domain elements; (2) a module view that
describes the decomposition of the software; (3) an execution view that maps
modules to physical resources; and a (4) code view that maps modules, interfaces,
and run-time images to source and executable files [10,11]. That work raised
questions of whether each of the four views is necessary, whether use of all four
is sufficient, and whether other standard views would be more useful. In this
work, we conducted a case study application of our method to a hypothesised
embedded control system to answer the first two of these questions.

In prior work, we proposed a pattern for arguing about how well a system
manages interference [8]. In that pattern, analysts decompose the goal of ad-
equate management over forms of interference. They then decompose goals of
adequately managing each form of interference over circumstances in which the
system manages interference differently. In this work, we investigated whether
applying this pattern to our specimen system would result in a combinatorial
explosion that would make the argument impractical.

In section 2, we discuss guidance and practice for software modification and
interference management assessment. In section 3, we present a model of inter-
ference and its management. In section 4, we relate our method for identifying
interference and interference management. In section 5, we present our pattern
for arguing about how well systems manage interference. In section 6, we report
the results of our case study assessment. Finally, we conclude in section 7.

2 Current Guidance and Practice

Modifications to existing software are frequently limited to a few modules. It
is expensive to repeat testing, review, and analyses for portions of the system
not impacted by the changes. Consequently, typical software safety standards
do not require this [12,14,19]. Instead, engineers must analyse the impact of the
proposed changes and plan verification and validation activities accordingly.

The effects of change can spread beyond the modified modules. For example,
modifying one component could affect the data that it passes to an unmodified
component, changing that component’s behaviour. Some standards explicitly
recognise this. For example, RTCA DO-178B advises engineers analysing the
impact of change to consider “coupling between several software components that
may result in reverification effort involving more than the modified area” [19].

Typical software safety standards do not define how change impact analysis
should consider interference management. However, the planned changes might
affect the interference that software generates, its reaction to received inter-
ference, or both. Clearly, engineers performing change impact assessment must
understand how a system manages interference and how well it does so.

2.1 Current Approaches to Assessing Interference Management

Current guidance for assessing interference and its management is limited. Some
standards list considerations [12,14,19]. For example [19]:

134 P.J. Graydon and T.P. Kelly

These aspects of the system should be considered when designing
partitioning protection to determine their potential for violating that
protection:

(1) Hardware resources: processors, memory devices, I/O devices, inter-
rupts, and timers.

(2) Control coupling: vulnerability to external access.
(3) Data coupling: shared or overlaying data, including stacks and pro-

cessor registers.
(4) Failure modes of hardware devices associated with the protection

mechanisms.

However, RTCA DO-178B offers no guidance on how to carry out a conforming
assessment [6,19]. It requires review and/or analysis of the software architecture
to “ensure that partitioning breaches are prevented” and testing that could re-
veal “violations of software partitioning” [19]. However, the standard offers no
guidance on how to perform these activities well enough to justify reverification
decisions. Other standards offer similarly little guidance [12,14].

Recognising this lack, the Certification Authorities Software Team (CAST)
has developed guidelines for assessing software partitioning schemes [6]. The
CAST guidance, drawing from Rushby’s work [20], advises developers to “first
categorize the type of protection being claimed” and then demonstrate that it
has been provided. Its guidance on how to accomplish this is limited to a list of
considerations that it cautions “is not intended to be all inclusive”.

Existing guidance is undoubtedly helpful. However, it is not a complete,
general-purpose approach to assessing what interference a system might be sub-
ject to and how well it manages this. Lists of considerations capture insight
gained through experience. However, experience alone is not an adequate basis
for evaluating novel systems. For example, some modern multicore microproces-
sors can scale clock rates in response to changing temperatures. This mechanism
gives rise to a form of interference wherein the workload of one core affects
the clock rate of adjacent core(s) and thus the runtime of the software they
execute [7]. The CAST guidance, predating this feature, cannot counsel consid-
eration of it. A general method is needed.

2.2 Standards for Partitioning

There are standards describing partitioning schemes. For example, ARINC 653
defines a partitioning scheme for integrated avionics applications [3]. In it, a
single processor or processor core may host multiple partitions, each isolated
from the others in both time and space. That is, partitions cannot overwrite each
other’s memory and are guaranteed a portion of execution time. Each partition
can, if needed, run a guest operating system to sequence multiple tasks.

ARINC 653 partitioning is robust but coarse-grained. Whilst it is desirable
to isolate applications sharing a processor from each other, it is also desirable
to protect smaller pieces of each application from other small pieces. Thus, the

Assessing Software Interference Management 135

existence of ARINC 653 and compatible operating systems does not obviate the
need for a general-purpose method for assessing interference management.

3 A Model of Interference and Its Management

In this work, we model software as a set of elements and consider how these might
interfere with each other. An element might be a procedure, a module, a task, a
process, a complete binary, or all of the software running on one processor core.
When analysing interference, analysts should define elements that identify the
parts of the software to be reasoned about. We adopt the definition of interference
proposed by the UK Civil Aviation Authority and used in prior work [5,8]:

Interference — Unintended (and thus undesigned) interaction between
elements of a software system.

Interference might be either spatial or temporal. Spatial interference occurs when
an element writes to storage it should not write to. For example, if an unini-
tialised pointer points to another element’s private memory, writing to it re-
sults in spatial interference. For completeness, ‘storage’ includes microproces-
sor registers, peripheral registers, flash devices, hard disk drives, and any other
components that store state. Temporal interference occurs when one element’s
activities have an unintended impact on the timing of another’s. For example,
elements running on different cores of the same processor might create temporal
interference through contention for shared memory devices.

Potential interference might be managed in three ways:

1. Prevention. Prevention precludes interference from arising during opera-
tion or shows that it does not. For example, static analysis can show that
procedures written in SPARK use no access types (i.e., pointers) and assign
values only to shared variables named in the procedure specification [1].

2. Blocking. Blocking prevents one element’s interference from reaching an-
other. For example, hardware memory management can prevent an element’s
stray write operations from affecting the private memory of other elements.

3. Tolerance. Tolerance allows elements to function acceptably despite inter-
ference. For example, elements can use checksums or canary values to detect
interference and trigger remedial action.

Most means of interference management are imperfect. Consequently, it is use-
ful to combine forms of management so that each compensates for the others’
weaknesses. For example, consider the two processes communicating using shared
memory depicted in Figure 1. Static analysis might verify that element 5 can-
not interfere with elements 1–4, but cannot show that element 2 is similarly
well-behaved. Hardware memory management might block interference between
elements 1 and 4. However, memory management at the process level cannot
block interference between elements 4 and 5 (or elements 5 and 3). Interference
between elements 2 and 3 (in the form of writes to Value i or Value ii) cannot be
blocked. Testing of element 2 might justify a claim of prevention, but only if it is

136 P.J. Graydon and T.P. Kelly

Process A Process BShared Memory

Element 1
(SPARK Program)

Element 3
(Shared Data)

Element 4
(C Program)

Element 2
(Assembly Lang. Program)

Element 5
(SPARK Program)

R/W

R/W

R/W

Value i

Value ii

Value iii

Calls Calls

Fig. 1. Example elements

adequately rigorous and conducted in a way that would detect spurious writes.
Moreover, a single event upset might still result in a write that is not predicted
by testing. Accordingly, it is useful to tolerate interference to element 3.

When modifying software, engineers must reason about how well a combina-
tion of mechanisms manages interference. Simply reasoning about partitioning
at one (coarse) level is not sufficient. Existing guidance typically comprises re-
minders to consider aspects of interference management that have proved im-
portant in the past. It is advisable to learn from the past. However, it is also
important to have a general method for assessing interference management in
any system, no matter how novel.

4 A Method for Identifying Interference and How a
System Manages It

In this section, we present a refined version of the method introduced in prior
work [8]. Our method is based on the guided enumeration techniques used in
software and system safety analyses, e.g. Hazard and Operability Studies (HA-
ZOP) [13,21], Software Hazard Analysis and Resolution in Design (SHARD) [18],
and Low-level Interaction Safety Analysis (LISA) [16,18]. Figure 2 depicts the
method, which comprises the ten steps detailed below.

Identify Views. The analysts select views from which to analyse the system. It
is necessary to consider multiple views because interference visible in one view
may not be obscured in others. Engineering documents describe systems from
diverse viewpoints using different notations. For example, some developers pro-
duce Unified Modelling Language (UML) diagrams [17]. Others use the Modular
Approach to Software Construction Operation and Test (MASCOT) [15]. In yet
other projects, architects describe the system using the Architecture Analysis
and Design Language (AADL) [2]. In prior work, we proposed considering four
standard architectural views: conceptual, modular, execution, and code [10,11].

Select Team. The analysis team must include experienced people who under-
stand the system from each identified viewpoint. Their knowledge of the system

Assessing Software Interference Management 137

Interference
is Plausible

Interference
is Implausible

No More Means,
Guidewords, Interactions,
or Views

No More Interference or
Guidewords, But More Means

No More Interference, But
More Guidewords

More Interference

No More Interference, Guidewords,
or Means, But More Views

Select a Means of Interaction

Select a View

Determine Expected Interaction(s)

Select a Guideword

Apply Guideword to Elicit Unwanted
Potential Interactions

Consider Consequences of Interaction

Document Potential Interference and Its
Management

Select Team

Brief Team on View

Consider Means of Preventing
Interference or Showing Its Absence

Consider Means of Blocking or
Tolerating the Interference

Start

Stop

Select an Unwanted Potential Interaction

Identify the Means of Interaction

Identify Views

Fig. 2. Method for identifying potential interference and means of managing it

138 P.J. Graydon and T.P. Kelly

and experience assessing interference in similar systems is crucial, as it reduces
the likelihood that they will overlook potential interference.

Brief Team on View. Before attempting identify means of interaction from a
view, the team briefly reviews the system as seen from this view. This ensures
that each member can draw upon as complete an understanding as practicable.

Identify a Means of Interaction. The analysis team identifies ways in which
elements might interact. Different means of interaction will be visible in different
views. For example, examination of the modular view might show the potential
for interaction by messages or procedure call. The execution view might reveal
potential interaction through a shared processor core or DRAM module. The
code view might illustrate the potential for one element’s source to affect the
compilation of another’s. (In C, directives in .h file(s) can affect properties such
as the compiler’s alignment setting. If one element’s source includes a .h file of
another, the elements might interact in an unexpected manner [8].)

Determine Expected Interaction(s). The analysis team identifies the interactions
that are expected over each identified means of interaction. The distinction be-
tween expected and unexpected interactions is crucial because the former is not
interference and need not be pursued. However, the distinction is also subtle. For
example, suppose that two elements are meant to communicate via function call,
that there are no documented limits on parameter values, and that previous ver-
sions of the caller exercise a small portion of the parameter value space. Testing,
analysis, and historical evidence reflect only a subset of these element’s possible
function call interactions. When interference assessment is used in change impact
analysis, only those interactions should be expected. If the caller is modified and
might pass unprecedented values, developers must either:

– Make the new interaction expected by verifying that the called component
handles the unprecedented inputs correctly

– Treat the new interaction as interference and manage it, perhaps by using a
wrapper to block the unexpected inputs

Interactions via caches are another subtle case. Developers of real-time software
are aware that executing one element could change another’s runtime by alter-
ing the contents of a shared cache. However, typical approaches to determining
Worst-Case Execution Time (WCET) treat each task as though it will run in iso-
lation. Thus, interaction through a shared cache cannot be said to be expected.
If there is any doubt, an interaction should not be considered expected.

Apply Guidewords to Elicit Unwanted Potential Interactions. Analysts apply
each of a set of five guidewords to the identified interactions to elicit potential
unwanted interactions. The guidewords, are adapted from SHARD [18], are:

1. Omission — The interaction does not occur as intended
2. Commission — The interaction occurs when it is not intended

Assessing Software Interference Management 139

3. Early — The interaction occurs before it is intended to
4. Late — The interaction occurs after it is intended to
5. Value — The content of the interaction is not what was intended

The concrete meaning of each guideword will depend upon the type of interaction
that it is applied to. For example, when applied to a function call, value refers to
the parameter values. In contrast, when applied to interaction through a shared
cache, value refers to the data blocks that are loaded or evicted. Some guidewords
might be inapplicable to some types of interaction.

Consider the Consequences of Interference. If an interaction might occur but is
not expected, that interaction is potential interference. The risks that interfer-
ence might give rise to define the importance of managing that interference.

There are several approaches to risk assessment. If a project must conform to
a standard that defines an approach, the analyst should use that approach. If
not, analysts can perform a basic risk assessment by estimating the probability
and severity of risks arising from interference and characterising each form of
interference according to the highest risk that might result if the interference
arises. For example, consider the case of element A unexpectedly writing to
element B ’s private memory. Suppose that B could give rise to a system hazard
by failing to operate as intended. Depending upon events beyond the system’s
control, it is judged probable that this would lead to a catastrophic loss.
System safety concerns dictate that B ’s functionality must be assured to a degree
of confidence appropriate for this risk. Because this form of interference brings
this hazard as a consequence, managing it is of proportionately high importance.

Consider Means of Preventing Interference or Showing Its Absence. For each
form of potential interference, analysts consider both means of preventing inter-
ference and means of showing its absence. For example, consider interference in
the form of writes to private memory. Some efforts might preclude this form of
interference by selecting a programming language subset that does not include
pointers. Alternatively or in combination, testing (in an appropriate manner)
might yield confidence that the tested code does not perform such writes.

Consider Means of Blocking or Tolerating the Interference. Where interference
has not been prevented or cannot be shown to be absent, analysts consider
means of blocking or tolerating that interference. For example, flushing shared
caches during a task switch can block temporal interference arising from cache
contention in uniprocessors. Interference might be detected by computing and
checking an error-correcting code, prompting the system to take remedial action.

Document Potential Interference and Its Management. Finally, the analysts doc-
ument each form of potential interference and how the system manages it. At a
minimum, they record:

– A description of the form of interference
– The consequences of the interference
– How the interference is prevented, shown to be absent, blocked, or tolerated

140 P.J. Graydon and T.P. Kelly

Using Experience and Standard Lists. Our method does not replace either expe-
rience with similar systems or the use of standard lists of considerations. Where
possible, analysts should consider these sources of insight.

5 Reasoning about Interference Management

In prior work, we proposed a pattern for reasoning about how well a system
manages interference [8]. Figure 3 presents an elaboration of this pattern de-
picted in Goal Structuring Notation (GSN) [4]. Goal G1 depicts the main claim
that the system adequately manages interference. The argument decomposes this
claim over forms of interference (strategy ST1 and context C2), yielding several
sub-claims of the form of goal G2. The argument further decomposes those sub-
claims over means of management (strategy ST3). This further decomposition
yields one to four sub-claims of the form(s) of goals G4, G5, G6, and/or G7. Ev-
idence of prevention, absence, blocking, or toleration supports each sub-claim.

In some cases, means of managing interference apply only in different but
overlapping circumstances. Returning to the example developed in section 3,
writes to undefined addresses might be prevented in a subset of the code, blocked
between elements in different processes, or tolerated when they impact a shared
memory block. In such cases, the argument must decompose claims over the
circumstances in which each combination of means applies (strategy ST2). This
form of argument makes clear to readers those circumstances that are covered
by multiple means of management and those that aren’t.

6 A Case Study to Answer Questions from Prior Work

This work does not assess the value of our as-yet incomplete method. Because
there is no baseline data on how completely existing ad hoc methods enumerate
interference, comparing our method to these would require a head-to-head ex-
periment. A control group would use their existing methods whilst a treatment
group would use ours, and the experimenters would assess the completeness of
the results. Since experience might affect the outcome, the participants would
have to be seasoned professional developers. Application and architecture novelty
might also affect the outcome, so the experiment would have to be replicated.

Our case study aims instead to answer three questions raised by the prior
work in which we proposed the method and argument pattern [8]:

1. Does consideration of each of the four of the views discussed in section 4
produce insight that consideration of the others does not?

2. Are there insights not produced by consideration of the four views?
3. Is it practical to divide interference and its management into “forms” and

“circumstances”, or are there too many permutations for this to be feasible?

We expect that the answers to these questions will drive further development of
the method. Once complete, the method can be subject to a rigorous evaluation
of its efficacy and value.

Assessing Software Interference Management 141

At least 1 of 4

GSN Key
Goal (claim)

Argument strategy

Argument context

Requires instantiation

Requires development

Requires development
and instantiation

Solved (supported) by
In the context of
Repeat n times

Choice

1 of 2

ST3 — Argument over
means of management

Number of forms of interference

Number of circumstances

C1 — <System
description>

G1 — <System> adequately
manages interference

C2 — <List of potential
interference>

ST1 — Argument over
potential interference

C3 — Consequences of
<interference>>

G2 — <System> adequately
manages <interference>

ST2 — Argument over
different circumstances

G3 — <System> adequately manages
<interference> in <circumstance>

G7 — Measures
to tolerate

<interference>
are adequate

G6 — Measures
to block

<interference>
are adequate

G4 — Measures
to prevent

<interference>
are adequate

G5 —
<Interference>
does not arise

in practice

Fig. 3. Top-level non-interference argument pattern

142 P.J. Graydon and T.P. Kelly

MPC8641D
Micro-

controller

Shaft

Bearing
Coil (y)

B
ea

rin
g

C
oi

l (
x)

SD Card Reader
Position

Sensor (y)

P
osition

S
ensor (x)

Coil Driver

CalculationInput Output ...

Frame Begins Output Next

Core 1: Statically scheduled hard
real-time tasks

Health Monitoring and Logging

Core 0: Dynamically scheduled soft
real-time tasks and interrupt
handlers

Fig. 4. The specimen embedded control system

To answer these three questions, we applied the method described in section 4
to a realistic but hypothesised specimen system, considered the results using the
logic described in section 5, and collected appropriate data.

6.1 Specimen System

For the purposes of this study, we created documents describing a hypothetical
embedded control system to be analysed. Figure 4 depicts this system, which
is based on a prototype system developed for a separate study [9]. We changed
some details of that system, rather than study it as-is, to make the system more
representative of challenging, cutting-edge safety-related control systems. For
example, we chose a multi-core target, added an operating system, and posited
the use of both SPARK code and vendor-provided C language drivers.

The purpose of our specimen system is to keep a Shaft centred within its
housing. Position Sensors monitor the Shaft’s position while Bearing Coils adjust
its position. One core of the dual-core microcontroller is dedicated to hard real-
time control. Soft real-time tasks, such as health monitoring and logging, run on
the other core. Core 0 handles all interrupts to simplify timing analysis. Input,
control calculation, output, health monitoring, and logging all run in separate
processes. Hardware memory management is used to provide spatial partitioning.
Processes communicate using shared memory blocks.

Conceptual View of the Specimen System. We described the conceptual view of
our specimen system using a UML diagram depicting its components and the
connections between them as in [10]. The only means of interaction we considered
were receiving ports. To simplify our study, we did not analyse some receiving
ports that were qualitatively similar to others that we did analyse. We thought of
considering types of connection (e.g. direct connections, channels), but the varied
uses of each type precluded discussing consequences meaningfully. Considering
connections rather than receiving ports would have obscured the potential for
connections between components that are not meant to be connected.

Module View of the Specimen System. We described the module view of our
specimen system using: (1) a UML package diagram showing the mapping from

Assessing Software Interference Management 143

modules to packages; (2) a UML class diagram showing the mapping from im-
plementation classes to modules; and (3) a UML class diagram showing the
static relationship between implementation classes. We analysed only one mod-
ule, a sensor input module comprising vendor-sourced C-language code and
application-specific SPARK code. The means of interaction that we considered
were: (a) modification of class attributes; and (b) method invocations.

Execution View of the Specimen System. We described the execution view of our
specimen system using a UML class diagram to map modules to processes and a
timing diagram. The means of interaction that we considered were: (a) accesses
to a process’s private memory; (b) accesses to a shared memory area; (c) system
calls; and (d) competition for CPU time. We omitted consideration of access to
some processes’ private memory and some shared memory areas because these
were similar to others that we did analyse.

Code View of the Specimen System. We described the code view of our spec-
imen system using tables to map classes to source files and document source
file dependencies. The means of interaction that we considered were: (a) source
inclusion (e.g. #include in C); and (b) build procedure steps.

6.2 Study Results

Applying the method described in section 4 to the specimen system described in
subsection 6.1, we identified 71 unwanted potential interactions. Organising these
into forms of interaction in order to apply the pattern shown in Figure 3 yielded
19 distinct forms of interference. Identifying circumstances in which each form is
managed differently yielded 39 distinct permutations of form and circumstance.

Question 1 (necessity of each view). Of the four architectural views that we
used in analysis, only the conceptual view failed to illuminate interference in
this system. While the view informed our understanding of the system, exam-
ining interactions revealed by the view did not help us to find interference that
we could not have found using other views. Moreover, the other views better
illuminated circumstances and means of management. For example, it was more
obvious from the module viewpoint than from the conceptual viewpoint that
some components comprise classes implemented in multiple languages, each of
which was associated with different interference prevention measures.

The SHARD technique uses a view similar to our conceptual view [18]. SHARD
has been useful as a means of gaining understanding of software hazards early
in the development lifecycle so that they can be addressed by design [18]. How-
ever, in software modification scenarios, a detailed design already exists; there is
no need to trade detail for early feedback. Consequently, effort might be better
spent analysing more detailed views.

Question 2 (sufficiency of views). In prior work, we considered a different hy-
pothesised system from a perspective that included low-level hardware details

144 P.J. Graydon and T.P. Kelly

such as general purpose registers, special-purpose registers, buses, caches, and
memory modules [8]. That perspective was identical to the perspective used in
LISA [16,18]. Using that low-level hardware view, we identified forms of inter-
ference that we did not identify in this effort, such as competition for shared
memory units [8]. Unfortunately, an execution view of a software architecture
might not contain the necessary low-level detail. We conclude that a low-level
hardware view, such as that used in LISA, should be used when assessing inter-
ference and its management in software modification scenarios.

Question 3 (practicality of argument pattern). We did not create multiple forms
of non-interference argument for our specimen system. Thus, we cannot comment
on whether such an argument would be more compact if organised as shown in
Figure 3 than if organised in some alternative way. However, we can report
that no form of interference that we identified was managed differently in more
than 11 different circumstances. Interference in the form of unintended writes to
shared memory areas was managed by 11 combinations of memory management,
dataflow analysis, use of redundant sensors, or re-use of the last frame’s control
outputs. The remaining 18 of 19 forms were managed differently in 3 or fewer
different circumstances. The size of this argument is not unreasonable.

7 Conclusion

In prior work, we proposed both a method for identifying interference and how
systems manage it and a pattern for arguing about that interference [8]. That
work raised questions about which architectural views analysts should consider
and the practicability of the proposed argument pattern. In this work, we con-
ducted a case study to address these questions. Our findings suggest that analysis
of software using a conceptual view, while useful during initial system design,
might be less useful when analysing interference in software change scenarios.
We also find that analysis from the conceptual, module, execution, and code
architectural views might be insufficient: detailed analysis from a view including
low-level hardware details is needed. Finally, we find no evidence that a com-
binatorial explosion in interference circumstances would make it impractical to
argue about our specimen system using the pattern shown in Figure 3.

This work does not present a complete method for assessing and reasoning
about interference in software modification scenarios. Instead, it describes a work
in progress. The study results, gained from analysis of a single hypothesised
system, cannot show that our method and pattern are valuable or even feasible
for all systems. Instead, they are a contribution toward refining our method and
constructing a complete and compelling approach to assuring modified software
systems. Further work will be needed to assess a complete method and approach.

Acknowledgement. We thank the CAA for collaboration that produced the
ideas refined in this paper.

Assessing Software Interference Management 145

References

1. AdaCore: Spark pro > language & toolsuite. Web page (October 2011),
http://www.adacore.com/home/products/sparkpro/language_toolsuite/

2. AADL | getting started. Web page (2011),
http://www.aadl.info/aadl/currentsite/start/index.html

3. ARINC 653P1-3: Avionics application software standard interface, Part 1, Re-
quired services. Specification, ARINC (November 2010)

4. Attwood, K., et al.: GSN Community Standard v. 1. Origin Consulting (2011),
http://www.goalstructuringnotation.info/documents/GSN_Standard.pdf

5. CAP 670: Air Traffic Services Safety Requirements. Civil Aviation Authority, West
Sussex, United Kingdom (October 2010), http://www.caa.co.uk

6. Certification Authorities Software Team (CAST): Guidelines for assessing software
partitioning/protection schemes. Position Paper CAST-2 (February 2001)

7. Charles, J., Jassi, P., Ananth, N.S., Sadat, A., Fedorova, A.: Evaluation of the
Intel R© CoreTM i7 Turbo Boost feature. In: Proceedings of the International Sym-
posium on Workload Characterization (IISWC), pp. 188–197 (October 2009)

8. Graydon, P.: Classifying, analysing, and arguing about barriers in modified soft-
ware systems. Technical Report SSEI-TR-000107, Software Systems Engineering
Initiative (May 2011)

9. Graydon, P.J., Knight, J.C., Yin, X.: Practical Limits on Software Dependability: A
Case Study. In: Real, J., Vardanega, T. (eds.) Ada-Europe 2010. LNCS, vol. 6106,
pp. 83–96. Springer, Heidelberg (2010)

10. Hofmeister, C., Nord, R.L., Soni, D.: Describing software architecture with UML. In:
Proceedings of the 1stWorking IFIPConference on Software Architecture (1999)

11. Hofmeister, C., Nord, R., Soni, D.: Applied Software Architecture. Addison-Wesley,
Reading (1999)

12. IEC 61508-3: Functional safety of electrical/electronic/programmable electronic
safety-related systems — Part 3: Software requirements. International Electrotech-
nical Commission, 2nd edn. (April 2010)

13. IEC 61882: Hazard and operability studies (HAZOP studies) — Application guide.
International Electrotechnical Commission, 1st edn. (May 2001)

14. ISO 26262-6:2011: Road vehicles — Functional safety — Part 6: Product develop-
ment at the software level. International Organization for Standardization (2011)

15. Joint IECCA and MUF Committee on Mascot (JIMCOM): The Official Handbook
of Mascot, Version 3.1, Issue 1. Royal Signals and Radar Establishment, UK (1987)

16. McDermid, J.A., Pumfrey, D.J.: Safety analysis of hardware/software interactions
in complex systems. In: Proceedings of the 16th International System Safety Con-
ference, Seattle, WA, pp. 231–241 (1998)

17. OMG: OMG Unified Modeling LanguageTM(OMG UML): Infrastructure, Version
2.3. Object Management Group (May 2010)

18. Pumfrey, D.J.: The Principled Design of Computer System Safety Analyses. DPhil
thesis, University of York, York, UK (September 1999)

19. RTCA DO-178B: Software Considerations in Airborne Systems and Equipment
Certification. RTCA, Inc., Washington, DC, USA (December 1992)

20. Rushby, J.: Partitioning in avionics architectures: Requirements, mecha-
nisms, and assurance. Technical report NASA/CR-1999/209347, National
Aeronautics and Space Administration, Hampton, VA, USA (March 2000),
http://www.tc.faa.gov/its/worldpac/techrpt/ar99-58.pdf

21. The Chemical Industry Safety and Health Council: A Guide to Hazard and Oper-
ability Studies. Chemical Industries Association (1977)

http://www.adacore.com/home/products/sparkpro/language_toolsuite/
http://www.aadl.info/aadl/currentsite/start/index.html
http://www.goalstructuringnotation.info/documents/GSN_Standard.pdf
http://www.caa.co.uk
http://www.tc.faa.gov/its/worldpac/techrpt/ar99-58.pdf

Workshop on Architecting Safety
in Collaborative Mobile Systems

(ASCoMS 2012)

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 149–150, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Introduction to ASCoMS 2012

António Casimiro and Jörg Kaiser

The continuous emergence and improvement of sensor and communication
technologies creates new opportunities for designing embedded and mobile systems
that are able to interact with their environment, and exhibit “smart” and autonomous
behaviour. Furthermore, collaboration between mobile entities can also be envisaged
for improving their functionality. However, a fundamental challenge is to ensure that
safety requirements are satisfied despite the increased system complexity and the
uncertainties introduced by the operation in open and not well defined environments.
In particular, it is necessary to deal with temporal uncertainties that may affect the
environment perception as well as the coordination of mobile entities. In general, the
problem might be equated in terms of achieving functional safety. Then, the challenge
is to adapt the system to different performance levels as needed to ensure safety
according to the existing operational conditions (e.g. system and environment state).
In any case, some minimal level of performance is always needed to ensure that safety
can be achieved, which should be reflected on the architectural design.

This workshop on Architecting Safety in Collaborative Mobile Systems is intended
to address the multiple facets of this problem, with a special focus on applications in
the automotive and avionics domains. In fact, there are many reasons today for the
use of autonomous mobile systems, like unmanned aerial vehicles (UAVs) or smart
cars. For instance, UAVs can be used for environmental surveillance and control, and
smart vehicles coordinating their behaviours can be used to increase traffic throughput
and improve mobility without the need of using more space for the respective traffic
infrastructures. However, so far the existing solutions to ensure the needed safety
despite the uncertainties affecting their operation are still insufficient or inadequate.
Therefore, these systems are not allowed to operate in the public air space or on
public roads because the risk of causing severe damage or even threaten human lives
cannot be excluded with sufficient certainty. This justifies the importance of research
in this area, namely on topics such as:

• Architectural design for safety-critical systems
• Aspects of functional safety
• Reliable perception of the environment
• Coordination and adaptation strategies for safety-critical systems
• System safety guidelines and standards

The workshop includes an invited talk and two sessions addressing safety issues in
automotive applications and dependability of sensor based systems. The invited talk
intends to bring an industrial perspective on the main problems lying ahead, and on
expectations on how research can contribute to address these problems. The session
on safety issues in automotive applications includes three presentations, focusing on
modelling of safety related timing constraints, on challenges for the software

150 A. Casimiro and J. Kaiser

engineering of safer cars and on the use of quality metrics for functional safety.
Finally, the session on dependability of sensor based systems provides two
contributions, on dependable and stable perception despite timing and value faults and
on supporting fault-propagation analysis.

Towards Dependable and Stable Perception

in Smart Environments
with Timing and Value Faults�

Lúıs Marques and António Casimiro

FC/UL
lmarques@lasige.di.fc.ul.pt, casim@di.fc.ul.pt

Abstract. Future physical environments are expected to be pervasively
enriched with sensors, which mobile embedded applications can use to
safely interact in and with that environment. Unfortunately, due to the
open and uncertain nature of the environment and the wireless com-
munication, it is not possible to provide strict a priori guarantees with
regard to the quality and timeliness with which such environments can
be perceived.

In this paper we take a look at the threats to a reliable perception of
the environment, considering both timing and value faults. We discuss
how such threats can be mitigated and we explore possible paths towards
an integrated architecture to efficiently achieve a dependable and stable
perception of smart environments in the presence of timing and value
faults.

Keywords: smart environments, dependability, adaptation, stability,
real-time, fault-tolerance.

1 Introduction

For more than a decade now, there has been a significant interest in the area
of distributed sensors which communicate through wireless networking. This is
reflected in such concepts as “Cyber-physical Systems”, “Internet of Things”,
“Wireless Sensor Networks” (WSNs) and “Smart Environments”. What is com-
mon to all of these concepts is the vision of highly pervasive sensors which allow
the environment to be monitored at large scales, through the cooperation of
many individual systems.

This mesh of highly ubiquitous sensors can support a wide range of different
applications, some of which have already received significant attention, such as
habitat monitoring [1][2], object tracking [3], target tracking [4], detection of
pollutants [5], climate monitoring [6], energy consumption awareness [7], early
disaster warning systems [8], and smart vehicles [9].

� This work was partially supported by the EU through the KARYON project (FP7-
288195) and the FCT through the Multiannual Funding Program.

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 151–161, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

152 L. Marques and A. Casimiro

Different applications have different requirements with regard to the accu-
racy and timeliness with which the physical environment must be perceived. For
instance, a pollutant monitoring application may only require that gas concen-
trations be measured every few minutes or hours, and it may be that this data
does not need to be collected in real-time. Furthermore, the data may be able to
be collected and processed in a centralized fashion, allowing for sensor readings
to be compared and correlated in a batch and non-real-time manner, such as to
remove outlier values due to faulty sensors.

On the other hand, other applications can have strict accuracy and timeli-
ness requirements. For instance, target tracking and smart vehicles operating
as part of vehicular networks are examples of applications which require both
a highly accurate and a timely perception of the environment, to assure op-
erational safety. In general, mobile and cooperative systems, that cooperate in
and with the physical environment, will require stricter guarantees than more
“passive” systems, such as habitat monitoring.

Yet, the problem arises that in open and uncertain environments it is not
possible to provide a priori guarantees regarding the accuracy and timeliness with
which the information from the surrounding environment and other cooperative
systems can be obtained. Without such guarantees it becomes harder for mobile
systems, such as vehicles, to safely cooperate and interact.

Part of the problem stems from the way in which embedded systems have, tra-
ditionally, been designed, which is not compatible with such open environments.
Traditionally, embedded systems — particularly safety-critical systems — have
been engineered in a systematic way which allows providing the required prop-
erties in terms of timeliness, accuracy and validity of the sensed environment.

To provide timeliness guarantees, all scenarios are previously studied, all op-
erations are given deadlines, critical communication is performed using real-time
networks, and every task is scheduled using carefully crafted algorithms, which
execute code paths with worst case execution times designed to respect such
deadlines. To provide the necessary accuracy, the type and amount of sensors
used is carefully planned at system design time. The necessary redundancy is
built-in, to provide protection against both timing and value faults.

Since traditional systems are engineered in such a way that all requirements
are assured by design, their architectures have generally not focused on being
aware, at runtime, of how well system assumptions are being covered, nor do
they generally exhibit a large degree of runtime adaptability.

We argue that in open environments, in which the environment state informa-
tion is obtained with uncertain timeliness and accuracy, such systems must be
engineered to be adaptable and aware of their operational environment. We must
transition from hard limits to adaptable bounds, from no awareness of the op-
erating environment conditions to an awareness of runtime timing and accuracy
bounds, and from uncertainty to dependable perception and operation.

We previously proposed a generic technique to be aware of, and to depend-
ably adapt to, the varying communication timings of WSNs [10]. Such tech-
nique, based on a stochastic analysis of the runtime latencies of the wireless

Towards Dependable and Stable Perception in Smart Environments 153

network, allows one to overcome the communication uncertainties of these open
environments. In fact, we evaluated the proposed technique and confirmed its
dependability in 802.15.4-based WSNs [11].

In this paper we discuss how similar techniques can incorporate the presence
of sensors with varying margins of error, sensor heterogeneity and value faults,
and how to achieve adaptation stability. We look at the various threats to a
reliable perception of the environment, discuss how they can be mitigated and
how to incorporate such strategies in an efficient architecture to achieve a stable
and dependable perception of the environments, even in the presence of timing
and value faults.

In the following section we start by exploring the desired properties of smart
environments and various threats to a reliable perception.

2 Threats to Reliable Perception

We can identify several properties of smart environments upon which a depend-
able perception of the environment relies. With regard to the values which rep-
resent the current state of the perceived physical environment, or the production
thereof, the following are four important properties.

– Accuracy — reflects the expected or computed margin of error of the con-
sidered value;

– Validity — indicates if the value may be outside of the expected or com-
puted margin of error, due to a value fault;

– Timeliness — the ability to produce and deliver the desired value within a
given deadline;

– Efficiency — the relation between the amount of resources expended and
the accuracy, validity and timeliness of the obtained value.

These properties are not completely orthogonal but, as defined here, are useful
constructs to allow reasoning about the threats to a reliable perception of the
environment.

The properties of accuracy, validity and timeliness will determine the percep-
tion reliability and, therefore, the application performance. The relationship
between these properties of the smart environment and the obtained perfor-
mance is necessarily application-specific. In open environments these properties
will also vary throughout time and space. As such, the reliability of the envi-
ronment perception, and consequent application performance, will depend on:
(1) the performance with which the applications or the smart environment itself
adapt to varying conditions; (2) the stability of the three properties; (3) the
relationship between (1) and (2).

Therefore, we must not only be aware of current environment conditions, but
also of how such conditions can vary throughout time and space. Only that way
can the application or the smart environment avoid adapting to new conditions
more frequently (or faster) than would be optimal for a given application.

Based on this understanding of the requirements to a reliable perception of
the environment, we can identify several threats and challenges to this reliability.

154 L. Marques and A. Casimiro

– The amount of information — with the amount of sensors spread out
throughout the environment expected to grow exponentially, there will be
added pressure on scarce resources like bandwidth (which will likely grow
slower than the amount of information) and computational power (which is
probably even more crucial in small and limited sensors);

– Sensor heterogeneity — the availability of sensors which provide the same
state information with different accuracies, or which provide complementary
state information, is an opportunity for optimization, but can also impair
perception quality if the best information sources are not chosen;

– The variability of information — for mobile systems, the geographical
variability of sensor information can have an impact on performance, by
jeopardizing adaptation stability;

– CPU hardware / software faults — computational faults in the systems
comprising either the smart environment itself or the cooperative systems
can compromise safety, by corrupting sensor information or coordination
information;

– Sensor transducer faults — in a world with a very large number of sen-
sors, possibly from many different manufacturers, it can be expected that
faulty sensor readings are a common occurrence, in absolute terms. The
faults can derive from transducer miscalibrations, transducer aging, envi-
ronmental effects, electromagnetic interferences, and various other sources;

– Communication interferences — both intra-network interferences (net-
work nodes competing for the transmission medium) and external interfer-
ences (e.g. background noise) can threaten reliable environment perception,
essentially by means of timing failures. Value faults can also occur, through
packet corruption, but those faults can be transformed into omissions;

– Network inaccessibility — communication interferences may also lead
the network to temporarily refrain from providing service, even if it is not
considered to have failed. Network inaccessibility can be characterized by
the specification of limits for inaccessibility duration and rate, where the
violation of those limits implies a permanent failure of the network.

– Clock desynchronization — clock drift and other sources of desynchro-
nization can impact distributed sensors, when relying on a notion of global
time;

3 Accurate and Timely Perception

The reliability of the environment perception and consequent application per-
formance will depend not only on the accuracy and timeliness of the sensed
information, but also on the stability of these metrics. In this section we discuss
existing work to achieve value accuracy, fault tolerance and timeliness, and to
what extent these techniques can provide the required properties in a stable way,
or be augmented to do so.

Towards Dependable and Stable Perception in Smart Environments 155

3.1 Timeliness

In the work described in [10], we previously proposed a technique to achieve
probabilistic timely behavior in WSNs. A central assumption of that work was
that although the timing variables had unknown bounds, which in addition could
change at any time due to the open nature of the environment, such bounds were
not completely arbitrary and unpredictable but that, instead, they were prob-
abilistic. Furthermore, we considered that these probabilistic bounds changed
slowly enough compared with the capacity of the application or the WSN itself
to recognize and adapt to new bounds.

In [11] we indirectly evaluated these assumptions in 802.15.4-based WSNs, by
measuring the adaptation effectiveness with regard to the end-to-end latencies,
under a variety of scenarios. We concluded that, even with the adaptation oc-
curring only at the application level (and not at the level of the WSN itself), we
could meet deadlines with the desired probability, plus or minus a small margin
of error (generally 1 or 2%, with some scenarios having a maximum margin of
slightly over 5%).

There are three important issues to adaptation stability which this work did
not cover. One is that these deadline fulfillment metrics are long-term averages;
the work in [11] did not focus on the short-term variability. A second is that it
was assumed that an application could adapt instantly after the new network
behavior was recognized. Yet a third is that we had devised this technique mostly
with stationary WSNs in mind.

Regarding this last point, notwithstanding our initial assumptions, in our
evaluation we verified that the proposed technique was effective not only in
stationary networks but also when sensor mobility was introduced. Despite the
significant additional dynamics, we observed only a small increase in the margin
of error of the probability of deadlines being fulfilled. In networks with more
spatial heterogeneity and/or faster node movement it might be necessary to
take proactive measures to assure that adaptation stability remains.

Regarding the short-term stability of the deadline fulfillment probability, al-
though this was not specifically tested we informally observed that there were no
significant variations from period to period. If stronger guarantees are needed,
one option that is likely viable is to dynamically change the WSN behavior to
adjust at runtime the amount of resources expended, to decrease variability. The
challenge is how to do this in a decentralized and efficient way.

Likewise, while applications may not be able to adapt instantly, especially
if they are far away from the source of network disruption, having the adapta-
tion occur at the level of the WSN will likely be an effective strategy to assure
temporal stability of timing bounds.

In fact, one of our conclusions from our evaluation in [11] supports the ef-
fectiveness of this strategy. We observed that in more complex networks, with
more sources of uncertainty, we achieved (seemingly paradoxically) better adap-
tation effectiveness than in simpler networks. The reason for this is that all of
these sources of uncertainty can average out. Hence, in future smart environ-
ments, with large amounts of sensors and network nodes, we can expect that

156 L. Marques and A. Casimiro

decentralized network-level adaptations will be highly effective in smoothing out
short term timing variabilities.

3.2 Accuracy and Value Faults

In traditional embedded systems, the type and number of sensors are predeter-
mined according to the application requirements, and therefore fault masking
can be planned in a straightforward manner using the sensors’ manufacturer
specification sheet. In smart environments the amount and type of available
sensors is unknown at design time and can vary unpredictably. Therefore, the
accuracy and fault behavior cannot be assumed in such a black box style, but
must instead be checked and enforced at runtime.

An architecture for a dependable distributed sensor system is described in [12],
which allows for an efficient detection and masking of common types of sensor
faults. This architecture integrates a set of ideas that were previously developed
in isolation into a coherent and unifying concept. We here review some of the
underlying concepts and its suitability to be extended into an architecture for
accurate, timely and stable environment perception.

One strategy to implement fault detection is through the classical paradigm
of hardware replication. The work presented in [13] had previously identified the
necessary number of sensors to tolerate different types of transducer faults; a
different method was described in [14], based on maximizing the consistency of
sensor fusion results.

Another strategy is to detect anomalous values from a single sensor, by com-
paring the sensor output to a model of the system and noticing discrepancies, or
through a signal analysis of the sensor output; different approaches to implement
this are detailed in [15], [16] and [17].

The distributed sensor architecture proposed in [12] combines ideas from these
different approaches, by performing each kind of fault checking as close as pos-
sible to the source of error, for efficiency. This architecture follows the model
of distributed fusion architecture, which had already been developed but which
generally do not consider fault tolerance [18], extending previous work on fault-
tolerant sensors [19].

This architecture performs a series of tests and, in the end, outputs sensor
values together with a measure of their validity, which is a computed probability
of the respective value being faulty. This final validity is a combination of the
computed probabilities for each of the possible fault types.

One important aspect of this architecture is that it seems to be compatible
with the technique proposed in [10] to achieve probabilistic real-time guarantees.
For instance, regarding the distributed sensor fusion, the architecture does not
specify any particular protocol for the dissemination and aggregation of sensor
values, and therefore does not introduce incompatibilities with real-time network
protocols. Also, no specific algorithms are mandated for the local transducer
fault checks, so the algorithms can be chosen considering on their impact on
timeliness, for example based on their worst-case execution times.

Towards Dependable and Stable Perception in Smart Environments 157

The architecture considers that the accuracy and fault model of the sensors
is discoverable but does not contribute mechanisms to assure the provision of
specific accuracy or fault probabilities. There are two considerations here for
adaptation stability. One is that, even in stationary networks, the identified
fault probability can (and will likely) vary throughout time. This can happen
either because of changes in the sensor themselves or because of variations in the
amount and type of aggregated sensor information. The other is that, in scenarios
of mobility, such as vehicular scenarios, the quality of sensor information will
likely vary spatially.

3.3 Adaptation Stability and Application Performance

We consider that an adaptation is stable for a given application if another adap-
tation will not be required, with a given probability p, in the immediate interval
δ after it becomes effective. The values of p and δ will vary with the considered
application and desired application performance.

In this subsection we clarify the impact of the adaptation stability in the
application performance through a hypothetical scenario.

Figure 1 illustrates a scenario with moving vehicles and heterogenous percep-
tion quality regions. Vehicle A is shown in its current position (black) and a past
position (grey).

B

AA

QoS region 1 Qos region 2 QoS region 3

C

Fig. 1. Timing Variables (Example)

The operational performance of vehicle B, for instance with regard to the dis-
tance that must be kept to vehicle C, will be depend on the perception quality
and stability that is achievable in QoS region 1. Since vehicles cannot instanta-
neously change their speed, and since frequent speed changes have a cost in terms
of fuel consumption and passenger comfort, the optimal distance will depend on
the expected probability of receiving within a given period sensory updates that
are accurate and valid. If such information is not received then the operational

158 L. Marques and A. Casimiro

performance will have to be degraded, if necessary to the point of switching to
a fail-safe mode (e.g. vehicle immobilization).

Due to the spatial QoS heterogeneity, as vehicles move they will have to adapt
to maintain operational safety and performance. If a more global awareness of
perception quality is available then this adaptation can be optimized to maximize
application performance. For instance, if QoS region 3 has a lower quality and
that information is available in QoS region 1 then the vehicles can preemptively
and gradually transition to the new optimal state, as they approach the region
with lower quality. In particular, an adaptation can be made at QoS region 1
or 2 which is stable enough that, with high probability, no further adaptation is
required when the vehicle reaches QoS region 3.

A possible way to achieve such awareness is for the smart environment partic-
ipants to disseminate their local awareness of perception quality and temporal
stability thereof. With regard to the timeliness, the historical latencies that are
collected already contain information about the temporal variability of network
latencies. In terms of sensor accuracy and validity, the distributed sensor fusion
architecture should be extended to collect historical information and to compute
the probability of valid updates being received within a period.

There are several challenges to an effective and efficient dissemination of the
achievable perception quality information. For instance, in Figure 1 we can ob-
serve that the perception quality achievable in region 3 can be disseminated to
other vehicles either directly by vehicle A or indirectly, by using the road-side
infrastructure. Which is the best choice can depend on a wide variety of factors.
If bandwidth is particularly scarce, then it might be more efficient for vehicle
A to directly communicate with vehicle B. If vehicle A is moving slowly, then
it might be preferable for the information to be disseminated through the road-
side infrastructure, so that it is available in a timely manner, before vehicle B
is too close to region 3. If multiple applications can benefit from that informa-
tion, then it might be preferable to use the road-side infrastructure as a central
hub of dissemination. Also, we can expect vehicles to host and support specific
applications, while a smart environment sensor infrastructure can be expected
to be more general purpose. Therefore, while vehicles might be preprogrammed
to disseminate the quality of certain specific environment attributes, the generic
environment sensors will have to learn what information is most beneficial to
surrounding applications.

A more specific consideration is how to predict future sensor validities based on
the disseminated past sensor information and/or validities. The non-parametric
approach, based on order statistics, used in [10] may not be (fully) applicable to
this task. It will be necessary to evaluate what model best approximates the vari-
ations over time of such validities. This model will have to integrate an awareness
of both (1) how likely a fault is to occur in a specific sensor value, given past faults,
and (2) how likely a valid value is to be available until a given deadline, given what
fusible sensor values are expected to arrive.

Towards Dependable and Stable Perception in Smart Environments 159

4 Towards an Architecture for Dependable and Stable
Environment Perception

Although no specific architecture is proposed in this paper, from the issues pre-
viously examined we can start enumerating components, services, design aspects
and guiding principles that should comprise an architecture for dependable and
stable environment perception.

In general, we suggest an architecture which uses fault-tolerant distributed
sensor fusion to handle sensor accuracy and faults, that has an awareness of net-
work latencies, and where the communication deadlines can be probabilistically
assured by dynamically varying the amount of resources expended by the net-
worked sensors of the smart environment, to counteract network and application
dynamics.

The CPU hardware and/or software faults which change sensor values can be
dealt with by enforcing fail-silent behavior. Other techniques can be compared
for efficiency and performance in different scenarios, such as value voting and
the elimination of outliers.

The threat introduced by network inaccessibility can be dealt with using spe-
cialized techniques, as has already been done for other kinds of networks [20][21].
These techniques can be compared for efficiency and performance with using re-
dundant networks paths, which are unlikely to suffer of inaccessibility at the
exact same times.

Clock synchronization is assumed in both the probabilistic timeliness solution
and in the fault-tolerant distributed sensor fusion architecture. Such clock syn-
chronization can be achieved by using algorithms specially optimized for smart
environments. There already exist algorithms optimized for WSNs [22][23]. These
can be improved upon to take into consideration factors that would be specific
to an architecture for smart environments. For instance, synchronization accu-
racy may not need to be homogenous; it may be more efficient for the accuracy
to be relatively better between nodes which are more relevant for sensor fusion,
which may rely on the transformation of sensed values according to the elapsed
time, as considered in [12]. Also, an awareness of network latencies may be ex-
ploited for a more efficient synchronization algorithm, at no additional cost if
this information is already collected to assure timeliness.

There are many ways to mitigate network interferences [24]. To the extent
that such interferences are not unpredictable they will not have an impact on
timeliness, when using the considered probabilistic approach, but instead will
only affect the efficiency of the environment perception. Strategies for improving
that efficiency must not jeopardize timing properties. With regard to fault tol-
erance, the architecture can integrate the provision of timeliness properties with
sensor fusion, so that guarantees of accuracy and validity will not be threatened
by the necessary sensor information not being available in a timely manner.

A central aspect of this architecture is the components, protocols and/or
services for the discovery of sensor information, which should work in such a way
that the most beneficial combinations of fusible sensor state are made available.
Another fundamental aspect, as identified in section 3.3, is how to provide stable

160 L. Marques and A. Casimiro

perception quality properties to applications, throughout not only time but also
space.

We propose exploring architectural mechanisms that can efficiently satisfy
both of these aspects. In particular, we propose researching a mechanism for the
decentralized dissemination of both the available sensors and their fault models,
as well as what validity can be achieved in a given spatial region, according to
the combination of perceived network latency conditions, available sensors and
historical sensor validities.

5 Conclusion

The trend is clear that an ever increasing amount of sensors will be part of
the physical environment, eventually culminating in smart environments where
sensors are pervasive. While this presents an opportunity for increased autonomy
and performance of mobile applications, the lack of guarantees offered by these
environments creates a very hard challenge for application dependability and, in
particular, their operational safety.

We identified the main threats to dependability and presented various pos-
sibilities of how both accuracy and timeliness might be achievable in an ar-
chitecture for a dependable and stable environment perception. We built upon
previous work, and explored how to combine and extend one solution devised to
provide probabilistic timeline guarantees and an architecture for fault-tolerant
distributed sensor fusion.

We identified the limitations of these previous efforts in terms of percep-
tion/performance stability, and we suggested various research venues of how
such stability might be supplemented.

References

1. Tolle, G., Polastre, J., Szewczyk, R., Culler, D., Turner, N., Tu, K., Burgess, S.,
Dawson, T., Buonadonna, P., Gay, D., Hong, W.: A macroscope in the redwoods.
In: SenSys 2005: Proceedings of the 3rd International Conference on Embedded
Networked Sensor Systems, pp. 51–63. ACM Press (2005)

2. Szewczyk, R., Osterweil, E., Polastre, J., Hamilton, M., Mainwaring, A., Estrin,
D.: Habitat monitoring with sensor networks. Communications of the ACM 47,
34–40 (2004)

3. Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The Cricket Location-Support
System. In: 6th ACM MOBICOM, Boston, MA (August 2000)

4. Simon, G., Maróti, M., Lédeczi, A., Balogh, G., Kusy, B., Nádas, A., Pap, G.,
Sallai, J., Frampton, K.: Sensor network-based countersniper system, pp. 1–12.
ACM Press (2004)

5. Tsujita, W., Yoshino, A., Ishida, H., Moriizumi, T.: Gas sensor network for air-
pollution monitoring. Sensors and Actuators B: Chemical 110(2), 304–311 (2005)

6. Leonard, N.E., Paley, D., Lekien, F., Sepulchre, R., Fratantoni, D., Davis, R.:
Collective motion, sensor networks, and ocean sampling. Proceedings of the IEEE,
Special Issue on the Emerging Technology of Networked Control Systems (95),
48–74 (2007)

Towards Dependable and Stable Perception in Smart Environments 161

7. Jiang, X., Dawson-Haggerty, S., Dutta, P., Culler, D.: Design and implementation
of a high-fidelity ac metering network. In: Proceedings of the 2009 International
Conference on Information Processing in Sensor Networks, IPSN 2009, pp. 253–
264. IEEE Computer Society, Washington, DC (2009)

8. Basha, E.A., Ravela, S., Rus, D.: Model-based monitoring for early warning flood
detection. In: Proceedings of the 6th ACM Conference on Embedded Network
Sensor Systems, SenSys 2008, pp. 295–308. ACM, New York (2008)

9. Lee, U., Magistretti, E., Zhou, B., Gerla, M., Bellavista, P., Corradi, A.: Mobeyes:
Smart mobs for urban monitoring with vehicular sensor networks. IEEE Wireless
Communications 13(5) (2006)

10. Marques, L., Casimiro, A.: Lightweight dependable adaptation for wireless sensor
networks. In: Proceedings of the 30th IEEE International Symposium on Reliable
Distributed Systems Workshops, 4th International Workshop on Dependable Net-
work Computing and Mobile Systems (DNCMS 2011), Madrid, Spain (2011)

11. Marques, L., Casimiro, A.: Evaluating lightweight dependable adaptation in
802.15.4 wireless sensor networks. Technical report, TR-2012-04, Dep. of Infor-
matics, Univ. of Lisboa, http://docs.di.fc.ul.pt/handle/10455/6873

12. Zug, S., Dietrich, A., Kaiser, J.: An architecture for a dependable distributed sensor
system. IEEE T. Instrumentation and Measurement 60(2), 408–419 (2011)

13. Chen, C., Brown, D., Sconyers, C., Zhang, B., Vachtsevanos, G., Orchard, M.E.:
An integrated architecture for fault diagnosis and failure prognosis of complex
engineering systems. Expert Syst. Appl. 39(10), 9031–9040 (2012)

14. Marzullo, K.: Tolerating failures of continuous-valued sensors. ACM Trans. Com-
put. Syst. 8(4), 284–304 (1990)

15. Koushanfar, F., Potkonjak, M., Sangiovanni-Vincentelli, A.: On-line fault detection
of sensor measurements. In: IEEE Sensors, pp. 974–980 (2003)

16. Isermann, R.: Model-based fault detection and diagnosis: status and applications.
In: Proceedings of the 16th IFAC Symposium on Automatic Control in Aerospace,
St., pp. 71–85 (2004)

17. Doebling, S.W., Farrar, C.R., Prime, M.B.: A summary review of vibration-based
damage identification methods. The Shock and Vibration Digest 30, 91–105 (1998)

18. Makarenko, A., Durrant-whyte, H.: Decentralized data fusion and control in ac-
tive sensor networks. In: Proceedings of the Seventh International Conference on
Information Fusion (2004)

19. Zug, S., Kaiser, J.: An approach towards smart fault-tolerant sensors. In: Pro-
ceedings of IEEE International Workshop on Robotic and Sensors Environments
(ROSE 2009), Lecco, Italy (November 2009)

20. Rufino, J., Veŕıssimo, P., Almeida, C., Arroz, G.: Integrating inaccessibility control
and timer management in canely. In: ETFA, pp. 348–355. IEEE (2006)

21. Souza, J.L.R., Rufino, J.: An approach to enhance the timeliness of wireless commu-
nications. In: The Fifth International Conference on Mobile Ubiquitous Computing,
Systems, Services and Technologies (UBICOMM), Lisbon (November 2011)

22. Li, Q., Rus, D.: Global clock synchronization in sensor networks. IEEE Transac-
tions on Computers 55(2), 214–226 (2006)

23. Yoon, S., Veerarittiphan, C., Sichitiu, M.L.: Tiny-sync: Tight time synchronization
for wireless sensor networks. ACM Trans. Sen. Netw. 3(2) (June 2007)

24. Liang, C.J.M.: Interference characterization and mitigation in large-scale wireless
sensor networks (2011)

http://docs.di.fc.ul.pt/handle/10455/6873

An Approach Supporting Fault-Propagation

Analysis for Smart Sensor Systems

Sebastian Zug, Tino Brade, Jörg Kaiser, and Sasanka Potluri

Otto-von-Guericke Universität Magdeburg
Department for Distributed Systems

Universitätsplatz 2,
39106 Magdeburg

{zug,brade,kaiser,sasanka}@ivs.cs.uni-magdeburg.de

Abstract. Distributed sensor-actuator-systems in automotive or avionic
applications have to fulfill safety requirements strictly. Those implemen-
tation has to be monitored during the development process and on run-
time. For this purpose we presented a data centric fault categorization,
fault representation and measurement validation concept.

In this paper we enhance our approach and describe a fault propa-
gation mechanism suitable for a permanent evaluation of tolerable fault
level. Based on a common fault representation each component is char-
acterized by its effects on the signal validity. As shown in an exemplary
scenario the proposed matrix notation provides a flexible and powerful
method to implement and monitor the fault propagation.

1 Introduction

Many mobile embedded systems rely on the reliable perception of their envi-
ronment as the basis for moving and actuating safely. They recently have been
addressed as cyber-physical systems emphasizing the tight links and loops be-
tween electronic intelligent devices and the physical world. Because more and
more vehicles like smart cars, autonomous transportation systems, service robots
for cleaning, mowing and other housekeeping tasks start sharing the same space
with other such vehicles and humans, the proof for safety has become a deci-
sive requirement for allowing such artifacts to leave their so far well defined and
segregated operational space. Communication opens many desirable but chal-
lenging opportunities. On the perception side, communication offers access to a
rich spectrum of sensors in the environment and on other smart vehicles. Dis-
tributed sensing allows extending the range of perception, the modalities, and
potentially the precision. However, at the same time, it becomes more difficult
to assess the quality of sensor information. For local sensors, the control algo-
rithms can safely assume a certain precision, a sampling rate and an error model.
These assumptions including well-known margins of uncertainty are reflected in
the control loop of the vehicle. A robust control loop tolerates some degree of

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 162–173, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

An Approach Supporting Fault-Propagation Analysis 163

uncertainty. Sensors may have a very subtle behavior in case of a failure. Pro-
viding checks for local sensors or hardening the control algorithm against such
failures is difficult [1]. However for external sensors, this is impossible without
an intimate knowledge of the sensor that is not available a priori in the general
case. Additionally, latencies and omissions of the wireless network put a new
class of uncertainties to sensor information. Therefore we provide an estimate of
the sensor data quality in terms of a validity value together with the sensor data
itself.

The nature of sensor faults and particularly the impact they have on gener-
ated sensor readings is very complex. Ni et. all [2] make a very useful distinction
between a data centric and a system centric perspective on sensor faults. The
data centric view largely ignores the root cause of a fault and analyses the
sensor data according to an anticipated signal behavior, statistical analysis or
assumptions about the environment. In terms of accepted dependability notions,
this approach provides checks against a well-defined sensor error model. This is
also the prevalent approach in control engineering where a robust control al-
gorithm resists some of these erroneous sensor data. A systematic way dealing
with sensor data faults is the FDI approach (Fault detection and isolation). The
system-centric view on the other side tries to identify a root cause of a failure
and forecasts the impact on the respective sensor data. The fault-tolerance com-
munity traditionally takes a system-oriented view on handling faults. Faults are
anticipated, the respective measures for predicting the effects of faults like fault-
trees and Failure Modes and Effects Analysis (FMEA) are performed and fault
handling schemes on the system level are introduced. It should be noted, that
the system-centric analysis is largely an off-line analysis in which the effects and
the propagation of a fault originating from a well-defined root cause is in the
focus of interest. In contrast, the data-centric approach is interested in the valid-
ity of an individual sensor reading and tries to identify faulty data without any
knowledge of the root cause on the basis of the perceived signal properties only.
This perspective is particularly attractive for sensor faults because identification
of the cause of a failure may be very difficult.

As emphasized by Ni et al. these two perspectives are by no means disjoint.
It is a matter of perspective. E.g. an expressive error model may well be derived
from thorough root cause analysis. Faulty behavior however, is analyzed solely
on the basis of the produced data. Additionally, the system centric approach can
be used to build more reliable sensors by dealing with the root cause of failures.

In our paper we take a data centric view. However, we are less interested in
deriving test and analysis methods for sensor data than in the question how we
can exploit the knowledge about test outcomes on the system level. In contrast to
the binary decisions ”good” or ”bad” in the system centric view, the data centric
view rather provides a continuum of usefulness or trustworthiness in sensor data
within some bounds. E.g. sensor readings are typically affected by noise, offsets,
drift and other specific environmental perturbations. However, this does not
mean that they are completely useless. Respective filters and error detection
methods are able to suppress such effects to a large extent. Thus we strive for

164 S. Zug et al.

deriving validity measures for sensor data that are provided with the respective
value itself. This validity estimates can be exploited by remote nodes that fuse
multiple sensor sources for assessment and selection. The validity estimate is
derived from the quality and extent, to which the sensor data is checked for
errors. This issue is discussed in more detail in Sec. 2.

Estimating the validity of a single sensor reading however is only one, although
an important part towards assessing the overall impact of failures to the system.
We consider systems that combine and fuse individual sensor data to generate
higher level, application relevant information. Thus, there is a chain of filters,
estimators, and fusion components which finally produce the desired output
to the control functions. It is therefore important to analyze how errors (and
validity estimates) will propagate through this chain of processing elements and
influence perception quality. Thus the first objective of our paper is to present a
concept providing expressive validity information for sensor data to be used in
a distributed sensor-actuator system. To the best of our knowledge this is not
provided so far elsewhere. Secondly, we try to experimentally verify the usefulness
of the scheme. Because of the many failures possibilities and all their combination
that have to be considered, analytical models seem not appropriate to derive a
deep understanding of the impact of individual failures. Therefore, we propose an
approach based on simulating error propagation. This will require maintaining
information about the checks that were applied to the individual sensor inputs
together with some normalized validity estimation. In our paper we will discuss
the assessment of sensor data validity based on a well-defined fault and error
model. The basic idea is to map the complex behavior of a sensor failure to a
normalized model of sensor data validity. We call this failure semantics following
the ideas of Christian [3] defining a classification for distributed system failures.
Subsequently we discuss the refinement of the model with respect to simulate
error propagation through a chain of processing stages.

2 State of the Art

For a comprehensible handling of the expected different faults we need a uni-
form representation of the error. Because we take a data centric view, the error
level represents the deviation from the correct data value.. Such an abstraction
has to consider two opposing requirements. On one hand, the fault representa-
tion has to provide all relevant information (occurrence probability, effect on the
signal, duration) necessary for a fault effect analysis and fault propagation es-
timation. On the other hand, the abstraction should encapsulate the individual
fault characteristic as far as possible and provide a generic representation.

The established concepts for expressing possible faults and confidence
levels are focused on a compact fault representation. For instance, the
Failure Modes and Effects Analysis (FMEA) [4] implements a classification
scheme that analyzes the processing capabilities and expected fault char-
acteristic. As a result the user gets a single validity value called

An Approach Supporting Fault-Propagation Analysis 165

Risk Priority Number (RPN). The RPN value maps the multiple aspects as oc-
currence, detection probability and amplitude of errors handled by multiple de-
tection mechanisms to a single number between 1 and 1000. Different application
areas (automotive, avionics, automation industries) develop individual standards
that contain a fault description and effect analysis. The ISO 26262 for instance
provides a process model for fault identification and validation [5,6]. The de-
gree of abstraction is high. ISO 26262 defines four Automotive Safety Integrity
Levels (ASIL). An ASIL determines the level of integrity in which a critical func-
tion should be executed. In a transformation step this has to be mapped to the
respective requirements for the architectural components.

In addition to these design-time oriented approaches there exists a number of
fault abstractions for run-time validations. The authors of [7] map all occurring
faults to three meta-models: “Short” indicates a temporal, sudden change of the
measurement signal, “Noise”, encapsulates all stochastic faults and “Constant”
covers all offset variants. Due to the missing specification of the fault amplitude
and occurrence probability, the approach does not provide a detailed fault propa-
gation analysis. More detailed representations are presented in [8,9]. The author
developed an evaluation scheme that maps the current fault state of a node on
a data validity value. The fault characteristic of a measurement is condensed
into a single value validity estimation (16 categories, integer values between 0
and 100). The evaluation value is assigned to each data set. Due to the missing
information about the implemented detection methods those single values are
difficult to interpret and to compare. Does a high validity value indicates the re-
sult of a simple detection method, that is probably unable to recognize a certain
fault or can we assume a set of detectors coverage all expectable faults?

Beside these problems the existing concepts of both domains (run-time, design-
time) do not support a hierarchical or component oriented system view. Due
to the high level abstraction, the values are determined for one specific hard-
ware/software implementation. If the structure is changed, the whole determi-
nation procedure has to be passed once again. In the same way the results are
not reusable on a higher level of system representation. The individual RPNs
of a sensor, controller and actuator system cannot be mixed up to calculate a
common validity value.

3 Concept

As a consequence of the gaps in established fault representation methods we
developed a new fault semantic, combining a system and an event validity [1].
The first one characterizes the expected fault levels and their effect on the sys-
tem output. Its definition is based on the comparison of the node characteristics
(sensors, processor, periphery) with the assigned detection and fault-tolerance
capabilities. At the end, the system validity is to be determined based on the
design-time and it indicates the trustworthiness of a node. In addition to this
hardware oriented view, the event validity summarizes the results of the in-
dividual detection methods. On runtime all fault detection methods generate

166 S. Zug et al.

normalized output that are combined in the event validity. This information is
attached to each measurement. Only in combination of both information an ob-
jective evaluation of each data set is provided [10]. The system validity provides
an evaluation of the event validity and it can be used to identify the detection
methods applied to a measurement. The output of high performance sensor can
be distinguished from a low level sensor with limited fault detection capabilities,
although a similar event validity were generated.

Up to now we determine the system validity with an adapted FMEA-scheme
as a single value. As mentioned in the Chapter 2 such a high level abstraction
do not well support the further processing of the sensor data and particularly,
is not suited for tracing the effects of a fault. In this paper we describe a refined
fault representation and develop a vector representation maintaining the effects
of individual faults. In addition to the sensor data validity assessment it enables
the analysis of fault propagation in a distributed system. This extension allows
a flexible estimation of the system confidence level based on a continuously
automated fault propagation concept. Hence, the developer can monitor the
effect of a new filter, fusion algorithm, improved sensor, etc. immediately.

3.1 Fault Categorization

Every sensor signal suffers from multiple sources of external disturbances and
inherent internal errors resulting in a difference between the observed physical
unit and the captured value [11,12]. The deviation depends on the physical
principles of the perception process, possible external disturbances and on the
hardware characteristics of the sensor node. In a distributed scenario the need
of (wireless) communication causes probably an additional delays, omissions,
missed links, etc. In contrast to other fault definitions, we define each difference
between digital representation and real physical value as a fault. This concept
covers deviations caused by outliers, spikes, offsets, etc. as well as effects of
the processing chain and system specification like saturation, discretization or
constant noise. We need this comprehensive data centric view for generating
a notion of system validity that reflects the impact of all these errors, their
dependencies and inter-relationship.

In Tab. 1 we structure the most relevant (sensor) fault types with respect to
their characteristics into five major divisions (A-E). Within these categories, a
fine grain of classification may still be possible, e.g. an offset may be constant
or a bad calibration or varying over time like temperature dependent offsets.
These differences and the respective detection schemes are however outside the
scope of this paper. For a more detailed discussion of sensor faults the reader is
referred to [1].

Based on this investigation we deduce two generic parameters necessary to
identify the effect of certain fault model:

– The occurrence probability p is a stochastic representation of the frequency
of derivation. For fault models in the last column (E) p becomes 1 related to
the permanent effect of the fault. Fault models assigned in one of the other
columns have a value in between 0 and 1.

An Approach Supporting Fault-Propagation Analysis 167

– Similar to the FMEA or its variants, a maximum deviation d indicates the
level of the disturbance. We assume d as the absolute difference between
correct and measured value.

Table 1. Classification of sensor faults according to occurrence characteristics and
knowledge of signal parameter

occurrence pattern

sporadic periodic static

te
m
p
o
ra
l
ex

te
n
si
o
n

sh
o
rt

A1 omission B1 time-correlated N.A.

A2 outliers glitches

A3 spikes
...

...

lo
n
g

C1 stuck-at D1 periodic E1 drift

C2 node crashes perturbation E2 noise

C3 permanent E3 delay

network failures E4 offset
...

...
...

Each fault model (A1-E4) is defined by a tuple [p, d]i. For further processing
we organize these 12 parameter sets in two separate vectors p and d whereby
the position index is associated with a concrete fault model (A1=1 . . .E4=12
element). If a certain fault model is not relevant for a sensor, the corresponding
entry is set to 0 in the p vector. Accordingly, the size of both vectors is constant.

Table 2. Shortened representation of an exemplary set of vectorized faul parameters

Fault models Sensor faults Requirements

Occurrence
probability

Maximum
deviation

Occurrence
probability

Maximum
deviation

pS dS pR dR
...

...
...

A2 Outlier 0.037 16 cm 0.01 3 cm
...

...
...

E2 Constant noise 1.0 1.6 cm 1.0 0.3 cm

E4 Constant delay 1.0 40 ms 1.0 5 ms
...

...
...

The white columns of Tab. 2 illustrate the utilization of the vector fault rep-
resentation in a concrete case. They contain the set of fault parameters defined

168 S. Zug et al.

for the popular IR distance sensor GPD120[13] that, although popular suffers
from a number of deficiencies (precision, noise, energy consumption, sensitivity
to external light, etc.). Related to a previous careful investigation of this sensor
type we experimentally obtained values for the entries of the occurrence proba-
bility pS and maximum deviation dS vector. The subscripted “S” indicates the
fault vectors as assigned to a sensor output. Fault model A2 (outliers) occurs in
3.7 % of all measurements. The maximum deviation is quite high with 18 cm.
Beside the temporary outliers two fault models effects the perception process
permanently, the constant measurement noise and a constant delay (E2, B3). It
is remarkable, that for the last entry the deviation d contains a time value and
not a distance. The other elements of the vectors are set to zero. All parameter
sets of a sensor can be stored in a electronic data sheet that accompanies the
development process [14].

3.2 Fault Propagation

Each application component demands a certain validity level (maximum devi-
ation, noise, delay, etc.) for its inputs. If a measurement or a signal does not
meet these requirements, the system is not able to fulfill its tasks. In control
applications for instance the algorithms expect a certain range of measuring age
and noise level. A data set out of the specification range cannot be tolerated
and the system could result in an uncertain state. For this reason, the devel-
oper has to integrate a number of appropriate methods to close the gap between
the quality level of a component and the requirements of the other one. In case
of the mentioned control loop, the developer has to implement filters and an
estimator to provide smooth and approximated measurements without a delay.
The knowledge about the requirements and the appropriate algorithms has to
be realized by the developer. A proof that the measurement quality meets the
request has to be done in an elaborate evaluation.

The systematic adjustment of measurement quality and tolerable faults needs
an abstract specification of the requirements. Our detailed description of the
fault characteristics in a vectorized representation is very well suited for these
requirements. The gray columns of Tab. 2 depict an example of a character-
istic set of parameters. These concrete values are derived from a distributed
robotic scenario, where the measurements of a GP2D120 sensor node are used
for a robot trajectory control. If the distance measurements do not follow the
definitions in Tab. 2, the robot shows quite abrupt moves that disturbs other
sensors systems (odometry, acceleration sensors, gyroscopes). Comparing the
white columns (sensor specification) and gray columns (control requirements) in
Tab. 2 it becomes clear, that the cheap distance sensor cannot fulfill the quality
demands without appropriate filter mechanisms. The amplitude of outliers for
instance has to be reduced by a factor of 5. Consequently, the vectors pS and
dS represents the starting point and the entries of pR and dR the intended fault
characteristic at the end point of the processing chain.

According to this idea, the changes of the signal characteristic by filters, fusion
algorithms, communication, etc. has to be monitored permanently. With such

An Approach Supporting Fault-Propagation Analysis 169

fault propagation the influence of a component on the common fault character-
istic can be analyzed and evaluated. The propagation concept has to fulfill two
tasks. Firstly, it has to provide the mapping of an input with an output fault
vector. Secondly, a metrics is needed for a comparison of the output fault vector
of the last component with the requirement vector. Both aspects are discussed
in the following paragraphs.

The mathematical mapping of an input fault vectors pold and dold with output
fault vectors pnew and dnew can be applied in different ways. Related to the vector-
ized fault representationwe choose a matrix multiplication based on homogeneous
coordinates. Such a transformation is used in projective geometry and allows espe-
cially a scaling and shifting of a vector entry in one operation. Following this idea
each component is characterized by a set of two matrices [Mp,Md]. Each of them
has a size of 13x13 elements related to 12 fault models. One additional column and
row is necessary to provide an additional bias for the resulting value. For instance,
if the processing duration of a calculation increases the age of a measurement, the
additional delay can be considered in the matrix Md.

The output fault vectors are calculated by pTold ·Mp = pnew and dTold ·Md =
dnew. For a chain of multiple components the equation can be extended to

pTold ·M1
p ·M2

p · . . . ·Mn
p = pnew (1)

dTold ·M1
d ·M2

d · . . . ·Mn
d = dnew

The following paragraphs illustrate the different mapping situations using the
developed concept. For a comprehensible representation we reduce the fault vec-
tors pold,dold,pnew and dnew to the fault models – outlier, constant noise and
constant delay – shown in Tab. 2. Accordingly, the example-transformations
matrices Mp and Md contain 4x4 instead of 13x13 entries:

No effect. The component does not influences the occurrence probability or devi-
ation of a fault model. This relation is indicated by a single 1 on the main diagonal
in the assignedmatrix column. As shown in Equ. (2) the new entry for pnoise in the
fault probability vector is calculated by poutlier · 0 + pnoise · 1 + pdelay · 0 + 1 · 0 =
pnoise. The concrete transformation matrixMp represents probably a gradient fil-
ter that detects outliers but do not smooth the measurement signal.

Proportional transformation. This effect is visible in the first column of the
transition matrix in Equ. (2). The single value of 0.1 in Mp shows the reduction
of the occurrence probability for outliers by a factor of ten.

⎡
⎢⎢⎣
poutlier
pnoise
pdelay
1

⎤
⎥⎥⎦
T

old

·

⎡
⎢⎢⎣
0.1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
poutlier
pnoise
pdelay
1

⎤
⎥⎥⎦
new

(2)

Elimination. If a filter works perfectly, it provides the complete elimination of
a fault model. In this case the hole column of the matrix is set to zero.

170 S. Zug et al.

Static offset. Beside a proportional relations between input and output indepen-
dent additional offsets can be quantified in homogeneous coordinates. Equ. (3)
gives an example for the transformation of a derivation vector d. The old delay
entry ddelay is increased by a constant value ddelay · 1 + 1 + 0.2ms. The bias of
0.2ms is just an example and can be caused by the runtime of the algorithm,
communication delays, etc.

If the proportional parts of the transformation are set to zero, the output fault
vector shows a constant entry for this fault model. Related to the delay such a
behaviour is needed in case of an estimation filter using “old” measurements to
approximate a current value.

⎡
⎢⎢⎣
poutlier
pnoise
pdelay
1

⎤
⎥⎥⎦
T

old

·

⎡
⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0.2ms 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
poutlier
pnoise
pdelay
1

⎤
⎥⎥⎦
new

(3)

Interference. The last transformation category addresses the mutual interfer-
ence between different fault models. Following our sensor example we assume
now another outlier filter with a smaller trustworthiness. The limited detection
capabilities are visible by the proportional ratio of 0.3 in Equ. (4). Addition-
ally, the detection result is influenced by another fault model, the measurement
noise made a correct evaluation difficult. Hence, the new outlier probability is
calculated by poutlier · 0.3 + pnoise · 0.1 = poutlier .

⎡
⎢⎢⎣
poutlier
pnoise
pdelay
1

⎤
⎥⎥⎦
T

old

·

⎡
⎢⎢⎣
0.3 0 0 0
0.1 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
poutlier
pnoise
pdelay
1

⎤
⎥⎥⎦
new

(4)

The examples mentioned above contain single transitions only. If more than one
component are integrated in a processing chain, the transition mechanisms of
Equ. (2)-4 have to used as shown in Equ. (1).

The resulting fault vectors (p, d) should be continuously compared to the
requirement vectors (pR, dR). At the moment we assess a system configuration
as valid if all entries of p and d are smaller than pR and dR. Future research will
focus on more elaborate metrics for the evaluation process.

4 Example

In this section we want to apply the mechanisms described in the previous sec-
tion on a concrete implementation integrating a GP2D120 distance sensor. As
already mentioned, the measurement quality of this sensor type does not meet
the requirements of the control application. The related fault vectors (pS , dS)
and (pR, dR) are visible in Fig. 1 on the left and right side. For practical reasons,
the vectors contain only the relevant entries. The example scenario includes a

An Approach Supporting Fault-Propagation Analysis 171

Sensor Outlier
Filter Network Controller

0.037

1.0

1.0

1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

pS

Outlier
Noise
Delay

1

16cm

1.6cm

40ms

1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

dS

Outlier
Noise
Delay

1

0.02

1.0

1.0

1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

p

2.9cm

1.6cm

42ms

1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

d

0.01

1.0

1.0

1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

pR

≤
?

3cm

0.3cm

5ms

1

⎡
⎢⎢⎣

⎤
⎥⎥⎦≤

?

dR

0.54 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

M1
p

0.18 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

M1
d

1 0 0 0

0 1 0 0

0 0 0 1

0 0 0 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

M3
p

1 0 0 0

0 1 0 0

0 0 1 2ms

0 0 0 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

M3
d

Sensor specific
fault vectors

Requierment
vectors

Resulting
vectors

(a) Simple sensor node without appropriate filter strategy

Sensor Outlier
Filter FIR Network Estimator Controller

0.037

1.0

1.0

1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

pS

Outlier
Noise
Delay

1

16cm

1.6cm

40ms

1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

dS

Outlier
Noise
Delay

1

0.01

1.0

1.0

1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

p

2.1cm

0.19cm

4ms

1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

d

0.01

1.0

1.0

1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

pR

≤
?

3cm

0.3cm

5ms

1

⎡
⎢⎢⎣

⎤
⎥⎥⎦≤

?

dR

0.54 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

M1
p

0.18 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

M1
d

0.4 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

M2
p

0.37 0 0 0

0 0.11 0 0

0 0 1 0

0 0 0 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

M2
d

1 0 0 0

0 1 0 0

0 0 0 1

0 0 0 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

M3
p

1 0 0 0

0 1 0 0

0 0 1 2ms

0 0 0 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

M3
d

1.25 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

M4
p

1.9 0 0 0

0 1 0 0

0 0 0.09 0.1ms

0 0 0 1

⎡
⎢⎢⎣

⎤
⎥⎥⎦

M4
d

(b) Sensor node with suitable measurement quality

Fig. 1. Application example of the fault-propagation concerning different variants of a
sensor-filter-controller chain

communication component beside the filter and detection methods. The behavior
of the network is represented with the homogeneous coordinates.

The mismatching contents of p, d, pR and dR make an additional effort in
signal conditioning and filtering necessary. Fig. 1 illustrates two different pro-
cessing chains for this scenario. In Fig. 1(a) the sensor measurements are locally
filtered for outliers, communicated via a network and used as an input for the
control algorithm. We determine the transition matrices (Mp,Md) of these steps
– gradient based outlier detection and network communication – based on a
Matlab/Simulink implementation. The fault effects and the corresponding ma-
trix entries are investigated using a set of recorded distance measurements. The
outlier filter cuts the respective outlier probability nearly to halve of the original
value. Additionally, it reduces the maximum deviation significantly. The network
related transformation has an effect only on the delay entry. Due to the fact that
a constant communication delay is assumed, those probability is set to fixed to
“1”. The delay entry in the deviation vector increases by 2 ms as visible in M3

d .
The fault vectors of the network output (p, d) can be calculated according to
Equ. (1) by pTS ·M1

p ·M3
p = p and dTS ·M1

d ·M3
d = d. Obviously, the fault level

of possible outliers meets the controller requirements but the amplitude of the

172 S. Zug et al.

measurement noise is too large. Accordingly, the age of the measurements cannot
be tolerated from the application.

Consequently, the developer designs a second implementation as shown in
Fig. 1(b). He integrates an additional smoothing filter on the embedded sensor
node and implements an estimator in front of the controller. The first one, a
Finite Impulse Response Filter (FIR) is responsible for the reduction of noise
level. Additionally, it effects the remained outliers as visible in M2

d . At this stage
the deviation level is decreased by doutlier · 0.18 · 0.37 = doutlier . The maximum
noise level is reduced by the factor 0.11 after the FIR filter. The communication
component shows the application independent behavior as described in the para-
graph before. The new estimator applies a mathematical model to predict the
measurement results to minimize the age of the samples. Due to uncertainties
in the model the probability of outliers (and other fault categories) increases,
but the delay is limited by tenth with a small offset. The comparison of the
output fault vectors of the estimator with the requirement vectors shows the
applicability of the intended processing chain. The developer made a good job.

The presented fault propagation helps to evaluate the expected fault probabil-
ity and deviation systematically. If one or more components should be replaced
by a new one, we are able to monitor the consequences immediately.

In case of a missing transition matrix set, it has to be determined in a first
step. For this purpose we add the fault characteristic in our data sheet concept
embedded in Matlab/Simulink [14]. The combination of an abstract fault rep-
resentation with the simulation capabilities of Matlab/Simulink will provide an
automated calculation of the transition matrices.

5 Conclusion

The fault propagation analysis presented in this paper complements and extends
the fault handling strategies for distributed sensor-based applications. The data-
centric concept of system and event validity developed for run-time assessment
of sensor faults is now exploited for design-time evaluation of a specific system
configuration. The development process can be monitored according to a require-
ment vector set that defines the fault-tolerance level of a certain component.

For large applications a multitude of requirement vectors can be embedded
on different layers. The concept provides a multi-level evaluation of the assigned
output fault vectors. Future work will strive for developing a respective frame-
work in Matlab/Simulink.

Acknowledgment. This work has partially supported by the EU under the
FP7-ICT Programme, through project 288195 “Kernel-based ARchitecture for
safetY-critical cONtrol” (KARYON).

References

1. Zug, S., Dietrich, A., Kaiser, J.: Fault-Handling in Networked Sensor Systems.
Concept Press Ltd., St. Franklin (2012)

An Approach Supporting Fault-Propagation Analysis 173

2. Ni, K., Ramanathan, N., Chehade, M., Balzano, L., Nair, S., Zahedi, S., Kohler,
E., Pottie, G., Hansen, M., Srivastava, M.: Sensor network data fault types. ACM
Transactions on Sensor Networks (TOSN) 5(3), 1–29 (2009)

3. Cristian, F.: Understanding fault-tolerant distributed systems. Communications of
the ACM 34, 56–78 (1991)

4. Stamatis, D.H.: Failure Mode and Effect Analysis: FMEA from Theory to Execu-
tion, 2nd edn. ASQ Quality Press (April 2003)

5. ISO 26262-3: Draft International Standard Road vehicles – Functional safety - Part
3: Concept phase. ISO, International Organization for Standardization (2009)

6. Hillenbrand, M., Heinz, M., Adler, N., Matheis, J., Muller-Glaser, K.: Failure mode
and effect analysis based on electric and electronic architectures of vehicles to
support the safety lifecycle ISO/DIS 26262. In: 21st International Symposium on
Rapid System Prototyping (RSP 2010), pp. 1–7. IEEE (June 2010)

7. Sharma, A., Golubchik, L., Govindan, R.: On the prevalence of sensor faults in
real-world deployments. In: 4. Conference on Sensor, Mesh and Ad Hoc Commu-
nications and Networks, SECON 2007, pp. 213–222. IEEE (2007)

8. Sukumar, S., Bozdogan, H., Page, D., Koschan, A., Abidi, M.: Sensor selection
using information complexity for multi-sensor mobile robot localization. In: Inter-
national Conference on Robotics and Automation, pp. 4158–4163. IEEE

9. Elmenreich, W., Pitzek, S., Schlager, M.: Modeling Distributed Embedded Appli-
cations on an Interface File System. In: Proceedings of the Seventh IEEE Interna-
tional Symposium on Object-Oriented Real-Time Distributed Computing (ISORC
2004), Vienna, Austria, pp. 175–182 (2004)

10. Kaiser, J., Zug, S.: A fault-aware sensor architecture for cooperative mobile applica-
tions. In: 17th IEEE Workshop on Dependable Parallel, Distributed and Network-
Centric Systems, Shanghai (May 2012)

11. Kopetz, H.: Real-Time Systems: Design Principles for Distributed Embedded Ap-
plications. Springer (April 1997)

12. Dietrich, A., Zug, S., Kaiser, J.: Detecting External Measurement Disturbances
Based on Statistical Analysis for Smart Sensors. In: Procedings of the IEEE Inter-
national Symposium on Industrial Electronics (ISIE), pp. 2067–2072 (July 2010)

13. Sharp Cooperation: GP2D120 Data Sheet (2007),
http://sharp-world.com/products/device/lineup/data/pdf/datasheet/

gp2y0a21yk e.pdf

14. Brade, T., Schulze, M., Zug, S., Kaiser, J.: Model-Driven Development of Embed-
ded Systems. In: 12th Brazilian Workshop on Real-Time and Embedded Systems
(WTR). Brazilian Computer Society, Gramado (2010)

http://sharp-world.com/products/device/lineup/data/pdf/datasheet/gp2y0a21yk_e.pdf
http://sharp-world.com/products/device/lineup/data/pdf/datasheet/gp2y0a21yk_e.pdf

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 174–179, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Use of Quality Metrics for Functional Safety
in Systems of Cooperative Vehicles

Kenneth Östberg and Rolf Johansson

SP Technical Research Institute of Sweden, Borås, Sweden
{kenneth.ostberg,rolf.johansson}@sp.se

Abstract. Looking at functional safety of vehicles, we have seen an evolution
from federated to integrated E/E architectures. When extending the way of
specifying and analysing functional safety to also address cooperative function-
ality, it is not possible to keep a static view of the boundaries of the system for
which to ensure safety. This is because the set of vehicles realizing a coopera-
tive function may change a lot during the execution of the cooperative function.
In this work in progress paper we suggest to move part of the task to show
safety, from design time to run time. This implies that it will become necessary
to monitor the system at run time, continuously calculate its quality and share
that information between the individual vehicles to assert that the system is
safe. In order to accomplish this, appropriate metrics are needed, both during
design time and run time. Inspired by information theory, this paper sketches
some common properties for metrics, and indicates how that can be beneficial.

Keywords: Safety, Redundancy, Quality, Software metrics.

1 Introduction

It is foreseen that in the near feature autonomous functionality in vehicles will allow
the dynamic formation of collective groups for collaboration and the realization of
services beyond the ability of isolated vehicles, e.g. group vehicles into a road train
(platoon). Also in the aircraft domain different kinds of cooperative functionality are
currently investigated. The problem discussed in this paper is the safe implementation
of this kind of cooperative functionality, while still fulfilling commercial constraints.

When claiming functional safety, it is important to understand from where the un-
derlying evidence and arguments have to be found. Di Natale and Sangiovanni-
Vincetelli elaborates in [5] on the trend from federative to integrated architectures. In
the former a number of control units realize “mostly independent or loosely intercon-
nected functions”. This means that when constructing a safety case for a functionality,
most (all) of the needed pieces of evidence and arguments can be found in the realiza-
tion of a dedicated system of sensors, control unit, and actuators. In the integrated
architecture, the functionalities can all be distributed and share resources with one
another. This means that pieces of evidence and arguments are shared, and that there
might be complicated dependencies between the separate efforts to prove the safety of

 Use of Quality Metrics for Functional Safety in Systems of Cooperative Vehicles 175

the different functionalities realized by the same architecture. As pointed out the ad-
vantages of integrated architectures are extensibility, flexibility and modularity. But
they also require more when it comes to functional safety, for example in regard to:
semantics of component models, and new methods and tools for analysing results of
composition. In the avionics domain the driver for the integrated architecture is IMA,
and in the automotive domain it is AUTOSAR.

From a functional safety perspective, it is critical to distribute safety requirements
among suppliers (in several tiers), and also to collect evidence and arguments from
the different organizations, in order to be able to build a safety case. [3] describes a
pattern for how to model safety requirements for this purpose. This expands the gen-
eral modelling support for functional safety of complex automotive designs that are
presented in [2]. The pattern of distributing responsibilities for enabling safety-critical
complex systems has been discussed in many papers. Bate et al [1] described this as
design and safety contracts, putting the thoughts of Meyer [4] into a safety context.

Building vehicles for cooperative functionality is yet one step further beyond the
integrated architecture, and this also requires more than when realizing an integrated
architecture. The design problem for cooperative functionalities is a system-of-
systems problem, where the set of systems may change a lot during run time. Never-
theless, all existing standards for functional safety require a complete safety case at
design time. But for cooperative functions, the set of parts may change at any time,
since the set of systems (vehicles) may change at any time.

One way to prove the safety for one cooperative functionality, would be to build
one complete safety case at design time valid for every possible run time scenario.
This might lead to designs that are commercially unattractive. Another approach
would be to take into account the possibility of graceful degradation of each function-
ality, and view each step of degradation as a safety case of its own. Then we could
move from design time to run time, part of the task of showing that all safety
requirements always are met. This implies, however, that we can express which prop-
erties of the parts of the system-of-systems that are of importance for fulfilling this
during run time. What is proposed in this paper is that traditional design time methods
have to be complemented by run time methods. An enabler for run time methods
would be to introduce quality metrics that can be used for arguing which levels of
safety integrity that are achieved (and how they change) during run time.

2 Basic Concept of Information Theory

Information theory is a mathematical theory about communication, focusing on
source coding and channel coding (and decoding) i. e how to code information effi-
ciently when it is sent over a noisy communication channel. Source coding is about
data compression and channel coding is about error coding. To be able to make these
calculations it is necessary to quantify the concept of information in some way. In IT
the word information is a measurable quantity and is related to events and their prob-
ability. There are two aspects of information. Mutual information is related to the
communication between a sender and a receiver and includes aspects of redundancy.

176 K. Östberg and R. Johansson

Self-information is related to the probability of a single event X. By starting with the
concept of self-information and extending its scope, there is hope that the concept of
mutual information will later on be useful to express redundancy in a system. IT can,
at least, serve as an inspirational source and give a deeper understanding of how in-
formation quality, redundancy and probability can be treated in a uniform way.

In IT, self-information is described with a simple formula (1) where I (X) denotes
self-information for event X. It has no unit and its domain is [0, 1] and a range of
[infinity, 0].

 I (X) = -log2 Probability_of (X) (1)

If the probability of X is 100 % the self-information becomes:

 I (X) = -log2 1 = 0 (2)

If the probability is approaching 0% self-information approaches infinity. Self-
information can be interpreted as how surprised one becomes when event X happens
or how much information one can obtain from the event. If event X has a probability
of 100% to happen then there should be no surprise about it, thus its self-information
is 0. The more unsure one becomes about the event, the more information can be
gained from it. In [6] Kaiser and Zug elaborate on ideas about quality metrics and
self-assessment for sensor data. Our idea is to extend the scope of self-assessment to
denote all types of metrics dealing with quality measurements related to a single ob-
ject, both during design time and run time.

We believe that (1) has interesting properties that can be applied to quality metrics
in general. To get a better understanding of (1), let us look at information from two
different aspects: a spatial view and a temporal view, fig 1.

Fig. 1. Spatial and temporal noise

In general, when information is sampled by a sensor we get a quantizing error or
quantizing noise. There is also some form of noise in the temporal domain, e.g. phase
noise due to an imperfect clock signal. The terms information and sensor are to be
taken very broadly. A lower quantizing noise means better quality. The same goes for

 Use of Quality Metrics for Functional Safety in Systems of Cooperative Vehicles 177

the temporal domain. If these two error sources or noises were absent the information
would be of the “highest quality”. These two sources of noise are part of the probabil-
ity function for failure in a communication channel. Low noise increases the probabil-
ity of correct transmission, which in turn can be viewed as high quality. Quality can
be measured as “the absence of bad”, or the relation between what is considered good
in a measurement and what is considered fault, annoyance, disturbance, missing or
noise. If two quality metrics are independent as the case above with quantizing noise
and phase noise, it can make sense to combine them into a single metric. From these
arguments it seems reasonable to have zero to indicate the highest quality, or absence
of bad, and infinity to indicate the lowest quality, or absence of good for a metric. The
operation of addition to combine metrics will then preserve the notion of highest qual-
ity as well as lowest quality. It will also be simple to weight the metrics before addi-
tion with multiplication of scaling factors. From this point of view we suggest to
extend the use of formula (1) to not only be a quantity of probability but any relative
quality measure of something good (3).

 M(X) = -log2 Probability_or_ Percentage_of_something_good (X) (3)

Formula (3) and (1) are indeed the same. The only difference is that its domain is not
restricted to the probability of an event, but rather any metric related to quality is ex-
pressed in a uniform way. This will put zero as the common reference value for
“highest quality”. The value is unit less and can thus be mixed freely if needed. Se-
lecting a good common reference point is important since it can impact the simplicity
of calculations and give better semantics to standard operators. Defining quality as
“absence of bad” turns quality metrics into being additive in same way as noise is
additive in a communication channel.

The use of quality metrics is not only useful during run time in regard to the safety
aspect, but it is also useful in the design and verification process. To argue that a sys-
tem is safe, it may not be sufficient in the future to rely only on good design practice.
Using relevant metrics during design time will improve quality and this practice has
the potential to be reused during run time. In general, any process or function that
operates on information will at best preserve the quality of incoming information, but
it can never improve the quality unless redundancy is introduced.

3 Functional Safety and Quality Calculations

The concept of functional safety can be described in different ways depending on the
application and on the related safety standard. Most of the standards are elaborating
on the theme “absence of unacceptable risk” where the risk is examined via risk anal-
ysis. Allowing vehicles to cooperate introduces additional risk, but it also provides
means to reduce risk. Cooperative vehicles are likely to have overlapping (redundant)
information. As redundancy is a means to reduce risk, the fact that vehicles are coope-
rating is an enabler for risk reduction. However, in reality the degree of redundancy
may vary a lot during operation (run time) mainly because of the varying availability
of reliable vehicle-to-vehicle communication, and of reliable sensor data.

178 K. Östberg and R. Johansson

When building a safe cooperative system, there are in principle two strategies to
follow. The first one is to make a complete analysis beforehand in which is shown
that the necessary risk reduction is always achieved for the entire mission of the sys-
tem. The second one is to let the system itself calculate the actual available risk reduc-
tion continuously at run time, and adjust the mission in such a way that the achieved
risk reduction is sufficient. This strategy can be seen as graceful degradation, where
the mode of operation is adjusted so that the needed risk reduction always is fulfilled.

The process to determine the needed risk reduction is different between the differ-
ent safety standards, but in principle there is a common idea of required levels of
“safety integrity”. The idea is that the higher level of safety integrity, the surer we are
that there will be no safety-critical failure. In IEC 61508 these are called SIL (Safety
Integrity Level), with SIL4 denoting the highest level. In ISO 26262 they are called
ASIL (Automotive Safety Integrity Levels) with ASILD denoting the highest level.

When applying redundancy in a safety-critical system design, the safety standards
tells you how the required safety integrity of the redundant parts may be lower than
for the required safety integrity of the entire system. In the ISO26262 standard this is
called ASIL decomposition, and there is a defined set of rules (an “ASIL algebra”)
telling possible ways to determine the required safety integrity of redundant architec-
tural elements.

These kinds of rules assume that the redundancy itself can be guaranteed. This
guarantee is required to have at least an integrity level as of the redundant system
itself. If for example there is a requirement on ASILD that is realized by
ASILA+ASILC, the guarantee of the redundancy still have to be ASILD.

In a scenario with cooperative vehicles, it is most likely never the case that the no-
minal redundancy pattern can be guaranteed valid for the entire operation with a high
level of integrity. In order to be able to take benefit from such redundancy in the safe-
ty argumentation, it is thus necessary to measure it continuously during run time. This
requires however that what can be measured by the system itself during run time, can
be transformed into a metrics for safety integrity level according to the applicable
safety standard.

Our hypothesis is that different quality metrics measured during run time can be
used for estimating the achieved level of safety integrity. We can say that we are in a
quest for “an algebra of quality”.

In the end what is relevant is how much we can trust, or be confident, about the in-
formation in the system. Attributes such as standard deviation, degree of redundancy
and probabilities of correct values are important quality attributes. Looking closer at
information theory, IT, one realizes that these attributes are what IT is about. So our
view of (3) is that it transforms a product of probabilities into addition of quality
attributes when producing evidence according to a safety argument.

4 Conclusion

This paper describes work in progress related to enable the extension of safety stan-
dards to deal with cooperative functionalities. To argue the safety of a system consist-
ing of collaborative vehicles, appropriate metrics is needed; both during design time

 Use of Quality Metrics for Functional Safety in Systems of Cooperative Vehicles 179

and during run time. The run time metrics will be used to assert the integrity of the
system continuously during operation and for comparison with the, at design time
identified, required safety integrity levels. These metrics will be shared, compared and
processed in different ways. At the moment, all kinds of metrics that will be needed
for different domains and services cannot be foreseen, but it is possible to assert that
they share some common properties and can be handled in a uniform way. Standard
operators as multiplication and addition will then have simple semantic meaning
when scaling and combining quality indexes. Information theory is based on probabil-
ity and has sound theoretical ground. Its definition of self-information has properties
that are wanted. Safety is also related to probability so it seems natural to try to extend
the scope of self-information to also be about quality metrics.

This paper has focused on quality metrics for safety on a technical ground. Focus-
ing more on quality metrics also has other merits. There exist efforts like ISO/IEC
15504 to evaluate and improve a design process, but their analysis is more based on
manual inspection than processing quality metrics. The work to understand how to
measure and process quality metrics during run time based on design time quality
metrics can hopefully also aid such efforts.

Acknowledgment. This work as been supported by the EU under the FP7-ICT
programme, through project 288195 "Kernel-based ARchitecture for safetY-critical
cONtrol" (KARYON).

References

1. Bate, I., et al.: A Contract-Based Approach to Designing Safe Systems. In: 8th Australian
Workshop on Safety-Critical Systems and Software, SCS 2003 (2003)

2. Chen, D., Johansson, R., Lönn, H., Papadopoulos, Y., Sandberg, A., Törner, F., Törngren,
M.: Modelling Support for Design of Safety-Critical Automotive Embedded Systems. In:
Harrison, M.D., Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS, vol. 5219, pp. 72–85.
Springer, Heidelberg (2008)

3. Johansson, R., et al.: A Road-Map for Enabling System Analysis of AUTOSAR Based Sys-
tems. In: Proceedings of Critical Automotive applications: Robustness & Safety, CARS
(2010)

4. Meyer, B.: Object-Oriented software Construction. Prentice Hall (1988)
5. Di Natale, M., Sangiovanni-Vincentelli, A.L.: Moving From federated to Integrated Archi-

techtures in Automotive: The Role of Standards, Methods and Tools. Proceedings of the
IEEE 98, 603–620 (2010)

6. Kaiser, J., Zug, S.: A fault-aware sensor architecture for cooperative mobile applications.
In: Proc. 17th IEEE Workshop on Dependable Parallel, Distributed and Network-Centric
Systems (DPDNS 2012), Shanghai, China, May 25 (2012)

From Autonomous Vehicles to Safer Cars:

Selected Challenges for the Software Engineering

Christian Berger

Department of Computer Science and Engineering
Chalmers, University of Gothenburg, Sweden

christian.berger@chalmers.se

Abstract. In November 2007, the DARPA Urban Challenge took place
on the former George Airforce base in Victorville, California. Within
that competition, teams from all-over the world had to demonstrate the
autonomous driving capabilities from their robot cars in an urban-like
environment. From initially 89 competitors, only eleven qualified for the
final event wherein “Boss” from Carnegie Mellon finally won the race. In
this article, a short overview over European’s best team “CarOLO” and
its vehicle “Caroline” within that competition is outlined. Based on the
experiences from that competition, remaining challenges for the software
engineering are described to realize safer cars in the future.

Keywords: autonomous driving, automotive safety functions, software
engineering.

1 Introduction

The 2007 DARPA Urban Challenge was the third major challenge for au-
tonomously driving vehicles within the last decade. That competition was the
successor of the 2004 & 2005 DARPA Grand Challenges series wherein robot
cars had to drive safely within stationary surroundings. However, that last com-
petition increased the requirements to these robot cars significantly because they
had to deal safely within moving traffic while they had to obey the Californian
traffic regulations at the same time.

In Fig. 1(a), the robot vehicle “Caroline” from team “CarOLO” of the
Technische Universität Braunschweig is depicted. “Caroline” based on a 2006
Volkswagen Passat station wagon, which was modified to meet the requirements
of the DARPA Urban Challenge [3]. The main idea behind its sensor setup was to
rely on redundant and overlapping viewing areas on the one hand; on the other
hand, different measuring principles were used to avoid a sensor’s individual
weaknesses.

To detected moving traffic, “Caroline” used two IBEA Alasca XT sensors
together with one Hella IDIS Lidar and one SMS UMRR radar, which were
mounted at the vehicle’s front; on the rear side, one IBEO ML, one Hella IDIS
Lidar, and two SMS Blind Spot detectors were used to back out safely from

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 180–189, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

From Autonomous Vehicles to Safer Cars 181

(a) Sensor setup of the autonomously driving
robot vehicle “Caroline”.

(b) Computers in the vehicle’s trunk,
which were used to process the mass
data to derive driving decisions.

Fig. 1. The autonomously driving vehicle “Caroline”–the contribution from the Tech-
nische Universität Braunschweig, which competed in the 2007 DARPAUrban Challenge
as the best European entry ([1,2])

a parking spot. For detecting the lanemarkings, four Point Grey Flea2 firewire
cameras were used [4]. The drivable area in front of the robot vehicle was detected
with an IDS μEye monocular color-camera together with two Sick LMS 291 single
layer laser scanners [5]. All data was processed in the vehicle’s trunk by several
computers, which were running with Debian Linux (cf. Fig. 1(b)).

As shown in Fig. 2, incoming sensors’ data was processed by the pipes and
filters architectural design pattern [7]: The perception layer gathers all data from
the sensors, which includes not only online data that is read from all mounted
sensors, but also a priori available offline data like annotated digital maps. That

Fig. 2. System architecture, which consists of a data perception layer, a decision layer,
and an action layer; the support layer is used to inspect non-reactively the data flows
(according to [6]).

182 C. Berger

layer creates and updates continuously an environmental model, which is the
input for the following decision layer. Within that layer, the model of the sur-
roundings is interpreted and evaluated to derive driving decisions. Therefore, a
short-term planner reacts on the current traffic situation while the long-term
planner tries to achieve the overall goal like reaching the final destination point.
From that layer, set points for the action layer are derived to be driven by control
algorithms. A more detailed description of “Caroline” can be found at [1] and [2].
While the depicted system architecture shows the specific realization of “Caro-
line”, a similar architecture can be found in recent projects like [8], which was
enhanced by an HMI layer and a state model for the driver’s actions; however,
those aspects were not part of the 2007 DARPA Urban Challenge competition
for driverless robots.

However, the 2007 DARPA Urban Challenge excluded the at least protected
traffic participants: Pedestrians and bicyclists [3]. To provide autonomously driv-
ing vehicles for daily usage, it is necessary to increase their reliability significantly
so that they act safely in various and even unpredictable traffic situations [9]. In
this contribution, selected challenges for the software engineering are described,
which arise from the goal to avoid casualties and fatalities, to reduce energy
consumption, and to increase the overall traffic flow on our roads. The paper is
structured as follows: First, a short overview over related work is provided, fol-
lowed by a description of selected challenges for the software engineering. Finally,
the paper summarizes the open issues and provides a short outlook.

2 Related Work

The 2007 DARPA Urban Challenge fostered the research and development of
robot vehicles especially for urban and rural environments. However as already
mentioned, the least protected traffic participants were excluded from that com-
petition. Therefore, subsequent projects like [10] and [11] address explicitly this
extended and more complex environment.

In Fig. 3, three different charts are depicted to illustrate the impact of recent
automotive safety systems on the example of Germany. The green line shows
the increasing number of vehicles over time, which are used on German roads.
Despite that increased number of cars, the number of fatally injured traffic par-
ticipants has dropped significantly during the last decades. This drop can be
deduced from the increased number of available safety systems in the vehicles,
which is shown by the light red line. However, within the last decade, more and
more vehicle safety functions rely not only on the own vehicle data anymore; in-
stead, they are using also perceived data from the vehicle’s environment. Thus,
it can be deduced that an increase in the overall safety must include also data
from a vehicle’s surroundings. Therefore, more and more complex systems are
required to improve the overall road safety.

These increasingly complex systems can be regarded as so-called cyber-
physical systems (CPS) [12], which enable further possibilities on the one hand
[13]; on the other hand, new methods are required to safely and reliably develop

From Autonomous Vehicles to Safer Cars 183

S
af

et
y

&
 D

ri
ve

r
A

ss
is

ta
n

ce
 S

ys
te

m
s

1960 1970 1980 1990 2000 2010 …

ABS
Airbag

ESP

#
 V

eh
ic

le
s

[m
ill

io
n

]
5

 1

0

 1
5

 2

0

 2
5

 3

0

 3
5

 4

0

 4
5

 5

0

#
Fa

ta
lit

ie
s

[t
h

ou
sa

n
d

]
2

 4

 6

 8

 1

0

 1
2

 1

4

 1
6

 1

8

 2
0

 2

2

Lane
Assist

Brake
Assist

Intersection
Assist

 Vehicle Data Surroundings Data

Fig. 3. Green line: Increasing number of vehicles in Germany (based on Statistisches
Bundesamt, www.destatis.de); dark red line: Decreasing number of fatally injured traf-
fic participants (based on Bundesanstalt für Straßenwesen, www.bast.de); light red
line: Increasing number of safety & driver assistance systems (based on ADAC e.V.,
www.adac.de). The recent assistance systems rely additionally on the vehicle’s sur-
roundings data.

and test these more and more interconnected safety-critical systems [14]. There-
fore, in [6] and [15], an approach is outlined, which enables a virtualized testing
environment for autonomously driving vehicles. Furthermore, formal methods
could be successfully applied to focus on the correct implementation of the right
requirements [16] during the requirements elicitation at a large German automo-
tive OEM. However, there are still open issues for today’s software engineering
during the development and the lifecycle of these CPS, which are discussed in
the following section.

3 Selected Challenges for Software Engineering

In Fig. 4, the lifecycle of a vehicle is shown. According to [17], the development
of these nowadays more and more complex and software-intense systems lasts
approximately 3.5 years, which is followed by a production cycle of roughly 7
years. However, the estimated usage duration of the vehicles is on average about
8 years. Therefore, decisions, which were met at development time must be valid
for approximately 18 years in the worst case. Thus, today’s software engineering
is faced with questions regarding the product’s long-term usage, which arise dur-
ing the entire lifecycle of complex and software-intense CPS, which perceive the
surroundings for interactions. Solutions to these questions are important espe-
cially for safety-critical automotive functions. Selected open issues are discussed

184 C. Berger

Development Production

Service

~3.5 years ~7 years

~15 years

SOP EOP

3

1.

33

2.

3.

yy

4.

5.

S

OP

6.

7.

5 yy

P

8.

9.

Fig. 4. Automotive lifecycle according to [17] annotated by selected challenges for
today’s software engineering

in the following, which are related to the design of embedded vehicle functions
that rely on data from the surroundings for a proper functioning.

1. How can we effectively apply formal methods for modeling requirements to
increase our confidence in the later implementation?

Today’s vehicles assist passengers not only with comfort functions but even
more with safety-critical vehicle functions in dynamically critical driving situa-
tions. For example, the vehicle can initiate a braking maneuver due to a predicted
collision, which is deduced from the gathered sensor data. Since November 2011,
the ISO 26262 is in effect to provide guidelines for the development of func-
tions with a certain automotive safety integrity level (A-SIL). However, formal
methods are suggested to be “recommended” and only semi-formal methods are
suggested to be “highly recommended”; nevertheless, there are also first suc-
cess stories from the pre-development stage for safety-critical vehicle functions,
which applied formal methods even for the requirements specification during the
requirement [16]. Thus, the aforementioned question also includes aspects how
new standards can be implemented effectively.

2. How can we identify and derive necessary parameters and their interrela-
tions (e.g. sensor setup and mounting positions) already very early during the
development to find the optimal design of a context-aware embedded function?

As shown in Fig. 3, recent automotive software functions rely more and more
on data, which is perceived from the vehicle’s surroundings. However, param-
eters and their interrelations like mounting positions or opening angles, which
significantly influence design decisions and the resulting vehicle function’s qual-
ity, are hardly to estimate in a correct and complete manner already at the
beginning of the development. However, the development of first prototypes con-
sume considerable resources on the one hand; on the other hand, sensors’ data

From Autonomous Vehicles to Safer Cars 185

from traffic situations, in which the vehicle function shall operate, must be avail-
able very early to develop a stable concept, which consists of both a hardware
and a software architecture.

3. How can we predict the impact of design decisions alongside the develop-
ment process (e.g. sensor type & position, viewing angles, logical software archi-
tecture, resulting distribution among ECUs, economic boundaries, . . .) regarding
the quality of the resulting implementation?

This issue is related to the previous one and requires the extensive usage of
complex simulations. Especially for software functions, which base on environ-
mental data, a high responsiveness to a developer’s questions can be achieved
by appropriate simulation environments. Thus, experiments with these complex
systems could be carried out in such a virtualized environment to pose the right
questions during the development.

4. Which simulations must be repeated (for example by automated regression
simulations) in case of changes in the requirements or in the implementation
and why?

However, while simulations can provide valuable answers, they are also time-
and resource-consuming. Therefore, models are required to derive figures for guid-
ing computationally intense simulation runs. Furthermore, when simulations are
used as a part of the software construction process as outlined in [18,1,6], these
models shall provide information to decide which simulation runs are necessarily
required when requirements and/or the implementation changes.

5. Which real test-drives must be carried out to confirm results from previous
simulation runs and which real test-drives can be omitted without difficulty and
why?

Right before the start of production (SOP), vehicle functions must be for-
mally released to meet this fixed date. Therefore, simulations, which were a vi-
tal part during the development, shall provide information to decide which real
test-drives must be carried out to confirm previously derived simulative results.
Furthermore, this information can also be used to plan long-term robustness
test-drives effectively by providing information about traffic situations, which
were difficult to handle within the simulation.

6. How can results from simulations and real test-drives be adapted and pre-
dicted for software variants from a software product line?

Even more, these simulations must play a major role in today’s diverse vehicle
projects, which often only differ slightly. However, they are even more important
for the outlined systems, which also rely on data from the vehicle’s surroundings.
For example, a collision detection system in a premium car could rely on a more
expensive sensor compared to a system for a low-cost vehicle; however in the end,
the expected behavior from the customer’s point of view is identical regardless
of the underlying technology. Thus, simulations must be designed and carried
out to achieve synergies for different real CPS with similar behavior.

7. How can we use statistical vehicle data (e.g. maintenance, ...) from the field
to improve the development process and to predict the software quality for future
vehicle projects?

186 C. Berger

For example, maintenance data from the field could be analyzed to find an
erroneous behavior pattern of a software function. This pattern could be modeled
in a centralized simulation environment as a specific traffic situation to improve
further variants of the software function and to realize a “lessons learnt” for
the software development of oncoming vehicle projects. Furthermore, data from
vehicle flows is nowadays already used to predict traffic jams or to estimate
bottle-necks in the road infrastructure for example [19]. In the future, vehicle-
to-X data could also be used in an online manner during the journey to adapt
driving profiles according to the current traffic situation for example. However,
models from this highly volatile data are necessary to improve future vehicle
functions based on insights, which are deduced from a fleet’s field data.

8. How do we maintain our long-term software quality when e.g. sensors and
V2X protocols evolve?

However, the most challenging points arise from the long-term usage of these
software-intense and complex vehicle functions. Due to the traditional develop-
ment of automotive systems, vehicle functions are often separated and deployed
to their specific ECUs. However, this development model was rethought with
the development and introduction of AUTOSAR, which enables the OEMs to
separate vehicle functions from the hardware. But the concepts of AUTOSAR
must be enhanced when reconfiguration during the functions life-time is required
by changes in the surroundings as described by [20] for example. This change
can be caused simply by an exchange of existing sensors or even by evolving
communication protocols. Furthermore, another aspect is to tackle such a re-
configuration with proper design-time models according to the aforementioned
safety standards.

9. How can we predict and ensure reliability of our vehicle functions in a long-
term manner regarding mixed traffic, which consists of vehicles with different
levels of “intelligence”?

Nowadays, vehicle systems realize functions, which are related to the own ve-
hicle and to the directly visible surroundings. However, when vehicle-to-X com-
munication is a vital part of a comfort or perhaps a safety system, simulations
must be significantly improved to include data about mixed traffic. This traf-
fic consists of vehicles with different “intelligence” levels ranging from none to
high. Furthermore, the structure of this mixed traffic will change and evolve over
time. Therefore, models for this mixed traffic will be mandatory and crucial in
the future the ensure the quality of interconnected and interrelated automotive
functions.

However, how can the aforementioned challenges be successfully addressed?
A possible solution was already pointed out in some of the aforementioned ques-
tions: Simulations must play a larger role within the software engineering. Con-
trary to other engineering disciplines, simulations are nearly mandatory during
the design of control algorithms for example or for the analysis of physical phe-
nomena. In those areas, they are an essential method during the development.
Furthermore and already 1999, [21] pointed out that simulative approaches are

From Autonomous Vehicles to Safer Cars 187

not only helpful for the analysis of the technical and physical context but they
can also assist to analyze processes in software engineering.

Regarding CPS, simulative approaches must be used more intensively to in-
crease the confidence in the resulting implementation because of its complex
surroundings. Real world tests will still play an important role in the foreseeable
future but simulations will additionally provide valuable insights and feedback
already at earlier stages during the development process where real prototypes
of there interconnected CPS are not yet available. Thus, a methodical incorpora-
tion of these simulative approaches in software engineering processes will become
increasingly important.

4 Conclusion

The 2007 DARPA Urban Challenge was a showcase that fostered significantly
the research and development for autonomously driving vehicles. Recent pro-
totypes proved long-term usability with ranges over more than 140,000mi [22].
Furthermore, first initiatives are successful to permit the usage of such vehicles
in public traffic in some states in the US.

However, as shown along the lifecycle of a vehicle, there still remain several
open issues to manage the development and maintenance of such a complex
and software-intense CPS from a software engineer’s point of view. The major
challenge is that more and more safety-critical vehicle functions rely on data from
the vehicle’s context, which is very volatile due to mixed traffic or evolution in
vehicle-to-X communication protocols for example. However, in contrast to the
avionics sector, which demands a software development according to DO 178C, or
the railway sector, which relies on a development that follows EN 50128, function
development according to ISO 26262 for safety-critical automotive functions is
very young because the standard was released in November 2011 first. Thus,
industrial success stories from development projects, which implement the ISO
26262, will arise primal in the upcoming years to show the practical benefit.

In this contribution, selected challenges for the software engineering for these
complex CPS were discussed. For many of these exemplary questions, simulative
approaches, which include explicitly the system’s context, could provide the
means for developers to analyze these interconnected and interrelated systems
already at early development stages. However, a further elaborated methodology
for their usages within the software engineering is required, which outlines how
and to which extent these simulations could be successfully used–especially for
more than only one project to achieve synergies.

References

1. Rauskolb, F.W., Berger, K., Lipski, C., Magnor, M., Cornelsen, K., Effertz, J.,
Form, T., Graefe, F., Ohl, S., Schumacher, W., Wille, J.M., Hecker, P., Nothdurft,
T., Doering, M., Homeier, K., Morgenroth, J., Wolf, L., Basarke, C., Berger, C.,
Gülke, T., Klose, F., Rumpe, B.: Caroline: An Autonomously Driving Vehicle for
Urban Environments. Journal of Field Robotics 25(9), 674–724 (2008)

188 C. Berger

2. Basarke, C., Berger, C., Berger, K., Cornelsen, K., Doering, M., Effertz, J., Form,
T., Gülke, T., Graefe, F., Hecker, P., Homeier, K., Klose, F., Lipski, C., Magnor, M.,
Morgenroth, J., Nothdurft, T., Ohl, S., Rauskolb, F.W., Rumpe, B., Schumacher,
W., Wille, J.M., Wolf, L.: Team CarOLO - Technical Paper. Informatik-Bericht
2008-07, Technische Universität Braunschweig, Braunschweig, Germany (October
2008)

3. DARPA: Urban Challenge Technical Evaluation Criteria. Technical report,
DARPA, Arlington, VA, USA (2006)

4. Lipski, C., Scholz, B., Berger, K., Linz, C., Stich, T., Magnor, M.: A Fast and
Robust Approach to Lane Marking Detection and Lane Tracking. In: Proceedings
of the IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 57–
60. IEEE (2008)

5. Berger, K., Lipski, C., Linz, C., Stich, T., Magnor, M.: The Area Processing Unit of
Caroline - Finding the Way through DARPA’s Urban Challenge. In: Sommer, G.,
Klette, R. (eds.) RobVis 2008. LNCS, vol. 4931, pp. 260–274. Springer, Heidelberg
(2008)

6. Berger, C.: Automating Acceptance Tests for Sensor- and Actuator-based Systems
on the Example of Autonomous Vehicles. Shaker Verlag, Aachener Informatik-
Berichte, Software Engineering Band 6, Aachen, Germany (2010)

7. Raymond, E.S.: The Art of Unix Programming. Addison-Wesley, Boston (2003)
8. Flemisch, F., Nashashibi, F., Rauch, N., Schieben, A., Glaser, S., Gerald, T., Re-

sende, P., Vanholme, B., Löper, C., Thomaidis, G., Mosebach, H., Schomerus, J.,
Hima, S., Kaussner, A.: Towards Highly Automated Driving: Intermediate report
on the HAVEit-Joint System. In: Proceedings of the 3rd European Road Transport
Research Arena, Brussels, Belgium, pp. 1–12 (November 2010)

9. Berger, C., Rumpe, B.: Autonomous Driving - 5 Years after the Urban Challenge:
The Anticipatory Vehicle as a Cyber-Physical System. In: Goltz, U., Magnor, M.,
Appelrath, H.J., Matthies, H.K., Balke, W.T., Wolf, L. (eds.) Proceedings of the
INFORMATIK 2012, Braunschweig, Germany (September 2012)

10. Nothdurft, T., Hecker, P., Ohl, S., Saust, F., Maurer, M., Reschka, A., Böhmer,
J.R.: Stadtpilot: First Fully Autonomous Test Drives in Urban Traffic. In: Proceed-
ings of the International IEEE Conference on Intelligent Transportation Systems,
Washington, DC, USA, pp. 919–924 (October 2011)

11. Wang, M., Ganjineh, T., Rojas, R.: Action Annotated Trajectory Generation for
Autonomous Maneuvers on Structured Road Networks. In: Proceedings of the 5th
International Conference on Automation, Robotics and Applications, Wellington,
New Zealand, pp. 67–72 (December 2011)

12. Lee, E.A.: Computing Foundations and Practice for Cyber-Physical Systems: A
Preliminary Report. Technical Report UCB/EECS-2007-72, University of Califor-
nia, Berkeley, CA, USA (2007)

13. Geisberger, E., Broy, M. (eds.): agendaCPS - Integrierte Forschungsagenda Cyber-
Physical Systems (acatech STUDIE). Springer, Heidelberg (2012)

14. Giese, H., Rumpe, B., Schätz, B., Sztipanovits, J.: Science and Engineering of
Cyber-Physical Systems. Dagstuhl Reports 1(11), 1–22 (2012)

15. Berger, C., Rumpe, B.: Engineering Autonomous Driving Software. In: Rouff, C.,
Hinchey, M. (eds.) Experience from the DARPA Urban Challenge, pp. 243–271.
Springer, London (2012)

16. Siegl, S., Hielscher, K.S., German, R., Berger, C.: Automated Testing of Embedded
Automotive Systems from Requirement Specification Models. In: Proceedings of
the 12th IEEE Latin-American Test Workshop, Porto de Galinhas, Brazil, pp. 1–6
(March 2011)

From Autonomous Vehicles to Safer Cars 189

17. Schäuffele, J., Zurawka, T.: Automotive Software Engineering. Friedr. Vieweg &
Sohn Verlag, Wiesbaden, Germany (2003)

18. Basarke, C., Berger, C., Rumpe, B.: Software & Systems Engineering Process
and Tools for the Development of Autonomous Driving Intelligence. Journal of
Aerospace Computing, Information, and Communication 4(12), 1158–1174 (2007)

19. Jiang, R., Hu, M.B., Jia, B., Wang, R., Wu, Q.S.: Effect of Adaptive Cruise Con-
trol Vehicles on Phase Transition in a Mixture with Manual Vehicles. In: Appert-
Rolland, C., Chevoir, F., Gondret, P., Lassarre, S., Lebacque, J.P., Schreckenberg,
M. (eds.) Traffic and Granular Flow 2007, pp. 105–115. Springer, Heidelberg (2009)

20. Weiss, G., Zeller, M., Eilers, D., Knorr, R.: Towards Self-organization in Automo-
tive Embedded Systems. In: González Nieto, J., Reif, W., Wang, G., Indulska, J.
(eds.) ATC 2009. LNCS, vol. 5586, pp. 32–46. Springer, Heidelberg (2009)

21. Christie, A.M.: Simulation: An Enabling Technology in Software Engineering.
CROSSTALK - The Journal of Defense Software Engineering 12(4), 25–30 (1999)

22. Thrun, S.: What we’re driving at (2010)

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 190–201, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Modelling of Safety-Related Timing Constraints
for Automotive Embedded Systems

Oscar Ljungkrantz, Henrik Lönn, Hans Blom, Cecilia Ekelin, and Daniel Karlsson

Advanced Technology & Research
Volvo Group Trucks Technology

Gothenburg, Sweden
{oscar.ljungkrantz,henrik.lonn,hans.blom,cecilia.ekelin,

daniel.b.karlsson}@volvo.com

Abstract. Timing and functional safety are important aspects when developing
automotive embedded systems. The two aspects have however mostly been
studied as separate aspects, up to now. This paper presents an investigation of
safety-related timing constraints within the functional safety standard ISO
26262. Although the standard defines several such timing constraints it also
leaves room for interpretation, which is discussed in the paper. Clear interpreta-
tions are needed to support current trends towards model-based development. A
few extensions are proposed to the state-of-the-art modelling languages EAST-
ADL and TADL to specify the timing constraints.

Keywords: Automotive embedded systems, fault/failure modelling, functional
safety, ISO 26262, timing, EAST-ADL.

1 Introduction

The embedded systems in motor vehicles are getting increasingly complex. Drive-by-
wire solutions, diagnostic services, safety systems, infotainment systems and hybrid
electric vehicles all add to the complexity. This challenge has in part been addressed by
the automotive industry in different collaboration and standardisation initiatives. The
AUTOSAR architecture addresses software standardization and enables a common
market for automotive software components, see [1]. AUTOSAR was presented in
2004 [2] and can now be considered a de facto standard. EAST-ADL [3] complements
AUTOSAR with descriptions at higher level of abstractions. EAST-ADL is an architec-
tural description language (ADL) supporting model-based development of automotive
embedded systems.

When developing automotive embedded systems, not only the functionality must be
handled but also other aspects such as safety, timing, variability and cost. Safety and
timing are two challenging aspects that have gained a lot of interest in recent years,
manifested in for instance the ISO 26262 standard [4][5] and the Timing Augmented
Description Language (TADL) [6].

The ISO 26262 standard addresses functional safety of electrical/electronic (E/E)
systems in road vehicles. The aim of the standard is absence of unacceptable risk by

 Modelling of Safety-Related Timing Constraints for Automotive Embedded Systems 191

avoiding malfunctions of the system. EAST-ADL provides several language constructs
to model safety-related properties and requirements of ISO 26262 [7].

TADL was introduced to extend the modelling of EAST-ADL and AUTOSAR with
time constraints that relates to events and event chains. The main concepts have been
included in EAST-ADL and AUTOSAR (since Release 4.0.1), but the TADL has been
further improved, see [8].

Although timing and safety have been much investigated, they have typically been
studied as separate aspects. Nonetheless, the two aspects overlap. For instance a safety
requirement can mandate the system to protect against harm or hazards with a certain
probability, see [9], and thus the required timing of the mitigation, the safety mechan-
ism, is a crucial part. Also other timing requirements and properties of the system may
be safety-critical, such as the reaction time of the brakes. These properties and re-
quirements are here denoted safety-related timing constraints.

This paper presents the work-in-progress of the TimeSafe project regarding model-
ling of safety-related timing constraints of ISO 26262. The ISO 26262 has been scruti-
nized looking for timing constraints, and the suitability of the EAST-ADL and TADL
languages to model these timing constraints has been investigated. In the authors’
knowledge no similar study has been performed before. The contribution of this paper
is the analysis of seven safety-related timing constraints and the proposed guidelines
and new language constructs to specify the constraints.

The next section briefly describes the EAST-ADL modelling language. Section 3
gives an overview of the safety-related timing constraints. Section 4 presents the pro-
posed language additions and thereon Section 5 and Section 6 discuss two constraints
in detail. Finally, the work is concluded in Section 7.

2 Modelling Language

The purpose of EAST-ADL is to capture engineering information related to automo-
tive E/E system development, from early phase to final implementation. The EAST-
ADL model has a core part representing the E/E system, which interfaces to an
Environment model for near and far environment. Extensions for variability, depend-
ability, etc., annotate the core elements with additional aspects. One of the extensions
concerns dependability and captures information related to safety. Another extension
captures system timing using events, event chains and timing constraints, as defined
in TADL.

The EAST-ADL system model is organized in 4 abstraction levels, see Fig. 1, from
the Vehicle Level (VL) abstract and solution-independent feature models over the Anal-
ysis Level (AL) hardware independent functional models and the Design Level (DL)
hardware-allocated functional architecture to the Implementation Level (IL)
AUTOSAR software and hardware architecture.

The ISO 26262 defines phases for the design of E/E systems. Fig. 1 also shows
how these phases relate to the EAST-ADL abstraction levels. In the concept phase,
safety goals with a certain Automotive Safety Integrity Level (ASIL) are defined on
VL based on a solution-independent risk assessment. The safety goal is refined to func-
tional safety requirements allocated to elements of a preliminary architecture on AL.
Technical safety requirements are allocated to system elements on DL in the product
development phase - system. In the product development phase – HW and SW, re-
quirements are allocated to HW and SW components on IL.

192 O. Ljungkrantz et al.

 SystemModel

AnalysisLevel

DesignLevel

ImplementationLevel

En
vi

ro
nm

en
t M

od
el

FunctionalAnalysisArchitecture

FunctionalDesignArchitecture

AUTOSAR
Application SW

VehicleLevel

HardwareDesignArchitecture

Re
qu

ir
em

en
ts

, v
ar

ia
bi

lit
y,

 d
ep

en
da

bi
lit

y,
tim

in
g

TechnicalFeatureModel

Allocation

AUTOSAR
Basic SW

AUTOSAR
HW

SW
 a

nd
 H

W

Co
nc

ep
t P

ha
se

Sy

st
em

Pr
od

uc
t D

ev
el

op
m

en
t

Extensions
ISO 26262
Phase

(S

ys
te

m

In
de

p.
)

(P
re

lim
in

ar
y

A
rc

hi
te

ct
ur

e)

Fig. 1. EAST-ADL organization and ISO 26262 Phases

3 Overview of the Safety-Related Timing Constraints

The following seven timing constraints have been identified as explicitly mentioned in
part 3–6 of ISO 26262. The first five are also defined in the vocabulary, part 1.

1. Fault tolerant time interval
2. Emergency operation interval
3. Fault reaction time
4. Multiple-point fault detection interval
5. Diagnostic test interval
6. Fault detection time
7. Exposure duration

The timing constraints are mentioned in several parts of the standard and can be inter-
preted differently at different abstraction levels of the related solution. The first four
constraint are defined in the vocabulary of ISO 26262 using solution-neutral concepts
such as fault, failure, hazard and transition to safe state. In part 3–6, the seven timing
constraints are stated to be specified or analysed relating to solutions, such as safety
mechanisms, as part of the functional-, technical-, hardware- or software safety
requirements or concepts. Timing constraints referring directly to elements of the arc-
hitectural solution can be viewed as solution-specific constraints derived from the solu-
tion-neutral constraints. Nevertheless, the distinction is not absolute, since the concepts
of the solution-neutral constraints, such as faults, may refer to specific solutions. The
seven different constraints are described below.

Five of the timing constraints are introduced in Fig. 2, relating to solution-neutral
concepts. This figure is based on the figure in 1-1.441 of ISO 26262 and extended with
the two timing constraints that are put in parentheses. The Fault Tolerant Time Interval
(FTTI) acts as an upper bound for safety mechanisms, relating a fault to the possible

1 Specific clauses of ISO 262626 are indicated as ”m-n” within this paper, where ”m” repre-

sents the number of the particular part and ”n” represents the number of the clause within that
part.

 Modelling of Safety-Related Timing Constraints for Automotive Embedded Systems 193

hazard that may be caused if not handled by a safety mechanism. FTTI is further
discussed in Section 5. The emergency operation interval is the time between the oc-
currence of a fault and the transition to a safe state. An emergency operation shall be
specified when a safe state cannot be reached within an acceptable time interval. The
emergency operation interval is further discussed in Section 6. The fault detection
time and the fault reaction time naturally refers to the detection and reaction upon the
fault, respectively. The concept of fault detection time is not defined by ISO 26262, but
several clauses in part 5 (hardware level) of ISO 26262 concern analysis of the fault
detection time associated with dual-point failures. It is included in the figure to clarify
the relations. The diagnostic test interval is specified in ISO 26262 though, as the
“amount of time between the executions of online diagnostic test by a safety mechan-
ism”. It can thus be viewed as the worst case fault detection time, since the actual fault
detection time may be shorter in some occasions.

Fig. 2. Some basic concepts and timing constraints of ISO 26262 [4]

The multiple-point fault detection interval is the time to detect a multiple-point fault
“before it can contribute to a multiple-point failure”. It relates to two (dual-point) or
more faults that only if all are present contribute to the violation of safety goals, for
instance a fault in a safety-related sensor and a fault in the corresponding safety me-
chanism. Each of these individual faults is denoted multiple-point fault. Finally, the
exposure duration shall be considered in the analysis of dual-point faults and may
include the multiple-point fault detection interval, the maximum duration of a trip and
the average time to vehicle repair. It is not defined in ISO 26262 vocabulary but intro-
duced and explained in relation to the hardware analysis in 5-9.4.2.1.

The constraints are further explained using an abstract view of a safety mechanism,
that detects and reacts upon the fault, in Fig. 3. This safety mechanism is assumed to be
periodically executed and having a certain response time to reach the safe state. As
seen, both times can be modelled using TADL. At this abstract view, the diagnostic
test interval is the same as the periodic interval, which in turn is approximately the
worst case fault detection time. Likewise, the fault reaction time is the same as the
response time. The sum of the fault detection time and the fault reaction time shall not
be longer than the FTTI. Since the actual fault detection time may vary, a rational re-
quirement mentioned in part 5 of ISO 26262, is that the diagnostic test interval plus the
fault reaction shall not be longer than the fault tolerant time interval.

Fig. 4 shows a possible, general design of the safety mechanism. The elements
have the corresponding response times (RT) and are potentially periodically executed

Safe State

Fault
Occurence

Fault
Detection

Transition to
Safe State

Possible
Hazard

(Fault Detection Time)
≤ Diagnostic Test Interval

Fault Reaction Time

(Emergency Operation Interval)

Normal
Operation

Fault Tolerant Time Interval

194 O. Ljungkrantz et al.

with corresponding periodic intervals (PI). These times can be modelled the same way
as in Fig. 3.

In general, the sum of PIA, RTA, PIB and RTB represents the worst case fault detec-
tion time. This sum may be considered to be the diagnostic test interval but note that
this does not conform to the wordings of the definition. Likewise, the sum of PIC, RTC,
PID and RTD represents the worst case fault reaction time. Also note that the time until
the transition to safe state, and hence the fault reaction time, can be longer than this
sum for some safety mechanisms as specified by the emergency operation. Typically,
several executions of the safety controller could be needed. The timing constraints may
also be further broken down and detailed in later design steps taking for instance com-
munication times and scheduling into account.

Fig. 3. An abstract view of a safety mechanism system, which is recurrently/periodically exe-
cuted. The periodic interval and response time are indicated in italic and formalized using
TADL.

Fig. 4. A possible design of a safety mechanism consisting of four elements, which are all
potentially periodically executed with corresponding periodic intervals (PI) and response times
(RT). These times/intervals can be modelled the same way as in Fig. 3.

4 Proposed Modelling Language Extensions

This section presents the proposed language extensions to enable to specify the seven
timing constraints introduced in the previous section. For brevity reasons all seven
timing constraints cannot be discussed in detail, but the fault tolerant time interval and

Safety mechanism

Periodic Interval Response Time

EventPeriodicConstraint

ReactionConstraint

EventEvent

EventChain

Sensor

PI
A

RT
A

 Diagnostic
Function

PI
B
 RT

B

RT
C
 RT

D

 Safety
Controller

PI
C

Actuator

PI
D

 Modelling of Safety-Related Timing Constraints for Automotive Embedded Systems 195

emergency operation interval are chosen as representative examples and are discussed
in Section 5 and Section 6, respectively.

Although the TADL language can be satisfactorily used to specify timing con-
straints referring directly to elements of the architectural solution, it can currently not
be used to refer to concepts such as fault, failure, hazard and transition to safe state.
For this reason the authors of this paper proposes to extend the TADL event model
with four new events, as seen in Fig. 8.

The EventFaultFailure represents the occurrence of a fault or failure. The FaultFai-
lure element contains a faultFailureValue that defines the specific value among the
possible faults or failures that the FaultFailure represents. The FaultFailure element can
in turn refer to an in-port or out-port of an error model. This is utilized in the examples
of the next two sections. Likewise, the EventFeatureFlaw represents the occurrence of
a feature flaw. A feature flaw is an inability to fulfil one or several of the requirements,
and can be seen as an abstract failure already considered during the vehicle phase. The
EventState and EventMode represent the entrance or the exit (as specified by the
EventStateKind attribute) of a mode/state. This can be used to refer to the transition to
the safe state, e.g., as is done in Section 6.

5 Fault Tolerant Time Interval (FTTI)

This section discusses the fault tolerant time interval (FTTI) and how it can be mod-
elled. Since the ISO 26262 leaves room for interpretation, this is first discussed. Three
different examples are then used to support the discussions.

The FTTI is defined as the “time-span in which a fault (1.42) or faults can be
present in a system (1.129) before a hazardous (1.57) event occurs” (1-1.45). On the
other hand, the figure in 1-1.44 relates the FTTI to a fault and a possible hazard, see
also Fig. 2 in this document. The difference between a hazard and a hazardous event is
that the latter also includes an operational situation. This difference can have signifi-
cant impact on the time, as will be evident from the airbag example in Section 5.2 be-
low. The fact that the word “hazardous” alone, not “hazardous event”, is emphasised in
the definition adds to the confusion as well.

The FTTI is mentioned several times in ISO 26262. Part 3 states that the FTTI shall
be considered (3-8.4.2.3) when specifying the functional safety requirements. Already
the safety goal can include FTTI (3-7.4.4.6). Furthermore, part 4 states that the FTTI
shall be specified, for relevant safety mechanisms, as part of the technical safety re-
quirements (4-6.4.2.3). The FTTI is also mentioned several times in part 5, regarding
compliance/consistency of the safety mechanisms with the FTTI.

5.1 Interpretation

The authors’ interpretation is that the operational situations must be considered when
determining the FTTI. The rationale is that 1) the actual definition of FTTI in 1-1.45
refers to hazardous event, and 2) it may take time before the system is in such a situa-
tion, where the failure can cause any harm and thus it’s reasonable to include this time.

When determining the FTTI, a judgment must hence be made regarding the proba-
bility over time of the considered situation. Moreover, several hazardous events may

196 O. Ljungkrantz et al.

be considered together, since the concept of fault tolerance includes being able to han-
dle the different situations. This can be compared with the combination of similar safe-
ty goals into one, where hazardous events of different ASILs are mitigated by a safety
goal with highest ASIL. An FTTI is therefore specified for each relevant combination
of fault and a group of hazardous events, related by a common safety goal, where an
assessment regarding the related hazardous events and their probability is needed.

The FTTI assessment is a nontrivial task to be performed in accordance with good
engineering practice. ISO 26262 is not clear about this though and do not describe how
the assessment shall be made. Stochastic calculations could be made, for instance as-
suming a constant rate per time for the occurrence of each hazardous event as in Fig. 5,
if such data is available. The ASILs of the hazardous events must also be considered.
In particular this can be challenging when several hazardous events with different
ASILs and different probability for occurrence are considered. Nonetheless, an FTTI
assessment could result in a time limit anticipating that the probability that a hazard-
ous event occurs before this time has passed since the fault occurred, is acceptably
low.

Moreover, the authors’ experience and the examples below suggest that only a part
of the operational situations must be included in the FTTI measure. The time until a
specific situation depends on the probability of the traffic or environmental situation
but this is captured by the exposure when determining the ASIL. The difference in time
for the driver to react upon the failure in different situations is captured by the control-
lability part of the ASIL. However, the failure of a system can in some situations not
cause any harm until the system is actually requested. This time is important to capture
in the FTTI measure. The difference between different parts of the situations is particu-
larly important when modelling the FTTI and precise events are pointed out.

As discussed, the FTTI can be specified at different abstraction levels. In the au-
thors’ experience it’s often too early to determine FTTI as part of the safety goal.
Technical solutions are not known at this stage and therefore faults and the system’s
tolerance against faults cannot be considered. The FTTI can naturally be introduced as
part of the functional safety concept, when abstract technical solutions are considered,
and as part of the technical safety concept, when safety mechanisms shall be speci-
fied.

0

0,2

0,4

0,6

0,8

1

0 20 40 60 80 100
Time since fault

Probability that the hazardous event has occured

Fig. 5. Example of an exponential distribution function, relating the probability of a hazardous
event to the time since the fault occurred

Possible FTTI lower limit

 Modelling of Safety-Related Timing Constraints for Automotive Embedded Systems 197

5.2 Examples

EPS: Imagine an Electric Power Steering system (EPS), where a fault in the torque
sensor, such as a short-cut, may cause the failure that an unreasonable torque is sud-
denly applied to the steering column. This failure represents a hazard since it can cause
harm in different situations. It is likely that there will be a hazardous event when the
failure occurs, since basically all driving situations are hazardous in combination with
this failure. The faster the vehicle moves, the shorter is the time for the driver to react
upon the failure, which will result in that the corresponding hazardous event has the
highest ASIL. It’s necessary also to consider the physical system in which the EPS
acts; for instance the response time of the electrical motor may act as a filter of the
sudden torque change suggested by the controller. The FTTI should hence be larger
than the time from fault to failure due to dynamics of the system, in the limiting high-
speed situation, and is rather short, possibly in order of hundreds of milliseconds.

BBW: The second example is a Brake-By-Wire (BBW) system, where a fault in the
primary electric energy source can cause an inability to brake (E/E failure and hazard).
The operational situations that must be considered are the situations in which the driver
must use the brake. The faster the vehicle is driven and the shorter the distance to an
obstacle, the shorter the time to react. For example, driving at a highway, the speed is
higher but the brakes used less frequently compared to driving in the city. This time
can be captured as the time until the brake is actually requested but there is an inability
to brake, which can be considered a vehicle failure. A restrictive but unlikely situation
is when the vehicle is driven at high speed but must be stopped immediately, for in-
stance due to an accident in front of the vehicle, and the fault occurs just when the
driver hits the brake. If the vehicle speed is 100 km/h it takes about 100 ms to drive 3
meters. These figures could also be compared with the response time of the driver,
which typically is in the order of seconds and with the normal braking distance, which
is some tens of meters; possibly the FTTI is in order of hundreds of milliseconds or
even seconds.

Airbag: A different example is an airbag in which a broken sensor (fault) may cause
the airbag to not be able to deploy in case of a crash (E/E failure and hazard). The time
between fault and failure is very small, but the airbag is not needed until a crash occurs
(hazardous event). Such a crash could occur at the same time as the failure, but this is
very unlikely. Again, this time can be captured as the time until the airbag is requested
but unable to deploy, which can be considered a vehicle failure. Having analysed the
situation probabilities, the FTTI could for instance be one vehicle trip or the time until
the vehicle is planned for maintenance so that the airbag can be repaired.

5.3 Modelling

When developing the functional or technical safety concept, an ErrorModelType with
an ErrorBehavior can be used to represent the fault and the failure of the E/E system.
Likewise, an error model can be used to represent the fault propagation of the plant.
FaultFailure elements denote the value representing the fault or failure at the respective
fault/failure port. This way an EventFaultFailure at the fault input of the E/E error
model represents the occurrence of the fault and an EventFaultFailure at the failure

198 O. Ljungkrantz et al.

output of the plant error model represents the inability to fulfil the functionality of the
vehicle, when it’s requested. As seen by the examples above, the request of the func-
tionality captures the relevant part of the operational situation. This request can be
made explicit as an input to the plant error model. The EventFaultFailure at the failure
output of the plant error model also realizes the abstract FeatureFlaw from the vehicle
abstraction level, which is connected to the hazard. A Rationale can also be provided to
explain the assessment.

The relations of the error models and their ports to the architectural elements and
their ports may be different in different examples. Fig. 6 represents the examples where
the safety mechanism monitors a sensor and uses the same actuator as the ordinary
controller, for instance to mitigate unreasonable values. The lower limit of the reaction
constraint should be interpreted such as it can be assumed that a hazard is present and
the related functionality requested first when this time has passed, if the fault is not
taken care of by a safety mechanism. This corresponds well to the view that the proba-
bility that a hazardous event occurs before this time has passed is acceptably low.

Fig. 6. Example modelling of the fault tolerant time interval (FTTI) from a specific fault occurs
until a hazardous event possibly occurs

6 Emergency Operation Interval (EOI)

The definition in 1-1.35 states that emergency operation interval (EOI) is the specified
time-span that emergency operation is needed to support the warning and degradation

FeatureFlaw

FaultFailure
Sensor fault

ReactionConstraint
-min. = FTTI, max. = infinity

Hazard

EventFaultFailure

EventChain

Sensor

Controller Actuator

 Safety
Controller

EE ErrorModel

FaultFailure
Vehicle failure

EventFaultFailure

functionTarget

ErrorBehavior

FaultInPort FailureOutPort
Plant ErrorModel

Plant

functionTarget

ErrorBehavior

FaultInPort FailureOutPort

Vehicle Level

 Modelling of Safety-Related Timing Constraints for Automotive Embedded Systems 199

concept and 1-1.34 specifies emergency operation as degraded functionality from the
state in which a fault occurred until the transition to a safe state is achieved.

The EOI is mentioned in part 3 and 4 of ISO 26262. EOI shall be considered
(3-8.4.2.3) when specifying the functional safety requirements and an emergency oper-
ation shall be specified if a safe state cannot be reached by a transition within an ac-
ceptable time interval (3-8.4.2.4). Furthermore, EOI shall be specified for relevant
safety mechanisms, as part of the technical safety requirements, if the safe state cannot
be reached immediately (4-6.4.2.3).

6.1 Interpretation

Typically the EOI is relevant when the transition to a safe state is not possible to do
immediately, due to for instance response time in actuators, or is not desired to do
immediately, for instance deactivation of applied servo-systems. In the former type of
examples, the EOI should be as short as possible and is restricted by the time for the
safety mechanisms to detect and react upon the fault, see Fig. 2. In the latter type of
examples, the EOI could be a balance between the desire to reach the safe state and the
controllability by the operator to handle the situation.

6.2 Examples

EPS: If an EPS that applies a supporting torque to the steering column, for instance in a
curve, needs to be turned off due to a faulty torque sensor, it could be hazardous to turn
it off immediately. A smooth deactivation is desired. Since there is a reason for the
EPS to be turned off, the EOI should not be too long, but it should be long enough to
allow the driver to manage the situation.

BBW: For the brake-by-wire example, the EOI should be no more than the FTTI and
consists of the time to detect the fault and to activate a secondary electric power
supply. In this example it might be sufficient to explicitly specify the FTTI, the fault
detection time and the fault reaction time.

6.3 Modelling

Modelling that the fault occurs can be done using an EventFaultFailure pointing to a
FaultFailure, just as for the FTTI. However, the error model is not necessarily needed
here, since the EOI does not refer to the failure and since the FaultFailure is typically
already created and pointed out by the SafetyConstraint that defines the ASIL level of
the corresponding functional or technical safety Requirement. The safe state is
represented by a Mode or State element, which refers to the safe state Mode element
created as part of the corresponding SafetyGoal at the vehicle abstraction level. Fig. 7
represents the example that the EPS is smoothly turned off during approximately ten
seconds.

200 O. Ljungkrantz et al.

Fig. 7. Example modelling of the emergency operation interval (EOI) from a specific fault
occurs until the transition to a safe state is achieved. In this example the electric power steering
(EPS) shall be turned off smoothly

TimingDescription

Timing::Ev ent

+ isStateChange: Boolean = true

EventFaultFailure EventFeatureFlaw Ev entState

+ EventStateType: EventStateKind

EventMode

+ EventModeKind: EventStateKind

TraceableSpecification

SafetyConstraints::
FaultFailure

TraceableSpecification

Dependability::FeatureFlaw
EAElement

Behav iorConstraints::State

+ initState: Boolean = false

EAElement

Behav ior::Mode

+ condition: String

«enumeration»
Ev entStateKind

«enum»
 stateEntry
 stateExit

EAElement

«atpPrototype»
Datatypes::EADatatypePrototype

«instanceRef»
«instanceRef»

+representMode
*

«instanceRef» «instanceRef»

+value 0..1

Fig. 8. The four shown Event types are proposed as an extension of TADL to enable to specify
timing constraints relating to fault, failure and transition to a safe state

7 Conclusions and Further Work

This paper presents seven different safety-related timing constraints from ISO 26262.
These are important constraints of the safety mechanisms that should detect faults and
mitigate or hinder failures. Clear definitions are important to be able to model the
times accurately. This paper discusses the interpretation of these times, in particular
the fault tolerant time interval, which is currently unclearly defined.

FaultFailure
Fault: sensor broken

ReactionConstraint
-min. = 9 s, max. = 11 s

EventFaultFailure

EventChain

Mode
EPS turned off

EventMode
stateEntry

SafetyConstraint
-asilValue

Requirement
If normal operation
cannot be achieved,
the EPS shall be
turned off smoothly

 EPS
Safety

Controller SafetyGoal

Mode
EPS turned off

safeModes

Realization

Satisfy

Refine

Refine

Vehicle Level

 Modelling of Safety-Related Timing Constraints for Automotive Embedded Systems 201

This paper also proposes a few language extensions so that the modelling lan-
guages EAST-ADL and TADL can be used to specify the timing constraints. Further
work includes investigating other timing-related aspects of ISO 26262.

Acknowledgment. The TimeSafe project is sponsored by the Swedish Governmental
Agency for Innovation Systems (VINNOVA), within the FFI program. Thanks to the
MEANAD and TIMMO-2-USE projects for helping out with language issues. Thanks
also to Fredrik Törner at Volvo Car Corporation for interesting discussions.

References

[1] AUTOSAR, http://www.autosar.org
[2] Heinecke, H., Schnelle, K.-P., Fennel, H., Bortolazzi, J., Lundh, L., Leflour, J., et al.: AU-

Tomotive Open System ARchitecture - An industry-wide initiative to manage the com-
plexity of emerging automotive E/E-architectures. In: Proc. Convergence Int. Congress &
Exposition on Transportation Electronics, Detroit, MI, USA (2004)

[3] Cuenot, P., Frey, P., Johansson, R., Lönn, H., Papadopoulos, Y., Reiser, M.-O., et al.: The
EAST-ADL Architecture Description Language for Automotive Embedded Software. In:
Giese, H., Karsai, G., Lee, E., Rumpe, B., Schätz, B. (eds.) MBEERTS. LNCS, vol. 6100,
pp. 297–307. Springer, Heidelberg (2010)

[4] ISO 26262, Road vehicles – Functional safety, Part 1-9, 1st edn. International Organiza-
tion for Standardization (November 2011)

[5] ISO/FDIS 26262-10, Road vehicles – Functional safety – Part 10: Guideline on ISO
26262, International Organization for Standardization (March 2012)

[6] Blom, H., Johansson, R., Lönn, H.: Annotation with timing constraints in the context of
EAST-ADL2 and AUTOSAR – the timing augmented description language. In: Proc.
Workshop on the Definition, Evaluation, and Exploitation of Modelling and Computing
Standards for Real-Time Embedded Systems, Dublin, Ireland, pp. 2–5 (June 2009)

[7] Chen, D., Johansson, R., Lönn, H., Blom, H., Walker, M., Papadopoulos, Y., et al.: Inte-
grated safety and architecture modeling for automotive embedded systems. E & I Elektro-
technik und Informationstechnik 128(6), 196–202 (2011)

[8] Peraldi-Frati, M.-A., Blom, H., Karlsson, D., Kuntz, S.: Timing modeling with AUTOSAR
- Current state and future directions. In: Proc. Design, Automation & Test in Europe,
Dresden, Germany, pp. 805–809 (March 2012)

[9] Firesmith, D.: Engineering safety requirements, safety constraints, and safety-critical re-
quirements. Journal of Object Technology 3(3), 27–42 (2004)

Workshop on Dependable
and Secure Computing for Large-scale

Complex Critical Infrastructures
(DESEC4LCCI 2012)

Introduction to DESEC4LCCI 2012

Christian Esposito1, Marco Platania2, and Francesco Brancati3

1 ICAR - CNR,
Via Pietro Castellino, 111 - 80131 Napoli, Italy

2 Dipartimento di Ingegneria Informatica Automatica e Gestionale “A. Ruberti”,
University of Roma La Sapienza,

Via Ariosto, 25 - 00185 Roma, Italy
3 Resiltech,

Piazza Iotti, 25 - 56025 Pontedera (PI), Italy
christian.esposito@na.icar.cnr.it, platania@dis.uniroma1.it,

francesco.brancati@resiltech.com

Introduction

This DESEC4LCCI ’12 workshop aims at providing a forum for researchers and
engineers in academia and industry to foster an exchange of research results,
experiences, and products in the area of dependable and secure computing in
large-scale critical systems both from a theoretical and practical perspective.
Large-scale Complex Critical Infrastructures (LCCIs), such as water and power
supply plants, or transport infrastructures (e.g., airports and seaports), play a
key role into several fundamental human activities. It is easy to think about their
economic and social impact: the consequences of an outage can be catastrophic in
terms of efficiency, economical losses, consumer dissatisfaction, and even indirect
harm to people and deaths. Currently, LCCIs make extensive usage of Informa-
tion and Communications Technology (ICT) (e.g., computing systems, commu-
nication networks, and sensing hardware), and especially software systems for
LCCI interconnection, control, and management, in charge of providing support
for advanced monitoring and control facilities. These systems have to be highly
resilient in order to reduce the risk of LCCI catastrophic failures. Nevertheless,
the resiliency of future LCCI is compromised by several factors, which can be in-
tentional and unintentional. First, these systems are more and more conceived as
the composition of several Off-The-Shelf (OTS) items and/or legacy subsystems,
increasing the probability of failure occurrences, due to unexpected or erroneous
modes of operation. Second, they have been designed without considering that
their size would have significantly grown, crossing national boundaries, and that
their operational environment, originally planned to be “closed”, would become
“open” to the world to allow interoperability among LCCIs and remote access
and control. This implies that the both accidental events and malicious attacks
should be taken into account.

A workshop on dependable and secure computing for LCCI is motivated by the
unsuitability of the current approaches due to the novel challenges imposed by
LCCI. In fact, several works exist in the literature about these research themes.

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 205–208, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

206 C. Esposito, M. Platania, and F. Brancati

However, existing solutions are usually applied to simpler and closed system. The
innovative and challenging aspect is to apply these strategies, or to define novel
ones, in the context of complex, evolvable, and extremely heterogeneous systems,
which will compose future LCCI systems. It is needed to define novel middle-
ware technologies, models, and methods to assure and assess the resiliency level
of current and future OTS-based LCCIs, to diagnose faults in real time, and to
tolerate them by means of dynamic reconfiguration. Assuring the resiliency level
of LCCIs is crucial to reduce, with known probabilities, the occurrence of catas-
trophic failures, and consequently, to adopt proper diagnosis and reconfiguration
strategies.

The ultimate goal of this workshop is to envision new trends and ideas about
theoretical and practical aspects of designing, implementing, and evaluating de-
pendable and secure solutions for the next generation critical networked infras-
tructures. In particular, the workshop aims at presenting the advancement of
the state of art in the fields of distributed systems, hardware and software di-
agnosis, and software engineering, crucial for improving trustworthiness on ICT
facilities, and spreading their adoption in very critical scenarios involving main
infrastructures for modern society.

Program

The program of DESEC4LCCI ’12 consists of 11 high-quality papers, covering
the above-mentioned topics. In particular, we can group them in two main classes
according to their topic:

– Security in Critical Infrastructures:

1. “Quantitative Security Evaluation of a Multi-Biometric Authentication
System” by Leonardo Montecchi, Paolo Lollini, Andrea Bondavalli and
Ernesto La Mattina;

2. “Protecting the WSN zones of a Critical Infrastructure via enhanced
SIEM technology” by Valerio Formicola, Salvatore D’Antonio, Luigi Ro-
mano and Luigi Coppolino;

3. “On Securing Communications among Federated Health Information
Systems” by Mario Ciampi, Giuseppe De Pietro, Christian Esposito,
Mario Sicuranza, Paolo Mori, Abraham Gebrehiwot and Paolo Donzelli;

4. “How secure is ERTMS?” Robert Stroud, Ilir Gashi, Robin Bloomfield
and Richard Bloomfield.

– Dependable Systems and Practical Experience:

1. “International Cooperation Experiences: Results Achieved, Lessons
Learned, and Way Ahead” by Salvatore D’Antonio, Luigi Romano, Craig
Gibson and Matteo Melideo;

2. “A Federated Simulation Framework with ATN Fault Injection Module
for Reliability Analysis of UAVs in Non-controlled Airspace” by Magali
Andreia Rossi, Jorge Rady Almeida Junior, Andrea Bondavalli and Paolo
Lollini;

Introduction to DESEC4LCCI 207

3. “WSDM-based autonomic augmentation of classic multiple-version soft-
ware fault-tolerance mechanisms” by Roeland Dillen, Jonas Buys, Vin-
cenzo De Florio and Chris Blondia;

4. “HSIENA: a hybrid publish/subscribe system” by Fabio Petroni and
Leonardo Querzoni.

– Methodologies and Analysis:
1. “Formal Verification of a Safety Argumentation and Application to a

Complex UAV System” by Julien Brunel and Jacques Cazin;
2. “Electronic Reliability Estimation: How reliable are the results?” by

Nuno Silva and Rui Lopes;
3. “Model-based assessment of multi-region Electric Power Systems show-

ing heterogeneous characteristics” by Silvano Chiaradonna, Felicita Di
Giandomenico and Nicola Nostro.

They are focused on several heterogeneous application domains, spanning from
Health Information Systems and Electric Power Systems to Complex UAV Sys-
tems and Railway Control Systems (just to cite some of them). Each paper was
selected according to at least two reviews produced mainly by Program Commit-
tee members and a little percentage of external reviewers. Selected papers come
from several countries around the world, with a good balance between academic
and industrial research. In addition, we are glad to open the workshop with a
remarkable keynote speech by Andrea Bondavalli, distinguished professor at the
University of Florence, Italy. Finally, the workshop is followed by a panel to dis-
cuss the presented topics and to indicate possible future avenues of exploration
for this challenging research area.

Thanks

We would like to thank the SAFECOMP organization committee and collabora-
tors for their precious help in handling all the issues related to the workshop. Our
next thanks go to all the authors of the submitted papers who manifested their
interest in the workshop. With their participation the First SAFECOMP Work-
shop on Dependable and Secure Computing for Large-scale Complex Critical
Infrastructures becomes a real success and an inspiration for future workshops
on this new and exciting area of research. In addition, we thank Resiltech for
financially sponsoring this workshop.

Special thanks are finally due to Program Committee members and additional
reviewers for the high quality and objective reviews they provided.

Acknowledgement. This workshop has been supported by the following re-
search projects:

– Dependable Off-The-Shelf based middleware systems for Large-scale Com-
plex Critical Infrastructures (DOTS-LCCI, dots-lcci.prin.dis.unina.it), a
project financed by Italian Ministry for Education, University, and Re-
search (MIUR) in the framework of the Project of National Research In-
terest (PRIN) DOTS-LCCI aims at investigating middleware solutions to

208 C. Esposito, M. Platania, and F. Brancati

realize large-scale complex critical infrastructures, which are defined as the
federation of heterogeneous, maybe already-existent, systems.

– CRITICAL Software Technology for an Evolutionary Partnership (CSTEP,
www.critical-step.eu), a project financed by European Commission (contract
number 230672) as Marie-Curie action within the framework of the 7th Work
Programme (FP7) CSTEP aims at establishing the basis for a long term
strategic research collaboration between partners involved in this project
in the growing and challenging domain of software for large-scale Safety-
Critical Systems (SCSs) based on the use of Off-The-Shelf (OTS) software
components for the control of complex distributed infrastructures such as
Air Traffic Management (ATM) systems, complex industrial plants, etc.

– Blending Technologies for Ubiquitous Real-Time Data Access (BLEND), a
project financed by the European Union within the context of EuroStar
financing scheme BLEND addresses the need of next-generation mission
and business critical system-of-systems, such as Air Traffic Control, Multi-
Exchange Trading, and Border Surveillance, for ubiquitous access to real-
time data over a multitude of communication technologies and over an ultra-
large scale.

– A railway automatic track warning system based on distributed personal
mobile terminals (ALARP, www.alarp.eu), a project financed by the Euro-
pean Commission within the context of FP7 Transport (including Aeronau-
tics) programme The objective of the ALARP project is to study, design
and develop an innovative more efficient Automatic Track Warning System
(ATWS) to improve the safety of railway trackside workers.

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 209–221, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Quantitative Security Evaluation
of a Multi-biometric Authentication System

Leonardo Montecchi1, Paolo Lollini1, Andrea Bondavalli1, and Ernesto La Mattina2

1 University of Florence, 50134 Firenze, Italy
{lmontecchi,lollini,bondavalli}@unifi.it

2 Engineering Ingegneria Informatica S.p.A., 90146 Palermo, Italy
ernesto.lamattina@eng.it

Abstract. Biometric authentication systems verify the identity of users by rely-
ing on their distinctive traits, like fingerprint, face, iris, signature, voice, etc.
Biometrics is commonly perceived as a strong authentication method; in prac-
tice several well-known vulnerabilities exist, and security aspects should be
carefully considered, especially when it is adopted to secure the access to appli-
cations controlling critical systems and infrastructures. In this paper we perform
a quantitative security evaluation of the CASHMA multi-biometric authentica-
tion system, assessing the security provided by different system configurations
against attackers with different capabilities. The analysis is performed using the
ADVISE modeling formalism, a formalism for security evaluation that extends
attack graphs; it allows to combine information on the system, the attacker, and
the metrics of interest to produce quantitative results. The obtained results pro-
vide useful insight on the security offered by the different system configura-
tions, and demonstrate the feasibility of the approach to model security threats
and countermeasures in real scenarios.

Keywords: quantitative security evaluation, multimodal biometric authentica-
tion, modeling, ADVISE, CASHMA.

1 Introduction

Biometric authentication systems verify the identity of users by relying on their dis-
tinctivetraits like fingerprint, face, iris, signature, voice, etc. Even though biometrics is
commonly perceived as a strong authentication technique, several well-known vulnera-
bilities exist in practice, potentially allowing attackers to substitute themselves to legiti-
mate users of the system. As the adoption of biometric systems is spreading in real world
applications, multi-biometric systems are starting to receive considerable attention. Such
kind of systems combine multiple biometric traits to verify user identities, trying to over-
come some of the limitations of unimodal systems, such as noisy data, intraclass varia-
tion, non-universality, and susceptibility to spoofing attacks [1]. Security aspects are of
major importance in such systems, especially when biometric authentication is adopted to
secure the access to applications controlling critical systems or infrastructures. The recent
“Stuxnet” worm attack [2] shows that facing modern attackers requires to take into

210 L. Montecchi et al.

account several aspects during security analysis, including skills and motivation of at-
tackers, system knowledge, and human factors.

In this paper we perform a quantitative security evaluation of the multi-biometric
authentication system defined within the CASHMA project [3], assessing the security
provided by different system configurations against different attackers. The analysis is
performed using the recently introduced ADVISE modeling formalism [4], which is
especially tailored to quantitative security evaluation. The contribution of this work is
twofold: on one hand we evaluate quantitative metrics that allow to compare different
security configurations of the target system; on the other hand we describe one of the
first applications of ADVISE for the analysis of a more comprehensive system, with
the aim to assess its capabilities to represent security aspects in a real scenario.

The paper is organized as follows. Section 2 reviews related work, while Section 3
describes the CASHMA system and the scenario under analysis, discussing some of
the major security threats. Section 4 provides a brief description of the ADVISE for-
malism, and then describes the model that will be used for evaluations. Evaluations
and results are discussed in Section 5. Finally, conclusions are drawn in Section 6.

2 Related Work

Many works on the evaluation of biometric systems focus on the performance of the
matching process, which compares the data acquired from sensors with reference
samples associated with enrolled users. Two main quantities are usually considered:
the rate of wrongly accepted matches (False Accept Rate, FAR), and the rate of
wrongly rejected matches (False Reject Rate, FRR) [1,5]. Since the first measure
provides a quantification of potentially unauthorized accesses, it is often used to quan-
tify the security of the overall system. It is however believed that such simple indica-
tors are no longer appropriate, and that more comprehensive evaluation frameworks
taking into account the security of the system as a whole are needed [6].

Our approach uses model-based analysis to evaluate security measures of an over-
all biometric system. Model-based analysis has been extensively used for dependabili-
ty analysis, and it has been later adopted in security analysis as well [7]. An abstrac-
tion of the system is created and then used to evaluate measures, verify properties, or
identify possible issues on the system. One of the first formal models introduced for
security analysis is the Dolev-Yao model [8], which is commonly used to verify prop-
erties of cryptographic protocols through semi-automatic tools like CASPER [9].
Attack trees [10] allow to describe the possible ways in which an attacker can com-
promise the system, and they are extensively used to model the security of the system
as a whole; however they do not have the notion of time, and cannot be used to ex-
press complex dependencies between events. Attack graphs [11] extend attack trees
by introducing the notion of state, thus allowing to describe more complex interac-
tions between events and attacks. Other approaches use classic formalism borrowed
from reliability analysis such as Stochastic Petri Nets and their extensions [12].

The ADVISE formalism, which has been recently introduced in [4,13], extends the
attack graph concept, taking into account the attack behavior and capabilities of

 Quantitative Security Evaluation of a Multi-biometric Authentication System 211

different kind of attackers. Support for the formalism is going to be provided by fu-
ture versions of the Möbius multi-formalism modeling framework [14]; currently,
support is provided by an “alpha” (i.e., in development) version of the tool. To the
best of our knowledge, the only case study that applies the ADVISE method is de-
scribed in [4,13], where a SCADA system is analyzed.

3 Targeted System and Scenario

The purpose of the CASHMA system is to provide an authentication service, which
operates as a bridge between users that need to access to a given application, and
applications that require secure access control. The core elements of the CASHMA
architecture are the authentication server and the template database, in which samples
of biometric data (“templates”) are stored. Different kind of biometric sensors, located
on the client, are used to acquire user biometric data. When users need to access to a
certain application, their biometric traits are acquired and transmitted to the authenti-
cation service, which compares them with the templates stored in the database. If
authentication is successful, the user is provided with a certificate that can be used to
access the application(s). The CASHMA authentication service supports very differ-
ent kind of applications, including those with high security constraints (e.g., kiosks
securing the access to critical infrastructures management facilities), but also enter-
tainment and informational applications. The main assumption on client devices is
that they have the only role of acquiring biometric data, while all the processing and
comparison tasks are performed server-side.

3.1 Security Threats to Biometric Authentication Systems

Although common sense would suggest that biometrics provides a very high degree
of security, there are actually several means for attackers to compromise a biometric
system. For example, data acquired from biometric sensors during the authentication
of a legitimate user can be logged and later reused by the attacker, in a similar way as
logging keystrokes allows to obtain passwords typed at a terminal. Another option is
to create an artificial biometric sample, which is actually feasible with common mate-
rials even for those considered strong biometric traits, like fingerprint [15] or even iris
[16]. In the following we list some of the vulnerabilities that have been identified for
the CASHMA authentication service, briefly discussing how they could be exploited
by an attacker and which are the possible countermeasures. Such list has been used as
a basis in the construction of the analysis model.

Denial of service (DoS) attacks are designed to corrupt or incapacitate the biome-
tric sensors, and can consist in physical damage, power loss, or introducing adverse
environmental conditions to degrade the quality of the acquired data. Using fake phys-
ical biometric, also known as sensor spoofing, consists in using counterfeit physical
biometrics to circumvent the biometric system. This is one of the most convenient
attacks to this kind of systems: little system knowledge is required, involved materials
are usually common and cheap, and most digital countermeasures (e.g., data

212 L. Montecchi et al.

encryption) are bypassed. Copies of legitimate biometrics can be obtained with rela-
tively low effort: fingerprints are left on many things we touch; face and voice are
easily recorded. Countermeasures to this kind of attack are “liveness detection” me-
chanisms [1], i.e., mechanisms looking for life indicators, like heartbeat or eye
movement.

Reuse of residuals exploits the fact that some biometric devices may hold the last
few acquired samples in some kind of local memory. If an attacker gains access to
this data, he may be able to reuse it to provide a valid biometric sample. Countermea-
sures to this attack include clearing memory and forbidding perfectly identical biome-
tric samples. Replay attacks involve the communication between the sensor and the
processing resource that performs the comparison. A replay attack is composed of at
least two stages: first an authentic communication is intercepted (eavesdropping),
then it is replayed when needed, possibly modifying its content in accordance with the
objectives of the attacker. Data encryption and digital signatures offer significant
protection against this kind of attack. Finally, template modification consists in direct-
ly altering the template database, and it is one of the most serious threats to biometric
systems: it potentially allows an attacker to obtain unauthorized access by simply
presenting its real biometrics, and substituting to any of the legitimate users of the
system. Countermeasures to this kind of attack include strict access policies to the
template database, as well as encryption and digital signature for database content.

The attacks that an adversary may attempt obviously depend on the system archi-
tecture; a more comprehensive list of threats to biometric systems can be found in [1]
and [17]. Finally, it should be noted that one of the most valuable resources for an
attacker is the collaboration, or the coercion, of a legitimate user of the system.

3.2 Scenario Description and Analysis Objectives

The scenario that we consider in our analysis is an instance of the CASHMA system,
supporting three biometric traits: voice, face, and fingerprint. The authentication serv-
er and the template database reside on a private network, protected from the Internet
by a firewall. Communication between the client and the authentication server uses an
encrypted logical channel (e.g., the SSL/TLS protocol [18]).

No assumptions are made on the kind of application(s) to which the authentication
service provides access. Consequences of unauthorized access depend on the actual
application, and potentially include catastrophic events in case of critical infrastruc-
tures control systems. Therefore, we focus on security attributes of the authentication
service, and consider the time that it takes for an attacker to obtain unauthorized
access as the main indicator of system security. In particular, we evaluate:

• : Probability that, at time , the attacker has been successfully authenticated.
• : Mean time required to the attacker to obtain authentication.

In our analysis we will compare three different system configurations, which have
been identified as representative alternatives within the project:

 Quantitative Security Evaluation of a Multi-biometric Authentication System 213

1. User authentication requires only two of the three supported biometric traits. This
configuration allows to trade security for broader client support: the absence of one
sensor (e.g., fingerprint reader on mobile phones) or bad environment conditions
(e.g., low light or noise) will still allow authentication by using the remaining sen-
sors. The acquired biometric data is transmitted using a single encryption key.

2. User authentication requires all the supported biometric traits. The acquired biome-
tric data is transmitted using a single encryption key.

3. User authentication requires all the supported biometric traits, and the biometric
data is transmitted using three separate encryption keys.

The three above configuration variants are intended for systems having different secu-
rity requirements, and aim to provide an increasing level of security, with #1 being
the least secure configuration, and #3 being the most secure. It is assumed that the
system is subject to different kind of attackers, distinguished by the knowledge they
have of the system, the elements they can access, and their skills. Our objective is to
assess the ability of above configuration to contrast the different attackers.

A realistic characterization of attackers is a challenging task for system-level secu-
rity analysis; a common technique for network-based systems is the use of “honey-
pots”, i.e. intentionally low protected machines exposed on public networks to attract
attackers and analyze their actions (e.g., see [19]). This approach is however less
practical when non-network-based attacks are considered. In our analysis we consider
a representative set of attackers, covering different abilities, knowledge, and accesses.
The detailed definition of the different attacker profiles is provided in Section 4.2.

4 Modeling Approach

This section describes how the system has been modeled using ADVISE. Section 4.1
briefly introduces the formalism, while Section 4.2 describes the model itself.

4.1 The ADVISE Formalism

The analysis method supported by the ADVISE [4,13] formalism relies on creating
executable security models that can be solved using discrete-event simulation to pro-
vide quantitative metrics. One of the most significant features introduced by this
formalism is the precise characterization of the attacker (the “adversary”) and the
influence of its decisions on the final measures of interest. In fact, the overall security
of a system is influenced not only by its actual strength in contrasting intrusion at-
tempts, but also by its strength as perceived by attackers.

The specification of an ADVISE model is composed of two parts: an Attack Ex-
ecution Graph (AEG), describing how the adversary can attack the system, and an
adversary profile, describing the characteristics of the attacker. The AEG is a particu-
lar kind of attack graph comprising different kinds of nodes: attack steps, access do-
mains, knowledge items, attack skills, and attack goals. Similarly as in attack graphs,
attack steps describe the possible attacks that the adversary may attempt. Access do-
mains describe what the attacker needs to possess (e.g., intranet access), while

214 L. Montecchi et al.

knowledge items describe what it needs to know (e.g., admin passwords); attack skills
describe the proficiency of the adversary in certain abilities; attack goals describe its
objectives. Each attack step requires a certain combination of items to be held by the
adversary. The set of what has been achieved by the adversary defines the current
state of the model. Differently from other attach graphs, ADVISE attack steps have
also additional properties, which allow creating executable models for quantitative
analysis. Each attack step has an associated stochastic duration, a cost, and a set of
different outcomes, each one modifying the state of the model in a different way. A
probability of occurrence and a probability of being detected (as perceived by the
adversary) are associated with each outcome.

The adversary profile defines the set of access items and knowledge items that are
initially owned by the adversary (i.e., the initial state of the model), as well as his
proficiency in attack skills. The adversary starts without having reached any goal, and
works towards them. To each attack goal it is assigned a payoff value, which specifies
the value that the adversary assigns to reaching that goal. Three weights define the
relative preference of the adversary in: i) maximizing the payoff, ii) minimizing costs,
or iii) minimizing the probability of being detected. Finally, the planning horizon
defines the number of steps in the future that the adversary is able to take into account
for his decisions; this value can be thought to model the “smartness” of the adversary.

The ADVISE execution algorithm [4] evaluates the reachable states based on
enabled attack steps, and selects the most appealing to the adversary based on the
above described weights. The execution of the attack is then simulated, leading the
model to a new state. Metrics of interest are defined using reward structures [7].

4.2 ADVISE Model

Due to space limitations, in this section we only provide a high-level description of
the model. The full details of the model can be found as a technical report in [20].

Attack Execution Graph. The AEG for configurations variant #2 (see Section 3.2)
consists of 1 attack goal, 10 access domains, 5 knowledge items, 5 attack skills, and
18 attack steps; the AEGs for the other two variants have only slight differences. Its
graphical representation is shown in Fig. 1, using the graphical notation
introduced in [4]: attack goals are represented by ovals, access domains by squares,
knowledge items by circles, attack skills by triangles, and attack steps by rectangles.

The description of the AEG in Fig. 1 is carried out in the following, in a bottom-up
fashion. The model has only one attack goal, “Open Session”, representing the
objective of obtaining authentication. In configuration #2, to accomplish its goal the
attacker should be authenticated by each unimodal biometric subsystems. Successful
authentication with each of the three biometric traits is represented by the three access
domains “VoiceAuth_Ok”, “FaceAuth_OK”, and “FingerprintAuth_OK”, which ena-
ble the “WaitResponse” attack step. In this step the attacker simply waits the response
from the authentication service. The adversary has basically two ways to reach the
three access domains: he can perform a combined spoofing attack on biometric sen-
sors, or he can compromise the template database.

 Quantitative Security

Fig. 1. The structur

The modification of the
plate” attack step. However
the “HackSkill” attack skil
cess” access domain) and k
mittedFeatureSet” knowled
real biometrics to obtain au
gerPrint” attack steps). Acc
its location and credentials
having access to the private
the “TemplateDatabaseLog
forming the “TemplateData
tion of the database, havin
proficiency in the “HackSki
to the attacker, he can obta
network communication on
also provide information o
however it requires access t

Obtaining the three a
represented by the “Sensor
poofing_Fingerprint” attack

y Evaluation of a Multi-biometric Authentication System

re of the ADVISE attack execution graph for variant #2

template database is represented by the “InsertFakeTe
r, to successfully accomplish that, he needs a high score
l, access to the template database (“TemplateDatabaseA
knowledge of previously transmitted feature sets (“Tra

dge item). If this attack is successful he can then use
uthentication (“PresentVoice”, “PresentFace”, “PresentF
cess to the template database can be obtained by know
(“DBLocation” and “DBPassword” knowledge items)

e network (“CASHMA_Network_Access”), which enab
gin” attack step. Another way to access the database is p
abaseHack” attack step, which requires knowing the lo
ng access to the CASHMA internal network, and a h
ill” attack skill. If the location of the database is not kno

ain it with the “Eavesdropping” attack step, i.e., observ
n the CASHMA internal network. The same attack m
on transmitted biometric data (“TransmittedFeatureSe
to the internal network, and the “HackSkill” attack skill.
access domains through sensor spoofing technique
rSpoofing_Voice”, “SensorSpoofing_Face”, and “Senso
k steps, each one requiring a specific attack skill and acc

215

em-
e in
Ac-
ans-

his
Fin-

wing
and
bles
per-
oca-
high
own
ving
may
et”);
.
esis
orS-
cess

216 L. Montecchi et al.

domain. For example, “Se
the “SkillSpoofing_Fingerp
main. Moreover, the succes
the score in the related atta
the attacker at the beginnin
legitimate users, but it is req
(“UsersKnowledge”). Such
mationAboutUsers” attack
samples for voice and fac
Face” attack steps) does n
taking a picture or recordin
is associated with such atta
sary to have the fingerpri
item), which can be either
tained from the user by frau
The latter option however r

To evaluate the other two
the AEG. Considering onl
quires to modify the prere
enable it even when only tw
different encryption keys i
step and the “Transmitted
communications using diffe

Adversary Profiles. A su
adversary profiles is shown
scribe, from top to bottom
ledge items, preference wei
domains and knowledge ite
any adversary at the beginn

Table 1

nsorSpoofing_Fingerprint” requires a high proficiency
print” attack skill, and the “FakeFingerprint” access
ss probability of this attack step is directly proportiona
ack skill. Fake biometric samples can be either owned
g of the scenario, or can be obtained in a sneaky way fr
quired to have knowledge of registered users of the syst

h knowledge can be obtained by performing the “GetInf
step, which has no particular prerequisites. Obtaining f

ce biometric traits (“CreateFakeVoice” and “CreateFa
not require additional items, since it may be as simple
ng a conversation; however, a high probability of detect
ack steps. For the fingerprint biometry, instead, it is nec
int of an authorized user (“UserFingerprint” knowle
found on the biometric device (“FindLatentPrint”), or

ud, e.g., having him touch some particular item or mater
equires proficiency in the “FraudMastery” attack skill”.
o configuration variants, little modifications are required
ly two biometric traits for user authentication simply
equisites for the “WaitResponse” attack step, in order
wo out of three biometric traits are provided. Having th
is represented by replicating the “Eavesdropping” att

dFeatureSet” knowledge item, to represent that the t
erent keys needs to be intercepted by the attacker.

mmary of parameters used for the definition of the f
n in Table 1. The table is divided in five blocks which

m: the proficiency in attack skills, access domains, kno
ights, and planning horizon of the four adversaries. Acc
ems that are not mentioned in the table are not owned

ning of the scenario.

1. Definition of the four adversary profiles

y in
do-

al to
d by
rom
tem
for-
fake
ake-
e as
tion
ces-

edge
ob-

rial.

d to
re-

r to
hree
tack
tree

four
de-

ow-
cess
d by

 Quantitative Security Evaluation of a Multi-biometric Authentication System 217

The malicious user (voice) attacker represents a malicious user of the system trying
to authenticate on behalf of someone else. He owns a fake biometric sample of the
victim’s voice, which could have been obtained for example by simply recording a
conversation, but he does not have other particular skills. The mailicious user
(voice+face) is also able to provide a fake sample of the victims’ face biometry, e.g. a
high resolution picture. The hacker attacker has an high skill in the “HackSkill” abili-
ty, allowing him to perform advanced cyber-attacks to the system, and he has some
additional knowledge on system configuration. Finally, the terrorist organization
attacker is characterized by a high motivation in reaching the intended goal
(“WeightPayoff”) and pays little attention to needed costs and to the possibility of
being detected. It has average proficiency in several skills, but he does not have fake
biometric samples to use for sensor spoofing.

The planning horizon parameter has been set to 7 for all the adversaries, as a good
compromise between solution time and accuracy of results: by further increasing it we
experienced a great increase in computation time, without significant differences in
the evaluated measures of interest. For all the adversaries a payoff of 1000 has been
set for the “SessionOpen” attack goal; measures of interest are however not affected
by this value, since it is the only attack goal available to attackers.

5 Evaluation and Results

In this section we describe the results obtained by evaluating the model defined in
Section 4.1. The model has been solved using the simulator included in the Möbius
framework. The probability that the attacker has been successfully authenticated at
time t, , is obtained by evaluating the probability that, at time t, the adversary
owns the “SessionOpen” attack goal. All the measures have been evaluated using a
relative confidence interval of 0.1, a confidence level of 99%, and collecting at least
100 and at most 10000 samples.

5.1 Variant #1: Two Biometric Traits, Single Encryption Key

Fig. 2 shows the results obtained for the default system configuration, for each of the
four attackers. In this configuration three of the four considered attackers are able to
reach the goal. The “terrorist organization” attacker is the fastest to compromise the
system, since it is able to obtain authentication in 1/5 the time required to the other
two successful attackers. This is due to the great ability of this attacker to perform
sensor spoofing attacks on the system [20]; moreover, since only two of them are
required for authentication, he is allowed to select the ones that require less effort for
him (both in time and costs). The “malicious user (voice+face)” and “hacker” attack-
ers are both able to obtain authentication, with the former spending on the average
25% additional time (about 150 minutes) with respect to the latter.

218 L. Montecchi et al.

5.2 Variant #2: Three B

In this section we evaluate
tion; results are shown in F
system security. The first is
rorist organization” attacke
with respect to variant #1.
are able to obtain authentica
obtain authentication in Var
has no means to bypass fin
effect on the “hacker” adve
the same amount of time as
time in accessing the databa

Fig. 2. Results o

Fig. 3. Results o

Biometric Traits, Single Encryption Key

e the impact of using three biometric traits for authenti
Fig. 3. This configuration variant has two main effects
s a considerable increasing of the time required to the “
er to obtain authentication, which has increased by 4 tim
The second effect is that only two of the four adversar
ation: the “malicious user (voice+face)”, which was abl
riant #1, is now unable to compromise the system, since

ngerprint authentication. Finally, this modification has li
ersary, which is still able to compromise the system us
s in variant #1. This attacker spends the greatest part of
ase and eavesdropping the communications [20], steps t

obtained for variant #1, for the different adversaries

obtained for variant #2, for the different adversaries

ica-
s on
“ter-
mes
ries
e to
e he
ittle
sing
f the
that

 Quantitative Security

require the same amount of
tional biometric traits resu
kind of attackers. However,
improvement only if the t
attacker this configuration i

5.3 Variant #3: Three B

In the third configuration v
to the server using three di
modification only affects th
authentication by comprom
PE(t) and TE change for th
Introducing different encry
tain authentication from the
he will have to perform add
fy the template database. M
by a factor of 3: the mea
doubled with respect to vari

Fig. 4. Results

6 Conclusions

In this paper we have perfo
multi-biometric authenticati
ism. We successfully mode
into accountaspects related
samples), system knowledg
pects in assessing the secur
importance in understandin
aspects need to be further

y Evaluation of a Multi-biometric Authentication System

f timein this configuration as well. As expected, using ad
ults in a considerable increase of security against cert
, it is also highlighted that such solution provides a secu
template database is well-protected: against the “hack
is no more secure than variant #1.

Biometric Traits, Three Encryption Keys

variant, biometric data acquired from sensors is transmit
ifferent encryption keys, one for each biometric trait. T
he “hacker” attacker, which is the only one able to obt
mising the template database [20]. Fig. 4 compares h
e “hacker” adversary when introducing this modificati

yption keys does not prevent the “hacker” adversary to
e system; however he will need more time to succeed, si
ditional attack steps to obtain all the data required to mo

Moreover, results show that security is not simply impro
an time required to obtain authentication is in fact o
iants #1 and #2.

s obtained for the “hacker” adversary in variant #3

ormed a quantitative security evaluation of the CASHM
ion system, using the recently introduced ADVISE form
eled the threats to biometric authentication systems, tak

to human factors (e.g., cheat on users to obtain biome
ge, and skills of attackers. Taking into account these
rity of critical infrastructures control systems is of prim
ng and contrasting modern cyberattacks. However, so
r investigated; in particular, setting model parameters

219

ddi-
tain

urity
ker”

tted
This
tain
how
ion.
ob-

ince
odi-

oved
only

MA
mal-
king
etric

as-
mary
ome
s is

220 L. Montecchi et al.

challenging; for example, defining the duration and cost of each attack step introduces
several assumptions that are hard to verify. Another interesting aspect concerns model
solution, which is currently carried out by discrete-event simulation; analytical solu-
tion techniques, when applicable, could improve the accuracy of results.

Acknowledgments. This work has been partially supported by the Italian Ministry for
Education, University, and Research (MIUR) through the FIRB project CASHMA:
Context Aware Security by Hierarchical Multilevel Architectures [3].

References

1. Li, S.Z. (ed.): Encyclopedia of Biometrics, 1st edn. Springer Reference (2009)
2. Chen, T., Abu-Nimeh, S.: Lessons from Stuxnet. IEEE Computer 44(4), 91–93 (2011)
3. FIRB – Fondo per gli Investimenti della Ricerca di Base, CASHMA: Context Aware Secu-

rity by Hierarchical Multilevel Architectures (2008)
4. LeMay, E., Ford, M., Keefe, K., Sanders, W., Muehrcke, C.: Model-based Security Me-

trics Using ADversary VIew Security Evaluation (ADVISE). In: 8th International Confe-
rence on Quantitative Evaluation of Systems (QEST 2011), pp. 191–200 (2011)

5. Phillips, P.J., Martin, A., Wilson, C.L., Przybocki, M.: An introduction evaluating biome-
tric systems. IEEE Computer 33(2), 56–63 (2000)

6. Henniger, O., Scheuermann, D., Kniess, T.: On security evaluation of fingerprint recogni-
tion systems. In: International Biometric Performance Conference (IBPC 2010), March 1-
5. National Institute of Standards and Technology, NIST (2010)

7. Nicol, D.M., Sanders, W.H., Trivedi, K.S.: Model-based evaluation: from dependability to
security. IEEE Trans. on Dependable and Secure Computing 1(1), 48–65 (2004)

8. Dolev, D., Yao, A.C.: On the security of public-key protocols. IEEE Transactions on In-
formation Theory 29(8), 198–208 (1983)

9. Lowe, G.: Casper: a compiler for the analysis of security protocols. In: Proc. 10th Com-
puter Security Foundations Workshop, June 10-12, pp. 18–30 (1997)

10. Ten, C.-W., Liu, C.-C., Govindarasu, M.: Vulnerability Assessment of Cybersecurity for
SCADA Systems Using Attack Trees. In: IEEE Power Engineering Society General Meet-
ing, June 24-28, pp. 1–8 (2007)

11. Sheyner, O., Haines, J., Jha, S., Lippmann, R., Wing, J.M.: Automated generation and
analysis of attack graphs. In: IEEE Symposium on Security and Privacy, pp. 273–284
(2002)

12. Beccuti, M., et al.: Quantification of dependencies in electrical and information infrastruc-
tures: The CRUTIAL approach. In: 4th International Conference on Critical Infrastructures
(CRIS 2009), pp. 1–8 (2009)

13. LeMay, E., Unkenholz, W., Parks, D., Muehrcke, C., Keefe, K., Sanders, W.H.: Adver-
sary-Driven State-Based System Security Evaluation. In: Proceedings of the 6th Interna-
tional Workshop on Security Measurements and Metrics, MetriSec 2010 (2010)

14. Courtney, T., Gaonkar, S., Keefe, K., Rozier, E.W.D., Sanders, W.H.: Möbius 2.3: An Ex-
tensible Tool for Dependability, Security, and Performance Evaluation of Large and Com-
plex System Models. In: DSN 2009, Estoril, Lisbon, Portugal, pp. 353–358 (2009)

15. Matsumoto, T., Matsumoto, H., Yamada, K., Hoshino, S.: Impact of artificial ‘gummy’
fingers on fingerprint systems. In: Proc. SPIE, vol. 4677, pp. 275–289 (2002)

16. Pacut, A., Czajka, A.: A liveness Detection for IRIS Biometrics. In: Proc. of the 40th Int.
Carnahan Conference on Security Technology (ICCST 2006), pp. 122–129 (October 2006)

 Quantitative Security Evaluation of a Multi-biometric Authentication System 221

17. Roberts, C.: Biometric attack vectors and defences. Computers & Security 26(1), 14–25
(2007)

18. Dierks, T., Rescorla, E.: The Transport Layer Security (TLS) Protocol – Version 1.2, RFC
5246, IETF Network Working Group (August 2008)

19. Salles-Loustau, G., Berthier, R., Collange, E., Sobesto, B., Cukier, M.: Characterizing At-
tackers and Attacks: An Empirical Study. In: IEEE 17th Pacific Rim International Sympo-
sium on Dependable Computing (PRDC), pp. 174–183 (2011)

20. Montecchi, L., Lollini, P., Bondavalli, A.: ADVISE model for the security evaluation of
the CASHMA multi-biometric authentication system, University of Florence, RCL Group,
Technical Report RCL120301 (2012),
http://rcl.dsi.unifi.it/publications

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 222–234, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Protecting the WSN Zones of a Critical Infrastructure
via Enhanced SIEM Technology

Luigi Romano1, Salvatore D’Antonio1, Valerio Formicola1, and Luigi Coppolino2

1 University of Naples ”Parthenope”, Department of Technology, Naples, Italy
{luigi.romano,salvatore.dantonio,
valerio.formicola}@uniparthenope.it

2 Epsilon S.r.l., Naples, Italy
luigi.coppolino@epsilonline.com

Abstract. Attacks on Critical Infrastructures are increasing and becoming more
sophisticated. In addition to security issues of Supervisory Control And Data
Acquisition systems, new threats come from the recent adoption of Wireless
Sensor Network (WSN) technologies. Traditional security solutions for solely
Information Technology (IT) based infrastructures, such as the Security Infor-
mation and Events Management (SIEM) systems, can be strongly enchanced to
address such issues. In this paper we analyze limits of current SIEMs to protect
CIs and propose a framework developed in the MASSIF Project to enhance ser-
vices for data treatment. We present the Generic Event Translation and intro-
duce the Resilient Storage modules to collect data from heterogeneous sources,
improve the intelligence of the SIEM periphery, reliably store information of
security breaches. Particularly, by focusing on the first two features, we illu-
strate how they can improve the detection of attacks targeting the WSN of a
dam monitoring and control system.

Keywords: Security Information and Event Management (SIEM), Supervisory
Control and Data Acquisition (SCADA), Wireless Sensor Networks.

1 Rationale and Contribution

Coordinated and targeted cyber-attacks to Critical Infrastructures (CIs) are increasing
and becoming more sophisticated [1][2]. Mostly, such infrastructures rely on legacy
Supervisory Control And Data Acquisition (SCADA) systems that have been de-
signed without having security in mind, as they were originally isolated and based on
proprietary protocols. Moreover, the recent and increasing trend of critical infrastruc-
ture monitoring is based on Wireless Sensor Network (WSN) technology, which
introduces new security threats in addition to a number of advantages, such as dramat-
ically reduction of deployment costs, possibility for deploying a proper level of re-
dundancy, effective monitoring in several scenarios [3][4][5].

According to the National Institute of Standards and Technology (NIST) [6], secur-
ing a Critical Infrastructure is very different from protecting solely Information
Technology-based infrastructures, hence traditional solutions, such as the Security

Protecting the WSN Zones of a Critical Infrastructure via Enhanced SIEM Technology 223

Information and Event Management (SIEM) systems are often ineffective for CIs
protection. In order to overcome such issues, the European Commission funded
project MASSIF [7] proposes an enhanced SIEM for the protection of Critical Infra-
structures. In this paper we analyze the main limits of current SIEM solutions when
applied to protecting CIs and design and implement a framework to overcome the
identified limits by enhancing data collection and storage services of a SIEM. The
solution is composed of several modules that we named Generic Event Translation
(GET) and Resilient Storage (RS) which allow to: i) increase the heterogeneity and
number of data sources; ii) move part of the data processing toward the edge of the
distributed IT system managing the CI; iii) provide post-accidental support allowing a
precise and reliable reconstruction of the happening of a security breach and forensic
evidence of such a circumstance. A final contribution of this paper is the application
of the proposed solution to protect a real CI, namely a dam, monitored by means of
WSN technology. To the best of our knowledge, no works in literature discuss the
adoption of SIEM technology to protect the WSN zones of a CI. Most of the related
work faces security issues in WSN technology by means of Intrusion Detection Sys-
tems (IDS) and improved routing protocols. For instance, in [8] a reputation based
approach combined with clustering algorithms is used to detect attacks to the WSN
routing protocols. In [9] an hybrid agent based IDS detects routing protocol attacks,
such as sinkhole and sleep deprivation. In [10] intrusion detection algorithm based on
neighbor nodes’ power is applied to WSN with static nodes.

In Section 2, the paper discusses the main limits of current SIEM technologies
when applied to protect Critical Infrastructures and excerpts a list of features for an
enhanced SIEM for CIs. Section 3 introduces the data service components in the con-
text of the MASSIF framework. Section 4 presents the implementation of such solu-
tions and their usage to protect a dam monitoring and control system. Section 5 closes
the paper with final remarks and an overview of future plans.

2 Enhanced SIEMs for CIs

MASSIF project has analyzed four real world scenarios and has identified the main
limits of current State of the Art (SotA) technology [8] when deployed to protect CIs.
Such limits may invalidate the effectiveness of SIEM operation, which, primarily, has to
avoid security-induced safety issues impacting society and environment. In Table 1 we
shortly summarize them and excerpt a list of features for an enhanced SIEM for CIs.

Besides such capabilities, MASSIF project has identified additional services which
can be offered on the top of the SIEM (e.g. attack modeling and simulation, decision
support and reaction/countermeasure systems, advanced visualization, etc.); however,
these topics are out of the scope of this paper. In the following we will present our
solution to address issues presented in Table 1, with the exception of resilient data
dissemination, faced in MASSIF and partially discussed in [17]. Moreover the RS
module is briefly introduced, but no more details are provided in this work.

224 L. Romano et al.

Table 1. Features for an enhanced SIEM for Critical Infrastructures

Enhanced SIEM capability Rationale
Data collectors should be able to integrate
legacy and novel information sources in an
effective and flexible way, by interpreting
multi-layer and multi-domain data formats,
typically characterized by heterogeneous
syntax and semantics.

Traditionally, SIEMs focus on IT infrastruc-
ture events [12][13][14][15], but some secu-
rity occurrences may not produce evidence
at this level. Enhanced SIEMs should have a
more comprehensive view of security-aware
processes.

SIEMs should limit the consumption of
shared resources as much as possible (e.g.
bandwidth, central server processing).

SCADA and SIEMs are deployed together
in the same environment, thus they compete
for the same resources, which are often very
constrained.

SIEM should provide mechanisms to treat
and pre-correlate data at the edge of the
(SIEM) architecture, very close to the field
devices.

i)Correlation may be more effectively oper-
ated when the security information is con-
textualized, detailed data can be retrieved
on-demand and analysis can exploit know-
ledge of the specific application domain.
ii)Traditional SIEMs disseminate informa-
tion through intermediate communication
nodes and towards remote correlation serv-
ers, by exposing sensitive data to third par-
ties.

SIEMs should be capable of high data vo-
lume performance at the edge of the net-
work, specifically in data treatment compo-
nents, such as data collectors, data parsers
and event correlators.

Field devices are even more capable to gen-
erate massive physical data and perform
very complex operations. This may result in
overwhelming the SIEM for CIs with huge
amounts of security related patterns and
alerts.

SIEM storage systems should provide high
capabilities in terms of: data authenticity of
event sources; fault and intrusion tolerance;
control of data access by authorized parties.
Forensic events, and only such events, must
be kept, while unnecessary details must be
deleted or made anonymous (“least persis-
tence principle”).

CIs are very attractive to malicious actions,
so security events may be used for forensic
purposes. In order to use SIEM reports as
forensic proof, digital evidence (e-evidence)
properties like Authentication, Admissibility
and Best-evidence should be granted [16].

SIEM should be able to disseminate events
in a reliable manner by means of resilient
architectures.

Data channels of SIEMs are vulnerable to
faults and malicious activities which may
impact correct and timely dissemination of
events from data sources to central engines
and may invalidate SIEM analysis.

Protecting the WSN Zones of a Critical Infrastructure via Enhanced SIEM Technology 225

3 Data Treatment Framework of MASSIF SIEM

MASSIF project proposes a SIEM with enhanced capabilities such as those exposed
above. Specifically, the SIEM is deployed as a logical overlay on the monitored infra-
structure. The GET is the MASSIF module that collects data from the “Payload Ma-
chinery” of the CI, which is typically composed of heterogeneous and multi-layer
event sources - legacy IT and SCADA components, security applications and appli-
ances – and performs preliminary security analysis of the data at the edge side of the
SIEM architecture. The Resilient Storage (RS) implements a set of techniques which
allow to reliably store data containing information of relevant security breaches.

Fig. 1. Architecture of Generic Event Translation (GET) module

Cross-layer Data Collection

The GET is the module of the SIEM in charge of cross-layer event collection, which
in turns requires gathering, parsing, filtering and translating data generated by the
Payload Machinery. GET is made of several components located at the edge-side of
the MASSIF SIEM architecture. Each one is assigned to a single subtask. Moreover,
the GET can be interfaced very closely to the field systems and can sign information
as soon as it is generated. Follows a list of the GET components, shown in Fig 1.

Dispatcher gathers raw data from event sources by means of textual based proto-
cols, such as Syslog [18], which is by far the most widely used transport protocol to
send event logs. Adaptable Parsers (APs) extracts information from the flow of raw
data (e.g., a stream of characters) previously collected (parsing). APs adopt Compiler-
compiler technology to automatically manipulate formally specified documents [19].
This approach retains a number of associated advantages including: a very large de-
gree of expressiveness, the availability of well-known tools for the automatic
processing of grammar-based artifacts, a high level of generality and technology-
independence, which decouples the format definition from the underlying technology
used for data processing. Each AP is joined to the GET Access Point (GAP), which
supports the Dispatcher by associating a data source stream with the related parser.
Event Filters selectively discard events generated by the event sources to avoid the
propagation of useless data to SIEM analysis. Event Handler (EH) translates the

226 L. Romano et al.

message format into a common and generic event format, in order to be effectively
processed by SIEM core engines. Sender Agent sends SIEM-formatted events to the
dissemination layer of the enhanced SIEM, namely the Resilient Event Bus of
MASSIF.

Edge-Side Data Analysis

The part of the GET in charge of cross-layer event correlation, aggregation and ab-
straction is the Security Probe (SP). The SP introduces a novel level of intelligence
into SIEM analysis and contextualizes it to the specific application domain. Particu-
larly, SP is a Finite State Machine (FSM)-based event pattern detector which reduces
the burden of processing the whole data at the core of the SIEM. Specifically, SPs are
based on State Machine Compiler (SMC) [20] technology, which gives the possibility
to separate the description of the FSM from its actual implementation, thus allowing
the analyst to concentrate his/her attention on the correlation logic (and rule) instead
of the implementation details. Security Probes operate with event sources belonging
to very different layers: in order to make FSMs “evolve”, Adaptable Parsers feed the
SPs with proper information. The Security Event Tracker is part of the SP in charge
of getting input events, identifying the FSM instance to evolve, receiving the feed-
back from the machine (e.g. an alert) and sending the FSM output to the EH; the FSM
logic (states, transitions, …) is maintained in the Finite State Machine Rule.

An SP which aggregates input events and related schema in shown in Fig. 2.

Fig. 2. Security Probe: aggregation schema

Fig. 3. Time based aggregation on input data

Protecting the WSN Zones of a Critical Infrastructure via Enhanced SIEM Technology 227

For instance, consider a time-reference based aggregation, which consolidates a
certain number of events sharing same values of the first event arrived (or part of it)
and generated in the same time window. Given the formalism expressed above, we
can configure the FSM as follows:

The schema in Fig. 3 generates an aggregate output if the number of events arrived
overcomes the threshold N or the timer associated with the Aggregator expires. The
output message creates a new event, which contains: the Timestamp of the first mes-
sage, the invariant of data fields, a new data field obtained by summing the events
aggregated. Overcoming this example, we prefigure the possibility to create aggre-
gated events by providing several operations on data fields: for instance we could
disseminate the first and the last timestamps in order to identify the time window
extent of aggregated events, or link the identity fields of aggregated events.

As GET framework functionalities are distributed among several (edge-side) com-
ponents, load distribution policies and mechanisms, such as load balancing, can be
implemented: this would allow handling load peaks in different phases of the edge-
side data processing and reconfiguring the usage of computational resources. Moreo-
ver, SotA security technologies have been adopted to protect data channels among
GET components, such as SSL/TLS protocols. Indeed, in this way, as new data arrive
at the Dispatcher, they are signed and encrypted.

Data Storage for Forensic Purposes

The Resilient Storage (RS) is the MASSIF module in charge of supporting reliable
storage of information related to security incidents. Key mechanism adopted to design
the RS is the threshold cryptography [21] combined to diversity and replication tech-
niques and hardened with Write-Once-Read-Many (WORM) storage devices [22]. RS
is particularly useful to criminal/civil prosecution of attackers in the post-security
breach stage: in this case the main component feeding the RS is the SIEM Correla-
tion/Rule Engine at core-side.

4 Protecting the WSN Zones of a Dam Infrastructure

In the following we present our solution applied to the case study of a dam monitoring
and control system which adopts the WSN technology. Dams are complex infrastruc-
tures conceived for a multitude of purposes and, typically, a huge number of physical
parameters are monitored to guarantee safety and security. Monitoring and control
systems are based on geotechnical instrumentation combined with SCADA systems.
Such systems are increasingly becoming automated and remotely controlled and this
fact paves the way for a new class of security induced safety issues that is for the
possibility that cyber-attacks against the IT layer of the dam, ultimately result in dam-
age to people and environment.

Case Study. In our case study we consider a dam feeding a hydroelectric power sta-
tion, as depicted in Fig. 4. The Intake Gate of the dam is controlled to release the
basin water and activate the Turbine in the power plant. Normally, water flow in the

228 L. Romano et al.

Penstock is controlled to not exceed an alert threshold. Indeed, high turbine speed
may result in electric overload and in power plant facility failure due to excessive
vibrations. The deployment of our case study is based on three water flow sensors
placed at different points of the penstock (WF1, WF2, WF3). Moreover, other sensors
are placed in the seepage channels under the dam wall. Indeed, parameters of seepage
waters (turbidity, water levels, etc.) are continuously monitored to foresee dangerous
events such as erosion and piping phenomena (sensors WL1 and WL2). A Tilt sensor
is placed on the dam gate and measures gate opening levels (inclination). A Vibration
sensor is placed on the Turbine. All the sensors constitute the nodes of a WSN and, at
regular intervals, send their measurements to a WSN Base Station (BS) located at the
dam surveillance office. The BS acts as a wireless Remote Terminal Unit (RTU),
which forwards the measurements to the Remote SCADA server. Finally, opening
commands are issued by the remote SCADA facility toward the gate actuator. The
SCADA allows to open the gate only if safety conditions are verified in the turbine,
i.e. if the penstock water flow is under the safety threshold.

The IT security deployment of our case study includes a Network-based Intrusion
Detection System (N-IDS) in the remote SCADA server facility, a Host-based Intru-
sion Detection System (H-IDS) in the dam local facility, a SIEM with the correlation
engine located in a remote warehouse.

Fig. 4. WSN-based monitoring of a dam

In order to extend the analysis of the SIEM from a multi-layer security perspective,
we feed the SIEM correlation engine with the evidence of physical incoherencies in
the parameters measured by the WSN nodes. This is only possible if we have specific
knowledge of the critical infrastructure under control. It’s worth noting that to do this
with a traditional SIEM, we should disseminate physical data to the central correlation
engines, resulting in several issues, such as: difficulty in gathering and translating
physical data from sensor devices into the SIEM format; unsuitability of SIEM corre-
lation engines to describe and detect physical anomalies; wasting of computational
and bandwidth resources to propagate and elaborate data into the SIEM correlation
engine.

Misuse Case. In order to present the effectiveness of our framework, we considered a
storyboard that closely mimics Stuxnet behavior [23]. The attack target is the failure

Protecting the WSN Zones of a Critical Infrastructure via Enhanced SIEM Technology 229

of the turbine facility. The attacker alters the water flow measurements to hide their
actual values and solicit excessive gate opening. Precondition to the attack is that the
attacker has access to some hosts in remote station and can execute tools to hack the
SCADA machines and the BS host (e.g. by plugging a USB device in). The attack is
perpetrated in a chain of malicious activities, which we summarize as follows: usage
of malicious software to locate and exploit SCADA server vulnerabilities; creation of
a backdoor on the SCADA server; gathering of information about RTU devices and
facilities (i.e. IP address of BS host); scanning and violation of the BS host; access to
the BS host and execution of a malicious Over-The-Air (OTA) programming with a
rogue code. In particular, we point out that the attacker can install the rogue code both
as privileged user of the BS device or by executing a WSN injection tool, such as
those indicated in [24] [25]: for instance he/she can perform a sinkhole attack by vi-
olating one of the seepage channel sensors or manually reprogramming the routes of
the wireless data paths. Finally, the gate command is issued by the attacker self (e.g.
by the compromised SCADA host) or is further executed by the authorized personnel.

Security Probes for WSN Zones

In the following we describe the Security Probes deployed for our case study. They
will be used to support the detection of the misuse case presented above. The state
machines are depicted in Fig. 5.

Triple Modular Redundancy. As the three water flow sensors are related to the same
physical event (water discharge), physical values outside the same range can be hig-
hlighted and reported to the SIEM. In order to do so, we designed a Security Probe
implementing a Triple Modular Redundancy (TMR) system. TMRs generate a single
output from several independent processes by adopting majority voting decision (Fig.
5(a)). The TMR SP aggregates the three measurements and reports the number of
sensors falling in the same physical range. Disagreeing sensors are indicated in the
output. Sample logs are reported in Fig. 6 (TMR SP).

Gate command-Water Flow Incoherence. This SP generates warnings if low water
flow levels are measured after a gate opening command has been issued.

Gate command-Gate Tilt Incoherence. This SP (Fig. 5 (b)) generates warnings if the
Tilt sensor doesn’t reveal variations after a gate opening command.

Gate command-Turbine Vibration Incoherence. This SP generates warnings if the
Vibration sensor doesn’t reveal variations after a gate opening command.

Experimental Set-Up

In order to test our solution we deployed an experimental testbed composed of: 1) an
application configured for monitoring of dams, namely DaMon (Dam Monitor) - de-
veloped by Epsilon R&D department together with the University of Naples Parthe-
nope FITNESS research group - realized by using a powerful web-based, AJAX
enabled framework for SCADA design, namely Mango [26]; 2) a set of WSN Libe-
lium Waspmote ZigBee devices with Digimesh communication protocol to measure

230 L. Romano et al.

Tilt, Vibration, Water Levels, Water Flows [27]; 3) a Linux-based BS host; 4) an
RTU (based on Datataker DT85G) communicating via Modbus protocol. The Gate
actuator is controlled by the DaMon HMI through the RTU.

Fig. 5. WSN Security Probes: TMR (a) – Gate-Sensors Incoherence (b)

Fig. 6. OSSIM directive of a WSN attack

Protecting the WSN Zones of a Critical Infrastructure via Enhanced SIEM Technology 231

Security tools installed are: Snort NIDS [28], Linux shell monitor (Last), the
OSSIM SIEM by AlienVault [29] integrated with the GET modules and the RS
system.

The attack has been performed by executing an OTA code on the Seepage Channel
sensors. The OTA forces the routes from the penstock sensors to pass through the
seepage channel sensors (destination address and maximum hops are reprogrammed).
The seepage sensors alter the water flow values transiting through them.

The warning events generated by the system are: i) a network scan by Snort; ii) a
shell activity in the Linux BS host; iii) a TMR warning; iv) a number of warnings
from the Gate-Tilt/Vibration/Flow Security Probes.

The misuse case model presented above is used to configure an OSSIM Directive
as in Fig. 6. The rule triggers alerts with a total reliability (i.e. alert confidence) of 10.
Actually, observe that the Vibration and Tilt warnings are not necessarily generated
(this only happens if the violated node of the WSN modifies all the data through it).
Even if the Directive may generate lower level alerts – in case of few physical evi-
dence – we may identify additional conditions related to other physical parameters.

The GET modules are able to gather, parse and process the data format shown in
Fig. 7, such as Libeium Waspmote data, Gate commands reported by DaMon HMI
(text based reports) and Syslog reports by Snort and “Last” utility. The SPs show
three capabilities: they treat physical data from a security perspective; they place
SIEM intelligence at the periphery and avoid irrelevant data to be propagated to the
central system; they exploit specific knowledge of the application domain (redundan-
cy and physical incoherence).

Fig. 7. GET processing at the edge of MASSIF SIEM

Fig. 8 shows DaMon interface and in particular the gate monitoring and control
mimics. This interface allows users to change the gate openess levels; each actuator
command generates notification messages, such as in Fig. 7.

Fig. 9 shows an OSSIM Alarms, which includes the events that generated the alerts
(Fig. 8).

232 L. Romano et al.

Fig. 8. DaMon interface showing gate and penstock details

Fig. 9. OSSIM alarm and related events (addresses are obfuscated)

5 Conclusions and Future Work

In this paper we have discussed main limits of current SIEM technology when dep-
loyed to secure CIs. We have described the main features of the enhanced SIEM for
CIs developed in the EC-funded project MASSIF [7], mainly focusing on the frame-
work of the system assigned to data collection and storage, namely the Generic Event
Translation (GET) and the Resilient Storage (RS). We have proposed them in the
challenging case study of a dam monitoring and control system which uses WSN
technologies. We have presented an attack model aimed at tampering the WSN data
from a remote facility and have indicated how to support SIEM detection of the attack
with a number of Security Probes triggering warning revealing physical incoherence
in the measurements. In the future we plan to produce quantitative evidence of the
benefits due to the adoption of the enhanced SIEM, against traditional solutions.

Acknowledgments. The research leading to these results has received funding from
the European Commission within the context of the Seventh Framework Programme
(FP7/2007-2013) under Grant Agreement No. 257644 (MAnagement of Security
information and events in Service Infrastructures, MASSIF Project).

Protecting the WSN Zones of a Critical Infrastructure via Enhanced SIEM Technology 233

References

1. Seung, H.K., Qiu-Hong, W., Johannes, B.U.: A comparative study of cyberattacks. Com-
mun. ACM 55(3), 66–73 (2012), doi:10.1145/2093548.2093568

2. Symantec ® Applied Research: Symantec 2010 Critical Infrastructure Protection Study
(Global Results) (October 2010)

3. Buttyan, L., Gessner, D., Hessler, A., Langendoerfer, P.: Application of wireless sensor
networks in critical infrastructure protection: challenges and design options. Security and
Privacy in Emerging Wireless Networks. IEEE Wireless Communications 17(5), 44–49
(2010), doi:10.1109/MWC.2010.5601957

4. Bai, X., Meng, X., Du, Z., Gong, M., Hu, Z.: Design of Wireless Sensor Network in
SCADA System for Wind Power Plant. In: Proceedings of the IEEE International Confe-
rence on Automation and Logistics, Qingdao, China (2008)

5. Minteos DamWatch (2011),
http://www.minteos.com/wp-content/uploads/2011/02/
Microsoft-Word-minteos-damwatch_ita.pdf

6. Stouffer, K., Falco, J., Scarfone, K.: Guide to Industrial Control Systems (ICS) Security.
National Institute of Standards and Technology (NIST), SP 800-82 (2011)

7. MASSIF project, http://www.massif-project.eu/
8. Bankovic, Z., Vallejo, J.C., Malagon, P., Araujo, I., Moya, J.M.: Eliminating routing pro-

tocol anomalies in wireless sensor networks using AI techniques. In: Proceedings of the
3rd ACM Workshop on Artificial Intelligence and Security (AISec 2010), pp. 8–13. ACM,
New York (2010), doi:10.1145/1866423.1866426

9. Coppolino, L., D’Antonio, S., Romano, L., Spagnuolo, G.: An Intrusion Detection System
for Critical Information Infrastructures using Wireless Sensor Network technologies. In:
5th International Conference on Critical Infrastructure (CRIS), pp. 1–8 (2010)

10. Wang, Q., Wang, S., Meng, Z.: Applying an Intrusion Detection Algorithm to Wireless
Sensor Networks. In: Second International Workshop on Knowledge Discovery and Data
Mining, WKDD 2009, pp. 284–287 (2009)

11. MASSIF project. Scenario requirements Deliverable D2.1.1, Project MASSIF (April 2011)
12. RSATM Security: RSA enVisionTM Universal Device Support Guide (2008)
13. AlienVaultTM: Available OSSIM Plugin List (2010)
14. ArcSightTM: ArcSightTM Smartconnector (2009)
15. Q1LabsTM: Supported devices,

http://q1labs.com/products/supported-devices.aspx
16. The Committee on the Judiciary House of Representatives: Federal Rules of Evidence

(December 2010),
http://judiciary.house.gov/hearings/printers/111th/evid2010.
pdf

17. Sousa, P., Bessani, A., Correia, M., Neves, N., Verissimo, P.: Highly available intrusion-
tolerant services with proactive-reactive recovery. IEEE Transactions on Parallel and Dis-
tributed Systems 21(4) (2010)

18. BSD Syslog Protocol, RFC 3164, http://www.ietf.org/rfc/rfc3164.txt
19. Campanile, F., Cilardo, A., Coppolino, L., Romano, L.: Adaptable Parsing of Real-Time

Data Streams. In: Proceedings of the 15th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (PDP 2007), pp. 412–418. IEEE Computer So-
ciety, Washington, DC (2007), doi:10.1109/PDP.2007.16

20. Home of SMC: the State Machine Compiler, http://smc.sourceforge.net/

234 L. Romano et al.

21. Shoup, V.: Practical Threshold Signatures. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000)

22. Zhu, Q., Hsu, W.W.: Fossilized Index: The Linchpin of Trustworthy Non-Alterable Elec-
tronic Records. In: Proceedings of the ACM International Conference on Management of
Data, Baltimore, Maryland, pp. 395–406 (June 2005)

23. Langner, R.: Stuxnet: Dissecting a Cyberwarfare Weapon. IEEE Security and Privacy 9(3),
49–51 (2011), doi:10.1109/MSP.2011.67

24. Parthasarathy, R., Peterson, N., Song, W.Z., Hurson, A., Behrooz Shirazi, A.: Over the Air
Programming on Imote2-Based Sensor Networks. In: 43rd Hawaii International Confe-
rence on System Sciences, pp. 1–9 (2010)

25. McNabb, J.: Vulnerabilities of Wireless Water Meter Networks. In: DEF.CON Hacking
Conference (2011)

26. Mango, Open Surce M2M, http://mango.serotoninsoftware.com/
27. LibeliumTM Waspmote, http://www.libelium.com/products/waspmote
28. SnortTM, Network IDS/IPS, http://www.snort.org/
29. OSSIM AlienVaultTM, http://www.alienvault.com/

On Securing Communications

among Federated Health Information Systems

Mario Ciampi1, Giuseppe De Pietro1, Christian Esposito1, Mario Sicuranza1,
Paolo Mori2, Abraham Gebrehiwot2, and Paolo Donzelli3

1 ICAR - CNR,
Via Pietro Castellino, 111 - 80131 Napoli - Italy

2 IIT-CNR,
Via Giuseppe Moruzzi, 1- 56124 Pisa - Italy

3 DDI - Presidency of the Council of Ministers,
via Po, 14 - 00198 Roma - Italy

{mario.ciampi,giuseppe.depietro,christian.esposito,
mario.sicuranza}@na.icar.cnr.it,

{paolo.mori,abraham.gebrehiwot}@iit.cnr.it, p.donzelli@governo.it

Abstract. The current trend in designing Health Information Systems
is to apply federated architectures by integrating existing systems. This
exacerbates the security guarantees that such systems are required to sat-
isfy and demands the introduction of advanced methods for dealing with
security. This paper aims at describing how federated Health Information
Systems can offer security properties by adopting proper mechanisms to
protect exchanged data and provided functionalities from malicious ma-
nipulations.

Keywords: Security, Access Control, Health Information Systems.

1 Introduction

A Health Information System [1] is the application of ICT technologies for stor-
ing and distributing medical data, with the aim of contributing to a high-quality
and efficient healthcare. The traditional vision of a HIS is a system to manage
the digitalized form of medical documents, such as images or reports, created
by means of editing programs within a certain department or hospital. Practi-
cal examples are the Radiology Information System (RIS) [2], to store and to
retrieve radiological images or the Picture Archiving and Communication Sys-
tem (PACS) [2], for the management and communication of images from several
different departments within the hospital. Nowadays, the emerging need to or-
chestrate the healthcare offered to patients by different providers, which can
be located within the same region or even spaning different regions within the
given country or among different countries, has imposed a radical rethink of HIS.
Such an evolution consists in the integration of all the hospital-size HIS so as
to form regional HIS, and federating all the regional HIS so to have national
and trans-national HIS, referred in this paper as Wide-Area HIS (WAHIS).

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 235–246, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

236 M. Ciampi et al.

A practical example is the WAHIS under development within the context of the
epSOS project1, funded by the European Commission. The scope is the progres-
sive interconnection of health systems and health policies across the European
Union, and the application also to healthcare of the central principle within the
European Union of freedom of movement for people, goods and services. This
has recently received a further boost with the European Commission Directive
2011/24/EU on patient rights in cross-border healthcare2. Similar initiatives are
currently running in the European countries, to integrate their regional HIS into
a seamless WAHIS, such as the OpenInFSE project3 under development in Italy.

Security is a critical issue for HIS, since the data stored or exchanged may
contain very sensitive information. Any HIS design should encompass a series of
mechanisms to protect its data and functionalities from any unauthorized access
or misuse, but at the same time to make them available to authorized users
such as general practitioners or hospital-based physicians. Achieving security for
traditional HIS limited within a certain department or hospital is a simple task
since (i) dedicated networks are used, (ii) data are stored in trusted and managed
repositories, and (iii) there are limited access points for users to interact with
the HIS. The evolution from hospital-size HIS to regional and trans-regional
HIS has contributed to pushing HIS into a more challenging environment by
increasing the complexity of the security issues to be addressed: (i) data are
conveyed by wide area networks, (ii) clinical data of a patient can be stored in
different repositories belonging to several distinct HIS, each with given security
assurances, and (iii) a large number of users can interact with the infrastructure.
Therefore, the need to protect patient data and to keep them available when
required is no longer a trivial concern, and more advanced security mechanisms
are needed than the ones commonly used in traditional HIS.

This paper aims at describing how to ensure that the security requirements of
HIS are satisfied by adopting the most suitable solution among the ones available
within the current literature. In particular, we present in Section 2 the security
requirements that a WAHIS must satisfy. Section 3 describes the solutions we
propose to meet the described requirements, and how we have implemented them
within the context of a concrete WAHIS, i.e., the one under development by
the mentioned OpenInFSE project, whose architecture of reference is depicted
in Figure 1 and described in detail in [3]. In particular, the contribution of
this paper is to have combined well-established methods and widely-recognized
standards within an holistic framework for secure clinical dissemination, so as to
easily adopt it within the context of the Italian national healthcare system and
to integrated in the already existing regional HIS. Next, Section 4 analyses the
available related work on securing communications within WAHIS and compares
it with our solutions. Last, we conclude with some final remarks and plans for
future work in Section 5.

1 http://www.epsos.eu/
2 Available at
http://ec.europa.eu/health/cross border care/ policy/index en.htm

3 http://ehealth.icar.cnr.it/

On Securing Communications among Federated HISs 237

2 Security Requirements

There is a common agreement about the security requirements of HIS and of the
communications among their composing entities. The first three security aspects
are driven directly by the CIA Triad, which is well-established within the current
literature:

– Confidentiality: Clinical data of patients are not made available to unau-
thorized individuals, and patients can have control on where their data are
stored and who may have access to them. The only exception to this is dur-
ing an emergency when the patient is not able to give its consent. In this
case, the HIS has to give doctor access to the patient clinical data.

– Integrity: Manipulations of data and overall infrastructure functionalities
only happen in a standard and authorized manner.

– Availability: Medical data are not denied to authorized consumers.

Such aspects alone are not felt to be sufficient to define all the properties that
a HIS has to provide in order to be considered secure. In fact, security profes-
sionals felt that the focus on only confidentiality, integrity and availability alone
is not enough for satisfying the requirements of protecting sensitive clinical in-
formation. For this reason, in addition to the CIA Triad, we have found other
aspects to better characterize a secure HIS:

– Authenticity: The identity of users has to be checked and validated;
– Authorization: The rights to access certain pieces of clinical data or even

to use certain system functionalities are granted to given users depending
either on their identities or on their role within a given healthcare provider;

– Non-Repudiation: It should be possible to obtain an evidence of the origin
of any change to certain pieces of clinical data;

– Accountability: Each activity triggered by users on HIS has to be persistently
traced so as to allow later forensic analysis and to map a security threat to
a responsible party.

3 Proposed Solution

In [3], we have presented the architecture for a federation of HIS called InFSE,
which is under development within the context of the previously mentioned
OpenInFSE project, and depicted in Figure 1. Such an architecture is based
on the Web Service technology, and data are exchanged as SOAP messages in
accordance with the Health Level 7 Clinical Document Architecture (HL7 CDA)
standard4, which specifies a common syntactic model for structuring medical
data for clinical documents. As described in [3], the web services composing
InFSE can be easily integrated within the already-existing HIS of a given region,
and used to define a federation of HIS to manage medical documents, to define an
index registry on them and to notify clinical data. Each of these functionalities

4 http://www.hl7.org/

238 M. Ciampi et al.

IDocument
IDocumentMgt

Repository

IRegistry
Federation

IRegistry
Federation Mgt

IQueryMgt

IMetaDataMgt

Registry

 IEntry

IPublisherRe-
gistrationMgt

INotification
BrokerMgt

ISubscription
Mgt

IBroker
FederationMgt

IBroker
Federation

IEvent
PubSub
Broker

Fig. 1. Overview of the InFSE architecture

is provided by a proper business component of InFSE as shown in the figure.
The highest level of the InFSE architecture, named Access Interface, is a set
of five web services that represent access points from the rest of the world to
the functionalities provided by InFSE. Below such a level, we can find the web
services that implement the application logic of InFSE, and each component has
at least one web service at this level, which is accessible by users from one of
the web services within the access interface. The lower level is constituted by a
Data Management layer to store the medical data in a proper repository and the
relative metadata in a registry, to be used to allow users to search for data of
interest, and also a Publish/Subscribe Infrastructure to realize event notification
of clinical data. The usage of such services and exchanged data is protected by
an additional component called Access Policy Manager, which is not shown in
Figure 1. The scope of this paper is to describe how the last component has been
implemented to support security in the federation of HIS5.

3.1 State of the Art in Securing Web Services

Since the key technology of our federation solution is represented by web ser-
vices, we have drawn from the research made to secure them. In particular,
we have followed the principles of WS-Security [6], which is the specification of

5 We refer interested readers to [3] and [4] for more details on the mentioned business
components of InFSE.

On Securing Communications among Federated HISs 239

Fig. 2. Overview of the WS-Security specification, adapted from [5]

reference when addressing security for web services. WS-Security is a compos-
ite standard made by combining other different specifications and methods, and
specifies two different levels of mechanisms to enforce the provided security level,
as shown in Figure 2. The first is implemented at the message level by defining
a SOAP header that carries out extensions to security. The second is realized at
service level to perform higher-level security mechanisms such as access control
or authentication. In particular, at the message level we can find two main XML
security standard techniques that can be introduced in the SOAP header exten-
sions: XML Signature (XML DSig in the figure) and XML Encryption (XML
Enc in the figure). The former aims at having a small portion of the XML con-
tent digitally signed (such element is called digest) so as to provide integrity
and non-repudiation for the overall XML content. On the other hand, the latter
has the goal to encrypt a part of the overall XML content by using a certain
key, which can be public or private according to the chosen encryption strategy.
In the case of WS-Security, the SOAP header has a given field, called Digest-
Value, to contain the digest with indications of the adopted signature method.
If XML Enc is used, the SOAP header has to contain the adopted encryption
key, which is itself encrypted by using a proper public key. Besides these two im-
portant message-level methods, we have an additional one: Secure Socket Layer
(SSL), which realizes a secure form of the TCP transport protocol, by offering
mechanisms for the key agreement, encryption and authentication of the end-
points of a connection-oriented communication. On top of these message-level
mechanisms, we can find service-level ones. Security Assertion Markup Language
(SAML) is a framework to exchange authentication and authorization informa-
tion in a request/respond manner when the communication participants do not
share the same platform or belong to the same system. The core of this frame-
work is the assertion, expressed as XML constructs, containing the identity of

240 M. Ciampi et al.

the requestor, and the authorization decisions or credentials. Therefore, SAML
conveys the result of an authorization process, with the assertion assumed to
be a security token to access secured services, granted only by processing the
information present into the assertion, which can be found in the SOAP header.
SAML only deals with formalizing security tokens, and is teamed up with the
above mentioned message-level mechanisms to achieve also confidentiality, and
integrity. Extensible Access Control Markup Language (XACML) is used to spec-
ify roles and policies used by an access control mechanism to infer the access
decisions for users. Different HIS can adopt their own access roles and grants,
and XACML is used to exchange such decisions among HIS and to orchestrate
their access decisions. In particular, it is possible that an HIS returns to the user
a security token that he/she can use also to access services and data hosted by
another HIS. XACML is used so that the access roles and policies of the first HIS
can be disseminated towards the second one. So, when the second HIS receives
a security token issued by the first one, it is able to recognize it and to take the
right access decision. Last, we can find two other specifications: Extensible Rights
Markup Language (XrML) and XML Key Management Specification (XKMS).
The first is used to express rights and conditions related to the access control
(such as expiration times); while the second defines interfaces for the distribution
of keys used in XML DSig and XML Enc.

3.2 Securing Web Services in InFSE

In InFSE, we have chosen not to adopt all the specifications composing the
WS-Security standard, but a certain sub-set, as clearly illustrated in Figure 2.
First of all, we have not used XML Enc to encrypt the body of the exchanged
SOAP Messages, but only the signatures of XML DSig. Therefore, we do not
need XKMS. The reason is due to the fact that exchanged SOAP messages,
when they are carrying sensitive medical information are made anonymous so
as to implicitly protect patient privacy [7]. In fact, national and international
regulations demand the elimination of the personal nature of healthcare data
by separating patient personal information and clinical data (i.e., these two
elements should not be present in the same message or the same data repository).
The so-called “Identifier Control Facility” (ICF) is used to give pseudonyms to
patients, which are attached to all the exchanged and stored clinical data. Such
pseudonyms univocally identify patients and also track where patient personal
data can be retrieved. On the other hand, we protect the communications by
using HyperText Transfer Protocol over Secure Socket Layer (HTTPS), which
layers HTTP on top of the SSL. Incoming SOAP messages contain assertions
defined by means of SAML, which are evaluated before being passed to their web
service of interest. Figure 3 illustrates how the web services to perform a query
are executed when security is applied. The given web services are contained
between a PreHandler and a PostHandler, provided by the JAX-WS platform
used to develop InFSE6. The first hijacks a SOAP message before it is delivered

6 A specification of Java API for XML Web Services; in particular we have used Metro
as implementation of JAX-WS (http://jax-ws.java.net/).

On Securing Communications among Federated HISs 241

queryRegistry

Client

JAX-WS
RUNTIME

P
r
e
H
a
n
d
l
e
r

P
o
s
t
H
a
n
d
l
e
r

<<uses>>

query

evaluate

P
r
e
H
a
n
d
l
e
r

P
o
s
t
H
a
n
d
l
e
r

query

P
r
e
H
a
n
d
l
e
r

P
o
s
t
H
a
n
d
l
e
r

<<uses>>

query

P
r
e
H
a
n
d
l
e
r

P
o
s
t
H
a
n
d
l
e
r

<<uses>>

yy

JAX-WS
RUNTIME

JAX-WS
RUNTIME

JAX-WS
RUNTIME

<<uses>>

Regional HIS A Regional HIS C

Regional HIS B

Provided Web Service

Requested Web Service

q

Internet

Fig. 3. Architectural Overview of the dependancies among the software components
used for performing a query operation in a federated setting

to its target web service to store and to evaluate the security assertions contained
in its header. If such evaluation is verified, i.e., an access right can be grated
to the given SOAP message based on the contained assertion, then the body of
such a message is passed to the web service. Otherwise, the message is discarded.
On the other hand, the PostHandler attaches to the SOAP message outgoing
from the target web service the security assertion stored by the PreHandler.
The PostHandler is crucial when several web services are composed, otherwise
the security assertion will be lost after the execution of the first web service,
i.e., the one belonging to the Access Interface. Not only received assertions
are stored, but also the taken access decisions, so to trace all the operations
performed by the security components. While we use the simple implementation
of the PostHandler, for the PreHandler we have implemented a Java class called
PEPComponent and an additional web service named as IPDPComponent. Using
a SAML Library, the first has the following duties:

– Analyze the correctness of the received assertions contained in the header of
the incoming SOAP message;

– Verify the digital signature contained in each assertion;

– Check the correctness of the role assigned to the physician who sent the
SOAP message and its purpose of use;

– Interact with a regional management system of the patient consent to access
its clinical data, so to control the access rights granted to the physician.

242 M. Ciampi et al.

Fig. 4. Execution of a query directed to IQueryMgt service

On the other hand, the second is invoked by the PEPComponent for granting
access to the target web service depending on the proper regional XACML access
policies and on the role of the physician within the regional healthcare provider.
In addition, despite of using keys for XML DSig, we do not need XKMS since
the used keys are private, decided and provided to healthcare providers by each
region.

3.3 Use Cases

To practically describe how security is realized in InFSE, let us consider two
concrete usage scenarios: the first one aims at finding a given medical document
within the federation, while the second one consists of retrieving a medical doc-
ument from a given regional HIS. National and international regulations impose
that a clinical document has to be stored in the repository of the healthcare
provider that has produced it, and it is not allows to be moved in another
repository.

On Securing Communications among Federated HISs 243

To issue a query, the user has to invoke a query operation on the IEntry web
service, which will redirect the request to the local IQueryMgt service or to re-
mote ones. To retrieve a document, the user has to invoke a retrieve operation
on the IDocument web service, which will pass it to IDocumentMgt that ac-
cesses the data repository looking for the requested document. Figure 4 contains
a sequence diagram that shows the interactions among the components in Fig-
ure 3 to perform a query operation (the registry in Figure 1 has been realized
according to the ebXML specification7 so to have more flexible and interoper-
able registries). As mentioned, the client sends a SOAP message to IEntry to
invoke a query. Such a message is passed to the PreHandler before reaching IEn-
try. PreHandler is implemented in a simple manner with the only scope to store
the assertions contained in the received SOAP message. The message is then
received by the IEntry, which forwards it to a given instance of the IQueryMgt,
such as the one managed by the same regional HIS or the one of another re-
gional HIS (as in the figure). Right after leaving IEntry, the message is given to
the PostHandler, which only attaches the stored assertions. Also before reaching
the IQueryMgt instance, the message is given to the PreHandler, which in this
case is realized by the PEPComponent. Such component does the basic string
operations of a PreHandler, but in addition it checks the assertions as mentioned
before. A query request SOAP message contains three different assertions in its
header:

– Identity Assertion, which contains the identifier of the physician requesting
the query operation. A regional HIS has its own system giving identifiers to
physicians (named Issuer), who is also the guarantor of the level of assurance
and responsible of what contained in this assertion. In fact, such assertion is
signed by the issuer and may be contained in a smart card that the physician
uses for authentication.

– Role Assertion, which states the role of the physician within the regional
healthcare provider, who has signed the assertion.

– Context Assertion, which grants or not access to a given requested service.
A regional HIS has its own system giving access grants to physicians and
signing the access assertions.

In addition, the query request requires a parameter indicating a purpose of use
for the requested data, which can assume a particular value, i.e., emergency, to
represent that the request is performed during an emergency. In the this case,
the doctor has access to patient data even if he/she has not granted it. As shown
in Figure 5, such assertions are validated by the IPDPComponent, which verifies
their syntactical and logical correctness. Only if this check is passed, the mes-
sage can reach the IQueryMgt service. This service can look for the requested
document within the registry by considering a given query statement. If such
statement is satisfied, the service returns to the user the identifiers of the docu-
ments that has verified the provided query statement, and an Access Assertion
for granting access to those documents returned by the query. Otherwise, the

7 https://www.oasis-open.org/committees/regrep/

244 M. Ciampi et al.

Fig. 5. Execution of a retrieve directed to a given instance of IDocument

service can decide to turn the request towards another IQueryMgt instance run-
ning in a different regional HIS. In this last case, the PostHandler is executed so
to attach the stored assertions to the outgoing SOAP message.

In the second usage scenario, depicted in Figure 5, the scope of the user
is to retrieve a document given a proper identifier, e.g., after the return of a
query operation. So, the client invokes the retrieve operation of IDocument web
service. In this case, the PreHandler is implemented as a PEPComponent, which
checks the assertions in the header (the designer is free to select a particular
implementation of the PreHandler). In this case, the only assertion is the Access
Assertion, which has been returned after the execution of a query. In fact, it is
reasonable that a retrieval is invoked after a query since the user may not know
the identifier of a given document. Only the access assertion is required for a
retrieval since such operation is always resolved within a given regional HIS, while
a query operation is likely to be distributed among the members of the federation.
In the last case, the access assertion of a regional HIS has no validity outside
of its issuer, so the Identity and Role Assertions are required to take an access
decision based on well defined XACML policies. If the assertion verification is
successful, then the request is passed to IDocument, which redirects the request
to IDocumentMgt. The last one accesses the data repository, takes the request
document, if exists, and returns it to the user.

On Securing Communications among Federated HISs 245

3.4 Summary

Concluding, the presented solution is able to guarantee all the security require-
ments listed in Section 2:

– Anonymization of clinical data and the use of SSL provide Confidentiality.
– XML DSig assures data integrity and non-repudiation, and the implemented

access control mechanism allows the overall infrastructure functionalities to
be only used in an authorized manner.

– Security assertions expressed in SAML support Single-Sign-On so that cre-
dentials issued by a given regional HIS can be utilized also in other federated
regional HIS. This assures that medical data are also available for the physi-
cians that do not belong to the healthcare provider where the data reside.

– Authenticity is realized by means of proper handlers.
– Authorization is regulated by proper XACML policies and implemented by

a Role-Based Access Control [8], which is known to be effective to manage
complex access control policies charactering a typical healthcare provider.

– Accountability is supported by persistently storing all incoming requests
and access decisions so to be used in post-mortem analysis to detect the
root causes of a security issue and to resolve it.

4 Related Work

Security in healthcare has been an active research topic in the last decades,
and the review in [9] provides a complete view of the research efforts spent and
achievements obtained so far. As noticeable from the Appendix 1 of this re-
view, less attention has been spent on architectures and frameworks, but more
focus has been given to qualitative research, modeling and economic studies.
Based on these research activities, few prototypes have been realized. Our work
has not only an academic value since it investigates security with a theoreti-
cal perspective, but also a very practical added value, since we have realized a
prototype that we are integrating in the existing regional HIS. In addition, all
the existing efforts to enforce security were limited to systems with limited size,
such as within an hospital or even a clinical department. Our work differs from
those since we are addressing the more challenging issue of securing operations
for an HIS within a region, but also within a federation among heterogeneous
regions, which differ among each other not only from the technological point
of view, but also from an organizational one (such as different specification of
security requirements and policies). The work closer to ours is the one presented
in [10], which proposes a security architecture for interconnecting HIS. Similar
to us, this work is designed to satisfy the main security requirements, and the
proposed solutions are quite similar to ours. However, only an architecture is
presented without any implementation. In addition, our solution is more flexible
since it is based on the specifications composing WS-Security.

246 M. Ciampi et al.

5 Final Remarks and Future Work

This paper has presented a solution to secure the communications and func-
tionalities of a federation of HIS. In particular, we have described the part of
WS-Security specification that can be used for this scope. We have provided a
qualitative assessment of our solution with respect to the security requirements
of a HIS. As a future work, we are investigating the performance overhead re-
lated to the introduction of security, and the possible integration of other security
mechanisms, such as Intrusion Detection Systems as in [11].

Acknowledgment. This work has been partially supported by the project
named OpenInFSE, a Convention between the Department for the digitization
of public administration and technological innovation (DDI) and the ICT De-
partment of the Italian National Research Council (CNR).

References

1. Hauxe, R.: Health information systems. International Journal of Medical Informat-
ics 75(3), 268–281 (2006)

2. Huang, H.K.: PACS and Imaging Informatics: Basic Principles and Applications.
Wiley-Liss (April 2004)

3. Ciampi, M., Pietro, G.D., Esposito, C., Sicuranza, M., Donzelli, P.: On Federat-
ing Health Information Systems. In: Proceedings of the International Conference
Healthcare Informatics and Biomedical Engineering, HiBES (July 2012)

4. Esposito, C., Ciampi, M., Pietro, G.D., Donzelli, P.: Notifying Medical Data in
Health Information Systems. In: Proceedings of the 6th ACM International Con-
ference on Distributed Event-Based Systems, DEBS (July 2012)

5. Naedele, M.: Standards for XML and Web services security. IEEE Computer Mag-
azine 11(3), 4–21 (2009)

6. Nordbotten, N.A.: XML and Web Services Security Standards. IEEE Communi-
cations Surveys & Tutorials 36(4), 96–98 (2003)

7. Brannigan, V.M., Beier, B.R.: Patient privacy in the era of medical computer
networks: a new paradigm for a new technology. Medinfo 8(pt. I), 640–643 (1995)

8. Park, J., Sandhu, R., Ahn, G.-J.: Role-based access control on the web. ACM
Transactions on Information and System Security 4(1), 37–71 (2001)

9. Appari, A., Johnson, M.: Information security and privacy in healthcare: cur-
rent state of research. International Journal of Internet and Enterprise Manage-
ment 6(4), 279–314 (2010)

10. Gritzalis, D., Lambrinoudakis, C.: A security architecture for interconnecting
health information systems. International Journal of Medical Informatics 73(3),
305–309 (2004)

11. Ficco, M.: Achieving security by intrusion-tolerance based on event correlation.
International Journal of Network Protocols and Algorithms (NPA) 2(3), 70–84
(2010)

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 247–258, 2012.
© Springer-Verlag Berlin Heidelberg 2012

How Secure Is ERTMS?

Richard Bloomfield1, Robin Bloomfield2,3, Ilir Gashi2, and Robert Stroud3

1 Independent Consultant, UK
richardbloomfield52@yahoo.co.uk

2 Centre for Software Reliability, City University London, London, UK
{reb,i.gashi}@csr.city.ac.uk

3 Adelard LLP, London, UK
rjs@adelard.com

Abstract. This paper reports on the results of a security analysis of the Euro-
pean Railway Traffic Management System (ERTMS) specifications. ERTMS is
designed to be fail-safe and the general philosophy of ‘if in doubt, stop the
train’ makes it difficult to engineer a train accident. However, it is possible to
exploit the fail-safe behaviour of ERTMS and create a situation that causes a
train to halt. Thus, denial of service attacks are possible, and could be launched
at a time and place of the attacker’s choosing, perhaps designed to cause maxi-
mum disruption or passenger discomfort. Causing an accident is more difficult
but not impossible.

Keywords: Security assessment, safety-critical systems, ERTMS, railway
signaling systems, safety and security interactions.

1 Introduction

This paper reports on the results of a security analysis of the European Railway Traf-
fic Management System (ERTMS) specifications that was commissioned on behalf of
key UK railway stakeholders and UK government. ERTMS is a major industrial
project that aims at replacing the many different national train control and command
systems in Europe with a standardised system. In the UK, Network Rail are preparing
to introduce ERTMS as part of the upgrade of the signalling and communications
systems running on Britain’s rail infrastructure. This upgrade has the potential to in-
crease the risk of an electronic attack on the rail infrastructure, as it brings more sys-
tems under centralised control. Consequently, the railway industry and government
identified a need to understand the security implications of the new technology, and
we were asked to conduct a security audit of ERTMS to identify potential vulnerabili-
ties and suggest mitigations.

In this paper, we discuss the ERTMS/ETCS specifications from a security perspec-
tive and identify areas where there are potential vulnerabilities. We also explain our
methodology of using attack scenarios to assess the impact of these vulnerabilities
and present our overall assessment of the scenarios we analysed. However, because
the results of our analysis are sensitive, we do not provide details of specific vulnera-
bilities or attack scenarios, which can be found in our detailed reports [1,2]. Although

248 R. Bloomfield et al.

these reports are currently not publicly available, copies can be made available on
request, subject to the approval of the key stakeholders.

The rest of the paper is organised as follows: section 2 gives an overview of
ERTMS; section 3 explains the scope of our analysis; section 4 discusses our threat
model; section 5 describes our methodology; section 6 discusses the trust relation-
ships between the components of the ERTMS architecture; section 7 presents a sum-
mary of the weaknesses and vulnerabilities that we found in each part of the ERTMS
specifications; section 8 explains our use of attack scenarios to assess the impact of
these vulnerabilities and our scenario analysis technique; section 9 discusses related
work on ERTMS security; and finally section 10 provides a discussion, conclusions
and areas for further work.

2 Overview of ERTMS

ERTMS consists of two major components:

• ETCS is the European Train Control System, an automatic train protection system
that is intended to replace existing legacy train protection systems;

• GSM-R is a radio system for providing voice and data communication between the
track and the train. It is based on GSM technology but uses a different frequency
range and has some special features for railway applications.

ERTMS is implemented using a number of trackside and on-board sub-systems, and
the ERTMS/ETCS specifications describe the interfaces by which these various sub-
systems interact. The ERTMS/ETCS System Requirements Specification (SRS) [3]
provides a technical specification of the overall system, and details of specific proto-
cols can be found in related standards. However, it is important to understand that
ERTMS is an interoperability standard, and only deals with the interaction between
trains and trackside devices. The interfaces that are used by each national railway to
control and manage its own infrastructure are outside the scope of the standard.

This is illustrated in Figure 1, which shows the relationship between ERTMS and a
national railway implementation. Green arrows denote interfaces and protocols that
are covered by the ERTMS specifications, whilst red arrows denote interfaces that are
considered to be part of the national implementation.

The SRS defines four different ERTMS application levels, which cover different
operational relationships between the track and the train. Our review focused on
Level 2, which is the application level currently being considered for deployment in
Britain. At ERTMS/ETCS Level 2, traditional trackside signals are replaced by
movement authorities, which are sent to the train over the GSM-R radio link from a
control centre. Movement authorities provide safety-critical information about the
track conditions ahead, and how far and how fast the train can go. The train also gets
location references from devices called balises that are mounted in the track. An on-
board computer uses this information to give a display to the driver (via the Driver
Machine Interface (DMI)) and to monitor the speed that the train is being driven at, in
order to ensure that the train stays within the limits of its movement authority; if not,
the on-board computer (not the DMI) applies the brakes automatically.

 How Secure Is ERTMS? 249

Fig. 1. Relationship between ERTMS and national railway implementation

3 Scope of Analysis

The aim of the study was to examine the ERTMS specifications for potential security
vulnerabilities and identify systemic weaknesses in the ERTMS specifications. This
was a paper-based study and we were concerned with conceptual problems with the
specifications rather than vulnerabilities introduced by design flaws and bugs in im-
plementations of ERTMS technology. Nor did we consider vulnerabilities that might
be caused during the operation or maintenance of an ERTMS system. Such vulnera-
bilities are important but were outside the scope of our study.

Our analysis was holistic and considered whether a national deployment of
ERTMS might introduce vulnerabilities into the national rail infrastructure. Our re-
view focused on ERTMS Application Level 2, which made it possible to restrict at-
tention to a number of core specifications, and ignore specifications for interacting
with legacy train protection systems and trackside signalling equipment. We also
considered the security of GSM-R and analysed how GSM security impacts on
GSM-R security. We were particularly interested in electronic attacks that could be
launched remotely and would cause widespread disruption.

However, it is important to note that the ERTMS/ETCS specifications only deal
with the interoperability requirements of a European Railway Traffic Management
System, and therefore do not cover the interfaces that are used by each national rail-
way to control and manage its own infrastructure. This limits the scope of any securi-
ty or safety analysis to interactions between the various components of the
ERTMS/ETCS architecture. For example, although the Radio Block Centres (RBCs)
need to interact with the existing rail infrastructure, these interfaces are not required
for interoperability and are typically proprietary. This is problematical from the per-
spective of a security review because it means that these interfaces cannot be re-
viewed, even though they are critical to the safety and security of the overall system.

250 R. Bloomfield et al.

4 Threat Model

Traditionally, computer security deals with threats to confidentiality, integrity, and
availability, but here we are concerned with train movements rather than information,
so our primary concern is integrity, then availability, and finally confidentiality. Loss
of integrity could result in accidents or collisions, whereas loss of availability would
bring the railway system to a halt. Loss of confidentiality is less of an immediate
threat, but might result in the leak of sensitive operational information. Reliability is
also important, since an unreliable train service will result in a loss of public confi-
dence in the railway operators.

Thus, the hazards or potential failures or undesirable outcomes to be avoided are:

• a collision involving multiple trains;
• an accident such as derailment involving a single train;
• widespread disruption of train service over a large area;
• disruption to individual trains, or trains within a local area;
• creation of a situation that leads to panic and potential loss of life

(e.g., an emergency stop and uncontrolled evacuation onto the track);
• creation of a situation that leads to passenger discomfort and dissatisfaction,

(e.g., stopping a train indefinitely in a tunnel);
• loss of public confidence in the railway system due to intermittent low-level prob-

lems affecting the reliability of the service;
• leak of sensitive information (e.g., movements of hazardous cargoes or VIPs).

The ERTMS safety analysis considers the effect of potentially catastrophic events on
the integrity of the system. Faults that could result in an accident need to be consid-
ered in both a safety and security analysis, regardless of the underlying cause of the
fault (accidental, deliberate or malicious).

A security analysis also needs to consider the capabilities of the attacker. It is usual
to make a distinction between an insider and an outsider. An insider is someone with
legitimate access to a system that abuses their position and privileges, either willingly
or under duress, whereas an outsider is someone outside the system with limited ac-
cess, who seeks to break into the system out of curiosity, malice, or for personal gain.
Historically, railway systems have relied on highly specialised, proprietary technol-
ogy, and there has been a relatively small community with the necessary knowledge
to exploit vulnerabilities. However, the widespread adoption of open standards like
ERTMS that are designed to promote interoperability and the commoditisation of
technology could result in both the necessary knowledge and the necessary tools be-
coming more readily available to potential attackers who are sufficiently motivated to
gain the necessary skills.

5 Methodology

We started by considering the trust relationships between the various components of
the overall architecture and analysing the consequence of a breach of trust. This

 How Secure Is ERTMS? 251

enabled us to identify a set of potential weaknesses and vulnerabilities in the specifi-
cations. We then developed scenarios that showed how these weaknesses could be
exploited by an attacker. These scenarios were refined and validated in discussion
with railway stakeholders, and proved to be a very effective way of communicating
the risks of an ERTMS implementation being compromised.

6 Trust Relationships

ERTMS is implemented using a number of trackside and on-board sub-systems, and
the ERTMS/ETCS specifications describe the interfaces by which these various sub-
systems interact to ensure that trains move safely without exceeding their movement
authority. Our approach to the security analysis was to consider the trust relationships
between the various components of the overall system and analyse the consequences
of a breach of trust.

Messages are transmitted between the ERTMS/ETCS sub-systems over various
channels, so a security analysis needs to consider:

• whether there are safeguards built into the system that protect against messages
being corrupted or deleted in transmission by the input channel;

• whether these safeguards protect against all possible threats to the input channel
(for example, deliberate attacks on the channel, as opposed to random failures);

• whether the source of the input is trustworthy, or whether it is possible for the input
source to have been compromised;

• whether there is adequate protection at the application level to guard against mali-
cious messages generated by an attacker who controls the input source.

With this approach in mind, we performed a systematic analysis of the ERTMS/ETCS
specifications from a security perspective by examining the on-board ETCS applica-
tion, and considering its interfaces and trust relationships with other components of
the ERTMS/ETCS system, both trackside and on-board the train.

7 Weaknesses and Vulnerabilities

Based on our analysis of the trust relationships, we identified a set of potential weak-
nesses and vulnerabilities in the ERTMS interoperability specifications, which we
outline here. The details can be found in our full report [1].

7.1 General Observations

Safety is always paramount in railway systems, and ERTMS/ETCS is designed to be
a safe system. Thus, the general philosophy is ‘if in doubt, stop the train’, which
means that it is very difficult for an attacker to engineer a train accident. However, it
is possible for an attacker to exploit the ‘fail-safe’ behaviour of ERTMS, and create a
situation that causes a train to halt. Thus, denial of service attacks are possible, and

252 R. Bloomfield et al.

could be launched at a time and place of the attacker’s choosing, perhaps designed to
cause maximum disruption or passenger discomfort, for example, by arranging for a
train to halt in a tunnel.

Nevertheless, most attacks exploiting ERTMS/ETCS would require the attacker to
have physical access to the railway line and are therefore localised in their impact;
attacks that cause disruption over a wide area depend on compromising the GSM-R
network. The threats and vulnerabilities posed by GSM-R depend very much on the
national implementation of GSM-R and its supporting telecommunications network.

Moreover, some of the most critical elements of the ERTMS/ETCS system, for ex-
ample, the interfaces between the control centres and the RBCs, are outside the scope
of the ERTMS/ETCS specifications, which are only concerned with interoperability
and do not address implementation issues within a single ERTMS/ETCS system.
However, it is important to ensure that these interfaces remain logically separate and
secure during the migration of existing control systems towards ERTMS, because this
process will involve the integration of installations that are currently separate, and the
use of multi-purpose transmission networks that carry messages for different applica-
tions with varying degrees of criticality.

One of the major vulnerabilities of ERTMS/ETCS is that it is a data-driven system,
and therefore any compromise to the data held by the RBCs could cause a serious
accident. However, the procedures for managing and updating this data fall outside
the scope of the ERTMS/ETCS specifications.

Similarly, the security of the Euroradio protocol [4] used to safely transmit move-
ment authorities depends on the security of the key management and key distribution
process. There is a specification for off-line key management between key manage-
ment domains [5], but the procedures for key management within a key management
domain are a matter for the national or local implementation.

Nevertheless, the specification for off-line key management [5] defines a set of se-
curity requirements that must be met by the operational key management systems in
each key management domain. These requirements, together with compliance with
the off-line key management specification, provide a basis for secure key manage-
ment between key management domains.

Ideally, the ERTMS/ETCS specifications would impose a similar set of require-
ments on other parts of the system that are managed by national authorities, for exam-
ple, the interface between control centres and RBCs.

7.2 Specific Observations

The on-board ETCS system needs to interact with a number of other systems, and it is
therefore possible to draw conclusions about the security of ERTMS/ETCS with re-
spect to each of these interfaces.

Driver/Train. The driver and train interfaces are only specified at a functional level,
but the interfaces to these systems are fairly narrow and limited. However, clearly
both the driver and the train itself are trusted components of the system: the driver
because he could override the entire ERTMS/ETCS system, and the train because it

 How Secure Is ERTMS? 253

could have been sabotaged in other ways, such as compromising the braking system.
In the present specifications, there is no authentication on the communication chan-
nels that are used for these interfaces. This is only acceptable as long as these driver
and train interfaces remain part of a closed network that is only connected to the
on-board ETCS system. If the ETCS system were ever to be connected to an on-board
network that also carried non-critical messages, for example, passenger access to the
Internet, then there would be a very real possibility of ETCS being compromised by a
virus or deliberate intervention.

Balises. Messages from balises are protected against accidental transmission errors
and interference from outside the immediate area of the track. However, the interface
does not address the possibility that an attacker might have subverted existing balises,
or placed a new balise on the track at a strategic location. Although various levels of
data consistency checks are built into the ERTMS/ETCS, balises provide no authenti-
cation guarantees, which opens up the possibility of malicious attacks via the balise
interface, since the data received from a balise is effectively trusted by the system.

In particular, the ERTMS specifications make a distinction between linked and
unlinked balises. Trains are informed about the locations of linked balises in advance
as part of their movement authorities, which are transmitted by radio over a secure
channel; failure to encounter a linked balise in the expected location will cause the
train to halt. However, trains must also be prepared to react to unlinked balises, which
can be encountered anywhere. Although trains will only accept a limited number of
commands from an unlinked balise, an attacker can exploit almost all of these com-
mands to a greater or lesser extent. Most of these attacks would result in some form of
denial of service, but some commands can be used to create a hazardous situation.

Euroradio. The Euroradio protocol [4] uses a shared secret key to establish a secure
communications channel. The protocol guarantees authenticity and integrity of mes-
sages, but does not guarantee confidentiality. Thus, if the underlying GSM-R network
were to be compromised, it would be possible for an attacker to eavesdrop on ERTMS
messages and perhaps learn sensitive information. In particular, the ability to eave-
sdrop on messages also makes it easier for an attacker to intercept communications
using a ‘man in the middle’ attack.

Otherwise, the Euroradio protocol appears to be sound from a security perspective,
although we are not aware of it ever having been subjected to a formal cryptographic
analysis. However, the specification prescribes the use of Triple DES (Data Encryp-
tion Standard) as the underlying cryptographic algorithm rather than a more modern
algorithm such as AES (Advanced Encryption Standard). Triple DES is no longer
recommended for use in new cryptographic systems and the Euroradio specification
should be upgraded accordingly, but for ERTMS, a bigger problem is managing key
distribution on the scale of an international railway network.

The ERTMS/ETCS interoperability specifications only deal with secure key man-
agement between different key management domains [5], leaving key distribution

254 R. Bloomfield et al.

within a key management domain to the national implementation. A new specification
has recently been published that deals with the distribution of keys to ETCS entities
(trains and trackside devices) within a key management domain [6], but the current
standards mandate an off-line key management solution, which is not practical, par-
ticularly if there is a requirement to refresh or revoke keys. For example, in the UK,
depending on the key allocation policy, there could be as many as 400,000 keys to
manage.

Voice. GSM-R extends the basic GSM network services with some special services
that are required for railway operations. Standardised numbers are used to address on-
board functions, and an attacker with access to the GSM-R network and an authorized
SIM (Subscriber Identity Module) card could cause considerable disruption.

GSM-R. GSM-R is built on top of GSM, which is known to be fundamentally inse-
cure [7]. In particular, GSM uses weak encryption algorithms and does not provide
any form of network authentication, which means that GSM networks are vulnerable
to a ‘man in the middle’ attack. Also, an attack on the GSM-R network could bring
down the ERTMS/ETCS system over a large area, creating a wide area denial of ser-
vice attack. The engineering of the GSM-R network is critical to addressing these
risks.

8 Scenario Analysis

Having identified some potential vulnerabilities in the ERTMS specifications, we
devised attack scenarios to explore the ways in which an attacker could exploit these
potential weaknesses and vulnerabilities to achieve one of the undesirable outcomes
listed in section 4. In this section, we explain our methodology for constructing these
scenarios and summarise our overall assessment. Full details can be found in our re-
port [2].

We devised seven attack scenarios and then analysed each scenario in detail by
considering the following questions:

• How is the attack performed?
• What vulnerabilities does the attack exploit?
• Where can the attack be launched from?
• What are the possible mitigations?

We then graded each attack according to a range of criteria:

• The type of access required to exploit a vulnerability;
• The level of technical sophistication required to exploit a vulnerability;
• The type of failure caused by a successful attack;
• The scale of effect for a successful attack;
• The scalability of the attack from the attacker’s perspective;

 How Secure Is ERTMS? 255

• The type of impact caused by a successful attack;
• The types of mitigation strategy that are possible;
• The level of difficulty for implementing each mitigation.

Our analysis and grading methodology was partially based on a technique for scenario
analysis that was devised by a NATO Research Task Group for a study on the Dual
Use of High Assurance Technologies [8].

We considered several different categorisations but chose these particular catego-
ries because we thought they were the most informative and provided a good sum-
mary of the issues raised by each scenario. We deliberately did not attempt to rank the
various attack scenarios using a weighted average of the category scores because we
believe that such a ranking would be too simplistic – the relative weighting of the
various categories and the ranking of the scenarios is a matter for government and
industry stakeholders. Similarly, we did not attempt to estimate the likelihood of at-
tacks being successful because this would depend on the national implementation of
ERTMS and is therefore best left to the domain experts. Instead, we used colour
coding (HIGH, MEDIUM, Low) to highlight the issues, as shown in Table 1.

Table 1. Grading of the issues

Minimum access
required

Technical
sophistication

Type of
failure

Scale of
effect

Scalability
of the
attack

Type of
impact

Mitigation
strategies

Ease of
mitigation

REMOTE
ACCESS
ACCESS TO

INFRASTRUCTURE,
BUT NOT THE

TRACK
SUPPLY CHAIN

ACCESS
Physical access to
the track

LOW
MEDIUM
High

LOSS
OF
LIFE
DENIAL

OF

SERVICE

GLOBAL
NATIONAL
REGIONAL
Local

HIGH
MEDIUM
Low

SAFETY-
CRITICAL
ECONOMIC
POLITICAL
Psychological

REACTIVE
Preventive

HARD
MEDIUM
Easy

Using this colour coding, we summarise our grading of each attack scenario in

Table 2 to enable the scenarios to be easily compared.
Broadly speaking, attacks that can be launched remotely do not require a high level

of sophistication and are highly scalable – however, such attacks are relatively easy to
mitigate. Conversely, attacks that require local access are less scalable but also more
difficult to mitigate. Hence important trade-offs need to be made by the relevant deci-
sion makers and risk managers. The advantage of the analysis and grading approach
presented here is that it identifies these trade-offs and helps decision makers to make
more informed decisions.

256 R. Bloomfield et al.

Table 2. Grading of the issues

 Minimum
access

required

Techni-
cal so-

phistica-
tion

Type of
failure

observed

Scale of
effect

Scalabil-
ity of the

attack

Type of
impact

Mitigation
strategies

Ease of
mitiga-

tion

Scenario 1 REMOTE
ACCESS

LOW DENIAL
OF
SERVICE
AND LOSS
OF LIFE.

LOCAL/
GLOBA
L

HIGH SAFETY-
CRITICAL
AND/OR
PSYCHOL
OGICAL

Preventive
and reactive

Easy

Scenario 2 REMOTE
ACCESS

LOW DENIAL OF

SERVICE
LOCAL/
GLOBA
L

HIGH ECONOMIC,
POLITICAL

Preventive
and reactive

Easy

Scenario 3 REMOTE
ACCESS

LOW DENIAL OF

SERVICE
LOCAL/
GLOBA
L

HIGH ECONOMIC,
POLITICAL

Preventive
and reactive

Easy

Scenario 4 REQUIRES

ACCESS TO

WIRELESS

CELL.

High DENIAL OF

SERVICE
Local MEDIUM ECONOMIC,

POLITICAL
REACTIVE MEDI

UM

Scenario 5 REQUIRES

ACCESS TO

WIRELESS

CELL.

High DENIAL
OF
SERVICE
AND LOSS
OF LIFE

Local Low SAFETY-
CRITICAL
AND/OR
PSYCHOL
OGICAL

Preventive
and reactive

MEDI
UM

Scenario 6 Physical
access to
track

LOW DENIAL
OF
SERVICE
AND LOSS
OF LIFE

Local Low SAFETY-
CRITICAL
AND/OR
PSYCHOL
OGICAL

REACTIVE HARD

Scenario 7 Physical
access to
track

MEDIUM DENIAL
OF
SERVICE
AND LOSS
OF LIFE

Local Low SAFETY-
CRITICAL
AND/OR
PSYCHOL
OGICAL

REACTIVE MEDI
UM

9 Related Work

We are aware of some related work, but to the best of our knowledge, this is the first
holistic study that analyses the security of ERTMS at the level of a national infra-
structure and considers the potential impact of an ERTMS implementation being
compromised. In a paper published around the time of the development of the Euro-
radio protocol, one of the authors of the specification discusses the safety and security
requirements for the technology [9]. More recently, ERTMS has attracted the atten-
tion of security researchers and we are aware of two presentations in German [10,11]
that touch on some of the issues identified in our more detailed and extensive study,
which pre-dates this German work. One of these presentations was to the Chaos
Communication Congress in Berlin and attracted a lot of media attention [12],
although the media reports were rather confused and made little sense to rail
engineers familiar with the technology [13].

 How Secure Is ERTMS? 257

10 Discussion and Conclusions

Safety and security are both forms of dependability and use similar techniques to
assess the impact of possible failures on the overall behaviour of a system. In general,
a safety assessment assumes that failures have accidental causes rather than deliberate
causes. In contrast, a security analysis tends to assume a worse case scenario in which
all failures are possible.

Nevertheless, safe systems need to be secure – if they are not secure, then they are
not safe. A safety analysis that does not consider hazards that could be caused by
underlying security vulnerabilities is deficient.

In practice there may be conflicts between security requirements and safety re-
quirements. For example, in an emergency situation, a timely response may be more
important than a secure response. Moreover, safety concerns are rather different from
security concerns: confidentiality is not usually a safety concern, and in fail-safe sys-
tems such as ERTMS, availability is considered to be a reliability issue rather than a
safety issue. In contrast, security is traditionally concerned with confidentiality, inte-
grity and availability. A failure of confidentiality would not be considered a safety
concern, but would definitely be a security concern. Similarly, fail-safe behaviour is
important from a safety perspective but conflicts with the security requirement to
maintain availability.

In this paper we presented the results of a security audit of the ERTMS interopera-
bility specifications. ERTMS is designed to be a safe system and the general philoso-
phy is ‘if in doubt, stop the train’. This ‘fail-safe’ behaviour makes it relatively easy
for an attacker to bring trains to a halt. Causing an accident is more difficult but not
impossible – it is important to remember that ERTMS does not drive the train and it is
the driver who is ultimately responsible for the safety of the train. However, as the
speed and number of trains increases, the ability of the driver to react to critical issues
in a timely fashion may become limited, forcing the system to become more depend-
ent on automated control.

Some of the vulnerabilities we identified depend very much on the specific details
of the national implementation of ERTMS and GSM-R. Moreover, some of the most
critical parts of an ERTMS implementation (e.g., the interface between the control
centre and the RBCs) are outside the scope of the ERTMS/ETCS specifications,
which are only concerned with interoperability and do not address implementation
issues within a national implementation. Thus, a complete security analysis would
need to consider the whole of the national railway infrastructure.

More generally, our work has highlighted the need to ensure that security issues are
taken into account when preparing safety cases [14], and we plan to do more work on
“security-informed” safety cases, particularly in the context of the Artemis-JU project
on Security and Safety Modelling for Embedded Systems (SESAMO) [15].

Acknowledgments. Our original research was commissioned on behalf of the UK
railway industry and UK government and we are grateful to our sponsors who

258 R. Bloomfield et al.

commissioned the research and facilitated discussions with key railway stakeholders
that were invaluable to us in developing our scenarios and validating our work. Our
current research is partially funded by Artemis-JU as part of SESAMO (project num-
ber 295354).

References

1. Bloomfield, R., Stroud, R., Gashi, I., Bloomfield, R.: Information Security Audit of
ERTMS, Technical Report (2010)

2. Stroud, R., Gashi, I., Bloomfield, R., Bloomfield, R.: ERTMS Specification Security Audit
– Analysis of Attack Scenarios, Technical Report (2011)

3. UNISIG SUBSET-026, System Requirement Specification, Version 2.3.0,
http://www.era.europa.eu/Document-Register/Pages/
UNISIGSUBSET-026.aspx

4. UNISIG SUBSET-037, Euroradio FIS, Version 2.3.0,
http://www.era.europa.eu/Document-
Register/Pages/UNISIGSUBSET-037.aspx

5. UNISIG SUBSET-038, Offline Key management FIS, Version 2.3.0,
http://www.era.europa.eu/Document-Register/Pages/
UNISIGSUBSET-038.aspx

6. UNISIG SUBSET-114, KMC-ETCS Entity Off-line KM FIS, Version 1.0.0,
http://www.era.europa.eu/Document-Register/Pages/
UNISIGSUBSET-114.aspx

7. Quirke, J.: Security in the GSM system (2004)
8. Bloomfield, R., Craigen, D., Miller, A.: Dual Use of High Assurance Technologies, Tech-

nical Report (2009), http://www.rto.nato.int/Pubs/rdp.asp?RDP=RTO-
TR-IST-048

9. Braband, J.: Safety and Security Requirements for an Advanced Train Control System. In:
Proc. 16th International Conference on Computer Safety, Reliability and Security
(SAFECOMP 1997). Springer, York (1997)

10. Stump, F.: Datenübertragung über öffentliche Netze im Bahnverkehr – Fluch oder Se-
gen?!, Safetronic 2010 (2010)

11. Katzenbeisser, S.: Can trains be hacked? Die Technik der Eisenbahnsicherungsanlagen. In:
28th Chaos Communication Congress, Behind Enemy Lines (December 2011)

12. BBC News, Train-switching technology ‘poses hacking threat’ (December 2011),
http://www.bbc.co.uk/news/technology-16347248

13. RailUK Forum, BBC News: Hackers could delay trains (December 2011),
http://www.railforums.co.uk/showthread.php?t=57565

14. Bloomfield, R.E., Guerra, S., Miller, A., Masera, M., Weinstock, C.B.: International
Working Group on Assurance Cases (for Security). IEEE Security and Privacy 4(3), 66–68
(2006)

15. SESAMO – Security and Safety Modelling, ARTEMIS Embedded Computing Systems In-
itiative 2011, Project Number 295354 (May 2012)

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 259–270, 2012.
© Springer-Verlag Berlin Heidelberg 2012

International Cooperation Experiences:
Results Achieved, Lessons Learned, and Way Ahead

Craig Gibson1, Matteo Melideo2, Luigi Romano3, and Salvatore D’Antonio3

1 BCE and Bell Group of Companies, Canada
craig.gibson@bell.ca

2 Engineering Ingegneria Informatica, Italy
matteo.melideo@eng.it

3 Consorzio Interuniversitario Nazionale per l'Informatica (CINI), Italy
{salvatore.dantonio,luigi.romano}@uniparthenope.it

Abstract. In this paper we discuss the experience we had with international co-
operation initiatives with respect to three projects, funded by the European
Commission within the context of FP6 and FP7. We provide a summary of the
main technical achievements which were directly related to international coop-
eration, and present the workplan for future research, specifically related to in-
ternational cooperation. Besides the technical aspects, we discuss the pros and
cons of the specific funding tools on which international cooperation was based
at the time of these projects, and compile a wish list for upcoming funding initi-
atives for International Cooperation.

Keywords: Open Source Software, Software Quality, Critical Infrastructure
Protection, Synchrophasors, Security Information and Event Monitoring, Glob-
al Positioning System.

1 Rationale and Contribution

We claim that international collaboration is highly beneficial, in that research greatly
benefits from diverse cultural and scientific backgrounds, and problem domain con-
texts. To support our claim, we provide tangible evidence of remarkable technical
achievements that international cooperation has brought about. More specifically, we
discuss the experience we had with international cooperation initiatives within the
context of three projects, namely: QualiPSo, INSPIRE (and its accompanying action
INSPIRE-INCO), and MASSIF. The main contribution of this paper is thus an over-
view of the main technical achievements which were directly related to international
cooperation. In a nutshell: QualiPSo demonstrated that in the software development
domain, international cooperation favours the creation of consensus around common
practices, to guarantee higher quality of the final product; INSPIRE demonstrated that
Critical Infrastructure Protection must rely on techniques that are compatible, and
scalable; MASSIF demonstrated that sharing experience and factorizing interests may
widen the scope of individual research plans. While QualiPSo and INSPIRE are now
over, MASSIF is an ongoing project. For it, besides commenting the results achieved

260 C. Gibson et al.

so far, we also present the workplan for future research, with respect to international
cooperation. The technical details are in sections II, III and IV with reference to Qua-
liPSo, INSPIRE, and MASSIF, respectively.

Another important contribution of the paper is a discussion of the pros and cons of
the specific funding tools on which international cooperation was based at the time of
these projects (as well as an analysis of the opportunities for international cooperation
that were provided by “Call 9: Objective ICT-2011.10.3: International partnership
building and support to dialogues”), and the consequent wish list for upcoming funding
initiatives with respect to International Cooperation. This is detailed in section V.

2 The QualiPSo Experience

2.1 Short Description of the Project

QualiPSo [1] was a project funded by the European Commission (EC) under the FP6,
which ended in January 2011. When it was conceived, Open Source was making the
transition from a mere development approach (as well as a paradigm, a life style, and
a philosophy just for hackers or hobbyists) to a novel and efficient business approach.
In fact, at that time the ICT economy was undergoing a deep transformation, moving
from a product-oriented to a service-oriented business, with the Web playing a lead-
ing role and Open Source identified as a key enabler of this paradigm shift (it is worth
mentioning that an article from BBC, dated 21 Jan 2009, claimed that “The secret to a
more secure and cost effective government is through open source technologies and
products.”) [2]. In this new paradigm for the IT domain, where the economy is based
on services, interoperability among provided and consumed services becomes essen-
tial for the survival of the business model itself, which mandates for open and intero-
perable technological standards. Open Source facilitates and supports the definition of
open standards, thus favouring the development of interoperable systems, and ulti-
mately avoiding vendor lock-in. However, while Open Source has a deep penetration
in the academic domain and in some market niches, several industrial domains are
still reluctant to use Open Source software products or services or to adopt an Open
Source process as their own software production environment. There were (and there
are) many persistent myths and yet unsolved drawbacks that made the industry scep-
tical about Open Source real benefits. One of the objectives of the QualiPSo project
was to prove (and demonstrate) the quality of Open Source software and of the
processes used for producing it, in order to demolish with facts the false myths about
lack of support and maintenance, or about the low quality of Open Source software.
Another important objective of the QualiPSo project was to address some of the main
open issues of Open Source software, and in particular: (i) the intellectual property
issues that require a clarification and simplification of the licensing matters, (ii) the
lack of a qualified and specialized educational program in high education about Open
Source, and (iii) the fragmentation of the Open Source community. In order to over-
come the above mentioned issues and benefiting from the favourable economic
context, the QualiPSo initiative was conceived. QualiPSo aimed at making a major
contribution to the state of the art and to the practice of Open Source Software. The

 International Cooperation Experiences 261

goal was to define and implement technologies, procedures, and policies to leverage
the Open Source Software development current practices to sound and well recog-
nized and established industrial operations. Eighteen international companies and
research groups (from Europe, Brazil, and China) worked together in the project for
fifty-one months. The project brought together software companies, application solu-
tion developers, and research institutions. It was driven by the need of having for
Open Source software the appropriate level of trust which would make Open Source
development an industrial and wide accepted practice.

2.2 Specific Results Achieved

QualiPSo intended to address in a comprehensive way the main research aspects af-
fecting the adoption of Open Source solutions in an industrial business context. This
means to address aspects concerning legal issues, business models, interoperability (at
the organizational and at the technical level), data and information management, qual-
ity and trustworthiness (of the products and processes), and - last but not least - colla-
borative development environments more suited for an industrial adoption. Specifical-
ly, the main technical and scientific results achieved were [3]:

• An IPR Tracking Methodology, a Licence Compatibility methodology (with a
supporting prototype), and a framework for an International Legal Issue web por-
tal;

• A set of strategies for Industries and SMEs to move towards an Open Source para-
digm, and the business models for its adoption and sustainability;

• A set of methods, specifications, and proof-of-concepts to handle technical, seman-
tic, and organizational interoperability;

• Prototypes to perform conceptual and semantic searches on heterogeneous sources
of information available within a specific forge, supported by advanced and inno-
vative navigation systems to manage query results;

• Two methods (namely: Model of Open Source Software Trustworthiness –
MOSST, and Open Source Maturity Model - OMM), and a supporting quality
software suite for the measurement of the quality of OSS products and processes;

• The prototype of an innovative forge (named QualiPSo Factory) with novel func-
tionality, a modular and lightweight architecture, new services, and a new user
friendly and usable User Interface.

In addition to the above mentioned technical and scientific results, the QualiPSo
project fostered and supported the creation of a network of Open Source Competence
Centres (CC) to sustain and promote QualiPSo results using them as a leverage for a
wider and more conscious adoption of Open Source worldwide. The original plan was
to open CCs only in Brazil, Spain, Germany, Italy and China, but in the end CCs were
also opened in Japan and Poland [4]. The idea was to create these CCs in different
regions of the world, to complement and support the already existing local initiatives
in the education and awareness on the benefits of the Open Source paradigm thanks to
the new knowledge, expertise, and technologies deriving from the QualiPSo

262 C. Gibson et al.

experience. Most of these CCs were built in the wake of already existing initiatives
(i.e. Berlios in Germany and Morfeo in Spain), while others started from scratch ex-
ploiting the strategic programs (running or planned) defined by the respective Gov-
ernments for the massive adoption of Open Source solutions in the Public Administra-
tion (both local and central). Each QualiPSo CC has to be a physical place which
operates and provides more congenial services to its operative context but, to be rec-
ognised as a QualiPSo Competence Centre, it must reuse technologies, procedures,
and policies produced by QualiPSo and should be part of the QualiPSo Network. To
be part of the Network each CC must sign an agreement once its request of joining is
accepted by the other members [5]. This agreement is the “Table of Law” which
works like a framework to ensure coherency within the network and providing rules
and regulations needed by the QualiPSo Network to accomplish its mission and gua-
ranteeing uniformity, transparency, and efficiency in the relations amongst CCs and
between individual CCs and the QualiPSo Network as a whole. This organization also
allows dealing with diversity. Each competence centre can become part of the net-
work but at the same time this partnership does not preclude the adoption of different
legal frameworks and different business models. The Brazilian, Spanish, German,
Italian and Chinese CCs were born under the umbrella of the QualiPSo contractual
commitment, but the quality and novelty of the QualiPSo results together with the
idea of the network encouraged two new competence centres to join: one in Japan and
one in Poland. While the Polish CC was opened by one of the partners of the QualiP-
So project, the Japanese one (part of the Information-Technology Promotion Agency -
IPA [29]) had no relationships with QualiPSo but contacted the Network to join since
they were interested in part of the QualiPSo results. Specifically, in Japan the Gov-
ernment was pushing and investing for the adoption of Open Source solutions and
IPA wanted to offer services for the measurement of the quality of Open Source solu-
tions to be used. IPA identified those offered by QualiPSo as possible candidates for
use. In addition, IPA identified in the participation to the network the possibility to
rely on the support of the other CCs for testing and adapting the identified QualiPSo
solutions. It is worth emphasizing that the QualiPSo approach made the following
innovative contributions: (i) a new way to sustain project results - by interconnecting
Industries, Academia, Public Administrations, and Open Source Communities - dri-
ven respectively by the their needs, their inputs, and their support; (ii) the federated
organization of the network of CCs, that allowed individual centers to act locally
(exploiting the characteristics and needs of specific countries), while cooperating
globally (exploiting the expertise and skills of other competence centres belonging to
the network).

3 The INSPIRE + INSPIRE-INCO Experience

3.1 Short Description of the Project

INSPIRE (INcreasing Security and Protection through Infrastructure Resilience) was
a STREP targeting Objective ICT-SEC-2007.1.7: Critical Infrastructure Protection[6].
Since the key enabling technology of Critical Infrastructures is SCADA (Supervisory

 International Cooperation Experiences 263

Control And Data Acquisition) systems, INSPIRE focused on enhancing the security
of such systems. In the recent years coordinated and targeted cyber-attacks have been
conducted against critical infrastructures rising to an unprecedented level of sophisti-
cation. Simple experiments are now turning into sophisticated activities carried out
for profit or political reasons. The core idea of the INSPIRE project was to protect
Critical Infrastructures by appropriately configuring, managing, and securing the
communication network which interconnects distributed process control systems. To
increase the resilience of such systems INSPIRE developed traffic engineering algo-
rithms, self-reconfigurable architectures, and intrusion diagnosis and recovery tech-
niques.

The INSPIRE thread of research was augmented by means of an additional action,
namely the INSPIRE-INCO (INSPIRE-International Cooperation) Project, within the
context of call ICT-2009.9.2: Supplements to Support International Cooperation be-
tween Ongoing Projects [7]. The INSPIRE-International cooperation project specifi-
cally aimed at supporting the international cooperation between the INSPIRE project
and the US GridStat project [28], by fostering the collaboration between INSPIRE
researchers and GridStat researchers in the field of power grid protection. This colla-
boration aimed at the following objectives: 1) Making US power grid data available to
INSPIRE, and 2) Establishing relationships with US partners, and exchanging US-EC
experiences and demonstration activities.

3.2 Specific Results Achieved

INSPIRE mainly focused on how to increase the protection level of SCADA systems,
the key component of most legacy, contemporary, and future Critical Infrastructures.
In this section, we present the conceptual architecture of the diagnostic and reconfigu-
ration scheme which was developed within the context of the INSPIRE project, and
then extended to the US context, thanks to the additional funding provided by the
INSPIRE-INCO project.

The INSPIRE architectural framework for SCADA systems resilience and security
comprised three main functional blocks, namely: (i) Monitoring, (ii) Diagnosis, and
(iii) Reconfiguration. Monitoring aims at gathering and aggregating status data from
diverse parts of a SCADA system: communication network, Remote Terminal Units,
wireless sensors, wired sensors, and supervisory stations. In order to cope with the
heterogeneity of the formats of diagnostic data, grammar-based parsers were em-
ployed to translate raw events to an intermediate format. The INSPIRE monitoring
sub-system built on our previous experience [8], specializing it to the context of
SCADA systems. After parsing, data collected by individual probes is merged in a
single stream, which feeds a set of diagnostic systems, implementing diverse diagno-
sis approaches. Based on diagnosis outputs, the most suitable reconfiguration tech-
nique (to treat the specific intrusion/fault) is selected. An example of reconfiguration
is to implement routing mechanisms that make the communication infrastructure of a
SCADA system resilient to both node/link failures and attacks, by guaranteeing time-
liness and reliability of data delivery.

264 C. Gibson et al.

Special attention was pa
of SCADA systems for con
serious damage and disrup
accuracy and coherency of
Phasor Measurement Un
SCADA/EMS (Energy Ma
analysis of two key technol
synchrophasor devices and
study was conducted on a
chrophasor is concerned),
PDC is concerned). We set
a penetration testing camp
result of the testing session
be easily exploited for con
structures if proper measur
integrated in the system.

Fig. 1 shows the testbed
architecture is a simplified
multiple hierarchal levels o
capability of enforcing sp
testbed is based on compo
loyments. Thus, many of th
present in real set-ups, espe
related best practices hav
practices that provide answ
include: [10, 11, 12, 13, 14,

Fig. 1. Schem

In the following, we pro
more detailed treatment is a

The password managem
nesses, and in particular: (

aid to the vulnerability of power grids. The widespread
ntrol of power grids is providing increasing ability to ca
ption by means of cyber-attacks. In order to improve
f SCADA systems, utilities are more and more integrat
nit (also known as synchrophasors) into exist
anagement Systems). We performed a thorough secu
logies which enable data collection in Power Grids, nam
Phasor Data Concentrators (PDCs). We emphasize that
commercial product by a major vendor (as far as the s
and on a widely used open source product (as far as
t up a simplified - yet realistic - testbed, and we conduc
paign against the two aforementioned components. A
ns, we exposed several vulnerabilities, some of which
ducting attacks to current smart grid data collection in
res are not taken and additional protection devices are

we used for our security analysis. Even though the test
version of a real set-up (which would typically consis

of PDCs, and also include additional components with
pecific protection mechanisms), we emphasize that
nents which are actually used in current Smart Grid d
he vulnerabilities that we expose in our study may well
ecially those - which are not rare indeed - where secur
ve been disregarded. Commercial products and/or b
wers to some of the problems which we have pointed
, 15, 16, 17, 18].

matic representation of the experimental testbed

ovide a short summary of the key findings of the study
available in [19].
ent and maintenance subsystem has several security we
i) the default passwords are very common and consist

use
ause

the
ting
ting

urity
mely

the
syn-
the

cted
As a

can
nfra-

not

tbed
t of
the
our

dep-
l be
rity-
best
out

y. A

eak-
t of

 International Cooperation Experiences 265

simple alphabetic strings, which are vulnerable to dictionary attacks, (ii) passwords
are editable but no constraints is given for the strength of new passwords, (iii) mul-
tiple levels can share a common password, and (iv) passwords can be totally disabled
via hardware intervention, by tampering with the front panel and setting a jumper off.

The system is vulnerable to man-in-the-middle attacks. A malicious eavesdropper
can intercept the messages exchanged between one of the synchrophasors and the
PDC and modify parameter values or even impersonate the synchrophasor.

The PDC application receives data streams from many different synchrophasors
deployed across the monitored smart grid, using the C37.118 protocol [20]. We have
demonstrated that by carefully crafting C37.118 protocol messages, it is possible to
inject malicious SQL code to the back-end database.

Another important achievement of this international cooperation was access to real
large scale and varied power grid data. The North American grid provides data from
US electricity providers (including: AREVA, BBN, ABB-USA, and Siemens-USA),
on a scale which is not achievable on the currently (relatively) limited EU grid size.
The INSPIRE-INCO action contributed to overcome this limitation in the current EU
grid data availability. An experimental testbed for power grid data collection was set-
up, and is still operational at the time of this writing. Two synchrophasor devices
(specifically, Frequency Disturbance Recorders) were installed, one in Naples (Italy)
and one in Darmstadt (Germany), which are connected to the US network of the
FNET group of the University of Tennessee, Knoxville [9].

4 The Massif Experience

4.1 Short Description of the Project

Security Information and Event Management (SIEM) solutions have become the
backbone of virtually all security infrastructures. They collect data on events from
different security elements, such as sensors, firewalls, routers or servers, analyze the
data, and provide a suitable response to threats and attacks based on predefined secu-
rity rules and policies. Despite the existence of highly regarded commercial products,
their technical capabilities show a number of constraints in terms of scalability, resi-
lience, and interoperability. The MASSIF project aims at achieving a significant ad-
vance in the area of SIEMs by integrating and relating events from different system
layers and various domains into a more comprehensive view of security-aware
processes and by increasing the scalability of the underlying event processing tech-
nology. The main challenge that MASSIF will face is to bring its enhancements and
extensions to the business layer with a minimal impact on the end-user.

4.2 Specific Results Achieved and Expected

Two representatives of the MASSIF project (namely: Luigi Romano and Salvatore
D'Antonio) participated in the First Canada EU Workshop on the “Future Internet”,
which was held in Waterloo, Ontario, Canada from 23 to 25 March, 2011. The major
objective of the workshop was to explore prospects for deeper exchange and

266 C. Gibson et al.

collaboration between the C
of “Future Internet (FI)” in
ers were offered an opport
research status, and to exp
signed to address industry i
an opportunity to participat
terloo workshop Luigi Rom
with Craig Gibson on the p
Positioning System (GPS)
idea is to use satellite simu
works by providing an alte
chrophasors deployed in a
to acquire a synchronized ti
It has been proven that civi
cure [21], as it does not pr
spoofing of the GPS signa
simulators are available on
based applications [24, 25,
nologies could range from
the injection of a false phas
phase shift is a high priority
An actual example is provid

F

According to NERC: “A
tance of having time-synchr
over thousands of data item
would have been significan
synchronized data recording

Canadian and European research communities in the a
n Europe. With this workshop, EU and Canadian resear
tunity to directly interact, to be updated on the respect
plore areas for potential cooperation. The event was
interests and to provide prospective Canadian partners w
te in EU research related to the Future Internet. At the W
mano and Salvatore D'Antonio had technical discussi
possibility of addressing research issues related to Glo
spoofing attacks on synchrophasor networks. The ba

ulator devices to perform an attack to synchrophasor n
ered time reference to the measurements acquired by s
specific area. Synchrophasor devices rely on civilian G
ime reference for their phase and frequency measureme
ilian GPS, unlike its military version, is inherently not
rovide any encryption [22]. For this and other reasons
al is relatively easy to implement [22] and GPS satel
n the market for the testing of navigation and other G
, 26]. The effects a successful attack based on these te

the invalidation of the acquired phasor measurements
se shift detection. We explicitly note that the detection o
y alarm, since it predicts a major failure of the power g
ded by the Aug. 14th, 2003 Blackout in the US (Fig. 2).

Fig. 2. Phase shift prior the black-out

A valuable lesson from the August 14 blackout is the imp
ronized system data recorders. NERC investigators labo

ms to synchronize the sequence of events. … That proc
ntly improved … if there had been a sufficient number
g devices.” [27].

area
rch-
tive
de-

with
Wa-
ions
obal
asic
net-
syn-
GPS
ents.

se-
the

llite
GPS
ech-
s to
of a

grid.

por-
ored
cess
r of

A preliminary research w
tended in the months which
sented in the International C
vices 2011 Collaboration M
28 to 29 September 2011. T
and we do believe we have
explore in depth. Our plan
of GPS Spoofing based atta
step has been the definition
the results of this activity,
testbed reproduces in a lab
network, and allows the i
testbed - as illustrated in F
network (specifically: sync
sor Data Concentrator app
GPS spoofing equipment (
attack software). Additiona
synchrophasor) will be inte
mimic the behaviour of the
out in the attack scenario de
of allowing us to evaluate t
the testbed (and of the expe

Fig. 3. GPS Spoofing

At the time of this writi
all the hardware and softwa
The testbed has been deplo
subparts has been tested. W
implementing the attack sce
In the experimental campa

International Cooperation Experiences

work plan was defined, which was then improved and
h followed the event. The finalized research plan was p
Cooperation Working Group session at the Internet of S

Meeting for FP7 Projects, which was held in Brussels, fr
The presentation raised significant interest in the audien
identified a relevant research path, which we are willing
is to investigate the feasibility and possible consequen

acks on synchrophasor networks. In order to do so, the f
n of the main attack scenarios to be investigated. Based
the requirements for the testbed have been specified. T
oratory environment a realistic set up for a synchropha
implementation of the attack scenarios of interest. T

Fig. 3 - includes the core components of a synchropha
chrophasor devices, a communication network, and a P
plication, the visualization and monitoring point), and
i.e. the GPS satellite signal simulator and the control
al components (such as the power line controlled by
egrated in the testbed using software mock-ups, which w
 corresponding real objects, based on the specifications
efinition. The use of mock-ups has the important advant
the effects of the attacks in detail while keeping the cos
eriments) acceptable.

attack experimental testbed for a synchrophasor network

ing, the architecture of the testbed has been designed,
are components are already available in our lab in Nap
oyed and configured, and correct operation of all syst

We are now in the process of starting the experiments,
enarios defined in the first phase and collecting the resu

aign we will use a GPS spoofing system to generate f

267

ex-
pre-
Ser-
rom
nce,
g to
nces
first
d on
The
asor
The
asor
Pha-

the
and
the

will
s set
tage
st of

and
ples.
tem
i.e.

ults.
fake

268 C. Gibson et al.

GPS signals, and monitor the synchrophasor network to analyze the actual conse-
quences of the injection of false GPS data in the system. The campaign will consist of
multiple phases, which will be repeated iteratively. At each iteration, we will observe
the results, and use them to fine tune the attacks in the next iteration. For each attack
scenario, a report will be produced that will describe the most significant intrusions
which have been observed and, most importantly, analyze the severity of the conse-
quences on the synchrophasor network. Finally, an attempt will be made to come up
with possible countermeasures for limiting the effects of the attacks.

5 Conclusions and Wish List

In this paper, we have provided tangible evidence of remarkable technical achieve-
ments that international cooperation has brought about. The QualiPSo project demon-
strated that in the software development domain, international cooperation favours the
creation of consensus around common practices, to guarantee higher quality of the
final product, which ultimately results in the establishment of trust, the key enabler of
technology take up. The INSPIRE (and INSPIRE-INCO) project demonstrated that
Critical Infrastructure Protection, given the ever increasing interconnections between
national and continental set-ups, must rely on techniques that are compatible, and
scalable. The MASSIF project demonstrated that sharing experience and factorizing
interests may widen the scope of individual research plans.

Besides the technical aspects, a few comments are in order with respect to the
funding schemes. In QualiPSo, International Cooperation was a main characteristic of
the project since its inception. This resulted in efficient and smooth interaction among
international partners. To create an international network of centres dedicated to the
promotion and to the adoption of project outputs is the easiest way to efficiently ex-
ploit and disseminate project results, as well as to test them in real scenarios and to
offer the opportunity to further develop them. This is especially true when the results
produced are Open Source software products, and the best exploitation strategy is to
have communities and potential investors support these results. In INSPIRE the fund-
ing scheme was somehow awkward. It mandated for the pre-existence of two projects
(one funded by the US and one funded by the EC) with significant potential for coop-
eration. Specifically, the two projects were GridStat (funded by an NSF grant) and
INSPIRE (funded by an EC grant). On the US side the additional funding for support-
ing the international cooperation was pumped directly into the GridStat project, while
on the EU side it was routed to a distinct project (namely, INSPIRE-INCO). Handling
two distinct flows of funding, one only for research and one only for mobility, re-
sulted in a number of (unnecessary) difficulties. We have shared this experience at the
International Cooperation Working Group session at the Internet of Services 2011
Collaboration Meeting for FP7 Projects, which was held in Brussels, from 28 to 29
September 2011 and we were assured by EC representatives that the INSPIRE +
INSPIRE-INCO scheme was indeed an exception, with the rule being much more
effective and seamless solutions. We were glad to learn that, and we are keen on find-
ing a joint research avenue/process which can provide additional support for the new

 International Cooperation Experiences 269

thread of research on GPS spoofing that we have started within the context of the
MASSIF project. We look forward to a funding tool which can provide additional
stamina to this promising collaborative research. We emphasize that the power grid
desynchronization research shown here describes the mechanism by which legacy
design issues relying on unauthenticated transmission can result in (at a very funda-
mental level) denial of service to critical infrastructures. Some opportunities for con-
tinuing this cooperation seemed to be provided by Call 9, specifically Objective ICT-
2011.10.3: International partnership building and support to dialogues. Specifically,
the target outcome of this action was: “support to dialogues and cooperation with
strategic partner countries and regions, to create cooperative research links between
European organisations and partners in third countries”. Regrettably, this initiative -
with respect to High Income Countries (such as Canada) - aimed at supporting dialo-
gues, and at increasing cooperation, but it did not provide explicit funding for doing
research. While we look with interest at the opportunities provided by initiatives for
the organisation of events and the strengthening of cooperative research links between
European organisations and relevant organisations in Canada, what we really look for
is a funding tool providing direct support to research activities. Thus, we look with
interest at upcoming initiatives, particularly Security Research Call 6 (FP7-SEC-
2013-1).

Acknowledgments. The research leading to these results has received funding from
the European Community’s Sixth Framework Programme (FP6/2002-2006) under
Grant Agreement No. 034763 (QualiPSo) and Seventh Framework Programme
(FP7/2007-2013) under Grant Agreement No. 225553 (INSPIRE Project), Grant
Agreement No. 248737 (INSPIRE-INCO Project), and Grant Agreement No. 257475
(MAnagement of Security information and events in Service Infrastructures, MASSIF
Project).

References

1. QualiPSo project website, http://www.qualipso.org
2. Shiels, M.: Calls for open source government, BBC news,

http://news.bbc.co.uk/2/hi/7841486.stm
3. Detailed list of the QualiPSo results, http://www.qualipso.org/documents
4. QualiPSo Competence Centres Presentation,

http://www.qualipso.org/competence_centres
5. QualiPSo Network Agreement,

http://www.qualipso.org/sites/default/files/Qualipso%20D8.2%
20Network%20Agreement%20V2.pdf

6. INSPIRE project website, http://www.inspire-strep.eu
7. INSPIRE-INCO project website, http://www.inspire-inco.eu
8. Campanile, F., Coppolino, L., Giordano, S., Romano, L.: A Business Process Monitor for

a Mobile Phone Recharging System. Journal of Systems Architecture (2008)
9. Power Information Technology Lab in the Department of Electrical Engineering and

Computer Science at the University of Tennessee, http://powerit.utk.edu/
10. Secure Communications, Schweitzer Engineering Laboratories, Inc.,

http://www.selinc.com/securecommunications/

270 C. Gibson et al.

11. Cybersecurity, Schweitzer Engineering Laboratories, Inc.,
http://www.selinc.com/cybersecurity/

12. Stewart, J., Maufer, T., Smith, R., Anderson, C., Ersonmez, E.: Synchrophasor Security
Practices. Schweitzer Engineering Laboratories, Inc.,
http://www.selinc.com/WorkArea/DownloadAsset.aspx?id=8502

13. Smith, R.: Cryptography Concepts and Effects on Control System Communications.
Schweitzer Engineering Laboratories, Inc.,
http://www.selinc.com/WorkArea/DownloadAsset.aspx?id=5200

14. Hurd, S., Smith, R., Leischner, G.: Tutorial: “Security in Electric Utility Control Systems”.
Schweitzer Engineering Laboratories, Inc.,
http://www.selinc.com/WorkArea/DownloadAsset.aspx?id=3491

15. Mix, S.: Primer Discussion on Cyber Security: “What do the CIP Standards Mean for Syn-
chroPhasors in the future?” North American Electric Reliability Corporation (NERC),
http://www.naspi.org/meetings/workgroup/2009_february/presen
tations/nerc_cyber_security_mix_20090205.pdf

16. Introduction to NISTIR 7628, Guidelines for Smart Grid Cyber Security, The Smart Grid
Interoperability Panel Cyber Security Working Group,
http://www.nist.gov/smartgrid/upload/nistir-7628_total.pdf

17. Braendle, M.: Cyber security - effectively and efficiently tackling the challenges ahead.
ABB, http://www.abb.com/cawp/seitp202/
a6a42387602e83828525784200766310.aspx

18. Hadley, M.D., McBride, J.B., Edgar, T.W., O’Neil, L.R., Johnson, J.D.: Securing Wide
Area Measurement System. Pacific Northwest National Laboratory,
http://www.oe.energy.gov/DocumentsandMedia/Securing_WAMS.pdf

19. Coppolino, L., D’Antonio, S., Elia, I.A., Romano, L.: Security Analysis of Smart Grid Da-
ta Collection Technologies. In: Flammini, F., Bologna, S., Vittorini, V. (eds.) SAFECOMP
2011. LNCS, vol. 6894, pp. 143–156. Springer, Heidelberg (2011)

20. IEEE Standard for Synchrophasors for Power Systems, IEEE Std C37.118-2005 (Revision
of IEEE Std 1344-1995), pp. 1–57 (2006)

21. Vulnerability Assessment of the Transportation Infrastructure (2001),
http://www.fas.org/spp/military/program/asat/gpstrans.pdf

22. GPS Fact Sheet. Global Positioning Systems Directorate,
http://www.losangeles.af.mil/library/factsheets/factsheet.as
p?id=5311

23. Warner, J.S., Johnston, R.G.: A Simple Demonstration That the Global Positioning System
Is Vulnerable to Spoofing. Journal of Security Administration (2003)

24. CAST Navigation GPS Satellite Simulators,
http://www.castnav.com/products/

25. Spectracom GPS Satellite Simulators,
http://www.spectracomcorp.com/ProductsServices/
TestandMeasurement/GPSSimulators/tabid/1268/Default.aspx

26. Aeroflex, GPS Satellite Simulators,
http://www.aeroflex.com/ats/products/category/Avionics/GPS_S
imulators.html

27. Brown, S.: Thoughts on the Florida Blackout,
http://www.elp.com/index/display/elp-article-tool-
template/_saveArticle/articles/utility-automation-
engineering-td/volume-13/issue-4/departments/from-the-
editor/thoughts-on-the-florida-blackout.html

28. Gridstat project website, http://www.gridstat.net/
29. Information Technology Promotion Agency, Japan,

http://www.ipa.go.jp/index-e.html

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 271–281, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Federated Simulation Framework
with ATN Fault Injection Module for Reliablity Analysis

of UAVs in Non-controlled Airspace

Magali Andreia Rossi1,2, Jorge Rady de Almeida Junior1,
Andrea Bondavalli3, and Paolo Lollini3

1 University of São Paulo, School of Engineering (Poli-USP), Brasil
2 Technical College FATEC Carapicuίba, Brasil

mandreiarossi@gmail.com, jorge.almeida@poli.usp.br
3 University of Florence, Systems and Computer Science dept, Italy

{bondavalli,lollini}@unifi.it

Abstract. This work presents a federated simulation framework for safety and
reliability analysis in Aeronautical Communications Networking (ATN)
considering the insertion of Unmanned Aircraft Vehicles (UAV) in the airspace
control. The main objective is to quantitatively assess the impact of ATN faults
on the risk collision probability between manned and unmanned aircraft. The
paper first presents the framework that simulates the communication systems
used in a non-controlled airspace. Then it is described the ATN fault injection
module, which is then used to evaluate the impact of network-level faults on the
risk of collisions probability considering a representative simulation scenario
comprising 1500 aircraft in flight.

Keywords: Safety, Reliability, Simulation Framework, UAV, ATN, Fault
Injection.

1 Introduction

A Unmanned Aerial Vehicle (UAV) is an autonomous aircraft, remotely controlled,
currently used for specific missions such as flights and military operations in
segregated areas, i.e., in a monitoring operation it is determined the area size to be
monitored, for example, in square kilometers and its geographical coordinates. The
current state of research on UAVs, throughout the world, indicates that technological
factors will be the factor that restricts, in the near future, the development of UAV
really smart.

However, much development in this area is focused on the actual design of the
aircraft, its maneuverability and its flight dynamics. There is still a wide technological
gap, considering the use of techniques that allow UAVs to act in a way almost totally
autonomous in their context, including, for example, the ability to assess its
operational status and the environment around them, the mission progress and
especially the ability to fly in a non-controlled airspace. This condition can jeopardize
the missions for which UAVs are assigned, causing financial loss or credibility.

272 M.A. Rossi et al.

Excepting military operations, many of today’s UAVs flights around the world are
performed with airspace segregation. It is still a consensus among authorities that the
lack of effective standards for these aircrafts flights represents a potential risk to other
airspace users [1].

Considering such safety issues, the current legislation restricts the UAV operation
to places far enough away from densely populated areas, aerodrome zones and noise
sensitive areas such as schools, parks, hospitals, churches, and others. Another
important point is that, unless specifically authorized by an aviation authority with
jurisdiction over the area, the operation should be performed at a maximum height of
400 feet above the surface and in the event of traffic conflict with manned aircraft,
the UAV must give way immediately, even with the risk to be damaged or even
destroyed [2].

This paper proposes a simulation framework for safety and reliability analysis
considering the insertion of UAVs in non-controlled airspace, providing conditions
for evaluation of the decision-making control organisms. The framework contains
several modules that provide different information, enabling the air traffic control
authority to obtain real-time information about manned and unmanned aircrafts [3].
Using this information the framework proposes a single control authority for both
aircraft, ensuring that communication with the control unit is performed

It allows the integration of external flight simulators (e.g., Flight Gear, MS Flight
Simulator), ADS-B (Automatic Dependent Surveillance-Broadcast), and the use of
messages via CPDLC (Controller-Pilot Data Link Communications) using IPv6
(Internet Protocol version 6) for data transfer within the Aeronautical
Communications Network (ATN).

The framework allows assessing the impact of network faults on the risk collision
probability between manned and unmanned aircrafts in non-controlled airspace. As
such, it can be used as an effective support for decision making process by the
responsible authorities as response to emergency events, as well as to standards
development.

This work is structured as follows. Section II presents the related works. Section III
presents details about the simulation framework and the description of the
environment characteristics in which the simulation is used. Section IV presents the
structure of the fault injection module in ATN and the structure of the Bayesian
Network it is based on. Section V presents the simulation results considering a
representative scenario, while conclusions are finally drawn in Section VI.

2 Related Works

There are only few related works in the literature, typically addressing specific
aspects of the communication network. For example, in [4] there is a comparison
about the congestion control employing an ATN network and an IP network
environment. However, network faults are not considered at all. In [5], it is presented
a simulation model for mobile communication using VDL (VHF Digital Link
Mode 3). It is described the use of ground stations that provide VHF (Very High

 A Federated Simulation Framework with ATN Fault Injection Module 273

Frequency) so that communication is established between the aircraft and the land
controls. In [6], it is presented the communication model for UAV using wireless
network. It is analyzed the communication channel modeling for packet dropout, not
considering any network fault. In [7], it is presented an analysis of quality in
performance of high bandwidth communication UAV link, considering contextual
events. However, the context-controlled system uses the communication radio link
and segregate airspace of the flights. The simulation framework proposed in this
paper allows the reliability and safety analysis of UAV in non- controlled airspace,
also considering the impact faults within ATN. As such, it constitutes a clear
advancement of the state-of-the-art.

3 ATN Environment and Simulation Framework

3.1 ATN

ATN defines by the standards established by ICAO (International Civil Aviation
Organization), all interconnections to digital data transmission between ground-
ground and air-ground systems [8]. The routing service for the messages is offered
over ATN routers, which perform dynamic routing, allowing the updating of tables
with the aircraft movements information and changing in the network topology due to
possible faults [3], [9].

The ICAO Annex 15 defines the importance of control and routing data that passes
under the ATN and the effects caused by corrupt or incorrect data, as follows [10]:

“The object of the aeronautical information service is to ensure the flow of

information necessary for the safety, regularity and efficiency of international air
navigation. The role and importance of aeronautical information/data changed
significantly with the implementation of area navigation (RNAV), required navigation
performance (RNP) and airborne computer-based navigation systems. Corrupt or
erroneous aeronautical information/data can potentially affect the safety of air
navigation.”

With the purpose to guarantee the desired safety level for data transmission, ATN
design is based on the concepts and technologies adopted in CNS / ATM
(Communications, Navigation and Surveillance / Air Traffic Management) [11], [12]
by manned aviation, which aim to ensure a higher level of flight safety.

However, using the same technologies for unmanned and manned aircrafts is still a
very big challenge. Unmanned aircrafts have high-level technology in embedded
systems [13] which include, for example, satellite communications and digital data
transmissions. However, the main difficulty lies in its inclusion in non-controlled
airspace, which requires, for example, their immediate identification in control
systems.

In this work we are considering a non-controlled airspace in which the air traffic
control agencies have the information about manned aircraft, and need to register in
the system the entry of civil or military unmanned aircraft.

274 M.A. Rossi et al.

3.2 The Federated Simulation Framework

This paper proposes a simulation framework that allows considering the impact of
ATN faults as message delays and losses on the collision risk probability between
aircrafts. The challenge presented by the framework is the definition of a single
control authority for manned and unmanned aircrafts ensuring safety in data
communication. Thus, through the ATN Fault Module is feasible to provide the
possible communication failures of both aircraft from this single control

We developed the fault injection module integrated into the aircraft simulator
platform PIpE-SEC (Integrated Platform for Critical Test for Embedded Systems), which
meets the standards required by the control organisms to simulate this environment. This
module is called ATN Fault Module in Figure 1.

The PIpE-SEC is a set of applications and libraries that allow the execution of
experiments by integrating the network IVAO (International Virtual Aviation
Organization) and flight simulators, such as Flight Simulator and Flight Gear, and
also algorithms that implement CNS/ATM technologies, developed in the GAS –
Safety Analysis Group [14], [3]. Figure 1 illustrates the set of modules with their
links.

Fig. 1. Links between the Simulation Framework Modules

The CPDLC Module simulates the sending and receiving coded messages between
the pilot and ground control. The Virtual UAV Module simulates flight conditions of
an unmanned aircraft. The Connections with External Simulators and Components
Module helps the platform providing information on aircraft in flight. The
Connections with ADS-B Module simulates the surveillance information of the
aircraft.

The links between the modules represent messages transmissions using the
communications between ground control systems and aircraft embedded systems.

 A Federated Simulation Framework with ATN Fault Injection Module 275

The ATN Fault Module has links with all other modules of the platform. The link
to CPDLC Module allows the establishment of the air-ground communication.

The ATN Fault Module uses the information of the messages exchanged between
the other modules to inject faults in the communication environment, injecting the
faults directly into the established communication between the Virtual UAV Module
and the control ground systems.

The link between the Virtual UAV Module and the CPDLC Module is used to
automatically receive control messages that must be recognized by the on-board
embedded systems. We consider the great automation level of the aircraft, since it
does not have any human interference in the communications between the aircraft and
the ground control.

The links with Connections with External Simulators and Components Module
provide real-time information of the virtual network IVAO (International Virtual
Aviation Organization) where the UAVs are inserted, using the same space and air
control. Important information of the aircraft is received for the simulation, such as
altitude, latitude, flaps movements, ailerons, spoilers and others. This information is
used by other modules and represents the aircraft stability in flight.

The link with the Connections with ADS-B Module allows sending surveillance
information of the aircrafts, and it is primarily used in conjunction with the CPDLC
system.

4 Fault Injection

A key point in the development of a resilient and safe computer system is the
validation of its fault handling mechanisms, as ineffective or unintended operations of
these mechanisms can significantly impair the dependability of a computer system.
Fault injection is an important experimental technique for assessment and verification
of fault-handling mechanisms, as it allows how to analyze computer systems react and
behave in the presence of faults.

Fig. 2. Components within the ATN Fault Module

276 M.A. Rossi et al.

Figure 2 illustrates the components belonging to the developed software
simulation-based fault injection module. Each component has a specific function in
the simulation environment and can be implemented separately in relation to their use
and implementation of the services provided [15].

In this environment, the fault injector injects faults in the target system, executing
commands sent by the load generator.

The fault injector has the function of simulating various types of faults, such as
temporal, hardware or software faults. The monitor performs continuous monitoring
of the commands executed and makes data collection. The data collector performs the
data collection online, while the analyzer data performs processing for data analysis.
However, the environmental control is performed by the controller, which can run
directly in the Virtual UAV Module or in a separate hardware. The load library is set
to allow greater portability and flexibility in the environment.

4.1 Fault Injection in ATN

Currently, in many cases, a computer network environment may be characterized by
its complexity, involving various physical mechanisms to establish communication
between ES (End Systems).

In ATN these End Systems are commonly known as computer applications, which
are responsible for implementing services of various types and purposes, such as ATC
(Air Traffic Control) database FIS (Flight Information System), Weather Database,
Aeronautical Operations Control.

During the packet transmission process, the ability to send data between End
Systems can be decreased, causing delays in sending data. The most significant delays
related to network performance are: processing delay, nodal processing delay,
queuing delay, transmission delay and propagation delay, as detailed below [16]:

• The processing delay is determined by the time taken for analysis in the packet
header.

• The nodal processing delay is characterized by the arrival of a packet to a router,
which, after analysis of its header, determines the best output link. In determining
the best output link, the packet is directed to this output and is waiting to be sent.

• The queuing delay is the time taken by the packet while waiting for its sending to a
specific link.

• The transmission delay is the time taken to send all the bits of the packet to a
specific link (i.e., message sending time).

• The propagation delay is characterized by the time taken a bit after it has started its
transmission in the link up to the moment that arrived to the link destination, that
is, it reaches the destination router.

Thus, the process of fault injection in ATN is based on the concept of IP networks
faults. However, ICAO, through DOC 9705, defines the time delay and maximum
acceptable sizes for the messages transmission in aeronautical applications based on
ATN.

 A Federated Simulation Framework with ATN Fault Injection Module 277

The messages sent through the CPDLC (Controller-Pilot Data Link
Communications) system, have a size of 1 octet used for simple messages and
responses, reaching a size of 1607 octets in case of messages with the aim of
investigating complex instructions. The downlink messages have a size of 13 octets
and the uplink messages around 45 octets [17], [18].

The maximum delay time defined by the ICAO for the CPDLC messaging is 8
seconds for terminal area and 15 seconds en route [17], [18]. This time represents the
maximum time for preventing aircrafts collision.

Thus, we analyze the impact of ATN network faults affecting the delay times for
sending messages on the probability of collisions between aircrafts.

4.2 Network Faults

The ATN Fault Module is used to inject faults in the ATN communication
environment, considering the routing environment characteristics of air-ground
messages, and right times for message transmission (the messages are transmitted
using the IPv6 protocol with specific routing for the ATN) [17].

Using the ATN Fault Module, the faults are injected according to the
communication degradation possibilities between the aircraft and the ground control
systems.

The injected faults have different occurrence probabilities. These injected faults
affect each aircraft according to its message processing capability, which can
compromise the aircraft stability.

Hazards probability calculation caused by a fault in the ATN communications
environment is based on a Bayesian Network representing the faults model.

Fig. 3. Bayesian Network representing the faults model (within ATN Fault Module)

Figure 3 presents a part of the Bayesian Network representing the adopted network
fault model (ATN Fault Module in the Figure 1). It represents a unique structure of
airspace shared between manned aircraft (Risk_Aircraft_Neighbor node) and

278 M.A. Rossi et al.

autonomous aircraft (Risk_UAV node). We considered a single control system
(Control/Risk node), which is represented on the highest level of the tree [3].

The manned and autonomous (unmanned) aircrafts are represented in the two
branches of the tree. In each node there are some percentage values that establish the
probability of occurrence of the corresponding node, and the fault occurrence
probabilities propagate from the leafs to the root.

Figure 4 contains the details of the branch of the tree Risk_UAV. The faults can
affect the information processing time, the message sending time, the aircraft
performance and the response automation, and they can be injected at any level of the
network. Therefore, any faults occurred in a given level of the tree will be observed
directly by the control system (Control/Risk node) [3].

Fig. 4. Detail of the Bayesian Network for Risk_UAV

The nodes Time_Out and Processing represent, respectively, the probability of
exceeding the maximum delays in sending and receiving messages, and the
probability of having a processing problem. The probability to exceed the maximum
delay for preventing aircrafts collision is represented in the Delay node. The
Communication node represents the probability of having a stable or unstable
communication, while the Fault_Send node represents the probability that a
(Communication or Delay) fault is propagated to the upper nodes of the tree.

Basing on these probability values, the risk classification of a fault can be
computed to be low, medium or high (node Fault), which propagates up to the root to
determine the overall risk of aircraft collisions.

 A Federated Simulation Framework with ATN Fault Injection Module 279

The set of the data represents the probability values related to the collision risk
between aircrafts and the time limits for communication in ATN. The sets of values
used are determined by the ICAO ANNEXES 10 and11 [19].

5 Safety Evaluation

The fault injection module has been used to evaluate the possible occurrence of a
collision between manned and unmanned aircrafts.

We simulate this environment from the fault risk level, automation level of the
aircraft (not present in Figures 3 and 4), and their exposure risk to the collision (Risk
UAV node). The complete fault tree can be found in [3]. The tests were performed
with 1500 records, which represent the amount of the aircrafts in the environment.

 For the simulations we considered three levels of fault risks (node “Fault” of
Figure 4): low, medium and high. These levels are characterized by the hazard
intensity degree that the communication fault can cause to the aircraft using the ATN.

In addition, we consider the aircraft automation degree through the communication
architecture of embedded systems, which is intended to prevent collisions between
aircrafts. Their design considers the use of same technology employed in embedded
systems currently used in manned aircraft.

Figure 5 presents the simulation results obtained considering the occurrence of a fault
with low, medium and high risk level. Specifically, in Figure 5 we show the number of
aircrafts that have satisfactorily answered (Satisfactory Response plot) and the number
of aircrafts that have not satisfactorily answered (Non Satisfactory Response plot), thus
having a higher exposition to collision risks. The Satisfactory Response and Non
Satisfactory Response are related to the aircraft capacity in the use of communication
embedded systems to exchange messages with the authority control.

Fig. 5. Representation of the Fault Risk vs. Assurance Automation

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500

Low Risk Medium
Risk

High Risk

Satisfactory
Response

Non
Satisfactory
Response

280 M.A. Rossi et al.

Considering the Low Risk, 1414 aircraft had satisfactory response to a fault
communication and 86 aircraft had non satisfactory response (5,73% of the total
number of aircraft). Considering the Medium Risk, 1408 aircraft had satisfactory
response to a fault communication and 92 had not successful. With respect to the Low
Risk case, there was a significant increase of 6% in the probability of exposing the
aircraft to an accident.

Considering the High Risk, the results were satisfactory for 1386 aircraft and non
satisfactory for 114 aircraft (7,6% of the total number of aircraft). With respect to
the Low Risk case, there was an increase of aircraft that cannot answer satisfactorily
to faults injected of about 28%, which can be considered a relatively high increase
rate.

6 Conclusion

The embedded systems in UAVs are considered complex and with a complex
architecture. The tests in UAV systems need high resources, professional expertise
and high amount of working hours. Thus, the simulation represents an accessible way
to overcome such problems.

This work presented a framework for the integration of communications and
surveillance modules jointly with a specific module (ATN Fault Module) for fault
injection in ATN environment. The module uses simulation to assess the UAVs
communication dependability in non-controlled airspace. The presented results show
that the classification level of injected faults interferes significantly in the
communication with the aircraft, even if it has high automation level.

In particular the results demonstrate that, despite the high level of automation, in
some cases a faulty communication directly affects the safety level of UAV flights.
The results also represent a preliminary analysis of the real impact of communication
failures in UAVs, as well as indicate the feasibility of using the simulation
framework.

In future work, further analysis will be conducted to provide information, such
faults related to possible problems in communicating with specific embedded
systems, e.g., auto-pilot

We can infer that even with the high technology level used in the development of
embedded systems for UAVs, the communication faults can represent a high risk for
these systems, affecting safety assurance.

Acknowledgment. The authors acknowledge the support granted by CNPq and
FAPESP to the INCT-SEC (National Institute of Science and Technology – Critical
Embedded Systems – Brazil), processes 573963/2008-8 and 08/57870-9, and by
the Italian Ministry for Education, University, and Research (MIUR) in the
framework of the Project of National Research Interest (PRIN) "DOTS-LCCI:
Dependable Off-The-Shelf based middleware systems for Large-scale Complex
Critical Infrastructures”.

 A Federated Simulation Framework with ATN Fault Injection Module 281

References

1. Rossi, M.A., De Almeida Jr., J.R., Corrêa, M.: Sistemas de Apoio à Tomada de Decisão
Para Aplicações VANT em Rede de Telecomunicação Aeronáutica. In: IX SITRAER -
Simposio de Transporte Aéreo. SBTA, Manaus (2010)

2. Corrêa, M., Camargo Jr., J.B., Gimenes, R.A., De Almeida Jr., J.R.: Integration UAV in to
controlated air space using cooperative multiagent negotiation. In: V SITRAER - Simpósio
de Transporte Aéreo, pp. 315–324. EDUSP, Brasilia (2006)

3. Rossi, M.A., Lollini, P., Bondavalli, A., De Almeida Jr., J.R.: 2011 30th IEEE Symposium
on Reliable Distributed Systems Workshops, pp. 67–71 (2011)

4. Gao, S., Liu, K., Zhu, Y., Zhang, Y.: A Model and Mapping Algorithm of Explicit
Congestion Notification in Tunnel for ATN over IP Scheme. In: 14th Asia-Pacific
Conference on Communications, pp. 1–5. IEEE (2008)

5. Hung, B., Hong, Y.: Modeling and simulation of the VDL mode 3 subnetwork in the ATN
environment. In: 19th DASC, 19th Digital Avionics Systems Conference, pp. 7A7/1–
7A7/7. IEEE (2000)

6. Zhou, Y., Li, J., Lamont, L., Rabbath, C.: Modeling of Packet Dropout for UAV Wireless
Communications. In: International Conference on Computing, Networking and
Communications, pp. 677–682. IEEE (2012)

7. dos Santos Moreira, E., Vanni, R.M.P., Função, D.L., Marcondes, C.A.C.: A Context-
Aware Communication Link for Unmanned Aerial Vehicles. In: 2010 Sixth Advanced
International Conference on Telecommunications, pp. 497–502. IEEE (2010)

8. Feighery, P., Hanson, T., Lehman, T., Mondrus, A., Scott, D., Signore, T., et al.: The
Aeronautical Telecommunications Network (ATN) testbed. In: 15th DASC. AIAA/IEEE
Digital Avionics Systems Conference, pp. 117–122. IEEE (2002)

9. ICAO. Aeronautical Telecommunications Network (ATN) - Comprehensive ATN Manual,
CAMAL (1999)

10. ICAO. Aeronautical Information Services - Annex 15 (1997)
11. Crow, R.P.: Civil aviation’s next generation global CNS/ATM system. In: Position

Location and Navigation Symposium, pp. 66–73. IEEE (2000)
12. Smith, A., Baldwin, J.: Application of CNS/ATM technologies to airport management. In:

22nd Digital Avionics Systems Conference, pp. 4.A.1–4.1-8. IEEE (2003)
13. Jiakun, S., Hongxing, L., Shixianjun: Hardware-in-the-loop Simulation Framework Design

For a UAV Embedded Control System. In: Control Conference - CCC 2006, pp. 1890–
1894. IEEE (2006)

14. Gil, F., Aldecôa, V.M.: Pipe-SEC: Relatório geral dos módulos implementados (2010)
15. Hsueh, M.-C., Tsai, T.K., Iyer, R.K.: Fault injection techniques and tools. Computer 30(4),

75–82 (1997)
16. Gallo, M.A., Hancock, W.M.: Comunicação entre Computadores e Tecnologias de Rede.

Pioneira Thomson Learning, São Paulo (2003)
17. ICAO. Manual of Technical Provisions for the Aeronautical Telecommunications Network

(ATN) (1999)
18. de Oliveira Gil, F., Vismari, L.F., Camargo Jr., J.B.: Analysis of the CPDLC Real Time

Characteristics and the MODE S Data Link Capacity. In: SITRAER VII - Simpósio de
Transporte Aéreo, pp. 92–99. SBTA (2008)

19. Rossi, M.A., Lollini, P., De Almeida Jr., J.R., Bondavalli, A.: Reliability Evoluation of
UAV Communication in non-controlled Airspace. University of São Paulo and University
of Florence, Technical report. São Paulo (2012)

HSIENA: A Hybrid Publish/Subscribe System�

Fabio Petroni and Leonardo Querzoni

Department of Computer, Control, and Management Engineering Antonio Ruberti
Sapienza University of Rome – Rome, Italy

fabio.petroni.1986@gmail.com, querzoni@dis.uniroma1.it

Abstract. The SIENA publish/subscribe system represents a proto-
typical design for a distributed event notification service implementing
the content-based publish/subscribe communication paradigm. A clear
shortcoming of SIENA is represented by its static configuration that
must be managed and updated by human administrators every time
one of its internal processes (brokers) needs to be added or repaired
(e.g. due to a crash failure). This problem limits the applicability of
SIENA in large complex critical infrastructures where self-adaptation
and -configuration are crucial requirements. In this paper we propose
HSIENA, a hybrid architecture that complements SIENA by adding the
ability to self-reconfigure after broker additions and removals. The ar-
chitecture has a novel design that mixes the classic SIENA’s distributed
architecture with a highly available cloud-based storage service.

1 Introduction

The widespread adoption of the clients/server interaction paradigm has led in
the past to the development of distributed applications with a rigid structure,
constrained by the lack of flexibility of point-to-point and synchronous inter-
actions. The evolution of the Internet, pushed in the last years by the huge
growth of large-scale systems in the form of peer-to-peer and social applications,
is clearly marking the limits of this approach to communication, and raising
the demand for more flexible interactions schemes. The publish/subscribe in-
teraction paradigm [3] has been introduced in the past as an alternative to
the clients/server sibling, with the aim of providing a form of communication
where interacting parties are decoupled. This paradigm is today witnessing a
wide adoption thanks to its ability to support large scale applications [8,2,5,13]
and represents a preferred choice for communication in large complex critical
infrastructures (LCCI).

In a publish/subscribe interaction participants to the communication can act
both as producers (publishers) or consumers (subscribers) of information that
takes the form of events. Subscribers can express which events they want to
receive issuing subscriptions that express conditions on the content of events
(content-based subscription model) or just on a category they belong to (topic-
based subscription model). The paradigm states that once an event is published,

� This work has been partially funded by the DOTS-LCCI Italian project.

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 282–293, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

HSIENA: A Hybrid Publish/Subscribe System 283

for each subscription whose conditions are satisfied by the event (i.e., the event
matches the subscription), the corresponding subscriber must be notified. The
basic building block of systems implementing the publish/subscribe paradigm is
an event notification service (ENS) whose goal is to diffuse any published event
from the publisher to the set of matched subscribers. The complete decoupling
offered by this form of interaction makes it appealing for modern distributed
applications characterized by very large scale and variable loads.

The SIENA publish/subscribe system [6,7] is widely recognized as a repre-
sentative example of a distributed ENS adopting the content-based subscription
model. However, its adoption in LCCI scenarios has been hindered by the lack of
adequate support to system reconfiguration. In particular the addition of a new
broker to the ENS infrastructure, due for example to a load surge that cannot
be adequately managed by the existing brokers, requires a manual intervention
of the administrators that would bring the system to a full halt, with a strong
impact on service availability and continuity. Similarly, node failures are not
tolerated by the current SIENA design, and their correct management requires
again manual intervention by system administrators. Both these characteris-
tics are fundamental in LCCIs where unexpected load surges or failures must be
quickly tackled with, thus raising the demand for communication infrastructures
able to self-adapt and configure.

In this paper we propose HSIENA, a hybrid architecture that complements
SIENA by adding the ability to self-reconfigure after broker additions and re-
movals. The architecture has a novel design that mixes the classic SIENA’s
distributed architecture based on managed brokers with a highly available cloud-
based storage service (hence the hybrid adjective). Brokers use this storage ser-
vice as a shared memory space they can rely-on to adapt at runtime the ENS
application-level network without service disruption. This shared memory space
will contain all the information needed to build the internal state of each broker
(with the exclusion of content-based addresses) and will be updated every time
a new broker joins the system or as soon as a broker failure is detected. Due to
costs associated with accesses (read and write) to the cloud-based storage service
(both in terms of access latency and economical costs), HSIENA is designed to
limit its usage only to broker additions and removals, that should be considered
as “rare” events.

The rest of this paper is organized as follows: Section 2 provides fundamental
background knowledge on the publish/subscribe paradigm, on the SIENA system
and on the current state of the art related to this work; Section 3 introduces
the HSIENA system describing its architecture, the data structures it uses, the
fundamental functionalities it provides and how it manages concurrency and
event diffusion. Finally, Section 4 concludes the paper.

2 Background

The publish/subscribe interaction paradigm provides users of a system with
an alternative communication model with respect to the classical client/server

284 F. Petroni and L. Querzoni

model. In a publish/subscribe system users interact playing one of two roles:
publishers that produce information and inject (publish) it into the system in the
form of events, and subscribers that consume events received from the system.
A third component, the event notification service, has the role of receiving the
events injected by the publishers and notify all the subscribers that can be
interested in those events. The ENS plays in the system a role of a mediator
between publishers and subscribers, decoupling the interactions among them in
time, space and flow.

Subscribers can define the set of events they are interested in by issuing sub-
scriptions. Each subscription works as a filter on the set of events injected in the
system: the subscriber will be notified only about events that satisfy (match)
the conditions expressed by its subscriptions. Subscriptions can be expressed
in various ways depending on the subscription model adopted by the system.
Currently, two models have been widely accepted by the community working on
publish/subscribe: the topic-based and the content-based models.

The content-based model provides users with an expressive subscription syn-
tax. This model requires the definition of a global event space represented by
a collection of attributes each characterized by a name and a type (integer,
floating-point, strings, etc.). Given a specific event space, an event is a collection
of values, one for each attribute. The greater flexibility of this model comes from
the possibility of defining each subscription as a complex expression constituted
by constraints expressed on the attributes defined by the event space. A sub-
scriber will by notified by the event notification service about an event only if it
satisfies the expression contained in one of the node’s subscriptions. Examples of
systems that adopt the content-based subscription model are SIENA [6,7], JEDI
[9] and Gryphon [14].

2.1 SIENA Pub/Sub System

The SIENA publish/subscribe system [7] is based on a distributed architecture
where the ENS is made up of several machines, named event brokers. Brokers
act as access points for clients (publishers and subscribers) that want to access
the system and, furthermore, they are in charge of routing events among them
in order to correctly notify published events to the intended recipients. SIENA’s
ENS is designed as a layered architecture:

– at the bottom layer stands an application-level overlay network represented
by a generic graph interconnecting all the brokers. SIENA does not define
how this overlay networks should be built and maintained, but only assumes
that it is always connected;

– just above it a broadcast layer defines multiple spanning-trees (one for each
broker as a possible source of events) that are used to diffuse published events
toward all brokers where target subscribers are attached; spanning trees are
defined with broadcast function B : N × I → I∗ that is supposed to be
statically configured by a system administrator;

HSIENA: A Hybrid Publish/Subscribe System 285

– at the top a content based layer is used to prune branches of spanning-trees
that do not lead to potential target subscribers in order to reduce the amount
of network traffic generated during event diffusion. Pruning is done on a per-
event basis using information collected from previously issued subscriptions.
Such information is maintained by each broker in a content-based forwarding
table whose content is updated on the basis of two complementary proto-
cols called receiver advertisements (RA) and sender request/update replies
(SR/UR).

Note that the two lowermost layers defined in SIENA are static, i.e. the authors
assume that they are managed by system administrators and do not provide
any algorithms for their maintenance. However, the correctness of event routing
mechanism working on top of the layered architecture is based on the assump-
tion that the spanning-trees defined in the broadcast function B are always
connected.

2.2 Related Work

A few works in the literature has tackled the problem of making the SIENA
pub/sub system more autonomous and adaptable by allowing automatic re-
configurations and fault tolerance at the overlay and broadcast layers. Among
these we can cite XSIENA [10] that adopts a strategy based on soft-state and
lease timeouts to maintain up-to-date routing information within the system
and thus tolerate possible reconfigurations. The complexities of readapting the
application-level network topology after failures have been explored in [12] where
the authors also proposed an enhancement to the “strawman approach”. Finally,
self-organization and reconfiguration of the application-network has also been
exploited in [4] with a different goal, i.e. performance optimization.

The idea of using a cloud-based services for building more reliable pub-
lish/subscribe system has only been recently applied Hedwig [2] that leverages
the Zookeeper service for configuration storage (e.g. locations of ledgers, sub-
scriber information), topic leader election and system membership. However, it
should be noted that Hedwig has been designed as a system completely inte-
grated within the cloud provider architecture, while our solution uses a cloud
based storage service as a completely external service and can thus be deployed
outside of the cloud provider architectural boundaries.

From this point of view our approach closely follows what has been proposed
in [11]. Also in that paper a hybrid architecture is proposed, but, differently from
HSIENA, a cloud-based storage service is only used to maintain simple loosely
structured information.

3 HSIENA Architecture and Algorithms

The following section introduces HSIENA a hybrid architecture that comple-
ments SIENA by adding the ability to self-reconfigure to manage broker ad-
ditions and removals. We will first give an overview of HSIENA architecture

286 F. Petroni and L. Querzoni

together with the principles we adopted in its design; then we will detail the
data structures it uses and the algorithms that support broker additions and
removals.

3.1 Overview and Design Principles

The main issues that must be faced to add self-reconfiguration capabilities are:
(i) reconfigure the overlay network, (ii) recalculate the broadcast function B, (iii)
diffuse information about the new B in the ENS and (iv) update the content
based forwarding tables.

Event Notification Service
Cloud Service

Storage

Broker Publisher/Subscriber

Fig. 1. HSIENA hybrid architecture

These operations must be conducted by managing issues related to concur-
rency among brokers and trying to reduce the possible loss of events published in
the system while reconfigurations are ongoing. To fulfill its goals, the HSIENA
system employs an hybrid architecture where the classical SIENA distributed
ENS is paired with a cloud-based storage service (see Figure 1). The storage ser-
vice is used by brokers as a shared memory where some of the global system state
can be maintained, to be retrieved and updated every time a new broker needs
to join the system or an existing one leaves or fails. The usage of a cloud-based
storage service provides guarantees on availability and reliability of stored data,
does not impose a limit on the system scalability and provides basic concurrency
control features. However, accessing such service has a non negligible impact on
performance (due to latencies induced by remote read/write operations) and
overall cost (the cloud service provider applies specific billing policies for each
operation).

Brokers entering the system first creates links toward other brokers. We here
assume that these links are initialized as the result of a call to an external
bootstrap service whose details are out of the scope of this paper. Then, the
broker reads from the storage service the current state of the system and uses a
variation of the classic Floyd-Warshall algorithm to build its broadcast spanning-
tree and update the global B function. When the system state is updated, the
broker starts a procedure to inform other brokers in the system that the global
state has been updated and that they should access the storage service to update

HSIENA: A Hybrid Publish/Subscribe System 287

their local data structure. During this last phase content-based forwarding tables
are updated in accordance with the new B function. Broker removals follow a
similar approach.

Transitions from a system state to the next one, due to a broker addition
or removal, are marked by an epoch number. States relative to old epochs are
maintained in the storage service until all events published during that epoch
has been correctly notified to the intended recipients.

3.2 Data Structures

The cloud-based storage service is used to maintain three main data structures.
The first (and most important) is a list of couples of matrices. Each couple is
associated to a specific epoch i and is constituted by Di and Predi matrices. The
size of both matrices is |N i|×|N i| integer values, where N i is the set of brokers in
the system for epoch i and their content is calculated using the Floyd-Warshall
algorithm (further details are given in Section 3.3). The Di matrix contains in
position d[x, y] the length of the path connecting broker bx to by in the spanning
tree routed on bx (the matrix is symmetrical as the Bi function must respect
the All-pairs path symmetry condition as is defined in [7]). The Predi matrix
contains in position p[x, y] the id of the broker that precedes by in the path that
connects bx to by. The Predi matrix describes the broadcast functions of every
node x ∈ N i. In fact, let V i

x be the set of neighbors of x (its interfaces set) at
epoch i:

v ∈ Bi
x(y, ·) ↔ p[y, v] = x ∀v ∈ V i

x ∀x, y ∈ N i (1)

The second data structure is a single integer variable whose value represents the
current epoch.

Finally a list of ongoing operations Ops is used to manage concurrent access
from various brokers to the previous data structures. This list is managed as a
queue and brokers willing to execute some operations on the global state (i.e.
write updated Di and Predi tables and/or update the current epoch) must first
enqueue here their operations and act only after previous modification have been
concluded and the corresponding entries removed from the list (see Section 3.5
for further details).

Such data structures can be easily stored in any cloud-based storage service. In
the following, we will consider a concrete example where Amazon SimpleDB [1]
is used for this purpose. More specifically the HSIENA system access its global
state stored on SimpleDB using the CreateDomain, DeleteDomain, BatchPutAt-
tributes, ConditionalPut and Select commands offered by the SimpleDB API.

Brokers locally maintain a copy of the B function and the content based
forwarding table for several epochs i. A garbage collection mechanism can be
employed to remove old data structures both from brokers and from the storage
service. Data structures relative to epoch i can be removed as soon as all the
brokers made their transition to some epoch j > i.

288 F. Petroni and L. Querzoni

3.3 Broadcast Layer Reconfiguration Protocol

When a broker k must be added or removed from the system the first step to be
performed is a reconfiguration of the broadcast layer whose goal is to update the
B function on all brokers. This reconfiguration is performed by HSIENA using
a protocol whose internal functioning is tailored to the specific operation that
is going to be performed: insertion or removal. While node insertion are always
voluntary, a broker can leave the system either voluntarily (i.e. a controlled shut-
down or reboot) or due to a crash failure. In the latter case we assume that the
reconfiguration protocol is executed on behalf of the crashed broker by one of
its former neighbors. Note that, for the sake of clarity, here we will omit details
related to concurrency management. Such details will be added in section 3.5.

Broker k executes the following protocol:

1. reads the current epoch number i from the storage service;
2. reads Di and Predi;
3. executes the specific insertion or removal algorithm;
4. stores Di+1 and Predi+1 on the storage service and updates the current

epoch to i+ 1;
5. floods the system with an Epoch Update (EU) message containing (i) its

id, (ii) a bit representing the fact that the update has been caused by the
insertion or the removal of a broker and (iii) the current epoch number i+1.
The message flooding is realized directly on the overlay network connecting
all brokers and we assume that k is the first broker to receive the message.

When a broker y receives an EU message related to the insertion or removal of
broker k that moved the system to epoch i+ 1 it follows these steps:

1. discards it if the same message was previously received and halt the protocol;
2. forwards the message on the overlay network to continue the flooding oper-

ation;
3. for each s ∈ N i+1, B(s, ·) = ∅;
4. performs a select operation on the storage over Di+1 in order to know which

rows have the element at column y equal to 1. This set represents the new
set of neighbors V i+1

y . Interfaces are added or removed accordingly;

5. for each x ∈ V i+1
y performs a select operation on the storage over Predi+1

in order to know which rows have the element at column x equal to y. Let
R be the set of ids (rows) in which this occur. It sets ∀s ∈ R,Bi+1(s, ·) =
Bi+1(s, ·) ∪ {Ix}

If the operation is an insertion, in order to avoid event loss during reconfigura-
tion, the node reads the row y from Predi+1. If in this line the id k is present,
then it changes the predicate associated with interface Iout to ALL (i.e. the
predicate is matched by any content based address), where Iout is the interface
through which y reaches k in the spanning tree routed at y. Note that executing

HSIENA: A Hybrid Publish/Subscribe System 289

the same operation in case of a broker removal cannot prevent event loss, and
can thus be skipped.

The insertion and removal algorithms (step 3 of the reconfiguration protocol)
both work locally on the basis of Di and Predi matrices in order to produce
Di+1 and Predi+1.

Broker insertion algorithm

1. Broker k builds its set of neighbors V i+1
k resorting to an external bootstrap

service1;
2. adds a new line and a new column, both labelled with its id k, to Di and

Predi obtaining locally the matrices Di+1 and Predi+1;
3. fills line k of matrix Di+1 using the following rule:

∀y ∈ N i, y �= k, d[k, y] = min{d[x, y] : x ∈ V i+1
k }+ 1 (2)

The addition of a single unit is due to the fact that we consider the weights
of links connecting brokers all equal to 1. Column k is filled with the same
values as D is symmetric;

4. every time an entry d[k, y] is updated in Di+1 it checks which is the neighbor
x (i.e. x ∈ V i+1

k) that minimizes d[x, y] and then updates Predi+1 using the
following rule:

∀y ∈ N, p[k, y] = p[x, y]

p[y, k] = x

5. loops on every x, y ∈ N i+1 with x, y �= k: if d[x, y] > d[x, k] + d[k, y] then it
sets d[x, y] = d[x, k] + d[k, y] and p[x, y] = p[k, y].

Broker removal algorithm
The removal algorithm is constituted by a recursive routine that takes as input
a set X of row ids, a set Y of column ids and a set V of visited broker ids. The
first call is executed using X = {1, · · · , k−1, k+1, · · · , n}, Y = V i

k and V = {k}.
1. for each y ∈ Y

(a) defines X ′ = {x ∈ X : p[x, y] ∈ V };
(b) defines Y ′ = V i

y /V ;
(c) if Y ′ = ∅∧X ′ �= ∅ the overlay network is disconnected and the procedure

halts as the manual intervention of a system administrator is needed2;

1 This bootstrap service, although not precisely defined in this paper, could be easily
designed using the cloud based storage service where a list of ids and IP addresses
of brokers currently in the system can be maintained.

2 Note that spanning trees defining B are built by the insertion procedures using
minimum paths among any pair of brokers in the system. Therefore, if we consider
the union of all the spanning trees, we obtain the graph representing the overlay
network connecting all brokers. As a consequence, the crash of a broker disconnects
the system if and only if this broker did not appear in any spanning tree as a leaf.
This property gives us a good methodology to understand if a disconnection has
occurred just knowing the id of the failed broker and the Pred matrix.

290 F. Petroni and L. Querzoni

(d) if X ′ �= ∅ executes a recursive call using X ′, Y ′ and V ∪ {y} as input
parameters;

(e) for each x ∈ X ′:
– sets d[x, y] = min(d[x, z], z ∈ Y ′) + 1 in Di+1;
– every time an entry d[x, y] is updated it checks which is the neighbor

z (i.e. z ∈ Y ′) that minimizes d[x, z] and then updates Predi+1 with
p[x, y] = z;

2. returns from the recursive call.

3.4 Content Based Layer Reconfiguration Protocol

The insertion or removal of a broker can easily disrupts the correctness of infor-
mation stored on several content based forwarding tables. Therefore, after the
conclusion of the broadcast layer reconfiguration protocol, broker k must take
care of starting a new phase where content based forwarding tables, whose infor-
mation could have become stale, are updated accordingly with the new system
configuration.

If the phase is started after an insertion procedure, k executes the following
protocol:

1. for each interface Ia it builds an ad-Hoc Sender Request (HSR) message that,
beside all the information included in a standard Sender Request message,
includes a set of brokers Sa such that ∀s ∈ Sa, B

i+1
k (s, ·) ⊇ Ia, and forwards

it through Ia;
2. waits for a corresponding ad-Hoc Update Reply (HUR) message from the

same interface Ia and uses its content to update the predicate associated to
Ia in the content based forwarding table.

HSR messages are treated by a brokers y receiving it almost like a normal Sender
Request messages. The only exception being that for any id s ∈ Sa included in
the HSR y checks if Bi+1

y (s, ·) = ∅. If the condition is satisfied it removes s from
Sa and locally stores a triple < HSRnumber, s, Py > (where Py is y’s predicate).

Also HUR messages are treated similarly to standard update replies. When
a broker y receives an HUR message for each triple < HSRnumber, s, Py >
previously stored it adds to the body an Extended Update Reply EUR message
containing a tuple < s, Py, ∅ >. For each EUR message < s, Px, ∅ > already
contained in the HUR it adds to the predicate its own predicate Py (i.e. the EUR
message become < s, Px ∪ Py, ∅ >). Finally, multiple EUR messages targeted to
the same broker s are collapsed in a single EUR message containing the union
of the respective predicates.

When k receives the expected HUR messages, it knows each of them will
contain as many EUR messages as the number of broker ids included within
S was. Also in this case multiple EUR messages targeted to the same broker
s are collapsed in a single EUR message containing the union of the respective
predicates. For each EUR message< s, P, ∅ >, k calculates the route the message
will follow on the overlay network in order to reach s. This route is obtained by

HSIENA: A Hybrid Publish/Subscribe System 291

looking at paths defined within Predi+1 and is then included in the EURmessage
as a list of brokers, i.e. < s, P, {k, · · · , s} >. The message is then forwarded by
brokers in the ENS simply following the path included in it. When a broker y
receives an EUR message targeted to it, it updates the predicate associated in its
content based forwarding table to the interface the message was received from
by performing an union of the existing predicate with the one contained in the
message.

In the case of a broker removal procedure HSIENA simply requires brokers
receiving an EU message to reissue their predicate through a standard receiver
advertisement procedure.

Note that after both these procedures brokers in the overlay have content
based forwarding tables containing predicates that are correct (i.e. events are
notified to all the intended recipients) but not exact (i.e. some events could be
routed on some edges of the overlay without reaching any matched subscription).
This behavior is consistent with the inflation phenomenon that already affects
SIENA and can thus be mitigated using the standard SIENA mechanisms.

3.5 Concurrency Management

Broker insertions and removals can happen concurrently in HSIENA as their
actions are not coordinated by a central administration. Consequently, multiple
brokers can concurrently execute the previous procedures, while the coherence
of information stored both on the brokers and in the storage service must be
preserved. To this aim, a concurrency management strategy is needed such that
concurrent operations will always leave at least the information stored on the
storage service in a coherent state.

To reach this goal we assume that the storage service provides a test-and-set
primitive that can be used to write data without ignoring previous updates. In
SimpleDB this primitive is called ConditionalPut.

The list of ongoing operations Ops is the core of our concurrency management
solution. Each element in the list is a tuple < i, [INS/REM], y, V > indicating
the broker y is performing a [INS/REM] operation that will bring the system
to epoch i. V is a set of broker ids used only for INS operations. The list Ops
is managed by brokers as a queue, so insertion operations only happens at the
tail. When a broker y starts an insertion (removal respectively) operation:

1. it reads Ops from the storage service;
2. reads the last epoch number i (the epoch number of the last element in the

queue or the current epoch number, if the queue is empty) and the current
epoch number e;

3. adds an item < i + 1, INS, y, V i+1
y > (< i + 1, REM, y, ∅ > resp.) in the

queue;
4. tries a test-and-set operation to store the new version of the list on the

cloud; if the operation fails (i.e. some other broker is concurrently executing
the same operation), it re-executes the procedure from point 1;

292 F. Petroni and L. Querzoni

5. executes the insertion or removal procedures as described in Section 3.3 for
every element in Ops with the exception of those for which the epoch number
is less or equal to e (these operations have been already concluded);

6. reads again the current epoch number e′ from the storage service; if e′ > i+1
it skips the epoch update procedure and proceeds to the last step;

7. tries a test-and-set operation in order to update current epoch number to
i+ 1, if it fails, it re-executes from the previous point;

8. deletes its entry from Ops and tries to write it on the storage service, using
again the test-and-set procedure.

Such procedure guarantees that, in the worst case, the same insertion/removal
operations will be executed multiple times by different nodes. However, these
operations, thanks to their deterministic evolution, will always bring the system
in the same final state.

3.6 Event Routing

Event routing in HSIENA is performed using the same mechanism employed in
SIENA with the only exception that messages containing events must include
the epoch in which each event was published. In principle, an event published
in epoch i should be diffused on one of the spanning trees defined in Bi. How-
ever, epoch transitions can impose updates on B and this clearly impacts event
diffusion. Suppose an event e is published in epoch i while the system is tran-
sitioning to epoch i + 1 (generally an epoch i′ > i). This case can arise due to
the fact the publish operations and epoch changes happen concurrently, and the
broker where the event is published possibly did not receive the EU message
before the event publication time. To this respect we must distinguish two cases:
if the epoch update has been caused by the insertion of a new broker the event
diffusion could continue using the old Bi function (with the obvious drawback
that the newly inserted broker will not receive the event) as none of the broker
present in the spanning tree used for routing it within the ENS disappeared.
Contrarily, if the epoch update has been caused by the removal of a broker there
is a possibility that the spanning tree has been disconnected by such removal
and that the event diffusion will not be completed correctly.

To overcome these issues we propose a straightforward solution that sacrifices
some efficiency in favor of better robustness: every time a broker receives an
event published in an epoch i older than the epoch i′ it knows, it stops the
diffusion in i and republish the event in epoch i′. In this way the event will be
diffused using updated spanning trees that will take into account possible broker
removals. The dual case where a broker receives an event published in an epoch
i newer than the epoch i′′ it knows, is easily solved by forcing an epoch update
on the broker.

The drawback of this approach is that it can cause brokers to receive the same
event multiple times (in different epochs); this issue can be mitigated by locally
keeping trace of received events in order to avoid local notifications, while waste
of network resources cannot be avoided.

HSIENA: A Hybrid Publish/Subscribe System 293

4 Conclusions

This paper introduced HSIENA, a hybrid architecture that complements the
SIENA publish/subscribe system by adding the ability to self-reconfigure after
broker additions and removals. HSIENA has a novel design that mixes the clas-
sic SIENA’s distributed architecture based on managed brokers with a highly
available cloud-based storage service that brokers use as a shared memory space
they can rely-on to adapt at runtime the ENS application-level network without
service disruption. Currently we are implementing a prototype of HSIENA to
test its behaviour under various realistic loads. Our purpose is to asses both its
ability to support insertion and deletions while providing service continuity (i.e.
continuing to notify events also during reconfiguration phases) and to study the
tradeoff existing between the level of service HSIENA can guarantee and the
cost incurred for maintaining state information stored on a cloud service.

References

1. Amazon SimpleDB, http://aws.amazon.com/simpledb/
2. Hedwig, https://cwiki.apache.org/confluence/display/BOOKKEEPER/HedWig
3. Baldoni, R., Querzoni, L., Tarkoma, S., Virgillito, A.: Distributed Event Routing

in Publish/Subscribe Communication Systems. Springer (2009)
4. Baldoni, R., Beraldi, R., Querzoni, L., Virgillito, A.: Efficient publish/subscribe

through a self-organizing broker overlay and its application to siena. Comput.
J. 50(4), 444–459 (2007)

5. Bharambe, A.R., Rao, S., Seshan, S.: Mercury: a scalable publish-subscribe system
for internet games. In: Proceedings of the 1st Workshop on Network and System
Support for Games, pp. 3–9 (2002)

6. Carzaniga, A., Rosenblum, D., Wolf, A.L.: Design and evaluation of a wide-area no-
tification service. ACM Transactions on Computer Systems 3(19), 332–383 (2001)

7. Carzaniga, A., Rutherford, M.J., Wolf, A.L.: A routing scheme for content-based
networking. In: INFOCOM (2004)

8. Cooper, B., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P., Ja-
cobsen, H., Puz, N., Weaver, D., Yerneni, R.: Pnuts: Yahoo!’s hosted data serving
platform. Proceedings of the VLDB Endowment 1(2), 1277–1288 (2008)

9. Cugola, G., Nitto, E.D., Fuggetta, A.: The jedi event-based infrastructure and its
application to the development of the opss wfms. IEEE Transactions on Software
Engineering 27(9), 827–850 (2001)

10. Jerzak, Z., Fetzer, C.: Soft state in publish/subscribe. In: Gokhale, A.S., Schmidt,
D.C. (eds.) DEBS. ACM (2009)

11. Montresor, A., Abeni, L.: Cloudy weather for p2p, with a chance of gossip. In:
Asami, T., Higashino, T. (eds.) Peer-to-Peer Computing, pp. 250–259. IEEE (2011)

12. Picco, G.P., Cugola, G., Murphy, A.L.: Efficient content-based event dispatching in
the presence of topological reconfiguration. In: ICDCS, pp. 234–243. IEEE Com-
puter Society (2003)

13. Pietzuch, P., Shand, B., Bacon, J.: Composite event detection as a generic middle-
ware extension. IEEE Network 18(1), 44–55 (2004)

14. The Gryphon Team: Achieving Scalability and Throughput in a Publish/Subscribe
System. Tech. rep., IBM Research Report RC23103 (2004)

http://aws.amazon.com/simpledb/
https://cwiki.apache.org/confluence/display/BOOKKEEPER/HedWig

WSDM-Enabled Autonomic Augmentation

of Classical Multi-version Software
Fault-Tolerance Mechanisms

Roeland Dillen, Jonas Buys, Vincenzo De Florio, and Chris Blondia

University of Antwerp
Department of Mathematics and Computer Science
Performance Analysis of Telecommunication Systems

1 Middelheimlaan, B-2020 Antwerp, Belgium
Interdisciplinary Institute for Broadband Technology

8 Gaston Crommenlaan, B-9050 Ghent-Ledeberg, Belgium

Abstract. Web services are increasingly deployed in many enterprise
applications. For this type of applications, dependability issues are usu-
ally resolved by introducing some form of redundancy in the system.
Whereas hardware redundancy schemes have traditionally been defined
through static configurations based on worst-case analysis, the enhanced
flexibility and interoperability of web services allows for dynamic (self-)
management of redundancy at the application layer. Combining this ad-
vantage with service-oriented platforms such as OSGi facilitates the repli-
cation of software components and their integration within redundancy
schemes. The application of such redundancy schemes inevitably comes
at a price though — primarily due to the allocation of additional sys-
tem resources. It is often unknown to the service provider how much
redundancy and management complexity is required. Furthermore, the
degree of redundancy and the dependability strategy to be employed
may be restricted by the budget and requirements of the client, both
of which may vary. In this paper, we propose a solution to allow the
client to express a trade-off between its dependability requirements and
its available budget at request level. A dedicated service provider will
then attempt to honour these objectives — failing to do so would ob-
viously result in failure from the client point of view. Furthermore, we
show how classical multi-version software fault-tolerance techniques can
be augmented with advanced redundancy management leveraging the
Web Services Distributed Management standard.

1 Introduction

When constructing complex software systems, dependability issues will even-
tually unfold. In [1], Laprie defines dependability as the combination of relia-
bility, availability, safety, security and maintainability. Amongst the available
techniques to achieve dependability, and improve the reliability and availabil-
ity in particular, a great deal of attention has been paid in the literature to

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 294–306, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

WSDM-Enabled Autonomic Augmentation 295

fault-tolerant redundancy schemes leveraging design diversity. Two prevalent
examples of multi-version software fault-tolerance strategies are recovery blocks
and n-version programming [2,3]. Recovery blocks subject the response of a call
to a replica to an acceptance test, trying each replica in sequence until the out-
put passes the acceptance test or until there are no more replicas left to try.
In an n-version programming redundancy scheme, however, replicas are queried
in parallel and a decision algorithm is responsible for adjudicating the correct
result. Many different types of decision algorithms have been developed, which
are usually implemented as generic voters [4]. One example of such voting ap-
proaches is plurality voting: for each invocation of the scheme, the replicas will
be partitioned based on the equivalence of their results, and the result associated
to the largest cluster will be accepted as the correct result.

These classical fault-tolerant strategies have traditionally been applied with
a predetermined degree of redundancy on an immutable set of replicas. As such,
they are context-agnostic, i.e. they do not take account of changes in the opera-
tional status of any of the components contained within the redundancy scheme.
It was shown in [5] that this lack in flexibility may jeopardise the effectiveness of
the fault-tolerant unit from a dependability, timeliness as well as a resource ex-
penditure perspective. All dependability originating from the use of redundancy
inevitably comes at a price, which is primarily due to the additional expenditure
ensuing from the allocation of additional system resources. While a fixed amount
of redundancy is applicable to hardware systems, applying fault-tolerance strate-
gies at the application layer allows to incorporate advanced redundancy man-
agement capable of choosing the amount of redundancy autonomously.

In this paper, we formulate an approach to leverage the flexibility of service-
oriented architectures to show how classical multi-version software fault-tolerance
techniques can be augmented with advanced redundancy management. Firstly,
we propose a solution to allow the client to express a trade-off between its de-
pendability requirements and its available budget at request level. Accordingly,
the system will autonomously select the appropriate amount of redundancy, hon-
ouring the budgetary constraints stated. Secondly, the system is responsible for
maintaining a pool of instances — replicas — of a specific web service and is
capable of autonomously deploying additional replicas (if needed), or removing
or rejuvinating existing, poorly performing replicas.

The remainder of this paper is structured as follows: Section 2 provides an
overview of the technologies used for our service-oriented solution. The design
and architecture of the solution is then described in section 3. Next, the perfor-
mance of the system will be analysed in section 4, after which we conclude this
paper by a discussion and future work.

2 Key Technologies and Standards

In order to achieve its design goals, our solution relies on several key technolo-
gies. The first employed technology is web services. A web service is defined by
the W3C as “a software system designed to support interoperable machine-to-
machine interaction over a network” [6, Sect. 1.4]. XML-based web services in

296 R. Dillen et al.

particular offer a high degree of interoperability, which mainly stems from the
use of the Simple Object Access Protocol (SOAP) protocol to envelop messages
to be exchanged, and from the numerous standardisation initiatives.

One such standard is the Web Services Distributed Management [7] (WSDM)
family of specifications, which defines how networked resources can be managed
by exposing their capabilities and properties by means of a web service interface.
The constituent Management of Web Services (MoWS) specification describes
how web services themselves can be considered as resources, and require man-
ageability features as well [7, WSDM-MOWS]. More specifically, it defines a
number of metrics to expose information regarding the operational status of a
web service, which are of particular intrest within the scope of this paper.

Finally, the Java-based Open Services Gateway initiative (OSGi) framework
allows bundled applications and services to be remotely and dynamically de-
ployed, without necessitating a reboot of the system. This characteristic will be
exploited to automatically deploy new instances of a specific web services (i.e.
replicas) should the available amount of system resources prove to be insufficient.

3 Basic Principles and Components

In this section, we provide an overview of the architecture of our service-oriented
solution and elaborate on its design aiming to improve the effectiveness of tra-
ditional recovery strategies from the following three angles.

Firstly, our solution enables the dynamic and autonomic management of the
degree of redundancy of the system. The rationale for this objective is that a
predetermined degree of redundancy has traditionally been hardwired within
classical software fault-tolerance strategies. Changes in the operational status
of the system (i.e. its context) may result in the over- or undershooting of the
required degree of redundancy needed to sustain a certain level of dependabil-
ity [8,5]. It is also likely that the optimal degree of redundancy changes in time.

Secondly, the reliability of the fault-tolerant composite is largely dependent
on the quality of the constituent replicas [9]. Our architecture therefore includes
a monitor component, which was designed to observe changes in the operational
status of the available replicas. As such, replicas that consistently perform poorly
may be removed and replaced if necessary, which may further improve the reli-
ability of the composite.

Thirdly, for individual requests issued on the fault-tolerant composite, the
system will intelligently determine an appropriate degree and selection of repli-
cas honouring the dependability requirements expressed by the client, i.c. the
redundancy strategy to be used and timing as well as budgetary constraints. The
anticipated cost of invoking a redundancy scheme is primarily determined by the
resource allocation expenditure model and the operational status of the available
system resources maintained by the service provider though. We have therefore
chosen to implement the service provider as a WSDM-enabled resource, exposing
the expected cost for the various redundancy strategies it supports by means of
resource properties [10, WSRF-RP]. This allows the client to judiciously select
a service provider capable of delivering the requested service level.

WSDM-Enabled Autonomic Augmentation 297

An overview of the system architecture is shown in Fig. 1. The architecture
includes four dedicated components: a replicator, a dispatcher, a monitor and a
context data repository (CDR), each of which have been implemented asWSDM-
enabled web services. Any web service that will serve as version to be replicated
is required to expose a WSDM manageability interface.

In line with our second objective described hereabove, the replicator compo-
nent is responsible for maintaining a given amount of instances (replicas, that is)
of a specific web service (version). Deploying multiple instances of a particular
software component in a distributed system has proved successful in lowering
the risk of a complete system failure as the result of hardware failures [5]. It is
assumed that an increased degree of redundancy results in an increase of the
dependability, provided that badly performing replicas are removed. In order
to support the dynamic replication of a web service, the replicator will man-
age of a number of agents. Such utility application web services are deployed
on different network hosts and will periodically broadcast a heartbeat to the
replicator. When the replicator issues a command to replicate a web service,
one or more agents will be instructed to locally deploy a new instance of the
service. The replicator exposes a manageability interface for the manipulation of
replicas: new instances can be created, the amount of replicas for a given version
can be adjusted, and individual replicas can be disabled. Note how the replicator
maintains a registry of the system resources, federating different service groups,
each exposing the deployed instances of a specific web service [10, WSRF-SG].
This design permits WSDM advertisement messages to be broadcast upon ser-
vice creation or destruction, such that the monitor and the CDR components
can acquire the relevant context information.

The monitor component serves the purpose of monitoring the operational
status of the replicas in the system. It was implemented to automatically enrol
for participation in a publish-and-subscribe model, so as to receive notifica-
tions issued by the WSDM framework on behalf of a replica whenever the value
of some MoWS metric changes [11,7]. Notification messages reporting on the
change of the value of these metrics need to comply to the format as defined
in [10, WSRF-RP]. For instance, a replica that returns faulty responses all too
frequently, as can be deduced from the value of the mows:NumberOfFailedRequests

Fig. 1. Overview of the overall system architecture

298 R. Dillen et al.

metric, can be eliminated from the system and replaced by another. In this ca-
pacity, the monitor will use the replicator’s manageability interface.

Client transparency is attained by means of the dispatcher component that
exposes the redundancy scheme as a single web service, shielding the intrica-
cies of the redundancy management. The dispatcher exposes a manageability
capability to deploy an OSGi bundle in the system that creates replicas as well
as the composite service. Moreover, it can be fitted with support for different
fault-tolerance strategies. The dispatcher will select an appropriate degree and
selection of resources and integrate them within an appropriate fault-tolerant
redundancy scheme, attempting to honour the constraints and preferences ex-
pressed by the client. For instance, the client could specify that the dispatcher
should use a recovery block strategy, selecting an adequate selection of replicas
that does not exceed the budget, or that is guaranteed to return a result within
a given time span. We will explain this approach in further detail in Sect. 3.1.

The CDR can be set up acting as a receiver for third party metrics of par-
ticular interest, each of which are identified by the QName of the corresponding
resource property exposed through the WSDM manageability interface. By de-
fault, it will attempt to issue a subscription request so as to enrol in a publish-
and-subscribe scheme and receive notifications whenever the value of the relevant
metrics change [11,7]. Again, the payload of these messages is formatted as de-
fined in [10, WSRF-RP]. The system will attempt to establish such subscriptions
for all replicas registered within the system, driven by the WSDM advertisement
messages issued by the replication mechanism.

3.1 Budget Application Strategy (BAS)

We will now elaborate on the redundancy management provided by the dis-
patcher and how it was designed to determine an adequate selection of replicas
matching the requirements stated by the client. An overview of the overall pro-
cess can be found in Fig. 2.

The cost resulting from the invocation of a redundancy scheme is modelled by
two components: the cost to transfer the request message from the dispatcher to
the selected replicas and have the response returned accordingly, and the pro-
cessing cost charged for the use of an invoked replica. We will use an abstract
model to quantify the cost resulting from these two components, expressed in cur-
rency unit/byte, respectively currency unit/ms. The unit price is (dynamically)
set for individual replicas and can be retrieved from the CDR. An estimate of the
processing cost can be obtained when considering the average processing time,
which can be obtained from the mows:ServiceTime and mows:NumberOfRequests

metrics. Similarly, the cost originating from the use of a network datagram ser-
vice for the invocation of a replica can be calculated from resource properties
exposed by the CDR. A new metric was added to store the cumulative mes-
sage payload size of both the incoming request and the outgoing response. This
model, albeit simplistic, enables the dispatcher to rank the available system
replicas in terms of their total estimated usage cost, sorting them from cheap
to expensive. A subset is then iteratively chosen until the available budget has

WSDM-Enabled Autonomic Augmentation 299

been exhausted. Note that the budget is not necessarily entirely spent, for it
is not always necessary to actually use all the replicas selected — cf. recovery
blocks vs. n-version programming. Having determined an adequate selection of
system replicas, the dispatcher will then initialise the selected redundancy strat-
egy, integrating the selected replicas. Our dispatcher implementation currently
supports the following strategies:

1. Plain recovery block strategy: the selected replicas are queried in turn until
one of them has returned a response that passes the acceptance test.

2. Replicating recovery block strategy: similar to the plain recovery block strat-
egy. If the budget has not been entirely exhausted and all active replicas have
been tried, additional replicas will be created and invoked until a valid re-
sponse is obtained, or until the budget has been spent.

3. Active voting strategy: n-version programming scheme in which all replicas
are queried simultaneously; the first response acquired will be returned.

4. Plurality voting strategy: n-version programming scheme in which all repli-
cas are queried simultaneously. If the decision algorithm can establish the
existence of a consensus block that constitutes a plurality in the generated
partition based on the equivalence of the responses returned, the correspond-
ing response is returned.

<soap:Header xmlns:wsa="http:// www.w3.org/2005/08/addressing">
<wsa:To>http:// localhost:8888/dispatcher/services /service </wsa:To>
<wsa:Action>http:// adss.pats.ua.ac.be/service /version </wsa:Action>
...
<wsp:Policy xmlns:wsp="http: //schemas.xmlsoap.org/ws/2004/09/policy"

xmlns:rcfg="http: //adss.pats.ua.ac.be/dispatcher"
xmlns:ba ="http: //adss.pats.ua.ac.be/service ">

<ba:BudgetAssertion>
<ba:budget>

<ba:value>0.05</ba:value>
<ba:unit>ct</ba:unit>

</ba:budget>
</ba:BudgetAssertion>
<rcfg:RecoveryConfig>

<rcfg:RecoveryStrategy>
http:// adss.pats.ua.ac.be/strategies/PlainRecoveryBlockStrategy

</rcfg:RecoveryStrategy>
<rcfg:parameters>

<rcfg:parameter >
<rcfg:name>timeout </rcfg:name>
<rcfg:value>1000</rcfg:value>

</rcfg:parameter >
</rcfg:parameters>

</rcfg:RecoveryConfig>
<rcfg:AcceptanceTest>

contains (// versionResponse/text(),’i�carry�correct �result ’)
</rcfg:AcceptanceTest>

</wsp:Policy>
</soap:Header>

Listing 1.1. The dependability, timing and budgetary requirements of the client are
relayed by means of a WS-Policy element embedded in the SOAP header.

Which of the aforementioned fault-tolerance strategies will be employed is at the
behest of the client, a choice which will be conveyed to the dispatcher by means
of a special WS-Policy element embedded within a SOAP header block attached

300 R. Dillen et al.

to the issued request message, as is shown in List. 1.1 [12]. This WS-Policy
element contains a set of assertions, including the mandatory parameterised
assertion rcfg:RecoveryConfig. Its purpose is to identify the redundancy strat-
egy by means of a predefined Uniform Resource Identifier (URI), and to pro-
vide any additional parameters the chosen strategy may require. An optional
ba:BudgetAssertion can be included to state the available budget. Observe how
the acceptance test to be used for the recovery block strategies is relayed through
the parameterised rcfg:AcceptanceTest assertion, holding an XPath expression
that will be used to assess the validity of the response returned by each of the
probed replicas. Furthermore, an optional rcfg:parameter element can be set by
the client to hold a timeout parameter. It is, however, entirely up to the dis-
patcher’s implementation of the redundancy scheme to honour this constraint.

Client Dispatcher Replicator BAS SomeStrategyCDR Replicas

request

query

set of replica refs

request, set of replica refs

query

Replica costs

constrain replica set

request, constrained replica set

request

responseresponseresponseresponse

collect usage statistics

Monitor(s)

Metric Value Notification

prune replica

Fig. 2. Request handling overview: sequence diagram

It makes no use to squander the available budget on replicas that do not
significantly contribute to the effectiveness of the redundancy scheme. As an
additional measure to increase the overall availability of the requested service,
the monitor component is configured so as to automatically replace replicas with
a high degree of failed requests. In this capacity, the monitor will observe changes
in the values of the metrics defined in the MoWS specification so as to assess
the health of a replica. It does so by considering the relative number of requests
for which a given replica failed to return a valid response, i.e. for which a SOAP
fault was returned. When the ratio between the mows:NumberOfFailedRequests

and the mows:NumberOfRequests metrics is found to exceed a certain threshold,
the affected replica is considered to be unhealthy and the monitor will instruct
the replicator to remove the replica from the system. Note that this process is
fully transparent to the client and is driven by the monitor component. The
dispatcher allows the plain and replicating recovery block and plurality voting
strategies to be enhanced with this replica pruning procedure.

WSDM-Enabled Autonomic Augmentation 301

4 Performance Analysis

In this section, we will analyse the performance of each of the proposed strategies
in Sect. 3.1, assuming they are operating in an environment subject to transient
faults. Failures are injected into the system by means of a special service that will
affect the outcome of an acceptance test for strategies built on the recovery block
procedure, or that will affect the generated partition for voting-based strategies.

For a given replica, it is assumed the number of requests in between any two
successive failures is geometrically distributed with a constant parameter p. This
failure probability p is drawn from an exponential distribution with λ = 3.33.
As random variates drawn from an exponential distribution do not necessarily
generate values within [0, 1], all the mass above is truncated to 1. The rationale
behind the use of the exponential for sampling values for p as described is that
a replica is assumed to be affected by transient faults and will therefore only
fail periodically. Lower failure rates approaching 0 are more likely, as opposed to
permanent faults for which p = 1. The choice of λ will result in the generation
of probabilities high enough to be visualised easily but not excessively so. By
analogy with the findings in [13], variations in the response times of replica
invocations are simulated utilising a gamma distribution. In what follows, we will
analyse the performance for the following redundancy strategies when subject
to the failure model just described:

1. Simplex system: a single replica which obviously is not tolerant of failures.
2. Plain recovery block strategy: classical recovery block, as defined in Sect. 3.1.
3. Replicating recovery block strategy: extends the logic of the plain recovery

block in that additional replicas are automatically created if the initial set
of replicas to be used is exhausted and a sufficient share of the budget is left.

4. Plurality voting strategy: n-version programming scheme combined with plu-
rality voting, as defined in Sect. 3.1.

Furthermore, some of these strategies have been tested in combination with the
replica pruning feature introduced in Sect. 3.1. Replicas are judged unhealthy if
more than 20% of the requests previously handled have failed. The monitor will
instruct the replicator to remove such replicas from the system.

5. Plain recovery block with replica pruning, extending scenario 2.
6. Replicating recovery block with replica pruning, extending scenario 3.
7. Plurality voting strategy with replica pruning, extending scenario 4.

4.1 Results

We will now provide an overview of the performance of the strategies mentioned.
Each of the graphs below compares the basic scenario, without and with replica
pruning by the monitor component. Figures 3, 4 and 5 show the same metrics,
measuring the (in)effectiveness of a given redundancy strategy:

– Errors (plusses and crosses in the graphs at the right): indicative of the
percentage of the total number k of invocations of the composite that resulted
in failure (k = 4000).

302 R. Dillen et al.

Fig. 3. Scenarios 2 and 5: Plain recovery block strategies

– Costs (shown in the graphs at the left): indicative of the average, actual cost
for all requests. Graphs show average and standard deviation.

– Average replica quality (squares and asterisks): at the end of a run, all
remaining replicas in the system that were not pruned by the monitor are
asked for the probability with which they were struck by a failure. The
corresponding average is shown.

There is no need to actually simulate the first scenario, i.e. the simplex system,
as one can directly derive the percentage of the k invocations of the system
that will result in failure. As the error degree for each replica is chosen from an
exponential distribution with λ = 3.33, the mean failure probability is μ = 0.3.
One can then surmise that the Bernouilli process that describes the probability
of a failure affecting a request has probability parameter p = μ.

Figure 3 shows the results of scenarios 2 and 5. The percentage of failed invo-
cations is below 30%, for both scenarios with and without the monitor, and thus
an improvement compared to the simplex system. A growing degree redundancy
because of a bigger budget results in less failures of the scheme. Furthermore, the
advantage that the replica pruning appears to deliver diminishes as the budget
increases. The effect of the replica pruning is also visible on the average replica
quality. The quality of the replicas is distinctly less without replica pruning.
The actual cost of the recovery block strategy appears to be, on average, much
lower than the actual budget. The cost, however, appears to vary significantly,
although not to a degree that it will likely exceed the budget.

Figure 4 shows the results for the replicating recovery block, in which the
classical recovery block scheme is augmented with the possibility to create fur-
ther replicas. The error rate is well below the 30% benchmark for the simplex
system. Furthermore, it can be observed that a small advantage is gained from
utilising the monitor component. With respect to the cost, the same discrepancy
between the actual cost and the budget is noted, including a significant degree

WSDM-Enabled Autonomic Augmentation 303

Fig. 4. Scenarios 3 and 6: Replicating recovery block strategies

of variability. The same diminishing returns of the replica pruning mechanism
can be observed as in the previous experiment. As the budget and therefore the
number of replicas increases, their average quality worsens. This may be an ef-
fect of the abundance of replicas causing not all replicas to be queried frequently
enough for the monitor to confidently decide to prune a replica.

Fig. 5. Scenarios 4 and 7: Voting strategies, with and without replica pruning

Figure 5 shows the classical voting strategy augmented by the measures men-
tioned in Sect. 3.1. The voting strategy also performs better than the 30% bench-
mark set by a single service. It also benefits from the replica pruning by about

304 R. Dillen et al.

Fig. 6. Percentage of failed composite invocations

10% points in the lower budgets. As more budget becomes available — and there-
fore more replicas — this advantage diminishes as is also the case for scenarios
5 and 6 based on recovery blocks. This strategy seems to have an effect on the
overall replica quality: even in the higher budgets the average replica quality is
better in the monitor case. This is most likely caused by the fact that all selected
replicas that fit within the budget are actually invoked. This causes the monitor
to reach a good confidence about the health of the replica much faster.

Figure 6 shows a comparison of the ratio of invocations resulting in failure of
all transient scenarios. It shows that all the strategies provide the best results
when fitted with a replica pruning monitor. Of all the pruning strategies the
addition of direct replication capabilities in combination with replica pruning
as done by the replicating recovery block yields the best result for the smallest
budget. We have determined that the use of some simple MoWS features like
the mows:NumberOfFailedRequests metric already can provide some meaningful
improvement on the classical multi-version fault-tolerance strategies.

4.2 Discussion

The replicating recovery block strategy with replica pruning clearly yields the
best results. It must be noted though that devising a proper acceptance test
is usually very application-specific and may not always be possible due to the
limited information exposed in the service interface. Improving the applicability
of the recovery block mechanism, our system has been designed so that the
acceptance test can be configured at runtime, and is no longer hardwired within
the fault-tolerant unit.

The voting strategy can be more widely applied, as it employs a generic plu-
rality voter. The primary disadvantage of the voting system though stems from
the fact that all selected replicas will be invoked in parallel, incurring greater
actual cost. In this regard, the sequential iterative invocation of individual repli-
cas by the recovery block mechanisms show that, on average, not all replicas are

WSDM-Enabled Autonomic Augmentation 305

actually used. At the risk of sporadically overstepping the budget, much greater
redundancy — and therefore dependability — can be provided.

Because of the monitoring component and its ability to remove poorly per-
forming replicas, an increase in replicas will result in an increase in dependability,
provided that the replicas are used sufficiently; it takes a number of requests to
achieve sufficient confidence about the health of a replica.

5 Conclusions and Future Work

In this paper, we have shown how software fault-tolerance strategies can be
applied to XML-based web services, aiming to increase the dependability, and
in particular the availability of the overall service the system seeks to provide.
Furthermore, the design of dedicated WSDM-based web services can augment
these classical fault-tolerance strategies in that they can accommodate for ad-
vanced redundancy management. We have argued that poorly behaving replicas
can easily be detected leveraging some simple metrics provided by the MoWS
specification. Moreover, it was apparent from our experimentation that it is ad-
vantageous to prune such replicas and have them replaced by newly initialised
ones. A service-oriented architecture was introduced that builds on top of the
OSGi and Apache MUSE frameworks encompassing a monitor component that
keeps track of the operational status of the available system resources, and a
replicator utility service to ease the dynamic deployment of additional replicas.

The flexibility offered by the service-oriented architecture presented allows to
adaptively reconfigure the amount of redundancy and, accordingly, the selection
of resources for individual requests. Moreover, our experiments suggest that,
on average, combining the devised replica pruning and replacement features
with a classical recovery block strategy outperforms the other fault-tolerance
mechanisms tested, both in terms of cost and availability.

As part of future work, we envisage investigating more advanced detection
mechanisms for the monitor component, encompassing additional metrics ex-
tending beyond the set of metrics defined in MoWS. Furthermore, additional
experimentation is required to obtain a more general view on the performance
of the system using a wide range of failure injection models.

References

1. Laprie, J.C., Aviz̆ienis, A., Kopetz, H. (eds.): Dependability: Basic Concepts and
Terminology. Springer (1992)

2. Randell, B.: System structure for software fault tolerance. In: Proceedings of the
1st ACM International Conference on Reliable Software, pp. 437–449 (1975)

3. Aviz̆ienis, A.: The N-version approach to fault-tolerant software. IEEE Transac-
tions on Software Engineering 11(12), 1491–1501 (1985)

4. Lorczak, P., et al.: A theoretical investigation of generalized voters for redundant
systems. In: IEEE Digest of Papers on the 19th International Symposium on Fault-
Tolerant Computing (1989)

306 R. Dillen et al.

5. Buys, J., et al.: Towards Context-Aware Adaptive Fault Tolerance in SOA Appli-
cations. In: Proceedings of the 5th ACM International Conference on Distributed
Event-Based Systems, pp. 63–74 (2011)

6. W3C: Web Services Architecture (2004),
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

7. OASIS: Web Services Distributed Management (WSDM) 1.1 (2006),
http://www.oasis-open.org/committees/wsdm

8. De Florio, V.: Robust-and-evolvable resilient software systems: Open problems and
lessons learned. In: Proceedings of the 8th ACM Workshop on Assurances for Self-
Adaptive Systems, pp. 10–17 (2011)

9. De Florio, V., et al.: Software tool combining fault masking with user-defined
recovery strategies. IEE Proceedings – Software 145(6), 203–211 (1998)

10. OASIS: Web Services Resource Framework (WSRF) 1.2(2006),
http://www.oasis-open.org/committees/wsrf/

11. OASIS: Web Services Base Notification 1.3 (2006),
http://www.oasis-open.org/committees/wsn/

12. W3C: Web Services Policy 1.5 - Framework (2007),
http://www.w3.org/TR/ws-policy/

13. Gorbenko, A., et al.: Real Distribution of Response Time Instability in Service-
oriented Architecture. In: IEEE Symposium on Reliable Distributed Systems,
pp. 92–99 (2010)

http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.oasis-open.org/committees/wsdm
http://www.oasis-open.org/committees/wsrf/
http://www.oasis-open.org/committees/wsn/
http://www.w3.org/TR/ws-policy/

Formal Verification of a Safety Argumentation

and Application to a Complex UAV System

Julien Brunel and Jacques Cazin

ONERA-DTIM
2 Av Edouard Belin, BP 74025, F-31055 Toulouse Cedex, France

{Julien.Brunel,Jacques.Cazin}@onera.fr

Abstract. In the context of safety-critical systems, arguing that the sys-
tem is acceptably safe is a major issue, in particular when facing a certi-
fication process. We are developing an approach which aims at providing
assurance that safety objectives are met by a system under development.
We propose a language to express a safety argumentation together with
a semantic definition on which an implementation is based. The ultimate
objective is to have means to decide, at the level of requirements, the
correctness of an argumentation using a formal and tool supported ap-
proach. In this paper, we illustrate our argumentation framework on the
problem of safe insertion of Unmanned Aerial Vehicle (UAV) into the air
traffic. The system we consider is a socio-technical organization, which
consists of the UAV control systems, and the air traffic management.
The support environment built upon existing tools is briefly described.

Keywords: argumentation language, safety validation, requirement anal-
ysis, formal verification, UAV system.

1 Introduction

In the context of safety-critical systems, arguing that the system is acceptably
safe is a major issue, in particular when facing a certification process. The pre-
sentation of arguments that a system meets such acceptable levels of safety is
typically referred to as a “safety case”. A safety case [1], [4] presents the gen-
eral safety objectives, and arguments that justify how evidence, such as safety
assessments, allow to ensure the safety objectives. However, in practice, safety
cases often focus on the evidence, presenting detailed safety assessment, and
neglect the relation between evidence and safety objective that explains how
the former allow to ensure the latter. Interesting academic propositions define
languages, e.g. Goal Structuring Notation (GSN) [6], [16], dedicated to safety
cases, with a focus on the link between the safety objectives and the evidence
that support it, i.e., the argument itself. But they do not define, for these ar-
gumentation languages, a formal semantics that could be used as a basis for
automatic verification.

Nevertheless, the requirement engineering community introduces models that
have similarities with argumentation frameworks. Indeed, some of the most con-
vincing academic methodologies propose to structure requirements from more

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 307–318, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

308 J. Brunel and J. Cazin

abstract goals to the most detailed requirements in a tree-like AND-OR decom-
position. Their objective is to help the statement of clear and coherent require-
ments, and to ensure that a pre-specification of the system meets these require-
ments. Although they do not represent all the concepts that are necessary to
model an argumentation (such as evidence) they define a partially formalised
semantics. In particular, i* -Tropos [2] and Kaos [7] methods define a formalisa-
tion based on propositional logic and temporal logic respectively. The framework
we propose in this article takes inspiration from Kaos method and use temporal
logic to define a formal semantics.

In this article, we present

– a framework to represent an argumentation ;
– a mathematical foundation (formal semantics) that allows automatic valida-

tion of the argumentation ;
– a pragmatic approach based on this framework to easily edit and validate a

safety argumentation ;
– an illustration of our approach on the study of a safe insertion of an Un-

manned Aerial Vehicule (UAV) into the air traffic.

The central aspect of our approach, illustrated by Fig. 1, is an argumentation
model. The aim of this model is to help the representation of a clear, structured,
and rigourous safety argumentation. The basic elements of an argumentation are
the safety claims to guarantee. Each claim is refined into more precise sub-claims,
which are sufficient conditions to ensure it. The process of claim refinement, also
called decomposition, is guided by well identified strategies. The obtained tree-
like structure describes an argument allowing one to conclude the top safety
claims from elementary sub-claims that can be inferred directly from evidence,
also called witnesses.

Objectiver

Injection

NuSMV

KAOS/xml
representation

Extraction

Argumentation
model

Manual witness
validation

Results

Fault Tree Analysis

AltaRica model validation

Fig. 1. Argumentation based verification approach

Formal Verification of a Safety Argumentation 309

We propose to support the process of validating an argumentation. An ar-
gumentation is correct if the refinements (or decompositions) that link the top
claims to the elementary leaf claims are correct, and if the evidence are cor-
rect (they effectively allow to infer elementary claims). A claim refinement is
correct if the claim can be deduced from its sub-claims. This can be formally
and automatically verified provided that the claim and its sub-claims have been
formalised, in our approach in Linear Temporal Logic (LTL). As the other au-
tomatic verifications in our approach, this is performed by the model checker
NuSMV [3].

An evidence can be either the result of a safety analysis which is conducted
outside our framework (a fault tree analysis, a failure mode and effects analysis,
etc.) or an operation of the system that can be specified in our framework (a
software collision avoidance operation, as we will consider in our case study).
In the former case, the correctness of the evidence must be manually validated
by the engineer in charge of the argumentation, in collaboration with the safety
engineer that performed the corresponding safety analysis. In the latter case,
the correctness can be expressed in LTL and the validation can be performed
automatically.

In order to ease the process of validating the argumentation, the evidence and
the claims have a status (validated or not validated) indicating whether they
have already been proved (or manually confirmed) correct. In case a refinement
is formally proved (or manually confirmed) the propagation of the status from
the sub-claims to a claim is performed by our tool.

In order to have a graphical representation of our argumentation model, we
use the tool Objectiver [11] , which supports KAOS method. All the concepts
of an argumentation model that are not KAOS concepts are represented here as
textual annotations. We use specific conventions so that our tool can interpret
these annotations as meaningful concepts.

We illustrate our approach on the study of safe insertion of a UAV into the
air traffic. The highest level claim states that the insertion of the UAV into the
air traffic is safe. This claim is refined into more precise sub-claims, according
to some refinement strategies. We continue the refinement process until we come
to elementary claims that may be ensured by evidences.

This article is organized as follows. Sect. 2 presents our argumentation lan-
guage and its semantics. In Sect. 3, we illustrate our framework on our case
study, which deals with safe insertion of UAV into the air traffic. Sect. 4 de-
scribes our prototype environment, which supports the approach. And Sect. 5
relates our approach to other works.

2 The ForSALE Language

ForSALE stands for Formal Safety Argumentation Language and Environment.
In the following sections, we give an overview of the main supported concepts
and the way they interact with each other, propose a concrete syntax and provide
some elements of the formal semantics.

310 J. Brunel and J. Cazin

2.1 ForSALE Basic Concepts

In our approach, an argumentation is a formal object which is based on the
following elements and considerations :

Claims: a claim is an assertion stating that something is correct. The function F
is implemented, F has been verified, F has been tested or The implementation
of F has been formally proved are several examples of claims. A claim is
defined in a given Context in which, for example, the definitions used in
this claim are given;

Compound Claims: a claim may be elementary or composed of several sub-
claims. For example The system S provides the functionality F may be de-
composed into the claims previously mentioned ; these ones may be com-
bined using conjunction and disjunction. For example The function F is
implemented AND (F has been tested OR The implementation of F has been
formally proved) ;

Witnesses: a witness is an elementary fact. The source code of F has been
versioned and Test cases of F have been successfully passed are example of
witnesses ;

Rules: a rule allows to associate a witness to a claim. This association may
be considered as an argument. For example, To assess the acceptability of a
function failure, the results of hazard analysis must be at disposal may be a
rule used to link the claim Risks of loss of F are acceptable to the witness
Report on the Preliminary System Safety Assessment (PSSA). Rules may be
used either in a prescriptive way (to reach the goal you should do that...) or
in an evidential way (the goal is reached due to the fact that ...) ;

Strategies: a strategy describes the (pragmatic) way a type of goals may be
split into sub-goals which can be reached independently from each other. An
example of that is the strategy Strat:Functional/Safety which will be used
in the following examples. It states that to reach a goal G, a corresponding
function F has been developed and that The risks of losing F are acceptable.
Here also strategy may be used either in a prescriptive or in an evidential
way.

These elements are the main ingredients of ForSALE meta-model as represented
on Fig. 2 in an entity association style. C-leaf and C-node are the two varieties
of claims, either elementary or compound. Alternatives are possible ways of com-
bining several Claims to set up a more global one. A Stategy is used to produce
only one Alternative for a given Claim ; although restrictive, this has not revealed
to be so much of a constraint in our approach.

So, to summarize, an argumentation is composed of several alternate con-
junctions of arguments which can be compound or elementary ; the latter are
justification that a claim is correct due to the fact that a given rule may be ap-
plied to assert it and that a witness exists to certify that the rule has effectively
been applied.

Formal Verification of a Safety Argumentation 311

C−nodeC−leaf

Witness

Rule

ClaimContext

Alternative
str: Strategy

Justification

DefinedIn And

Or

Fig. 2. ForSALE meta-model

2.2 Semantics

To define the semantics of ForSALE we will use an interpretation of each term
of the meta-model in logic. We use linear temporal logic LTL mainly for two
reasons :

– LTL is widely used to express prescriptive statements on a system behaviour;
in particular, it is used in KAOS to express goals and to give the semantics
of operationalisation (the fact operations ensure a requirement) [9];

– as it will be argued in the perspectives, we plan to introduce in ForSALE
precedence operators to provide the arguments with an order relation, and
in this context, temporal operators will be useful.

So each element of the language will be interpreted using the following semantic
functions:

[[.]]clm: Claim → F
[[.]]alt : Alternative → F
[[.]]ctx : Context → F

where F is the set of LTL formulas;
This is not the aim of the present paper to give a complete and detailed

semantics of ForSALE. To illustrate it we can give the following excerpt which
is the definition of the semantics of an Alternative :

[[a]]alt ≡
∧

c∈C(a)
((

∧
k∈K(c)

[[k]]ctx) → [[c]]clm)

where C(a) and K(c) are respectively defined as the set of Claims entering a And
relation with a given Alternative a and the set of Contexts entering a DefinedIn
relation with a given Claim c.

This can be informally read as : the semantics of an Alternative is the formula
made of the conjunction of a set of implications, each of which relates a Claim
entering the alternative with the conjunction of the Definitions it uses.

So to express that the refinement of a Claim which is composed of several
C-node is correct, we use the formula made of the disjunction of the semantics
of its constituting Alternatives and prove that it entails the formula of the Claim
in its context, that is :

312 J. Brunel and J. Cazin

(
∨

a∈A(c)

([[a]]alt)) → ((
∧

k∈K(c)

[[k]]ctx) → [[c]]clm)

where A(c) is the set of alternatives entering a Or relation with the Claim c.

2.3 Concrete Graphical Syntax

To describe a particular model of argumentation which is an instance of the
aforementioned meta-model, we use a graphical syntax which is totally compati-
ble with the KAOS approach and its support tool. The conventional symbols we
use (Claim as a parallelogram, Context in a round ended rectangle, Witness in an
ellipse etc.) are detailed on Fig. 3. The example of the next sections will follow
this graphical syntax. It is worth noting that, as it will be illustrated later, a
formal definition, using LTL formulas, may be associated to each Claim, Context
or Witness.

Claim

Alternative
Strategy

Context

Witness

DefinedIn

RefinementJustification

Rule

Fig. 3. ForSALE graphical syntax

3 The UAV Insertion Case Study

The IDEAS project (“Insertion des Drones dans l’Espace Aérien et Sécurité”) is
an ONERA internal project started in 2009. Its concern is to study the feasibility
of a safe insertion of UAVs into the civil air traffic. Specific engineering methods
(process, guides, tools) are proposed for defining and proving safety requirements
for UAVs. This conceptual work is validated thanks to ONERA experimental
facilities, in particular three UAV helicopters on which sensors and autonomous
capacities are embedded and evaluated.

In this context, we propose to represent, in our ForSALE environment, a
global argumentation that an UAV can perform safely a mission in the civil air
traffic. The system under reasoning is a complex socio-technical system involving
the UAV itself (with its embedded systems), the pilot, the ground station, and
the Air Traffic Management. We argue and we want to show that a UAV will
complete its mission safely. In our example we do not examine all safety cases.
We will consider that the mission is “safe” if major identified risks (collision,
loss of critical functions) for the UAV are managed.

Formal Verification of a Safety Argumentation 313

 UAV completes its mission safely

 Risks for UAV mission are managed UAV completes its mission

Strat: Functional/Safety

Fig. 4. Decomposition of the first claim according to the Functional/Safety strategy

So, the first claim decomposition (see Fig. 4) which follows a strategy we
call Functional/Safety strategy, gives two sub-claims : a functional one (UAV
completes its mission) and a safety one (Risks for UAV mission are managed). If
we continue the decomposition of the latter claim, we list the identified risks that
will be considered in the argumentation. In our case, the risks of collision and the
risks to lose a critical capacity (communication, computer, inertial measurement
unit ...).

 Risks of collisions are managed

 Collisions are avoided
Exceptional case

 Collisions are avoided
Nominal case

Nominal:
No other AV in the corridor

Exceptional:
Other AV in the corridor

 Corridors given by ATM
ensure separation

 UAV respects corridors
given by ATM

 Detect & Avoid
 function is correct

 Risks of loss of Detect &
 Avoid are acceptable

Strat: Functional/Safety

Strat: Nominal/Exceptional

Fig. 5. Decomposition of the risks of collisions claim

The risks of collision, for instance, can again be decomposed following the dif-
ferent ways to prevent collision depending on the context, as illustrated by Fig. 5.
Here, we follow a strategy we call Nominal/Exceptional that allows to distin-
guish between the nominal collision avoidance guaranteed by the aerial corridors
(given by Air Traffic Management), and the exceptional collision avoidance, en-
sured by a specific emergency procedure (based on the so-called Detect & Avoid
function). We apply the Functional/Safety strategy on the emergency avoidance,
which means the risks of loss of the function must be managed.

To illustrate a formal decomposition of claims, we can consider the claim De-
tect and Avoid function is correct, as illustrated by Fig. 6. The formal definition
of the claim is given by the LTL formula :

[C] G(dobstacle < dmin) → ((dobstacle �= 0) U (dobstacle > dmin)))

where dobstacle represents the distance to an obstacle, dmin, is the threshold of
emergency avoidance, G (respectively U) is the always (respectively until) LTL
operator.

314 J. Brunel and J. Cazin

Fig. 6. Decomposition of Detect and Avoid function

The formal definition of the two sub-claims is given by the two following LTL
formulas:
[C1] G((dobstacle < dmin) → detect)
[C2] G(detect → ((dobstacle �= 0) U (dobstacle > dmin)))
In order to validate the refinement, we have to prove that C1 ∧ C2 → C,

which is obviously true.

 Management of the risks
to lose critical capacities

If computer is lost,
 UAV safely aborts mission

If communication is lost,
 UAV safely aborts mission

 Function ManageLossOfCom
is correct

 Risks of loss of ManageLossOfCom
are acceptable

Strat: Functional/Safety

FHA and PSSA

Hazard Analysis results
are at disposal

Fig. 7. Decomposition of the risks of loss of communications

The management of the risks to lose critical capacities are decomposed ac-
cording to the identified critical capacities. Fig. 7 shows an excerpt of the cor-
responding claim decomposition diagram : we consider two sub-claims dealing
with the communication between the pilot or the ground station, and the com-
puter. In the context of our in-house experimental system embedded on board
of Onera’s UAV, we identified a function ManageLossOfCom, the role of which
is to safely abort the mission in the case of loss of communication with the pi-
lot or the ground station. The application of the Functional/Safety strategy to
the claim concerning the loss of communication gives two sub-claims: a func-
tional one stating that the function ManageLossOfCom is correct, and a safety
one claiming that the risks of loss of this function are acceptable. The Functional

Formal Verification of a Safety Argumentation 315

Hazard Assessment (FHA) of our experimental system identified a severity for
each failure mode of this function, and each flight mode (automatic or manual) of
the UAV [15]. Safety requirements were then derived and assessed using the for-
mal modeling language AltaRica and associated tools, as part of the Preliminary
System Safety Assessment (PSSA). These analyses are referred to in the argu-
mentation as a witness which validates that the risks of loss of ManageLossOfCom
are acceptable.

4 ForSALE Support Environment

To experiment our argumentation approach, we have developed the ForSALE
environment as sketched on figure 8. It has been built up by a smooth integration
of two main tools which are :

– the Objectiver requirement editor supporting the KAOS approach. It is used
to edit and display AND/OR argumentation trees ;

– the model-checker NuSMV which is used both to check the validity of formal
refinement operations if any, and to check the correctness of the developed
argumentations.

NuSMV
Objectiver

KAOS

smv

Additional info.

External results

Gnu
ForSALE

txt

xml file

Fig. 8. ForSALE support environment

The integration is made on the basis of a communication by file between the
internal/external data representations used by Objectiver and NuSMV. This re-
quires some conversions between these representations and a command interface.
All of these has been developed using Gnu EMACS-LISP which is distributed
with a very rich text manipulation library.

– Objectiver uses a xml internal representation. A part of it is used to im-
plement the argumentation model and have it displayed “for free” by the
tool ;

– the input interface of the NuSMV checker is text files following the SMV
syntax ;

– the output of NuSMV are pure text files that are analyzed by ForSALE.
The results are communicated to the end user, and, if he agrees, they are
introduced as enrichments of the xml internal representation.

316 J. Brunel and J. Cazin

ForSALE environment is open which means that it can be used to integrate re-
sults produced by various tools. It is continuously under the control of the end
user, and a usual way to proceed is to check and/or introduce a result of an
elementary verification, and to check its propagation upwards in the argumen-
tation model. So she may use ForSALE to experiment various argumentation
scenarios :

– from a given refinement level (i.e., a given claim and all its subclaims until
the leaf claims) all the claims are formalised (by means of LTL formulas).
In this case, the NuSMV part of ForSALE is used to check the validity of
the refinement for the corresponding sub-tree of the argumentation (laying
on the semantics of refinement presented in [9]). The result (either success
or failure of the verification) is stored in the KAOS argumentation model to
be used later in the verification of the argumentation ;

– a safety verification result has been obtained by using an external tool. The
end user may decide to introduce it as a valid argument in the model ;

– the argumentation tree may be globally checked. If each final goal is a valid
argument, and if the refinement semantics is respected, then the global ar-
gumentation is verified. If some final arguments are missing then the global
argumentation is valid provided that these missing arguments can be proved
valid. If the refinement relation between arguments is not followed then the
global argumentation is definitely not valid.

5 Related Work

The work presented in this paper is at the crossroads of several technical domains
which are rather intensively explored : requirement specification and analysis,
safety cases development and analysis, formal methods. In our approach, all of
those aim at feeding or supporting argumentation.

Our argumentation framework has been partially inspired by the seminal work
on this topic by Toulmin [14]. The notion of claim, reason, evidence and war-
rant are indeed used as such in our approach. Nevertheless, due to the safety
target domain and its constraints, we do not need the most general concepts
like qualifier, stating the strength of an argument or rebuttal which introduces
controversial arguments.

Existing works already try to combine results coming from several of the
mentioned domains, for example :

– the developments around the Goal Structuring Notation GSN. It is clear (see
for example [5]) that the community around this notation is very active and
becomes numerous. Even though the notation was an initial motivation (see
[16] for example), the very design of systems and related safety concerns are
major topics and motivate the development of notation based and properties
oriented tools. Our work aims at extending these approaches in the direction
of argumentation engineering ;

Formal Verification of a Safety Argumentation 317

– requirement expression and formal analysis [8], [9], [12]; unlike in the GSN
approaches, the refinement operations may be formally verified. The differ-
ence with our work is that their approach is mainly focused on the functional
correctness of the developed system itself, whereas we address the problem of
the correctness of the argumentation about the properties of such a system ;

– safety cases formal evaluation. John Rushby clearly address the problem of
formal safety evaluation [13] using higher order logic and PVS as support
tool. But, even though the argumentation is formally checked, it must be
re-built from the sequence of interaction with the user and is not a formal
object on which various verification operation can apply ;

– arguments manipulation and computation. In [10], the authors focus on the
way arguments may be computed to assist the elaboration of a decision. The
approach is formally supported by predicates logic. Nevertheless, it is totally
unrelated with any system development approach.

6 Conclusion and Future Work

The work we have presented in this paper is totally driven by the objective of de-
veloping a clear, convincing, formal, and verifiable argumentation. Our concern
is not to propose novative concepts or solutions in the area of system requirement
engineering or safety assessment which are matters of specialists. It is instead to
exploit results obtained in these domains to feed the development of an argu-
mentation which is, for us, a first class object. A meta-model has been proposed
to support the many aspects of this object. Moreover a formal semantics, based
on LTL, has been developed to found a calculus allowing to tackle the problems
of validity and completion of an argumentation.

One important goal is to relate the development of an argumentation with
the other activities taking place in the engineering of a system. Our claim is
that this link must be done as soon as possible in the development process, viz.
during the requirement phase, even if the data which are to be processed (the so-
called witnesses, the justification of elementary arguments) will be obtained at
the other end of the cycle. Supporting this idea, we elaborate around the notion
of a development strategy which entails the construction of an argumentation.

Several directions are still open for future works. Concerning strategies for
example, it will be interesting to consider the way the structure of an argumen-
tation part can be obtained “for free” as a consequence of applying a development
strategy. What we have observed also is that we need sometimes to express some
dependencies between claims that are stronger than pure compositional one. For
example a claim may be set before another one. So we are considering the in-
troduction of a precedence relation between claims in our meta-model. “Pretty”
presentation of an argumentation should be also a major concern as we must
keep in mind that the ultimate objective is to convince, not a specialist of tem-
poral logic, but a certification authority instead, that the properties of a system
are met. And finally, our approach must be validated by addressing significant
case studies as we started to do with a part of the UAV insertion problem.

318 J. Brunel and J. Cazin

References

1. Bishop, P., Bloomfield, R.: A Methodology for Safety Case Development. In: The
Sixth Safety-critical Systems Symposium, Birmingham, UK (1998)

2. Bresciani, R., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An
agent-oriented software development methodology. Autonomous Agents and Multi-
Agent Systems 8, 203–236 (2004)

3. Cavada, R., Cimatti, A., Jochim, C.A., Keighren, G., Olivetti, E., Pistore, M.,
Roveri, M., Tchaltsev, A.: NuSMV User Manual. FBK-irst (2006),
http://nusmv.fbk.eu/NuSMV

4. Safety case development manual. Technical Report, Eurocontrol, DAP/SSH/091
(2006)

5. The Goal Structuring Notation Website - University of York,
http://www.goalstructuringnotation.info

6. Kelly, T., Weaver, R.: The Goal Structuring Notation – A Safety Argument Nota-
tion. In: Dependable Systems and Networks 2004 Workshop on Assurance (2004)

7. van Lamswerde, A.: Requirements engineering, From System Goals to UMLModels
to Software Specifications. Wiley (2009)

8. Letier, E., Kramer, J., Magee, J., Uchitel, S.: Fluent Temporal Logic for Discrete-
Time Event-Based Models. In: ESEC/FSE 2005 - 5th Joint Meeting of the the
European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (2005)

9. Letier, E., van Lamsweerde, A.: Deriving Operational Software Specifications from
System Goals. In: FSE 2002 - 10th International Symposium on the Foundation of
Software Engineering (2002)

10. Morge, M., Mancarella, P.: Modèle d’argumentation concret pour le raisonnement
pratique. Actes des Journées Francophones Planification Décision Apprentissage
pour la Conduite des Systèmes, JFPDA 2007 (2007)

11. Objectiver, a power tool to engineer your Technical and Business Requirements,
http://www.objectiver.com

12. Rifaut, A., Massonet, P., Molderez, J.-F., Ponsard, C., Stadnik, P., van Lam-
sweerde, A., Van Hung, T.: FAUST: formal analysis using specification tools.
In: Proceedings of 11th IEEE International Requirements Engineering Conference
(2003)

13. Rushby, J.: A safety-case approach for certifying adaptive systems. In: AIAA In-
fotech@Aerospace Conference (2009)

14. Toulmin, S.: The Uses of Argument. Cambridge University Press (1969)
15. Toussaint, B.: Safety analysis of a U.A.V helicopter, by modelling, simulation, and

formal methods. Master’s thesis, ONERA/ISAE (2010)
16. Weaver, R., Fenn, J., Kelly, T.: A pragmatic approach to reasoning about the

assurance of safety arguments. In: 8th Australian Workshop on Safety Critical
Systems and Software, SCS 2003 (2003)

http://nusmv.fbk.eu/NuSMV
http://www.goalstructuringnotation.info
http://www.objectiver.com

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 319–327, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Electronic Reliability Estimation:
How Reliable Are the Results?

Nuno Silva and Rui Lopes

Critical Software S.A, Parque Industrial de Taveiro, Lote 48, 3045-504, Coimbra, Portugal
{nsilva,rmlopes}@criticalsoftware.com

Abstract. The development of Safety Critical Systems requires the compliance
to several safety standards and regulations. Since, most of the times, human life
is at stake, it is crucial to fully understand the behaviour of the system being
developed in order to predict and avoid any potential deadly failures. The sys-
tem shall be therefore resilient and reliable.

The understanding of such systems is not an easy task. Safety Critical
Systems are, nowadays, large-scale and complex systems that require a meth-
odological approach in order to fully comprehend all its functionalities and in-
teractions. Several reliability analyses are performed in the development of such
systems. The reliability analysis of all electronic equipment is one of them. The
ability to predict the failure profile of electronic components is essential to de-
sign the system and plan maintenance activities.

This paper presents the preliminary reliability estimation activities of an
electronic system designed for a large-scale and complex safety critical system.
The standards and methodologies followed are described as well as the tools
used to support the activities. Finally, the estimation results and a list of consid-
erations regarding the activities performed are presented.

Keywords: Reliability, Estimation, MIL-Hdbk-217F, MTTF.

1 Introduction

The preliminary reliability activities subject of this paper aimed to estimate the mean
time to failure (MTTF) of three Printed Circuit Boards (PCBs) still at design phase in
order to provide feedback to the engineering design team. The three PCBs are a com-
pletely new design for a Safety Critical System and there are no old PCBs with his-
torical failure data that can be used as a baseline to perform the reliability estimates.
Furthermore, since the PCBs are still at design phase, no accelerated life testing is yet
possible at this stage. The estimation performed has been based in the military stan-
dard MIL-Hdbk-217F [1], with the support of Reliasoft™ tool “Lambda Predict” [2]
and its associated database “PartLibraries.org”. The outcomes of this activity pro-
vided the design team valuable information about their design decisions and will trig-
ger corrective actions that might be required to increase the boards’ reliability and
achieve the reliability requirements. Given that the PCBs will be integrated in a large
complex system, the reliability results may trigger modifications in the overall system

320 N. Silva and R. Lopes

architecture such as equipment redundancy or implementation of fault tolerance
mechanisms. The reliability concepts definition used in this paper are aligned with the
ones presented in [3].

2 Reliability Estimation – Methodology, Case Study and Tools

The most important factor for a valuable Reliability Estimation is the source of input
data. The input data may be acquired or generated using several methods. An over-
view of some of the possibilities that shall be considered is presented hereafter:

• Field data: One can estimate the reliability of a new electronic board based on the
field data collected of a similar board already operating under similar conditions.
According to industry experts, this is one of the best approaches to estimate reli-
ability. This is only possible if a correct maintenance process has been followed
throughout the years of operation of the boards. This implies a correct identifica-
tion and logging of every failure, time and operation conditions.

• Accelerated Life Testing: This method applies stress testing to several units of the
system being analysed and records all the failures detected from these tests. This
method is usually performed at a later design phase where units have already being
built and target tests can be performed. Accelerated Life Testing usually requires
proper equipment (e.g. test chambers) that allows creating the necessary conditions
for the stress tests (e.g. temperature variations, moisture and humidity variations,
vibrations, etc).

• Reliability standards: Whenever the design of the system is at an early stage and no
previous similar systems exist, the preliminary reliability estimation shall be con-
ducted following a specific reliability standard that provides guidance with respect
to the factors that influence reliability as well as standard failure rates that can be
used with a certain degree of confidence.

Given the characteristics of the system in question and the project lifecycle, the reli-
ability estimation performed has been based in one of the most common standards
used in the industry: the military standard MIL-Hdbk-217F.

2.1 Reliability Estimation Methodology

The methodology followed to perform the preliminary Reliability Estimation was
based in the “Part Count” method described in the MIL-Hdbk-217F.

The electronic reliability estimation allows predicting the mean time to failure
(MTTF) of the system being analysed. The MTTF represents the actual Failure Rate (
λ), which is considered constant throughout the time, of each component and is
given by:

MTTF

1=λ (1)

 Electronic Reliability Estimation: How Reliable Are the Results? 321

In fact, the failure rate value is not constant throughout the components life time as it
can be shown by the typical Bathtub curve (see Fig. 1) that represents the actual varia-
tion of this variable ()(th):

Fig. 1. Typical bathtub curve1

However, manufacturers usually use Accelerated Stress Testing (AST) to ensure
that when the component leaves the factory it is already in Section II of the Bathtub
Curve, in which the failure rate is constant and therefore also the MTTF. The reliabil-
ity analysis is then performed based on the constant MTTF (λ=)(SectionIIh)

provided by the manufacturers and do not extrapolate into Section I and III of the
component life time.

Note also that the term MTTF and mean time between failures (MTBF) are two
distinct metrics. In fact, MTBF only becomes meaningful in reparable systems be-
cause, by definition, it measures the time between two failures, which necessarily
include the mean time to repair (MTTR) the system. Most of manufacturers inaccu-
rately provide the equipment MTTF labelled as MTBF, adding some confusion to the
actual definition of the two metrics. Taking in consideration a reparable system with a
constant failure rate, the two metrics are related according the following expression:

 MTTRMTTFMTBF += (2)

At this stage of the project, the MTTR is not a concern and, therefore, is not part of
the estimation process. This paper will only address the MTTF estimation.

Military Handbook: Reliability Prediction of Electronic Equipment (MIL-Hdbk-
217F). The military standard MIL-Hdbk-217F [1] was created by the US Department
of Defence in order to provide a guideline for electronic reliability estimation. The
latest issue of this standard is “Notice 2” (N2) from February 1995. For completeness
purposes, the types of components considered by this standard are presented hereafter.

1 Figure presented in [Error! Reference source not found.].

322 N. Silva and R. Lopes

Table 1. Type of electronic components considered in MIL-Hdbk-217F

Component Comments
Microcircuits Includes all kinds of gates, microcontrollers,

memories and integrated circuits
Discrete Semiconductors Includes all kinds of diodes, transistors, thyristors

and optoelectronics
Tubes Includes all kinds of electronic tubes
Lasers Includes several kinds of lasers
Resistors None
Capacitors None
Inductive Devices Includes several kinds of transformers and coils
Rotating Devices Includes several kinds of motors
Relays None
Switches Includes several kinds of switches and circuit

breakers
Connectors None
Interconnection assemblies None
Connections None
Meters Includes several kinds of meters and panels
Quartz Crystals None
Lamps None
Electronic Filters None
Fuses None
Miscellaneous Parts Includes other components that are not categorised

as any of the previous types

The standard also defines sub-types for each type of component whenever found

necessary but, for clarification purposes, are not presented here. As can be observed,
the types of components are somehow outdated with respect to the evolution of elec-
tronics in the latest years. Some considerations regarding this list are presented in
chapter4.

Parts Count. This method is defined in the MIL-Hdbk-217F and defines the physical
and application factors that influence the reliability of electronic components. The
mathematical expressions that correlate the referred factors are also provided.

The input for applying this method is the “Bill Of Materials” (BOM) of a specific
electronic board or system. Once the list of components is set, one can estimate the
failure rate of each component by:

• Categorising the component in one of the categories presented in Table 1;
• Characterising the component with respect to the several factors that are applicable

to the selected category (Table 2 presents some of the considered factors).

 Electronic Reliability Estimation: How Reliable Are the Results? 323

After estimating the failure rate of each component, the failure rate of the complete
electronic board or system is computed by adding the failure rates of all its compo-
nents.

For completeness purposes, some of the factors considered by the standard to esti-
mate reliability are presented hereafter. This is not an exhaustive list but allows pre-
senting a representative subset of the factors that are in question.

Table 2. Factors that influence electronic components reliability

Type of
factor

Factor Comments

Physical factor Number of pins None
Quality Related to manufacturing process
Rated Voltage/Power None
Construction or Package
type

None

Technology TTL, Bipolar CMOS, etc
Application
factor

Environment Ground, Airborne, etc
Ambient Temperature Used to calculate Junction Temperature
Case Temperature Used to calculate Junction Temperature
Power Dissipation None
Power Stress None

2.2 Case Study

This paper is based on a Preliminary Reliability Analysis activity performed on three
electronic boards (hereafter referred as “Board A”, “Board B” and “Board C”) that
will be part of a large-scale system for the railway industry, that must comply with the
appropriate safety critical standards (e.g. [4]). The complete infrastructure will be
constituted by several other boards, which are also being designed at this stage.
Boards A, B and C implement safety critical functions and are therefore subject of an
initial preliminary reliability analysis. These boards are also at design phase and the
analysis aims to provide an initial assessment of their reliability. The design team
shall use the results to assess if any design changes are required or advisable before
concluding the design phase. Hereafter is presented a summary of the case study:

• Number of electronic boards: 3 (Board A, Board B and Board C);
• Domain: Railway;
• Environment: Closed facilities, compatible with the MIL-Hdbk-217F “Ground,

Fixed” definition;
• System: Large-scale and complex system, which interacts with other systems and

operates safety critical functionalities;
• Design: The complete system is being designed at this stage with little or no legacy

components or sub-systems.

324 N. Silva and R. Lopes

In order to understand the complexity of the electronic boards that are part of this case
study, the following table presents the number of total components and unique com-
ponents of each board. The “unique components” count is made by the component
reference. If one specific component (e.g. analog gate) is present in three different
locations of the board, the “# of components” is incremented by three but the “# of
unique components” is incremented by only one.

Table 3. Boards components metrics

Metrics Board A Board B Board C
Total number of components 860 1100 650
Total number of Unique components 171 202 137

2.3 Tools

The reliability activity has been performed with the support of the following Reli-
asoft™ tools:

• Lambda Predict 3
• PartLibraries.org

The “Lambda Predict” tool supports the MIL-Hdbok-217F standard, allowing saving
considerable effort by performing the required reliability calculations. The entire list
of component types (Table 1) and sub-types is available as well as their respective
modelling options (Table 2).

The “PartLibraries.org” is a database that integrates with “Lambda Predict” that
provides the reliability of several electronic components currently at the market (in-
cluding the following databases: EPRD-97, NPRD-95 and MIL-M-38510). The usage
of such databases provides two main advantages: saves the effort of modelling a “ge-
neric component” and provides a more accurate failure rate than the one that would be
obtained via the modelling of a generic component.

3 Results

Hereafter are presented the results of the reliability analysis for Board A, Board B and
Board C, with the support of Reliasoft™ tools. As described in previous sections, the
MTTF was the only metric estimated in this activity.

Given the methodology used (Parts Count, from MIL-Hdbk-217F), the total num-
ber of components has a considerable weight in the overall reliability. Nonetheless
note that despite the fact that Board B is constituted by significantly more components
than Board A, its MTTF is higher than the first. This indicates that the selection of the
components has an impact on the reliability estimates. Table 5 presents the relation-
ship between the total number of components and the number of unique components
observed for each board.

 Electronic Reliability Estimation: How Reliable Are the Results? 325

Table 4. Reliability results

Board # of components MTTF
(hours)

Average MTTF per component
(hours)

A 860 39360 33,88E+6
B 1100 41620 45,78E+6
C 650 57100 37,12E+6

Table 5. Total components and unique components relationship

Board # of components per # of unique components Average
A 5,03

5,25 B 5,45
C 4,74

The accuracy of the reliability estimation is difficult to evaluate. To perform such
evaluation, it is essential to identify indicators that contribute (or not) to the accuracy
of the results. The following indicators might be used for this purpose:

• Number of assumptions made during the components modelling task;
• Ratio between generic components modelled and database components used.

The number of assumptions made in the electronic components modelling task pro-
vides a good indicator on the accuracy of the model with respect to reality. As previ-
ously referred, the usage of database (DB) components also provides an added confi-
dence in the model since the data required to model the electronic component has
already been confirmed, collected and stored. Table 6 presents the two indicators.
Further considerations regarding this subject are presented in section4.

Table 6. Accuracy indicators

Board # of as-
sumptions

of unique
DB compo-
nents used

of unique DB
components used
per # of unique
components (%)

of DB compo-
nents used per
total # of compo-
nents (%)

A 19 24 14,0% 10,8%
B 24 36 17,8% 13,4%
C 25 14 10,2% 19,4%
TOTAL 68 74 14,5% 14,0%

4 Limitations and Lessons Learned

A list of considerations has been identified during the execution of the Preliminary
Reliability Estimation and is presented hereafter:

326 N. Silva and R. Lopes

• Parts Count method does not consider the possibility of electronic redundancy: The
reliability of a system is calculated based on the premise that the system fails if any
of its constituting components fails, i.e. the system is always modelled as a serial
system. This may not be correct since an electronic board may have redundant
electronic blocks to increase its fault tolerance and reliability. Whenever this hap-
pens, the reliability engineer must deviate from the standard method by calculating
the reliability of the parallel sub-system and including the resultant system as “one
part” in the Parts Count method.

• Types of components are outdated: The MIL-Hdbk-217F is based on previous
standards developed by the US Department of Defence. Although several types and
sub-types of components are considered, the list is outdated with respect with the
state-of-the-art electronics (e.g. ASICs, FPGAs). This becomes a potential source
of deviation between the estimated reliability and reality.

• Parameters required to correctly model the components are difficult to obtain: This
is more relevant in a preliminary analysis. Nominal parameters must be used too
often, which represents a potential source of deviation between the estimated reli-
ability and reality.

• Databases of component models have a limited number of components: The aim in
using databases is to provide more accurate component models than the ones ob-
tained manually and reducing effort. As shown in Table 6, only around 16% of the
components have been identified in the components database. Therefore, the bene-
fit of using the database was reduced.

5 Conclusions

MIL-Hdbk-217F parameters required to model components are questionable. The
reliability of the components is deeply affected by environment parameters such as
temperature. Although this is not questionable, the lack of parameters related to other
environmental factors (e.g. moisture, humidity) may represent an important deviation
between the estimation and reality.

Reliability estimations based on MIL-Hdbk-217F are rather conservative. Field
data from previous electronic boards present higher reliability figures. With newer
and more modern electronic components, the expectation was that the reliability of
the boards should be higher. More recent standards have been developed to address
this gap between reliability estimations and field data such as the RIAC 217Plus [5].
Although several modifications have been performed (type of components, physical
and application characteristics), field data is still the most reliable source of data reli-
ability estimation.

The effort required to model electronic components based on the MIL-Hdbk-217F
standard is also high. More recent standards such as the RIAC 217Plus [5] tackle this
issue by reducing the amount of parameters to be filled by the reliability engineer.

Based on the presented conclusions, the results from a preliminary reliability esti-
mation activity must be always analysed with a critical view. Several experts consider
that the difference between what is obtained via MIL-Hdbk-217F and the data

 Electronic Reliability Estimation: How Reliable Are the Results? 327

collected from the field is so significant that the estimation exercise has very low
value (see [6]). Although the reliability figure obtained via MIL-Hdbk-217F may not
be as accurate as desired, it provides a good guideline to the design team, especially
when deciding between more than one design or alternative components. Also, more
recent standards should be considered instead of the somehow outdated MIL-Hdbk-
217F. The reliability estimation shall be revisited in later project phases when data
from accelerated life testing activities becomes available.

6 Future Work

New Reliability Estimation projects are currently being executed. For these projects,
the RIAC 217Plus [5] has been selected instead of the MIL-Hdbk-217F. A similar
study to the one presented in this paper will be performed, highlighting the advan-
tages and disadvantages, similarities and differences of using each standard from the
reliability engineer point of view.

Another activity is to extend the study to more than two domain areas and to a lar-
ger amount of boards studied. Currently, we used data from railway and aeronautics
studies and these domains have their own specificities, in terms of environmental
factors and certification requirements for example, that other domains might deal in a
different way.

Acknowledgement. This work has been partially supported by the project CRITICAL
Software Technology for an Evolutionary Partnership (CRITICAL-STEP,
http://www.critical-step.eu), Marie Curie Industry-Academia Partnerships and Path-
ways (IAPP) number 230672, within the context of the EU Seventh Framework
Programme (FP7).

References

1. Military Handbook: Reliability Prediction of Electronic Equipment – Notice 2, MIL-Hdbk-
217F-N2 (February 1995)

2. Lambda Predict User’s Manual, Reliasoft (2009)
3. O’Connor, P., Kleyner, A.: Practical Reliability Engineering, 5th edn. John Wiley (2012)
4. CENELEC EN 50126: Railway applications — The specification and demonstration of Re-

liability, Availability, Maintainability and Safety (RAMS) (1999-2007)
5. Handbook of 217PlusTM Reliability Prediction Model, RIAC-HDBK-217Plus, RIAC (May

26, 2006)
6. Why you cannot predict Electronic Product Reliability, Lambda Consulting, 2012 ARS –

Europe (March 2012)
7. Pattavina, J.S., Harris Corporation: Tutorial of Analyzing High Reliability: Part 1 (October

2004)

Model-Based Assessment

of Multi-region Electric Power Systems
Showing Heterogeneous Characteristics

Silvano Chiaradonna1, Felicita Di Giandomenico1, and Nicola Nostro1,2,�

1 ISTI-CNR, Pisa, Italy
{silvano.chiaradonna,felicita.digiandomenico,nicola.nostro}@isti.cnr.it

2 Università degli Studi di Firenze, Firenze, Italy
nicola.nostro@unifi.it

Abstract. Analysis of complex systems, as critical infrastructures are
especially because of interdependent structure and behavior of their
composing parts, is typically tackled in a number of refinements steps.
Simplistic models of the system under analysis are initially set-up, then
gradually extended to encompass more and more sophisticated phenom-
ena and behavior which lead the model to be more adherent to reality.
This was the process followed in a series of studies, conducted by (part
of) the authors of this paper, targeting the analysis of Electric Power
Systems (EPS) to understand the impact of interdependencies between
the electric power grid and of the cyber control infrastructure in critical
scenarios. Specifically, from the original model accounting only for a re-
gional EPS, we moved to a more sophisticated and realistic multi-region
organization, first characterized by homogeneous conditions of the net-
work parameters and of the cost associated to power losses and to power
generation and subsequently enriched with some aspects of heterogene-
ity. Here, we go further with exploring other aspects of heterogeneity
and related impact on black-outs indicators, to both prove the feasibil-
ity of the developed modeling framework and to assess the relevance of
accounting for such heterogeneity.

Keywords: Stochastic Modeling, Electric Power System, Infrastructures
Dependencies, Blackout-size Assessment.

1 Introduction

Electric power utilities are among the most critical infrastructures providing ser-
vices highly impacting on everyday life of modern and future society. Therefore,
understanding the vulnerabilities and threats they are exposed to, as well as
their impact on the offered services, is a priority in order to take appropriate
measures to mitigate their effects. After major black-outs in Europe and North
America occurred at the beginning of years 2000s, several research initiatives

� Corresponding author.

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 328–339, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Model-Based Assessment of Multi-region EPS Showing Heterogeneity 329

have been started, also as International level efforts, to investigate practical
methodologies, tools and measurement metrics to analyze Electric Power Sys-
tems (EPS) [3]. One research direction is focusing on understanding the impact
of dependencies between the electrical grid and the cyber infrastructure control-
ling the electrical grid in EPS, since they have proved to be responsible of many
cascading, escalating and common mode failures.

The authors of this paper have contributed to such research on the analysis of
interdependencies in the last few years, starting with activities conducted in the
context of the EU project CRUTIAL [9]. An innovative, modular EPS modeling
approach, that considers separately the two constituting EPS infrastructures,
but takes into account their interdependencies and allows to assess the impact
of reciprocal failures, has been developed [8,4,5]. The study evolved from the
modeling of a single EPS region to a more complex and realistic model addressing
EPS organized as a set of interacting regions [6]. A variety of critical scenarios
have been exercised as case-studies to demonstrate the applicability and usability
of the developed modeling framework. Although the models were developed as
much as possible in a parametric and general form, so as to be able to account
for a variety of real EPS scenarios, the applications of the modeling framework
initially addressed only homogeneous scenarios, from the point of view of the
entities of the power grid, and considering uniformly distributed random failures
affecting such elements. Only recently, in [7], some aspects of heterogeneity have
been accounted for in the analyzed scenarios, namely in two forms: the presence
of loads of different criticality (from the point of view of consequences of power
loss) and the option of different failure rates for the power lines. However, the
choice of which loads had different criticality, as well as which power lines had
different failure rate, was made randomly. Although relevant to get measures
representative of average trends of the power delivered by EPS in scenarios of
interest for the user and/or for the service provider, the random choice is not
appropriate when the interest is on phenomena affecting specific components
of the grid. This is what we have pursued in this paper, where we conducted
analyses considering aspects of heterogeneity characterizing specific components
of the grid topology, as well as failure of specific power lines, and not resorting
to random choices. We therefore extended and enriched the analyses performed
in previous studies and showed the applicability of our EPS modeling framework
to deal with heterogeneous load criticality and failure events affecting a number
of specific grid elements.

The paper is organized as follows. In Section 2, a brief summary of the multi-
region EPS modeling framework, the analyses conducted in this paper are based
on, is provided. This section constitutes the background to understand the devel-
oped analyses, covering also the related work. The next Section 3 introduces the
grid topology used for experimenting the modeling framework under heteroge-
neous conditions, the measures evaluated and the scenarios considered in terms
of loads criticality and failed power lines. Then, the analysis results are shown
and commented in Section 4. Finally, conclusions and indications for future work
are sketched in Section 5.

330 S. Chiaradonna, F. Di Giandomenico, and N. Nostro

2 Overview of the Multi-region EPS Model

The multi-region EPS modeling framework used in this study has been presented
in [6], as an evolution of the previously developed regional solution to deal with
electrical grid topologies organized and controlled as a set of interacting regions.
To better understand the analyses conducted in this paper, we briefly recall it.

As already mentioned in the Introduction, EPS systems are composed by
two major parts: the electrical infrastructure (EI) and its control information
infrastructure (ITCS).

EI includes all the electrical elements that, for the purpose of modeling, are
logically distinguished in: generators, which produce the energy, the power lines,
through which the produced energy is conveyed to reach loads, which are differ-
ent types of end-users using the produced energy. Some simplifying assumptions
have been made to represent the power flow through the transmission grid, fol-
lowing the same approach used in [1,2,11]. Therefore, the state and the evolution
of the transmission grid are described by the active power flow F on the lines
and the active power P at the nodes (generators, loads or substations), which
satisfy linear equations for a direct current (DC) load flow approximation of the
alternate current (AC) system.

The ITCS control has been modeled through the two subsystems hierarchi-
cally composing the teleoperation system: i) LCS (Local Control System) which
guarantees the correct operation of a node equipment and reconfigures the node
in case of breakdown of some apparatus, and ii) RTS (Regional Telecontrol Sys-
tem), which monitors all the electrical components of its assigned region and
takes reconfiguration actions to restore the functionality of the grid in case of
breakdowns suitable involving the whole region and possibly also RTS of neigh-
boring regions, if necessary. The two considered reconfiguration strategies, per-
formed by LCS and RTS respectively, are:

– RS1(), to represent the effect of the reactions of ITCS to an event that
has compromised the electrical equilibrium of EI when only the state local
to the involved EI components is considered. Given the limited information
required by this reconfiguration, performed by the LCS controlling the elec-
trical apparatus affected by the failure, it is considered very fast (actually,
instantaneous) in the model.

– RS2(), to represent the effect of the reactions of ITCS to an event that has
compromised the electrical equilibrium in EI when the state global to all
the EI system under the control of ITCS is considered. This reconfiguration,
performed by the RTS of the affected region, requires knowledge of the global
state of the region and therefore reacts in a longer time.

The output values of RS1() and RS2() (i.e., the new values for F and P) are
derived by solving different Linear Programming (LP) problems, based on the
overall grid.

The EPS organization in multi regions requires a coordination among them
when computing a reconfiguration spanning a number of regions. A reconfigu-
ration algorithm considering multiple regions has been developed, based on the

Model-Based Assessment of Multi-region EPS Showing Heterogeneity 331

principle that first a new electrical equilibrium is attempted inside the region
where the failure occurred and, only in case this is not possible, neighbor regions
are called to contribute. In this second case, a number of steps are performed,
possibly limited by some constraints tied to costs of keeping the electric grid
under unstable equilibrium. If more than one step is allowed, at each step after
the first one (where only a minimum set of regions is considered based on the
current configuration and on the involved reconfiguration function, RS1() or
RS2()), additional regions of the grid are involved according to the results of
the LP problem applied on the set of regions considered at the previous step.
Details on the algorithms implemented by RS1() and RS2() are in [6], where
a few cost functions the LP problem is based on are also described. Typically,
RS1() is based on the grid configuration immediately before the occurrence of
the disruption and RS2() is based on the nominal grid configuration, the initial
configuration at time 0 (e.g. if the power demand is constant).

The implementation of the EPS framework just recalled has been carried out
using the SAN formalism [14] and the Möbius tool [10]. Atomic models for each of
the main EI and ITCS components, also accounting for interdependencies and
propagation of failure phenomena, have been developed and connected (Join
and Rep operators) through some shared places of the SAN model, that repre-
sent part of the states of the EPS. This modular approach makes the modeling
framework general and flexible to accommodate the characteristics of various
EPS, theoretically allowing the modeling and analysis of any possible EPS con-
figurations. Details about the developed SAN models are omitted for lack of
space, since they are fully described in the publications previously referred.

3 The EPS Configuration under Analysis, Measures
of Interest and Scenarios

The IEEE Reliability Test System - 1996 (RTS-96) (described in [12,13]) was
created by a commitee of power system experts in order to provide a standardized
test grid for different power system reliability evaluation methodologies. The
test grid can include many diffreent configurations and it was already chosen as
representative power grid topology in our previous papers to demonstrate the
features of the modeling frameworks we have incrementally developed. Therefore,
to maintain continuity with such studies, also in view of possible comparisons of
the obtained results, the RTS-96 in the configuration shown in Figure 1 has been
chosen to derive the analysis results shown in the next section. It is composed
of 42 nodes (of which 10 are generators and 17 are loads) and 56 lines. It has
been structured into four interconnected regions, without following any specific
criterion, but in a rather arbitrary way just for the purpose of exercising a multi-
regional power grid. In the figure, each region is enclosed into a dashed box.

In the figure, the label “Pi/P
max
i ” associated to the generators (circles) rep-

resents the initial (active) power Pi and the maximum power that the generator
i can supply Pmax

i . The label “Di” associated to the loads (squares) represents
the power demand (constant over time) of the load i. The label “Fij/F

max
ij ”

332 S. Chiaradonna, F. Di Giandomenico, and N. Nostro

Region 1

33%, 52%, 61%

Region 3

20%, 28%, 68%

Region 2

19%, 5%, 316%

Region 4

28%, 15%, 184%

101G 102G

107G

113G

115G

116G

118G

121 122 123

218/230

218/230

342/360

342/360

245/258

176/186

456/480

673/709

456/480

752/792

101 102

107

111 112 113

115116

117 118

124

125D

126D

127D

128D

101L 102L

103

104105

106

107L

108

109 110

113L

114 115L

116L

118L

119 120

-148 -132

-245

-101-97

-185

-170

-233

-239

-265

-361

-264

-432

-137

-454

-246

-174

-37/175 (5)

82/175 (12)

49/175 (8)

66/175 (5)

77/175 (8)

-360/400 (12)

-52/175 (10)

-120/175 (16)

-17/175 (6)

-56/175 (6)

-102/500 (21)

-47/500 (24)

-253/500 (17)

-439/500 (20)

-115/500 (38)

8/500 (38)

-54/500 (25)

-133/500 (45)

-54/500 (25)

-7/500 (10)

-116/400 (12)

360/500 (20)

146/500 (13)

-323/500 (43)

259/500 (19) -182/500 (10)

-108/500 (25)

-366/500 (11)

5/500 (38)5/500 (38)

-440/500 (59)

-440/500 (59)

-107/500 (71)

-7/500 (10)

172/175 (16)

-162/400 (12)

-44/175 (6)

-254/400 (12)

-202/400 (12)

28/175 (71)

-409/500 (21)

-14/175 (11)

Fig. 1. Diagram of the EI grid corresponding to the RTS96 test grid

associated to the lines represents the initial power flow Fij through the line (i, j)
and the maximum power flow that a transmission line can carry Fmax

ij . A nega-
tive Fij value means that the current is flowing in the opposite direction of the
corresponding arrow. Also, in brackets it is shown the susceptance of each line.
The percentages under the region name represent, in the order, the percentage
of the (active) power demand of the region with respect to power demand of
the overall grid, the percentage of power provided by the region with respect to
power demand of the overall grid, and the percentage of the maximum power
of the region needed to satisfy the power demand of the region (i.e., the ratio
between the whole power demand of the region and the maximum power that
can be supplied by the region itself).

Concerning the measures assessed in the evaluation as indicators of the black-
out size, they are: PUD(0, l) and PUDh

(0, l), defined as the mean of the percentage

Model-Based Assessment of Multi-region EPS Showing Heterogeneity 333

of power demand UD(0, l) that is not met in the interval (0, l) for the whole grid
and for load h, respectively. In the following analyses, we considered the interval
of 1 day, indicated as (0, 1d).

Several scenarios have been considered based on the grid topology in Figure
1, each focusing on specific combinations of loads criticality and power lines
failures. The heterogeneity aspect that has been addressed in the analysis per-
tains the loads. Specifically, we have considered that one or more loads may
have different criticality with respect to the others, where criticality is defined
in terms of the cost associated with undelivered power demand with respect
to the requested one, which leads shedding operations to be performed on the
critical loads only after the shedding of the non critical loads involved in the re-
configuration has been performed without resulting in an electrical equilibrium.
Concerning power lines, we have assumed the failure of one or more power lines.
The heterogeneity dimension accounted here was already taken into account in
[7], but the choice of how to allocate the heterogeneity is different. In fact, in
[7], randomness was the principle followed in assigning the criticality to loads
and to select the failed power lines. Here, instead, the loads heterogeneity and
the failure of power lines are applied to specific power grid elements, to inves-
tigate on power loss in presence of well identified circumstances, useful e.g. to
electric operators to understand the robustness of their grid when affected by
malfunctions in specific areas of the topology, or to set-up appropriate contrac-
tual policies with users requiring specific service conditions. Moreover, as a novel
contribution with respect to previous analyses, we have studied the effect of the
failure of clusters of power lines, formed by one selected power line in conjunc-
tion with neighbor ones, to resemble real situations where a failure propagates
along adjacent lines, affecting all of them.

The results have been obtained using the simulator engine of the Möbius
tool. The failure event triggering the intervention of the ITCS reconfiguration
is a disruption of power lines. Therefore, in the experiments performed, the
simulation starts just after the failure of one (or more) power line(s), and lasts
one day (the length of the time window of our transient analysis). Each result
is obtained by executing 80000 simulation runs (batches). The confidence level
was set to 0.95. The confidence intervals obtained for the results are shown in
the plots, although, for some values, they are very small (similar to points).

4 Analysis Results

This section concentrates on the analyses we conducted, applying aspects of
heterogeneity on the different scenarios briefly sketched in the previous section.
As a general note, to improve readability only a subset of the power lines or of
the loads are shown in the following figures, selected among those that have a
significant impact on the assessed measure of interest. Moreover, the case of no
critical load is always included, for comparison purposes.

Figure 2 shows the results of the mean percentage of undelivered load at
varying the (single) power line (i, j) that fails (on the x axis). In particular,

334 S. Chiaradonna, F. Di Giandomenico, and N. Nostro

0.1

1.0

10.0

(1
16

,1
19

)

(1
16

,1
17

)

(1
15

,1
21

)

(1
03

,1
24

)

(1
15

,1
27

D
)

(1
14

,1
16

)

(1
21

,1
22

)

(1
17

,1
22

)

(1
06

,1
10

)

(1
08

,1
10

)

(1
08

,1
09

)

(1
02

,1
06

)

P
U

D
(0

,1
d)

 (
%

)

Failed line (i,j)

No critical load
Critical load 118L (D118L=454, max)

Critical load 119 (D119=247)
Critical load 106 (D106=185)

Critical load 105 (D105=97, min)

(a)

10-4

10-3

10-2

10-1

100

101

102

(1
16

,1
19

)

(1
15

,1
27

D
)

(1
15

,1
21

)

(1
13

,1
23

)

(1
21

,1
22

)

(1
17

,1
22

)

(1
15

,1
16

)

P
U

D
10

5(0
,1

d)
 (

%
)

Failed line (i,j)

No critical load
Critical load 105

(b)

10-4

10-3

10-2

10-1

100

101

102

(1
16

,1
19

)

(1
15

,1
27

D
)

(1
15

,1
21

)

(1
06

,1
10

)

(1
02

,1
06

)

(1
16

,1
17

)

(1
13

,1
23

)

P
U

D
10

6(0
,1

d)
 (

%
)

Failed line (i,j)

No critical load
Critical load 106

(c)

10-4

10-3

10-2

10-1

100

101

102

(1
16

,1
19

)

(1
15

,1
27

D
)

P
U

D
11

9(0
,1

d)
 (

%
)

Failed line (i,j)

No critical load
Critical load 119

(d)

Fig. 2. PUD(0, 1d), at varying the single failed power line, for different critical loads
(a). PUD105(0, 1d) (b), PUD106(0, 1d) (c) and PUD119(0, 1d) (d), at varying the single
failed power line.

Figure 2(a) illustrates the trend of PUD(0, 1d) for the overall grid, in presence
of different critical loads. The loads have been chosen so as to include: the one
requesting the highest demand (load 118L), the one requesting the lowest de-
mand (load 105) and two representative of a medium demand request (loads
119 and 106). The other three Figures 2(b), 2(c), and 2(d) show the results of
PUDh

(0, 1d), for the critical load h (where h assumes respectively the value of
105, 106, and 119). A corresponding figure relative to load 118L is not shown,
since its PUD118L (0, 1d) is always zero, either when it is considered critical or not
and whichever be the failed power line.

Figure 2(a) shows that, whatever be the failed power line, considering a dif-
ferent criticality for a specified load does not impact on the percentage of un-
delivered power demand of the overall electrical grid, whether the load has a
maximum, intermediate, or minimal demand. Instead, looking at the Figures
2(b), 2(c) and 2(d), where the measure of interest is relative to the single load
considered critical, it can be observed how the failure of the specific power line
impacts differently on the different critical load. As expected, when a load is
critical its undelivered demand is in general lower (sometimes zero) with respect
to the case when it is not critical. However, there are cases where the loss re-
mains the same when, given the location of the failed power line and the critical

Model-Based Assessment of Multi-region EPS Showing Heterogeneity 335

load, a new equilibrium cannot be restored without affecting the power demand
of that critical load. For example, in Figure 2(c) when the load 106 is critical,
the failure of the power lines (106, 110) or (102, 106), does not lead to improve
its PUD106 (0, 1d) with respect to the case when this load is not critical.

Figure 3 shows how the only failure of the power line (116, 119) has impact
on PUDh

(0, 1d), for each load h, both in the case where load h is assumed to
be the only critical load in the grid and in the opposite case where all the loads
are critical except load h. The same analysis has been performed also focusing
on the specific load 119 and showing how the PUDh

(0, 1d) of the other loads
changes when the load 119 is the only critical one or the only not critical one;
the results are shown in Figure 4. We selected line (116, 119) as the failed power
line since, from Figure 2(a), it is the one causing the greatest load loss.

Figure 3 displays the two extremes power losses incurred by each load h when
the power line (116, 119) fails, for the two extreme criticality conditions of the
load itself. Not surprisingly, when load h is the only non critical one, its demand is
always fully undelivered, while in the opposite case its loss significantly decreases.

10-4

10-3

10-2

10-1

100

101

102

10
5

10
6

11
9

11
0

10
2L

10
3

10
1L

10
9

11
4

10
4

10
7L

10
8

12
0

11
3L

P
U

D
h(0

,1
d)

 (
%

)

Load h

One critical load h
All critical loads excluded h

Fig. 3. PUDh(0, 1d), at varying the load h, when h is the only critical load and when
it is the only non-critical load, in case of failure of power line (116, 119) only

Figure 4 shows how the criticality or non criticality of load 119 impacts on
the undelivered demand PUDh

(0, 1d) suffered by all the other loads h: it can be
observed that for some loads there is almost no influence, but for others (like
loads 109 and 114) the impact is significant.

In order to move towards more realistic scenarios, the next two figures show
the results of the analyses performed to evaluate the impact of the failure of a
cluster of power lines.

Figure 5 shows the PUDh
(0, 1d), when load h is the critical one or the spe-

cific load 119 is the critical one, in presence of the failure of the whole set of
power lines directly connected with (116, 117), including (116, 117) itself. The
results are compared, in the figure, with the simplest case in which only the line

336 S. Chiaradonna, F. Di Giandomenico, and N. Nostro

10-4

10-3

10-2

10-1

100

101

102

10
5

10
6

11
9

11
0

10
2L

10
3

10
1L

10
9

11
4

10
4

10
7L

10
8

12
0

11
3L

P
U

D
h(0

,1
d)

 (
%

)

Load h

One critical load 119
All critical loads excluded 119

Fig. 4. PUDh(0, 1d), at varying the load h, when 119 is the only critical load and when
it is the only non-critical load, in case of failure of the power line (116, 119) only

(116, 117) fails, to better appreciate the effects of the failure of the cluster of
power lines. It is interesting to note that the single failure of the line (116, 117)
never impacts on the PUDh

(0, 1d) of each load h when it is critical, while the
failure of the power line and of all its neighboring one determines in general a
significant loss (leading to total loss for some loads, in some cases). Although the
trend is not surprising, the results are useful to understand some characteristics
of the grid. For instance, when the cluster of lines fails, the PUD101L (0, 1d) rela-
tive to load 101L is the same both if the load is critical and if it is not critical.
This implies that no shedding of the other loads helps in reducing the power loss
of the node 101L when it is critical.

10-4

10-3

10-2

10-1

100

101

102

10
5

10
6

11
9

11
0

10
2L

10
3

10
1L

10
9

11
4

10
4

10
7L

10
8

12
0

11
3L

11
5L

11
6L

P
U

D
h(0

,1
d)

 (
%

)

Load h

One failed line (116,117), critical load h
Failed lines: (116,117) and neighbors, critical load h

One failed line (116,117), critical load 119
Failed lines: (116,117) and neighbors, critical load 119

Fig. 5. PUDh(0, 1d), at varying the load h, for each critical load h, or critical load 119,
in case of failure of one specified single power line (116, 117) only, or of the power line
(116, 117) and all its neighboring power lines

Model-Based Assessment of Multi-region EPS Showing Heterogeneity 337

0.1

1.0

10.0

100.0

(1
16

,1
19

)
(1

16
,1

17
)

(1
15

,1
21

)
(1

03
,1

24
)

(1
15

,1
27

D
)

(1
14

,1
16

)
(1

21
,1

22
)

(1
17

,1
22

)
(1

06
,1

10
)

(1
08

,1
10

)
(1

08
,1

09
)

(1
02

,1
06

)
(1

15
,1

16
)

(1
13

,1
23

)
(1

12
,1

23
)

(1
15

,1
24

)
(1

12
,1

13
)

(1
18

,1
21

)
(1

18
,1

26
D

)
(1

17
,1

18
)

(1
03

,1
09

)
(1

11
,1

13
)

(1
10

,1
12

)
(1

01
,1

03
)

(1
05

,1
10

)
(1

04
,1

09
)

(1
19

,1
20

)
(1

19
,1

28
D

)
(1

01
,1

02
)

(1
10

,1
11

)
(1

07
,1

08
)

(1
11

,1
14

)
(1

09
,1

12
)

(1
09

,1
11

)
(1

01
,1

05
)

(1
02

,1
04

)
(1

20
,1

23
)

(1
20

,1
25

D
)

P
U

D
(0

,1
d)

 (
%

)

Failed line (i,j)

One failed line (i,j), no critical load
Failed lines: (i,j) and neighbors, all critical loads excluded 118L

Failed lines: (i,j) and neighbors, critical load 118L

Fig. 6. PUD(0, 1d), at varying the failure of power line (i, j), on the x axis, together
with the failure of its neighboring lines, for different criticality conditions of the loads

Figure 6 shows PUD(0, 1d), at varying the failure of power line (i, j), on the
x axis, together with its neighboring power lines (e.g., the neighbors of power
line (110, 106) are: (110, 112), (108, 110), (110, 111), (105, 110), (102, 106)). The
analyses have been performed considering three cases: i) the grid has no critical
loads and only the power line (i, j) fails; ii) the only critical load is the load
118L (chosen since, as a result of the analysis illustrated in Figure 2, no single
failure of power lines has effect on this load); iii) all the loads are critical except
the load 118L. The last two cases are in presence of simultaneous failure of the
power line (i, j) and its neighboring lines.

The first immediate result from this analysis is that the impact of a single
power line on the mean power loss PUD(0, 1d) is limited to a small set of power
lines only (12 out of the 56 power lines included in the grid), while the failure of
clusters of power lines has always a relevant effect. The second comment is that
the failure of cluster of power lines (whose dimension varies depending on the
number of neighbors of each power line) has, in the great majority of the cases,
an impact that is independent from the number of critical loads considered.
This is due to the fact that the damages caused by the failed power lines are so
substantial that the criticality dimension of the loads becomes almost irrelevant.

338 S. Chiaradonna, F. Di Giandomenico, and N. Nostro

5 Conclusions

This paper has extended previous analyses of EPS organized as a set of intercon-
nected regions, by taking into account interdependencies among the composing
electrical grid and its information control system, in scenarios characterized by
heterogeneity of the loads criticality and failure of one or more power lines. The
novelty with respect to previous studies is in the criterion applied to select the
grid components for heterogeneity and failure. In fact, while random choices have
been made in the past, here we direct the choice on specific power grid elements,
to investigate on power loss in presence of well identified circumstances. This
kind of analysis is useful, e.g., to electric operators to understand the robustness
of their grid when affected by malfunctions in specific areas of the topology, or
to set-up appropriate contractual policies with users requiring specific service
conditions.

To this purpose, a previously developed modeling and analysis framework
has been employed and properly adapted to deal with the new analysis goals.
Indicators representatives of the user’s perceived forms of (partial) black-outs
have been derived in scenarios where the loss of specific loads have different
criticality levels, as well as scenarios where failures of specific power lines occur.
Moreover, as an additional novel contribution, we have studied the effect of the
failure of clusters of power lines, formed by one selected power line in conjunction
with neighboring ones, to resemble real situations where a failure propagates
along adjacent lines, affecting all of them. Although the modeling framework
already included this feature, it has been never exercised on concrete scenarios
in previous work. The performed analyses, although limited to the considered
scenarios, are successful in showing: i) the ability of the framework to account
for heterogeneous characteristics and failure phenomena affecting specific grid
elements, and ii) the importance of accounting for these aspects to get accurate
results in specific EPS conditions.

Further explorations would be interesting, e.g. in terms of additional hetero-
geneity aspects to address and indicators of quality of service perceived by users.
Actually, we plan extensions of our investigations in these directions.

References

1. Anghel, M., Werley, K.A., Motter, A.E.: Stochastic model for power grid dynamics.
In: 40th IEEE Hawaii Int. Conf. on System Sciences (CD-ROM), Waikoloa, Big
Island, Hawaii, pp. 113–122 (January 2007)

2. Chen, J., Thorp, J.S., Dobson, I.: Cascading dynamics and mitigation assessment
in power system disturbances via a hidden failure model. Int. J. Electr. Power
Energy Syst. 27(4), 318–326 (2005)

3. Chiaradonna, S., Di Giandomenico, F., Lollini, P.: Evaluation of Critical Infras-
tructures: Challenges and Viable Approaches. In: de Lemos, R., Di Giandomenico,
F., Gacek, C., Muccini, H., Vieira, M. (eds.) Architecting Dependable Systems V.
LNCS, vol. 5135, pp. 52–77. Springer, Heidelberg (2008),
http://dx.doi.org/10.1007/978-3-540-85571-2_3

http://dx.doi.org/10.1007/978-3-540-85571-2_3

Model-Based Assessment of Multi-region EPS Showing Heterogeneity 339

4. Chiaradonna, S., Di Giandomenico, F., Lollini, P.: Assessing the impact of inter-
dependencies in electric power systems. International J. System of Systems Engi-
neering 1(3), 367–386 (2009)

5. Chiaradonna, S., Di Giandomenico, F., Lollini, P.: Definition, implementation and
application of a model-based framework for analyzing interdependencies in electric
power systems. International Journal of Critical Infrastructure Protection 4(1),
24–40 (2011)

6. Chiaradonna, S., Di Giandomenico, F., Nostro, N.: Modeling and analysis of the
impact of failures in electric power systems organized in interconnected regions.
In: IEEE/IFIP 41st Int. Conf. on Dependable Systems and Networks (DSN 2011),
pp. 442–453 (June 2011)

7. Chiaradonna, S., Di Giandomenico, F., Nostro, N.: Analysis of electric power sys-
tems accounting for interdependencies in heterogeneous scenarios. In: Ninth Euro-
pean Dependable Computing Conference (EDCC 2012) (May 2012)

8. Chiaradonna, S., Lollini, P., Di Giandomenico, F.: On a modeling framework for
the analysis of interdependencies in electric power systems. In: IEEE/IFIP 37th
Int. Conf. on Dependable Systems and Networks (DSN 2007), pp. 185–195 (June
2007)

9. CRUTIAL: European Project CRUTIAL - Critical utility infrastructural resilience,
http://crutial.erse-web.it

10. Daly, D., Deavours, D.D., Doyle, J.M., Webster, P.G., Sanders, W.H.: Möbius:
An Extensible Tool for Performance and Dependability Modeling. In: Haverkort,
B.R., Bohnenkamp, H.C., Smith, C.U. (eds.) TOOLS 2000. LNCS, vol. 1786, pp.
332–336. Springer, Heidelberg (2000)

11. Dobson, I., Carreras, B.A., Lynch, V., Newman, D.E.: An initial model for complex
dynamics in electric power system blackouts. In: 34th IEEE Hawaii Int. Conf. on
System Sciences (CD-ROM), Maui, Hawaii, 9 pages (January 2001)

12. IEEE RTS Task Force of the APM Subcommittee: IEEE reliability test system.
IEEE Trans. Power App. Syst. PAS-98(6), 2047–2054 (November 1979)

13. IEEE RTS Task Force of the APM Subcommittee: The IEEE reliability test system
- 1996. IEEE Trans. Power Syst. 14(3), 1010–1020 (1999)

14. Sanders, W.H., Meyer, J.F.: Stochastic Activity Networks: Formal Definitions and
Concepts. In: Brinksma, E., Hermanns, H., Katoen, J.-P. (eds.) FMPA 2000. LNCS,
vol. 2090, pp. 315–343. Springer, Heidelberg (2001)

http://crutial.erse-web.it

ERCIM/EWICS/Cyberphysical
Systems Workshop

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 343–346, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Introduction to the ERCIM/EWICS
Cyberphysical Systems Workshop 2012

Erwin Schoitsch1 and Amund Skavhaug2

1 AIT Austrian Institute of Technology, Safety & Security Department
Donau-City-Straße 1, TechGate

A-1220 Vienna, Austria
Erwin.schoitsch@ait.ac.at

2 The Norwegian Univ. of Science and Technology,
Department of Engineering Cybernetics

Trondheim, Norway
amund.skavhaug@ntnu.no

Dear Participant,

Computers are everywhere – may they be visible or integrated into every day
equipment, devices, and environment, outside and inside us, mobile or fixed, smart,
interconnected and communicating. Comfort, health, services, safety and security of
people depend more and more on these “cyber-physical systems”. They combine
software, sensors and physics, acting independently, co-operative or as “systems-of-
systems” composed of interconnected autonomous systems originally independently
developed to fulfil dedicated tasks. The impact on society as a whole is tremendous -
thus dependability in a holistic manner becomes an important issue, covering safety,
reliability, availability, security, maintainability, robustness and resilience, despite
emergent behaviours and interdependencies.

Technology is developing very fast. Demanding challenges have to be met by
research, engineering and education. Smart (embedded) systems are regarded as the
most important business driver for European industry. They are a targeted research
area for European Research Programmes in Framework 7, in the ARTEMIS Joint
Undertaking, and in several other dedicated Programmes and European Technology
Platforms (ARTEMIS, EPoSS). Their application is not only in the traditional areas of
aerospace, railways, automotive, or process industry and manufacturing, but also in
robotics and services of all kind, in home appliances (smart environments, smart
homes, ambient assisted living) and health care.

This workshop at SAFECOMP follows already its own tradition since 2006. It
started as a co-operation between EWICS TC7, the European Workshop on Industrial
Computer Systems, the founder and main sponsor of SAFECOMP as an International
Conference on Computer Safety, Reliability and Security, and the ERCIM Working
Group on Dependable Embedded Systems, ERCIM being the European Research
Consortium for Informatics and Mathematics. The topics are covering aspects from
design, development, verification and validation, certification, maintenance,
standardization and education & training in the area of dependable (embedded)
systems. This is a workshop, and to be distinct from the SAFECOMP conference

344 E. Schoitsch and A. Skavhaug

mainstream, allows reports on “work in progress” aiming at hopefully fruitful
discussions and experience exchange. Reports on European or national research
projects (as part of the required dissemination) as well as industrial experience reports
are welcome.

This year the workshop is co-hosted by the ARTEMIS projects R3-COP
(“Resilient Reasoning Robotic Co-operating Systems”, http://www.r3-cop.eu),
MBAT (“Combined Model-based Analysis and Testing of Embedded Systems”,
http://www.mbat-artemis.eu) and pSafeCer/nSafeCer (“Safety Certification of
Software-intensive Systems with Reusable Components”, http://www.safecer.eu).
ARTEMIS (Advanced Research and Technology for Embedded Intelligence and
Systems) is a European, industry-driven research initiative (so-called “Joint
Technology Initiative” comprised of the EC, the ARTEMIS Industrial Association
and the Public Authorities of the ARTEMIS member states) aiming at helping
European industry consolidate and reinforce its world leadership in embedded
computing technologies and to overcome the fragmentation of the embedded systems
industries. The economic impact in terms of jobs and growth is expected to exceed €
100 billion over ten years. As a Joint Undertaking it is funding mainly a set of rather
big projects, following the ARTEMIS Strategic Research Agenda in its work program
and conducting each year a separate call for proposals based on its work program.
Funding is shared between the EC and the national funding authorities.

ARTEMIS is the major European Embedded Systems Initiative, and therefore the
three co-hosting ARTEMIS projects will be described briefly:

As an example may be taken R3-COP, which aims at providing European industry
with new leading-edge innovations, that will enable the production of advanced
robust and safe cognitive, reasoning autonomous and co-operative robotic systems at
reduced cost. The major objective is to achieve cross-sector reusability of building
blocks, collected in a knowledge base, by developing and implementing a generic
framework and platform with domain-specific instantiation, and use of a multi-
purpose computing platform. About the concepts to follow towards a future European
Technology Reference Platform a paper will be presented in the workshop.

MBAT will achieve better results by combining test and analysis methods. A new
leading-edge Reference Technology Platform (RTP) for effective and cost-reducing
validation and verification of Embedded Systems will be developed. MBAT project
will strongly foster the development of high-quality embedded systems within
transportation products at reduced costs, or in short: higher quality embedded systems
at lower price. Higher quality embedded systems within transportation products will
in turn increase the overall quality and market value of the transportation products.
This will be of high value for the European industry and future projects, and
contribute to the overarching ARTEMIS Goal of a Common Technology Reference
Platform. Therefore close co-operation with related projects is envisaged, especially
with those of the ARTEMIS Safety & High-reliability Cluster (e.g. CESAR, MBAT,
SafeCer, iFEST, R3-COP).

SafeCer aims at increased efficiency and reduced time-to-market together with
increased quality and reduced risk through composable certification of Safety-relevant
embedded systems in the industrial domains of automotive and construction

 Introduction to the ERCIM/EWICS Cyberphysical Systems Workshop 2012 345

equipment, avionics, and rail. SafeCer will also develop certification guidelines for
other domains, including cross-domain qualification and the application of the
pSafeCer Certification framework in new domains. SafeCer will provide support for
efficient reuse of safety certification arguments and prequalified components within
and across industrial domains. This addresses the overarching goal of the ARTEMIS
JU strategy to overcome fragmentation in the embedded systems markets.

This year, the dependable embedded (Cyberphysical) systems workshop has
sessions on:

• Dependable Embedded Systems Applications

• Secure Systems –Systems Security

• Validation, Verification and Qualification

• Systems Safety and Trust

• Ambient Assisted Living

The applications presented in the workshop are three: one paper discusses the
elaboration of safety requirements in the avionic domain (by EADS, an industrial
paper), the second one presents the before mentioned robotics/ autonomous systems
research project R3-COP, focussing on the knowledge-based approach to compose
robotic applications and tool chains for V&V from a collection of building blocks in
ontology-driven data bases, which is considered as basis for a reference technology
platform for robotics and autonomous systems, as developed by AIT Austrian
Institute of Technology, DTI Danish Technology Institute, tecnalia Spain, TU Brno,
Czech Republic (paper authors) and other R3-COP partners. In the last session of the
day, a third application and implementation is presented by NTNU (Norwegian
University of Technology), an AAL monitoring system to enable elderly people a
longer and safer stay at home, with some demonstration and video clips.

The session on system security includes three presentations, looking at different
aspects of secure system. “On the Design of Secure Time-Triggered Systems”
focusses on a novel joint safety and security architecture for dependable time-
triggered systems, adding the security aspects to the already well-studied and proven
time-triggered system architecture (by AIT, TU Vienna, Austrian Academy of
Sciences and TTTech).

Todays’ and evolving cyber-physical systems (CPS) have as typical feature wide-
spread distribution of nodes. In the presentation of the work of pSHIELD, another
ARTEMIS project, by SESM (Italy) and the Polytechnic Institute of Coimbra
(Portugal), is demonstrated an architecture framework supporting security, privacy
and dependability as built-in feature in a network of embedded nodes, improving also
re-use of already verified embedded components and systems. The “Cyber-Physical
Attacker”, developed by Technical University of Denmark (DTU), models attacker
scenarios which addresses the peculiarities of a cyber-physical adversary, which
allows to study security properties of a CPS.

Validation, verification and qualification are issues of great importance when
trying to prove trust in CPS. The NuSMV model checker is well known in the formal
methods community. The first paper in this session presents an interesting extension
to NuSMV, Parallel NuSMV, which is presented by ALES S.r.l. from Italy as part of

346 E. Schoitsch and A. Skavhaug

the FormalSpecs Verifier Framework for the formal verification of complex
embedded systems, using Simulink/Stateflow models.

One of the ideas to considerably improve and speed up development of safety-
critical embedded systems is the use of tool chains, which implies seamless
integration of different tools to cover significant parts of the development life cycle.
Safety standards require qualification of tools, but are not looking in-depth into the
issue of integration of pre-qualified tools into tool-chains. The paper on “Automated
Qualification of Tool Chain Design” from KTH (Sweden) presents a promising
approach to reduce effort in qualifying tool chains by automatically analysing a tool
chain model for safety issues. The last paper of this session is on a model-based
development approach for the design and validation of electronic control systems by
simulation, using a Data Time Flow Simulator, developed by AIT in context of the
ARTEMIS project POLLUX which tackles problems on the design of the next
generation of electric cars.

A topic always crucial in context of safety-critical systems is how to achieve and
prove trust in such a system. One issue in such systems is predictability, essentially in
the time domain. Compiling for time predictability is one approach to generate code
which has a predictable timing behaviour even in case of complex processors. Within
the T-CREST project, the University of Technology of Vienna and the University of
Hertfordshire (and others) worked on HW/SW architectures and code-generation
strategies to achieve time-predictability, explaining the single-path code generation
process in their paper. In the NOR-STA project, the University of Gdansk addressed
development, maintenance and assessment of structured, evidence-based arguments to
support trust assurance in CPS, using the TRUST-IT methodology and presenting the
adequate tool support in the NOR-STA platform of software services available on
internet.

The workshop will hopefully provide some insight into the topics, and enable
fruitful discussions during the meeting and afterwards. The mixture of topics is well
balanced, as is the distribution over Europe and European projects. Authors are from
research, academia as well as from industry, which is a good mixture as we believe.

As chairpersons of the workshop we want to thank all authors and contributors
who submitted their work, and want to express our thanks to the SAFECOMP
organizers who provided us the opportunity to organize the workshop at SAFECOMP
2012 in Magdeburg. Particularily we want to thank the EC and national public and
funding authorities who made the work in the research projects possible, and we want
not to forget the continued support of our companies and organizations, and of
ERCIM and EWICS who always helped us to learn from their networks.

 We hope that all participants will benefit from the workshop, enjoy the conference
and accompanying programmes and will join us again in the future!

The Cyber-Physical Attacker

Roberto Vigo

DTU Informatics, Technical University of Denmark, Kongens Lyngby, Denmark
rvig@imm.dtu.dk

Abstract. The world of Cyber-Physical Systems ranges from industrial
to national interest applications. Even though these systems are per-
vading our everyday life, we are still far from fully understanding their
security properties. Devising a suitable attacker model is a crucial ele-
ment when studying the security properties of CPSs, as a system cannot
be secured without defining the threats it is subject to. In this work
an attacker scenario is presented which addresses the peculiarities of a
cyber-physical adversary, and we discuss how this scenario relates to
other attacker models popular in the security protocol literature.

Keywords: attacker model, cyber-physical threats, cyber-physical sys-
tems, security protocol verification.

1 Introduction

Cyber-Physical Systems (CPSs) have been drawing the attention of the scien-
tific community since the early 2000s, due to the increasing exploitation of these
systems in the realization of critical infrastructures (e.g. power grid, health-
care, traffic control, defence) as well as general-purpose personal applications
(e.g. home automation, entertainment). As a consequence of the proliferation
of these systems, their nature and properties must be thoroughly investigated;
efforts are still needed in order to tackle the diverse issues addressed in the lit-
erature. Among the questions about CPSs that remain partially unanswered,
is the question of security, as compromising such a system (e.g. the power grid
or a military network) could lead to economic, social, and political damages.
A great many works call for a scientific investigation of cyber-physical security
properties [1,10,11,19]; specific facets of the problem have been addressed (e.g.
in [2,15,16]), but the characterization of a suitable adversary model is far from
being complete.

In this work we present a model which encompasses the attacks a CPS is
exposed to, stressing the novelties which arise when considering an adversary
that is able to physically tamper with system components. Moreover, we compare
the expressiveness of existing well-known frameworks, like the Dolev-Yao model
[14] and a version of the computational model [17], with the peculiarities of
a cyber-physical attacker. This comparison is enabled by the definition of a
simple framework in which the outcomes of both physical and cyber actions are
expressed in a common language.

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 347–356, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

348 R. Vigo

The benefit of this investigation is two-fold: first of all, we show to what ex-
tent a cyber-physical attacker can be described using notions that stem from
models developed in the security protocol literature; and secondly, we highlight
the novelties of such an adversary on the basis of behaviours that are not en-
compassed by those frameworks. Finally, as there are a number of tools that
can perform automated verification of the security properties of communication
protocols within those frameworks, our comparison identifies the limits of these
tools when dealing with a cyber-physical adversary.

Outline. In Section 2 we give a brief introduction to CPSs, as well as outline
the model we refer to throughout the paper. Based on this model, the attacks a
CPS suffers are explained in Section 3, leading to the formulation of the cyber-
physical attacker. Section 4 presents a perspective unifying cyber and physical
actions, which is leveraged for comparing the cyber-physical attacker with other
models in Section 5. Finally, Section 6 draws a conclusion and sketches a line for
future work.

Related Work. The definition of an attacker scenario for CPSs is a poorly-
addressed topic, regardless of this, the need for such an investigation is often
claimed in the literature. Benenson et al. studied an attacker model for Wireless
Sensor Networks (WSNs) in [5,6], focusing on physical attacks. Di Mauro et al.
expand on those works and consider new security issues introduced by Energy-
Harvesting WSNs [12]. In [9], the authors exploit the Byzantine model [13] to
characterise a cyber-physical attacker, but their model addresses high-level be-
haviours and they do not discuss the adversary’s capabilities in detail. Finally,
[2] addresses the importance of a quantitative approach to the security of CPSs,
by studying an eavesdropping adversary under this perspective.

2 CPS Essentials

It is worth noting that given the many different fields in which CPSs are em-
ployed, it is almost impossible to provide a detailed definition; nonetheless some
general common characteristics recur: CPSs are complex systems which monitor
physical processes by means of interconnected networks of sensors, whose mea-
sures are exploited for acting on the sensed environment in order to optimise an
operational goal [18,21,20]. Thus, CPSs can be logically organised in two coupled
layers:

– a physical layer, consisting of sensors and actuators that interact with given
properties of the environment of interest (e.g. physical parameters like tem-
perature, humidity, etc.),

– and a cyber layer, in charge of transforming the sensed data into information,
to be exploited for driving the environment toward a given goal, possibly by
means of the actuators.

Typically such a system consists of a significant number of devices (up to tens of
thousands of nodes), each one capable of sensing and/or actuating, computing,

The Cyber-Physical Attacker 349

and transmitting data. In the following, we assume that we are dealing with
CPSs that rely on WSNs for exchanging information among nodes. While such
a network can be considered a CPS, in general a CPS might rely on a different
infrastructure for communications. Notwithstanding this specific point, we will
examine WSN-based CPSs; due to the broadcasting nature of the ether, this is
a conservative assumption, as a wireless medium is exposed to the same threats
as a wired medium, and possibly even more.

Finally, it is relevant to point to some characteristics of CPSs which have a
deep impact on their security [2,19]:

– such systems get inputs from the physical environment, thus we must con-
sider communication channels that have not yet been investigated in the
literature about computer security, which need to be secured: an attacker
does not need to break into the system in order to affect its behaviour, the
attacker can act on the environment monitored by the system;

– a CPS is generally widely distributed, and some components lie in locations
where there is a lack of physical security: nodes are exposed to be physically
captured by an attacker;

– physically capturing a node is made easier by the fact that, for financial
reasons, they are usually not equipped with tamper-proof chips.

The possibility to physically capture a node is a distinguishing trait of such sys-
tems, and this introduces new threats that we will present after having defined
the reference model.

Reference Model. A CPS can be formally defined as a pair S = (N ,M),
being N = {n1, . . . , nm} the set of components of the system (nodes), and M
the topology of the system, represented as a matrix m × m. For the sake of
simplicity, we consider a bi-dimensional evenly-spaced grid.

We assume nodes in N to exhibit a similar structure, displayed in Fig. 1.
A generic node n ∈ N consists of interfaces towards the environment (e.g. a
node-to-host interface Hn) and towards other nodes (e.g. a wireless transceiver
Tn), a computational section, consisting of an EEPROM chip Mn for logging
sensed data and a micro-controller Pn for storing and executing the control
program (note that Pn contains cryptographic material Kn, if any), batteries
providing power and possibly some energy scavenging unit En that can recharge
the batteries using energy from the environment.

We assume that communication channels are not private, that is, the attacker
can always eavesdrop messages if he is in the range of the involved transceivers.

3 Attacker Model

The threats to which a CPS is exposed can be easily grouped into physical
and cyber menaces, depending on whether these threats are directed against
physical devices or against the messages the components exchange. Physical
threats require that the adversary has physical access to the node in order to

350 R. Vigo

Mn

Pn Kn

Sn

An

Tn

Hn

Batteries

En

Environment

Fig. 1. Abstract model of a CPS component n

be able to attack it, while cyber menaces require that the adversary is in the
proximity of the node (according to the range of the transceivers). Nevertheless,
it is relevant to observe that every physical attack has some cyber effects, which
are the only aspects with which an automated verification technique can cope.
Some significant work has been devoted to studying the physical attacks a WSN
node is exposed to (e.g. see [5]). These attacks are directly related to the structure
of a component n of the system, and the basic actions they involve can be
summarised as follows:

– remove - removing n from the network, temporarily or permanently, e.g. by
destroying the node or removing its batteries;

– read/write - obtaining/modifying the content of the memory Mn;
– reveal - reading the content of the local control program Pn (obtain cryp-

tographic material);
– reprogram - modifying the local control program Pn, thus making the node

execute an arbitrary algorithm;
– starve - preventing the energy scavenging unit En from collecting energy

(e.g. by casting a shadow on a solar panel).

Observe that all these attacks (except the last one) require the adversary to
physically tamper with a device, removing it from the network for a period of
time, which may vary from between few minutes and one day, depending on the
sort of attack and the skills of the intruder. Finally, there is another possibility
for the attacker to physically tamper with the whole system by inserting new
nodes into the network (insert). In general, an adversary able to insert nodes
in a network is more powerful than one who cannot (e.g. he can alter the result
of a given voting mechanism on which the network is based).

Cyber attacks concern standard communication-related actions that can be
categorised as follows: block, blocking messages (e.g. by jamming the communi-
cation channel); eavesdrop, obtaining messages communicated over the network;
inject, sending messages over the network. An attack is performed as a com-
bination of these actions with internal computations (e.g. elaboration of stolen
messages to produce a new message to be injected).

As we have mentioned above, both physical and cyber attacks depend on
the position of the adversary with respect to the target device. Given a CPS

The Cyber-Physical Attacker 351

S = (N ,M), we can model the attacker as a set A of pairs (l, C), being l a
location in the network where the attacker lies, and C a set of cyber-physical
capabilities, each one being a tuple (a, c, r), where a is an attack/action, c its
cost in terms of energy/time, r the range of the attack expressed as a set of
locations in M that could be affected.

According to this model, the attacker can be composed of various profiles
A1, . . . ,Ak describing his capabilities in relationship with the locations where
he lies. Note that in case of insert, r identifies locations where new nodes can
be deployed; moreover, as a consequence of inserting a node, a new profile is
generated if it is deployed in a location where the adversary was not present
before, thus extending his area of influence.

4 A Protocol Perspective

Automated verification of security protocols is an active research area, where a
number of approaches have been studied for formally defining protocols, security
properties, and verification procedures. In the following, we propose a conceptual
map that describes the attacker’s capabilities as discussed above with terminol-
ogy used in the protocol world. The contribution of such a map is two-fold:
it enables us to formulate security questions about CPSs in a well-known do-
main, facilitating the comparison with existing models, and it helps highlight the
novelties CPSs bring to computer security, identified as behaviours that classic
adversary models do not encompass.

From Nodes to Agents. We can simply rethink nodes in N as communicating
principals of a security protocol P . Given a node n ∈ N , its memory Mn, and
the memory local to its control program Pn, the corresponding principal p has
a knowledge Kp which consists of

– initial knowledge IKp (e.g. trusted third parties’ identities);
– knowledge RKp gained through running the protocol (received messages);
– long-term keys LKp;
– knowledge DKp derived combining all of the above (e.g. a message obtained

decrypting a received cipher-text with a known key), among which we dis-
tinguish session keys SKp established in some sessions of the protocol.

Finally, the local software Pn controlling the node is the role Rp played by the
corresponding principal in the protocol, which describes the steps a principal goes
through during one execution of the protocol (a session). Figure 2 summarises
this relationship.

As a CPS generally interacts with the physical environment it is deployed
across, we also need to represent the environment as a communicating principal,
designing sensing operations as messages from the environment to principals,
and actuating operations as messages from principals to the environment, mak-
ing it acting as a standard agent. On the other hand, the environment is a special
principal as it can communicate with all the other participants, without spatial

352 R. Vigo

Node n ∈ N Principal p of P

Program Pn

Crypto material Kn

Memory Mn

Role Rp

Long-term keys LKp

Session keys SKp

Initial, Received, Derived Knowledge

}
Kp

Fig. 2. From CPS nodes to protocol agents

restrictions. Nonetheless, when we deal with a geographically constrained adver-
sary, we would like to model the fact that such an adversary can compromise
only a limited portion of the environment, depending on his presence. In order
to describe such a scenario without introducing new entities, we could partition
the environment into m×m principals, each one representing the environment
related to a single position of the network.

Referring to this conceptual map, in the remainder of this section we refor-
mulate the cyber-physical attacks described in Section 3 in accordance with
this new terminology, thus expressing the attacker’s capabilities from a unified
perspective.

Bridging Physical and Cyber Worlds. In order to relate physical and cyber
attacks we leverage the mapping introduced above between a node n and a
corresponding principal p, which leads to translating the attacks into basic get

and set actions on the knowledge of a principal:

– get IKp, getRKp, getDKp, get SKp, get LKp - by eavesdropping commu-
nications on the network the attacker obtains some received messages RKp,
which he can combine with other stolen information, thereby obtaining a
subset of DKp. Moreover, by physically accessing a node, he can extract
IKp, SKp, LKp from the memories where this information is stored. For
the sake of generality a different get action is suggested for each subset of a
principal’s knowledge;

– set RKp, set DKp - injecting messages, the attacker is able to change
the knowledge of the target principal with respect to received messages. As
an example, assume that the attacker is changing some parameters of the
environment that a given node is sensing: sending fake messages about the
environment, the attacker modifies RKp and a subset (possibly empty) of the
derived knowledgeDKp. Setting received messages, the attacker is implicitly
able to inhibit a principal from participating to a protocol.

These actions are sufficient in order to mount all the attacks mentioned in Section
3, except for starve which cannot be expressed without introducing a notion of
the energy-level of a principal.

The ability of obtaining a principal’s long-term and session keys, together
with the capability of eavesdropping and sending messages, allows the adver-
sary to impersonate the attacked principal. Thereby the adversary achieves the
same effect as if he reprogrammed the node, but with much less effort. If the
attacker knows everything a legal principal p knows, indeed, he can make p play

The Cyber-Physical Attacker 353

an arbitrary role since he is able to send and receive messages on the network on
behalf of p. We can conclude that get {RKp∪SKp ∪LKp} and set RKp imply
reprogram. As reprogramming a node is the most powerful achievement the at-
tacker can hope for, the actions above include only the minimal attacks that can
be performed with the aim of reprogramming a node. The list could be extended
to include, for instance, keys modification, but as writing can generally be as-
sumed more difficult than reading, and reading already leads to reprogramming,
we do not consider those actions. Observe that set RKp can be implemented
as a cyber attack (no physical tampering) by message injection, a capability
within the range of any wireless device. Hence, the only physical attack we need
to consider is get {SKp ∪ LKp}, as this is the only basic action that introduce
new security issues with respect to pure cyber attacks, and combining it with
message injection we can achieve the outcome of more complex physical attacks.
In the literature on security protocol verification, the capability of obtaining part
of a principal’s private knowledge is generally referred to as agent compromise
or corruption.

The ability of the attacker to insert new nodes can also be reduced to a
combination get and set actions. In the event that the adversary can forge
new terms, he could forge a new agent’s identity and the corresponding keys. It
is worth noting that inserted principals must be new, otherwise insertion and
honest agents corruption coincide.

5 Expressiveness of Existing Frameworks

In the following we compare the cyber-physical attacker, in the light of the pre-
vious discussion, to other models that are documented in the literature about
security protocol verification, with the aim of highlighting existing frameworks
which model the elements we need to formalise the security aspects of CPSs.

The Dolev-Yao Model. The Dolev-Yao model [14] is the most addressed at-
tacker framework in the literature on security protocol verification, and numerous
tools have been built based on some of its variations (see for instance [7,8]). The
model is based on the following assumptions: (i) perfect cryptography (crypto-
graphic primitives are unbreakable), (ii) the attacker controls the communication
medium, and (iii) the attacker is a legitimate user.

With respect to the cyber-physical attacker, the presence of a Dolev-Yao ad-
versary is always global (assumption (ii)), whereas the former could be spatially
limited. Secondly, the capabilities of a Dolev-Yao adversary are: get {RKp∪D}
with D ⊆ DKp (i.e. eavesdrop), and set {RKp ∪ D} (i.e. inject), that is,
a Dolev-Yao adversary cannot obtain LKp or SKp unless these can be derived
from outputted messages, and this is unlikely to happen in a smart security pro-
tocol. In contrast to this, a cyber-physical attacker does not need this condition
to be met, as he can physically access the memory of a node.

An Educated Adversary. In [3] Basin et al. present a physics-aware attacker,
in order to formally reason about the properties of the physical environment (e.g.

354 R. Vigo

proximity) that, in some applications, are required to be established in a secure
way. The authors propose an operational semantics of traces which captures the
basic physical properties of space and time, that constrain any real attacker
(e.g. the time it takes a message to flow from one node to another). The network
and the agents are precisely modelled: each agent has a set of transceivers, lies
in a particular location, and has some initial knowledge; the network is then
formalised as an adjacency matrix representing the connectivity between agents:
for each entry a lower bound on the signal propagation time is given. On the
intruder side, the authors formalise a Dolev-Yao attacker which is restricted
both by spatial and temporal constraints: the adversary can intercept and inject
messages only at given locations (where a compromised node, i.e. the attacker,
lies), and the exchange of information between nodes (even if compromised) is
not instantaneous, but is determined by the network topology.

With respect to our cyber-physical attacker, this framework successfully ex-
presses spatial limitations, but it is still incomplete with respect to the adver-
sary’s capabilities since it lacks an agent compromise mechanism.

A Compromising Adversary. One of the main novelties introduced by the
cyber-physical attacker with respect to a Dolev-Yao adversary is the ability to
selectively compromise honest agents: when he has obtained the knowledge of a
principal p, the attacker is able to impersonate p, making him play an arbitrary
role. Thus, at a given time, an agent within the range of the attacker may become
dishonest. Basin and Cremers directly address this issue in [4], presenting an
attacker model where agents can be compromised dynamically: the adversary
can obtain the long-term keys of a principal or session-related data.

A key point of this work is that the semantics explicitly inhibits the adver-
sary from obtaining any session key, because “revealing it trivially violates the
protocols’ security” [4, Sec. 2.4]. In the usual interpretation of security protocols
no communication would indeed be secure with respect to a fully-compromising
adversary, as messages cannot be protected against disclosure if the attacker can
obtain every cryptographic key.

Besides a fully-compromising ability, this attacker lacks a reference to the
spatial dimension. Moreover, we deem that the concept of compromise should be
intertwined more strictly with temporal conditions, up to consider time-limited
compromise. In regular WSNs, indeed, nodes are often replaced by new devices,
for example when the old ones run out of power: the situation may arise in which
new nodes do not share information with old ones.

6 Conclusion and Future Work

We have presented an attacker that is able to exploit both physical and cyber
weaknesses of CPSs. The model captures two essential features of the adversary:
his capabilities and spatial distribution. On the basis of a reference model for
CPSs, a simple framework has been devised which serves as a common ground
for comparing physical and cyber attacks. This framework highlights that the

The Cyber-Physical Attacker 355

main novelty introduced by physical attacks corresponds to agent corruption, in
protocol terminology: an attacker who controls the communication and can ob-
tain cryptographic keys of legal principals is able to reprogram them. Moreover,
this model enabled us to make a direct comparison between the cyber-physical
attacker, the Dolev-Yao model, and two recent adversary models, showing that
these models describe weaker attackers.

This investigation has led to highlighting behaviours that attacker mod-
els tailored to security protocols verification do not encompass, like a
fully-compromising adversary. No protocol is secure with respect to the cyber-
physical attacker, but his omnipotence is hampered by spatial and temporal
constraints that must be considered when addressing an automated verification
procedure. Analysing a CPS, indeed, we cannot depart from phrasing questions
in a quantitative way, asking for instance how much time it takes to carry out
an attack, the amount of energy that the attacker must consume in order to
complete it, the number of locations from which the attack must be carried
out, and so on. This is an active research topic, and complementing the
cyber-physical attacker we have described with a suitable execution model,
in which quantitative questions may be raised about time and energy, is a
point open for future examination. Once this model has been provided, more
sophisticated notions of compromise should be investigated, as this is the main
tool the cyber-physical adversary possesses to break CPSs.

Acknowledgments. This work was supported by the IDEA4CPS project
granted by the Danish Research Foundations for Basic Research.

The author would like to thank Flemming Nielson and Hanne Riis Nielson
for they stimulated this investigation, and Sebastian Mödersheim for valuable
comments.

References

1. Anand, M., Cronin, E., Sherr, M., Blaze, M., Ives, Z., Lee, I.: Security Challenges
in Next Generation Cyber Physical Systems. In: Beyond SCADA: Cyber Physical
Systems Meeting, HCSS-NEC4CPS (2006)

2. Anand, M., Ives, Z., Lee, I.: Quantifying Eavesdropping Vulnerability in Sensor
Networks. In: 2nd VLDB Workshop on Data Management for Sensor Networks,
DMSN (2005)

3. Basin, D., Capkun, S., Schaller, P., Schmidt, B.: Formal Reasoning about Physical
Properties of Security Protocols. ACM Transactions on Information and System
Security (TISSEC) 14(2), 16 (2011)

4. Basin, D., Cremers, C.: Degrees of Security: Protocol Guarantees in the Face
of Compromising Adversaries. In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS,
vol. 6247, pp. 1–18. Springer, Heidelberg (2010)

5. Benenson, Z., Cholewinski, P., Freiling, F.: Vulnerabilities and attacks in wireless
sensor networks. In: Lopez, J., Zhou, J. (eds.) Wireless Sensors Networks Security.
IOS Press (2007)

6. Benenson, Z., Dewald, A., Freiling, F.: Presence, Intervention, Insertion: Unifying
Attack and Failure Models in Wireless Sensor Networks. Technical report, Univer-
sity of Mannheim (2009)

356 R. Vigo

7. Blanchet, B.: Automatic verification of correspondences for security protocols.
Journal of Computer Security 17(4), 363–434 (2009)

8. Buchholtz, M., Nielson, H.R., Nielson, F.: A Calculus for Control Flow Analysis of
Security Protocols. International Journal of Information Security 2(3-4), 145–167
(2004)

9. Burmester, M., Magkos, E.: Modeling Security in Cyber-Physical Systems. In: Sixth
Annual IFIP Working Group 11.10 International Conference on Critical Infrastruc-
ture Protection (2012)

10. Cárdenas, A., Amin, S., Sastry, S.: Secure Control: Towards Survivable Cyber-
Physical Systems. In: 28th International Conference on Distributed Computing
Systems, ICDCS 2008 Workshops (2008)

11. Cárdenas, A., Amin, S., Sinopoli, B., Giani, A., Perrig, A., Sastry, S.: Challenges
for Securing Cyber Physical Systems. In: Workshop on Future Directions in Cyber-
physical Systems Security (2009)

12. Di Mauro, A., Papini, D., Vigo, R., Dragoni, N.: Toward a Threat Model for
Energy-Harvesting Wireless Sensor Networks. In: Benlamri, R. (ed.) NDT 2012,
Part II. CCIS, vol. 294, pp. 289–301. Springer, Heidelberg (2012)

13. Dolev, D.: The Byzantine generals strike again. Journal of Algorithms 30, 14–30
(1982)

14. Dolev, D., Yao, A.: On the security of public key protocols. IEEE Transactions on
Information Theory 29(2), 198–208 (1983)

15. Gamage, T.T., McMillin, B.M., Roth, T.P.: Enforcing Information Flow Security
Properties in Cyber-Physical Systems: A Generalized Framework Based on Com-
pensation. In: 34th Annual Computer Software and Applications Conference Work-
shops, IEEE COMPSACW 2010 (2010)

16. Gamage, T.T., Roth, T.P., McMillin, B.M.: Confidentiality Preserving Security
Properties for Cyber-Physical Systems. In: 35th IEEE Annual Computer Software
and Applications Conference (2011)

17. Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against
Adaptive Chosen-Message Attacks. SIAM J. Comput. 17(2) (1988)

18. Lee, E.A.: Cyber Physical Systems: Design Challenges. In: International Sympo-
sium on Object/Component/Service-Oriented Real-Time Distributed Computing,
ISORC (2008)

19. Neuman, C.: Challenges in Security for Cyber-Physical Systems. In: DHS Work-
shop on Future Directions in Cyber-Physical Systems Security (2009)

20. Shi, J., Wan, J., Yan, H., Suo, H.: A Survey of Cyber Physical Systems. In: Inter-
national Conference on Wireless Communications and Signal Processing, WSCP
2011 (2011)

21. Xiao, K., Ren, S., Kwiat, K.: Retrofitting Cyber Physical Systems for Survivabil-
ity through External Coordination. In: 41st Hawaii International Conference on
System Sciences (2008)

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 357–364, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Dependable and Secure Embedded Node Demonstrator

Przemysław Osocha1, João Carlos Cunha2, and Fabio Giovagnini1

1 SESM s.c.a.r.l., Naples, Italy
{p.osocha,fabio.giovagnini}@gmail.com

2 Polytechnic Institute of Coimbra / CISUC, Coimbra, Portugal
jcunha@isec.pt

Abstract. The European industry competitiveness in the embedded devices
market is threatened by challenges such as cost-effectiveness, interoperability,
reliability, and re-usability. This is particularly important now, when the value
of embedded electronics components share in the final products is increasing,
especially in ICT and health/medical equipment domains.

To address these challenges, the pSHIELD project, co-funded by ARTEMIS
JU, was aimed at developing an architecture framework supporting security,
privacy and dependability (SPD) as built-in features in a network of embedded
nodes. That approach will provide industry with the key improvements such as
a faster design, standardized development of SPD solutions and a flexible way
to reuse already verified embedded systems.

This paper reports the architecture of an FPGA-based intrusion detection
embedded device for a freight train, built to validate the pSHIELD concept at a
node level. The use case demonstrates the legacy components integration, de-
pendability, security, self-reconfiguration and the node-level composability.

Keywords: security, dependability, embedded system, FPGA, partial
reconfiguration.

1 Introduction

In the modern world, embedded devices are present anytime and anywhere. They are
distributed ubiquitously, pervasively and unobtrusively in everyday environments in
many different forms: small or large, visible or invisible, simple or complex, wired or
wireless and so on.

The massive deployment of networked embedded systems, seamlessly intercon-
nected with each other, dealing with sensitive information and acting in critical
environments is posing new challenges to developers. Dependability and security of
embedded systems cannot be any longer analyzed for separated devices, but rather in
a distributed context as systems of systems.

The contemporary market of embedded systems requires a built-in approach where
security, privacy and dependability (SPD) functionalities are natively addressed from
the design through the entire system life-cycle in contrast with an SPD add-on ap-
proach, which is in use today. In particular, the industry needs an approach to SPD

358 P. Osocha, J.C. Cunha, and F. Giovagnini

which will provide the key improvements such as a faster design, a flexible way to
reuse already validated systems and the standardized development of SPD solutions.

To meet these ambitious requirements, ARTEMIS JU [1] co-funded the pSHIELD
project [2], addressing the reusability of previously designed solutions and the stan-
dardization and interoperability of advanced SPD technologies. This project aims to
build a reference model for all the security, privacy and dependability aspects involv-
ing networked embedded systems [3]. In fact, the provided architecture will pursue
the design and development of a multi-layer/multi-technology framework able to
guarantee the composability of SPD functionalities. The project concept development
is continued under the new ARTEMIS JU project nSHIELD. To validate the
pSHIELD project concept, a global use case scenario based on the monitoring of ha-
zardous materials transported by train has been proposed. This paper presents the
architecture and scenarios built to demonstrate the pSHIELD SPD capabilities at the
Node level.

2 Embedded Node Architecture

The pSHIELD framework [3] is composed of four layers: Node, Network, Middle-
ware and Overlay. The Node layer implements intelligent hardware and firmware
SPD functionalities and services; the Network layer is responsible for the secure,
trusted, dependable and efficient data transfer based on self-configuration, self-
management, self-supervision and self-recovery; the Middleware layer assures secure
and efficient resource management and inter-operation among heterogeneous Embed-
ded Systems’ (ES) networks; the Overlay layer guarantees that different SPD modules
belonging to the node, network and middleware layers can be composed in a proper
way in order to solve any SPD issue globally. The output of each layer is available at
the upper level which will take advantage of SPD features developed at a lower level
empowering SPD features of the whole pSHIELD architecture in a transparent but
manageable way.

At the Node level there may be distinguished three different kinds of Intelligent ES
Nodes: Nano Node, Micro/Personal Node and Power Node. These three types of
nodes, which can be considered as three node levels of increasing complexity,
represent the basic components of the lower part of the SPD pervasive system and
cover the possible requirements of several market areas: from the field data acquisi-
tion to transportation, personal space, home environment and to public infrastructures,
etc.

Figure 1 provides a conceptual model of a pSHIELD Node Layer. This generic
SPD Node architecture is composed of several functional blocks, where each block
can implement features of various complexity. These nodes can be built using miscel-
laneous hardware architectures, they can also provide diverse functionalities and ca-
pabilities and assure different SPD compliance levels, depending on the type of a
node and on the application field. For example, a typical Nano Node does not include
capabilities such as Security and Privacy, Power Management and Reconfiguration.

 Dependable and Secure Embedded Node Demonstrator 359

The pSHIELD SPD Node Layer has two interfaces: one providing the pSHIELD
Node Capabilities (pS-NC) to the pSHIELD Middleware Layer offering, for example,
the necessary means for composing different nodes in an SPD system; and another
interface with legacy, technology-dependent Node Capabilities (NC). The Legacy
Node Capabilities are the capabilities already available for any embedded device pro-
vided by the Node Legacy Device Components such as CPU, I/O interfaces, memory,
battery, etc. These capabilities are extended with SPD functionalities by the Node
pSHIELD Specific Components which provide innovative SPD functionalities, such
as the checkpoint-recovery, status and metrics. The translation between the technolo-
gy-independent commands, configurations and decisions coming from the pS-NC
interface into the technology-dependent ones is assured by the pSHIELD Node
Adapter.

Fig. 1. pSHIELD SPD Node Layer Conceptual Architecture

Then, some innovative SPD components have been grouped into proper modules,
such as: the pSHIELD Interface, which provides a proper interface for the pSHIELD
Network; the SPD Node Status responsible for collecting the status of each individual
component and providing SPD-relevant parameters and measurements to the Middle-
ware Layer, and also responsible for checking the system health status for self-
recovery, self-reconfiguration and self-adaptation; Reconfiguration, which performs
the module or system reconfiguration by demand of the system SPD Node Status or
the Middleware; Dependability responsible both for applying self-dependability at a
node layer by detecting problems related to the system health status and for starting
recovery; Security and Privacy, which enforces the system security and privacy at a
node level by providing hardware or software encryption, decryption, key generation,
firmware protection, etc.; and Power Management for managing power sources, and
providing protection against blackouts, etc. The rationale behind the choice of these
modules comes from the pSHIELD requirements, where a node should be built with
extended dependability, security, privacy, composability, self-reconfiguration,

360 P. Osocha, J.C. Cunha, and F. Giovagnini

self-adaptation and power management. Further details are available in the public
deliverables of the pSHIELD project [3].

3 Power Node Demonstrator

Some of the pSHIELD Node capabilities were demonstrated by building a prototype
for a test scenario. It consisted in the use of the FSK modulation to transmit the data
between intrusion detection sensors placed in different cars of a freight train and an
SPD Power Node, which in turn processes the signals and sends information to a Con-
trol Center through the pSHIELD network.

The intrusion detection systems are embedded devices which include a remote
proximity sensor and a data encryptor. The remote proximity sensor is continuously
measuring the distance to a nearby object. The encrypted data is then modulated, us-
ing the FSK modulation, and transmitted to the Power Node. Each device modulates
the signal with a different carrier, so that the Power Node is able to receive signals
from different sources, ensuring the possibility to connect the redundant sensors.

The Power Node receives the signals, demodulates them, decrypts, processes the
data and provides it to a Control Center (Middleware layer) through the pSHIELD
Network. The Control Center is a remote device (a personal computer, tablet or mo-
bile phone) equipped with a web browser, able to visualize data and act upon it.

Fig. 2. Power Node demonstrator context

Figure 2 presents the demonstrator context: the SPD Power Node is located in a
central car of the freight train. It receives the FSK modulated and encrypted data from
other cars and delivers the plain information to the Control Center through the
pSHIELD network. In our demonstrator, however, we have used a single sensor with
two distinct carriers emulating sensor redundancy.

Based on the pSHIELD architecture framework (Fig. 1) and the demonstrator con-
text (Fig. 2), a system has been developed, as presented in Figure 3. It consists of two
different devices: the Intrusion detector and the FSK Demodulator SPD Power Node.
The first one receives the data from an intrusion data generator and is connected to a
push button, which makes it possible to request it to switch between the two carriers
that are used for the FSK modulation. This system then sends the encrypted and FSK
modulated data to the second system, the FSK Demodulator SPD Power Node. This
system is also connected to a push button, which allows an injection of an internal
fault into the node. Finally, the FSK Demodulator SPD Power Node is connected

 Dependable and Secure Embedded Node Demonstrator 361

through the Ethernet to the pSHIELD Network, from where a Control Center can
receive data and control this node.

The Intrusion detector is implemented on an EP3C120F780 Cyclone III Altera
FPGA board. It is composed of three basic blocks corresponding to:

• a proximity sensor, consisting of an intrusion data generator which is based on a
data file with emulated distances to the nearest object;

• a data encryptor, encrypting the sensor data, based on a blowfish algorithm with a
64 bit length fixed key;

• an FSK modulator, consisting of a hardware module (IP Core programmed on the
FPGA), and using one of the two predefined carriers: 1 kHz and 2 kHz. If the car-
rier is 1 kHz, then the “Space” frequency is 968 Hz and the “Mark” frequency is
1031 Hz. If the carrier is 2 kHz, the “Space” frequency is 1937 Hz and the “Mark”
frequency is 2062 Hz.

Fig. 3. Block diagram of the demonstrator context

The SPD Power Node is based on a Xilinx ML507 Evaluation Platform with a Virtex-
5 FPGA. The modules composing this Power Node correspond to the pSHIELD SPD
blocks depicted in Figure 1. These modules, with the exception of the Power Man-
agement, are the following:

• Node Legacy Device Component, which in the demonstrator is a legacy FSK
demodulator module, implemented as an IP Core of a digital demodulator working
with a clock of 32 kHz and demodulating 12 bits modulated data into 8 bits demo-
dulated one.

• Node pSHIELD Specific Component, which is an SPD specific demodulator,
providing the legacy demodulator with SPD capabilities, such as metrics and dis-
covery. The system has several metrics values (dependability level, number of fail-
ures occurred, number of successful recoveries occurred, etc.) and it answers over
the IP protocol to any discovery request incoming from the network layer. It is able
to communicate the class it belongs to, the subclass specific features, the kind of
demodulation, the carrier, the sampling rate and other information useful to identi-
fy the node.

362 P. Osocha, J.C. Cunha, and F. Giovagnini

• Dependability module, containing error detection and recovery. The system can
recognize a fault condition (with a hardware based detection subsystem) and use a
plausibility evaluation subsystem. If a fault is recognized, the system tries to re-
store the damaged feature by reconfiguring the appropriate part of the FPGA using
for that the partial reconfiguration feature (see below, the Reconfiguration).

• Security and Privacy module, performing data decryption using a 64 bit fixed key
blowfish algorithm. It is not the most flexible solution but it represents a very good
compromise between robustness, liability and resources consumption.

• Reconfiguration, using the dynamic partial reconfiguration [4] of FPGA to instan-
tiate a new demodulation core, with a different carrier frequency. The partial re-
configuration is also used for the dynamic adjustment of the system. If the modula-
tor switches for any reason from one carrier frequency to another, the system au-
tomatically recognizes this fact and adjusts itself by reconfiguring the part of an
FPGA containing demodulator logic with a new partial bitstream that implements
the new required frequency demodulator.

• pSHIELD Interface, in this case it consists of a web server providing a web page
through HTTP, with embedded XML information regarding the node identifica-
tion, status, metrics, capabilities and function responses (the distance to the nearest
object and alarms).

• Fault Injector Trigger is represented by a simple push button. When an external
agent presses the button, the demodulator stops its proper operations. Then the de-
modulator specific component recognizes this faulty condition and triggers recov-
ery by writing a new copy of the bitstream on the FPGA.

4 Use Case Scenarios

Several scenarios have been designed in order to demonstrate these SPD Power Node
capabilities. Every scenario validates one or more innovative capabilities of the pro-
posed node architecture, as presented in previous sections. These use case scenarios
cover the demonstration of all the SPD blocks (see Fig. 1), except for the Power
Management.

1. Node Discovery and Legacy Component Integration - This first scenario de-
monstrates the basic functions of the SPD Power Node and the Control Center
(Fig. 2). It also demonstrates how a node can provide discovery information used
for composability and how a legacy device was integrated in the SPD Power Node
context: (a) The SPD Power Node runs a web server and thus provides the Control
Center with a web page containing the information about the node identification,
capabilities and status of the device. (b) The Control Center accesses this web page
through an HTTP protocol by means of a web browser. (c) The Control Center dis-
plays the SPD Node identification, status and capabilities, including those related
to the FSK Demodulator (a legacy device component).

2. Metrics and High Performance - The next scenario demonstrates the ability of
the SPD Power Node to demodulate and decrypt the received data in real-time.
(a) The intrusion detecting sensor in the first coach (Fig. 2) provides the generated
data simulating a distance to an object. This data is encrypted, modulated and sent
to the SPD Power Node. (b) The SPD Power Node demodulates the signal,

 Dependable and Secure Embedded Node Demonstrator 363

decrypts it and stores in a local database (requires high performance). (c) Metrics
data is continuously collected and stored in a local database of the SPD Power
Node. (d) The Control Center requests and displays SPD Power Node metrics, in-
cluding distance to the intruding object; the information is continuously updated.

3. Self-reconfiguration - The SPD Power Node demonstrates its ability for
self-reconfiguration to adapt to environmental changes. (a) The modulator in the
intrusion detecting sensor switches to a different carrier. (b) The SPD Power Node
detects a demodulation error and the demodulator is automatically reconfigured to
the new carrier by a partial reconfiguration of the FPGA. (c) In the Control Center,
the displayed sensor data is still valid. The metrics reveal that a self-
reconfiguration has been performed. (d) The Control Center operator then may re-
quest another reconfiguration to the other carrier. The SPD Power Node reconfi-
gures to the other configuration and then goes back to the previous one, as it does
not match the carrier of the modulated signal. These switches can be noted from
the changes in status and metrics readings.

4. Dependability - The SPD Power Node device autonomously recovers from a fail-
ure. (a) A fault is injected into the demodulator by pressing a pushbutton of a fault-
injector prepared for the demonstrator. (b) An error is detected and recovered
through the software and hardware (FPGA reconfiguration) recovery. (c) The cor-
rect data is still presented to the Control Center. The metrics reveal that an error
has occurred and the recovery was successful.

5. Security - This last scenario demonstrates how encryption is used for a secure
connection between the sensor devices and the SPD Power Node. (a) The encryp-
tor in the intrusion detecting sensor switches to a different encryption key. (b) The
SPD Power Node detects a decryption error. (c) The Control Center displays
invalid sensor data. The metrics reveal that an error occurred.

All the scenarios have been successfully executed.

Fig. 4. pSHIELD SPD Node demonstrator

364 P. Osocha, J.C. Cunha, and F. Giovagnini

Figure 4 partially shows the demonstrator setup: the Xilinx ML507 board (the FSK
Demodulator SPD Power Node), a network router and a mobile phone acting as the
Control Center and presenting some data received from the SPD Node.

5 Conclusion

Security and dependability are the emerging topics in the design of embedded systems
[5], and as such, they arouse both industry and researchers' interest. In this paper we
presented an embedded node prototype with the integrated security, privacy and de-
pendability (SPD) technologies which could be incorporated into an embedded net-
work of SPD nodes, commanded by a control center.

This SPD node has been validated in an application scenario, which successfully
demonstrated the legacy component integration, dependability, security, self-
reconfiguration and the node-level composability.

The aim of the pSHIELD was to define an architecture framework for the devel-
opment of the standardized nodes with built-in SPD capabilities, seamlessly compos-
able in a network. The setup of an application with such nodes would be easier and
faster; moreover, it would lower production costs and prolong active lifetime of de-
veloped systems. The demonstrator presented in this paper constitutes a step forward
to validate the pSHIELD concept.

Acknowledgements. The authors acknowledge the support of the Critical Step
project in their collaboration concerning the work presented in this paper.

References

1. ARTEMIS Joint Undertaking, the public private partnership for R&D in embedded systems,
http://www.artemis-ju.eu/

2. pSHIELD project co-funded by the ARTEMIS Joint Undertaking (GA no.: 100204). Re-
search of Security, Privacy and Dependability in context of Embedded Systems,
http://www.pshield.eu/

3. pSHIELD project deliverables D2.3.2, D3.3, D5.3,
http://pshield.unik.no/wiki/PublicDeliverables (accessed May 2012)

4. Rana, V., Santambrogio, M., Sciuto, D.: Dynamic Reconfigurability in Embedded System
Design. In: IEEE International Symposium on Circuits and Systems, ISCAS 2007, New Or-
leans (2007)

5. Schoitsch, E.: Design for Safety and Security of Complex Embedded Systems: A Unified
Approach. In: Kowalik, J.S., Gorski, J., Sachenko, A. (eds.) Cyberspace Security and De-
fense: Research Issues. NATO Science Series II - Mathematics, Physics and Chemistry,
vol. 196, pp. 161–174 (2005)

Towards Secure Time-Triggered Systems

Florian Skopik1, Albert Treytl2, Arjan Geven3, Bernd Hirschler2,
Thomas Bleier1, Andreas Eckel3, Christian El-Salloum4, and Armin Wasicek4

1 AIT Austrian Institute of Technology, Safety and Security Department
firstname.lastname@ait.ac.at

2 Austrian Academy of Sciences, Institute for Integrated Sensor Systems
firstname.lastname@oeaw.ac.at
3 TTTech Computertechnik AG
firstname.lastname@tttech.com

4 Vienna University of Technology, Institute of Computer Engineering
firstname.lastname@tuwien.ac.at

Abstract. This paper presents the development of a novel joint safety
and security architecture for dependable embedded time-triggered sys-
tems. While fault-tolerance properties of time-triggered protocols have
been very well studied, research on security aspects for time-triggered
systems have hardly been covered. Therefore, we explore system design
principles which efficiently realize security mechanisms for time-triggered
architectures. A particular focus is on synergistic effects of security and
safety-related functions, thereby supporting the roll-out of safety-critical
embedded systems even in ‘untrusted’ environments. As a main contribu-
tion, we present the Secure COmmunication in Time-Triggered sYstems
(SCOTTY) approach to build secure time-triggered systems.

Keywords: time-triggered systems, security challenges, safety-criticality.

1 Introduction

It is widely acknowledged that security is gaining significant importance in the
area of embedded systems and in particular in safety-critical systems. An impor-
tant aspect of these emerging security requirements is that traditional embedded
systems were operated in physically secured environments like within a nuclear
power plant. The trend towards ubiquitous and pervasive computing creates
open environments that do not offer this physical security anymore. In some
environments even the owners of a system can be potential attackers. Successful
attacks could lead to catastrophic events like mechanical damage on the equip-
ment, financial loss, or - in the worst case - the loss of human lives. It is of utmost
importance that safety and security is seen in an integral way [10], because an
attacker could target the whole sphere of control of the embedded system that
also encompasses its physical environment.

The predefined time-triggered schedule can be used as a basis to introduce
a synergetic security concept for time-triggered communication protocols. The
bus guardian supervising the correct execution of the schedule can serve as the

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 365–372, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

366 F. Skopik et al.

core for a firewall component protecting the network infrastructure and the ap-
plication traffic using the network. However, this direct use of the bus guardian
requires assumptions hardly to be met in practical implementations, especially,
if distributed systems are considered: (i) First core assumption is that an at-
tacker has no physical access to the switches and the connected devices (e.g.,
the system has to be located in a locked room). An attacker having physical
access to the system could simply change the wiring on the switch, or physically
bypass the bus guardian. (ii) Secure (initial) authentication of devices during
startup is required to prevent the insertion of malicious devices. An attacker can
- intentionally or unintentionally - insert malicious devices, e.g., as replacement
of defect devices. (iii) Third core assumption is that no man-in-the-middle at-
tack [1] is possible. If an attacker can modify the content of messages during
transmission, confidentiality and integrity of the message content is endangered.

Thus, the natively provided properties, implemented in a time-triggered pro-
tocol are not sufficient. The major objective of our approach is to extend the
features of time-triggered protocols to a full security architecture that can deal
with threat models, including ‘physical access’ of attackers. The isolation in the
time domain is the basis for a novel security architecture that in a synergetic way
extends safety functionality by security functionality to counteract malicious at-
tacks. Additionally, the following challenges need to be addressed: (i) Scalability
from small-scale closed networks to large-scale integrated networks. At the point,
when a system becomes larger (i.e. system of systems, large-scale time-triggered
networks), the possibility and the interest in unauthorized access to such sys-
tems also increases. (ii) Protection from intended and unintended modifications.
In addition to increased scale there are also possibilities that are brought up by
the mere availability of a technology, where the owner of a system can achieve
access and accidentally or intentionally modify parts of the system behavior,
thereby altering important dependability properties.

The contributions in this paper are: (i) Security Challenges and Design As-
pects. We discuss the fundamental requirements for hardening time-triggered
systems in order to reach an appropriate level of security. (ii) Security Architec-
ture for Time-triggered Communication. We highlight promising approaches and
propose basic architectural models to meet the aforementioned requirements.

The remainder of the paper is organized as follows. Section 2 discusses back-
ground and related work, Sect. 3 introduces the SCOTTY design principles and
basic models, and Sect. 4 sums up our work and concludes the paper.

2 Basic Concepts and Related Work

Dependable embedded computer systems [2] are a well-accepted solution for
many applications in the fields of transportation, automation, and medicine [6].
The dependable-computing community has made a tremendous progress in the
past decades building ultra-dependable systems out of less reliable components.
Further, a multitude of practical techniques with respect to fault masking, error
detection, fault diagnosis, and recovery has evolved to improve the reliability of

Towards Secure Time-Triggered Systems 367

a safety-critical system. Yet, almost all of these approaches put a focus on the
safety aspect and assumes that the system is not under active malicious attack.
The SCOTTY approach has the aim to introduce a security architecture allow-
ing operation of these systems in non-isolated environments and withstanding
malicious attacks [1] - a trend that needs to be addressed [15].

The communication system which interconnects single components is crucial
for the safety and security properties of the final system [16]. When designing
real-time systems, the time-triggered communication paradigm [7] proves to be
particularly promising, because of its determinism and predictability facilitating
validation and verification efforts for accordingly built systems [9]. A multitude of
time-triggered protocols (e.g., FlexRay, TTP, TTEthernet) [4] has already been
successfully deployed in many application domains. However, none is known deal-
ing with security services. Within SCOTTY, the TTEthernet system is used as
a representative of time-triggered protocols, mainly because of its broad indus-
try acceptance, e.g., by the NASA [5]. Highly dependable time-triggered com-
munication protocols like TTEthernet, FlexRay or TTP/C provide timeslots
statically assigned to unique nodes according to a pre-defined time-triggered
schedule. Each node is allowed to transmit data on the physical communication
medium exclusively during its assigned time slots. This policy is usually enforced
by special encapsulation mechanisms, called bus guardians, which prevent any
misbehaving node from disrupting the communication among other nodes by
transmitting outside of its allocated time slots thereby preventing message colli-
sions. Whereas there exist generic solutions for dependable embedded computing
[3] and security for event-triggered protocols has been very well researched and
applied (e.g., in wireless sensor networks [8]), research on security in the time-
triggered domain is still in its infancy [13]. The core of time-triggered protocols
is a common knowledge and usage of time itself. Security research needs to focus
on providing a common knowledge of time to implement security features.

Security for clock synchronization is essential, since the domain of clock
synchronization for industrial communication systems and sensor networks is
becoming a vital aspect for system operation. The synchronized clocks are build-
ing the foundation for many critical application domains. A variety of services
is enabled by synchronized, distributed clocks, ranging from the application
layer (timestamping of measurement data) down to the network layers where
clock synchronization is used to schedule media arbitration (e.g., TTEthernet,
Flexray) or location determination of sensor nodes. Due to the increasing inter-
connection of networks, security is of growing interest for industrial networks.
Field level devices are connected to external networks and assumptions based
on restricted physical access do not apply any more. Clock synchronization and
security have to be carefully thought about when they are used together [11,12].
Two considerations have to be taken into account. Firstly, security mechanisms
often make use of distributed synchronized time bases. Secondly, clock synchro-
nization in general and timestamp information in particular, which is exchanged
over the network to achieve synchronization, are assets that need to be protected
by appropriate security mechanisms.

368 F. Skopik et al.

3 The SCOTTY Approach

The SCOTTY security architecture is realized on top of an existing time-triggered
real-time communication system. It provides a highly flexible, adaptable, and ap-
plicable security layer, which closely integrates with the safety functionality of
the system and facilitates existing fault tolerance mechanisms.

3.1 A Security Architecture for Time-Triggered Communication

The fault-tolerance mechanisms and dependability properties of time-triggered
communication protocols already provide mechanisms to separate traffic and
manage access control. The security part of a time-triggered system can bene-
fit from its fault tolerance mechanism, because both require similar properties
[6,13]. Yet, whenever an attacker is able to physically modify parts of the system,
like replacing components with malicious components or changing the wiring, the
safety properties of today’s system cannot be guaranteed anymore.

Time Triggered
Switching Fabric

Switch
Securely Synchronized ClockApplication

Application
Security
Services

Time
Triggered

Access

Node 1
Securely

Synchronized
Clock

Application

Application
Security
Services

Time
Triggered

Access

Node 2
Securely

Synchronized
Clock

Device
Authentication

+ Integrity
Protection

Device
Authentication

+ Integrity
Protection

Device
Authentication

+ Integrity
Protection

Device
Authentication

+ Integrity
Protection

TTEthernet TTEthernet

Fig. 1. Functional overview of a secured SCOTTY time-triggered system

Figure 1 shows a schematic overview of the system. Core element is the time-
triggered switch and its predefined timeslot scheduling module (Time Triggered
Access), which facilitates the access control and traffic separation in the safety
domain of the time triggered protocol. To be able to gain synergies for the
security system subsystems for (i) device authentication, (ii) secure clock syn-
chronization and (iii) application level security have to be added.

Device Authentication Subsystem. One of the main prerequisites for se-
curity is that devices properly mutually authenticate themselves to prevent in-
sertion of malicious devices or messages in case of a man-in-the middle attack.
Physical device security is not in the primary scope of our work. Nevertheless, the
design of the security protocol foresees these important requirements by allow-
ing the integration in security modules such as smart cards or trusted platform
modules. The main challenge in the design and implementation of device authen-
tication mechanisms is to retain the temporal properties of a real-time system,
i.e., the designer has to take care that introducing an authentication scheme in

Towards Secure Time-Triggered Systems 369

the real-time communication does not spoil the original real-time properties of
the time-triggered system [14]. Any additional and unpredictable delay in the
communication path is critical for the communication and consequently for the
access control and traffic separation based on the time-triggered protocol.

Secure Clock Synchronization. Amajor objective of the security architecture
is to protect the temporal properties of the system in the presence of malicious
attacks. In a time-triggered system, the accurate temporal coordination of dis-
tributed activities is controlled by a consistent global time base. TTEthernet
already provides fault-tolerant clock synchronization mechanisms that harden
the global time against accidental faults like single-event upsets (SEUs). In or-
der to harden the global time against malicious attacks within SCOTTY a secure
clock synchronization protocol is developed on top of the existing clock synchro-
nization protocol. The targeted security goal is to maintain the integrity of the
global time base, even under attack, which is a service for communication and
application layer security. The main goal is that any node should either be in
trusted synchrony with the global time base or reliably detect that it has lost
synchronization. Malicious message delay needs to be detected and compensated
even considering an attacker model where every message can be potentially cre-
ated, forged, replicated, deleted, delayed or accelerated by the attacker. This
scenario is totally different from the fault hypotheses of classical clock synchro-
nization algorithms targeted on accidental faults (e.g., as used in FlexRay or
TTP), which are always based on an upper bound of faulty nodes or messages.
The trusted global time base is realized based on mutual checking of signed
clock synchronization messages. Additionally, measures need to counteract the
modification of messages. These measures are in particular important during
the start-up phase. In this respect, authentication and message integrity are the
two major issues. Although security systems exists to protect these properties
the challenges in SCOTTY lie in the fact that on the one hand high real time
requirements need to be met and that on the other hand in opposite to many
other real-time security protocols time cannot be used as a base. In particular
execution time and jitter need to be considered. Possible solutions are based on
a very close integration of security in the time slot scheme to avoid jitter and
dedicated algorithms to detect delay.

Application Level Security. Applications on the one hand demand that the
communication infrastructure is secure, yet on the other hand they also need
additional application specific security service to protect data on an end-to-end
basis. The envisioned application level security provides the following secure com-
munication services on top of TTEthernet in order to guarantee real end-to-end
security: (i) Authenticated unicast and broadcast; (ii) Application authentica-
tion; (iii) Confidential message delivery and integrity protection. The security
layer establishes authenticity, integrity and confidentiality even if the attacker
has physical access to the system. Since the secure clock-synchronization de-
veloped in SCOTTY already protects the global time, time itself can be used
to efficiently establish other security properties with low computational and

370 F. Skopik et al.

communication overhead. Examples for security-related benefits of a trusted
global time are replay prevention of messages containing application data, or
broadcast authentication via efficient symmetric protocols like TESLA [5,14].

3.2 Scalability and Legacy Support of the Security Architecture

The security components described before protect the communication infrastruc-
ture of and the application data exchanged via a single time-triggered system.
Coverage of applications in a cross-domain approach demands the scalability
and the support to integrate security-unaware devices. The SCOTTY concept
foresees native support for these features.

Scalable Extension of Secure Time-Triggered Networks. Figure 2, shows
a simple scenario, where all physical elements that are associated with a link (i.e.,
the devices, switches and the cabling) are attached to a single switch. This exam-
ple corresponds to the scenario with a physically secured wiring within a single
cabinet. In TTEthernet multiple security-unaware virtual communication chan-
nels can coexist on a single shared physical communication infrastructure. The
encapsulation mechanisms of TTEthernet ensure that faults cannot cause any in-
fluence between virtual communication channels. With the SCOTTY security ar-
chitecture these channels are also protected against malicious attacks. Hence, the
different virtual communication channels (orange and green channels in Figure 2)
are also security domains protected against each other. The security services add
the following additional properties to normal TTEthernet channels (i) Malicious
or bogus devices cannot connect or send messages; (ii) Man in the middle modifi-
cation of messages is not possible. If application layer confidentiality is used also
eavesdropping can be prevented; (iii) Clock synchronization is protected.

Node 1

Node 4

Node 3

Node 2

Switch

Node 5

Fig. 2. Single communication cell with
secured virtual communication channels

Security
Capable
Node 1

Security
Capable
Node 2

Security
Capable
Node 3

Security
Capable
Switch Security

Capable
Node 5

Security
Capable
Node 6

Security
Capable
Node 4

Security
Capable
Switch

Physical Protection Boundary Physical Protection Boundary

Security
Capable
Switch

Security
Capable
Switch

Fig. 3. Cascaded communication cells with
secured virtual communication channels

The security domains can be extended by cascaded switches where the inter-
connection between the cascaded switches occurs transparently (Figure 3). Each
link is separately authenticated, i.e. to connect additional switches only the link
between the switches has to be added to the security system. The concept of
time-triggered scheduling already supports such cascaded switches and there-
fore can be used as it is. For the SCOTTY security architecture it is irrelevant
whether these connections are within a single switch (e.g. a cabinet) between

Towards Secure Time-Triggered Systems 371

switches within a single physical protection boundary, or even between different
physical protection boundaries (e.g. multiple buildings).

Inclusion of Security-Unaware Devices. To support existing security-
unaware devices the SCOTTY security architecture also foresees the bridging
of two network segments via a secure tunnel established by security gateways.
In this scenario, the security layer only has to be installed in both security
gateways. The other devices do not have to be modified and are relieved from
computational intensive calculation of cryptographic operations. As shown in
Figure 4, such a tunnel allows to interconnect two existing networks that do not
support security. On the left side (physical protection boundary A) an imple-
mentation with a firewall-like security gateway is depicted. This security gateway
has two ports and includes all security functionality. This concept is preferred
from a security and validation point of view, since there is a single component
maintaining the security. On the right side (physical protection boundary B) a
security-capable switch and a detached security gateway managing the tunnel(s)
is used. Given the traffic separation properties of the security-capable switch no
security breach occurs. This solution has advantages in the safety concept since
multiple parallel tunnels can be used to connect two boundaries.

Security
Capable
Node 1

Security
Capable
Node 2

Security
Capable
Switch

Physical Protection Boundary A

Secure Tunnel

Physical Protection Boundary B

Security
Capable
Node 5

Security
Capable
Node 6

Security
Capable
Node 4Security

Capable
Switch

Security
Capable
Switch

Security
Gateway

Security
Gateway

Fig. 4. Secure tunnels between security unaware
networks

Open

Secure

Open

Secure

Secure

Open

Physical Protection Boundary

SM

Security
Capable
Switch 1

SM … Security Module

SM

SM

Security
Unaware
Node 1

Security
Unaware
Switch 2

Security
Capable
Node 2

Fig. 5. Interconnection of security-
unaware devices

The concept of the security gateway is also scalable in a way that it can be
used to interconnect single security-unaware devices. Figure 5 shows different
examples how end-devices and switches can be connected. In this case not the
complete aspect of the tunnel functionality is used but the gateway rather serves
as a translator. The SCOTTY approach pays special attention to this aspect to
develop versatile and re-usable security components that are in particular needed
to offer a migration path for existing installations.

4 Discussion and Conclusion

In this paper, we introduced the SCOTTY approach, enabling secure communi-
cation in time-triggered systems. The key assumption is to relax the requirement
of ‘no physical access’ of former safety-critical systems. To sum up, the advan-
tages compared to existing solutions are:

372 F. Skopik et al.

– Full protection inside the time-triggered system that allows secure commu-
nications beyond physical protection boundaries.

– Synergetic use of safety and security components by reuse of functional mod-
ules and integration in existing safety-related design concepts and tool ap-
proaches.

– Protection of temporal properties of a real-time system in addition to the
standard security attributes, authenticity, integrity and confidentiality.

Future work includes the implementation and evaluation of the introduced con-
cepts under realistic conditions. Special focus will be set on the real-time behav-
ior, attack analysis and versatility of the developed concepts and components to
cope with existing and emerging threats and to allow use in numerous application
areas.

References

1. Anderson, R.J.: Security engineering - a guide to building dependable distributed
systems, 2nd edn. Wiley (2008)

2. Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.E.: Basic concepts and tax-
onomy of dependable and secure computing. IEEE Trans. Dependable Sec. Com-
put. 1(1), 11–33 (2004)

3. Bar-El, H.: Intra-vehicle information security framework. Tech. rep., Discretix
Technologies Ltd. (September 2009)

4. Berwanger, J., Ebner, C., Schedl, A., Belschner, R., Fluhrer, S., et al.: FlexRay –
The Communication System for Advanced Automotive Control Systems (2001)

5. Cooney, M.: Nasa takes ethernet deeper into space (2009),
http://www.networkworld.com/community/node/40899

6. Kopetz, H.: Real-Time Systems: Design Principles for Distributed Embedded Ap-
plications, 1st edn. Kluwer Academic Publishers, Norwell (1997)

7. Kopetz, H., Bauer, G.: The time-triggered architecture. Proceedings of the
IEEE 91(1), 112–126 (2003)

8. Perrig, A., Szewczyk, R., Tygar, J.D., Wen, V., Culler, D.E.: Spins: Security pro-
tocols for sensor networks. Wireless Networks 8(5), 521–534 (2002)

9. Rushby, J.: A comparison of bus architectures for safety-critical embedded systems.
Research Report NASA/CR-2003-212161, pp. 112–126 (2003)

10. Schoitsch, E.: Design for safety and security of complex embedded systems: a uni-
fied approach. In: Proceedings of the NATO Advanced Research Workshop on
Cyberspace Security and Defense: Research Issues, pp. 161–174. Springer (2004)

11. Treytl, A., Gaderer, G., Hirschler, B., Cohen, R.: Traps and pitfalls in secure clock
synchronization. In: ISPCS, pp. 18–24 (2007)

12. Treytl, A., Hirschler, B.: Securing IEEE 1588 by ipsec tunnels - an analysis. In:
ISPCS, pp. 83–90 (2010)

13. Wasicek, A.: Security in Time-Triggered Systems. Ph.D. thesis, Vienna University
of Technology (2012)

14. Wasicek, A., Salloum, C.E., Kopetz, H.: Authentication in time-triggered systems
using time-delayed release of keys. In: ISORC, pp. 31–39 (2011)

15. Wolf, M., Weimerskirch, A., Paar, C.: Embedded security in cars: Securing current
and future automotive it applications (2006)

16. Wood, A.D., Stankovic, J.A.: Denial of service in sensor networks. IEEE Com-
puter 35(10), 54–62 (2002)

http://www.networkworld.com/community/node/40899

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 373–381, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Towards a Framework for Simulation Based Design,
Validation and Performance Analysis

of Electronic Control Systems

Alexander Hanzlik and Erwin Kristen

AIT Austrian Institute of Technology, Vienna, Austria
{alexander.hanzlik.fl,erwin.kristen}@ait.ac.at

Abstract. This paper presents a model based development approach for the de-
sign and validation of electronic control systems, the DTF Data Time Flow Si-
mulator. The DTF is developed at the AIT in the course of the EU ARTEMIS
project POLLUX, which is related to the design of embedded systems for the
next generation of electric cars. One application of the DTF is the design of ve-
hicle electronic control systems. The automotive industry operates in a very
competitive market, where it is hard to get detailed technical information from
manufacturers and suppliers. To raise the acceptance for development tools in
such a market, the challenge for tool developers is to provide tools that the cus-
tomers can use without the need to share corporate know-how with third parties.
This challenge is addressed in this paper. We present a generic framework for
the design of electronic control systems and an application example for perfor-
mance analysis of such a control system for use in an electric car.

Keywords: Model Based Design, Simulation, Electronic Control Systems,
Automotive, Performance Analysis.

1 Introduction

Overcoming the problem of steadily increasing system complexity is an engineering
challenge today and it can be expected that it will remain to be a challenge in the fu-
ture. This is especially true for vehicle electronic control systems. The trend in the
development of such systems shows that mechanical and hydraulic components will
be more and more replaced by electronic components. A good example for this evolu-
tion are the emerging brake-by-wire and steer-by-wire technologies that aim on the
mechanical de-coupling of driver actions and the physical reaction of the vehicle. By-
wire technologies are already state-of-the-art in avionics, where the control systems
have to fulfill stringent requirements to ensure passenger safety. Introducing these
technologies in vehicle control systems will not only increase system complexity, but
will also increase the demands on functional safety for vehicles. The recently released
norm ISO 26262 “Road vehicles - Functional safety“ [1] defines, among others, func-
tional safety aspects of the entire development process and provides requirements for

374 A. Hanzlik and E. Kristen

validation and confirmation measures. This norm has been released at the end of the
year 2011 and it can be expected to become a de-facto standard for the automotive
industry.

On the one hand, steadily increasing system complexity and safety requirements
raise the need for regulations and standards for the development process of safety-
relevant systems. Such standards are already well established in avionics, like the
DO-178B released in 1992 that deals with the safety of software used in airborne
systems.

On the other hand, development time is costly and the automotive industry is a
very competitive market. Moreover, it is a market of mass production. Products
are released in large quantities, and car manufacturers and suppliers are very am-
bitious to keep the costs per piece as low as possible. In this area of tension be-
tween system complexity, quality considerations, safety requirements and time
constraints it may become hard to maintain product quality and safety at afforda-
ble costs unless there are appropriate tools at hand for support of system design
processes. Although good engineering skills, practice and know-how will always
be the most important factors, it seems reasonable to support engineers with tools
that facilitate the design process and that help to avoid costly re-design activities
caused by the detection of substantial design weaknesses in later phases of prod-
uct development.

1.1 Motivation and Objectives

From this situation, the following objectives for the DTF have been derived:

• Early validation of system design concepts. The aim is to make all relevant
design decisions in a very early phase of development, ideally before any hard-
ware and software has been built. Based on the system requirements, a simula-
tion model of the system is created. This simulation model is iteratively refined
until all requirements are fulfilled. On the base of this model, the system is im-
plemented.

Such an approach reduces the probability that substantial design weakness
emerge in a later phase of development, like in the test and integration phase. As a
consequence, such an approach also helps to reduce the number of costly re-design
activities in the development process.

• Identification of an optimal system design. „Optimal“ means a design that is as
simple as possible and as complex as necessary to fulfill all requirements. A clear
and mean design facilitates implementation and test and supports functional safety.
Further, it reduces the costs of the final hardware implementation, which is an im-
portant commercial aspect in a market of mass production like the automotive in-
dustry.

• Complete vehicle simulation. This is the notion of a virtual vehicle where
the DTF is embedded into a co-simulation environment together with external

Towards a Framework for Simulation Based Design, Validation and Performance Analysis 375

simulators like MATLAB. These external simulators cover the simulation of me-
chanic, electrical or hydraulic systems, the DTF serves as the electronic control
system of this virtual vehicle.

• Generic approach for vehicle control system design. The automotive industry
operates in a very competitive market, where detailed technical information is hard
to get from manufacturers. To raise the acceptance of development tools in such a
market, it is essential to provide something that allows manufacturers to develop
their systems without sharing corporate know-how with third parties, like tool
developers.

1.2 System Model

Modern vehicle control systems are distributed systems, built from spatially separated
electronic control units (ECUs) interconnected via shared communication resources
[2]. ECUs are embedded systems that control one or more of the electrical or
mechanical systems in a vehicle.

For the following considerations, we assume that a vehicle electronic control sys-
tem can be built by repetitive use of the following components:

• ECU. An Electronic Control Unit ECU is an embedded system that controls one or
more of the electrical systems or subsystems in a vehicle. An ECU receives state
signals from sensors and/or other ECUs and issues control signals to actuators
and/or other ECUs. Different ECUs are assigned different control tasks, like engine
control, damping control or transmission control.

• Communication medium. A shared communication resource interconnects differ-
ent ECUs. For communication, dedicated communication protocols are used, like
CAN [3], FlexRay [4], LIN [5] or MOST [6].

• Segment. ECUs are grouped into segments, which are sets of ECUs that execute a
distributed control task concurrently. The ECUs in a segment are linked via a
communication medium. Typical segments in a vehicle are the powertrain, the
body electronics or the infotainment segment.

• Gateway. A gateway links different segments and allows for communication be-
tween these segments. Further, gateways are used for gathering diagnostic informa-
tion from each segment.

• Transceiver. Transceivers are the interfaces between the vehicle electronic control
system and the environment. Sensors are used to deliver signals for further compu-
tation, like the brake pedal position or the current lateral speed. Actuators are used
to control mechanical or electrical components, like the brakes or the motor rota-
tional speed.

Figure 1 shows a vehicle control system architecture providing four segments (Power-
train, Chassis, Body and Infotainment), four gateways and connections to the dash-
board and the on-board diagnostics interface of the car.

376 A. Hanzlik and E. Kristen

Fig. 1. Vehicle Control System Architecture

2 The Data Time Flow Simulator

The Data Time Flow Simulator DTF is a simulation environment that is currently
under development at the Austrian Institute of Technology AIT. The vision of the
DTF simulator is to improve the design process of distributed electronic control sys-
tems by continuous performance analysis and assessment using virtual prototypes of
the target system, integrating different physical domains during an overall system
simulation. Performance analysis and assessment are based on the monitoring of ac-
tion chains from sensors to actuators.

The DTF simulator is a discrete-event simulation [7] environment for the design
and validation of electronic control systems. It is based on a modular assembly system
that provides a set of primitive building blocks, the elements. Elements can be
grouped together to form more complex structures, like ECUs. Each element has an
input buffer, one output and a propagation delay. When an element receives data in its
input buffer, the data is processed and, with the propagation delay defined for this
element, the processed value is sent to the output.

Elements are linked together to form so-called action chains. An action chain is a
directed path from a source element (e.g. a sensor) to a destination element (e.g. an
actuator). Figure 2 shows a simple electronic control system consisting of two sensors
S1 and S2, two actuators A1 and A2, ECUs A, B C and D and a communication net-
work BUS. The ECUs and the BUS are constituted by elements from the DTF mod-
ular assembly system. For example, the ECUs contain a Processor element Proc and a
Controller element CC. The control system has four possible action chains: one from
sensor S1 to actuator A1, one from sensor S1 to actuator A2, one from sensor S2 to
actuator A1 and finally one from sensor S2 to actuator A2.

Towards a Framework for Simulation Based Design, Validation and Performance Analysis 377

Fig. 2. Simple electronic control system

Fig. 3. System Performance Analysis – Principle of Operation

378 A. Hanzlik and E. Kristen

To analyze the performance of the control system, signals are issued to the sensor
elements and signal propagation is observed, both in the domains of value and time,
from the sensors over the communication network to the actuators. The analysis of the
input buffer fill levels of each element along the action chain over time delivers addi-
tional information. If the allowed signal propagation time along an action chain is
exceeded, this additional information can be useful to identify one or more elements
as the possible reasons.

From the signal propagation time over the communication network important in-
formation can be gained with regard to the dynamics and responsiveness of the
control system, especially for safety-relevant signals that usually are subjected to real-
time constraints, like e.g. the brake pedal position.

Figure 3 shows the workflow for a system performance analysis with the DTF
based on a drive cycle. The drive cycle consists of a set of events that are issued to the
sensor elements of the system and that contain typical driving scenarios like the brake
pedal positions or the different positions of the steering wheel during the drive cycle.
Using this set of events, the system is put under stress and the system behavior is
observed. The assessment of the system performance consists of two phases:

• In the System Assessment phase, the maximum loads of different network seg-
ments during the drive cycle are determined. If a given maximum network load is
exceeded, the network model is modified.

• In the Signal Assessment phase, single control signal latencies are examined. If a
given maximum signal latency is exceeded, the network communication schedule
is modified.

This process is iterated until all requirements are fulfilled.

3 Application Example

A simple application example shall illustrate the system performance assessment
described in the last section. We will analyze the performance of a single segment,
shown in Figure 4. It consists of twelve ECUs, a CAN bus, six sensors and six actua-
tors. For the simulation of the drive cycle, we use four burst control signals with a
constant period issued to sensors S02, S03, S04 and S05. Sensors S00 and S01 are
triggered with chirp signals of varying period.

For the performance assessment, we consider the maximum network load of the
CAN bus and the control signal latency of signal s_brake_front which is issued to
sensor S04. The requirements for this application example are

• Maximum network load for CAN bus < 70%
• Control signal latency for signal s_brake_front < 28ms

3.1 System Assessment Phase

For the defined drive cycle, the single segment network model shown in Figure 4 does not
fulfill the maximum network load requirement. The load of the CAN bus exceeds 70%.

Towards a Framework for Simulation Based Design, Validation and Performance Analysis 379

Fig. 4. Single Segment Network Model

A possible modification of the network model is to split the single segment into two
segments and to connect them via a gateway. The refined network model is shown in
Figure 5.

Fig. 5. Two Segment Network Model

For the defined drive cycle, the two segment network model fulfills the maximum
network load requirement for both CAN segments, because in both segments the max-
imum network load is clearly below 70%.

380 A. Hanzlik and E. Kristen

3.2 Single Signal Assessment Phase

We now examine the control signal latency for signal s_brake_front. The modified
network model does not fulfill the control signal latency requirement for signal
s_brake_front, because the signal latency exceeds 28ms (see Figure 6, left hand side).
The message priority of signal s_brake_front is 50, which is the lowest priority in
CAN bus segment A. A possible modification of the network communication sche-
dule is to raise the priority of signal s_brake_front from 50 to 20 such that this signal
is not pre-empted by the control signals of sensor S02, which have priority 30. This
modification is sufficient to fulfill the signal latency requirement for signal
s_brake_front: after the message priority adaptation, the observed signal latency is
clearly below 28ms (see Figure 6, right hand side).

Fig. 6. Control signal latency before and after message priority adaptation

4 Conclusion

This paper introduced the DTF Data Time Flow Simulator, a tool for model based
design, validation and performance analysis of vehicle electronic control systems. It
shall support engineers in the development of vehicle control systems in the presence
of steadily increasing system complexity. This increasing complexity is caused by the
ongoing efforts to replace mechanical and hydraulic systems in the vehicle by elec-
tronic systems, like brake-by-wire and steer-by-wire technologies. Introducing these
technologies in vehicle control systems will not only increase system complexity, but
will also increase the demands on functional safety for vehicles. These non-functional
requirements that shall ensure passenger safety will further increase system complexi-
ty, such as the need for replication of safety-critical components. To overcome this
situation, development tools are needed that support engineers in the design and vali-
dation of vehicle control systems.

References

1. ISO 26262. Road vehicles – Functional safety, http://www.iso.org
2. Zimmermann, W., Schmidgall, R.: Bussysteme in der Fahrzeugtechnik – Protokolle, Stan-

dards und Softwarearchitektur. Vieweg+Teubner, 4. Auflage (2010)

Towards a Framework for Simulation Based Design, Validation and Performance Analysis 381

3. Etschberger, K. (Hrsg.): CAN Controller Area Network – Grundlagen, Protokolle, Bauste-
ine, Anwendungen. Hanser Fachbuchverlag, Deutschland (2001)

4. FlexRay Communications System Protocol Specification Version 3.0.1,
http://www.flexray.com

5. Grzemba, A., Von der Wense, H.: LIN-Bus. Franzis, Deutschland (2005)
6. Grzemba, A.: MOST. The Automotive Multimedia Network. From MOST25 to MOST150.

Franzis (2011)
7. Banks, J., Carson, J., Nelson, B.: Discrete-Event System Simulation. Prentice Hall (2000)

Compiling for Time Predictability�

Peter Puschner1, Raimund Kirner2, Benedikt Huber1, and Daniel Prokesch1

1 Institute of Computer Engineering
Vienna University of Technology, Austria

{peter,benedikt,daniel}@vmars.tuwien.ac.at
2 Department of Computer Science

University of Hertfordshire, United Kingdom
r.kirner@herts.ac.uk

Abstract. Within the T-CREST project we work on hardware/software
architectures and code-generation strategies for time-predictable embed-
ded and cyber-physical systems.

In this paper we present the single-path code generation approach that
we plan to explore and implement in a compiler prototype for a time-
predictable processor. Single-path code generation produces code that
forces every execution to follow the same trace of instructions, thus sup-
porting time predictability and simplifying the worst-case execution-time
analysis of code. The idea of the single-path generation and details about
the code-generation rules of the compiler can be found in this work.

Keywords: real-time systems, compilers, time predictability, worst-case
execution-time analysis.

1 Introduction

Many embedded and cyber-physical systems need safe and tight predictions
about the timing of the hard real-time software that controls safety-critical parts
of the application. The problem of current systems is that planning application
timing and obtaining reliable information about the timing behaviour of appli-
cations is getting more and more difficult, the reason being that the complexity
of hardware and software is growing without limits. This, in turn, has the effect
that efforts and costs of both the construction and the validation of safety-critical
real-time applications are steadily increasing and becoming unacceptably high.

Within the T-CREST project we are developing a novel processor architecture
and new software and code-generation strategies to make real-time systems more
time-predictable and reduce the complexity of temporal planning and timing
analysis. The strategy is to use simpler hardware that can be controlled by
software and to generate code that behaves in a more predictable manner than
traditional code.

� This research was partially funded under the European Union’s 7th Framework
Programme under grant agreement no. 288008: Time-Predictable Multi-Core Archi-
tecture for Embedded Systems (T-CREST).

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 382–391, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Compiling for Time Predictability 383

Within this paper we present the code-generation strategy of the T-CREST
approach. The ideas for the single-path code generation, that is at the core of our
code generation, have been published in [1] – In the single-path approach input-
dependent code alternatives are translated into sequential pieces of predicated
code of the same functional behaviour. In this paper we now present the rationale
for the single-path code transformation and provide details about the code-
generation rules used in this approach.

The advantages of the proposed code generation strategy are that it yields
predictable, compositional and stable code execution times. These properties
make it easy to argue about code timing. Further, they support a structured or
hierarchical design and analysis of systems with respect to timing properties.

2 Desirable Code-Timing Properties

When compiling code for time-predictable embedded systems we should strive
for the following properties:

– Composability: The execution times of generated code should not be de-
pendent of the software context in which the code is executed, i.e., adding,
changing, or removing one part of some software must not change the worst-
case timing of the other code sections. This is necessary to make timing
an integral (though platform specific) property of a code piece or software
component, which is a prerequisite for a hierarchical software development
process for real-time applications.

– Compositionality: Given the timing of some pieces of code, the timing of a
composite should be derivable by a simple timing formula from the timing
of its constituent code pieces.

– Analyzability: The code structure should allow for an accurate timing anal-
ysis at reasonable cost. In particular, the overestimation of the worst-case
execution time should be low, in the order of a few percent.

– Stability: The generated code should run with constant execution time or
with small execution-time jitter (variability). This greatly simplifies both
timing analysis and the argumentation about the temporal behaviour of
real-time application software.

– Simplicity: The execution-time analysis of the resulting code should be of
low complexity. Simplicity also fosters analyzability.

3 How to Make Execution Times Predictable

The execution time of a piece of code is determined by three factors: (1) the
hardware on which the code is to run, (2) the sequence of actions defined by
the code (depending on the algorithm chosen to solve a computing problem
and the compiler that transforms the source code into machine code that the
processor can execute), and (3) the context in which the code is executed [2]. The
latter depends on the hardware state resulting from the execution history and

384 P. Puschner et al.

the application-specific context (e.g., the possible value assignments of variables)
in which the code is executed.

Each of the listed factors influences time predictability. Within the T-CREST
project we aim at creating an environment in which time predictability is sup-
ported by all three factors.

In the hardware domain, the architecture of the Patmos processor [3], which
is developed in the T-CREST project, provides means to make the processor
timing independent of the execution context. It features a fully predicated in-
struction set (cf. Section 4.1), where every instruction is conditionally executed
depending on the value of one of the eight predicate registers. The VLIW nature
of the in-order execution dual-issue pipeline demands that hazards are resolved
during compile time instead of stalling the pipeline implicitly at runtime. The
memory architecture, which provides a predictable function cache and a software-
managed scratchpad area, ensures that timing of memory accesses is controllable
by software.

As for the software, coding guidelines and specific code-generation strategies
ensure that the sequence of instructions executed during a program execution
are insensitive to the values of input variables. The sequence of instructions
executed by the resulting code is easy to analyse, and, again, independent of the
context in which the software is run.

Within this paper we focus on code generation.

Enforcing Equal Timing for All Inputs
Regarding software, the central question in this paper is: How can the software
help to make code timing predictable?

Software contributes to variable timing by executing different instruction
traces for different inputs. These different traces, in general, have different tim-
ing. So, if we want software to help make code timing predictable, we must
find a way to make alternative code sections execute with equal time consump-
tion. This can be addressed in two ways: either find ways to make the timing of
alternative traces equal or eliminate alternatives.

Enforcing Equal Timing for Alternatives. Assuming that the processor provides
constant instruction execution times and memory access times, an input-data
dependent execution time can be traced back to some control-flow branch where
different alternatives take a different amount of time. This difference can be elim-
inated by inserting so many single-cycle Nop instructions into the shorter (less
time-consuming) alternative that the execution times of the alternatives become
equal. A similar strategy can be applied to every loop with a non-constant but
bounded number of iterations — insert another loop of identical iteration timing
but empty functionality to compensate for non-taken iterations in the original
loop. So the number of iterations of both loops taken together is always the
same. The same goal could be achieved by substituting the Nop sequences by a
Delay instruction, parametrised to stall execution for the equivalent amount of
time the Nops would take.

Compiling for Time Predictability 385

This strategy is related to the approach of timing instructions, so-called dead-
line instructions, as provided in the implementation of the PRET architecture
of Lickly et al. [4]. A deadline instruction sets the execution time limit for sub-
sequent instructions until the next deadline instruction is encountered, which
then stalls the execution until the specified time has elapsed. If the execution
takes longer, an exception is raised which could be handled by the application,
although it is desirable to verify the absence of such events.

There are some drawbacks with the Nop or Delay insertion approach: First,
the insertion ofNop respectivelyDelay instructions increases code size. Second,
the Nop-insertion approach can only be used in architectures that do not suf-
fer from hardware-state dependent execution times. E.g., in architectures with
instruction caches one cannot assign a fixed execution time to a set of instruc-
tions, because access times of instructions differ for hits and misses (see Fig. 1).
Even in architectures whose instruction execution times are not state dependent,
Nop insertion requires detailed knowledge about the hardware timing in order
to determine the correct number of Nop instructions that need to be placed in
different code locations. Similarly, the insertion of Delay instructions needs a
detailed analysis of the worst-case timing of code sections to set timers correctly,
thus confronting us with the whole set of problems of a highly complex WCET
analysis.

Fig. 1. Example Illustrating that There is Nothing Like a Fixed Execution Time for a
Branch

Eliminating Alternatives. If we manage to generate code that follows the same
execution trace for whatever input data it receives then obtaining composable
and stable timing becomes almost trivial. This is the idea behind the single-path
transformation [1]. The single-path transformation is a code generation strategy
that extends the idea of if-conversion [5] to transform branching code into code
with a single trace. Instead of using conditional branches to react to different
input data, the transformed code uses predicated instructions – comparable to
instructions that hide the branches within – to control the semantics of the
executed code. Code generation for loops follows a similar idea. Loops with
input-dependent iteration conditions are transformed into loops for which the
number of iterations is known at compile time. Input-data dependent iterations
are again removed by if-conversion.

386 P. Puschner et al.

The execution of single-path code requires a little hardware support (see
Section 4.3). Single-path code generation is however a purely software-based
approach, meaning that it does not need any information about the timing of
hardware operations. This independence from hardware timing makes the single-
path approach the preferable code-generation strategy among the discussed
solutions.

4 Generating Single-Path Code

4.1 If-Conversion

As said before, the single-path transformation builds upon If-Conversion [5].
If-conversion removes branches in the control flow of a piece of code by using
predicated instructions. Predicated instructions are instructions whose semantics
are controlled by a predicate, where the predicate can be implemented by the
condition code flag(s) or specific predicate flags of the processor. If the predicate
is true the instruction realises the function associated with its op-code. If the
predicate evaluates to false, the instruction behaves like a Nop instruction.

Fig. 2. Branching Code (left) versus Predicated Code (right) Generated from the Same
Source-Code Example

Figure 2 shows an if-conversion example. In this example the values of two
variables, rA and rB are swapped if the value of rA is less than the value rB . On
the left side of the figure we see the branching code generated for the example,
assuming the two variables are held in registers. The right side displays the code
after if-conversion. The code on the right side is semantically equivalent, but
uses a predicated swap instruction instead of the conditional branch.

Let us for the moment assume that we have a processor that supports a fully
predicated instruction set, i.e., the processor provides a predicated version of
each of its op-codes. Building on this instruction set we can use if conversion to
transform arbitrary conditional code branches resulting from if-then-else con-
structs into predicated code.

Figure 3 illustrates the single-path transformation of an if-then-else construct.
The original – branching – version uses a conditional branch to control which

Compiling for Time Predictability 387

Fig. 3. Using If-conversion to Eliminate Alternatives

alternative should be effective. The single-path version computes a predicate,
P, and executes both alternatives with predicates P and not P , respectively, to
implement the same semantics without branching.

4.2 The Single-Path Transformation

We will now explain how we can use the if-conversion of conditionals to build a
set of rules that allows us to transform more complex programs, i.e., programs
that include sequences of constructs, loops, and procedure calls. These rules can
then be applied to any piece of WCET-boundable code1 to transform it into a
single-path equivalent.

Preparing for the Single-Path Transformation. Recall that only those
conditional branches whose branching decision depends on the program inputs
create different paths of program execution. Therefore, the single-path transfor-
mation only has to eliminate these input-data dependent branches. Conditional
branches whose behaviour is not influenced by program inputs should not be
affected by the transformation.

To make sure that only input-dependent conditionals are transformed, the
actual single-path transformation and code generation is preceded by a data-flow
analysis [6]. This data-flow analysis traverses the entire program code and marks
all parts of the code as either input-data dependent or input-data independent.

The Actual Transformation. After the data-flow analysis the actual single-
path transformation and code generation are performed. Although the single-
path transformation is conducted on an intermediate representation of the code,
we will demonstrate it here for programming language constructs represented at
the source-language level. We think that this makes the performed steps easier
to comprehend.

To transform a program given in high-language source, we first construct its
syntax tree. We then recursively traverse the syntax tree and use the appropriate
rules from Table 1 to perform the single-path transformation for the constructs
represented by the nodes of the syntax tree.

1 The maximum number of iterations can be bounded for all loops.

388 P. Puschner et al.

Table 1. Single-Path Transformation Rules

Construct S Translated Construct SP� S �σδ

S if σ = T S

otherwise (σ) S

S1;S2 SP� S1 �σδ;
SP� S2 �σδ

if cond then S1 if ID(cond) guard δ := σ;
else S2 SP� S1 �〈σ ∧ guard δ〉〈δ + 1〉;

SP� S2 �〈σ ∧ ¬guard δ〉〈δ + 1〉
otherwise if cond then SP� S1 �σδ

else SP� S2 �σδ

while cond if ID(cond) endδ := false

max N times for countδ := 1 to N do begin

do S SP� if ¬cond then endδ := true �σ〈δ + 1〉;
SP� if ¬endδ then S �σ〈δ + 1〉

end

otherwise while cond do SP� S �σδ

call proc p (pars) if σ = T call proc p (pars)

otherwise call proc p-sip(σ, pars)

def proc p (pars) def proc p (pars) S;
S def proc p-sip (pcnd , pars)

SP� S �〈pcnd〉〈0〉

Table 1 shows the single-path transformation rules for the basic control con-
structs used in a high-level language – simple constructs, sequences, alternatives,
loops, and procedures2. We assume that conditions controlling the execution of
alternatives and loops are boolean variables, and thus side-effect free expressions.
Besides the statement type, each rule has two parameters, σ and δ. The first pa-
rameter, σ, is a boolean value that represents the precondition under which the
statement under transformation is executed. The second parameter, δ, is used
to pass the value of a counter to the code transformation rule. Some rules use
this counter value to generate unique variable names in the context of the rule.
The details of the rules are as follows:

Simple Statement. For a simple statement S we distinguish two cases. If the
precondition evaluates to true then the statement will be executed in every
execution. Therefore the transformation generates S. Otherwise S will be
executed conditionally depending on the value of σ. Therefore the transfor-
mation generates code for the predicated execution of S with predicate σ.

2 To keep the paper short we demonstrate the transformation for one representative
of alternative statements (if–then–else) and loop statements (while) only. The rules
for other variations of these statement types are similar.

Compiling for Time Predictability 389

Statement Sequence. For a statement sequence, the generated code is the
result of the sequence of its transformed constituents.

Conditional Statement. For a conditional statement, as represented by the
if–then-else construct, we distinguish two cases. If the outcome of the branch-
ing condition depends on the program inputs (ID(cond) is true), then we gen-
erate a code sequence that consists of the serialisation of the two single-path
transformed alternatives S1 and S2, where the precondition parameters of
the alternatives are the conjunction of the old precondition (σ) and the eval-
uation result of cond (for S1) respectively not cond (for S2). If the branching
condition does not depend on the program inputs then the transformation
conserves the if–then–else structure and only transforms S1 and S2.

Loop. In order to eliminate input-dependent control flow from a loop, the trans-
formation replaces the original loop by a for–loop with constant execution
count — as we are transforming hard real-time code we assume that there
is an input-data independent expression N bounding the maximum number
of loop iterations. The termination of the new for–loop is controlled by a
new counter variable countδ. Further, we introduce an endδ flag to enforce
that the transformed loop has the same semantics as the original. This flag
is initialised to true and assumes the value false as soon as the termination
condition of the original loop evaluates to true for the first time. In the new
loop the original loop body S is only effective as long as the end flag has
not been set. Thus S in the end executes under the same condition as in the
original loop.

Procedures. The last two rules illustrate code generation for procedures. If
the precondition of a call is always true, then the generated code calls the
procedure unconditionally. Otherwise, i.e., σ will only be known at runtime,
we have to generate code that ensures that the procedure is called in every
execution, but that the procedure execution respects the call’s precondition.
To facilitate the latter, we generate code for a new, single-path version of the
procedures (with suffix -sip) that has an additional parameter pcnd. In the
code generation for the definition of the single-path version of the procedure,
pcnd is incorporated as a precondition that controls the predicated execution
of the procedure body S. In the code generation for the call of the single-path
version of the procedure, pcnd accepts the actual value of the precondition
passed to the procedure.

4.3 Single-Path Transformation and Partial Predication

So far we assumed that our processor provides support for full predication. While
this is the case for the processor being developed in T-CREST it seems notewor-
thy that the single-path transformation can be easily adapted for architectures
that support only partial predication. In fact, work published in [7] gives an
excellent guide on how to apply if-conversion for such architectures.

The idea behind code generation for partially predicated architectures is to
compute intermediate results of both alternatives of an if–then–else statement,

390 P. Puschner et al.

≠

≠

Fig. 4. If-Conversion for Partial-Predication Support

but only use the results from that one alternative for which the condition eval-
uates to true. Predicated Move instructions are used to control that the correct
temporary results are moved to the variables that store the final results of the
translated code.

An if-conversion example for an architecture with partial predication is shown
in Figure 4. The example also demonstrates how the if-conversion avoids adverse
side effects when generating code with partial predication.

5 Conclusion and Outlook

As the architectures of both hardware and software used in embedded and cyber-
physical systems get more and more complex, the temporal predictability of code
gets lost. This predictability loss brings about a number of unpleasant effects for
the design and analysis of time critical systems: the absence of timing compos-
ability and compositionality impedes a meaningful argumentation about timing
properties when designing, implementing, or re-using software components. The
multitude of parameters determining hardware timing and execution paths make
code timing unstable and difficult to analyse, thus resulting in great timing vari-
ability of execution times and pessimistic results in worst-case execution time
analysis and global timing analysis, both leading to an overestimation of resource
needs and thereby higher than necessary expenses for computing resources.

The goal of T-CREST is to build a hardware/software platform for time
predictable computing. With simpler and controllable hardware and single-path
software we want to eliminate the above-mentioned problems.

The single-path conversion described in this paper allows us to produce code
that executes on the same execution path for all possible inputs. The resulting
code behaviour is insensitive to the values of input variables, which makes the
analysis easy and supports stability from the software side. Together with time-
predictable hardware the proposed code-transformation strategy also provides

Compiling for Time Predictability 391

the composability and compositionality of code timing that is desirable for real-
time applications. The latter has been highlighted in [8].

So far the proposed single-path transformation has been explored in small ex-
periments that incorporated the manual transformation of branches into condi-
tionals [9]. Within T-CREST we are now implementing a compiler that performs
the code transformation automatically. A first compiler prototype is expected to
be available in a few months. This will allow us to conduct further experiments
(including experiments with larger code) and gain insights into the practical
aspects of the automated single-path generation of code.

References

1. Puschner, P., Burns, A.: Writing temporally predictable code. In: Proc. 7th IEEE
International Workshop on Object-Oriented Real-Time Dependable Systems, pp.
85–91 (January 2002)

2. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P., Staschulat, J., Stenström, P.: The worst-case execution-time prob-
lem – overview of methods and survey of tools. ACM Transactions on Embedded
Computing Systems 7(3) (2008)

3. Schoeberl, M., Schleuniger, P., Puffitsch, W., Brandner, F., Probst, C.W., Karlsson,
S., Thorn, T.: Towards a time-predictable dual-issue microprocessor: The Patmos
approach. In: First Workshop on Bringing Theory to Practice: Predictability and
Performance in Embedded Systems (PPES 2011), pp. 11–20 (March 2011)

4. Lickly, B., Liu, I., Kim, S., Patel, H.D., Edwards, S.A., Lee, E.A.: Predictable pro-
gramming on a precision timed architecture. In: Proceedings of the 2008 Interna-
tional Conference on Compilers, Architectures and Synthesis for Embedded Systems,
CASES 2008, pp. 137–146. ACM, New York (2008)

5. Allen, J., Kennedy, K., Porterfield, C., Warren, J.: Conversion of Control Depen-
dence to Data Dependence. In: Proc. 10th ACM Symposium on Principles of Pro-
gramming Languages, pp. 177–189 (January 1983)

6. Gustafsson, J., Lisper, B., Kirner, R., Puschner, P.: Code analysis for temporal
predictability. Real-Time Syst. 32(3), 253–277 (2006)

7. Mahlke, S., Hank, R., McCormick, J., August, D., Hwu, W.: A Comparison of
Full and Partial Predicated Execution Support for ILP Processors. In: Proc. 22nd
International Symposium on Computer Architecture, pp. 138–150 (June 1995)

8. Schellekens, M.: A Modular Calculus for the Average Cost of Data Structuring.
Springer (2008)

9. Puschner, P.: Experiments with wcet-oriented programming and the single-path
architecture. In: Proc. 10th IEEE International Workshop on Object-Oriented Real-
Time Dependable Systems, pp. 205–210 (February 2005)

Towards the Automated Qualification

of Tool Chain Design

Fredrik Asplund, Matthias Biehl, and Frédéric Loiret

Embedded Control Systems
Royal Institute of Technology

Stockholm, Sweden
{biehl,fasplund,floiret}@kth.se

Abstract. The development of safety-critical embedded systems is sup-
ported by a number of development tools, which are increasingly inte-
grated into automated tool chains. Safety standards require these tool
chains to be qualified, which is costly and requires a large effort. To re-
duce cost and effort tool chains can be composed of pre-qualified tools
and then themselves pre-qualified by identifying the parts of tool chain
software that have an impact on safety more exactly. In this paper we
propose the use of a modeling language to describe this tool chain com-
position. This allows us to reduce effort even further by automatically
analyzing the tool chain model for safety issues. It also promises to re-
duce the effort and cost of later steps in the deployment of the tool chain
by formalizing the communication of safety issues and automating the
generation of code for tool chain software.

Keywords: Tool Integration, Qualification, Safety.

1 Introduction

We are surrounded by a growing number of increasingly complex safety-critical
embedded systems, such as advanced driver assistance systems in cars and
autopilots in airplanes. We study two trends in the development of such em-
bedded systems: (1) the need for qualification of software and (2) the automa-
tion and size of the tool chains and development environments. While these
aspects are typically studied independently, we believe that there are critical
interdependencies.

(1) For a number of embedded systems domains there are safety standards
that stipulate both restrictions for the development process and require software
tool qualification. Examples include IEC 61508:2010 [4], ISO26262:2011 [11] for
the automotive industry and DO-178C/DO-330 [12,13] for the aviation industry.

(2) Tool chains grow in size and complexity, as the development of an embed-
ded system typically requires collaboration between a large number of experts.
The use of sophisticated software tools joined together by automation has in-
creased in an attempt to increase productivity.

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 392–399, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Towards the Automated Qualification of Tool Chain Design 393

The implication of (1) is that all software that has implications on safety should
be qualified. Together with (2) this leads to the conclusion that not only isolated
tools, but also the integration of tool chains should be qualified [5]. However,
as shown in [8], there is a reluctance of practitioners to use a one-size-fits-all
solution for tool chains. Tool chains are therefore typically tailored to the specific
development process(es) and the set of tools used in a project.

This means that there is a clash of objectives between the need to qualify a
potentially large part of a development environment and the need to provide a
customized tool chain for each individual project. This conflict can be solved
by stipulating safety goals for different parts of each tool chain at hand, safety
goals which allow the qualification to be limited to the parts of a development
environment that have the potential to influence the safety of end products. In
this way the risks introduced due to tool integration can be mitigated, while the
qualification effort and cost is kept at a manageable level.

In this paper we report on our work in progress. In section 2 we describe our
overall approach, limiting ourselves to the second step of a method defined in an
earlier publication. We divide this step into two parts. The first part, detailed
in section 3, is the use of a modeling language to model reference workflows and
tool chains. The second part, detailed in section 4, is to analyze the models for
safety issues related to tool integration. Thereafter we describe related work in
section 5 and summarize the paper in section 6.

2 Approach

We use an approach for tool chain qualification in four steps, namely (step 1)
pre-qualification of engineering tools, (step 2) pre-qualification at the tool chain
level, (step 3) qualification of the tool chain and (step 4) qualification at the
tool level [5]. This approach lets us separate the parts required by modern safety
standards in regard to software tool qualification from the extra effort suggested
by us to identify safety issues related to tool integration.

This paper deals with the second step, the pre-qualification at the tool chain
level, which is concerned with identifying the required safety goals due to tool
integration. The output from this step is a description of a reference workflow and
tool chain with the relevant parts annotated with the mitigating efforts required
due to tool integration. The tools mentioned throughout the paper are assumed
to already be pre-qualified to the requirements of a relevant safety standard (a
similar approach is used by other works, such as [9,10]).

As a format for the description we propose to use the Tool Integration Lan-
guage (TIL) [6], a modeling language for systematically describing the composi-
tion of tools into tool chains. In contrast to other work [9,10], we can therefore
explicitly describe the tool chain in the form of models. The activities for qual-
ifying the composition can then be formalized, since the tool chain is described
systematically and in a structured form. This formalized description of the quali-
fication activity can be the basis for partly automated qualification. Additionally,

394 F. Asplund, M. Biehl, and F. Loiret

the same models can be used as a basis for realizing the tool chain as a software
solution through automated code generation and as a formal way of commu-
nicating safety-relevant requirements on the tool chain. The use of TIL should
therefore help reduce effort and cost even further. TIL is relatively mature, as
it has been used for modeling industrial tool chains [2] and generate code from
these models [7].

To make use of TIL we divide the second step of our approach into two
separate parts, which are detailed in the following sections:

– Section 3 describes the tailoring of the tool chain by composition of pre-
qualified tools, in which tool chains are composed by selecting pre-qualified
components and describing the connections between them.

– Section 4 describes the analysis of the composition, in which the compo-
sition is analyzed and annotated with information on which parts require
mitigating efforts to handle safety issues due to tool integration.

3 Tailoring of the Tool Chain

In this part of the second step we compose pre-qualified tools into tool chains.
This consists of creating an early TIL design model. Below we give a short
overview of TIL, by referring to a simple example model in Figure 1.

Fig. 1. A Simple TIL Model Illustrating the Graphical Syntax

In TIL a tool chain is described in terms of a number of ToolAdapters 1©
and the relation between then. A ToolAdapter exposes data and functionality of
a tool. The relation between the ToolAdapters is realized as any of the follow-
ing Channels : a ControlChannel 2© describes a service call, a DataChannel 5©
describes data exchange and a TraceChannel 6© describes the creation of trace
links. A Sequencer 3© describes sequential control flow; it executes a sequence
of services in a defined order. A User 4© is a representative for a real tool chain
user. It is used to describe and limit the possible interactions of the real users
with the tool chain. Outgoing control channels from the user denote services
invoked by the user, incoming control channels to a user denote a notification
sent to the user. A Repository 7© provides storage and version management of
tool data.

Towards the Automated Qualification of Tool Chain Design 395

Each ToolAdapter has an associated ToolAdapterMetamodel, which specifies
the structure of the data and the signature of the functionality exposed by the
tool adapter. An important design decision taken during the specification of the
tool adapter is the scope and granularity of the exposed data. This decision de-
pends on the role of the tool within the tool chain. Our experiments on specifying
ToolAdapterMetamodels of different granularity can be used as a guideline [7] for
creating an adequate tool adapter metamodel. Each DataChannel has an asso-
ciated model transformation, which resolves structural heterogeneities between
the data of the ToolAdapters, which is structured according to the ToolAdapter-
Metamodels. The source and target metamodels of the model transformation are
thus the respective ToolAdapterMetamodels.

4 Analysis of the Composition

After a tool chain has been modeled in TIL, the risks related to tool integration
can be identified from the model. If such a risk is identified, an associated safety
goal [5] can be required to be fulfilled for that part of the tool chain. Such a safety
goal will point to certain types of mitigating actions that need to be shown to
be in place in later steps of our approach.

Below we describe three different types of risk associated with tool integration,
the analysis of TIL models required to identify these types of risk and the safety
goals that can mitigate them. The discussion is based on a small part of a
tool chain described in Figure 2. In this example requirements are written by a
requirements engineer utilizing the IRQA requirements tool. The requirements
are then persisted to a repository before a designer utilizing Enterprise Architect
uses them to build an UML model of the end product. After the UML model has
been reviewed it is subsequently transferred manually into a Simulink model by
a developer. As seen in the minimal TIL model in Figure 2, the tool integration
in this example is mainly handled manually. This is not uncommon, even if it is
becoming rarer, in state of the practice tool chains.

Fig. 2. Tool Chain of the Running Example Modeled in TIL

396 F. Asplund, M. Biehl, and F. Loiret

4.1 Risk Type 1

Risk Type 1: A developer creates a development artifact. Later during devel-
opment another developer, who uses information from the previously developed
artifact, develops another, more refined artifact. This refined artifact is not com-
plete in regard to or not consistent with the previous artifact, but this can not
be detected by the developers. The undetected inconsistencies or incompleteness
can lead to hazards in the end product.

Detection: The qualification activity to detect whether there is no possibility
to detect inconsistencies and incompleteness can be formalized by checking if
there are TraceChannels between the ToolAdapters (these provide the ability to
create traces).

Safety Goal: If this type of risk is detected, it can be mitigated by the safety
goal that tracing needs to be enabled by the relevant parts of the tool chain,
developers trained in this functionality and processes established to ensure that
the functionality is used. The example shown in Figure 2 does not contain any
trace channels. After this is detected the analyst can require traceability to be
enabled between all ToolAdapters, as shown in Figure 3.

Fig. 3. Traceability Added to the TIL Model

4.2 Risk Type 2

Risk Type 2: A developer studies a development artifact and develops another
development artifact by manually transferring information. A tired or untrained
developer may make mistakes during this manual transfer.

Detection: The qualification activity to detect whether tired or untrained de-
velopers can introduce errors during manual transfers of information can be for-
malized by checking if there are DataChannels between relevant ToolAdapters.
The relevant ToolAdapters can be identified based on the type of engineering
tools involved.

Safety Goal: If this type of risk is detected, it can be mitigated by the safety
goal that automatic transformation of development artifacts needs to be enabled
by the tool chain, tool chain developers trained in the domain knowledge of the

Towards the Automated Qualification of Tool Chain Design 397

developers and processes established to ensure that the functionality is used. The
example shown in Figure 2 does not contain a DataChannel between Enterprise
Architect and Simulink, even though it is tedious work to manually transform
models from UML to Simulink. After this is detected the analyst can require a
DataChannel to be enabled between these tools, as shown in Figure 4.

Fig. 4. Transformation Added to the TIL Model

4.3 Risk Type 3

Risk Type 3: A project manager retrieves a project report, supposedly extracted
from the most recent data on the project status. Unfortunately the new report
has been delayed, the manager reads through obsolete information and fails to
take mitigating action regarding project issues that may affect safety.

Detection: The qualification activity to detect whether the use of obsolete
information can not be detected can be formalized by checking if each relevant
ToolAdapter has a DataChannel to a Repository/CMSystem (these are, by defi-
nition, required to support timestamps or similar [1]). The relevant ToolAdapters
can be identified based on which data is used for decision support.

Safety Goal: If this type of risk is detected, it can be mitigated by the safety
goal that relevant development artifacts need to be time stamped according to
a global clock and project managers trained in correctly identifying the time
information. For the sake of the example we can assume that a new, complete
Simulink model is of interest to project managers. Simulink is not connected to a
Repository/CMSystem in the example shown in Figure 2. After this is detected
the analyst can require Simulink to be connected to the Repository/CMSystem,
as shown in Figure 5.

This last model, shown in Figure 5, can be annotated to highlight the required
changes in the tool chain, but also with requirements outside the technical do-
main (such as the training and processes mentioned above). In this way what
needs to be supported by the deployed tool chain to mitigate the risks due to
tool integration can be communicated and the qualification focused on a more
limited part of the development environment.

398 F. Asplund, M. Biehl, and F. Loiret

Fig. 5. Time Information Added to the TIL Model

5 Related Work

Existing standards deal with qualification and certification in different ways, as
discussed in [5]. Some standards require tools to be suitable and of a certain
quality [3], while some are stricter and require the development of relevant tools
to fulfill the same objectives as the development of the products handled by
the standard itself [12]. However, the approach of these standards or the related
state of the practice discussion is mostly to limit any software qualification effort
to engineering tools and their immediate environment. This means that modern
safety standards do not address all hazards that occur due to the integration of
tools into tool chains in modern development environments. An example is the
introduction of an automated transformation of data between two tools. If this
is at all dealt with in the context of the current standards, it will most likely be
viewed as some kind of error-reducing mechanism that lowers the qualification
effort required for the tool that delivers data to the transformation (in the way
IEC 61508:2010 views all integration as only positive [4]). However, ideally the
transformation itself should also be subject to qualification and its effects on
developers identified (if it for instance lowers the possibility for developers to
detect errors in output).

Apart from the approach to qualify everything in a development environment,
only a few proposals for how to approach tool chain qualification exists today
([10] suggests to only qualify the first and the last tools in a tool chain). Little
effort has however been spent on identifying the actual implications on safety
due to tool integration.

6 Summary and Future Work

In this paper we propose the use of a modeling language for tool chains, TIL, to
tailor and analyze tool chains for developing safety-critical embedded systems.
This supports a pre-qualification effort of tool chains consisting of pre-qualified
tools, aimed at identifying the risks related to tool integration. These risks point
out the safety goals that need to be supported by the tool chain after it is
deployed to ensure the safety of the end product.

Towards the Automated Qualification of Tool Chain Design 399

Through this approach the qualification effort is reduced to only those parts
relevant to ensure safety. It also allows for a formal way of communicating these
parts and the requirements on them, or even automatically generating code for
them. These benefits should both increase the confidence in catching safety issues
due to software used in the development of safety-critical products and reduce
the cost of attaining this confidence. The next steps include:

– Extending the annotations of the TIL models to include issues like the gran-
ularity of traces, the skill level of operators, etc.

– Formalizing additional patterns and providing automated analysis.
– Making use of the existing code generation from TIL models.
– Performing a case study to compare the result of our automated qualification

with that of a manual process and determine the efficiency gain.

Acknowledgement. The research leading to these results has received partial
funding from the ARTEMIS Joint Undertaking under grant agreement n◦ 269335
and from the Swedish Vinnova funding authority.

References

1. Biehl, M.: Tool Integration Language. Technical Report ISRN/KTH/MMK/R-
11/16-SE, Royal Institute of Technology (KTH) (September 2011)

2. Biehl, M.: Early Automated Verification of Tool Chain Design. In: Murgante, B.,
Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O.
(eds.) ICCSA 2012, Part IV. LNCS, vol. 7336, pp. 40–50. Springer, Heidelberg
(2012)

3. CENELEC. BS/EN 50128:2001, railway applications - communications, signalling
and processing systems - software for railway control and protection systems (2001)

4. International Electrotechnical Commission. BS/IEC 61508:2010, functional safety
of electrical/electronic/programmable electronic safety-related systems

5. Asplund, F., El-khoury, J., Törngren, M.: Qualifying Software Tools, a Systems
Approach. In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP 2012. LNCS, vol. 7612,
pp. 340–351. Springer, Heidelberg (2012)

6. Biehl, et al.: A Domain Specific Language for Generating Tool Integration So-
lutions. In: 4th Workshop on Model-Driven Tool & Process Integration at the
European Conference on Modelling Foundations and Applications (June 2011)

7. Biehl, et al.: High-Level Specification and Code Generation for Service-Oriented
Tool Adapters. In: Proceedings of ICCSA 2012 (June 2012)

8. Christie, et al.: Software Process Automation: Interviews, Survey, and Workshop
Results. Technical report, SEI (1997)

9. Conrad, et al.: Qualifying software tools according to ISO 26262. In: Proceedings
of MBEES 2010 (February 2010)

10. Hamann, et al.: ISO 26262 release just ahead - remaining problems and proposals
for solutions. In: SAE 2011 World Congress & Exhibition (April 2011)

11. International Organization for Standardization. ISO 26262:2011, road vehicles -
functional safety (2011)

12. Special Committee 205 of RTCA. DO-178C, software considerations in airborne
systems and equipment certification (2011)

13. Special Committee 205 of RTCA. DO-330, software tool qualification considera-
tions (2011)

A Systematic Elaboration of Safety

Requirements in the Avionic Domain

Antoaneta Kondeva, Martin Wassmuth, and Andreas Mitschke

EADS Deutschland GmbH, EADS Innovation Works
Willy-Messerschmitt-Str. 1, 85521 Ottobrunn, Germany

{antoaneta.kondeva,andreas.mitschke,martin.wassmuth}@eads.net

Abstract. Avionic safety standards such as ARP4754A, DO-178B, and
DO-254 specifying the development, validation and verification processes
do not provide an unambiguous guideline for system developers, refining
ARP4754A system requirements down to DO-178B or DO-254 specific
items. Consequently, tracing the high-level system safety requirements
down to safety item requirements of the individual system components
is extremely difficult and error-prone. Today, the refinement of system
safety requirements and their allocation to items, that shall realize them,
is done mostly ad-hoc. This utilized ad-hoc approach is due to a lack
of systematic elaboration methodologies. In this paper we advocate an
approach that explicitly specifies the transition from abstract system
requirements to concrete item requirements.

Keywords: safety requirements, seamless and explicit refinement,
ARP4754A, domain knowledge.

1 Introduction

Over time, the design of aircraft systems has experienced rapid increase of com-
plexity. Throughout different domains, more and more functions are realized by
electronics and software, which significantly increases the challenge for system
designers to maintain the safety of systems. This is among other things due to
lack of a comprehensive method supporting the specification of safety require-
ments and their refinement throughout the system development process.

Industry safety standards such as ARP4754A [2] for system development,
DO-178B [3] for software development and DO-254 [4] for hardware mandate
the results that shall be provided to ensure that the system under development
is acceptably safe. However, these standards do not provide detailed informa-
tion on how these results can be achieved. With respect to safety requirements
management, these standards are still considered as vague and ambiguous [1].
In essence, there is no clear answer to the following questions:

– What are the relationships between system requirements, derived require-
ments, safety requirements, system architecture, and high- and low-level
software requirements?

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 400–408, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Systematic Elaboration of Safety Requirements in the Avionic Domain 401

– How can high-level safety requirements be split in concrete safety properties
of the components building the system?

– How does the system architecture on one development level influence safety
requirements at the next level?

To summarize, the explicit and systematic specification of system safety prop-
erties and how they evolve during the system development process is not clear.
Therefore, this paper introduces a seamless and systematic process for safety re-
quirements evolution while being conform to existing safety standards. Section 2
will present a technique for explicit specification and transition of abstract sys-
tem safety requirements to concrete item requirements. Section 3 describes our
approach integrated into the ARP4754A development process. Section 4 demon-
strates the application of the systematic safety requirements refinement on a real
use case (Doors Management System). Finally, Section 5 concludes this paper
and presents some possible areas for future work.

2 From System Safety Requirements to Item Safety
Requirements

ARP4754A specifies system as “a combination of inter-related items arranged
to perform a specific function(s)”. An item is :“hardware or software element
having bounded and well-defined interfaces”. Referring to these specifications
system refinement concerns the decomposition of a system into subsystems until
the system properties can be allocated to properties of the concrete hardware or
software elements.

System level safety requirements can be seen as constraints on the system
functionality. In other words, specification of conditions that shall not hold. In
this section, we discuss, how system safety requirements can be refined into
requirements for the system items.

2.1 Safety Requirements Specification and Refinement

Our approach for specification and refinement of system safety requirements re-
lies on the work of Jackson [5,6]. We distinguish between system requirements,
domain knowledge, and item requirements. System requirements specify the rela-
tion between environment phenomena, desired to be fulfilled by the system. Item
requirements state the intended item behaviour that is sufficient to realize the
system requirement. Often it is difficult to directly associate a particular item
property to environment phenomena without making some assumptions about
how the environment behaves. We need to determine the domain knowledge rep-
resenting facts and assumptions about the environment.Domain properties spec-
ify the facts about the application domain i.e physical laws. Domain assumptions
are descriptive statements about the application domain, which are believed to
be needed for the realization of the environment property. They serve as interme-
diate step between the system requirements and the item requirements. In fact,

402 A. Kondeva, M. Wassmuth, and A. Mitschke

the domain knowledge specifies the translation of the environmental phenomena
in concrete properties of the system. To illustrate these concepts, consider as
example the A320 breaking logic introduced in [7]. The system safety require-
ment for the system is: To prevent engagement of reverse thrust while

the aircraft is in flight. The related environment phenomena in the re-
quirements are InFlight(Aircraft) and Enabled(ReveseThrust), respectively. The
system designers shall give a technical meaning for these abstract phenomena.
They take the design decision that the turning of the wheels of the landing gear
indicates that the aircraft is moving on the runway and is not in flight. The
requirement to sense when the wheels are turning is allocated to a sensor.

SysR : InF light(Aircraft) ⇒ ¬Enabled(ReverseThrust)

DP1 : MovingOn(Aircraft, Runway) ⇔ ¬InF light(Aircraft)

DA1 : MovingOn(Aircraft, Runway) ⇔ Turning(Wheels, Runway)

ItemR(Sensor) 1 : Turning(Wheels, Runway)⇒ PulsOn(Sensor)

ItemR(Controller) 2 : PulsOn(Sensor) ⇒ Enable(ReverseThrust)

According to the described concepts we can explicitly specify the relationship be-
tween system safety requirements, derived requirements and item requirements.
“If an item whose behaviour satisfy ItemR is in the environment, and the en-
vironment has the properties described in D, then the environment will exhibit
the properties specified in SysR” (according to [6]).

D, ItemR |= SysR

The considerations so far have a conventional refinement character. Conventional
means, we refine the system safety requirements in the same way as functional
requirements. In essence, we have described how to translate the abstract system
phenomena into technical item properties. But considering the safety aspect,
we have to analyse if the specified domain knowledge will hold in all possible
circumstances or whether scenarios exist which violate the domain assumptions.
In fact, we have to show the completeness according safety.

2.2 Safety Analysis

From a safety point of view, the designer has to demonstrate that the domain as-
sumptions and the item requirements will hold under the intended circumstances.
If no particular circumstances are specified, then evidence shall be given for all
possible circumstances. Thus, it should be proven that there are no scenarios
that will violate the assumptions. Considering the domain assumption from the
example above:

MovingOn(Aircraft, Runway) ⇔ Turning(Wheels, Runway)

This domain assumption is general in its nature. We have to check if the wheels
will turn under all possible circumstances, for example under all environment

A Systematic Elaboration of Safety Requirements in the Avionic Domain 403

conditions. Is the above statement always true? What if we take into account
the possible conditions of the runway: condition(Runway) = (wet, dry) and
check the statement with the variable value: condition(Runway) = wet?

A serious incident during an A320 landing on a rainy day at Warsaw airport
shows that incomplete and implicit domain assumptions (the plane wheels will
not turn in case of aquaplaning) result in incomplete derived requirements for
the system components.

3 The Safety Requirements Elaboration and the
ARP4754 System Development Process

In the previous section, we have described a technique for the specification of
system requirements, item requirements and how to explicitly specify the relation
between them. In this section, we show how this technique can be applied to the
system development process specified in ARP4754A so that the questions stated
in the introduction of the paper can be clarified.

Fig. 1. Safety requirement elaboration process

Figure 1 shows the safety requirements elaboration based on the system de-
velopment process specified in ARP4754A. The input for the process are the
system safety requirements, which are specified as a relation of environment
phenomena. During the system architecture development the abstract system
safety requirements are transformed into item requirements. Here, the system
designers make assumptions about how the desired environment phenomena can
be technically realized (specifying the domain assumptions). Depending on the
assumptions, the environment phenomena are related to the behaviour of the
items. Thereafter, the designer analyses if the item behaviour will hold under
the particular circumstances (safety analysis), to determine if the system require-
ment can be allocated under the responsibility of the selected item. The outcome
of the system architecture development is the system architecture. The system
architecture and the rationale for the design decisions are explicitly specified as
domain assumptions and domain properties. Item requirements are derived from

404 A. Kondeva, M. Wassmuth, and A. Mitschke

the system architecture. ARP4754A specifies this step as: Allocation of system
requirements to Items. It states that: “In practice, the system architecture de-
velopment and the allocation of system requirements to item requirements are
tightly-coupled, iterative processes...., the identification and understanding of
derived requirements increases and the rational for the allocation of system-level
requirements to hardware or software at the item level becomes clearer”.

The derived requirements are the item requirements, which are deduced from
the domain knowledge specified during the system development architecture and
the safety analysis. By using this methodology we can explicitly specify all the
information needed for the validation process of the system requirements as
required by the ARP4754A (Figure 2).

Fig. 2. Development process data as input for the system requirements validation
process (adapted from ARP4754A, [2])

4 Case Study

To demonstrate the systematic elaboration of safety requirements we choose
the safety-critical system Aircraft Doors Management System (DMS). In the
past, there were a few aircraft accidents and incidents [8] caused by failure of
this system, for example: incorrect closing operation by the operator, unreliable
latches, and unexpected reaction by the pilot.

4.1 Case Study Description

The DMS has two main objectives (functions allocated to this system):

1. Manage Door Operation
2. Provide safe operation

A Systematic Elaboration of Safety Requirements in the Avionic Domain 405

Consider the doors management system as part of the aircraft. The system-level
aircraft hazards related to the aircraft doors include: aircraft decompression, re-
sulting from door opening during flight, a person being hit from a closing door,
person opening a door and being blown out of the aircraft due to significant
difference between the pressure outside and inside of the plane, passengers be-
ing unable to escape from the plane in a dangerous situation in the aircraft
compartment.

4.2 Applying the Requirements Elaboration Process on the DMS

Tracing the system hazard Aircraft decompression into the hazardous be-
haviour of the DMS, we get the system hazard Door opens while aircraft in

flight and the resulting safety requirement Prevent door opening during

flight. We will demonstrate the safety requirements refinement process by re-
fining the above stated system requirement.

Refining System Requirement: InF light(Aircraft) ⇒ ¬Openable
(Door). The system requirement has an abstract notion and cannot be verified.
The requirement shall be refined to be able to be allocated to items of the sys-
tem. We have to specify the domain assumptions. That is, the environment phe-
nomenon: ¬Openable(Door) shall be specified. ¬Openable(Door) means, that
the aircraft door must remain in the compartment frame during the aircraft is
in flight. It shall be impossible to take the door out of the door frame. There are
two possible solutions: by appropriate design of the door (plug-in door design)
or by using structural element preventing the door from opening. Considering
the first solution (using inward door), it is physically impossible to open the
door during flight because of the high differential pressure. An aircraft has two
types of doors: passenger and cargo doors. Cargo doors are typically outward,
because of the requirement Fast cargo loading and high cargo capacity.
Therefore, the second possible solution to use (interlock) latches is preferred.
Latches are movable mechanical elements which, ones engaged, prevent the door
from opening. The new system element responsible to keep the door in the
“closed” position is the latch. The latches can be engaged (latched) or not en-
gaged (unlatched). The behaviour of the latch can be specified as follows: when
the latch is in state “latched” and power is resolved, the latch goes in state
“unlatched”. When the latch is in state “unlatched” and power is resolved, the
latch goes in state “latched”. If the latch is latched, the door cannot be opened.
Thus, the door is in state “fully closed”. Otherwise, the door state becomes the
value “closed”. The design assumptions and the item requirement resulting from
the taken design decision are shown in Figure 3.

The next step is to prove that the latches can guarantee to keep the door in the
closed position under the intended circumstances (inFlight). The question is: Can
we allocate the requirement under the responsibility of the latch? We analyse the
following scenario: What can lead to unlatching latches during flight and estab-
lish that latches only are insufficient to fulfil the system requirement. One possible

406 A. Kondeva, M. Wassmuth, and A. Mitschke

Fig. 3. System requirement refinement and allocation analysis for the latch item

scenario of unlatching the latches during flight is when power is resolved during
flight. To prevent this item related hazard a new requirements is defined: Sources
of power that could initiate unlatchingof any door must be automatically

isolated from the latches prior to flight and it must not be possible to

restore power to the door during flight. Depending on the type of latches
(electrical, hydraulic, and pneumatic) this requirement will be refined differently.
Let us assume, the design decision is to use electrical latches. Therefore, the re-
sulting (derived) requirement for the controller, controlling the latch operations,
is as follows: The controller shall be set to ‘‘inactive’’ prior to fly. An-
other possible cause of unlatching the latches during flight is because of specific
environment conditions. Due to their nature, the latches (structural elements)
are subject to vibration, structural loads and deflections, positive and negative
loads, and aerodynamic loads. Under specific values of the above listed environ-
ment conditions, the latches can get unlatched. In fact, such environment condi-
tions emerge, when the aircraft is in flight. Consequently, the system requirement:
keep the door in the fully closed position during flight cannot be realized
only by the latch component. In other words, the expression for the satisfaction
of the system requirement:DA1, DA2, DP1, DP4, DP5, ItemR |= SysR is false.

To prevent the event of unlatching during flight, an additional interlock (lock)
is added to the system architecture. Locks are mechanical elements, in addition
to the latch operating mechanism, that monitor the latch positions and when
engaged, prevent the latches from becoming disengaged. The new system ele-
ment responsible to keep the door in the “closed” position is the lock (DA2 is
modified). If the lock is engaged, the door cannot be opened. Thus, the door is in
state “fully closed”. Otherwise, the door state becomes the value “latched”. The
lock can be engaged (locked) or not engaged (unlocked). The behaviour of the
lock can be specified as follow: when the latch is in state “latched” and power is
resolved to the lock, the lock goes in state “locked”. The behaviour of the latch
is also modified (DP2), respectively. It goes in the unlatched state only if the

A Systematic Elaboration of Safety Requirements in the Avionic Domain 407

Fig. 4. System requirement refinement and allocation analysis for the lock item

state of the lock is unlocked and power is resolved on the latch. The resulting
domain knowledge and the modified item requirement are shown in Figure 4.

Now we have to prove that the added elements (locks) can guarantee to keep
the door close under the intended circumstances or whether they add new haz-
ards that can lead to opening of the door.

5 Conclusion and Future Work

This paper illustrates an approach for systematic refinement of system safety re-
quirements into item safety requirements. First, we adopt the mature technique
of Jackson [5,6] to be applied for cyber-physical systems. Hence, the require-
ments, the design and the safety aspects are integrated into one model and the
different artefacts (system requirement, design decision and domain property,
and item requirement and item hazards) and their relations to each other are
explicitly specified. To be conform to the industry safety standard ARP4754A we
showed how our approach can be concretely applied for the system development
process.

For future work, we intend to specify the system requirements, the design
knowledge and the item requirements in LTL or CTL to automatically (using a
model checker) evaluate if the system requirements are satisfied by the derived
item requirements. To provide a more realistic use case for our investigations, we
will extend the use case specifying all system safety requirements for the Doors
Management System that have not been fully addressed in this paper.

Acknowledgement. We would like to thank Prof. Manfred Broy, Stephan
Stilkerich for helpful comments and feedback.

408 A. Kondeva, M. Wassmuth, and A. Mitschke

References

1. Miller, S., Lempia, D.: Requirements Engineering Management Findings Report.
Technical Report (2009)

2. ARP4754A. Guidelines for Development of Civil Aircraft and Systems. SAE Inter-
national (2010)

3. DO-178B. Software Considerations in Airborne Systems and Equipment Certifica-
tion. RTCA (1992)

4. DO-254. Design Assurance Guidance for Airborne Electronic Hardware. RTCA
(2000)

5. Jackson, M., Zave, P.: Four dark corners of requirements engineering. ACM Trans-
actions on Software Engineering and Methodology (1997)

6. Jackson, M.: The meaning of requirements. Annals of Software Engineering 3 (1997)
7. Jackson, M.: The world and the machine. In: Proceedings of the 1995 International

Conference of Software Engineering (1995)
8. Uncontrolled decompression: Wikipedia,

http://en.wikipedia.org/wiki/Uncontrolled_decompression

http://en.wikipedia.org/wiki/Uncontrolled_decompression

Parallel NuSMV: A NuSMV Extension for the

Verification of Complex Embedded Systems

Orlando Ferrante, Luca Benvenuti, Leonardo Mangeruca, Christos Sofronis,
and Alberto Ferrari

ALES S.r.l., Rome, Italy
firstname.surname@ales.eu.com

Abstract. In this paper we present Parallel NuSMV, a tool based on
the NuSMV model checker that integrates the ManySAT parallel SAT
solver. The PNuSMV is part of the FormalSpecs Verifier framework for
the formal verification of Simulink/Stateflow models. The experiments
we performed show that the use of a parallel SAT solver allows for an
average speedup of an order of magnitude or more on industry-level size
models. The main contributions of the papers are (1) the description of
the PNuSMV model checker (2) the description of the verification time
speedup w.r.t. the NuSMV tool for the verification of industrial-sized
embedded systems and (3) the integration of the tool in the FormalSpecs
Verifier framework for the verification of Simulink/Stateflow models with
the application to a cruise control case study.

Keywords: model checking, embedded systems, contract-based design,
formal verification.

1 Introduction

Model checking has reached a high maturity level that allows applying this tech-
nique to the verification of complex embedded systems. Several techniques and
tools have been proposed to tackle industrial-sized models. In [1] the authors de-
scribe the verification of a Flight Control System modeled in MATLAB Simulink
using the NuSMV model checker. In [2] the verification of avionics embedded
software is performed using three different model checkers (namely NuSMV [3],
SAL [4] and PROVER [5]). In addition, model checkers have been successfully
applied to the verification of software using both static and dynamic analysis
[6] [7] [8]. During last decades several techniques have been developed in or-
der to tackle the state explosion problem that limit the application of formal
methods. The use of binary decision diagrams allowed the application of model
checking to industrial case studies [9]. Bounded model checking [10] introduced
the use of SAT solvers in the context of symbolic model checking and provided
the basis for its extension to the unbounded case. During last decade increased
research and industrial efforts have been spent on the area of Satisfiability Mod-
ulo Theories (SMT) [11] trying to improve formal verification tools efficiency
exploiting the integration of SAT-based reasoning methods with specific theories

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 409–416, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

410 O. Ferrante et al.

obtaining promising results in particular in the field of software model check-
ing. However, the application of such theories to complex industrial embedded
systems that usually expose nonlinear dynamics and complex numeric control
algorithms is still an open point. In this paper we present a tool called Parallel
NuSMV (PNuSMV) that is a modified version of the NuSMV model checker that
integrates the ManySAT parallel SAT solver [12]. The PNuSMV is part of the
FormalSpecs Verifier framework for the formal verification of Simulink/Stateflow
models. The experimental results have been collected using a rich set of indus-
trial use cases and they show the existence of an exponential speedup of the
verification time when the bounded model checking technique is used to check
model’s invariants. The PNuSMV allows for exploiting last advances in SAT
solver techinques with the strength of the FormalSpecs Verifier environment and
the NuSMV model checking tool. In this paper we present the application of
PNuSMV to a cruise control system and an additional set of logic model of in-
dustrial size. The main contributions of the papers are (1) the description of
the PNuSMV model checker (2) the description of experimental results that
shows the exponential speedup for the verification of invariant properties of in-
dustrial sized embedded systems compared to the NuSMV model checker using
the bounded-model checking technique and (3) the integration of the tool with
the FormalSpecs Verifier framework for the verification of Simulink/Stateflow
models and the application to a cruise control case study.

2 FormalSpecs Verifier Verification Framework

The PNuSMV tool is part of the FormalSpecs Verifier (FSV) framework for
the verification of discrete systems for the MATLAB Simulink environment [13].
The framework supports several operative modes. In this paper we focus on the
capability of verifying properties described as invariant or temporal logic for-
mulae. The FSV tool can be seen as a translator from a Simulink model and
specification to the NuSMV tool native language. The transformation process
produces a semantically equivalent NuSMV representation of the input model
taking into account the non-determinism resolution that may be introduced dur-
ing the transformation step. In Figure 1 the flow is described in details. As a
first step the Simulink textual file is parsed. Then the parsed Simulink model
is processed generating a semantically equivalent NuSMV model that is used to
generate the concrete NuSMV artifact with a model to text step.

The technology used to perform the model transformation step is an inter-
nally developed Java embodiment of the OMG Query/View/Transformation
(QVT) language called JQVT. The JQVT library aims at providing an
industry-level operational implementation of the QVT language. It supports
the definition of QVT mappings and the definition of mappings inheritance, dis-
junction and merging. JQVT allows capturing the mapping relation that links
a source model element to a target model element and it supports the resolve
and resolveIn operators to retrieve the set of mapping source model elements
from a given mapped target model element. JQVT does not support the entire

A NuSMV Extension for the Verification of Complex Embedded Systems 411

Fig. 1. FormalSpecs Verifier transformation flow

QVT specification. However, it has been extensively used as translation infras-
tructure of different tools for the translation of industry-level sized models [14].

3 Parallel NuSMV Tool

The Parallel NuSMV (PNuSMV) tool is a modification of the open source
NuSMV2 symbolic model checker. The structure of the tool is represented in
Figure 2.

Fig. 2. Parallel NuSMV layered structure

The top layer is an unmodified version of the NuSMV 2.5.2 open source model
checker that is a state-of-the art tool for the formal verification of discrete sys-
tems. NuSMV2 supports several verification techniques such as binary decision
diagrams and SAT-based bounded model checking using different SAT solvers
(such as Minisat [15] and Z-Chaff [16]. A new component (the SAT Solver Con-
troller) has been implemented as intermediate layer between the model checker
and the underline SAT solver. The role of the controller is to correctly support
the instantiation of (possibly several) SAT solvers providing a common interface
to the NuSMV2. Currently we successfully integrated the MiniSat v2.2.0 and
the ManySAT 2.0. The latter is the last iteration of the parallel SAT solver that

412 O. Ferrante et al.

won the SAT-Race 2008 and SAT-Competion 2009. The availability of multi-
core platforms allows for an efficient exploitation of the parallel nature of the
solver easily obtaining an average speed up of an order of magnitude for several
industrial level models as described in Section 5.

4 Cruise Control Model

To show the performance of the tool using a concrete application we describe a
cruise control system modeled using the MATLAB Simulink and translated with
the FormalSpecs Verifier tool. Cruise control is the term used to describe a control
system that regulates the speed of an automobile. The basic operation of a cruise
controller is to sense the speed of the vehicle, compare this speed to a desired ref-
erence, and then accelerate or decelerate the car as required. A simple control al-
gorithm for controlling the speed is to use a ”proportional plus integral” feedback
based on the error between the current and the desired speed. The model of the
truck is based of a force balance for the body, see Figure 3. For a detailed descrip-
tion of the example please refer to [17]. Let v be the speed of the truck,m the total
mass , FT the traction force related to the wheels, and Fd the force related to addi-
tional elements (such as gravity and aerodynamic drag). The mathematical model

Fig. 3. Cruise control model and Simulink model

of the system is given by the equationmdv/dt = FT −Fd where m = 3450kg and
FT is the force of the engine. Force Fd is composed by gravity (Fg), rolling fric-
tion (Fr) and aerodynamic drag (Fa) forces. Fg = mg sin(a) with a road slope
and g gravitational constant. Rolling friction is Fr = mgCrsign(v) with Cr fric-
tion coefficient. Finally Fa = 1/2ρCxA(v + ω)2 where ρ is air density, Cx is the
aerodynamic drag coefficient, A is the area of the truck and ω models the wind
gusts. In our model the values of the equations parameters are ρ = 1.228kg/m3,
Cx = 0.55 and A = 2.4m2. The control algorithm regulates the traction force FT

on the basis of the error e = vREF − v between the desired speed vREF and the
current speed v of the car. The algorithm consits of a proportional-integral control
as follows: FT (kT) = kpe(kT) + kI

∑k
h=0 e(hT) where T = 40ms and kP , kI are

the proportional and integral gains.
The cruise control system has been modeled in MATLAB Simulink (Fig. 3)

implementing a conservative discrete-time abstraction of the plant. The model

A NuSMV Extension for the Verification of Complex Embedded Systems 413

has two inputs of type signed 32 bit integers representing the road slope percent-
age value and the wind gusts value. The model represents the system in steady
state with cruise speed of 22m/s. The specification of the property to be checked
has been captured using the FormalSpecs Verifier properties toolbox following
the contract-based methodology ([18], [19], [20]) that allows for the specification
of requirements in terms of contracts C = (A,G) where A is the assumption
and G the guarantee (or promise). Intuitively a contract is a requirement of the
form A → G where the promise represents the set of possible system behaviors
under the hypothesis that the environment behaves as described in the assump-
tion (i.e. A represents the set of acceptable environments). The contract-based
theory and its application to the verification of complex distributed embedded
systems is investigated by the authors in the context of the SPRINT EU project
[21]. In the case of the cruise control system the assumption has been formalized
as the conjunction of the following assertions: the road slope is constrained to
assume value in the set {−8,−4, 0, 4, 8}, the wind gusts value is constrained to
be in the set {−15, 0, 15} m/s) and its derivative can have a maximum absolute
value of 15 m/s (to take into account that the wind gust cannot change its value
arbitrarily faster). The contract promise requires that the effective speed must
be within 95% and 105% of the reference speed value.

5 Experimental Results

In this section we describe the performance results obtained executing the
PNuSMV 1.0 and NuSMV 2.5 tools. The host machines used for the execution
of the experiments are an Intel iCore 7@1.87 Ghz with 8 GB RAM platform
hosting a Linux 64 bit Ubuntu 10.04 operating system (platform A) and an In-
tel(R) Xeon(R) CPU X5550 @ 2.67GHz with 50 GB RAM platform hosting an
Ubuntu Linux 10.04 64 bit operating system (platform B).

5.1 Cruise Control Model

For the cruise control we developed several experiments trying to exercise the
verification tools in different ways. The model has been designed to falsify the
property previously described after 33 execution steps. The translated NuSMV
model has size 88 bits that is small compared to the size of the other models used
in another set of experiments (thousands of bits). However, the model represents
a good benchmark for automotive applications models that usually contains 32-
bit signals, complex arithmetic operators and multiple feedback control loops. In
addition, the model is hard to verify and the NuSMV tool is not capable of finding
a counter-example even after several days of computation and it represents an
interesting benchmark for the quantitative evaluation of PNuSMV performance
speedup.

Bounded Model Checking Verification with Incremental Bounds as a
first experiment we execute a bounded model checking verification of the prop-
erty using different bound lengths. The verification has been performed using the

414 O. Ferrante et al.

Table 1. First experiment results

Steps PNuSMV (s) NuSMV (s) AV. SP. Plat

8 6.53± 0.65 34.47 ± 7.01 5.28 A

15 40.02 ± 5.92 856.41 ± 275.07 21.19 A

20 121.86 ± 119.72 6220.72 ± 2127.13 51.05 B

25 516.89 ± 118.37 49149.79 ± 219.51 95.09 B

33 5446.32 ± 456.08 N/A N/A B

check_invar_bmc_inc command with the forward strategy. The average exe-
cution time of each set of runs is summarized in Table 1. For each length bound a
set of executions have been performed using both NuSMV and PNuSMV and the
average value and standard deviation of execution times have been computed.
Collected data give us the opportunity to propose some comments. The speedup
factor (computed as NuSMV execution time/PNuSMV execution time) is always
greater than one and it increases with the dimension of the bound length. This
is in line with the ManySAT solver expected performances. In particular we no-
ticed that the PNuSMV fully exploits the available CPUs taking advantage of
the parallel nature of the SAT solver. A noticeable drawback of the use of the
ManySAT solver is the increasing consumption of memory that, however, did not
explode exponentially making the approach usable for industrial applications.

Bounded Model Checking Verification with Fixed Bound Value as a
second experiment we performed a bounded model checking verification of the
property trying to reach its violation. The PNuSMV software found a valid
counter example in average time of 5446 seconds (approximately 1 hour and 30
minutes). The same model has been processed using the NuSMV software but a
valid counter example has not been found within 11000 minutes (approximately
7 days) of computation (considered as a time-out limit for our experiments). In
Figure 4 we represented the execution time for both NuSMV and PNuSMV and
we extrapolate an approximate exponential trend function between the number
K of BMC step performed and the average execution time. We can notice how
the speedup gain is approximately of the form aebK with b � 0.16.

5.2 Additional Experiments

The cruise control model is an open-source model developed for the evaluation of
the PNuSMV performance for automotive domain applications and we collected
promising results in terms of verification speedup. In order to better evaluate
the tool performance for a larger set of applications we performed additional
experiments using another set of models based on synthetic logic systems. These
models in contrast with the cruise control contains mainly logical operators and
the reduced number of arithmetic blocks allows for the efficient verification of

A NuSMV Extension for the Verification of Complex Embedded Systems 415

Fig. 4. PNuSMV and NuSMV performance graph

Table 2. logic-based tests execution results

Model PNuSMV (s) NuSMV (s) AV. SP.

I 440± 75 3094 ± 925 7

II 639± 208 14074 ± 12629 20

thousands of bit sized models in few hours (in contrast with the cruise control
that is two order of magnitudes smaller in size but it requires two orders of
magnitude more time to verify the property). In our experiments, two models
were analyzed both of the size of thousands of bit and we performed a BMC
incremental verification of an invariant property falsified in fixed amount of
steps using both NuSMV and PNuSMV. The value of the speedup factors are
summarized in Table 2 (all experiments have been executed on platform B). For
this class of models we noticed a significant variability of the speedup factor.
This is in line with the reported behavior of the ManySAT engine w.r.t. the
reproducibility of the performances. As a final remark let us observe that the
average speedup value grows with a factor of 3 (from 7 to 20) with an increase
of the size of the model. This is in line with what we experienced in the first set
of experiments.

6 Conclusions and Future Works

In this paper we described PNuSMV a tool that integrates the NuSMV2 open
source model checker with the ManySAT 2.0 parallel SAT solver. The experi-
mental results report a promising speedup for both control-based models, such
as the cruise control model described in this paper, and logic-based models. Sev-
eral extensions of this work are possible. At first we aim at supporting different
parallel SAT solvers to analyze the performances of the different back-ends. In
addition we are working at a deeper integration of the ManySAT solver with the
NuSMV engine in order to obtain higher performance gains. Finally, we want
to apply the PNuSMV to additional industrial models in order to estimate the
performance gain for a broader set of application scenarios.

416 O. Ferrante et al.

Acknowledgment. The authors would like to acknowledge the support of the
SPRINT EU project (grant agreement no: 257909).

References

1. Miller, S., Anderson, E., Wagner, L., Whalen, M., Heimdahl, M.: Formal verifica-
tion of flight critical software. In: Proceedings of the AIAA Guidance, Navigation
and Control Conference and Exhibit, pp. 15–18 (2005)

2. Miller, S., Whalen, M., Cofer, D.: Software model checking takes off. Communica-
tions of the ACM 53(2), 58–64 (2010)

3. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,
Sebastiani, R., Tacchella, A.: NuSMV 2: An OpenSource Tool for Symbolic Model
Checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002)

4. http://sal.csl.sri.com/

5. http://www.prover.com/

6. Ball, T., Levin, V., Rajamani, S.K.: A decade of software model checking with
slam

7. Ball, T., Cook, B., Levin, V., Rajamani, S.K.: SLAM and Static Driver Verifier:
Technology Transfer of Formal Methods inside Microsoft. In: Boiten, E.A., Derrick,
J., Smith, G.P. (eds.) IFM 2004. LNCS, vol. 2999, pp. 1–20. Springer, Heidelberg
(2004)

8. Godefroid, P.: Compositional dynamic test generation (extended abstract)
9. Burch, J.R., Clarke, E.M., Mcmillan, K.L., Dill, D.L., Hwang, L.J.: Symbolic model

checking: 10 20 states and beyond (1990)
10. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic Model Checking without

BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999)

11. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories.
In: Handbook of Satisfiability, vol. 4 (2009)

12. Hamadi, Y., Sais, L.: Manysat: a parallel sat solver. Journal on Satisfiability,
Boolean Modeling and Computation, JSAT (2009)

13. http://www.mathworks.com/products/simulink/

14. Ferrari, A., Mangeruca, L., Ferrante, O., Mignogna, A.: Desyreml: a sysml pro-
file for heterogeneous embedded systems. In: Embedded Real Time Software and
Systems, ERTS (2012)

15. Een, N., Sörensson, N.: An extensible sat-solver (ver 1.2) (2003)
16. Herbstritt, M.: zchaff: Modifications and extensions (2001)
17. Murray, R.M., et al.: Feedback Systems An Introduction for Scientists and Engi-

neers. Princenton University Press (2009)
18. Benvenuti, L., Ferrari, A., Mangeruca, L., Mazzi, E., Passerone, R., Sofronis, C.: A

contract-based formalism for the specification of heterogeneous systems (invited).
In: FDL, pp. 142–147. IEEE (2008)

19. Ferrante, O., Codella, G., Sofronis, C., Mangeruca, L., Ferrari, A.: Verify contract-
based designed discrete systems by simulation. In: INCOSE, EuSEC (2010)

20. Ferrante, O., Mignogna, A., Sofronis, C., Mangeruca, L., Ferrari, A.: Contract
based design chain integration: An automotive domain case study. In: Applied
Simulation and Modelling. ACTA Press (2011)

21. http://www.sprint-iot.eu/

http://sal.csl.sri.com/
http://www.prover.com/
http://www.mathworks.com/products/simulink/
http://www.sprint-iot.eu/

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 417–426, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Supporting Assurance by Evidence-Based
Argument Services

Janusz Górski1,2, Aleksander Jarzębowicz1,2, Jakub Miler1,2, Michał Witkowicz2,
Jakub Czyżnikiewicz2, and Patryk Jar2

1 Department of Software Engineering, Gdansk University of Technology, Poland
2 NOR-STA Project, Gdansk University of Technology, Poland

www.nor-sta.eu
{jango,olek,jakubm,miwi,jakubc,patryk.jar}@eti.pg.gda.pl

Abstract. Structured arguments based on evidence are used in many domains,
including systems engineering, quality assurance and standards conformance.
Development, maintenance and assessment of such arguments is addressed by
TRUST-IT methodology outlined in this paper. The effective usage of TRUST-
IT requires an adequate tool support. We present a platform of software
services, called NOR-STA, available in the Internet, supporting key activities
related to argument editing, communication and assessment and demonstrate
an example of its application based on real case study focusing on analyzing
safety of an innovative IT system.

Keywords: evidence-based argument, standard conformance, safety case,
TRUST-IT methodology, NOR-STA services.

1 Introduction

Evidence-based arguments are widely recognized in the domain of systems engineer-
ing as means to demonstrate (required) system properties, for instance safety of criti-
cal applications like medical, avionic, military and others. In many cases it is required
by the regulations that a safety case is explicitly presented, which in its essence is an
argument supported by sufficient evidence [1]. Dedicated methods of developing and
presenting safety cases are in use, e.g. [2, 3].

However, safety is not the only quality aspect to be argued for in an explicit way.
Other properties, like security or reliability are also considered important in some
application contexts which leads to the notions of security case or reliability case, or
in more general terms, assurance case [4]. In even more general terms, a trust case
can be considered, as an evidence-based argument that is used to strengthen trust in
any postulated claim, not necessarily related to an IT system property [5]. An example
of application of trust cases is demonstrating conformance to standards. In such situa-
tion, an evidence-based argument is used to justify the claim about standard confor-
mance and such argument can then be assessed by independent auditors.

In this paper we first introduce a methodology of editing, assessing and presenting
evidence-based arguments, called TRUST-IT, then describe a set of NOR-STA

418 J. Górski et al.

services which support application of this methodology in different contexts, and next
present a demonstration scenario where the services are used to represent and improve
a safety argument related to a WSN based application supporting a patient in his/her
home environment.

The argument model of TRUST-IT is based on [6] and its underlying concepts are
similar to these of Claim-Argument-Evidence (CAE) [2] and Goal Structuring Nota-
tion (GSN) [3]. TRUST-IT distinguishes from other approaches by its argument as-
sessment mechanism [7] and by the concept of conformance argument template which
is presently used to support implementation of different standards [8]. The existing
tools, commercial (e.g. ASCE [9] and ISCaDE [10]) and resulting from research
projects (e.g. Visio add-on by University of York [11] and ACCESS by University of
Virginia [12]) do not support group work and remote access. The tools [9], [11] and
[12] are desktop applications and provide little, if any, support for sharing arguments
and sharing the supporting evidence. The tool [10] is based on IBM Telelogic
DOORS environment and provides a limited multi-user work mode using thick-client.
Each of these tools require an installation process dedicated for each user. NOR-STA
services supporting TRUST-IT are offered in a cloud accessible for any Internet user
and can be used without any prior investment in infrastructure. The services provide
full support for argument creation and maintenance, for argument assessment and for
integration of the supporting evidence residing in user chosen repositories.

The paper is structured as follows. Section 2 introduces TRUST-IT methodology
and explains the underlying argument model. Section 3 describes how the methodolo-
gy is implemented by NOR-STA services. Section 4 presents a demonstration scena-
rio of applying TRUST-IT and NOR-STA in developing a safety argument for a
WSN-based system. Other areas of application are outlined in Section 5. The paper is
concluded in Section 6, which also provides directions of future work.

2 Evidence Based Arguments – The TRUST-IT Model

TRUST-IT [5, 13, 14] is a method of representing arguments based on the generic
Toulmin’s argument model [6]. An argument includes: a conclusion to be justified,
premises the conclusion is reasoned from and a warrant which establishes the rela-
tionship between the premises and the conclusion.

In TRUST-IT, an evidence-based argument is a tree-like structure and is composed
of different types of nodes which define the language for representing arguments. The
model of an argument (including node types and their relationships) is shown in
Fig. 1, where an arrow represents the can-be-child-of relationship.

Argument conclusion is represented by a claim node. A node of type argument
links the claim to the corresponding premises and uses the warrant to explain how the
premises justify the claim. A premise can be of the following type: an assumption
represents a premise which is not further justified; a claim represents a premise to be
further justified by its own premises; and a fact represents a premise which is sup-
ported by some evidence. The evidence is provided in external documents which are
pointed to by nodes of type reference. As claim can represent both, the conclusion

 Supporting Assurance by Evidence-Based Argument Services 419

Fig. 1. The TRUST-IT argument model

and a premise, the model allows to represent complex tree-like structures (in our ex-
perience up to several thousands of elements).

An argument represented in accordance with TRUST-IT explicitly shows how the
topmost conclusion is justified by the evidence through a possibly long chain of rea-
soning. The ‘compelling power’ of such argument can be assessed by a human who
can analyze and assess both, the support given by the evidence and the validity of the
reasoning included in the argument. In [7] an argument assessment method based on
Dempster-Shafer theory of belief functions [15] and its application to TRUST-IT type
arguments is presented. In addition to this method, other more specific assessment
schemes can be applied, for instance in some applications we use a simple scale of
three values: accept, partially accept, reject to assess the support given by the evi-
dence to a fact and the support given by the premises to the related conclusion.

3 Tool Support – NOR-STA Services

In this section, we present the functional scope of the NOR-STA services, the archi-
tecture and technology of their implementation, and finally their quality assurance.

3.1 Scope

The scope of functionalities of NOR-STA services include:

• argument representation and editing using the graphical symbols shown in Fig. 1;
• integration (through references) of various types evidence, including textual docu-

ments, graphics, images, web pages, video and so on;
• argument assessment and visualization of the assessment results;
• publishing of an argument;
• evidence hosting in protected repositories.

420 J. Górski et al.

In addition to the above, the services provide for version control and handling of mul-
tiple arguments. Quality of service, in particular in relation to security, is guaranteed
by declaring and implementing an adequate security policy.

The usage context depends on the business processes within which the services are
embedded. For example - one party can develop an argument, submit the supporting
evidence and publish the argument, while another party conducts an audit and as-
sesses the argument. The evidence can by maintained at the premises of its owner, or
otherwise it can be hosted at a leased space accessible through NOR-STA service.

3.2 Implementation

Implementation of NOR-STA services is based on the RIA (Rich Internet Applica-
tion) concept and uses modern technologies, in particular AJAX, FLOSS, VMware
and others. The main screen interfacing to NOR-STA services is shown in Fig. 2.

Fig. 2. The NOR-STA services window in an Internet browser

The architecture of NOR-STA services follows the rich client-server model which
is illustrated in Fig. 3. The model includes three layers: database server PostgreSQL,
application server JBoss and a client written in JavaScript in accordance with AJAX
(Asynchronous JavaScript and XML). The lowest layer (the database) implements the
business logic as a set of stored procedures. The intermediate layer is based on JEE
and links the database with the client. Communication between these layers is based
on RESTful Web Services and JSON (JavaScript Object Notation).

Evidence preview

Argument with
assessment

Node details
panel

Main menu

 Supporting Assurance by Evidence-Based Argument Services 421

Fig. 3. The architecture of NOR-STA services

The services are deployed in a cloud in accordance with the Software-as-a-Service
model. Due to this model they can be used as needed, without any prior investment in
a specialized IT infrastructure. End users do not need to install any software and
simply access the services with a standard Internet browser. SaaS model was chosen
because it provides for high accessibility and maintainability of the services,
straightforward integration with other Internet services, low distribution costs and
flexible charging.

NOR-STA
SERVICES

Internet

Technologie
przestarzałe

Późna
dojrzałość

Wczesna
dojrzałość

Wstępna
faza

wdrażania
Innowacje

"Luka"

Proces wdrażania technologii

Technologie
przestarzałe

Późna
dojrzałość

Wczesna
dojrzałość

Wstępna
faza

wdrażania
Innowacje

"Luka"

Proces wdrażania technologii

Technologie
przestarzałe

Późna
dojrzałość

Wczesna
dojrzałość

Wstępna
faza

wdrażania
Innowacje

"Luka"

Proces wdrażania technologii

MICROSOFT CORPORATION

SLA

MICROSOFT CORPORATION

SLA

Technologie
przestarzałe

Późna
dojrzałość

Wczesna
dojrzałość

Wstępna
faza

wdrażania
Innowacje

"Luka"

Proces wdrażania technologii

MICROSOFT CORPORATION

SLA

MICROSOFT CORPORATION

SLA

Fig. 4. NOR-STA services as a cloud

Fig. 4. explains the NOR-STA services deployment model where the key architec-
tural elements are marked with numbers in circles. It is possible to integrate the argu-
ment (1) with both, internal (i.e. being a part of NOR-STA services - 2) or external
repositories where the evidence is stored. An external repository can be located in the

1

2

3

4

422 J. Górski et al.

Internet (3) or in a private infrastructure of a user (4). NOR-STA services are availa-
ble from a wide variety of hardware and software platforms including desktop PCs,
laptops, iOS or Android tablets and smartphones with Firefox, Internet Explorer,
Chrome, Opera and other Internet browsers.

3.3 Service Quality

Quality of service, in particular in relation to security, is guaranteed by signing a Ser-
vice Level Agreement (SLA) with the users. It refers to the Information Security Poli-
cy (ISP) which explains how security of arguments and the related evidence is being
guaranteed by organizational, logical and physical measures. The security measures
include Role Based Access Control (RBAC), encrypted data transmission between
browser and server (SSL), encrypted passwords, input data validation, intrusion detec-
tion system, data replication techniques and advanced means of physical protection of
servers. User’s data remain under exclusive control of the user who can decide who
and under which conditions can access the data.

Virtualization technologies provide for delivering a reliable, scalable and highly
available platform of services. Service availability is continuously monitored by on-
line tools. The measurements show that the availability of NOR-STA services was at
the level 99.7% over a period of six months [8].

The services are under continuous development for more than five years, following
the incremental and evolutionary software development model. The testing strategy
applied in this process is described in [16]. A new release of NOR-STA services will
provide enhanced cross-browser compatibility which includes support for mobile web
browsers.

4 Demonstration Scenario: Safety Assurance

The objective of this scenario is to demonstrate how an argument can be improved by
providing additional evidence and how the services help in identifying the place
where this evidence is to be included.

NOR-STA services were used, among others, to analyze trustworthiness of the
ANGEL platform (an embedded software platform supporting Wireless Sensor Net-
works based applications) and the ANGEL system – an application demonstrating
platform’s usability for patient monitoring in his/her home environment [17]1. Two
groups of evidence based arguments (called trust cases) were built, one for the system
and another for the platform. Each covered three quality related aspects: patient’s
safety, patient’s privacy and security of critical information assets.

In this demonstration scenario we focus on the safety aspect of ANGEL system.
The argument focuses on the safety hazards that were identified by analyzing possible
system usage scenarios. All identified hazards were then assessed with respect to their

1 6th FR STREP Project ANGEL (Advanced Networked embedded platform as a Gateway to

Enhance quality of Life) Contract number IST-033506.

 Supporting Assurance by Evidence-Based Argument Services 423

severity and likelihood of occurrence. An example of a hazard together with the re-
sulting safety requirement is given below:

Hazard: Alarm message is not correctly and timely delivered
Requirement: ANGEL system has to assure that in case of unexpected event (e.g.

health state deterioration or smoke detected in the apartment), the related
alarm message is correctly delivered to the recipient (Correctness of alarms).

The identified safety requirements were documented as argument claims and sub-
jected to further analysis investigating their possible design solutions leading to im-
plementation of the requirement (documented as sub-claims). Actual implementation
of such solution provided the evidence that was referred to while arguing a fact that a
given hazard has been successfully mitigated.

The completed safety argument was evaluated by an auditor who assessed the sup-
port given by the evidence to the facts listed in the argument. The assessment of the
claims was then calculated automatically following the algorithm based on Dempster-
Shaffer belief functions presented in [7]. A part of the evaluated argument is shown in
Fig. 5. The colors represent the result of argument evaluation: red color shows the
parts which are weakly supported by the available evidence whereas these parts which
are strongly supported are shown in green color. 2

As can be seen in Fig. 5, the fact Alarm management system reliably handles
alarms in ANGEL application is (in the eyes of the auditor) weakly supported by the
evidence item D5.5 Integration of the demonstrator components (section 2.3.4) being
an extract from the system design report. This weak support was then propagated to
all higher level claims presented in Fig. 5.

Fig. 5. Initial assessment of Safety of ANGEL user argument

The weakness indicated in Fig. 5 resulted in the decision to strengthen safety assur-
ance by carrying additional tests aiming at validation of the safety alarm mechanism
present in the system. The resulting evidence (test plans and test results) was added to
the argument to better support the Alarm management system reliably handles alarms
in ANGEL application fact. The result is presented in Fig. 6, where an additional
piece of evidence Experimental validation of the safety alarm is included to support

2 Figures 4 and 5 are extracts from the screens presenting the argument in the browser window.

424 J. Górski et al.

Fig. 6. Safety of ANGEL user argument strengthened with additional evidence

the fact. Fig. 6 also shows the result of the argument re-assessment: in this case suffi-
cient support is given to the fact and this positive appraisal is propagated to all higher
level claims.

5 Present Experience

TRUST-IT methodology and the NOR-STA services were already used to build ar-
guments in many different applications contexts, such as:

• analyzing trustworthiness of systems and services, including safety, security and
privacy claims,

• analyzing conformance to standards,
• justifying the selection of metrics supporting the stated measurement objective,
• building validation arguments for systems and services.

The ideas, methods and tools underpinning TRUST-IT and NOR-STA services were
developed over the last few years while participating in three 5th and 6th FR research
and development projects: 5th FR STREP Project DRIVE, 6th FR Integrated Project
PIPS and 6th FR STREP Project ANGEL.

Presently NOR-STA services are being applied to develop standards conformance
arguments, in relation to standards in healthcare, standards related to security of out-
sourcing and standards related to self-assessment of public administration institutions.
A formal cooperation involves more than 30 institutions which signed formal con-
tracts as NOR-STA services users. The services are also experimented with in relation
to monitoring of implementation of Regulation (EU) No 994/2010 of the European
Parliament and of the Council concerning measures to safeguard security of gas
supply Member States.

6 Conclusions

Our services for evidence based arguments were successfully applied to build, assess
and communicate very large and complex arguments in various application contexts.

 Supporting Assurance by Evidence-Based Argument Services 425

In relation to standards conformance, NOR-STA services are highly evaluated by
their users for both, their quality and business value [8]. The users particularly appre-
ciate improvement in evidence management, better preparation to the audit, better
visibility of conformance status, easier conformance maintenance as well as high
availability and reliability of the services.

Future work is directed towards researching new application areas, identification of
suitable business models as well as further extension of the scope of services and
improvement of their quality. In particular, a new version of the services is planned
for release in mid-2012, which will particularly focus on usability, personalization,
flexibility, effective interaction, and browser and platform compatibility. The
progress, user assessment and development plans are constantly presented at the
NOR-STA portal www.nor-sta.eu/en. Among the main directions of future research
and development are comparative conformance cases (e.g. for monitoring implemen-
tation of common regulations at different sites), domain specific argument patterns,
dynamic arguments for automatic monitoring of changing evidence, automatic detec-
tion of events (e.g. ageing evidence, evidence changes requiring re-evaluation of the
argument, and so on) and full support for version control and reporting.

Acknowledgments. This work was partially supported by the NOR-STA project co-
financed by the European Union under the European Regional Development Fund
within the Operational Programme Innovative Economy (grant no.
UDA-POIG.01.03.01-22-142/09-03).

References

1. Ministry of Defence, Defence Standard 00-56 Issue 4: Safety Management Requirements
for Defence Systems (2007)

2. Emmet, L., Guerra, S.: Application of a Commercial Assurance Case Tool to Support
Software Certification Services. In: Proceedings of the 2005 Automated Software Engi-
neering Workshop on Software Certificate Management, SoftCeMent 2005. ACM, New
York (2005)

3. Kelly, T., Weaver, R.: The Goal Structuring Notation - A Safety Argument Notation. In:
Proceedings of the Dependable Systems and Networks Workshop on Assurance Cases
(2004)

4. Rhodes, T., Boland, F., Fong, E., Kass, M.: Software Assurance Using Structured Assur-
ance Case Models, NIST Interagency Report 7608, US Department of Commerce (2009)

5. Górski, J.: Trust Case – a case for trustworthiness of IT infrastructures. In: Cyberspace Se-
curity and Defense: Research Issues. NATO Science Series II: Mathematics, Physics and
Chemistry, vol. 196, pp. 125–142. Springer (2005)

6. Toulmin, S.: The Uses of Argument. Cambridge University Press (1958)
7. Cyra, Ł., Górski, J.: Support for argument structures review and assessment. Reliability

Engineering and System Safety 96, 26–37 (2011)
8. Górski, J., Jarzębowicz, A., Miler, J.: Validation of services supporting healthcare stan-

dards conformance. Metrology and Measurements Systems 19(2), 269–282 (2012)
9. ASCE home page, http://www.adelard.com/asce/ (visited June 27, 2012)

10. ISCaDE home page, http://www.iscade.co.uk/ (visited June 27, 2012)

426 J. Górski et al.

11. GSN add-on for Visio home page,
http://www-users.cs.york.ac.uk/~tpk/gsn/ (visited June 27, 2012)

12. Steele, P., Collins, K., Knight, J.: ACCESS: A Toolset for Safety Case Creation and Man-
agement. In: Proc. of 29th International Systems Safety Conference, Las Vegas, NV
(2011)

13. Górski, J.: Trust-IT – a framework for trust cases. In: Workshop on Assurance Cases for
Security - The Metrics Challenge, Proc. of DSN 2007, Edinburgh, UK, pp. 204–209
(2007)

14. Górski, J., Jarzebowicz, A., Leszczyna, R., Miler, J., Olszewski, M.: Trust case: justifying
trust in IT solution. Reliability Engineering and System Safety 89(1), 33–47 (2005)

15. Shafer, G.: Mathematical Theory of Evidence. Princeton University Press (1976)
16. Górski, J., Witkowicz, M.: Experience with instantiating an automated testing process in

the context of incremental and evolutionary software development. E-informatica: Soft-
ware Engineering Journal 5(1), 51–63 (2011)

17. Górski, J., Jarzębowicz, A., Miler, J., Gołaszewski, G., Cyra, Ł., Witkowicz, M.: Delivera-
ble D5.4: Trust Case for ANGEL platform demonstrator, ANGEL STREP Project deliver-
able, project no. IST-5-033506-STP (2008)

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 427–435, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Towards Composable Robotics: The R3-COP
Knowledge-Base Driven Technology Platform

Erwin Schoitsch1, Wolfgang Herzner1, Carmen Alonso-Montes2, P. Chmelar3,
and Lars Dalgaard4

1 AIT, Austria
2 Tecnalia, Spain

3 TU Brno, Czech Republic
4 DTI, Denmark

{erwin.schoitsch,wolfgang.herzner}@ait.ac.at,
carmen.alonso@tecnalia.com, chmelarp@fit.vutbr.cz,

ldd@teknologisk.dk

Abstract. The ARTEMIS project R3-COP (Resilient Reasoning Robotic Co-
operating Systems) aims at providing European industry with leading-edge in-
novation that will enable the production of advanced robust and safe cognitive,
reasoning autonomous and co-operative robotic systems at reduced cost. This is
achieved by cross-sector reusability of building blocks, collected in a know-
ledge base, within a generic framework and platform with domain-specific in-
stantiations.

The R3-COP Framework is targeting at becoming basis for a European RTP
(Reference Technology Platform) for robust autonomous systems by embody-
ing methodologies, methods, and tools for safety-critical hard-real-time system
development and verification supported by European tool vendors. To enable
this, interoperability issues have to be resolved at several levels, including
meta-models, models, tool interfaces and component descriptions. The link is
established by the knowledge base described in more detail in this paper to al-
low composition of robotic applications from building blocks, guiding design &
development as well as validation & verification (supporting certification in the
end). The concept of the knowledge base could be re-used in the planned
ARTEMIS Common Reference Technology Platform for critical systems
engineering.

Keywords: robotics, autonomous systems, co-operative systems, composability,
building blocks, ontology-based knowledge base, reference technology frame-
work, safety, cognitive systems, robotic vision, testing, certification.

1 Introduction

R3-COP (Resilient Reasoning Robotic Co-operating Systems) aims at developing and
implementing a generic framework and platform with domain-specific instantiations
which will facilitate the production of advanced robust and safe cognitive, reasoning

428 E. Schoitsch et al.

autonomous and co-operative robotic systems (mobile and immobile) at reduced cost.
This will be achieved by enabling cross-sector reusability of building blocks, collected
in a knowledge base, which is part of a technology platform and framework and con-
tains the required information on how ARS (Autonomous Robotic Systems) methods,
components, subsystems and systems work and interact with each other and what
characteristics they have. This addresses the interoperability issues of building blocks
(meta-models, models, components and interfaces) and tools to be provided within the
R3-COP framework.

The framework is targeting at a European RTP for robust autonomous systems em-
bodying meta-models, technologies, methods, and tools for safety-critical hard-real-
time system development supported by European tool vendors. In the long term, this
European robotics RTP should become an on-line resource which anyone in the
autonomous systems community can contribute to and benefit from.

Besides creating the knowledge data base (structure, description of characteristics
of building blocks, interfaces), R3-COP creates a portfolio of methodologies to be
used and a tool box of architectural frameworks, guidelines and tools necessary to
apply the information from the knowledge base in specific design contexts in order to
arrive at a viable solution for an autonomous robotic systems problem. The primary
goal within the project will be to provide a solution that can be applied directly to the
projects’ use cases (ground-based, airborne and underwater, including applications
from manufacturing, home appliances, surveillance, inspection, manipulation, trans-
port etc.). Generalisation and flexibility are considered as secondary goals. The
knowledge base is for reasons of practicability and parallel development of methods
and tools for design & development (1) as well as for validation & verification (2)
split in two parts accordingly.

2 The R3-COP Concept: Framework and Interoperability

The overall goal of R3-COP is to improve the quality of robotic systems and to in-
crease trust in the systems by composable design and by developing new test strate-
gies for mobile and adaptive (co-operating) systems with complex sensor input (e.g.
stereo vision) and autonomous behavior, with measurable coverage of sensorial in-
formation and behavioral aspects, based on in-depth domain analysis. In detail, the
target research areas are:

• Design and development: model-driven process for the compositional de-
velopment of safety critical (mobile) systems

• Analysis Methods: System analysis and evaluation are addressed in context
of safety cases

• V&V (Validation & Verification): new test strategies, methods and tools
for vision-based perception and (co-operative) behavior of (mobile) auto-
nomous systems

 Towards Composable Robotics: The R3-COP Knowledge-Base Driven Technology 429

• European Standard Reference Technology Platform (Framework): uti-
lizing results and experiences of recent European projects, the framework is
targeting at a European RTP for robust autonomous systems

• Qualification, standardization and certification support issues
• Cross domain applicability: The framework knowledge base covers all

domains and enabling technologies for autonomous systems (transport, au-
tomation, surveillance, co-operation, emergency services on ground, under-
water and air)

R3-COP focuses, in particular, on design & development level in providing compo-
nents as building blocks for robotic autonomous systems (compositional design),
including positioning, navigation and communication, as well as on very specific
problems of assessing correctness, safety and robustness of autonomous robotic sys-
tems in developing new V&V methods and tools (analysis and test) for complex sen-
sors and perception modules, and co-operative behaviour. These artifacts are collected
in a Knowledge Base in a standardized manner (see Fig. 1), which requires a common
interoperability definition with respect to interfaces and attributes. R3-COP will
achieve its goals by

1) developing a design methodology (reference architecture) with means for
tailoring it for specific applications. It will be substantiated in a number of
domain-specific platforms and demonstrators, including cross-domain co-
operating systems,

Fig. 1. The R3-COP Framework concept: The knowledge base enabling composition of robotic
applications (SP1, SP2 provide foundations and new specific robotic/autonomous systems
features, SP3 and SP4 are developing the D&D and V&V methods & tools,. SP5-SP7 are ap-
plications/domains)

430 E. Schoitsch et al.

2) developing innovative system components for the robust perception of the
environment including sensor fusion, and for reasoning and reliable action
control,

3) developing a fault-tolerant high-performance processing platform, based on a
multi-core architecture.

An important goal of R3-COP is the establishment of a “knowledge base” for auto-
nomous and robotic systems, using ontology for knowledge description and taxono-
my, consisting of two parts:

• “design & development” (DDKB): supports the Design &Development (DD)
methodology by providing information about hard- and software components,
their purpose, costs, strength and limits, possible combinations or conflicts etc.

• “validation and verification”: supports the V&V process by providing informa-
tion about analysis and test tools applicable for robotic components, their pur-
pose, costs, strength and limits, possible combinations or conflicts etc.

3 The Knowledge Base for Design and Development (DDKB)

Briefly, an Autonomous Robotic System (ARS) is made for the purpose of performing
some task (e.g. surveillance, vacuum cleaning or some kind of a mission) within the
operating environment (e.g. ground, underwater or airborne) under given set of re-
quirements (both functional and non-functional). Thus, the ARS design process can
be expressed as a process to find a solution for a problem with a set of “robots” per-
forming the task under some conditions.

The ARS design process is accomplished with the problem statement, analysis, en-
gineering design, production and some post production activities in a systems engi-
neering life-cycle including verification and validation in each step. In R3-COP, the
designs are supported by the knowledge base, which includes the aggregated use-
cases and design patterns used by the project partners and suggested as best practices.
These can be used by other designers as a recommendation of components, methods,
tools and tool chains.

This is supported by the knowledge base in two equivalent ways:

• In a human-readable Wiki-based hypertext representation supported by a search
engine and a classification scheme is used to locate information in the system as
illustrated in Fig. 2.

• In a machine-readable logically consistent form. The ontology defines the
structure of the data – types of entities and their relations represent the
knowledge necessary to apply automated deductive reasoning (see Fig. 3).
This is important for interoperability – to have a standardized format for de-
scription of entities (components) and their relations. The ontology browser
uses WebProtégé.

 Towards Composable Robotics: The R3-COP Knowledge-Base Driven Technology 431

Fig. 2. The R3-COP knowledge base Wiki including the tag cloud classification scheme

Fig. 3. The R3-COP ontology illustration of individual entities organized in sets – classes and
connectors using property relations

432 E. Schoitsch et al.

4 The Knowledge Base for V&V (VVKB)

The main idea behind the VVKB is to provide help to any user (independently of their
V&V knowledge) in the identification of the most suitable V&V technique to be
applied during the robot development or afterwards.

Fig. 4. The V&V techniques shall be applied to components (touch sensors, cameras, laser,
etc), SW modules or subsystems that implements an specific functionality, and finally, the
complete robot (formed by the previous elements)

The inherent complexity of the robot makes it difficult to apply a unique V&V
technique for the complete robot. So, different V&V techniques need to be applied for
different elements, at different stages of the design phase, and of course, to the com-
plete robot. Each of the components, subsystems and systems shall be independently
tested and validated, and of course, the final robot, which is a composition of the pre-
vious components and systems, shall be tested as a whole. So, the need of a Know-
ledge Base (KB) to describe potential techniques to test each part or the whole sys-
tem, reducing the number of possibilities, is the first step towards a complete automa-
tion in the process of application of V&V techniques. Here a shared interest with
ARTEMIS project MBAT is envisaged; if certification is the final goal, composable
certification is an issue where co-operation with the SafeCer project is planned (e.g.
via a joint workshop on certification).

The general strategy can be seen on the right side of Fig. 5. The ultimate goal
would be that any user (expert or non-expert) that would like to know which kind of
V&V techniques can apply to his robot development could search through the R3-
COP ontologies with an “intelligent and semantic search”.

A specific VV ontology provides the mechanism of the search tool for accessing
the corresponding VV concepts, so the reasoning process will be formalized based on
ontological concepts. A particular search will return a set of possible V&V candidate
techniques that fits the parameters of the search. Thus the user will have at least a
reduced set of possible choices that in some way have been proved as a good option
for that particular problem. Notice that the repository will be fed by the information
provided from the analysis done for the domains and use cases, and some specific
content can be inferred from concepts of the VV ontology. Hence, the information

 Towards Composable Robotics: The R3-COP Knowledge-Base Driven Technology 433

Fig. 5. Relationship among the results of V&V WP and the global strategy behind the ontology
proposal (the mentioned use case is taken as an example)

returned to the users will be twofold enriched: general information coming from
human expert analysis and other inferred information, taken from the VV ontology.

Each candidate technique is shown to the end user following a predefined
structure, containing general information, human analysis information and inferred
information from the ontology. The candidates have to be described in a comparable
manner, so again interoperability is a key issue. For this purpose, a preliminary form
has been defined in order to unify the presentation to the users. Each individual V&V
technique is described in this standardized format and stored in the VVKB. The
general parts can be split up into several sections: general, human expert analysis and
inferred information. The general information corresponds to the general descriptions
of the technique: name, description, type, category, benefits and limits. The human
expert analysis will be added in two sections: relationship with challenges of ARS,
and others. Initially, this content is influenced by the analysis of the current R3-COP
use cases, but will be growing with new usages in other scenarios, following the
collaborative way of working in Wikipedia. This was already indicated before as the
RTP was referred to as an on-line resource for the autonomous systems community in
the future.

Some additional information can be directly inferred from the concepts stored
within the particular ontology for VV and the others used in R3-COP. This informa-
tion is automatically generated from the information in the form (“inferred elements
from the ontology”-section). In this section is shown in which types of “robot tasks”
(navigation, grasping, movement, etc.) a particular V&V technique has been used.
The same reasoning process can be applied to “features” and “environment”. In Fig. 6,
the relationship among the contents of the Wikimedia document and both the ontolo-
gy and the VVKB are shown.

434 E. Schoitsch et al.

Fig. 6. Relationship between wiki, ontology and the fields of the individual algorithm form

5 Conclusions

Composability, re-use and interoperability are main targets for R3-COP to create
robust, safe robotic autonomous systems from building blocks. A knowledge base for
design & development as well as for validation & verification with ontology-based
and human-readable (Wiki-) standardized descriptions for methods, tools and compo-
nents are key to this approach. Developing new test strategies for moving and adap-
tive (co-operating) systems with complex sensor input (e.g. stereo vision) and auto-
nomous behavior, with measurable coverage, based on in-depth domain analysis, is
one of the innovative contributions, which may be added together with the Know-
ledge Base concept to the ARTEMIS CRTP (Common Reference Technology Plat-
form) to address these issues most relevant not only for cognitive robotic systems,
which have not been addressed systematically until now, but also to critical systems
engineering in general.

The ARTEMIS CRTP is aimed at by a cluster of ARTEMIS projects in the
safety & high reliability area (e.g. CESAR, MBAT, SafeCer, iFEST, see references).
Therefore, in the last phase of R3-COP, where the robotic RTP is addressed, closer
 information- and experience exchange with the other High-Rel Cluster projects is
planned

Acknowledgements. The work is partially funded by the EC (ARTEMIS Joint Un-
dertaking) and the partners’ national funding authorities under grant agreement
100233 (R3-COP project).

 Towards Composable Robotics: The R3-COP Knowledge-Base Driven Technology 435

References

1. ARTEMIS Joint Undertaking, the public private partnership for R&D in embedded sys-
tems, http://www.artemis-ju.eu/

2. Related ARTEMIS-projects of the Safety/High-reliability cluster of projects:
a. R3-COP project “Resilient Reasoning Robotic Co-operating Systems”,

http://www.r3-cop.eu
b. CESAR project “Cost-efficient methods and processes for safety relevant embed-

ded systems”, http://www.cesarproject.eu
c. MBAT project “Combined Model-based Analysis and Testing of Embedded Sys-

tems”, http://www.mbat-artemis.eu
d. pSafeCer/nSafeCer projects “Safety Certification of Software-intensive Systems

with Reusable Components”, http://www.safecer.eu
e. iFEST project “Industrial Framework for Embedded Systems Tools”,

http://www.artemis-ifest.eu
3. Benini, A., Mancini, A., Minutolo, R., Longhi, S., Montanari, M.: A modular framework

for fast prototyping of cooperative unmanned aerial vehicles. Journal of Intelligent & Ro-
botic Systems 65, 507–520 (2012), doi:10.1007/s10846-011-9577-1

4. Dalgaard, L.: Rational System-level Design Methodology for Autonomous Robotic Sys-
tems, Ph.D. Thesis. Odense (2011)

5. Lill, R., Saglietti, F.: Model-based Testing of Autonomous Systems based on Coloured Pe-
tri Nets. In: Proc. Workshops ARCS 2012, February 28. Lecture Notes in Informatics,
vol. P-200. GI, TU Munich (2012)

6. Micskei, Z., Szatmári, Z., Oláh, J., Majzik, I.: A Concept for Testing Robustness and Safe-
ty of the Context-Aware Behaviour of Autonomous Systems. In: Jezic, G., Kusek, M.,
Nguyen, N.-T., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2012. LNCS, vol. 7327,
pp. 504–513. Springer, Heidelberg (2012)

7. Saglietti, F., Söhnlein, S., Lill, R.: Evolution of Verification Techniques by Increasing Au-
tonomy of Cooperating Agents. In: Unger, H., Kyamaky, K., Kacprzyk, J. (eds.)
Autonomous Systems: Developments and Trends. SCI, vol. 391, pp. 353–362. Springer,
Heidelberg (2012)

8. Szatmári, Z., Oláh, J., Majzik, I.: Ontology-based Test Data Generation using Metaheuris-
tics. In: Proc. of the 8th International Conference on Informatics in Control, Automation
and Robotics (ICINCO 2011), July 28-31 (2011)

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 436–446, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Addressing the Needs of an Aging Population:
An Experiment for Monitoring Behaviour

in a Domestic Environment

Marte E.B. Skjønsfjell1, Aslak R. Normann1, Dag Sjong2, and Amund Skavhaug1

1 Department of Engineering Cybernetics, NTNU
2 Norsk Automatisering as

{marte.skjonsfjell,aslakrin}@gmail.com,
dag@norskautomatisering.no, skavhaug@itk.ntnu.no

Abstract. An increasingly aging population will challenge the current organiza-
tion of society and will require new technological solutions for assisting as well
as maintaining the health of this demographic. In this article, results from an
experiment on remote monitoring of a domestic environment implemented in
the home of an elderly citizen, are presented.

A system comprised of several types of both stationary and body-worn sen-
sors together with a framework for collecting, interpreting and presenting the
gathered data in a useful manner was developed, and a pilot-study was con-
ducted. It is demonstrated that one can get useful information via remote moni-
toring, even implemented as a low cost monitoring system using off-the-shelf
components. It is shown that such a system could have significance in assisting
health personnel.

Keywords: Welfare, aging, population, monitoring, wireless, iPad, Android,
BlueTooth LE, Linux.

1 Introduction

As the population ages, we are now facing a shift in demographics where more people
enter their golden years, live longer, and are entitled to their due welfare benefits.
With this shift, the neo-traditional institutionalization of elderly is no longer tenable
on the scale we will need in a few years. Welfare technology is an emerging field of
research which therefore is becoming increasingly important. One of the key areas of
application for welfare technology is to assist elderly living at home longer, in safety
and comfort, as well as assisting primary caregivers in identifying potential health
issues, both developing trends and acute illness. Signs of deteriorating health can
include appetite loss, insomnia and reduced activity level. Remote activity monitoring
can give health personnel indicators on the condition of the patients and give an ob-
jective overview of how their days have been. As health personnel often may only
come by once a day or less, it is beneficial to be able to supervise the patients' condi-
tion when they are alone.

 Addressing the Needs of an Aging Population 437

There are many ailments specific to elderly, such as dementia, chronic obstructive
pulmonary disease, heart conditions, Parkinson's, restricted movement, generally poor
constitution and others. Each of these has their own set of parameters which may need
monitoring and assessment.

In [11], a body-worn sensor platform for monitoring a few such parameters was
developed and integrated with a mobile device for display. As mentioned in [11]
many types of sensors are of interest for monitoring the condition of a subject under

Fig. 1. Simplified overview of the developed system. Analysis can be performed on-site to
increase privacy.

observation, and a combination of heterogeneous sensor data may be required to as-
sess a subject's condition. Our aim in this work was therefore to show how informa-
tion from various sources may be handled and combined, to develop a framework for
collecting, interpreting and presenting heterogeneous data and finally to realize and
test such a system. An entire monitoring system, as opposed to focusing on smaller
details, has been realized to get a broad insight into the different aspects of creating a
platform for welfare monitoring, as well as a more overall picture of how a monitored
environment can be used and developed further.

Body-worn sensors must necessarily be wireless if they are to give a live feed of
the wearer's condition without restricting movement or otherwise demanding undue
mental effort. Stationary sensors also benefit from communicating wirelessly, the
main advantages being modularity and cost savings both for installation and for main-
tenance throughout the lifetime of a sensor network.

A subject's condition may be sensed either directly via e.g. a cardio-pulmonary
monitor, or indirectly via the subject's activity level, mobility and interaction with the
environment. The advent of “Smart Houses" as ever more mature commercial prod-
ucts, which by their nature monitor activity in a home, makes the latter indirect me-
thod a promising venue for exploiting synergies, lowering costs and risks. Both an
ambulant and a stationary platform were implemented here. The system was imple-
mented in a domestic environment and monitored a volunteered test subject. Only

438 M.E.B. Skjønsfjell et al.

some details of the implemented system are presented. More of the test-environment,
deployment of the stationary sensor nodes used for “Smart House" location- and ac-
tivity tracking, and the development of a body-worn sensor is found in [11]. The total
system is illustrated in Fig. 1.

Presentation of the aggregated data is a crucial part of making the implemented
system available for health personnel, relatives or others without them needing to
know the particularities of the system. The presentation must be easy to comprehend
and an iPad application was developed as a means to give users an intuitive way of
getting an objective overview of a monitored person's activity.

2 Welfare Technology

Welfare technology is technology assisting users in their daily life. This can contri-
bute to an increase in life quality and help users become more independent. Examples
of welfare technology include cleaning robots, smart house technology, positioning
technology (GPS) as well as body-worn sensor systems and means of increasing the
comfort of health care patients.

Several technologies are already put into use in the Norwegian health care system.
The city-area of Bærum, Norway, in cooperation with SINTEF and Abilia AS has a
project called “Welfare technology for elderly living at home"[8]. This project has
created a showroom apartment [9] with technical solutions to enable elderly to live at
home as long as possible. The solutions include aid to help the user remember dates,
appointments and medicines, keep in contact with family and health personnel as well
as automatic lighting and alarms. A few nursing homes use a robotic seal for social
stimulation of patients with dementia [10] and “Hjelpemiddelsentralen" distributes
fall sensors with GPS [3].

Ambient Assisted Living (AAL) is the form of welfare technology focusing only
on the elderly part of the population. The European Union has a project called Am-
bient Assistant Living Joint Program (AAL JP) that focuses on technological solu-
tions for enhancing the life quality of elderly in Europe. Focus of the project in spring
2012 is “ICT-based Solutions for (Self-) Management of Daily Life Activities of Old-
er Adults at Home"[1]. Earlier, three other focuses have resulted in funding of several
projects under development:

• ICT based solutions for Prevention and Management of Chronic Conditions of
Elderly People

• ICT based solutions for Advancement of Social Interaction of Elderly People
• ICT-based Solutions for Advancement of Older Persons Independence and Partici-

pation in the Self-Serve Society

A few of these projects are presented below:

The H@H Health at Home [4] project focuses on elderly with Chronic Heart Fail-
ure by remotely monitoring cardiovascular and respiratory parameters by automatic

 Addressing the Needs of an Aging Population 439

systems as well as health personnel. The aim is to reduce re-hospitalization by detect-
ing situations that might become critical at an early stage.

The HOPE Smart Home for Elderly People [5] project is focusing on giving elder-
ly with Alzheimer's disease a more independent life. This is achieved through a smart
home solution with functionality for fall detection, security and communication.

CARE Safe Private Homes for Elderly Persons [2] aims to realize an intelligent
monitoring and alarming system for independent living of elderly persons. This is to
be accomplished by automatically detecting critical situations such as a fall or immo-
bility, by using stationary sensors.

One of the main concerns when it comes to ICT solutions in health care is the
issue of privacy and safety of patients. It is illegal for handlers of personal data to
distribute or use this in a way not approved by the individual source of the data.
The Norwegian law of personal data (Personopplysningsloven[6]) states how per-
sonal data should be handled and has as an objective to protect the individual right
to privacy. Information about a persons' health condition is considered to be sensi-
tive, and Information and Communication Technology is subject to strict
regulation when it comes to harvesting and use of data. One cannot gather sensi-
tive personal data without the knowledge and approval of the affected person.
Considering these rules and regulations, it is clear that the collecting and storing of
personal data needs to be thoroughly evaluated to make sure the data is secure
regarding unauthorized access. Concerns regarding the protection of privacy of
individuals have proven to be legitimate. An example was when two university
students working on electronic journal software was given access to 110,000 jour-
nals from their professor [7] without the approval or knowledge of the involved
patients. Another example is of health personnel having accessed electronic jour-
nals of patients just out of curiosity.

3 Overview of the Implemented System

The system was installed at the house of the test subject. The test subject is an 86 year
old male, living alone in his own house. The test subject is in good health, and is able
to do everyday chores by himself.

Fig. 3 shows an overview of the structure and data flow in the system. The leftmost
box shows that in the house used as test-environment, there is a processor board run-
ning Linux which works as a concentrator for various wireless sensor data. This data
is stored in a database and can be processed locally at the user's home, or can be sent
via a gateway to an interpreting process running on a remote machine. The presenta-
tion platform for the data was an Apple iOS application we developed during the
project.

Magnetic sensors were placed on most doors, including the refrigerator and micro-
wave oven. Passive-infrared-sensors were installed to create zones for detection in all
rooms. Additionally, a body-worn Blue-tooth LE device was programmed to transfer
acceleration data to measure activity this way. A wireless energy metering device was
attached to the electric wires of the Coffee-machine.

440 M.E.B. Skjønsfjell et

Fig. 2. 3D model of test subje
sensors

Fig. 3. General structure of d
internet gateway, through an in

t al.

ect's house, showing the field of view of one of the living ro

data flow from sensor nodes through a concentrator, through
nterpreting mechanism to a presentation platform

oom

h an

 Addressing the Needs of an Aging Population 441

Using a database server locally for persistent storage made attaching different log-
ger-processes storing data simultaneously easy, while at the same time giving an arbi-
trary number of processes access to historical data. Sending real-time sensor data
directly to interpreting and displaying processes is a possible improvement, but consi-
dering the relatively slow dynamics of human behaviour this was not considered
worth the increased complexity.

Fig. 4. The data concentrator as deployed:. (a) Xplain board connected to a test pad on the (b)
Efergy display module, (c) BLE dongle, (d) PandaBoard, (e) MultiTRX transceiver, (f) Mobile
Wifi-Hotspot

4 Some Results

4.1 Zone Occupancy

From Fig. 5 we can see how the location classification performed. In general all lost
events lead to some deviance from the truth, but as the zones with PIR (passive infra-
red) sensors will receive events throughout a stay, some loss can be tolerated while
maintaining an adequate degree of accuracy. The same is not true for lost door events
for doors leading to zones without PIR sensors, as they are responsible for most of the
obvious errors.

4.2 Orientation and Pedometer Data

Before the subject goes outside in the morning it's quite clear when the subject is sit-
ting or standing up. We can also see that the subject reattaches the sensor and lies
down on the side or back. If we look at stable periods with medium tilt it's safe to
assume that the subject is sitting down, because a belt (where the sensor was attached)
is naturally tilted at an angle when sitting, and an absence of activity can often be

442 M.E.B. Skjønsfjell et al.

Fig. 5. iPad screenshots. Location summary per day for May 25th until June 11th.

observed. We note that the degree of tilt varies wildly between the assumed sitting
periods. Whether this is a result of varied sitting positions or a shift in sensor position
is difficult to determine. The subject has a wide variety of chair and sofa types, and
there are a number of ways to sit, so a combination is likely.

4.3 Presentation

The iPad application gave a fairly clear overview of the subject's movements and
history. For health personnel, this can be used to manually get an indication of past
and present activity of a subject. Looking at the amount of time the subject spent in
the bedroom, outside and in the bathroom it is clear that the time spent outside, as
well as time spent in the bathrooms varies unpredictably and are somewhat inversely
correlated. The time spent asleep is much more stable, and here it is easier to see and
draw conclusions from deviations from the norm. For example: In the period of May
28th till June 6th the test subject came down with pneumonia, and had to get medical
treatment. On the 1st of June it can be seen that the test subject slept less than the
days before and after.

F

In Fig. 6, the specifics o
bed before 21:30, and that h
subject got up again close t
day. On June 4th and 5th
amount of time. This is not
ly, showed that there were
30 minutes. The sleep cla
minutes as a sign of the sle
are regarded normal day act
with very little sleep can be

The main trend is that th
sensors. This is to be expec
when much time is spent in
malizing the measured acti
field of view by some mec
prediction could give us an
sensed with infra-red senso
ty from visitors can mask in

4.4 Experience of the T

The test subject was asked a
the monitoring. He claimed
that his activity level had
house. We did particularly a
such as bathroom and bedr
was well aware that the sen
might be more sensitive to
the sensors, he said that he
he paid any special interest
time. The sensors were no

Addressing the Needs of an Aging Population

Fig. 6. Detailed overview of June 1st

of this day are shown. We see that the test subject wen
he had a short bathroom break around 00:15. Then, the
to 01:45, and this time he turns on the boiler and starts
it was seen that the test subject slept for a very limi

t completely accurate, as examining the days more care
breaks in the bedroom stays both nights for approximat

assifier as implemented considers any break for more
eep being finished, and any stays in the bedroom after
tivity and thus not added to the sleep. This means that d

e detected, when it is just a sleep that is more disturbed.
he more time spent outside, the less activity from the ind
cted, but it can also be seen that this varies a lot, especi
nside. This could be a result of visitors in the house. N
ivity level against the amount of time spent in the sens
chanism makes sense intuitively, and a deviance from
n indication of a subject's general condition. For activ
rs, this may hold only if activity goes down because act
nactivity on the part of the subject under observation.

Test Subject

a few questions about his experience and how he percei
d that he did not feel uncomfortable being monitored,
not been reduced or increased due to the sensors in

ask about how he felt regarding the sensors in private ar
oom, and he said that he had no hesitations to these, as
nsors only detected movement. He did mention that oth
this, as the sensors can resemble cameras. When it came
didn't mind them being in the house, and that the only ti
t to them was when some of them fell down from time

ot perceived as unsightly either, and he got used to th

443

nt to
test
 his
ited

eful-
tely

e 10
this

days

door
ally

Nor-
sors'

the
vity
tivi-

ived
and
the

reas
s he
hers
e to
ime
e to
hem

444 M.E.B. Skjønsfjell et al.

pretty quickly. On the other hand, this could be the case only because he knew they
were only there for a limited period of time. The accelerometer he tried to use as
much as possible and it was not bothering to wear. He did think that in time bringing
it with him it could become a part of the daily routine such as wearing his hearing aid
and taking his cell phone with him. If a health care worker would be monitoring the
behavior, he thought it might increase the feeling of security at home in case some-
thing happened, such as feeling indisposed with his safety alarm out of reach.

5 Discussion

The choices we have made are not technically optimal. The choices reflect a need for
compromise between technical needs and concerns with regards to risk and cost, with
the goal being to get enough nodes of enough types running soon enough to evaluate
the entirety of the solution. We recommend more robust wireless protocols for further
work. While there can be a significant amount of slack with regards to timing and
precision without degrading the quality of the data, the data reported to health person-
nel or caregivers should not be inaccurate, i.e. reporting something that is completely
false, such as an observed staying for days in a laundry room.

The local concentrator node had a high percentage of uptime. One unexplained
reset occurred, but remote access was reestablished automatically. It is therefore in
our opinion, a good choice to rely on tried and tested platforms such as Linux run-
ning on relatively cheap hardware for future implementations and even full scale
deployment.

As has been observed in the public debate surrounding electronic patient journals,
privacy and security are paramount in gaining and keeping the trust of users. We be-
lieve that the use of restricted local access and public-key encrypted end-to-end
remote connections as used in our implementation is sufficient regardless of the poss-
ible low security of the (wireless) local network.

Technically, securing stored data and restricting access is quite straight forward.
The challenges in this regard are probably more of an administrative nature.

The event routing and interpretation framework are perhaps the most important de-
sign decisions to make, except for how data is presented to the user, as it will greatly
affect development and maintenance cost, as well as runtime performance. Our expe-
rience is that an emphasis on weak coupling between components and layers and a
separation of concerns indeed made it easier to develop and test each component sep-
arately. The effect of abstracting sensor data as context cues enabled us to develop
higher order interpreting routines, but this effect was perhaps not fully utilized as time
constraints required the development to stop before more classifiers could be imple-
mented. Although letting each context classifier process data independently means it
takes some minutes to classify a month of raw data on a modern computer, we find
the performance acceptable considering the reduction in complexity. The interpreta-
tion of sensor data is intended to run continuously and to persistently store generated
information, making the achieved performance more than adequate in a deployed
system.

 Addressing the Needs of an Aging Population 445

A thorough evaluation is needed to decide which rooms should be presented as
graphs with statistics. The amount of sleep, time spent in the bathroom and time spent
outdoors all seem as good indicators of a subject’s health condition, but these need to
be classified into groups of similar days to give a clearer view of possible abnormali-
ties. With a larger data set, it would be interesting to compare a recent time interval
with the same time interval the previous year, as this can give a better indication of
e.g. sleep routines having changed over this period. Human behavior is as previously
mentioned unpredictable, and this is clearly seen from the results. This means better
algorithms need to be implemented to detect abnormalities, as simple statistics isn't
necessarily enough.

A thorough examination in cooperation with health personnel or relatives is re-
quired to determine the benefits in a health context with the system as it is. Having a
system for seeing what a patient has done since the last visit from health personnel
might help detect loss of appetite or sleep at an earlier stage. Incipient dementia or
similar diseases could also be captured by health personnel by seeing small signs of a
patient being disorientated e.g. by cooking or wandering outside at unseemly times.
These are symptoms that may not normally be seen before the disease is more devel-
oped, but by knowing that one can pick these up at an earlier stage, the medical treat-
ment of the patient could be accommodated to allow the patient to stay safely at home
as long as possible. The sensor types we have looked at in the experiment record pa-
rameters related to behaviour and activity. While this can be interesting both for
emergencies and as a diagnostic tool, more targeted sensor types such as for instance
blood sugar measurements or lung capacity could also be integrated to perhaps avoid
hospital visits simply for routine monitoring.

6 Conclusion

A platform for monitoring elderly in a domestic environment has been developed. A
full system has been implemented, presented and evaluated, from choosing and plac-
ing sensors, to receiving, interpreting and presenting the data to an end-user. The
system presented is directly reusable in any home environment by modifying meta-
data, it is built upon cited design concepts and can serve as a firm foundation for fur-
ther work in various directions. Different areas of applications of remote monitoring
in a health context have been demonstrated as plausible. It has been shown that it is
possible to develop such a system with low-cost simple sensors, and that useful in-
formation can be extracted from the system and presented in a meaningful way to
users.

We believe the presented platform as-is could benefit health personnel and ca-
regivers in a diagnostic capacity as a tool for assessing objective data. With further
work aimed at identifying abnormal behavior or targeting specific health parame-
ters, such a system could increase comfort and security, identify deterioration of
health at an early stage and potentially save lives by detection of critical situations
in time.

446 M.E.B. Skjønsfjell et al.

References

1. Ambient Assistant Living Joint Programme, http://www.aal-europe.eu (retrieved
March 3, 2012)

2. CARE - Safe Private Homes for Elderly Persons, http://care-aal.eu/ (retrieved
March 3, 2012)

3. COGNITA FALLOFON, fall sensor with GPS,
http://www.hjelpemiddeldatabasen.no/r11x.asp?linkinfo=21482/
(retrieved June 1, 2012)

4. H@H - Health at Home, http://www.health-at-home.eu/ (retrieved March 3,
2012)

5. HOPE - Smart Home for Elderly People, http://www.hope-project.eu/ (re-
trieved March 3, 2012)

6. Lov 2000-04-14 nr 31: Lov om behandling av personopplysninger (personopplysningslo-
ven), http://www.lovdata.no/all/nl-20000414-031.html/ (retrieved
March 3, 2012)

7. Studenter fikk ulovlig tilgang p pasientjournaler,
http://www.vg.no/helse/artikkel.php?artid=560054
(retrieved March 14, 2012)

8. Velferdsteknologi for hjemmeboende - Bærum kommune,
https://www.baerum.kommune.no/Organisasjonen/Pleie–og-
omsorg/Velferdsteknologi/ (retrieved June 1, 2012)

9. Hjemme hos fru Paulsen. NHO magasinet (2011)
10. Indreiten, A.B.: Robotselen Paro kjenner igjen Sverre (2011),

http://www.nrk.no/nyheter/distrikt/ostafjells/vestfold/1.776
9505 (retrieved June 1, 2012)

11. Normann, A.R., Skjønsfjell, M.E.B.: An Approach to Networked Welfare Sensing (De-
cember 2011)

12. Normann, A.R., Skjønsfjell, M.E.B.: Monitoring Behaviour in a Domestic Environment.
Master’s thesis. Department of engineering Cybernetics. NTNU (June 2012)

International Workshop

on Digital Engineering (IWDE 2012)

Introduction to IWDE 2012

Veit Köppen1 and Gunter Saake2

1 Center for Digital Engineering, Magdeburg, Germany
veit.koeppen@ovgu.de

http://www.cde.ovgu.de
2 Otto-von-Guericke University Magdeburg,

Institute for Technical and Business Information Systems,
Magdeburg, Germany

Abstract. Digital Engineering is an emerging trend that brings together
different experts to develop new products and processes or to enhance
existing ones. Functionalities are often non-visible in the development
process. Virtual reality is a promising technology to visualize aspects
such as quality, security, or safety. Due to the increasing amount of soft-
ware that is inherited in products or used to control processes different
domain experts have to collaborate with software engineers. With the
help of Digital Engineering methods and tools, system properties such
as reliability and safety can be early included in the development.

Keywords: Digital Engineering, Virtual Reality, Software Engineering,
System Properties.

1 Overview

Software-intensive systems are becoming more and more important in an in-
creasing number of traditional engineering domains. Digital Engineering is an
emerging trend that meets the challenge to bring together traditional engineer-
ing and modern approaches in software and systems Engineering. Engineers in
the traditional domains are confronted with both, the usage of software systems
in a growing amount and also with the development of software-intensive sys-
tems. Therefore, software- and systems-engineering play a growing role in many
engineering domains. Although, functional properties of software systems are of-
ten included in the development process, non-functional properties of safety and
security and their early inclusion in the development process are not respected
sufficiently.

We introduced the workshop series in 2010 [4]. The first focus was set on
emerging trends that combine mechanical and software engineering with the
help of Virtual Reality. We see Digital Engineering as a necessary extension of
virtual engineering and a consequence to support a holistic approach for product
and process life cycle management [3].

In 2011, the Second International Workshop on Digital Engineering brought
domain experts and scientists together [5]. A focus of this workshop was the usage

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 449–453, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

450 V. Köppen and G. Saake

of Virtual Reality. Therefore, visualization as well as software intensive systems
were in focus. Engineers in traditional domains and software developers are con-
fronted the usage of software systems and the development of software intensive
systems in a growing amount. Therefore, software- and systems-engineering play
a growing role in all engineering domains.

Interdisciplinary plays an growing role in the development and improvement of
products and processes. Virtual Reality enables a cost-efficient test and develop-
ment environment that has to include different experts from divertive domains,
such as mechanics, electrics, and software. Furthermore, organization structures,
techniques, tools, and methodologies have to be considered and developed for
this cooperation. Digital Engineering is the discipline that enables a shortened
development cycle, observes quality requirements, and reduces cost.

2 Objectives

The aim of the 3rd International Workshop on Digital Engineering 2012 is to
bring together experts, researchers, and practitioners, from different communi-
ties, such as software engineering, mechanical engineering, and safety and secu-
rity.

The 3rd International Workshop on Digital Engineering (IWDE) at the Center
for Digital Engineering is held in conjunction with SAFECOMP 2012 in Magde-
burg, Germany. This workshop focuses on new methods and applications in the
domain of digital-, software- and systems-engineering. Scientific contributions
to the domain of development and management using digital technologies are
addressed as well as evaluations of current trends in research. An explicit goal is
to foster a future research agenda and to establish cooperation of the workshop
participants in joint activities.

3 Topics

The specific topics of the workshop include, but are not limited to:

– Systems- and Software Engineering Approaches to Digital Engineering
– Architectures and Implementations of Real-Time Simulation
– Interoperability of Embedded Devices and VR Systems for Safety Critical

Systems
– Interaction of VR / AR and Simulation Models
– VR-Simulation for Safety and Security Engineering
– Quality and Requirements for Sensor Networks and Embedded Systems
– Cyber Mobility & Cyber Threats
– Compliance in Eternal Systems
– Security and Privacy in Digital Engineering
– Privacy and Trustworthiness in Virtual Engineering
– Security Aspects of Service-oriented Architectures and Middlewares
– Secure and Trustworthy Man-Machine Interaction
– Secured RFID Sensor Network Technologies
– Cryptographic Methods and Algorithms

Introduction to IWDE 2012 451

4 Workshop Contributions

In the paper Modeling the Effects of Software on Safety and Reliability in Com-
plex Embedded Systems by Steiner, Keller, and Liggesmeyer [9] the development
of autonomous vehicle systems underlines an increased usage of software based
control mechanisms. A high complexity is the result and an accurate analysis is
required. This paper investigates potential effects of software issues on safety, re-
liability, and availability of complex embedded autonomous systems. A mapping
of integrated behavior-based control networks to State-Event Fault Tree models
is presented.

Dietrich, Zug, and Kaiser [1] focus in their paper Towards Artificial Percep-
tion on adaptability to changing environments and environmental conditions as
a key concern for future smart applications. Autonomous systems need to ex-
tend the local view on environment. In such a case, external sensors, fixed or
mobile, are very useful, because, they support the acquisition of information
that is described as “Internet of Things”, “Intelligent Environments”, “Indus-
trial or Building Automation”, “Ambient Intelligence”, or “Ubiquitous Pervasive
Computing”. Information is ubiquitously available. However, interpretation and
integration into single-points-of-truth architectures is a challenging task. The
authors propose a new type of distributed middleware for the environmental
perception, abstracting the environment from different available sensor systems.
They use three steps to describe adaptive functionalities that can be extracted
from a control application to support artificial perception and environment
modeling.

In A Case Study of Radio-based Monitoring System for Enhanced Safety of
Logistics Processes [8] Soffner et al. discuss the inclusion of transport units in
logistics processes that have an important influence on safety at the workplace
of a logistics hub. These units often cause serious accidents. Tracking systems
can be used to reduce the risk of collisions. Special dynamic challenges, such as
weather conditions and limited visibilities, arise in such a scenario. The authors
describe a collision detection system based on an industrial radio-based real-
time location system. Furthermore, they evaluate accuracy and usability of their
system in an application scenario.

Yang, Keller, and Liggesmeyer present in Visual Approach Facilitating the
Importance Analysis of Component Fault Trees [10] a safety analysis technique
for embedded systems: Component fault tree analysis. This technique estimates
respective contributions of potential basic failures and set them into ratio to an
overall system failure. In such an analysis, results are typically represented in
an aggregated form. The authors propose a visualization approach to integrate
importance analysis results with structures of component fault trees. Their ap-
proach facilitates identification of critical components. Furthermore, it supports
an analysis of basic failures.

In [6] Kuhlmann et al. describe an important issue in the cooperation of net-
worked embedded systems and possibilities of their simulation. Potential impacts
of IT security incidents and security protective measures are addressed without

452 V. Köppen and G. Saake

an explicit prototype. Dependency structures and structural effects of complex
embedded networks have to be recognized and possible visualized. An increasing
number of control units, sensors, and actuators, make it impossible to test all
system components and their dependencies. Therefore, the authors describe a
simulation model that represents possible interactions. This is evaluated by a
simulation case study in the automotive domain.

The paper From Discrete event simulation to virtual reality environments from
Nielebock et al. [7] present a concept that uses Virtual Reality to understand
system dynamics. Due to complex technical systems and the prediction of system
dynamics, it is hard to understand system behavior. However, this is a crucial
part in Digital Engineering. Virtual simulations enable an opportunity to cope
with this problem. Virtual reality simulations are a possibility to experience
a system in a cost-efficient manner. The authors describe a mixed simulation
environment, based on a discrete event simulator (DES) which is coupled in a
virtual reality environment. Technical and conceptual challenges as well as user
interaction are investigated in a case study. A prototype based is used to evaluate
the approach.

Feigenspan et al. investigate in their paper Program Comprehension in Pre-
processor-Based Software [2] how to support a programmer for customizable
embedded software. Customization is a technique to cope with heterogeneous
hardware, software of embedded systems provides customization capacities. Typ-
ically, this customization is achieved using conditional compilation with prepro-
cessors. However, preprocessor usage can lead to obfuscated source code that
can be difficult to comprehend, which in turn cause increased maintenance costs,
bugs, and security vulnerabilities. To profit from the benefit of preprocessors us-
age, program comprehensibility has to be improved. How to get into control of
comprehensibility with measurements is developed and this can improve main-
tainability, reliability, and security of source code.

5 Program Committee

For the 3rd International Workshop on Digital Engineering we want to thank all
contributors and reviewers. The Program committee consists of:

– G. Saake, OvGU Magdeburg, Germany (Program Chair)
– R. Dachselt, TU Dresden, Germany
– M. Güdemann, INRIA Rhône-Alpes, France
– A. Brenke, University of Applied Science Niederrhein, Germany
– V. Köppen, OvGU Magdeburg, Germany (Local Organizing Chair)
– F. Ortmeier, GI Regional Group ’̈Sachsen-Anhalẗ’, Germany
– M. Schenk, OvGU & IFF Magdeburg, Germany
– D. Reiners. University of Louisiana at Lafayette, USA
– A.-B. M. Salem, Ain Shams University, Egypt
– H. Rohling, TU Hamburg-Harburg

Introduction to IWDE 2012 453

Acknowledgment. We would like to thank Heike Luka for her support in
organizing the workshop. Furthermore, this work is partially supported by the
German Ministry of Education and Science (BMBF) within the ViERforES-II
project, contract no. 01IM10002B.

References

1. Dietrich, A., Zug, S., Kaiser, J.: Towards Artificial Perception. In: Ortmeier, F.,
Daniel, P. (eds.) SAFECOMP 2012 Workshops. LNCS, vol. 7613, pp. 466–476.
Springer, Heidelberg (2012)

2. Feigenspan, J., Siegmund, N., Fruth, J., Kuhlmann, S., Dittmann, J., Saake, G.:
Program Comprehension in Preprocessor-Based Software. In: Ortmeier, F., Daniel,
P. (eds.) SAFECOMP 2012 Workshops. LNCS, vol. 7613, pp. 517–528. Springer,
Heidelberg (2012)

3. Köppen, V., Saake, G.: Einsatz von Virtueller Realität im Prozessmanagement.
Industrie Management 26(2), 49–53 (2010)

4. Köppen, V., Saake, G. (eds.): IWDE 2010: Proceedings of the First International
Workshop on Digital Engineering. ACM, New York (2010)

5. Köppen, V., Saake, G. (eds.): Proceedings of the Second International Workshop on
Digital Engineering. Faculty of Computer Science, Otto-von-Guericke-University
(November 2011)

6. Kuhlmann, S., Fruth, J., Hoppe, T., Dittmann, J.: Simulation of Structural Effects
in Embedded Systems and Visualization of Dependencies According to an Intended
Attack or Manipulation. In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP 2012
Workshops. LNCS, vol. 7613, pp. 498–507. Springer, Heidelberg (2012)

7. Nielebock, S., Ortmeier, F., Schumann, M., Winge, A.: From Discrete Event Sim-
ulation to Virtual Reality Environments. In: Ortmeier, F., Daniel, P. (eds.) SAFE-
COMP 2012 Workshops. LNCS, vol. 7613, pp. 508–516. Springer, Heidelberg (2012)

8. Soffner, M., Nykolaychuk, M., Adler, F., Richter, K.: A Case Study of Radio-Based
Monitoring System for Enhanced Safety of Logistics Processes. In: Ortmeier, F.,
Daniel, P. (eds.) SAFECOMP 2012 Workshops. LNCS, vol. 7613, pp. 477–485.
Springer, Heidelberg (2012)

9. Steiner, M., Keller, P., Liggesmeyer, P.: Modeling the Effects of Software on Safety
and Reliability in Complex Embedded Systems. In: Ortmeier, F., Daniel, P. (eds.)
SAFECOMP 2012 Workshops. LNCS, vol. 7613, pp. 454–465. Springer, Heidelberg
(2012)

10. Yang, Y., Keller, P., Liggesmeyer, P.: Visual Approach Facilitating the Importance
Analysis of Component Fault Trees. In: Ortmeier, F., Daniel, P. (eds.) SAFECOMP
2012 Workshops. LNCS, vol. 7613, pp. 486–497. Springer, Heidelberg (2012)

Modeling the Effects of Software on Safety
and Reliability in Complex Embedded Systems

Max Steiner, Patric Keller, and Peter Liggesmeyer

AG Software Engineering: Dependability, TU Kaiserslautern
{steiner,pkeller,liggesmeyer}@cs.uni-kl.de

Abstract. The development of autonomous vehicle systems demands
the increased usage of software based control mechanisms. Generally,
this leads to very complex systems, whose proper functioning has to be
ensured. In our work we aim at investigating and assessing the poten-
tial effects of software issues on the safety, reliability and availability
of complex embedded autonomous systems. One of the key aspects of
the research concerns the mapping of functional descriptions in form of
integrated behavior-based control networks to State-Event Fault Tree
models.

Keywords: safety analysis, reliability analysis, state-event fault trees.

1 Introduction

Recent trends concerning the automation of high-tech products like cars, air-
planes and trains lead to embedded systems of tremendous size and complexity.
This development particularly affects the quality of those systems. Important
(non-functional) quality characteristics often related to in this context are safety,
reliability and availability. The compliance with predefined quality goals is en-
sured by the increased usage of software-based mechanisms. Depending on the
nature of the considered systems, this may be crucial. Especially, in cases where
software is applied to fulfill certain safety requirements.

The way software affects safety-critical systems is manifold. But not only
safety is a factor influencing the final quality of a product. Faults introduced due
to misinterpretation, wrong design decisions, or implementation errors may lead
to unreliable services, or to reduced functionalities, which might affect the avail-
ability of the whole system. The other way around, unreliable or non-available
services may again end up in safety critical events, e.g., the failure of anti-
blocking systems of cars in emergency cases. In this regards, important ques-
tions focus on determining the impact of software faults on safety, reliability
and availability of complex software-intensive embedded systems.

In general, the range of the considered systems only differs slightly with re-
spect to its principle composition and its mission profiles: Data generated from
sensors, responsible for the acquisition of environmental information, is collected
and prepared for further processing. Based on the provided data, decisions are

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 454–465, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Modeling the Effects of Software on Safety and Reliability 455

inferred determining the behavior of the system, e.g., whether or not a colli-
sion detection system should trigger an alarm in case of an imminent collision
with other objects. Depending on the sort of system, the decision may also con-
trol actuators like engines and steering devices, as it is the case in autonomous
vehicles.

Our efforts center on finding a way to draw conclusions about influences of
software on quality characteristics like reliability, safety and availability of com-
plex software-intensive embedded systems of autonomous vehicles. The main
focus lies on how to map corresponding relations of software-artifacts of func-
tional descriptions of integrated Behavior-Based Control (iB2C) networks [9] to
safety and reliability analysis models using State Event Fault Trees (SEFT) [3].
Analyzing these mappings shall facilitate answering questions like:

– How do software-artifacts react on corrupted input data?
– At which point do software components fail?
– Given assumptions about the reliability of the input data, how imminent is

the occurrence of certain unwanted/critical system-level events with respect
to safety, reliability and/or availability?

Our research relies on the description of an autonomous vehicle demonstrator
system called ravon (Robust Autonomous Vehicle for Off-Road Navigation),
which has been developed by the Robotics Research Lab at the University of
Kaiserslautern.

The remainder is structured as follows. In Sect. 2 we provide an overview
about the type of the demonstrator system used to conduct the studies. In
Sect. 3 we review some of the related modeling techniques. Subject of Sect. 4 is
the discussion of how to use the modeling elements of State-Event Fault Trees to
map the interrelations between reliability and safety. Sect. 5 describes the way of
using the technique to assess the overall system safety based on the information
about interference to sensor (data) failure. In Sect. 6 we provide the results of
an analysis of safety subsystems of our demonstrator system. We conclude with
Sect. 7 and provide a short outlook of future work.

2 Demonstrator: RAVON

ravon is a mobile robot developed by the Robotics Research Lab at the Univer-
sity of Kaiserslautern to research off-road navigation of autonomous vehicles [11].
It uses several different sensor systems to perceive its environment. Laser scan-
ners are used for front and back distance measuring and obstacle detection.
Additional information about the environment is added with cameras. Pressure
sensitive bumper systems at the front and the back of the robot cause an emer-
gency stop if triggered. All sensor systems are processed by the software part
of the system, which then generates control values for the actuators. The con-
trol software is realized using the behavior-based control architecture iB2C [9].
ravon has four electric wheel hub motors bringing it to a maximum velocity of
10 km/h. Its total weight of 750 kg brings up a potential risk of serious damage

456 M. Steiner, P. Keller, and P. Liggesmeyer

to itself and the environment including injuries in collisions with humans. It is
therefore imperative that the system is analyzed for residual risks despite of the
built-in safeguards. Unfavorable environmental conditions could lead to a non-
detection of an obstacle by one or more sensors. In a safety analysis it has to
be examined how such a fault affects the driving behavior and if it leads to an
accident.

2.1 Behavior-Based Network Description

In ravon a behavior-based control framework named iB2C [9] is used. The con-
trol architecture is a layer-based network consisting of several behavior modules.
An iB2C behavior has several behavior-specific input and output signals to de-
termine its influence on the behavior network. In addition to the behavior signals
a behavior module has an input and output vector for values controlled by the
behavior.

Interaction between behavior modules is realized by fusion behaviors, which
combine outputs from different modules to one single output. Two different kinds
of fusions are used in ravon: maximum fusion and weighted fusion. The maxi-
mum fusion forwards the output vector of the behavior with the highest activity.
The weighed fusion merges the output vectors of the input behaviors, which are
weighted with their corresponding activity. All driving motions can be altered
by safety behaviors by slowing down or changing direction.

In [9] some more complex design patterns for iB2C are described. As they
are used frequently, it is planned to implement direct translations or at least
translation templates for SEFT generation. The most important and most fre-
quently used pattern is the behavioral group pattern. A behavioral group is a
hierarchical abstraction of several behaviors, which manipulate the same output
values. They are combined into a group, which looks like a behavior from the
outside.

3 Related Work

Cheung et al. [1] provided a framework for reliability prediction of software
components at the architectural level. Their model consists of three phases:
First, determine system states including normal and abnormal behavior. Second,
determine transitions with help of hidden Markov models and other sources
of information, which is still a challenge. Third, solve the model and compute
reliability via steady state analysis and the calculation of the probability of
being in a failure state. They only consider reliability in their analysis. It might
be possible to extend the technique to analyze safety and availability. We did not
use this approach, because with SEFTs we can model everything Markov-models
can describe, and additionally SEFTs can be used to analyze safety. Also, we
have a tool, with which we can create and analyze SEFTs.

Min et al. [7] propose template software fault trees for Ada95 code for safety
analysis on a very low abstraction level. They use standard fault trees, which

Modeling the Effects of Software on Safety and Reliability 457

do not take into account the component structure of larger systems. Only im-
plementation errors are analyzed, and McDermid states in [6] “that many safety
problems relate to requirements faults, not mistakes in coding”. As a conse-
quence, additional analyses are needed to check for faults in earlier development
stages.

Lano et al. [5] propose HAZOP (hazard and operability study) guide words
for the analysis of object-oriented models in UML. They provide new guide word
interpretations for state transition, class and sequence diagrams. HAZOP is used
to find system failures, which themselves have to be analyzed further. It can be
used before a fault tree analysis to determine possible top events.

Förster and Trapp [2] developed a Fault Tree based method to cope with
the problem of few or no information about failures early in the development.
They base the analysis on Component Fault Trees (CFT) [4] to model system
composition. The uncertainty of (software) safety probabilities for basic events is
modeled with the help of probability distributions over intervals instead of single
probabilities. For calculating an overall probability distribution, every interval is
sampled many times and the overall probability per sample is calculated. CFTs
offer the possibility to model big systems with many components in a structured
way. In embedded systems the state of the system changes as a reaction on
events. Therefore a reliability or safety analysis has to be able to consider states
as well as events. CFTs do not support the distinction of states and events, which
is possible in Petri-nets.

Sacha proposes in [10] an analysis called Transnet using structure Petri-nets.
The analysis based on Petri-nets is similar to ours as we also conduct a reach-
ability analysis. One drawback with Petri-nets is that the nets are considerably
large, even for relatively small systems. SEFTs combine the ability to model
states and events of Petri-nets with the ability to model component-wise like
CFTs.

4 State-Event Fault Trees

In our approach we use State-Event Fault Trees (SEFT) [3] to analyze safety
and reliability from a functional system description. SEFTs are a combination
of deterministic state machines, Markov chains and Fault Trees [14], and can
model system states as well as timing constraints. Quantitative evaluation is done
by translating SEFTs into deterministic and stochastic Petri-nets (DSPN [8]).
DSPNs are an extension of Generalized Stochastic Petri-nets (GSPN) to addi-
tionally model deterministic delay. A DSPN is a timed variant of Petri-nets,
which means the time a transition waits, before it fires, is specified.

In [3] a SEFT-to-DSPN translation algorithm, which we use, is described.
A SEFT has a finite state space, and a component is in exact one state at
a time – the active state – and stays in that state for some time. The state
of a component is described as a state expression: “component c is in state s
at time t”. A probability can be assigned to a state expression for each point
in time. Contrary to a state, an event has no duration. State transitions are

458 M. Steiner, P. Keller, and P. Liggesmeyer

events, but additional events are possible. As in DSPNs events can occur after a
deterministic or exponentially distributed probabilistic delay. They can also be
triggered by other events. In addition to the standard boolean gates used in Fault
Trees (AND, OR), several new gates are introduced. For example History-AND
remembers events that have occurred in the past, and Priority-AND additionally
remembers if they have occurred in a given order.

As a result, one receives a directed acyclic graph (one cause can trigger multi-
ple effects). In the graph causal loops are forbidden, except if some explicit delay
is introduced into the cycle. Event ports allow triggering relations across com-
ponent borders. SEFTs are constructed like Fault Trees: start with an undesired
state or event, and find influences or causes. Basic events of FTs correspond
to solitary exponentially distributed events in SEFTs. Subcomponents can be
modeled by other means like Markov chains and easily included into the SEFT.

5 Modeling Approach

In this Section, the approach to apply SEFTs on functional system models is de-
scribed on the example of ravon. Starting with the general process chain, a de-
scription of all steps from iB2C behavior modules to failure probabilities is given.

5.1 Process Chain

Fig. 1 shows the different steps of our approach to analyze the safety and relia-
bility of a functional model. First, a SEFT of the behavior network is developed
describing how failures are propagated through the system hierarchy. After mod-
eling the structure, probabilities for basic events are entered. This is done using
the tool ESSaRel [13]. The SEFT can not be analyzed directly, so it is converted
into a DSPN via an export function to the TimeNET [12] format. TimeNET is
a tool for analyzing DSPNs. Now, interesting places have to be identified, for
which a reachability analysis will be done. Usually, such places are the failure
states of the topmost component in the model. In TimeNET probabilities for
system states can be calculated. It can be expressed if a desired system state is
reached with a certain probability, or an undesired state (failure state) is reached
with a certain probability. This probability can be compared to a threshold to
see if predefined constraints are met.

Fig. 1. Process chain

Modeling the Effects of Software on Safety and Reliability 459

5.2 Translation from iB2C to SEFT

Before an analysis can be done, the system has to be modeled with regard to
failure propagation. In ESSaRel a system can be modeled component-wise. Sin-
gle iB2C behavior modules, fusion behaviors, whole behavior groups or behavior
patterns can be seen as components. In the following, two architectural compo-
nents seen in iB2C are briefly described with a translation scheme into a SEFT.
More detailed descriptions of iB2C components can be found in [9].

Behavior Modules. A behavior usually controls one or more control values
like a velocity or a joint angle. These values have to be within certain boundaries
in certain situations for the system to be in a state, in which no safety condition
is violated. Additionally, the activity of a behavior module is closely related to
the environmental situation. A model of such a behavior observes deviations
from desired values of control values and activities.

Some modeling rules can be formulated: First, determine possible states of
control values and/or activity. Possible states are one or more failure states and
a state for normal operation. Next, determine causes for state transitions and
model them as events. Events that are caused by the environment of the sys-
tem should be modeled with a failure rate (either deterministic or exponentially
distributed events). Events that are triggered by other events from other com-
ponents are of the type “Triggered Event”.

In Fig. 2 an example SEFT of a simple behavior module is shown. It con-
sists of one OK state (out_vel_ok) and one failure state (out_vel_high). The
init event is pointed at the OK state. Two events (no_obstacle_detected and
sensors_working) switch between the states. The events are connected to event
outports (black triangles), which are used to connect this component to others.

Fig. 2. Example SEFT for a simple behavior

460 M. Steiner, P. Keller, and P. Liggesmeyer

Fusion Behaviors. As stated in Sect. 2.1, behaviors that influence the same
control values are merged with fusion behaviors. The failure modes of a fusion
behavior result from the failure modes of its input behaviors. For a maximum
fusion only the failure modes of the behavior with the highest activity are prop-
agated. The maximum fusion results in an “OR” gate for the failure modes and
an “History-AND” gate for the normal modes. That means if at least one of the
behaviors is in the failure mode, the output of the fusion behavior is also in the
failure mode. On the other hand, if both input behaviors are in normal mode,
the fusion behavior is also in normal mode.

For the weighted fusion there are a few ideas that still have to be implemented:
As for the maximum fusion the failure modes of the weighted fusion depend
on the ones from the input behaviors. In contrast to the maximum fusion the
weighted fusion has an infinite number of states. To be able to model these with
a SEFT, they have to be classified. For the first modeling attempt, the weighted
fusion can be abstracted as a maximum fusion.

In Fig. 3 an example SEFT of a maximum fusion behavior with two input
behaviors is shown. The states are determined by the merged behaviors. At least
one OK state and one failure state is needed. Events are triggered events in con-
trast to the exponentially distributed events of behavior modules. State changes
depend on the inputs of this component (white triangles are event inports). In-
puts of failure events are merged with an OR gate (≤ 1), inputs of OK events
with a History-AND (H&). Like in the previous example, the events are also
connected to event outports (black triangles).

Fig. 3. Example SEFT for a maximum fusion with two input behaviors
(Front_EM_Stop and Forward)

Modeling the Effects of Software on Safety and Reliability 461

5.3 Translation from SEFT to DSPN

The translation from SEFT to DSPN is done using the translation rules de-
scribed in [3], which are implemented as an export function in ESSaRel. SEFT
models are translated component-wise, events become transitions and states
become places. The init node transforms into an initial marking of the place cor-
responding to the state, to which the init node is connected. Gates are translated
according to a dictionary in [3]. Component ports also have a special translation.

At the bottom of Fig. 4 an example SEFT and its corresponding DSPN are
shown. The SEFT model depicts one component with two states, two events and
two event outports to connect the component to others. This SEFT is translated
into the DSPN shown below the SEFT. The states are directly translated into
places. Same names indicate corresponding states and places. The places have an
additional prefix indicating the component. This is needed to distinguish places
with the same name that come from different components. The same holds for
events and transitions. The exponentially distributed trigger rates of the events
in this example are translated into exponentially distributed delays of the DSPN
transitions. The two event outports are translated to one place and one transition
each. Other components can be attached to these transitions.

5.4 Analysis in TimeNET

When the SEFT is translated into a DSPN, it can be analyzed with TimeNET.
The translation is done, because with DSPNs it is possible to calculate the
reachability of states and the probability for the system to end up in a certain
state. It is possible to draw conclusions about system reliability by calculating the
probability that the system is in the OK state. If there exists a repair transition
to leave each of the failure states, availability can be measured by calculating
the probability of the system to be in the OK state at the top component at a
given time. Also, safety can be analyzed by calculating the probability for the
system to be in a safety-critical failure state. The same can be done for each
single component, if desired.

Before the analysis can be done, a separate measure has to be defined for
each observed state. An example measure result = P{#P1=1}; would result in
the probability that place #P1 contains one token. TimeNET then calculates the
probabilities for the system to be in the defined states during runtime.

6 Results

As an example a small part of the ravon system is modeled. The modeled part
controls the forward velocity of ravon. Two different behaviors can slow down
the robot by overwriting the velocity value. Fig. 4 shows the translation of the
whole example. In the top-left part the SEFT model is shown consisting of five
components, which are connected via their component ports. Two components
are connected via a fusion behavior (second component to the top). On the

462 M. Steiner, P. Keller, and P. Liggesmeyer

Fig. 4. Top-left: the SEFT model of the example system, consisting of five components.
Top-right: the corresponding DSPN. Middle: one enlarged component of the SEFT.
Bottom: the enlarged translation to DSPN of the SEFT

Modeling the Effects of Software on Safety and Reliability 463

right, the corresponding DSPN can be seen. Below, one component is enlarged
to depict the translation in more detail:

(G) Front Emergency Stop is a behavior group, abstracted as a module,
which could be modeled in more detail later on. It uses the bumper sensors to
detect obstacles by touch and reduces the output velocity down to zero if an
obstacle is detected. We identified “output velocity too high” as the only failure
mode of this behavior at this abstraction level, making this one failure state
in the SEFT model. With the OK state (out_vel_ok), we need events, which
enable the transitions between the failure state and the OK state. As initial
state, the OK state is selected, because it is assumed that the system is OK at
the beginning.

In the SEFT model of (G) Front Emergency Stop each event has a trigger
rate (λ) assigned, which indicates how often the events are happening per second.
At the moment, this rate has been arbitrarily chosen, because it is not yet
interesting to have accurate values for this small example. In case of the event
“no obstacle detected”, it is the failure rate of the obstacle detection, the rate of
the other event is the rate, with which the system detects obstacles, depending
on sensor speed.

At the bottom of Fig. 4 the enlarged translation of the previous SEFT is
shown. States are translated to places, events to transitions, the init event to
an initial marking, and the component ports to transit structures consisting of
places and triggered events. The trigger rate of the modeled events is translated
into a transition with an exponentially distributed delay.

With this model, the probability, that the modeled components end up in
a failure state, can be determined. For example, the reliability of the compo-
nent (G) Front Emergency Stop depends on the probability, that it is in the
OK state. This probability depends on the failure and repair rates given in the
model and can be determined by an analysis with TimeNET. TimeNET can do
a reachability analysis and calculate probabilities for the system to be in certain
states.

Using this method, it is possible to analyze safety, reliability and availability
of complex behavior-based systems. The propagation of failures from sensors
through the control software can be modeled and quantitatively analyzed, pro-
vided reliability data for the sensors is available. The same could be achieved
with DSPNs, but with greater modeling effort for larger systems.

The advantage of the proposed method is, that is possible to model software-
intensive embedded systems with system states and externally triggered events
(sensor inputs). The modeling in SEFT is easier than with Petri-nets, because
complex systems can be modeled component-wise, instead of building one large
net. Also, system states and events, that contribute to a failure, can be combined
using logic gates like in fault trees.

7 Conclusion

We proposed a method to apply State-Event Fault Trees on functional descrip-
tions of hardware and software to analyze safety, reliability and availability.

464 M. Steiner, P. Keller, and P. Liggesmeyer

The main contribution are translation rules from the functional description of
behavior-based systems to an SEFT model. In this SEFT model desired and
undesired system states are selected. The analysis of the SEFT is done via trans-
formation into a DSPN. The results are probabilities that the system or system
components are in previously selected states. From this probabilities the system
reliability, availability or, in case of safety related components, the system safety
can be measured.

The next steps will be to develop translation schemes for all of the patterns,
and to expand the existing translations.

Acknowledgement. This work was funded by the German Ministry of Educa-
tion and Research (BMBF) in the context of the “Virtuelle und Erweiterte Real-
ität für höchste Sicherheit und Zuverlässigkeit Eingebetteter Systeme – Zweite
Phase” (ViERforES II) project. We also thank our colleagues from the Robotics
Research Lab of the University of Kaiserslautern for providing us with the input
data.

References

1. Cheung, L., Roshandel, R., Medvidovic, N., Golubchik, L.: Early prediction of soft-
ware component reliability. In: Proceedings of the 30th International Conference
on Software Engineering, ICSE 2008, pp. 111–120. ACM, New York (2008)

2. Förster, M., Trapp, M.: Fault tree analysis of software-controlled component sys-
tems based on second-order probabilities. In: ISSRE 2009 Proceedings (2009)

3. Kaiser, B., Gramlich, C., Förster, M.: State-event-fault-trees – A safety analysis
model for software controlled systems. Reliability Engineering & System Safety
92(11), 1521–1537 (2007); In: Heisel, M., Liggesmeyer, P., Wittmann, S. (eds.)
SAFECOMP 2004. LNCS, vol. 3219, pp. 195–209. Springer, Heidelberg (2004)

4. Kaiser, B., Liggesmeyer, P., Mäckel, O.: A new component concept for fault trees.
In: 8th Australian Workshop on Safety Critical Systems and Software, Canberra
(October 2003)

5. Lano, K., Clark, D., Androutsopoulos, K.: Safety and Security Analysis of Object-
Oriented Models. In: Anderson, S., Bologna, S., Felici, M. (eds.) SAFECOMP 2002.
LNCS, vol. 2434, pp. 82–93. Springer, Heidelberg (2002)

6. McDermid, J.: Software Hazard and Safety Analysis. In: Damm, W., Olderog, E.-R.
(eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 23–34. Springer, Heidelberg (2002)

7. Min, S.-Y., Jan, Y.-K., Cha, S.-D., Kwon, Y.-R., Bae, D.-H.: Safety Verification of
Ada95 Programs Using Software Fault Trees. In: Felici, M., Kanoun, K., Pasquini,
A. (eds.) SAFECOMP 1999. LNCS, vol. 1698, pp. 226–238. Springer, Heidelberg
(1999)

8. Priese, L., Wimmel, H.: Petri-Netze. Springer (2008)
9. Proetzsch, M., Luksch, T., Berns, K.: Development of complex robotic systems

using the behavior-based control architecture iB2C. Robotics and Autonomous
Systems 58(1), 46–67 (2010)

10. Sacha, K.: Safety Verification of Software Using Structured Petri Nets. In: Ehren-
berger, W. (ed.) SAFECOMP 1998. LNCS, vol. 1516, pp. 329–342. Springer, Hei-
delberg (1998)

Modeling the Effects of Software on Safety and Reliability 465

11. Schäfer, B.H.: Robot Control Design Schemata and their Application in Off-road
Robotics. Ph.D. thesis, TU Kaiserslautern (2011)

12. TU Berlin, Real-Time Systems and Robotics group: TimeNET 4.0 (2007),
www.tu-ilmenau.de/TimeNET

13. TU Kaiserslautern, AG seda and Fraunhofer IESE: Embedded system safety and
reliability analyzer (ESSaRel) (2009), http://www.essarel.de

14. Vesely, W., Goldberg, F., Roberts, N., Haasl, D.: Fault Tree Handbook. U.S. Nu-
clear Regulatory Commission (1981)

www.tu-ilmenau.de/TimeNET
http://www.essarel.de

Towards Artificial Perception

André Dietrich, Sebastian Zug, and Jörg Kaiser

Otto-von-Guericke-Universität Magdeburg
Department of Distributed Systems (IVS)

Universitätsplatz 2, 39106 Magdeburg, Germany
{dietrich,zug,kaiser}@ivs.cs.uni-magdeburg.de

http://www-ivs.cs.uni-magdeburg.de

Abstract. Adaptability to changing environments and environmental
conditions is a key concern for future smart applications. Therefore,
for autonomous systems it will be necessary to extend the local view
on the environment with external sensors, either fixed or mobile ones.
New evolving technologies support the acquisition of a myriad of infor-
mation, described as “Internet of Things”, “Intelligent Environments”,
“Industrial or Building Automation”, “Ambient Intelligence”, or “Ubiq-
uitous/Pervasive Computing”, etc. Thus, information is always available,
but its interpretation and integration into the own view remains an open
problem. We therefore propose the development of a new type of dis-
tributed middleware for the environmental perception, that abstracts
the environment from the diversity of available sensor systems. In three
steps we describe how more and more functionalities can be extracted
from the control application to support artificial perception and environ-
ment modelling.

Keywords: artificial perception, middleware, environment model.

1 Introduction and Motivation

With the rapid evolving development in the area of robotic assistance that di-
rectly interacts with humans, a change occurs in many fields of scientific re-
search. Future autonomous or partial-autonomous robotic systems will have to
cope with highly complex and dynamically changing environments in contrast to
today’s industrial robots, build and programmed for one purpose only. Adapt-
ability to changing environments and environmental conditions is a key concern
for many smart/robotic applications like service-, healthcare-, or search-and-
rescue-robotics. Furthermore, there is a new trend in manufacturing towards
flexible production lines; more and more products (e.g., in automotive industry)
are produced according to specific customer demands.

The growing number of distributed entities – sensors, actors, and controllers
– offers new opportunities, but entail some fundamental problems. The classi-
cal perception-control-loop approach is no longer applicable to solve complex
tasks in such environments. New types of control applications are developed
which incorporate supervision, coordination and planning, situation awareness,

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 466–476, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www-ivs.cs.uni-magdeburg.de

Towards Artificial Perception 467

diagnostics, etc. Practical examples for this are hierarchically structured con-
trollers (vehicles), dynamically reconfigurable controllers (UAVs), or delibera-
tive/reactive controllers (robotics). A yet unsolved problem concerns the per-
ception in changing intelligent environments. External heterogeneous sensors
(building and home automation, sensor networks, sensor vision of other robots,
mobile devices, etc.) can be used to extend the view on the environment. Receiv-
ing foreign information is quite simple in contrast to an aggregation, selection,
validation, and interpretation. Even adding a single sensor or actor is a huge
problem and requires a manual modification of the application code.

As a good example to illustrate the ideas behind our approach can serve an
automatic parking assistant. The controller requires a distinct view on the envi-
ronment (external model), generated with the help of local sensors. We assume
a multi-modal sensor system for this purpose. Furthermore, knowledge about
the car, like the size, geometry, or axis distance (internal model) is necessary
to control the car. Supervision is a crucial precondition to react propperly on
changing environmental parameters (size of the parking lot, geometry of neigh-
boring cars, width of the road). Additionally, the system itself can be changed,
for instance by attaching a trailer. These changes cause a lot of problems, while
the task stays the same “parking”:

1. Adaption of the environment perception, by incorporating the trailers sensor
systems.

2. Selection of usable sensors due to possible occultations caused by the trailer.

3. New car-dimensions cause adapted decisions about the parking lot.

4. Furthermore, the controller has to change its parking strategy1, due to the
trailer and possible cargo.

Furthermore it would be helpfull to enhance the environmental perception by ex-
ternal sensors from other cars. Related to possible faults, occultations, relevance,
monitored area, etc. appropriate and adaptive selection methods are required.

A separation of application logic and perception could remedy such general
problems. As mentioned before, every control application requires a distinct
view on the environment. Such a view can be some basic parameters (position,
distances, states, etc.), 2D or 3D representations, graphs, many more and a
combination of them. Thus, before building systems that can subsist in complex
environments we need to build systems that can perceive these environments.
Imagine an environmental abstraction by a perception middleware layer, which
hides recurrent sensory tasks, like interpretation, validation, fusion, etc., compa-
rable with a communication middleware that abstracts the network. A control
application could define the required type of abstraction while the middleware
is responsible for its generation.

1 The parking stategy incorporates a change of the kinematics and trajectory planning.
The automated calculation of the inverse and direct kinematics by using a solver and
a description of the system is commonly used for robot manipulators [1], but also
possible for basic vehicles (see [2] and [3]).

468 A. Dietrich, and S. Zug, and J. Kaiser

1.1 Contributions

The aim of our current research lies in the development of a new kind of mid-
dleware, see Fig. 1. Our previous projects coped with the abstraction of the
network. Therefore we developed a middleware called FAMOUSO (Family of
Adaptive Middleware for autonomOUs Sentient Objects) [4],[5]. FAMOUSO pro-
vides a real-time event-based communication even between highly integrated sys-
tems like 8-bit-microcontroller across different networks (e.g., CAN, Ethernet,
Wifi, etc.).

The MOSAIC-Framework (fraMework for fault-tOlerant Sensor dAta pro-
cessIng in dynamiC environments) provides fault-tolerant data-acquisition and
a processing architecture with focus on dynamic scenarios [6], [7], [8]. XML data
sheets are used to enable a seamless data-integration and -interpretation, which
characterizes the configuration of the node and all transmitted data like physi-
cal units, possible faults, their occurrence probabilities and their impact on the
sensor-measurement.

The beneficial combination of both MOSAIC and FAMOUSO has already
been described in [9].

Networks, OSs

FAMOUSO

MOSAIC

A
p
p
lica

tio
n

Model

Fig. 1. Threefold system architecture with FAMOUSO (network abstraction), MO-
SAIC (sensor/actuator abstraction), and the environment abstraction

However, the original two layered approach fails of using complex sensors,
in complex environments, or for complex tasks. A third abstraction is therfore
required to put the heterogenous sensor measurements, the actuators and other
objects of the environment into a context. Therefore, we are currently developing
the basis for a perception middleware, with focus on the spatial perception, while
for the sake of complexity reduction chemical, thermal, and mechanical issues
are left out for the moment.

Towards Artificial Perception 469

1.2 Outline

Other projects meet only partial aspects of an environmental abstraction or show
highly specialized solutions for special-purpose applications. An overview on the
related work in the area of environment perception and modeling is given in the
next section. Afterwards we present our three step approach. Beginning from
basic and fixed scenarios we will extract more and more functionalities from the
control application and end up in highly dynamic environments. In addition to
every step, we give an overview of our current and future developments, which
also deals with middleware integration, introduced in Section 3.3.

The main emphasis of our ongoing work lays in Sec. 3.1 and 3.2. While most
of the parts described in Section 3.1 are already implemented, other components
(e.g., distributed data-management, positioning, generation of views) are under
construction.

2 Related Work

A strict separation of perception and consciousness, as a general concept for
mechatronic systems, was firstly presented in [10] (motivated by the psycho-
logical model). However, the perception is always artificial, just a model of the
environment, constructed out of available sensory information, prior knowledge,
and assumptions. Consciousness exists on multiple layers, defined by goals, as-
sessment, planning, and predictions as well as machine learning.

Such a separation is more or less implemented in some specialized applications
like for example in reconfigurable control systems for UAVs [11] or the VerUM-
Project for distributed data storage and analysis in vehicles [12]. The advantage
of such specialized implementations is, that only local sensor systems are used,
the number of possible situations is well known, and a situation is described in
both cases as a simple feature vector. Sensor analysis and fusions are hand coded
and are not transferable to other applications. Thus, the dynamic integration
and interpretation of additional sensors (internal or external) is not possible.
Nevertheless, these systems could be used for task oriented sensor selection, as
it was also proposed in [13] by applying middleware concepts.

2D and 3D representation offer more complex abstraction of the environment,
easy to understand for humans, but hardly to interpret for machines. Many sen-
sor systems enable the generation of complex 2D and 3D structures that can be
used for navigation, localization, or obstacle avoidance for indoor and outdoor
scenarios, see [14] and [15]. By using object recognition methods, complex ge-
ometrical objects can be identified in 3D point clouds and/or camera streams.
This links additional attributes to some specific objects, and thus enables more
complex environment descriptions like it was described in [16] and [17] for kitchen
environments. Additional physical properties were used in [18], this allowed more
complex simulations to derive future states. Furthermore, it was shown that
even more complex representations (including color or mass) are essential for

470 A. Dietrich, and S. Zug, and J. Kaiser

human-machine interaction. To follow commands like “Give me the blue screw
driver on my left!”, a system must be able change its own viewpoint [19]. These
examples of highly specialized applications solve predefined tasks by using fixed
models of the environment. There are currently no interfaces to connect or share
different environmental models of different entities. A robotic vacuum cleaner
cannot share its knowledge of the environment with a Wakamaru although both
would benefit from it, due to their intersecting working areas.

In contrast to these specialized applications, smart environments should sup-
port a seamless integration and segregation of divers entities (a good overview
on this topic is given in [20]). The PEIS-Ecology Project [21] shows the strongest
relation to our approach. It follows the philosophy of a distributed robot, where
every sensor, actuator, or other RFID-tagged entities represent PEIS objects,
that share their functionalities among each other. In contrast to our strategy,
it describes a top-down approach, where perception is not considered in detail,
everything is covered by fixed services. For example the service “localization”,
that is offerd by a camera-system, does not incorporate other sensor systems or
even dynamically appearing and disappering ones, to get an enhanced position
estimation.

3 Roadmap

3.0 Initial Situation

Fig. 2 depicts the classical approach that is widely used nowadays, where the
sensory abstraction of the environment is an inherent part of the control appli-
cation. To be able to react appropriately on changes in the environments, all
inputs, outputs, and possible disturbances have to be known during the phase
of implementation.

Controller

Model
S2

S1

Sn

A2

A1

Am

Fig. 2. Generell concept of a perception-control-loop. The sensors S perceive the en-
vironment and deliver the inputs to the Controller. It aggregates the sensor measure-
ments according to an internal Model, processes them and generates commands to the
actuators A. The actuators change the state of the environment, that is monitored by
the sensors.

3.1 Spatial Arrangement

The first step serves basic spatial and geometrical arrangement in fixed scenarios,
see Fig. 3, while the “geometry” describes the shape of an object and “spatial”

Towards Artificial Perception 471

their relative position to each other. The handling of sensory inputs is still a part
of the control application (using MOSAIC). With the help of different XML no-
tations we are able to build basic geometrical models, including representation
of the area, immobile objects like tables, chairs, etc. and the representations of
sensors and actuators, like depicted in Fig. 1. Depending on the kind of entity, we
use different description methods. Basic geometries are described with ode-XML
(Open Dynamics Engine [22]). More complex robots and actuators are described
in URDF (Unified Robot Description Format [23]), including a kinematic and
dynamic description of the robot, a visual representation, and a simplified colli-
sion model. Sensors are described with a mixture of the sensor description format
of MOSAIC and OpenRAVE (Open Robotics Automation Virtual Environment
[24]). This combines the sensor simulation capabilities of OpenRAVE with the
more realistic and comprehensive description format of MOSAIC. Furthermore,
MOSAIC enables to access and interprete the sensor measurements of real sen-
sors, while OpenRAVE is used to genarate virtual measurements in the virtual
environment.

Controller

Model

S1

S2

Sn

A1

A2

Am

Fig. 3. Extraction of spatial and geometrical properties

This type of modeling is enough to solve different problems like:

– Calculate the translations and rotations of objects relative to each other
automatically.

– Next to signal based fault detection methods for sensors (presented in [25])
or combined test methods [6], we applied these models for plausibility checks,
by comparing real measurements with their counterparts in the virtual en-
vironment, see [26].

– Task oriented sensor selection, based on the sensor position, coverage and
monitoring area, like proposed in [27], is an important supplement to the
pure signal based selection, as presented in [28].

– The loss of real measurements can shortly be bypassed with virtual mea-
surements.

That means for automatic parking assistant, the dimensions of the car, the trail
and the parking space can be extracted from the virtual representation as well
as the positions and orientations of the locally used sensor system. This allows
additionally to detect hidden sensors and thus allows an enhanced sensor filtering
(see Fig. 6a).

472 A. Dietrich, and S. Zug, and J. Kaiser

3.2 Dealing with the Dynamically Changing Environments

So far we can cope with single and fixed scenarios, but it should be possible to
share these XML-descriptions among interested entities. Thus, by interpreting
XML-descriptions of foreign systems it is possible to include their sensory vision
into the own local view. Like in dynamically changing environments, nodes can
appear and disappear, see Fig. 4. But these descriptions have to be extended
by the name of the topics under which data is published, the services that are
offered, and the transformation relative to another entity. This has the advan-
tage that the effect of control messages of other components can be directly
interpreted within the virtual representation.

Controller

Model

S1
S2

S3
Sn A1

A3 A2
Am

Fig. 4. Extension for distributed smart environments

Furthermore, the required transformations can no more be derived from static
XML-documents, presented in the previous section, and thus, have to be calcu-
lated dynamically, mostly over a sequence of known transformations. In reality,
every single transformation is aditionally affected by an uncertainty.

To be able to deal with these uncertainties, we are going to extend the ROS
(RobotOperatingSystem [29]) transformation packet [30] with functionalities de-
scribed in [31], building on a graph-based transformations instead of tree-based
structures. The usage of additional uncertainty information in combination with
sensor descriptions and the MOSAIC validity values allows extended task ori-
ented sensor selections, fusion and validation strategies in comparison to those
described in [7].

Every entity has its own view on its local environment that is updated in
its own manner. Therefore, the identification of and the connection to foreign
entities, to share knowledge about the environment, requires a distributed data
management. Besides the development of an interface for this purpose, the focus
lays on an appropriate organization and structuring of the distributed knowledge
(models, parameters, sensor measurements, states, services, etc.).

Considering the automatic parking assistant again, it would now be able to
integrate and interpret the external sensor measurements (gray) as well as the
geometries of these cars within its own view on the environment. Furthermore,

Towards Artificial Perception 473

state information (like “door is open”) can be easily interpreted within the model
as well as their influence on real sensor measurements (see Fig. 6a).

3.3 Middleware Integration

This last step covers the development of a distributed middleware that separates
environmental perception from the application development, depicted in Fig. 5.
Tasks or problems that were formerly part of the control application are inte-
grated as services within the middleware (i.e., localization, tracking, mapping,
obstacle or object recognition, anchoring, etc.). The control application defines
its required type of environment abstraction, including the area, the validity,
currentness, and format. The middleware is then responsible for the generation
of the requested view.

Controller

Model

S1

S2

S3
Sn

A1

A3
A2

Am

V iew

Fig. 5. Decoupling of perception and control application

A view in this case defines the type of abstraction; it can be a map, a graph, a
3D-representation or basic feature vectors. For example, if the automatic parking
assistant would require an occupancy grid map, like depicted in Fig. 6b, the
middleware should select the appropriate sensors for the position estimation
according to the requirements of the application.

A dedicated view on the environment as well as on the included systems is
the basis for human-machine-interaction, like demonstrated in [32]. The cur-
rent and/or future states of the robot and its sensors were visualized with
AR-techniques (Augmented Reality). According to different user roles we could
identify different requirements for the visualization. An engineer requires a very
detailed view on the robot, including the robot’s state, sensor states and mea-
surements, etc. In contrast to this, an operator for example, which interacts with
the robot, needs to have a notion of the robots intention like future trajectories,
working pieces, current and future working places, etc.

The validity of a view can be derived as a combined measure from the single
sensor validities (contributed by MOSAIC), their coverage areas, and update
rates. Thus, the application could request for the required amount of validity,
depending on the task, and if this validity value cannot be achieved, the appli-
cation has to be notified about the maximum validity.

474 A. Dietrich, and S. Zug, and J. Kaiser

(a) Implementation of an automatic parking assistant
using OpenRAVE

(b) 2D-View as occupancy
grid map in rviz

Fig. 6. Environmental representations on different layers. (a) shows the general en-
vironment representation, including all entities (non-functional objects, actuators and
sensors), while (b) represents a very specific view, derived from (a) by using filters.

4 Conclusion

An artificial perception middleware that abstracts the environment from het-
erogeneous sensor systems is the next step on the evolutionary ladder. Before
we can build systems that are able to subsist and solve different tasks in an
uncertain and dynamically changing environments, we need to develop systems
that can perceive these environments. The objective of this paper is to present
a step by step approach, that need to be followed in order to develop such a
perception middleware. It enables smart entities to share their knowledge and
their experiences about the environment, independently from the used sensor
systems and type of environmental abstraction.

Acknowledgments. This work is (partly) funded by the German Ministry of
Education and Research within the project ViERforES-II (grant no. 01IM10002B).

References

1. Ikfast: The robot kinematics compiler (2012),
http://openrave.org/docs/latest_stable/openravepy/ikfast/

2. Wang, Y., Linnett, J., Roberts, J.: A unified approach to inverse and direct kine-
matics for four kinds of wheeled mobile robots and its applications. In: Proceedings
of the 1996 IEEE International Conference on Robotics and Automation, vol. 4,
pp. 3458–3465. IEEE (1996)

3. Şucan, I.A., Moll, M., Kavraki, L.E.: The Open Motion Planning Li-
brary. IEEE Robotics & Automation Magazine (to appear, 2012),
http://ompl.kavrakilab.org

4. Schulze, M., Zug, S.: Exploiting the FAMOUSO Middleware in Multi-
Robot Application Development with Matlab/Simulink. In: Proceedings of the
ACM/IFIP/USENIX Middleware 2008 Conference Companion, Leuven, Belgium,
pp. 74–77. ACM, New York (2008),
http://doi.acm.org/10.1145/1462735.1462753

http://openrave.org/docs/latest_stable/openravepy/ikfast/
http://ompl.kavrakilab.org
http://doi.acm.org/10.1145/1462735.1462753

Towards Artificial Perception 475

5. Schulze, M.: Adaptierbare ereignisbasierte Middleware für ressourcenbeschränkte
Systeme. Doktorarbeit, Fakultät für Informatik, Otto-von-Guericke Universität
Magdeburg (2011)

6. Zug, S., Dietrich, A., Kaiser, J.: Fault-Handling in Networked Sensor Systems.
Concept Press Ltd., St. Franklin (2012)

7. Zug, S., Dietrich, A.: Examination of Fusion Result Feedback for Fault-Tolerant
and Distributed Sensor Systems. In: IEEE International Workshop on Robotic and
Sensors Environments (ROSE 2010), Phoenix, AZ, USA (2010)

8. Zug, S.: Architektur für verteilte, fehlertolerante Sensor-Aktor-Systeme. Doktorar-
beit, Fakultät für Informatik, Otto-von-Guericke Universität Magdeburg (2011)

9. Zug, S., Schulze, M., Dietrich, A., Kaiser, J.: Programming abstractions and mid-
dleware for building control systems as networks of smart sensors and actuators.
In: Proceedings of Emerging Technologies in Factory Automation (ETFA 2010),
Bilbao, Spain (September 2010)

10. Caulfield, H., Johnson, J.: Artificial perception and consciousness. In: Sixth Inter-
national Conference on Education and Training in Optics and Photonics, Cancún,
Mexico, July 28-30 1999, p. 112. Society of Photo Optical (2000)

11. Wills, L., Kannan, S., Sander, S., Guler, M., Heck, B., Prasad, J., Schrage, D.,
Vachtsevanos, G.: An open platform for reconfigurable control. IEEE Control Sys-
tems Magazine 21(3), 49–64 (2001)

12. Hermann, A., Desel, J.: Driving situation analysis in automotive environment. In:
IEEE International Conference on Vehicular Electronics and Safety, ICVES 2008,
pp. 216–221. IEEE (2008)

13. Rotenstein, A., Rothenstein, A., Robinson, M., Tsotsos, J.: Robot middleware must
support task-directed perception. In: Proc. ICRA 2nd Int. Workshop on Software
Development and Integration into Robotics, Rome, Italy (2007)

14. Hähnel, D., Burgard, W., Thrun, S.: Learning compact 3d models of indoor
and outdoor environments with a mobile robot. Robotics and Autonomous Sys-
tems 44(1), 15–27 (2003)

15. Surmann, H., Nüchter, A., Hertzberg, J.: An autonomous mobile robot with a 3d
laser range finder for 3d exploration and digitalization of indoor environments.
Robotics and Autonomous Systems 45(3), 181–198 (2003)

16. Rusu, R., Marton, Z., Blodow, N., Dolha, M., Beetz, M.: Towards 3d point cloud
based object maps for household environments. Robotics and Autonomous Sys-
tems 56(11), 927–941 (2008)

17. Rusu, R., Marton, Z., Blodow, N., Holzbach, A., Beetz, M.: Model-based and
learned semantic object labeling in 3d point cloud maps of kitchen environments.
In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS
2009, pp. 3601–3608. IEEE (2009)

18. Roy, D., Hsiao, K., Mavridis, N.: Mental imagery for a conversational robot. IEEE
Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 34(3), 1374–
1383 (2004)

19. Hsiao, K., Mavridis, N., Roy, D.: Coupling perception and simulation: Steps to-
wards conversational robotics. In: International Conference on Intelligent Robots
and Systems, vol. 1, pp. 928–933. IEEE (October 2003)

20. Cook, D., Das, S.: How smart are our environments? an updated look at the state
of the art. Pervasive and Mobile Computing 3(2), 53–73 (2007)

21. Saffiotti, A., Broxvall, M., Seo, B., Cho, Y.: The peis-ecology project: a progress
report. In: Proc. of the ICRA 2007 Workshop on Network Robot Systems, Rome,
Italy, pp. 16–22. Citeseer (2007)

476 A. Dietrich, and S. Zug, and J. Kaiser

22. Smith, R.L.: The open dynamics engine (2007), http://ode.org
23. Meeussen, W., Hsu, J., Diankov, R.L.: URDF - Unified Robot Description Format

(April 2012), http://www.ros.org/wiki/urdf
24. Diankov, R.: Automated construction of robotic manipulation programs. Ph.D.

dissertation, Carnegie Mellon University, Robotics Institute (October 2010)
25. Dietrich, A., Zug, S., Kaiser, J.: Detecting External Measurement Disturbances

Based on Statistical Analysis for Smart Sensors. In: Procedings of the IEEE Inter-
national Symposium on Industrial Electronics (ISIE), pp. 2067–2072 (July 2010)

26. Dietrich, A., Zug, S., Kaiser, J.: Modelbasierte Fehlerdetektion in verteilten Sensor-
Aktor-Systemen. In: 11./12. Forschungskolloquium am Fraunhofer IFF. Fraunhofer
Institut für Fabrikbetrieb und Automatisierung, IFF (2011)

27. Dietrich, A., Zug, S., Kaiser, J.: Model based Decoupling of Perception and Pro-
cessing. In: ERCIM/EWICS/Cyberphysical Systems Workshop, Resilient Systems,
Robotics, Systems-of-Systems Challenges in Design, Validation & Verification and
Certification, Naples, Italy (September 2011)

28. Zug, S., Schulze, M., Dietrich, A., Kaiser, J.: Reliable Fault-Tolerant Sensors for
Distributed Systems. In: Proceedings of the Fourth ACM International Conference
on Distributed Event-Based Systems (DEBS 2010), Cambridge, United Kingdom,
pp. 105–106. ACM Press, New York (2010)

29. Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J., Wheeler, R.,
Ng, A.: Ros: an open-source robot operating system. In: ICRA Workshop on Open
Source Software, vol. 3(3.2) (2009)

30. Foote, T., Marder-Eppstein, E., Meeussen, W.L.: tf - ros (April 2012),
http://www.ros.org/wiki/tf

31. Smith, R.C., Cheeseman, P.: On the Representation and Estimation of Spatial
Uncertainty. The International Journal of Robotics Research 5(4), 56–68 (1986)

32. Dietrich, A., Schulze, M., Zug, S., Kaiser, J.: Visualization of Robot’s Awareness
and Perception. In: First International Workshop on Digital Engineering (IWDE),
Magdeburg, Germany. ACM Press, New York (2010)

http://ode.org
http://www.ros.org/wiki/urdf
http://www.ros.org/wiki/tf

A Case Study of Radio-Based Monitoring

System for Enhanced Safety
of Logistics Processes

Michael Soffner1, Mykhaylo Nykolaychuk2,
Friederike Adler1, and Klaus Richter2

1 University of Magdeburg, Germany
{soffner,fadler}@ovgu.de

2 Fraunhofer Institute for Factory Operation and Automation IFF, Germany
{mykhaylo.nykolaychuk,klaus.richter}@iff.fraunhofer.de

Abstract. In many logistics processes, industrial trucks, e.g., forklifts
and reach stackers, are used to move heavy load. Their usage often causes
serious accidents, e.g., collisions of two trucks or trucks and persons. To re-
duce the risk of collisions, tracking systems can be integrated into a mon-
itoring of logistics processes. Dynamically changing environments of lo-
gistics processes introduce special challenges including changing weather
conditions and limited visibilities. In this paper, we describe our approach
of a collision detection system based on an industrial radio-based real-
time location system (RTLS) and evaluate its accuracy and usability in
an application scenario including an outdoor storage of metallic objects.

1 Introduction

Logistics processes often include transportation of heavy load, e.g., container in
container terminals or large cargo units in producing industry. To handle heavy
load, companies use industrial trucks, e.g., forklifts and reach stackers. The lim-
ited view while transporting heavy load and the industrial truck’s maneuveribilty
cause many serious accidents. As statistics of Berufsgenossenschaft Handel und
Warendistribution (BGHW) show, most of the accidents are collisions between
trucks or trucks and persons [1].

We develope a collision detection system that warns drivers in critical situ-
ations to reduce the number of accidents. Therefore, we equip an environment
and objects with embedded technology to automatically track and trace objects,
e.g., forklifts. This way, we are able to detect possible collisions in logistics pro-
cesses. Many industrial application scenarios, e.g., metal producing industries,
include in- and outdoor areas. A seemless monitoring of both areas, exclude the
use of GPS-based solutions because these systems do not work indoors [2, 3].
Additionally, they do not provide the needed performance and accuracy to imple-
ment a collision detection. Furthermore, outdoor areas are dynamically changing
environments because of changing weather conditions that excludes video-based
systems. Therefore, we implement our collision detection system on top of a local

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 477–485, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

478 M. Soffner et al.

(a) (b)

Fig. 1. (a) Software components of the collision detection system and (b) Operating
principle of a LPM system [4]

positioning measurement (LPM) system that internally uses radio-based RTLS
technology [4–6].

Radio-based location systems include two critical issues that influence the
accuracy of measures: (1) line-of-sight and (2) signal multipath [4]. In storage
places of logistics processes, objects are continuously placed and removed from
stock. Often, these dynamics lead to interruptions of the line-of-sight between
system components. Furthermore, these objects reflect electromagnetic waves
depending on their material and shape that decreases measure’s accuracies and
response times of the system.

In this paper, we evaluate accuracies and response times of a radio-based lo-
cation system for collision detection in non-cooparative environments, a storage
area of an industrial metal producing company. In Section 2, we outline the archi-
tecture of our collision detection system and describe in Section 3 an application
scenario and its characteristics in more detail to make it comparable to others
scenarios. In Section 4, we present the method and results of our evaluation.

2 The Collision Detection System’s Architecture

Our Collision Detection System (CDS) includes two main components: (1) soft-
ware modules that implement algorithms to detect collisions and (2) Abatec
LPM 1 to localize objects (see Fig. 1). The Abatec LPM includes two software
components, Abatec Fusion and LightTool, and hardware components. It repre-
sents a localization abstraction layer, i.e., it determines the position of tagged
objects and provides their position data via User Datagram Protocol (UDP)
interface at any time. This data is then processed by the collision detection
module.

1 Abatec LPM, http://www6.ctm.at/abatec/index_html?sc=791881500

http://www6.ctm.at/abatec/index_html?sc=791881500

A Case Study of Radio-Based Monitoring System 479

2.1 Collision Detection Component

The goal of our collision detection is to issue warnings to alarm the imperiled
persons, e.g., forklift drivers. We distinguish three states: (1) Normal, default
state, (2) Warning, when forklifts work in close proximity to each other (caution
area) and (3) Critical, when forklifts are on collision course (predicted area). Each
tracked forklift owns one state at any time depending on its current position.

The state Warning signals a violation of the caution area (see Fig. 2(a)). The
caution area is a circular area (threshold) derived by a tracked object’s posi-
tion as its center and a pre-defined radius. If the distance between two forklifts
undergoes this threshold the caution area is violated.

To predict collisions (prediction points), we assume a constant linear motion
starting from its current position and maintaining its current speed for a pre-
defined period of time. These prediction points together with a pre-defined radius
set up the prediction area. The state of two forklifts changes to Critical, if their
prediction areas intersect, i.e., the distance between their prediction points is
less then the prediction area’s radius (see Fig. 2(b)). If none of both situations
occur, the state is set to Normal. A formal definition of collision states is given
in Definition 1.

Definition 1 i) Let S = {normal, warning, critical} be a set of valid colli-
sion states,
O = {o1, o2, . . . , on} with n ∈ N a set of tracked objects,
T = {t1, t2, . . . , tm} with m ∈ N a set of discrete points in time,
tp ∈ R the prediction time,
rw ∈ R the warning area radius,
rc ∈ R the prediction area radius,
pi : T → R

2 the position of object oi at a particular time,
vi : T → R

2 the velocity of object oi at a particular time,
dist : R2 × R

2 → R the euclidean distance between two positions

ii) The predicted position ppi (t) of object oi at particular time t ∈ T is
ppi (t) = pi(t) + tpvi(t)

iii) The collision state of object oi at time t ∈ T is csi : T → S

csi(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

critical, if ∃oj ∈ O | dist(ppi (t), ppj (t)) ≤ rc ∧ i �= j

warning, if ∃oj ∈ O | dist(pi(t), pj(t)) ≤ rw ∧
�ok ∈ O | dist(ppi (t), ppk(t)) ≤ rc ∧ i �= j ∧ i �= k

normal, if ∀oj ∈ O | dist(pi(t), pj(t)) > rw ∧
dist(ppi (t), p

p
j (t)) > rc ∧ i �= j

We implemented the collision detection component in C#. The implementation
consists of two subcomponents, (a) a listener and (b) collision detector. The
listener class represents an interface to Abatec’s LPM that looks for incom-
ing UDP packets and generates an event for each received packet. These events

480 M. Soffner et al.

(a) Warning state caused by
violated caution areas of two
forklifts

•

Caution area

• Prediction area

Moving
direction

Metal bars

•

(b) Prediction areas violations are detected as
Critical state.

Fig. 2. Differentiation of collision states Warning and Critical

are then handled by the collision detector. The collision detector contains the
detection algorithm.

2.2 Abatec LPM Software and Hardware Components

Abatec’s LPM system is an active transponder system (see Fig. 1(b)), i.e., ac-
tive transponders (MT and RT) are tracked by a set of base stations (BS) [4].
These base stations are connected with a master processing unit (MPU), where
the measures are used to derive transponder locations. The system’s working
principle is to estimate the location of an MT by time-of-flight (TOF) measure-
ments, i.e., the time that electromagnetic waves take to travel from MTs to BSs.
Master BS triggers the transponder, which replies with a particular signal. At
least three BSs (more for better accuracy) have to receive signals from a MT to
compute its position. An accuracy down to a few centimeters is achievable, de-
pending on signal multipaths and line-of-sight (direct visibility). Abatec’s LPM
provides measures with a frequency of 500Hz, i.e., 500 values per second for all
tracked objects. Since the MTs share this frequency, the measurement frequency
for each MT equals the system’s frequency divided by number of tracked MTs,
e.g., 2 forklifts each with 250 measurements/s. The LPM System operates in
the 5.8 GHz Industrial Scientific Medical (ISM) band and has under optimal
environmental conditions a measure radius of up to 500 meters.

The LightTool software modul runs on the MPU and collects raw data from
BSs to finally compute transponder positions. Then the computed positions are
being send by its UDP interface to a specified target. Each UDP packet con-
sists of 17 items, e.g., location, time stamp, speed, and the orientation of the
tracked object (which are of special interest for our use case, see Section 3).
Additionaly, it is used to make all necessary configurations to set up the system,
like creating a list of BSs, specifying the IDs of MT, and setting up the UDP
interface.

Multiple antennas can be attached to one transponder (MT) and measured
seperately to increase the reliability and accuracy of the LPM. Since you are
only interested in the MT’s position, the AntennaFusion component merges the

A Case Study of Radio-Based Monitoring System 481

multiple positions into one single position and provides all necessary configura-
tions, like specifying arrangements and distances of the antennas.

3 Application Scenario

In the monitored storage place metal bars of 60cm in height and approximately
4m in length are being handled by forklifts. The in- and outdoor areas of
the storage place have a total size of approximately 200x70 meters. To install
base stations and transponders in correct positions three questions have to be
answered:

1. What do we want to track?
2. Which environmental influences and characteristics can disturb the tracking?
3. Where do we install the base stations and the transponder?

Tracked objects in this scenario are forklifts. A measurement’s accuracy is in-
fluenced by the line-of-sight and signal multipaths [4], which determine the po-
sitioning of system components. Line-of-sight means that base stations need a
direct view to transponders. We installed the transponders (each containing four
antennas) on top of a forklift at a height of 3 meters to minimize the possibility
that forklifts themselves disturb the line-of-sight between their transponder and
a base station.

Non reflective materials in the line-of-sight between transponders and base
stations will simply absorb the electromagnetic waves and only a few disturbing
signals will be received by a base station. Reflecting materials like metal bars
however will reflect the electromagnetic waves and cause many distortions. So
high stacks of metal bars, like 3− 4 stacks (with 20cm space inbetween), affect
the system’s reliability because such stacks would be higher (3 − 4m) than a
transponder’s height. The same problem occurs when forklifts loaded with metal
bars lift their forks higher than their transponder height. In both cases the data
has to be filtered or even discarded.

With an increasing height of base stations, the likelihood of limited views
would fall and the measurement’s accuracy would increase. Still, the distance
between base stations and transponders shall not exceed 500m to ensure good
measurements [4]. In our application scenario, the options where to install the
base stations were limited. That is why they were distributed on walls and masts
in the area at a height of approximately 5 − 6m. We installed 13 base stations
to cover the whole storage place area and bypass the limited views caused by
walls, other vehicles or stacks of metal bars (see Fig. 3).

4 Evaluation

A collision detection is not reliable if measured values are inaccurate or send
delayed. Therefore, we focused in our evaluation on how accurate and efficient

482 M. Soffner et al.

indoor

outoor

Base stations

Reference
transponder

forklifts

Measurement
transponder

Target positions

200m
70

m

Metal bars

X

Y

P1

P9

P8

P7
P6

P5

P4

P3

P2

P10

Fig. 3. LPM-system in a 200x70m storage place tracking two forklifts with a measure-
ment transponder on top of their roof. Thirteen base stations including one reference
transponder are distributed over the whole outdoor area. The origin of coordinates of
measured values lies in the position of the reference transponder.

the collision detection operates within the described application scenario despite
multipath and line-of-sight problems.

4.1 Measurement Accuracy of the LPM System

In this application scenario we track forklifts with a size of approximately 5x2x3m.
We defined an accuracy requirement of at most 0.5m what might be sufficient
for tracking persons as well.

The evaluation procedure included 10 measurements each in a different posi-
tion (target positions Pi in Fig. 3, with i ∈ {1, ..., 10}). We prepared the mea-
surements by choosing the positions accross the storage area, measuring them to
know their exact coordinates, and labeling them with markers. Each measure-
ment cycle consisted of two steps. First, forklift drivers approached the labeled

Table 1. Accuracy of the LPM system for a forklift labeled with Tag = 2000 at ten
pre-defined locations

Num Tag target target measured measured diff STD STD Number of
X Y X Y X Y Measurements

P1 2000 19.39 -68.05 19.22 -68.03 0.17 0.04 0.01 934

P2 2000 25.23 64.87 25.32 64.76 0.14 0.17 0.16 711

P3 2000 -1.94 81.28 -1.70 81.45 0.29 0.09 0.06 867

P4 2000 -16.81 72.15 -16.92 72.10 0.12 0.11 0.06 743

P5 2000 -28.85 30.18 -28.84 30.18 0.01 0.06 0.02 920

P6 2000 -28.28 -25.80 -28.33 -25.96 0.17 0.03 0.08 812

P7 2000 -17.69 -75.91 -17.89 -75.75 0.26 0.04 0.05 943

P8 2000 -1.21 -77.85 -1.37 -77.85 0.16 0.04 0.06 654

P9 2000 5.54 -51.28 5.60 -51.22 0.08 0.01 0.01 620

P10 2000 -3.50 8.78 -3.59 8.66 0.15 0.06 0.02 1074

A Case Study of Radio-Based Monitoring System 483

position as close as possible. Second, we measured the forklift’s position for 3s
while it was remaining in this position.

For each target position we measured X and Y coordinates. For each of the
generated data sets we determined the coordinate’s mean value (Measured X,
Measured Y), standard deviation (STD X,STD Y), and absolute distance be-
tween measured and target position diff (see Table 1).

For all target positions the highest standard deviation is at P2 in the X (0.17m)
and Y (0.16m) coordinates for 711 measurments within three seconds. This leads
to the conclusion that multipath or visibility problems have occurred more often
compared to the other positions. The absolute distance of 0.14m shows that the
underlying measurements are basically correct. The small difference to the target
point can be explained by the fact that the driver can just try to hit the point
exactly especially if you think of the forklifts size.

Best results were achieved at P9, where standard deviation is 0.01m in both X
and Y coordinates. This means that for all 620 measurements, made within three
seconds, the transponder has seen directly a sufficient number of base stations
and an accurate position calculation was possible. Finally, we can conclude that
the system provides a sufficient accuracy because no measurement exceeded the
limit of 0.5m.

4.2 Efficiency of LPM System and Collision Detection

To ensure a seamless collision detection we need a sufficient rate of collision
state calculations. We derive this rate by a worst case assumption. The allowed
maximum speed to drive forklifts in the storage place is 15km/h (4.2m/s) and
the forklift’s length is 5m. Therefore, we define sufficient as 2 calculated collision
states per second, i.e., we know a forklift’s collision state every 2.1m when it is
moving at maximum speed that is less then half of its length.

The efficiency of the collision detection system was evaluated by tracking
2 forklifts. We basically logged the calculated collision states together with a
timestamp. The collision detection system was initialized with following values:
prediction area radius with 8m, warning area radius with 20m, prediction time
5s (4.2 ∗ 5 = 21m), an untrusted mode (untrusted - buffers measurements and
calculates mean values, trusted - takes Abatec values directly), and 10 values
frequency (wait 10 packets before recalculating collision states).

In Fig. 4(a), we show an excerpt of the data over a time frame of 22s. During
this time we measured 6846 valid positions (UDP packets): 3455 for forklift 1
and 3391 for forklift 2. For each forklift we calculated 1370 collision states with
an average of 62 states per second. To show how the two forklifter approached
each other during these 22s, we show their raw data position trajectories in
Fig. 4(b). Dark color marks the time of a critical situation, i.e., the detection
of a potential collision state. This means the distance between their predicted
locations was less then the threshold defined by the prediction radius (as shown
in Fig. 2(b)).

484 M. Soffner et al.

(a) (b)

Fig. 4. Both subfigures are based on an excerpt of measured values for two tracked
forklifts over a time span of 22 seconds. (a) Number of calculated collision states per
time interval (1s) of the first forklift (b) Motion trajectory of both forklifts.

Finally, we conclude that with a measured average rate of 62 states per second,
the collision detection’s effeciency was sufficient.

5 Conclusion and Outlook

We showed that the collision detection is reliable in a non-cooperative environ-
ment. Despite static and dynamic disturbances in the storage place and inac-
cuarcies with steering forklifts, a deviation of less than 0.3m was achieved.

An open question is the scalability of the collision detection system. In our
use case we only compared the positions of two objects with each other. At the
moment, a comparision of n objects would result in n2 collision calculations
that could lead to scalability problems. Furthermore, the system’s frequency is
limited to 500Hz, i.e., 500 values per second for all tracked objects (see Section
2.2), that is another aspect regarding scalability. Here, the question is how a
low number of measurements does influence the reliability. We plan to use our
installation in the Hanseterminal Magdeburg2 to run further tests.

Until now, we used only 2 dimensional values of Abatec’s LPM system for
cardinal directions. In other logistics applications also the 3rd (altitude) dimen-
sion can be of interest, e.g., spreader height of a reach stacker or crane trollies.
Other extension are interesting as well, like communicating alarms with affected
staff or including the tracking of logistics hub staff itself.

Furthermore, we want to integrate the collision detection into our central
virtual reality monitoring model that we develope in the context of the project
ViERforES3.

2 http://www.magdeburg-hafen.de/magdeburg-hafen/mdhafen.htm
3 ViERforES is funded by the German Ministry of Education and Science (BMBF),
project 01IM08003C; http://www.vierfores.de/

http://www.vierfores.de/

A Case Study of Radio-Based Monitoring System 485

References

1. Berufsgenossenschaft Handel und Warendistribution (BGHW) (Hrsg.): Zeitdruck
ist häufige Unfallursache. BGHW aktuell (1), 14 (January 2010)

2. Hightower, J., Borriello, G.: Location Systems for Ubiquitous Computing. Com-
puter 34(8), 57–66 (2001)

3. Bell, S., Jung, W.R., Krishnakumar, V.: WiFi-based enhanced positioning systems:
accuracy through mapping, calibration, and classification. In: Proceedings of the
2nd ACM SIGSPATIAL International Workshop on Indoor Spatial Awareness, ISA
2010, pp. 3–9. ACM, New York (2010)

4. Stelzer, A., Pourvoyeur, K., Fischer, A.: Concept and Application of LPM - A Novel
3-D Local Position Measurement System. IEEE Transactions on Microwave Theory
and Techniques 52, 2664–2669 (2004)

5. Uckelmann, D.: A Definition Approach to Smart Logistics. In: Balandin, S.,
Moltchanov, D., Koucheryavy, Y. (eds.) NEW2AN 2008. LNCS, vol. 5174, pp. 273–
284. Springer, Heidelberg (2008)

6. Cyplik, P., Patecki, A.: RTLS vs. RFID - Partnership or Competition? LogFo-
rum 7(3), 1–10 (2011)

Visual Approach Facilitating the Importance

Analysis of Component Fault Trees

Yi Yang, Patric Keller, and Peter Liggesmeyer

Software Engineering Research Group: Dependability, University of Kaiserslautern,
67663, Kaiserslautern, Germany

Abstract. (Component) fault tree analysis is a safety analysis tech-
nique of embedded systems. Importance analysis estimates the respec-
tive contributions of potential basic failures to an overall system failure.
The analysis results are typically represented in data-aggregated forms.
There are only few associations between these forms and component fault
tree structures that provide meaningful information. In this paper, we
propose a visualization approach that integrates the importance analysis
results with structures of component fault trees. This approach facilitates
the identification of the critical components and supports the analysis of
the influence of the important basic failures.

Keywords: Fault Tree, Component Fault Tree, Importance Analysis,
Visualization.

1 Introduction

Fault Tree Analysis (FTA) [1–4] is a commonly used safety-analysis tech-
nique for embedded systems. Safety is a state of a system that is “freedom from
unacceptable risk [1]”. The FTA is based upon the usage of a tree-like model
called Fault Tree (FT) (see Fig. 1 (a)) that consists of a minimum of three
types of elements: top event, basic event, and gate. Top Event (TE) is the tree
root and represents an undesired failure of a system. Basic Events (BEs) are
leaves and represent the basic failures that may cause a TE to occur. Gates
logically connect elements of the FT. Each element may have a failure probabil-
ity. Component Fault Tree (CFT) [5] (see Fig. 1 (b)) is an extension of the
FT, which allows engineers to encapsulate parts of a FT into CFT components.
Each CFT component maps an architectural component of the hierarchical sys-
tem model. With the help of in- and out-ports, failures may be transferred
between CFT components. A CFT component may contain other (sub-)CFT
components. This nesting structure corresponds to the hierarchies of the sys-
tem architecture. In this case, the location of a CFT component in the nesting
structure represents the location of the corresponding architectural component
in the hierarchical system model. Importance analysis [3, 6] is a quantitative
measure based on the FT. Vesely et al. [3] concluded that, in general, more than
90% of the failure probability of a TE is due to less than 20% of the BEs. This
implies that engineers only need to focus on a small subset of BEs having a

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 486–497, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Visual Approach Facilitating the Importance Analysis of CFT 487

major contribution. Fussell-Vesely importance measure [7] is a famous method
that estimates the respective contributions of BEs to the failure probability of
the TE by considering both the logical relations and the failure probabilities of
BEs. Each BE is assigned with an importance value between zero and one: the
larger the value, the more important the BE. Although a great deal of effort
was vested in novel algorithms and methods, very little effort is put toward ef-
fective representations. Engineers cannot effectively identify patterns regarding
the critical components and analyze influence of the important BEs in the CFT.

Fig. 1. FT and CFT. There are a main CFT component “C0” and two sub-CFT
components: “C1” and “C2”. “C2” inputs its failure to “C1” via in-/out-ports.

In this paper, we propose a visualization approach that integrates the impor-
tance of BEs with the CFT. Engineers may identify the important BEs and the
critical CFT components by taking the hierarchies of system architecture into
account. In addition, engineers may dynamically analyze failure propagation.

We organize the rest of this paper as follows: Section 2 describes the previous
work as well as their issues. We introduce our visualization approach in Section
3, and show an application example in Section 4. Section 5 shows the experts’
review. Finally, we provide a brief conclusion in Section 6.

2 Previous Work

Result of the importance analysis is a set of importance values corresponding
to BEs. The result is usually summarized and represented using a data table by
most of the FTA tools. BEs are represented in rows, and the importance value as
well as the essential data, e.g., the failure probability, are represented in different
columns. The graphical data-aggregated forms, e.g., histogram and pie-chart, are
also commonly used. RAMCommander [8] additionally provides more graphical
summary views, e.g., scatter plot, and area chart. BlockSim [9] proposes a variant

488 Y. Yang, P. Keller, and P. Liggesmeyer

of pie-chart called “square pie-chart” that anticlockwise arranges the BEs in
descending order according to the importance values. ESSaRel [10] (see Fig. 2
(b)) implements the CFT analysis using the standard graphical symbols defined
in [5]. The sub-CFT components are symbolically represented as boxes in the
logical structures of their parent CFT components. The logical structures of the
(sub-)CFT components are displayed over separate views.

The icicle diagram provides a compact visualization layout that uses stacked
rectangles to represent the hierarchies of a tree structure [11]. The child-rectangles
are placed under the parent-rectangle. The length of leaf-rectangles may be pro-
portional depending on a quantitative attribute of leaves. The length of a parent-
rectangle is the total length of its child-rectangles.

2.1 Problem Statement

The ordinary representations provide few associations between the data-
aggregated forms summarizing the importance of BEs and the structure of the
CFT. Engineers have to frequently switch views between the summary and the
CFT. It wastes much effort and engineers cannot explore the pattern regarding
the distribution of the important BEs over CFT components. The pattern sup-
ports to analyze the critical CFT components containing the important BEs by
considering the hierarchies of the system architecture. In addition, when iden-
tifying a given BE in a CFT, engineers have to sequentially go through all the
direct and indirect parent CFT components until the BE is found. This issue
hampers the analysis of BEs included by the deeper-nested components. More-
over, because the structures of components are displayed over separate views,
engineers cannot obtain continuous critical paths describing the failure flow from
BEs to the TE.

3 Visualization of the Important Analysis

3.1 Design

To facilitate the identification of the vulnerable system architectural compo-
nents, we visualize the nesting structure of the CFT. The overall nesting struc-
ture in a CFT comprises of the nesting relations between CFT components
as well as the case that CFT components contain BEs. To maintain a satis-
factory view of a CFT model having a large number of CFT components, we
decide to design a compact view for the nesting structure. BEs with the impor-
tance values should be represented in this view. The logical structures of CFT
components should be dynamically shown for representing failure flow when
requested.

The nesting structure is a tree structure that is commonly represented in
the form of node-link diagrams and space-filling techniques usually consist-
ing of treemap [12], sunburst layout [13], and icicle diagram [11]. Barlow et
al. [14] evaluated readability of these layouts with respect to the interpretation of

Visual Approach Facilitating the Importance Analysis of CFT 489

node relationship, comparison of node size, and user preference. The results
showed that the icicle diagram and the node-link diagram were more readable.
McGuffin et al. [15] performed a mathematical evaluation for the space efficiency
of 2D tree representations. Regarding the metrics of node representation, the
authors concluded that the treemap, the icicle diagram, and the sunburst have
the similar space efficiency, which was much better than those of different kinds
of node-link diagrams. In addition, we consider the layout composition between
the compact view and the node-link logical CFT structures (described in the
next paragraph). The treemap and the sunburst layout may have aspect ratio
issues. In this case, the uniform scale unit cannot be maintained for compact
views of different CFT components. In short, the icicle diagram is a suitable
layout that cannot only effectively represent the hierarchical relations, but also
space-efficiently visualize large-scale data. Thus, we apply the icicle diagram for
the compact view representing the nesting structure.

The logical structure of a CFT component is a directed acyclic graph that
may be represented by the node-link diagram and the matrix visualization. We
finally use the node-link diagram because previous evaluations [16, 17] concluded
that the node-link diagram could more effectively represent complex paths. This
advantage is beneficial for representing critical paths of logical failure flow.

(a) Architectural view. (b) Ordinary representation of a CFT (produced
by using ESSaRel [10]). Logical structures of sub-
component “SC34” and “SC35” are represented in
respective views. These sub-components are symbol-
ically represented as boxes in the view of the parent
component “C1.M1”.

Fig. 2. Architectural view. A CFT model is respectively represented using an archi-
tectural view (a) and the ordinary concept (b).

490 Y. Yang, P. Keller, and P. Liggesmeyer

3.2 Visualization

Architectural View. We propose an architectural view (see Fig. 2) by imple-
menting design concepts of the compact view. We apply the iceray concept of
the icicle diagram, where leaf nodes are vertically listed in order to avoid the
extreme long view led by a large number of BEs. In the architectural view, a
gray rectangle represents a CFT component. The ID of the component is printed
on the left side of the rectangle. The sub-components are represented as short
rectangles that are horizontally listed under this (parent) rectangle. We devel-
oped an importance bar to represent a BE, which has a fixed border and a filled
part encoding the importance value of the BE: the larger the importance value,
the longer the filled part. For a rectangle representing a CFT component, the
contained importance bars are vertically listed under the rectangle on the left
and sorted according to the importance values in descending order.

(a) Architectural view.

(b) Referencing expansion. (c) In-place expansion.

Fig. 3. Expansion concepts. (a) Architectural view. (b) Show structure of the sub-
component “SC7” using referencing expansion. (c) Show structure of the sub-sub-
component “SC5” using in-place expansion.

Representation of Logical Structures. The node-link logical structure of
a CFT component is displayed by clicking the corresponding rectangle in the

Visual Approach Facilitating the Importance Analysis of CFT 491

architectural view for analyzing the failure flow. The visible structure may be
treated as an expansion of the architectural view. The architectural views of the
sub-components and importance bars may be embedded in the logical structure.
For example, in Fig. 3 (b) the architectural view of component “SC5” is embed-
ded in the logical structure of the expanded component “SC7”. Importance bars
are respectively placed under the corresponding BE nodes.

We provide two expansion concepts: referencing expansion (see Fig. 3 (b)) and
in-place expansion (see Fig. 3 (c)). By referencing expansion, the structure of a
sub-component is linked to the parent architectural view by a dashed curve. In
the parent architectural view, a vertical rectangular indicator is drawn to replace
the initial part representing the expanded sub-component. This way, engineers
may view the structures of the deeper-nested sub-components without needing
to care about the higher level parent components. By in-place expansion, the
architectural view of the requested CFT component is simply replaced with its
logical structure. This way, engineers may obtain the continuous critical paths.

The symbols defined for the CFT are retained in our visualization. In logical
structures, the sub-components may be optionally represented as the ordinary
symbols (i.e., the boxes) instead of the embedded architectural views for reducing
space requirement. To support the analysis of the quantitative failure propaga-
tion, we use colors to encode the criticality of the failure probability of CFT
elements: red as critical, yellow as moderate, and green as acceptable. We use
translucent gray blobs to identify the scopes of structures of CFT components
and the nesting of CFT components (see Fig. 3 (c)). Labels of CFT elements
(i.e., short descriptions) are allowed to be dynamically displayed.

Analyzing Influence of BEs. A CFT component may be influenced by the
nested critical sub-components and the failure flow caused by the important
BEs. For a specific BE, in architectural view, the influenced components are
highlighted using gradient cyan areas on the left side of the rectangles (see Fig.
4 (a)). In logical structure, critical path of the logical failure flow of the BE is
highlighted by a thick border and cyan color (see Fig. 4 (b)).

3.3 Interaction

Besides the interaction of “direct selection”, for adapting to different display
requirements, we apply zooming interaction for the visualization, which allows
engineers to smoothly enlarge and shrink the view of the visualization for clearly
showing the interesting parts. In order to show the particular part of the visual-
ization that is currently out of the screen, we provide panning interaction that
allows engineers to move the whole visualization for making the part visible.
In addition, engineers are allowed to adjust the horizontal and vertical distance
between nodes of the logical structure for reducing the space requirement.

3.4 Scalability

The length of the architectural view of a CFT component depends on the number
of its sub-components. On a 24-inch screen with a resolution of 1920x1080 an

492 Y. Yang, P. Keller, and P. Liggesmeyer

(a) Influence along the nesting structure. Cyan areas on the left side of rectangles high-
light the influenced components: “SC48”, “SC55”, “SC74”, “SC13”, and “C1.M2”.

(b) Influence along the logical structure. The highlighted critical path consists of BE
“E17”, OR-gate “G18”, OR-gate “G19”, and out-port “POut1”.

Fig. 4. Influence of the specific BE

architectural view can display at most 60 CFT components with readable IDs
and a maximum of about 10,000 legible importance bars. When showing logical
structures, the scalability issue may be serious because the node-link diagrams
are sparse and take up much more space.

4 Application Scenario

In order to demonstrate the use of our visualization approach, we present an
application example regarding the importance analysis of a CFT model with
respect to a mobile robot [18]. The CFT model contains 24 components and 322
BEs. The tasks in this example are to identify the critical CFT components and
to analyze the influence of the most important BE.

Visual Approach Facilitating the Importance Analysis of CFT 493

(a) Overview of the
importance of BEs.

(b) Influence of the most important BE. The critical path (with-
out out-port) from top to bottom is described as “G1 → G18 →
SC12 → E2”.

Fig. 5. Application example

494 Y. Yang, P. Keller, and P. Liggesmeyer

Fig. 6. Failure flow through the structure of component “SC12 (DSP)”. The full critical
path (without in- and out-ports) from top to bottom is described as “G1 → G18 →
G6 → G4 → E2”.

The architectural view of the system-level CFT component “C1.M1” provides
an overall picture of the importance of BEs of the CFT model (see Fig. 5 (a)).
This helps us to analyze the pattern of the critical components. By comparing
the importance bars, we find that the important BEs are distributed in six
CFT components (marked with red circles): “SC13”, “SC76”, “SC28”, “SC114”,
“SC19”, and “SC53”. Component “SC76” is treated as the most critical CFT
component because it includes the most important BE that has the longest filled
part of the importance bar (i.e., the first bar).

Then, we investigate the influence of the most important BE identified. By
clicking the importance bar of this BE, the rectangles of the influenced compo-
nents are highlighted with cyan areas (see Fig. 5 (a)). It shows that components
“C1.M1”, “SC62”, “SC13”, “SC74”, “SC76”, and “SC12” are influenced by the
BE. We then analyze how this BE causes the most critical component “SC76”
to fail. We display the logical structure of “SC76” using referencing expansion
(see Fig. 5 (b)). To support understanding of the semantic meaning of the failure
flow, we optionally show labels of CFT elements. The label of the expanded com-
ponent “SC76” is printed on the blob and shows that “SC76” corresponds to a
laser scanner. We find that the most important BE (“E2”) represents the failure
of a distance sensor. We perform a top-down analysis starting from gate “G1” to
analyze how the failure of the laser scanner is caused by the distance sensor. The
highlighted path shows that the laser scanner fails most likely because of DSP
problem (“G18”) and this problem is most likely caused by wrong data from a

Visual Approach Facilitating the Importance Analysis of CFT 495

DSP chip (“SC12”) rather than a defective DSP adapter (“E21”). In order to
analyze why the DSP chip outputs incorrect data, we show the logical structure
of “SC12” using in-place expansion that presents continuous failure flow (see
Fig. 6). We notice that the cause of incorrect data (“G6”) is most probable the
wrongly calculated pivot angle (“G4”). The DSP chip makes this mistake be-
cause it receives the wrong data from the distance sensor (“E2”). This way, we
understand how the defective distance sensor causes the laser scanner to fail.

5 Evaluation

We performed an expert review to evaluate our visualization approach. There
were 6 participants with degrees in computer science who worked on CFT anal-
ysis at the local university. We introduced our visualization approach and then
they were allowed to go ahead and experience using it. The given data was a
CFT model having 44 CFT components and 834 BEs. Tasks were provided for
the experience including the identification of the important BEs, the critical
components, and the influenced CFT components, as well as the investigation of
critical paths of those BEs. Finally, for a qualitative evaluation, the participants
were asked to fill out a Likert scale questionnaire that has the following questions
for estimating whether our approach can facilitate the importance analysis:

– Can the critical components and the influenced components be easily iden-
tified in the nesting structure of the CFT?

– Can the important BEs be effectively identified?
– Can logical failure flow be effectively represented?
– Can the critical paths be quickly identified?
– Can the quantitative failure propagation be effectively investigated?
– Can the CFT components along the critical paths be intuitively identified?

Results of the questionnaire (see Fig. 7) showed that in general, our approach
was favorably reviewed for the aspects of safety domain, while there were small
issues regarding the details of the visualization. The participants commented
that the critical CFT components were easy to identify in the architectural
view. A participant suggested that sector diagrams could be used instead of the
iceray diagram for reducing the space requirement. The importance bars received
positive comments, due to their intuitive nature and the universal comparability.
The comments regarding the critical path consisted of two aspects: showing
paths (i.e., expansion concepts) and highlighting paths. The expansion concepts
received positive feedback because the analysis of continuous failure flow was
possible and the nested sub-components could be conveniently analyzed. Some
participants pointed out that the node-link CFT structure could be sparse and
wasted much space. The participants were of the opinion that the highlighting
of critical paths was useful. Additionally, the participants commented that the
quantitative failure flow along the CFT structures can be intuitively analyzed by
the colored CFT nodes. The aggregation blobs were regarded as being effective
for identification of the ranges of components while analyzing failure propagation

496 Y. Yang, P. Keller, and P. Liggesmeyer

Fig. 7. Experts’ review

between CFT components along critical paths. The participants also stated that
the blobs for the deeper-nested components could be very dark when representing
a multiple-level nesting structure. This could hamper the analysis of the nodes
inside the dark blobs. The participants commented that the dashed curves were
not suitable because it could confuse the referencing lines with the input lines.

6 Conclusion and Future Work

In this paper, we propose a visualization approach that represents insights for
the importance analysis of a CFT by dynamically composing the iceray dia-
grams and the node-link graphs. Architectural views provide the overview of
the importance of BEs by taking the system architecture into account, while
the node-link diagrams are aimed at representing the logical structures of CFT
components. The expansion concepts support the analysis of failure flow. The
referencing expansion allows engineers to quickly investigate the deeper-nested
components and the in-place expansion provides continuous critical paths. The
translucent blobs are used to enclose the nodes of each expanded CFT compo-
nent for indicating its scope. Safety experts reviewed the proposed visualization
approach and gave positive comments. In short, using our approach, engineers
may identify the important BEs and the interesting CFT components, while flex-
ibly investigating the failure propagation. When showing logical structures, the
node-link diagrams may take up much space and cause serious scalability issues.
Thus, the future work will focus on increasing scalability of the visualization.

Acknowledgment. This work was supported by the International Research
Training Group (IRTG 1131) of the German Research Foundation (DFG) and
the German Ministry of Education and Research (BMBF) in the context of

Visual Approach Facilitating the Importance Analysis of CFT 497

the ViERforES (Virtuelle und Erweiterte Realität für höchste Sicherheit und
Zuverlässigkeit von Eingebetteten Systemen) project. We thank the colleagues at
the University of Kaiserslautern and at the University of Utah for their support.

References

1. IEC. Functional safety of electrical/electronic/programmable electronic safety-
related systems. International Standard IEC 61508 (2000)

2. IEC. Fault Tree Analysis. International Standard IEC 61025, Geneva (1990)
3. Vesely, W.E., Dugan, J., Fragola, J., Minarick III, J., Railsback, J., Stamatelatos,

M.: Fault Tree Handbook with Aerospace Applications. NASA (2002)
4. Vesely, W.E., Goldberg, F.F., Roberts, N.H., Haasl, D.F.: Fault Tree Handbook.

U.S.Nuclear Regulatory Commission (1981)
5. Kaiser, B., Liggesmeyer, P., Maeckel, O.: A new component concept for fault trees.

In: Proceedings of the 8th Australian Workshop on Safety Critical Systems and
Software (SCS 2003), Adelaide, Australia, pp. 37–46 (2003)

6. Stamatelatos, M., Apostolakis, G., Dezfuli, H., Everline, C., Guarro, S., Moieni, P.,
Mosleh, A., Paulos, T., Youngblood, R.: Probabilistic Risk Assessment Procedures
Guide for NASA Managers and Practitioners. NASA (2002)

7. Fussell, J.B.: How to hand calculate system reliability characteristics. IEEE Trans-
actions on Reliability R-24(3), 169–174 (1975)

8. Aldservice. RAMCommander, http://www.aldservice.com (accessed June 15,
2012)

9. ReliaSoft. BlockSim, http://www.reliasoft.com/BlockSim (accessed June 15,
2012)

10. University of Kaiserslautern. ESSaREL, http://www.essarel.de (accessed June
15, 2012)

11. Kruskal, J.B., Landwehr, J.M.: Icicle Plots: Better Displays for Hierarchical Clus-
tering. The American Statistician 37(2), 162–168 (1983)

12. Shneiderman, B.: Tree visualization with tree-maps: 2-D space-filling approach.
ACM Trans. Graph. 11(1), 92–99 (1992)

13. Stasko, J., Zhang, E.: Focus+Context Display and Navigation Techniques for
Enhancing Radial, Space-Filling Hierarchy Visualizations. In: Proceedings of the
IEEE Symposium on Information Visualization 2000 (INFOVIS 2000), pp. 57–65.
IEEE Computer Society, Washington, DC (2000)

14. Barlow, T., Neville, P.: A Comparison of 2-D Visualizations of Hierarchies. In:
Proceedings of the IEEE Symposium on Information Visualization 2001 (INFOVIS
2001), pp. 131–138. IEEE Computer Society (2001)

15. McGuffin, M.J., Robert, J.-M.: Quantifying the space-efficiency of 2D graphical
representations of trees. Information Visualization 9(2), 115–140 (2010)

16. Ghoniem, M., Fekete, J.-D., Castagliola, P.: A comparison of the readability of
graphs using node-link and matrix-based representations. In: Proceedings of the
IEEE Symposium on Information Visualization 2004, pp. 17–24 (2004)

17. Keller, R., Eckert, C.M., Clarkson, P.J.: Matrices or node-link diagrams: which
visual representation is better for visualising connectivity models? Information
Visualization 5, 62–76 (2006)

18. The Robotics Research Lab at the University of Kaiserslautern. RAVON (Robust
Autonomous Vehicle for Off-road Navigation),
http://agrosy.informatik.uni-kl.de (accessed June 15, 2012)

http://www.aldservice.com
http://www.reliasoft.com/BlockSim
http://www.essarel.de
http://agrosy.informatik.uni-kl.de

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 498–507, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Simulation of Structural Effects in Embedded Systems
and Visualization of Dependencies

According to an Intended Attack or Manipulation

Sven Kuhlmann, Jana Fruth, Tobias Hoppe, and Jana Dittmann

Multimedia and Security Working Group, ITI Institute, Faculty of computer science
Otto von Guericke University of Magdeburg

University Place 2
39106 Magdeburg

{Sven.tuchscheerer,jana.fruth,tobias.hoppe,
jana.dittmann}@iti.cs.uni-magdeburg.de

Abstract. The purpose of this workshop contribution is the interaction between
networked embedded systems (such as controllers, sensors and actuators within
a motor vehicle) and how these can be simulated. It aims to assess the potential
impacts of IT security incidents in advance and plan protective measures with-
out having to build a complete prototype. The feasibility of recognizing and
visualising possible dependencies and structural effects in a complex networked
system with embedded components (in this example: A motor vehicle with
CAN bus become more and more relevant. One exemplary reason is that in con-
trast to earlier times, now the vehicle manufacturers are acting just as a systems
integrator of supply components. This could result in a leakage of the total un-
derstanding and a lost track of the networked system elements. This develop-
ment is intensified by the growing number of control units, sensors and actua-
tors, which make the complete testing of all system components and their de-
pendencies almost impossible. Derived from this the need for a simulation
model that represents these possible interactions as extensively as possible is
obvious. In a first research step selected control devices on a CAN network, and
related automotive sensors and actuators are modelled by simulation in order to
simulate freely and selectable event sequences, e.g. to carry out as part of pene-
tration testing to monitor possible weaknesses in the system and resulting inter-
actions. On the latter, particular attention is given, as the security area is in the
main application focus of this simulation.

1 Introduction and Concepts Used

The development of information technology components in motor vehicles is progress-
ing steadily. Current upper-class models often contain up to 100 electronic control
units. This large number of IT components, which is present not only in cars but often
also in production environments or in the robotics field, is becoming increasingly ex-
tensive. Especially to keep track of the behaviour of all IT components, as functions

 Simulation of Structural Effects in Embedded Systems and Visualization 499

are often based on dependencies (e.g. complex sensor information) is hard to estimate
by manufacturers. In addition, and especially in the automotive domain the develop-
ment and production of these IT components is now days often outsourced to different
companies; but the assembly of the vehicle takes place, however by the manufacturer.
The supplying companies in turn typically provide those IT components as black boxes
to avoid knowledge transfer [8]. Therefore, it turns out more and more complex to
produce an overall view of all the possible interactions between IT components, espe-
cially those who may have undesired consequences [11]. An example (documented in
[1]) illustrates this, by two common vehicle components: the air conditioning and
automatic parking brake. Seen individually, both have features that offer a comfort
plus to the driver. The automatic climate control automatically regulates the power the
air condition, based on the current in-vehicle temperature and the desired temperature.
The automatic parking brake is able to detect a start-up demand of the vehicle driver
and thereupon to loosen itself. These two components resulted in the described case [1]
in an unexpected interaction. According to the report, the driver of such an equipped
vehicle wanted to drive in a parking garage on a hot day. To unlock the garage door, he
had to temporarily get out of the car. Because of the opened door, the temperature
increased rapidly in the vehicle, whereupon the air conditioning requested more power
from the engine, leading to a brief increase of the engine speed (rpm). The automatic
parking brake interpreted the engine speed increase mistakenly as the driver’s request
for the start-up and loosened the brake. As a consequence of this interaction, the car
rolled against the still closed door of the garage.

As this example illustrates in practice, even more or less randomly occurring inter-
actions between automotive IT systems could lead in financial or personal consequen-
tial damages. In cases of wilful manipulations the dependencies and interactions are
even more critical, for example drivers often try to improve performance or activate
restricted functions by themselves (see [7]). On a quantity basis, this should therefore
be at least as large as the dimensions of the randomly cases. These findings underline
the need to determine, how individual IT components of a vehicle are in interaction
and what consequences are included in terms of safety and security aspects, before the
start of production (SOP).

The security domain includes those events that occur by intentional acts (e.g. the
specific injection of manipulated messages or sensor information). The safety domain
(in this article) refers primarily to events that occur through the interaction with the
attack and the linkage with other functions or faulty sensor signals. The approach
presented in this paper addresses both areas and thus allows a detection and investiga-
tion of possible interactions between actuators, sensor information and the control
units of a vehicle, visually.

Within this purpose, a generalised model of a vehicular CAN Bus system was
created, using the simulation tool AnyLogic [2], containing the most important
functions of selected control devices, their sensors and actuators, depicted as realis-
tically as possible. The effects were visualized exemplary, to identify easily the
consequences of the attacks, in particular the control devices, affected by the ma-
nipulated data.

500 S. Kuhlmann et al.

1.1 Addressed Standards and Used Technologies

The currently most widely used vehicle-bus technology is still the Controller Area
Network (CAN) standard. It was developed in the second period of the 1980’s and
has been used since the early 90's at almost all vehicle manufacturers [3]. Depend-
ing on the application context, broadcast-based CAN bus systems are often divided
into sub-systems, e.g. in vehicles the domain-cantered “Drive-CAN”, “Comfort-
CAN” or “Infotainment-CAN”. To realize the traffic and the necessary procedures
(e.g. collision-avoiding CSMA / CA concept) a CAN message contains of different
data fields, including a starter bit, the numeric Message Identifier (the same time
indicating the transmission priority), seven control bits (including number of pay-
load bytes) and the actual payload. The correct delivery is ensured by the informa-
tion in the final field, which is in particular a 15-bit CRC checksum and an ac-
knowledge bit [4] [5].

AnyLogic is a simulation tool that was used in this work in version 6.5.1, devel-
oped by XJ Technologies Company. It was chosen, because it supports all three popu-
lar modelling paradigms:

• Event-oriented simulation (to simulate manipulation, e.g. sensor event
related)

• System dynamics (to update dynamically the whole simulation model, e.g. if
one of the sensor data is manipulated, for example changed values)

• Agent-based modelling (to simulate the non-linear dependencies between
heterogeneous agents, e.g. the depend functions of more than one control
unit)

Based on the simulation models, several types of experiments can be carried out.
These include optimizations, which identifies the optimal allocation of an objective
function and parameter variations by a given set of variables in which multiple simu-
lation runs are performed and one or more variables are changed. Thus, the selection
of the simulation tool was based on specific requirements, including a given possibil-
ity of manual intervention in the simulation (e.g. for ingesting engineered messages
and manipulation) [2].

After the given introduction to the topic, the following chapters describe which
components were selected exemplary, how these were implemented in AnyLogic,
how the visualization of the structural effects has been realized and how the simula-
tion of Security-related experiments with focus on the structural-functional analysis
can be performed.

2 Modelling an Electronic (CAN) System in AnyLogic

Implementing the principles of automotive IT networks with AnyLogic several sim-
plifying assumptions were made. In particular, an abstraction was made regarding the
structure of CAN messages. For example, running in the idealized simulation envi-
ronment, the transmission of messages is basically free from errors, so the

 Simulation of Structural Effects in Embedded Systems and Visualization 501

collision and transmission error detection, for example can be dispensed. As essential
elements of a CAN message, therefore, the message ID and the user data were
mapped in the simulation-model and the creation time was also included. This time
stamp allows a uniquely identification of a message to keep track of this message and
analyse its origin.

CAN messages are transmitted by the broadcast principle. Thus, each communica-
tor's message is sent to all other participants located on the same CAN-bus. As in an
electrical system, however, not every control unit uses each message that is received,
each control unit decides on the basis of the message Identification (CAN-ID) in the
header, if it processes or rejects the message. To implement this broadcast principle in
AnyLogic equivalent to common car-network topologies, a queue-based gateway has
been modelled, that allows forwarding the received CAN message to other CAN bus
systems (see Figure 1). The distribution of messages to be routed through the gateway
to the various buses was realised via split objects. These have one input and two out-
puts, wherein a copy is forwarded from the second output. However, since events that
occur simultaneously are processed sequentially, a delay object is used at the first
output to achieve a simultaneous distribution of the messages (otherwise the chain of
events of the upper output would be processed initially, until the message is stopped
in the simulation model or is removed). The prioritisation according to the message
ID was not realised, because within the simulation model there are no bandwidths
limits and the focus of this work is on the structural effects, not on the limited re-
sources of CAN busses.

Fig. 1. Modelling of the Gateway

For simplification, the simulated vehicle network forwards all messages from one
of the three sub-buses (drive-CAN, comfort-CAN and infotainment-CAN) through
the gateway to all bus systems. These buses are implemented as individual classes,
which are all built the same way.

They include - as shown in Figure 2 (bottom left) – a message input (Eingang) and
output (Ausgang) port, as well as a series of control units, where each of them also
includes a split object and a delay. In addition, all messages that pass through the bus
system into a collection object are stored for diagnostic and evaluation purposes. This
design offers the particular advantage that it is easily extensible, if it is intended to
add new control devices, because the basic structure of the individual components is
based on a common type.

502 S. Kuhlmann et al.

trailer Power
control

roof
Door

control
SRS

Climate
control

trailer Power
control

roof
Door

control
SRS

Climate
control

Fig. 2. Modelling the comfort-CAN

2.1 Implementation of the Electronic Control Units (ECU)

Initially, the implementation of the controllers was made as a representative selec-
tion for reasons of complexity. This selection is limited to 17 control units, mainly
in the area of driver assistance systems. Some control devices were combined into
one control device avoiding an implementation of a single function within a sepa-
rate control unit.

Fig. 3. Modelling of IT components in the drive-CAN

Divided among the three bus systems, the following control units are included:

• Drive-CAN (Fig. 3) contains the controls for the transmission, the driver as-
sistance systems, the airbag, the motor-management and the controller for
the ABS / ESP system.

• Comfort-CAN (Fig. 2) contains the controls for the trailer, the vehicle elec-
trical system, electric-roof, doors, air conditioning, windscreen wipers, the
steering column and the comfort control unit.

• Infotainment-CAN contains the controls for the radio, instrument cluster and
the navigation system.

 Simulation of Structural Effects in Embedded Systems and Visualization 503

Fig. 4. Modelling of the steering column control unit

Figure 4 shows an example of the structure of the steering column control unit. It
includes - as well as the various bus systems - initially an input and an output port that
acts as a connection of the different levels in the simulation model. The direct func-
tion of a controller is implemented as the functionality of the gateway through a mes-
sage queue. This approach can be mainly explained by the fact that fair treatment of
incoming messages should be ensured. The controllers also include sensors and actua-
tors, each with a data set object in which the value pattern of the sensor or the actuator
can be saved.

2.2 Implementation of the Sensors and Actuators

For reasons of complexity a choice of sensors and actuators has been made, as the
total number of possible sensors and actuators in a modern motor vehicle would be
too extensive for this first implementation. Sensors can either periodically send mes-
sages or event-specific, where an event could be for example the occurrence of certain
message in the CAN-bus or the operation of a switch. To meet these criteria, source
objects were used. Since the definition of the sending message can not be changed
directly during the program period, a pre-definition of different payloads must be
made for each CAN message, to be sent.

2.3 Implementation of the Overall Model

In addition to the elements, described above, the complete simulation model contains
more additional elements. These are implemented either for data or analysis settings.
The elements, included for data analysis, contain data set objects that are used to store
various data in Excel spreadsheets and a histogram in which the occurrence frequency
of message IDs (see Figure 5) are stored. Those elements that are used to carry out
changes in settings are divided into two categories. First, those buttons which trigger a
plurality of functions: setting the air conditioning or controlling the wipers and much
more. The second category of elements is used solely to visualize the set functions,
providing a graphical overview of which functions are active, and to what extent.

504 S. Kuhlmann et al.

Fig. 5. Overview of the analysis section of the simulation model

One part of these elements is a replica of an instrument cluster that displays data as
the current speed, current temperature and turn indicator status. The second part con-
tains simple rectangles that represent a mapping of signal lights.

3 Validation

The methods presented in the previous chapter, which allows security and safety tests
were carried out, in the simulation model. So for this simulation model, both, the
parameter variation and the use of simulation runs were implemented. The simple
simulation runs, in which the user can intervene actively, are based entirely on the
overall model introduced in Chapter 2. Within this, the user can manually simulate an
arbitrary sequence of operations (e.g. a targeted attack on a sensor or to send a ma-
nipulated CAN-message), to identify the effects - related to all control units and func-
tions - in this operation sequence.

Manipulate ID:

Manipulate Data:

Track ID:

Track from Source:

46

6

46

Run the model and switch to main view

Manipulate ID:

Manipulate Data:

Track ID:

Track from Source:

46

6

46

Run the model and switch to main view

Fig. 6. Interface for attack simulation

 Simulation of Structural Effects in Embedded Systems and Visualization 505

The user interface (Fig. 6) gives the user the ability to set multiple variables.
These variables include weighted message-IDs, to check and trace certain paths of
this message with the help of highlighting. Furthermore, IDs of messages can be
specified and their associated data values can be manipulated. These two functions
are used to identify direct and indirect interactions, which are both directly demon-
strated in the simulation model as well as in the final analysis. The highlighting of
the relevant control devices in the simulation model is implemented either by using
a red colour (in the case of manipulated messages) or green (in the case of tracing
the weighted-ID, without a manipulation). The parameter variations are based on a
slightly modified version of the complete model since users can not directly inter-
vene in the operation sequence (no active AnyLogic allows access to the underlying
simulating model). This was solved by using timed events before a fixed sequence
of operations has been generated. This sequence of operations can be expanded
freely, and thus providing a solid base for the tests. Those parameters that alternate
in the parameter variation correspond to the above-mentioned fixed parameters,
with the difference that in this case the modified payload is defined as a range in
addition to a fixed parameter value. In this range the value of the payload of a mes-
sage can be defined. Both experimental approaches offer the possibility to perform
security-related experiments such as penetration testing or adjustment of known
attacks on the system (e.g. for automotive IT forensic analysis) [9]. This is of par-
ticular importance because it allows the user to identify and assess hazards and
resulting consequences that result from the attacks or manipulation. This makes it
possible to identify weaknesses in the system and to identify in early stages of de-
velopment where security measures or structural changes are necessary. To validate
the model, as a practical example, the manipulation of the climate system has been
selected (see Chapter 1), with the aim of verifying that the interaction is detected
and identified correctly by the simulation as it occurred in reality. The interaction
between the electric parking brake and the air conditioning system was identified by
the simulation model as indirect interaction with the link engine speed. As a second
example the so called “TV in motion” manipulation was tested. This manipulation
aims to deactivate the screen-off function when the vehicle speed is above three
km/h. This could be done by manipulation of the vehicle-speed sensor data. The
manipulation effect the ABS/ESP electronic control unit (ECU) and the navigation
system, which includes the TV function as a subsystem since both are depending on
a correct vehicle-speed data (Figure 7). The affected ECU and devices (in Figure 7:
ABS/ESP and the navigation system) are automatically marked in red colour. This
was done to ease the monitoring for the user of such a simulation.

In addition to that a predefined procedure, varying all possible sensor data and
vehicle states (these tests are normally performed in expensive real test drive proce-
dures) could be used to identify collisions in dependable functions, that are un-
known to developers and would occur in reality – such as the example described in
section 1.

506 S. Kuhlmann et al.

Control elements
(here: Start

Engine)

Functions (here:
Navigation
System)

Electronic control
units (here:

ABS/ESP ECU)

Information
elements (here:
vehicle speed)

Control elements
(here: Start

Engine)

Functions (here:
Navigation
System)

Electronic control
units (here:

ABS/ESP ECU)

Information
elements (here:
vehicle speed)

Fig. 7. Result from “TV-in-motion” experiment: Visualisation in the complete model

4 Outlook

Of course, at this stage of development of the simulation model no claim to complete-
ness can be made. This results both from the limited developmental time and the im-
mense amount of potential elements (sensors, actors and control units). Since the
extensibility was considered consistently (the simulation model was designed to allow
extension of the control devices, sensors and actuators) new elements can be imple-
mented with little programming effort. This is achieved primarily through the use of
common concepts for the individual elements. In addition, the CAN standard prioriti-
zation for CAN messages can make the simulation model more realistic and conse-
quences caused by prioritization effects can be identified and demonstrated.

For the practical use, those abstract models can be used to derive reactions in cases of
automotive-IT manipulation, detected by the automotive intrusion detection systems
(IDS, see [6]). If an attack by the IDS (e.g. a bus message inside a vehicle is manipu-
lated), is detected the model can be used to identify which functions and control equip-
ment (through networking and dependencies) could be affected. This information could
be used by the Intrusion Management System to choose an appropriate response and for
forensic investigations [10]. Those response strategies can also be predefined and there-
fore much more efficient. Because of the strong causal link between automotive security
and safety, particularly in manufacturing, robotics and automotive applications, this ap-
proach also improves the road safety [6].

Acknowledgements. Jana Fruth and Sven Kuhlmann are funded by the German Min-
istry of Education and Science (BMBF), project 01IM10002A. The presented work is
part of the ViERforES II Project.

 Simulation of Structural Effects in Embedded Systems and Visualization 507

This work was part of the Bachelor thesis of Jens Schiborowski in 2011 at the
Otto-von-Guericke University Magdeburg (FIN / ITI / AMSL).

References

[1] Schramm, M.: Organic Computing - “Mr. Self-X ”- Wie Computer autonom werden.
Bayern 2 (November 2010)

[2] AnyLogic, http://www.xjtek.com/ (last access: September 23, 2011)
[3] Zimmermann, W., Schmidgall, R.: Bussysteme in der Fahrzeugtechnik: Protokolle und

Standards, 2nd edn. Vieweg, Wiesbaden (2006)
[4] Bauer, H.: Kraftfahrtechnisches Taschenbuch. Vieweg (2003)
[5] Bauer, H., Dietsche, K.H., Zabler, E., Crepin, J.: Sensoren im Kraftfahrzeug, Bosch.

Gelbe Reihe (2007)
[6] Hoppe, T., Dittmann, J., Müter, M.: Decision Model for Automotive intrusion detection

systems. In: Automotive - Safety & Security 2010 Sicherheit und Zuverlässigkeit für au-
tomobile Informationstechnik, Stuttgart, Juni 22-23. Shaker Verlag, Aachen (2010)

[7] Dittmann, J., Hoppe, T., Kiltz, S., Tuchscheerer, S.: Elektronische Manipulation von
Fahrzeug- und Infrastruktursystemen: Gefährdungspotentiale für die Straßenverkehrssi-
cherheit, Paperback, 92 pages. Wirtschaftsverlag N. W. Verlag für neue Wissenschaft
(2011) ISBN 978-3869181158

[8] Da: Zulieferer werden für die Automobilindustrie immer wichtiger (July 6, 2001),
http://www.welt.de/print-welt/article461473/ (last access: July 15,
2012)

[9] Kiltz, S., Hildebrand, M., Dittmann, J.: Forensische Datenarten und -analysen in automo-
tiven Systemen. In: Horster, P. (ed.) D-A-CH Security 2009, Bochum, Deutschland, May
19-20, pp. 141–152 (2009) ISBN 978-3-00-027488-6

[10] Hoppe, T., Holthusen, S., Tuchscheerer, S., Kiltz, S., Dittmann, J.: Sichere Datenhaltung
im Automobil am Beispiel eines Konzepts zur forensisch sicheren Datenhaltung. In: Si-
cherheit 2010 - Sicherheit, Schutz und Zuverlässigkeit, 5, October 5-7, pp. S.153–S.164.
Jahrestagung des Fachbereichs Sicherheit der Gesellschaft für Informatik e.V (GI), Berlin
(2010)

[11] Tuchscheerer, S., Hoppe, T., Dittmann, J., Pukall, M., Adamczyk, H.: Herausforderungen
an die Absicherung von IT Systemen in der Entwicklung, Betrieb und Wartung von Fahr-
zeugen. In: Forschung und Innovation - Magdeburg: Univ., insges. 9 S., 2011 Kongress:
Magdeburger Maschinenbau-Tage; 10 (Magdeburg), Buchbeitrag, September 27-29
(2011) ISBN 978-3-940961-60-0

From Discrete Event Simulation to Virtual

Reality Environments

Sebastian Nielebock1, Frank Ortmeier1, Marco Schumann2, and André Winge2

1 Computer Systems in Engineering,
Otto-von-Guericke University of Magdeburg, Germany

sebastian.nielebock@st.ovgu.de, frank.ortmeier@ovgu.de
2 Fraunhofer Institute for Factory Operation and Automation

IFF, Magdeburg, Germany
{marco.schumann,andre.winge}@iff.fraunhofer.de

Abstract. Today’s technical systems are often very complex. System
dynamics are often hard to predict for humans. However, understand-
ing system behavior is crucial for evaluating design variants and finding
errors. One way to cope with this problem is to build logical or virtual
simulations. Logical simulations are often very abstract, but can sim-
ulate complex behavioral sequences. Virtual reality (VR) simulation is
very good for experiencing the system in a view close to reality. How-
ever, it is very often static or has only limited dynamics. Until now both
approaches exist in relative isolation.

In this paper, we report on our experiences in building a mixed sim-
ulation, here a discrete event simulator (DES) is coupled with a virtual
reality (VR) environment. We will focus on technical and conceptual
challenges, but also present possible use cases for user interaction in
this strategy to make more detailed investigations possible. Finally a
prototype based on the simulation tool ”SLX” and the virtual reality
environment ”Virtual Development and Training Platform” is used to
evaluate the approach.

Keywords: virtual reality, discrete event simulation, synchronization,
coupling, model.

1 Introduction

Complex, software-controlled technical systems play a vital role in our mod-
ern world. Many processes can’t be controlled without them. Nevertheless, this
makes it harder for engineers to understand and anticipate the behaviour.

The use of models of the real world system is a well-known strategy to address
this problem. There exist a wide variety of models ranging from static, archi-
tectural views through formal models including dynamics to precise 3D models.
Analysis methods range from best practices through simulation to verification. In
this paper, we will focus on 3D models and models expressing abstract behavior.
As analysis method, we will only consider (interactive) simulation. Simulation

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 508–516, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

From DES to VR Environments 509

has a broad field of applications like in planning of production lines or traffic
density[5,9].

Most simulation tools rely on a very abstract representation of physical coordi-
nates and focus on logical places and temporal sequences of events. The common
semantic models are discrete event systems (DES). On the other hand, virtual
reality simulators typically focus on displaying physical coordinates and orien-
tations very precisely. Temporal evolution is often not possible or implemented
in a number of fixed simulation sequences.

As a consequence, each technique itself can give only a limited view on the
system: the virtual reality provides understanding of spatial relationships while
DES helps understanding temporal understanding. Because of this separation it
becomes necessary to model and analyze each of the strategies itself.

The main idea of this paper is to combine the benefits of both in a coupling.
So an engineer can use the visualization in parallel to resp. as a front-end of
a mathematical DES simulation model. In section 2 it is introduced basic in-
formation on ”Virtual Reality” and ”Discrete Event Simulation” in this paper.
The concept of coupling is introduced in section 3 and is evaluated with a pro-
totype presented in section 4. Thereby for illustration, an example system of
medium size from logistics scope is considered. Finally the main facts and some
future work are summarized in section 5.

2 Related Work

To introduce the topic it is necessary to give an overview about the different
techniques and environments and their understanding in this paper. Furthermore
some familiar workings are presented.

”Virtual Reality (VR)” is wedded to the definition of a virtual environment.
Thereby this environment represents a (mostly) realistic or fictive and visual
3-dimensional presentation generated by a computer. The main element is the
user, who controls the actions inside, depending to an underlying control model.
The symbioses of visualization and perception of this designed world and its
physical properties leads to the term VR [11, p. 3].

In a more technical way the VR-system is a tool to create a set of graphi-
cal objects, which are displayed on visualization hardware e.g. a monitor or a
CAVE1. Using slightly changed images e.g. a different position of an object and
play them with a special frame rate2 leads to the effect of a moving scene, called
activities. The state of the objects can be represented as a 6-D-vector: 3 dimen-
sions for the direction and 3 dimensions for the position of the object. There at
least 2 special objects: the path and the user. The path can be used to move an
object through the VR, whereby the changing in direction position of the ob-
ject is automatically done. The user-object is the user interface to interact with
the VR like moving through the environment or to grab objects. All graphical
information, called scene are stored as a layout.

1 Cave Automatic Virtual Environment.
2 Typically given as displayed frames per second.

510 S. Nielebock et al.

The Discrete Event Simulation (DES) is a time discrete simulation whereby in
every time step one or more events happen. Concerning to the term of simulation,
which is defined as the consideration of a system with its corresponding abstract
model over time [7, p. 1], an event is timeless appearances like an arrival of ship
at a harbor. This means that DES does its calculations on specific points in time
and jump to the next event-time immediately. Thereby it is possible that in one
calculation multiple events are triggered. In opposite to an event an activity is
a timed element for instance the discharging of a container from a ship. It is
necessary to mention that activities are not part of the DES but of continues
consideration of a system.

There have been several approaches concerning to the coupling DES with a
VR in the last years. So in [13] there is shown different classifications to describe
the type of coupling (table 1).

Table 1. Classification of the coupling[13]

Classification Possible implementations

Temporal Parallelism Concurrent/Online Post-Run/Offline

Interaction Bidirectional Unidirectional

Hardware Platform Monolithic/Homogeneous Distributed

Visualization Tool Autonomy Integrated External

The categorization ”temporal parallelism” distinguishes, whether the DES
and the VR are running parallel (concurrent) or sequential (post-run). Another
dimension for categorization is how the communication between the both part-
ners is directed. In this case ”unidirectional”-case describes that data flows only
from the DES to VR. In contrast, the ”bidirectional”-case allows both tools to
exchange data with each other. Obviously a bidirectional coupling has to be
concurrent. Further classifications refer to the used hardware, whether both sys-
tems are using a monolithic or distributed platform and the autonomy of the
visualization, which characterize whether the DES has an integrated VR or an
external one is needed.

Moreover in [13] it is shown that for bidirectional communication messages
with timestamps are very useful. Thereby different synchronization methods for
those messages are evaluated and a concept of a self-adaptive buffering in the VR
system is introduced. Other synchronization methods can be found in distributed
simulation, in which conservative and optimistic approaches are used to avoid
synchronization faults [4, p. 51ff]. Specific implementations spread from several
unidirectional and post-run tools [12,14] to bidirectional solutions[3,10].

3 Concept of the Coupling

The developed coupling may be classified as bidirectional, concurrent, distributed
and external. Furthermore the coupling should be created in a way that DES and
VR can be run independent (as stand-alone models) from each other. Thereby

From DES to VR Environments 511

it consists of 3 parts: The syntactic part (3.1)), which describes time synchro-
nization, the semantic part (3.2)), which describes how semantic information are
mapped and the integration of user actions (3.3).

3.1 Temporal Coupling – Synchronization

The main problem to combine the VR and the DES is to synchronize the different
views on the time. On the one hand, a DES describes only (discrete) moments in
the course of time by events, on the other hand the VR needs a detailed view by
representing activities in (fixed) frame rates. In the following, we will assume that
time intervals between DES events are much larger - typically several seconds
- than those by the VR3. Furthermore both, the VR and the DES have a local
clock representing their internal simulation time.

5.000 addTECreateObject „Truck“ 2

Event
Time stamp

Event
instruction

name
Event arguments

Message data

Fig. 1. Structure of a time stamp message

During a simula-
tion run the slower
clock of the VR runs
continuously, while the
DES clock has to
be delayed between
different timestamps.
So it becomes possi-
ble to visualize activi-
ties without interrup-
tions. Thereby all events for a specific point in time have to be calculated within
the DES and have to be transmitted to the VR. Concerning to a point in time
the events can be communicated either parallel, which means one communication
message for all triggered events, or sequential, which means one communication
message per event. To reduce the size of a message the sequential strategy will
be used whereby the delays caused by communication and calculation effort
lead different receiving times. To deal with this problems the messages are con-
structed in way shown for creating a truck object in figure 1 whereby every event
has a specific time stamp and specific instruction names and a list of different
arguments. The VR is able to interpret and execute these messages by their in-
struction names. Hereby the messages will be buffered until the VR clock reaches
the point in time expressed by the time stamp4. The execution of the messages
can be either an event e. g. creating a 3D-object or an activity e. g. moving an
object on a path. Because the DES doesn’t represent activities, further events
have to be delayed until the activity is finished, because they can depend on
the execution of this activity. For example a truck has to drive to the loading
dock before it can be loaded. Nevertheless parallel executions of activities can
be done by using multiple simulation threads, which trigger independent events
from each other and are displayed in different VR threads.

3 Defined by the frame rate.
4 It becomes necessary that all events have to be delivered until this point in time is
reached.

512 S. Nielebock et al.

timeIs

VR-environment

DES-environment

t0 t2 t2‘t1‘

Simulation
Thread 1

Simulation
Thread 2

„CreateTruck“
at t1´

„CraneStartDischarging“
at t2‘

„DriveTruck“ on
path „To

LoadingDock“
at t1´

t1

Drive Truck on PathCreateTruck
Object

Crane Start Discharging

nextEvent
Possible

nextEvent
Possible

VR
Thread 1

VR
Thread 2

Buffering
Buffering

Delayed

Delayed

event

activity

event

event in VR

activity in VR

event in DES

thread in
environment

time stamp
message from DES

time stamp
message from VR

Fig. 2. Communication between DES an VR

A fully communication is shown in figure 2, whereby in this case a truck object
is created and drive to the loading dock during a crane is discharging a ship.
Hereby the events in the VR executed as events are displayed red and events
which are presented as activities are displayed green. At the end of an activity
an ”a next event possible”-message is triggered with the time stamp to get the
next valid time for the simulation thread. Actually these messages can be used
to transmit data from the VR to the simulation e.g. measured values by a sensor.

3.2 Spatial Coupling

3-D_crane

3-D_container

Class
crane

Class
Container

DES-environment VR-environment

crane #1

container #1

container #2

container #3

3-D_crane_copy1

3-D_container_copy1

3-D_container_copy2

3-D_container_copy3

obj

obj

static mapping
dynamic mapping
statically
generated object
dynamically
generated object

Fig. 3. Class-based semantic coupling

Another challenge is the
spatial coupling of the ob-
jects in VR and DES. For
successful coupling the ob-
jects and paths of the vir-
tual reality environment
have to be mapped to
those in the DES and vice
versa. Actually the pre-
sentation of the objects is
different. A DES sees the
objects as logical compo-

nents, while a VR environment sees them as 3D-polygonal-meshes. To map the
objects in a dynamic way a class-mapping is used (see figure 3). Classes of ob-
jects from DES (in the example a crane and several containers) are mapped with
3D-objects from the used virtual reality scenario. By doing this it is possible to
create or delete meshes in the VR by incarnating or deleting the referred logical
objects in the DES. A possible mapping is displayed in 3. However, selecting the
mesh is the first step of the mapping. It is also important to set position and
orientation. In more general, every state change in the DES must correspond to a
(set of) 3D paths in the virtual reality environment. These paths have to be spec-
ified manually. However, the current implementation allows easy customization

From DES to VR Environments 513

by allocating arbitrary pre-drawn paths to each event. For successful coupling
paths and meshes have to couple with each other in the last step.

3.3 User Interaction

The last element in the presented coupling is user interaction. Hereby the knowl-
edge about the system state of the DES resp. the VR has to be considered. The
logic controlling the system is within the DES simulation while the VR only
provides a visual view on the system. But the user is typically viewing the VR
representation. Therefore, it is useful that, users may interact within the vir-
tual reality. For presenting all at a time possible accepted events, the DES must
transmit which external events are possible at each time to the VR. User may
then select events, which are then passed back to the VR. Of course, in some
rare cases update of the list of possible events will conflict with users choices.
But this may be solved by informing the user, whenever an invalid events has
been passed to the DES.

4 Evaluation

For the test of the approach a real world scenario is used. For evaluating the
coupling presented in the previous section a medium sized example of the ”Hanse
Terminal” in Magdeburg will be used. The ”Hanse Terminal” is a harbor for
transshipping containers with different loadings from ships to trucks and vice
versa. In this logistic process many participants are included e.g. a crane, a
reach stacker, trucks and others [8].

The presented example shows a small extract of this logistics process, whereby
containers transported by a ship will be stevedored by a crane to be stored on
the harbor area. Parallel to this, trucks arrive at the harbor. If containers are
stored at the harbor, a reach stacker will load the containers on the trucks. The
used DES simulation software tool is SLX 5 by Wolverine Software Corporation
[14]. SLX provides an elaborated programming environment to build discrete
simulations with parallel threads. As VR-system the VDT-Platform 6 is used.
This is a software system that is developed at the Fraunhofer IFF. The VDT-
Platform is modular and based on a standardized data model. The architecture
of the software system consist three main components [2]

– the Scenario: a certain amount of application specific data that represents
the virtual model,

– the Scenario Player: the common set of functionality to handle the Scenario
specific data

– the plugin framework: the set of functions for authoring and editing the
virtual model and its behavior.

5 Simulation Language eXtended.
6 Virtual Development and Training - Platform.

514 S. Nielebock et al.

In the past, the platform was primarily developed and used for training of main-
tenance and service personnel. Meanwhile, the increasing availability of 3D data
provides more and more fields of application in which this software frame-work
can be used. The main idea is to enable interaction with realistic virtual plants,
machinery and products on the basis of immersive 3-D virtual environments.
That is the basis of the use of the software framework and the virtual environ-
ment in the whole product- and production life cycle [1].

Because of the distributed usability an interface also provided by the Fraun-
hofer IFF, based on the real-time-interface in [6], is used. This interface uses a
shared memory, on which reading and writing is synchronized. is used. This in-
terface uses a shared memory, on which reading and writing is synchronized. The
implementation of the VDT-Platform is based on plugins. Thereby a plugin for
the offline-simulation, which was still build by the IFF, is extended with an in-
terface to communicate concurrently with the SLX simulation. Furthermore this
implement also the concepts of the spatial mapping and the user interface. The
SLX model is build with 2 modules, whereby one module displays the simulation
model to control the current scene and the other provides general functions to
communicate with the VR. In this example the controlled model for the example
is created as state model, so that incoming user events can change the internal
state and so the behavior of the model.

The implementation was successfully done and showed the desired behavior
with the ”Hanse Terminal” simulation. So it was possible to visualize the activ-
ities triggered by the SLX-simulation in the VR under normal conditions 7 just
in time. Multiple user events could be triggered and were correctly processed
by the SLX-simulation-model. Nonetheless, the distributed functionality wasn’t
tested, so that no valid conclusions about this can be made yet.

In opposite to integrated visualization tools like used in Plant Simulation
[12] this approach sees the VR and simulation as independent to each other by
communicating with a centralized interface. So it was possible to simulate the
DES separately to the VR. Another benefit is the logging of events created by
the DES. This information can be used to replay special situations in the VR
using an offline coupling. Because of the independent design this may be done
in a different VR-environment.

5 Conclusion

All in all this paper shows that a coupling of a DES and a virtual environment
including time, semantic objects and user interaction is possible and useful. The
big benefit however lies in analyzing questions, which may not be answered by
the DES alone. For example: How close do trucks and reach stackers pass each
other? What quality of service could be expected when monitoring the real world
system with a camera system?

The basic concept of the coupling – mapping each event of the DES to an
arbitrary set of temporal sequences in the VR environment – is very efficient.

7 Normal means with a framerate, which leads to a fluid visualization for the user.

From DES to VR Environments 515

Based on the example of the ”Hanse Terminal Magdeburg”, these techniques
are used to build a prototypical implementation of this coupling. This prototype
helped us evaluate the usefulness of the coupling as well as performance and
feasibility.

In current work further examples are tested to get a better evaluation about
the advantages and disadvantages of this coupling. One aspect is setting up
a distributed scenario. Much more interesting, however is moving to full co-
simulation: for example having the DES simulation react on (continuous time)
sensor values modeled in the VR environment only.

References

1. Blümel, E., Fredrich, H., Winge, A.: Applied Knowledge Transfer to European
SMEs by Expertise Networks Using Mixed Reality. In: Niedrite, L., Strazdina, R.,
Wangler, B. (eds.) BIR 2011 Workshops. LNBIP, vol. 106, pp. 90–101. Springer,
Heidelberg (2012)

2. Blümel, E., Hintze, A., Schulz, T., Schumann, M., Stüring, S.: Perspectives on sim-
ulation in education and training: virtual environments for the training of mainte-
nance and service tasks. In: Chick, S.E., Sanchez, P.J., Ferrin, D.M., Morrice, D.J.
(eds.) WSC. ACM (2003)

3. Franke, R.: Kopplung von diskreter Simulation und interaktiver 3D-Visualisierung.
Master Thesis, OVGU Magdeburg - Faculty of Computer Science (2004)

4. Fujimoto, R.M.: Parallel and Distributed Simulation Systems. Wiley Series on
Parallel and Distributed Computing. Wiley-Interscience, John Wiley & Sons, Inc.,
Scientific, Technical, and Medical Devision (January 2000)

5. Goettsch, N.: Planung neuer Produktionsaufgaben: Ohne Simulation kein Angebot
beim OEM (March 2007), http://www.it-production.com/
index.php?seite=einzel artikel ansicht&id=33458 (accessed at March 12,
2012)

6. Kennel, M., Bayrhammer, E.: Eine Schnittstelle zur echtzeitfähigen Kop-
plung heterogener Simulations-, Steuerungs-, und Visualisierungsapplikationen.
In: Forschung vernetzen - Innovationen beschleunigen - 3. und 4. IFF-
Forschungskolloquium. Fraunhofer IFF, Magdeburg (April and September 2007)

7. Law, A.M.: Simulation modeling and analysis, 4th edn. McGraw-Hill series in in-
dustrial engineering and management science (2007)

8. Magdeburg hafen.de. Hansehafen/GVZ - Hansehafen in Magdeburg-Rothensee
(March 2012),
http://www.magdeburg-hafen.de/magdeburg-hafen/mdhafen.html (accessed at
March 10, 2012)

9. Planung Transport Verkehr AG (2012),
http://www.ptv.de/software/verkehrsplanung-verkehrstechnik/

software-und-system-solutions/vissim/ (accessed at March 12, 2012)
10. Raab, M.: Mechanismen zur Interaktion zwischen virtuell-interaktiver 3D-

Umgebung und echtzeitfähiger Ablaufsimulation. Master Thesis, OVGU Magde-
burg - Faculty of Computer Science (March 2007)

11. Schumann, M.: Architektur und Applikation verteilter, VR-basierter Trainingssys-
teme. PhD thesis, Faculty of Computer Science - OVGU Magdeburg, Fraunhofer
IFF, Magdeburg (February 2010)

http://www.it-production.com/index.php?seite=einzel_artikel_ansicht&id=33458
http://www.it-production.com/index.php?seite=einzel_artikel_ansicht&id=33458
http://www.magdeburg-hafen.de/magdeburg-hafen/mdhafen.html
http://www.ptv.de/software/verkehrsplanung-verkehrstechnik/software-und-system-solutions/vissim/
http://www.ptv.de/software/verkehrsplanung-verkehrstechnik/software-und-system-solutions/vissim/

516 S. Nielebock et al.

12. Siemens PLM Software Inc.: Plant Simulation Simulation, Visualisierung, Analyse
und Optimierung von Produktions- und Logistikprozessen,
http://www.plm.automation.siemens.com/de de/Images/

plant simulation tcm73-62431.pdf (accessed at February 18, 2012)
13. Straßburger, S., Schulze, T., Lemessi, M., Rehn, G.D.: Temporally parallel coupling

of discrete simulation systems with virtual reality systems. In: WSC. ACM (2005)
14. Wolverine Software Corporation. Wolverine Web (February 2012),

http://www.wolverinesoftware.com/ (accessed at February 8, 2012)

http://www.plm.automation.siemens.com/de_de/Images/plant_simulation_tcm73-62431.pdf
http://www.plm.automation.siemens.com/de_de/Images/plant_simulation_tcm73-62431.pdf
http://www.wolverinesoftware.com/

Program Comprehension
in Preprocessor-Based Software

Janet Siegmund�, Norbert Siegmund, Jana Fruth, Sven Kuhlmann��,
Jana Dittmann, and Gunter Saake

University of Magdeburg, Germany
{feigensp,nsiegmun,fruth,gunter.saake}@ovgu.de,

{sven.tuchscheerer,dittmann}@iti.cs.uni-magdeburg.de

Abstract. To adapt to heterogeneous hardware, software of embedded
systems provides customization capacities. Typically, this customization
is achieved using conditional compilation with preprocessors. However,
preprocessor usage can lead to obfuscated source code that can be dif-
ficult to comprehend, which in turn cause increased maintenance costs,
bugs, and security vulnerabilities. To profit from the benefit of prepro-
cessors usage, we need to improve their comprehensibility. In this paper,
we describe how program comprehension can be improved and, to that
end, measured. We show that reliably measuring program comprehen-
sion requires considerably effort. However, the benefit is that we can
apply concepts that have proven to improve program comprehension,
and thus can e.g. improve maintainability, reliability, and security of
source code.

Keywords: Preprocessor, Program Comprehension, Empirical Software
Engineering, Software Quality.

1 Introduction

Since the development of the first programmable computers, they have become
ubiquitous: We are surrounded by them, especially by embedded systems, which
constitute the major part, about 98%, of computers [1]. Examples of embedded
systems are PDAs, mobile phones, sensors, or credit cards. The characteristic
of embedded systems, in contrast to desktop systems, are the strict resource
constraints, for example regarding memory capacity or power consumption. Ad-
ditionally, the heterogeneous hardware of embedded systems leads to challenges
for software, which has to be tailored to specific hardware and application sce-
narios [2].

To implement software for embedded systems in practice, C and its prepro-
cessor are typically used. The preprocessor supports conditional compilation,
which allows developers to write variable software that can be adapted to spe-
cific hardware and application scenarios. The C preprocessor uses ifdef directives

� This author published previous work as Janet Feigenspan.
�� This author published previous work as Sven Tuchscheerer.

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 517–528, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

518 J. Siegmund et al.

1 static int __rep_queue_filedone(dbenv, rep, rfp)
2 DB_ENV *dbenv;
3 REP *rep;
4 __rep_fileinfo_args *rfp; {
5 #ifndef HAVE_QUEUE
6 COMPQUIET(rep, NULL);
7 COMPQUIET(rfp, NULL);
8 return (__db_no_queue_am(dbenv));
9 #else

10 db_pgno_t first, last;
11 u_int32_t flags;
12 int empty, ret, t_ret;
13 #ifdef DIAGNOSTIC
14 DB_MSGBUF mb;
15 #endif
16 // over 100 lines of additional code
17 #endif
18 }

Fig. 1. Code excerpt of Berkeley DB, illustrating how conditional compilation is
implemented

to enable variability, which we illustrate in Figure 1 with an excerpt of Berke-
leyDB1. For example, in Line 5, we see such an ifdef directive, an #ifndef. If
the following variable, HAVE QUEUE, is not set, all according code (Line 10 to 16)
is removed, including all ifdef directives, by the preprocessor. If HAVE QUEUE is
set, the #else branch applies, and source code from Line 6 to 8 is removed. This
mechanism allows a developer to adapt BerkeleyDB to for different hardware
and application scenarios.

Ifdef directives are used because they offer great variability and flexibility re-
garding annotations of source code. Furthermore, they are simple to use in many
languages or environments (e.g., C, C++, Fortran, and Java Micro Edition) [3,4].

Unfortunately, preprocessors also have drawbacks. In the literature, prepro-
cessors are heavily criticized, because they are considered ‘harmful’ [5] or even
as ‘#ifdef hell’ [6]. The problem is that with ifdef directives, we can annotate
everything, such as a single variable or bracket. This can make it very diffi-
cult for a programmer to understand source code that contains ifdef directives.
We could encourage practitioners to avoid ifdef directives and use only con-
temporary programming mechanisms, such as AHEAD [7], FeatureHouse [8] or
AspectJ [9]. In fact, software for mobile phones is developed based on Java or
Objective-C. However, in many cases (e.g., sensor networks, cars), ifdef direc-
tives are still the first choice, and there is lots of legacy code that needs to be
maintained. Thus, we need to improve the comprehensibility of preprocessor-
based code.

However, understanding source code is what maintenance programmers most
of their time do [10,11]. They understand a program top down, meaning that
they state a general hypothesis about a program’s purpose and refine this hy-
pothesis by looking at details [12]. Top-down comprehension requires knowl-
edge about a program’s domain; otherwise, programmers have to use bottom-up

1 http://www.oracle.com/technetwork/database/berkeleydb

http://www.oracle.com/technetwork/database/berkeleydb

Program Comprehension in Preprocessor-Based Software 519

comprehension. In this case, developers create hypotheses about a program’s
purpose by looking at details and grouping them into semantic chunks [13].

Hence, understanding, or program comprehension, is an important aspect in
software development. We could introduce threats to security or write bugs more
often, because we do not understand source code sufficiently. We could waste
energy in embedded systems, because we do not efficiently utilize hardware,
but concentrate on writing variable code. There are far more problems that
come with neglected program comprehension. This can lead to high maintenance
costs and introduce threats to security. Hence, we need to deal with program
comprehension to allow developers to spend more time improving source code.

In this paper, we describe the importance of program comprehension in the
embedded-systems’ domain. The primary intent of this paper is to motivate
researchers to take more interest in program comprehension. Hence, it should be
understood as a position paper.

2 Background

In this section, we take a closer look at the ‘#ifdef hell’ to better understand
the risks to program comprehension. Furthermore, we give an introduction to
program comprehension models to understand how it can be measured and
improved.

2.1 #Ifdef Hell

It can be difficult for a programmer to locate ifdef directives, because they can
be (i) scattered, (ii) ‘hidden’, (iii) nested, or (iv) used to annotate long code
fragments. First, ifdef directives are often scattered over the complete software
system. For example, if we want to implement a logging mechanism, this means
that we have logging source code in many different locations in different files.
Hence, according ifdef directives are scattered, as well.

Second, ifdef directives can be ‘hidden’ in code fragments. This is caused
by the fine-grained level of annotations, such that single variables or brackets
can be annotated. This can be especially problematic, if an opening bracket is
annotated, but not the corresponding closing one. In this case, the preproces-
sor would delete the opening bracket (if the according variable is not defined),
but not the corresponding closing one. Hence, trying to compile the prepro-
cessed source code would lead to an error. However, a programmer has prob-
lems to detect this error, because in the source code, she actually sees both
brackets.

Third, ifdef directives can be nested, which means that within an ifdef di-
rective, another one is defined. For example, in Figure 1, the ifdef directives in
Lines 13 to 15 are surrounded by the ifdef directives of Lines 5 to 17. In this
example, we have a nesting level of 2. However, in typical industrial projects,
nesting levels of 9 are typical, and even levels of up to 24 occur [14].

520 J. Siegmund et al.

Last, long code fragments can be annotated with ifdef directives. For example,
in Figure 1, Line 16 states that over 100 additional lines of code are defined,
before the #ifndef in Line 5 is closed with the corresponding #endif. Hence,
beginning and end of an ifdef directive may not even appear on the same screen,
which makes it difficult for a developer to keep track of it.

To sum up, using preprocessors bears considerable risks to program compre-
hension. Of course, we could encourage practitioners to disciplined annotations or
use other approaches for the required flexibility (e.g., subjects [15], aspects [16],
mixin layers [17], or combinations thereof [18]). However, introducing novel con-
cepts in industry is a long-term process, such that processors will be used in
industry at least in the medium-term future. Hence, we argue that improving
their comprehensibility is necessary and can improve maintainability, reliability,
and security of source code.

2.2 Program Comprehension

It is important to have an understanding of program comprehension so that we
can understand how to measure it. In the literature, we can find three differ-
ent categories of program-comprehension models: Top-down models, bottom-up
models, and integrated models.

Top-down comprehension is the process of deriving and refining hypotheses
about the purpose of a program. First, a developer derives a general hypothesis
about a program’s purpose while neglecting details. During this step, beacons
(i.e., parts of source code that indicate occurrences of certain structures or op-
erations [12]) help to determine the purpose of a program. Once a hypothesis is
formulated, the developer evaluates it by looking at details and refining her hy-
pothesis stepwise by developing and refining subsidiary hypotheses. To be able
to determine the purpose of a program top down, the programmer has to be
familiar with the domain of a program. Several examples of top-down models
can be found in the literature [12,19,20].

Bottom-up comprehension describes how a program is understood when a
programmer has no knowledge of a program’s domain. In this case, a programmer
examines statements of a program and groups them into semantic chunks. These
chunks can be combined further until the developer has an understanding of the
general purpose of a program. Examples of bottom-up models are described in
the literature [13,21].

Integrated models combine top-down and bottom-up program comprehension.
For example, if a programmer has some knowledge about a domain, she starts
with top-down comprehension. When she encounters code fragments she cannot
explain using her domain knowledge, she switches to bottom-up comprehension.
Typically, a developer uses top-down comprehension where possible, because it
is more efficient. An example of an integrated model is described by Mayrhauser
and Vans [22].

What should be clear from the explanations is that program comprehension
is an internal cognitive process that we cannot observe directly [23]. Additionally,

Program Comprehension in Preprocessor-Based Software 521

a programmer usually uses different comprehension models, depending on her
familiarity with source code and domain. Hence, reliably measuring program
comprehension is rather difficult. In the next section, we explain how we can
measure program comprehension.

3 Measurement of Program Comprehension

Since we cannot observe program comprehension directly, we have to find mea-
sures to assess it. To the best of our knowledge, there is no standard to measure
program comprehension. Instead, several different techniques are used. In this
section, we introduce some common techniques to measure program compre-
hension. We present the methods ordered by how reliable they assess program
comprehension, starting with the least reliable. This order also represents the
effort of applying the techniques, starting with the least effortless.

3.1 Software Measures

Software measures are popular indicators for several software quality facets,
including program comprehension. For example, there is a line of work that
compares the quality of aspect-oriented programs to object-oriented programs
with preprocessors based on software measures [24]. Software measures are solely
based on properties of source code and do not require recruiting any humans to
measure the comprehensibility of source code. Instead, tools, such as cppstats2

or SourceMonitor3 can automatically analyze source code and compute software
measures. Thus, they are convenient indicators for program comprehension.

For better overview, we divide software measures into three different cate-
gories: (i) size measures, (ii) complexity measures, and (iii) concern measures.
First, size measures analyze the size of source code, for example in terms of
lines of code [25]. The assumption is that the more source-code lines a program
consists of, the more difficult it is to understand. Hence, a large lines-of-code
measure indicates threats to program comprehension.

Second, complexity measures assess how complex source code is. For example,
the complexity of a method can be defined as the number of branching state-
ments, such as if, for, or switch, of a method [26]. The more branching statements
a method has, the more difficult it is to understand. This seems plausible, be-
cause a developer has to keep more different execution paths of a method in
mind.

Last, concern measures assess properties of the concerns of source code. A
concern is ”anything a stakeholder may want to consider as conceptual unit
[...]” [27]. For example, the measure concern operations represents the number
of operations defined in one concern [28]. The more operations a concern has,
the more a developer has to keep in mind, and, thus, the more difficult it is to
understand.

2 http://fosd.net/cppstats
3 http://www.campwoodsw.com/sourcemonitor.html

http://fosd.net/cppstats
http://www.campwoodsw.com/sourcemonitor.html

522 J. Siegmund et al.

The problem with software measure is that their relationship to program
comprehension is based on plausibility arguments. There is little empirical work
regarding how software measures are suitable indicators for program compre-
hension. Empirical work even suggests that software measures cannot assess
program comprehension sufficiently [29,30]. Hence, their reliability is very lim-
ited, so software measures should not be used as sole indicators for program
comprehension.

3.2 Self Estimation

This and the remaining techniques require recruiting humans and a controlled
setting to assess program comprehension. In this context, humans are referred
to as participants or subjects. Using self estimation, subjects estimate how much
they understood from source code. For example, we can present source code to
subjects and afterwards ask to estimate how much they understood of source
code on a five-point Likert scale [31], 1 meaning not at all, 2 a little, 3 about
half, 4 most, and 5 everything. We can compute a median of the answers of all
subjects, and then would have an indicator of how comprehensible the source
code used in the experiment is.

However, self estimation is a subjective measure that can easily be
biased [32,33]. For example, subjects might over- or underestimate their pro-
gram comprehension, even subconsciously. Hence, the reliability is questionable,
as well. Nevertheless, self estimation is closer to program comprehension, because
it actually considers humans and their comprehension process.

3.3 Tasks

Tasks are most frequently used to assess program comprehension [32]. There
are different kinds of tasks with different reliability. Static tasks require sub-
jects to analyze the structure of source code and are the least reliable. For
example, subjects should locate the call of a certain method or the positions
of a certain ifdef directive. In dynamic tasks, subjects should analyze the con-
trol flow of programs, for example the possible execution paths of a method.
Last, in maintenance tasks, subjects should locate and/or fix the cause of a
bug or implement additional source code. For example, we can give subjects
a typical bug description as a user of a software product might provide it
and then ask subjects to fix a bug. This is a typical behavior of a mainte-
nance programmer and requires that subjects closely examine and understand
source code.

Hence, tasks are more reliable than self estimation and software measures, be-
cause solving the tasks correctly requires that subjects understand source code to
a certain degree. Thus, tasks can be a good indicator to assess program compre-
hension. However, tasks only allow us to observe the result of the comprehension
process.

Program Comprehension in Preprocessor-Based Software 523

3.4 Think-Aloud Protocols

If we use self estimation or tasks, we cannot observe the comprehension process,
but only evaluate whether and to what degree it occurred. To measure internal
cognitive processes such as program comprehension, think-aloud protocols were
developed [34]. In think-aloud protocols, subjects are instructed to verbalize
their thoughts when understanding a piece of source code. This enables us to
observe the process itself. Hence, we have a very reliable indicator for program
comprehension.

However, applying think-aloud protocols requires considerable effort. First,
subjects have to be trained to verbalize their thoughts, because they usually do
not talk aloud when comprehending source code. Furthermore, during a session,
an experimenter often has to remind subjects to keep talking, even when they are
stuck on a piece of source code. Second, think-aloud experiments require much
effort to conduct, because they cannot take place in a large group (imagine 10
subjects in one room talking the whole time), and they usually are recorded on
tape for the analysis. Third, the taped sessions need to be analyzed to understand
how subjects understood a piece of source code [35]. Thus, think-aloud protocols
are often too costly to apply.

Reliably measuring program comprehension requires considerable effort. This
is one reason why researchers often use software measures, instead of conduct-
ing controlled experiments [36]. Nevertheless, the effort in measuring program
comprehension and improving it can pay off.

4 Improving Program Comprehension

How can we improve program comprehension of preprocessor-based software?
First, we present how background colors can help. Then, we present tools that
were developed to improve program comprehension. Finally, we discuss the pos-
sibilities of using augmented-reality techniques to support a developer in under-
standing source code.

4.1 Background Colors

Background colors support a developer in keeping track of source code that
is annotated with ifdef directives. In Figure 2, we present an example of how
background colors can be used to highlight code fragments.

The benefit of colors lies in the fact that humans process colors preatten-
tively [37]. Preattentive perception describes the fast recognition of few visual
properties, such as colors. Hence, a developer can see at first sight that source
code is annotated with an ifdef directive and the according variable. For exam-
ple, in Figure 2, we can immediately see that code in Lines 12 to 14 specify a
different variable for the ifdef directive than code in Lines 5 to 16.

First empirical results confirm the positive effect of background colors on pro-
gram comprehension, even for large software systems [38,39]. Furthermore, both

524 J. Siegmund et al.

1 static int __rep_queue_filedone(dbenv, rep, rfp)
2 DB_ENV *dbenv;
3 REP *rep;
4 __rep_fileinfo_args *rfp; {
5 #ifndef HAVE QUEUE
6 COMPQUIET(rep, NULL);
7 return (db no queue am(dbenv));
8 #else
9 db pgno t first, last;

10 u int32 t flags;
11 int empty, ret, t ret;
12 #ifdef DIAGNOSTIC
13 DB MSGBUF mb;
14 #endif
15 // over 100 lines of additional code
16 #endif
17 }

Fig. 2. Excerpt of Berkeley DB, with background colors to highlight source code an-
notated with ifdef directives. Lines 5 to 16 are yellow, Lines 12 to 14 orange.

experiments revealed that subjects like the color idea, which they in turn re-
flected back on their performance. Hence, background colors are a good starting
point to improve the comprehensibility of preprocessor-based software.

4.2 Tool support

In our line of work, we developed two tools to improve program comprehension.
The first is FeatureCommander, a prototype of an IDE that uses background
colors consistently throughout the complete user interface [39]. In Figure 3, we
present a screen shot to give an impression of the realization of background
colors. It uses background colors to highlight source code (1). The left side bar
(2) shows highlighted source code of the currently visible source code, whereas
the right side bar (3) shows highlighted source code scaled to the complete file.
For better navigation, the side bars are interactive, such that clicking them shows
the according part of the file. With a slider (4), users can adjust the transparency
of the colors. The color palette (5) enables users to assign a color to source code
in the editor, in the list of concerns (6), or to files shown in the file explorer
(7). With a view ordered by concerns (8), a user can quickly get an overview of
which concerns are implemented in which file(s).

The second tool we developed is View Infinity, an IDE prototype that provides
semantic zooming from the level of concerns over level of the files to the source
code. In Figure 4, we present an overview of this zooming concept. On the
bottom, we show the level of concerns. With different levels of detail, users can
zoom into the level of files. When users zoom in a certain file, that file is opened
in a file editor. Since the zooming concepts is dynamic and difficult to explain
with static figures, we encourage the reader to check out the demo video we
provide at the project’s website (http://fosd.net/vi).

Program Comprehension in Preprocessor-Based Software 525

44
788

2 3

66

11

33

55

Fig. 3. Screenshot of FeatureCommander. The numbers refer to visualizations we ex-
plain in the text.

Fig. 4. Screenshot of View Infinity to illustrate the semantic zooming concept.

4.3 Augmented Reality

Augmented reality (AR) is a modern technique to enhance the environment with
additional information often displayed in a head-up display. Today, there are
already different application scenarios in which AR is used (e.g., Wikitude4).
However, to the best of our knowledge, the use of AR techniques for software
development was not considered until now. We envision using AR techniques to
enhance the source code view with additional information to improve program
comprehension. Using a head-up display, we can visualize which ifdef directives
are shown on the screen with information about their purpose, classes in which
code annotated with the same ifdef directive appear, nesting of ifdef directives,
etc. This information can be displayed on demand, so we do not change existing
source code nor degrade its readability by introducing annotations.

4 http://www.wikitude.org

526 J. Siegmund et al.

Another benefit of this technique is to show different views of the source
code. That is, we can show how a certain set of ifdef directives would affect
the generation of the resulting source code after preprocessing. Hence, nested
ifdef directives can be traced already at the development phase. For example,
we see which code fragments are automatically included in a program and which
not, based on the definition of variables of ifdef directives (e.g., the variable
HAVE QUEUE in Figure 2). This allows developers to detect missing constraints
(e.g., to include encryption functions, the required key generation and storage,
key initialization, and key usage when communication is used) already during
the development and helps to understand the cause of errors, bugs, and general
potential vulnerabilities.

AR can also be used to automatically show the documentation of classes and
methods when investigating the source code. This makes it easier to understand
the source code, because a developer is not interrupted in the analyzing process
anymore when she would need information of the documentation. Hence, using
AR techniques can increase the comprehensibility of source code.

5 Conclusion

We are surrounded by computers, which are mostly embedded, for example
in cars, PDAs, or mobile phones. To meet the requirements of resource con-
straints and heterogeneous hardware, conditional compilation is often used as
mechanism. However, using ifdef directives can lead to obfuscated and hard-to-
comprehend source code.

Measuring program comprehension reliably requires considerable effort, be-
cause it is an internal cognitive process. Nevertheless, it is important to mea-
sure program comprehension, so that it can be improved. Easy-to-comprehend
programs are better to maintain, more reliable, and more secure. Furthermore,
we can reduce the cost for software development by ensuring comprehensive
programs.

To improve program comprehension of preprocessor-based software, we pre-
sented how background colors can be used to highlight annotated code fragments.
Additionally, we introduced ideas how augmented reality can help to improve
program comprehension.

Acknowledgements. This work is funded by the German Ministry of Educa-
tion and Science (BMBF), project 01IM10002B.

References

1. Tennenhouse, D.: Proactive computing. Communications of the ACM 43(5), 43–50
(2000)

2. Siegmund, N., Feigenspan, J., Soffner, M., Fruth, J., Köppen, V.: Challenges of
Secure and Reliable Data Management in Heterogeneous Environments. In: Proc.
Int’l Workshop on Digital Engineering, pp. 17–24. ACM Press (2010)

Program Comprehension in Preprocessor-Based Software 527

3. Favre, J.: Understanding-In-The-Large. In: Proc. Int’l Workshop on Program Com-
prehension, p. 29. IEEE CS (1997)

4. Muthig, D., Patzke, T.: Generic Implementation of Product Line Components.
In: Aksit, M., Awasthi, P., Unland, R. (eds.) NODe 2002. LNCS, vol. 2591, pp.
313–329. Springer, Heidelberg (2003)

5. Spencer, H., Collyer, G.: #ifdef Considered Harmful or Portability Experience
With C News. In: Proc. USENIX Conf., pp. 185–198. USENIX Association (1992)

6. Lohmann, D., Scheler, F., Tartler, R., Spinczyk, O., Schröder-Preikschat, W.: A
Quantitative Analysis of Aspects in the eCos Kernel. In: Proc. Europ. Conf. Com-
puter Systems (EuroSys), pp. 191–204. ACM Press (2006)

7. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE
Trans. Softw. Eng. 30(6), 355–371 (2004)

8. Apel, S., Kästner, C., Lengauer, C.: FeatureHouse: Language-Independent, Auto-
matic Software Composition. In: Proc. Int’l Conf. Software Engineering (ICSE),
pp. 221–231. IEEE CS (2009)

9. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.:
An Overview of AspectJ. In: Lee, S.H. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–353. Springer, Heidelberg (2001)

10. Standish, T.: An Essay on Software Reuse. IEEE Trans. Softw. Eng. SE-10(5),
494–497 (1984)

11. Tiarks, R.: What Programmers Really Do: An Observational Study, pp. 36–37
(2011)

12. Brooks, R.: Using a Behavioral Theory of Program Comprehension in Software
Engineering. In: Proc. Int’l Conf. Software Engineering (ICSE), pp. 196–201. IEEE
CS (1978)

13. Pennington, N.: Stimulus Structures and Mental Representations in Expert Com-
prehension of Computer Programs. Cognitive Psychology 19(3), 295–341 (1987)

14. Liebig, J., Apel, S., Lengauer, C., Kästner, C., Schulze, M.: An Analysis of the
Variability in Forty Preprocessor-Based Software Product Lines. In: Proc. Int’l
Conf. Software Engineering (ICSE), pp. 105–114. ACM Press (2010)

15. Harrison, W., Ossher, H.: Subject-oriented Programming: A Critique of Pure Ob-
jects. In: Proc. Int’l Conf. Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA), pp. 411–428. IEEE CS (1993)

16. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopez, C., Loingtier, J.M.,
Irwin, J.: Aspect-Oriented Programming. In: Aksit, M., Auletta, V. (eds.) ECOOP
1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

17. Smaragdakis, Y., Batory, D.: Implementing Layered Designs with Mixin Layers.
In: Jul, E. (ed.) ECOOP 1998. LNCS, vol. 1445, pp. 550–570. Springer, Heidelberg
(1998)

18. Apel, S., Leich, T., Saake, G.: Aspectual Feature Modules. IEEE Trans. Softw.
Eng. 34(2), 162–180 (2008)

19. Shaft, T., Vessey, I.: The Relevance of Application Domain Knowledge: The Case of
Computer Program Comprehension. Information Systems Research 6(3), 286–299
(1995)

20. Soloway, E., Ehrlich, K.: Empirical Studies of Programming Knowledge. IEEE
Trans. Softw. Eng. 10(5), 595–609 (1984)

21. Shneiderman, B., Mayer, R.: Syntactic/Semantic Interactions in Programmer Be-
havior: A Model and Experimental Results. International Journal of Parallel Pro-
gramming 8(3), 219–238 (1979)

22. von Mayrhauser, A., Vans, A.: From Program Comprehension to Tool Require-
ments for an Industrial Environment. In: Proc. Int’l Workshop Program Compre-
hension (IWPC), pp. 78–86. IEEE CS (1993)

528 J. Siegmund et al.

23. Koenemann, J., Robertson, S.: Expert Problem Solving Strategies for Program
Comprehension. In: Proc. Conf. Human Factors in Computing Systems (CHI), pp.
125–130. ACM Press (1991)

24. Figueiredo, E., Cacho, N., Monteiro, M., Kulesza, U., Garcia, R., Soares, S., Ferrari,
F., Khan, S., Filho, F., Dantas, F.: Evolving Software Product Lines with Aspects:
An Empirical Study on Design Stability. In: Proc. Int’l Conf. Software Engineering
(ICSE), pp. 261–270. ACM Press (2008)

25. Henderson-Sellers, B.: Object-Oriented Metrics: Measures of Complexity. Prentice
Hall (1995)

26. McConnell, S.: Code Complete, 2nd edn. Microsoft Press (2004)
27. Robillard, M., Murphy, G.: Representing Concerns in Source Code. ACM Trans.

Softw. Eng. & Methodology 16(1), 1–38 (2007)
28. Figueiredo, E., Whittle, J., Garcia, A.: ConcernMorph: Metrics-based Detection of

Crosscutting Patterns. In: Proc. Europ. Software Engineering Conf./Foundations
of Software Engineering (ESEC/FSE), pp. 299–300. ACM Press (2009)

29. Boysen, J.: Factors Affecting Computer Program Comprehension. PhD thesis, Iowa
State University (1977)

30. Feigenspan, J., et al.: Exploring Software Measures to Assess Program Comprehen-
sion. In: Proc. Int’l Symposium Empirical Software Engineering and Measurement
(ESEM), pp. 1–10, paper 3. IEEE CS (2011)

31. Likert, R.: A Technique for the Measurement of Attitudes. Archives of Psychol-
ogy 22(140), 1–55 (1932)

32. Dunsmore, A., Roper, M.: A Comparative Evaluation of Program Comprehension
Measures. Technical Report EFoCS 35-2000, Department of Computer Science,
University of Strathclyde (2000)

33. Shneiderman, B.: Measuring Computer Program Quality and Comprehension. In-
ternational Journal of Man-Machine Studies 9(4), 465–478 (1977)

34. Someren, M., Barnard, Y., Sandberg, J.: The Think Aloud Method: A Practical
Guide to Modelling Cognitive Processes. Academic Press (1994)

35. Shaft, T., Vessey, I.: The Relevance of Application Domain Knowledge: The Case of
Computer Program Comprehension. Information Systems Research 6(3), 286–299
(1995)

36. Tichy, W.F.: Should Computer Scientists Experiment More? Computer 31(5), 32–
40 (1998)

37. Goldstein, B.: Sensation and Perception, 5th edn. Cengage Learning Services (2002)
38. Feigenspan, J., Kästner, C., Apel, S., Leich, T.: How to Compare Program Com-

prehension in FOSD Empirically - An Experience Report. In: Proc. Int’l Workshop
on Feature-Oriented Software Development, pp. 55–62. ACM Press (2009)

39. Feigenspan, J., Schulze, M., Papendieck, M., Kästner, C., Dachselt, R., Köppen,
V., Frisch, M.: Using Background Colors to Support Program Comprehension in
Software Product Lines. In: Proc. Int’l Conf. Evaluation and Assessment in Soft-
ware Engineering (EASE), pp. 66–75. Institution of Engineering and Technology
(2011)

Author Index

Adler, Friederike 477
Alonso-Montes, Carmen 427
Asplund, Fredrik 392

Barbosa, Ricardo 106
Belmonte, Fabien 50
Benvenuti, Luca 409
Berger, Christian 180
Biehl, Matthias 392
Bleier, Thomas 365
Blom, Hans 190
Blondia, Chris 294
Bloomfield, Richard 247
Bloomfield, Robin 247
Bondavalli, Andrea 209, 271
Brade, Tino 162
Brancati, Francesco 205
Brunel, Julien 307
Buys, Jonas 294

Casimiro, António 149, 151
Cazin, Jacques 307
Chiaradonna, Silvano 328
Chmelar, P. 427
Ciampi, Mario 235
Cinque, Marcello 106
Coppolino, Luigi 222
Cotroneo, Domenico 106
Cullmann, Christoph 117
Cunha, João Carlos 357
Czyżnikiewicz, Jakub 417

Dalgaard, Lars 427
D’Antonio, Salvatore 222, 259
de Almeida Junior, Jorge Rady 271
De Florio, Vincenzo 294
de la Vara, Jose Luis 64
Denney, Ewen 8
De Pietro, Giuseppe 235
Dietrich, André 466
Di Giandomenico, Felicita 328
Dillen, Roeland 294
Dittmann, Jana 498, 517
Donzelli, Paolo 235

Eckel, Andreas 365
Ekelin, Cecilia 190
El-Salloum, Christian 365
Espinoza, Huáscar 22
Esposito, Christian 205, 235

Ferdinand, Christian 117
Ferrante, Orlando 409
Ferrari, Alberto 409
Formicola, Valerio 222
Fruth, Jana 498, 517

Gashi, Ilir 247
Gebhard, Gernot 117
Gebrehiwot, Abraham 235
Geven, Arjan 365
Gibson, Craig 259
Giovagnini, Fabio 357
Górski, Janusz 417
Graydon, Patrick J. 132

Habli, Ibrahim 22
Hanzlik, Alexander 373
Heckmann, Reinhold 117
Herzner, Wolfgang 427
Hirschler, Bernd 365
Hoppe, Tobias 498
Huber, Benedikt 382

Jar, Patryk 417
Jarz ↪ebowicz, Aleksander 417
Johansson, Rolf 174

Kaiser, Jörg 149, 162, 466
Karlsson, Daniel 190
Kästner, Daniel 117
Keller, Patric 454, 486
Kelly, Tim P. 3, 132
Kirner, Raimund 382
Kondeva, Antoaneta 400
Köppen, Veit 449
Kristen, Erwin 373
Kuhlmann, Sven 498, 517

La Mattina, Ernesto 209
Lambourg, Jerome 64

530 Author Index

Lanzaro, Anna 106
Liggesmeyer, Peter 454, 486
Ljungkrantz, Oscar 190
Loiret, Frédéric 392
Lollini, Paolo 209, 271
Lönn, Henrik 190
Lopes, Rui 319
Lu, Minyan 79

Mangeruca, Leonardo 409
Markovski, Jasen 36
Marques, Lúıs 151
Melideo, Matteo 259
Miler, Jakub 417
Mitschke, Andreas 400
Montecchi, Leonardo 209
Mori, Paolo 235

Nair, Sunil 64
Nielebock, Sebastian 508
Normann, Aslak R. 436
Nostro, Nicola 328
Nykolaychuk, Mykhaylo 477

Ortmeier, Frank 508
Osocha, Przemys�law 357
Östberg, Kenneth 174

Pai, Ganesh 8
Pecchia, Antonio 106
Pepek, Piotr 64
Petroni, Fabio 282
Pister, Markus 117
Platania, Marco 205
Pohl, Josef 8
Potluri, Sasanka 162
Prokesch, Daniel 382
Puschner, Peter 382

Querzoni, Leonardo 282

Richter, Klaus 477
Romano, Luigi 222, 259

Rossi, Magali Andreia 271
Ruiz, Alejandra 3, 22

Saake, Gunter 449, 517
Sabetzadeh, Mehrdad 3, 64
Schlickling, Marc 117
Schoitsch, Erwin 343, 427
Schumann, Marco 508
Sicuranza, Mario 235
Siegmund, Janet 517
Siegmund, Norbert 517
Silva, Nuno 106, 319
Sjong, Dag 436
Skavhaug, Amund 343, 436
Skjønsfjell, Marte E.B. 436
Skopik, Florian 365
Soffner, Michael 477
Sofronis, Christos 409
Soubiran, Elie 50
Sputh, Bernhard H.C. 92
Steiner, Max 454
Stroud, Robert 247
Studzizba, Janusz 64

Treytl, Albert 365

van de Mortel-Fronczak, J.M. 36
Van Den Abeele, Didier 3
Verhulst, Eric 64, 92
Vigo, Roberto 347

Wasicek, Armin 365
Wassmuth, Martin 400
Winge, André 508
Witkowicz, Micha�l 417

Yang, Yi 486

Zeng, Fuping 79
Zhang, Dajian 79
Zhao, Xingyu 79
Zug, Sebastian 162, 466

	Title

	Preface
	Organization
	Table of Contents
	Next Generation of System Assurance
Approaches for Safety-Critical Systems Workshop (Sassur 2012)
	AdvoCATE: An Assurance Case Automation Toolset

	Introduction
	Extended Goal Structuring Notation
	Metamodel
	Node Metadata

	Tool Chain Architecture and Implementation
	Basic Functionality and Interoperability
	Creating and Editing Safety Cases
	Interoperability

	Automated Assembly
	From Formal Proofs to Safety Cases
	From Safety Cases to Formal Specifications

	Generation of Safety Case Metrics
	Metrics Derivation
	Metrics Implementation

	Transformation Operations
	Conclusion
	References

	Towards a Case-Based Reasoning Approach for Safety Assurance Reuse

	Introduction
	Background and Related Work
	Regulatory Scenario in the Avionics Domain
	The Multi-Core and Mixed-Criticality Technology Case
	Argumentation and Modular Safety Cases
	The Case-Based Reasoning Approach

	Outlining a CBR Approach for Safety Assurance Reuse
	Problem Description
	Case Characterization
	Case Retrieving and Reuse
	Discussion

	Conclusions
	References

	Modeling for Safety in a Synthesis-Centric Systems Engineering Framework

	Introduction
	Synthesis-Centric Model-Based Systems Engineering
	Industrial Case Study: Theme Park Vehicle
	Concluding Remarks
	References

	A Model Based Approach for Safety Analysis
	Introduction
	Overview of the Safety Analysis
	Model Based Safety
	SysML and MARTE
	The Safety DSML
	The Need of Formal Language: Altarica
	The Proposed Process

	Model Transformation
	Overview of the Targeted Altarica Models
	Formalization of the Model Transformation

	Conclusion
	References

	Towards a Model-Based Evolutionary Chain of Evidence for Compliance with Safety Standards

	Introduction
	Background
	Safety Certification
	OPENCOSS
	Earlier Surveys on Certification Issues and Evidence Management
	Safety Evidence Management and Evolution
	Model-Driven Compliance with Safety Standards
	Related Projects and Initiatives

	Situations in Which Evidence Evolves
	Envisioned Solution
	Challenges
	Conclusions and Future Work
	References

	A New Approachto Assessment of Confidence in Assurance Cases

	Introduction
	Related Work
	Assurance Case and Its Confidence
	Good Reasoning on Toulmin Model

	Proposed Approach
	Convert ARM-Based Case to Toulmin Model Instance
	Construct the Structure of Basic BBN
	Quantify BBN and Measure Confidence

	Simplified Case Study
	Conclusion
	References

	An Unified Meta-model
for Trustworthy Systems Engineering
	Introduction
	Related Work

	A Generic Framework for Systems Engineering
	Intentional Approach to Systems Engineering
	Intentional Requirements, Concrete Specifications

	The Notion of a Systems Grammar as a Meta-model
	Overview of the Meta-model
	Requirements vs. Specifications
	Development, Verification, Testing and Validation
	The Main Complementary Views in SE
	Morphing Work Products as Templates, Resources and Deliverables
	Links and Entity Dependencies
	State Transitions and Process Flow

	Unified SE vs. Domain Specific Engineering
	GoedelWorks as a Supporting Environment
	Importing the ASIL Automotive Centered Safety Integrity Level Process Flow

	Conclusions
	References

	A Preliminary Fault Injection Framework
for Evaluating Multicore Systems
	Introduction
	Related Work
	Proposed Framework
	Case Study
	Preliminary Application
	Campaign #1
	Campaign #2

	Conclusion
	References

	Meeting Real-Time Requirements
with Multi-core Processors
	Introduction
	Requirements of Safety Standards
	Static Timing Analysis
	Predictability Challenges
	Multi-core Processors
	Configuring the MPC5668G
	Configuring the MPC8641D
	Other Multi-core Architectures

	Experimental Observations
	Design for Predictability
	Design Principles
	Design Guidelines

	Conclusion
	References

	Assessing Software Interference Management
When Modifying Safety-Related Software
	Introduction
	Current Guidance and Practice
	Current Approaches to Assessing Interference Management
	Standards for Partitioning

	A Model of Interference and Its Management
	A Method for Identifying Interference and How a System Manages It
	Reasoning about Interference Management
	A Case Study to Answer Questions from Prior Work
	Specimen System
	Study Results

	Conclusion
	References

	Workshop on Architecting Safety
in Collaborative Mobile Systems (ASCoMS 2012)
	Introduction to ASCoMS 2012
	Towards Dependable and Stable Perception
in Smart Environments with Timing and Value Faults
	Introduction
	Threats to Reliable Perception
	Accurate and Timely Perception
	Timeliness
	Accuracy and Value Faults
	Adaptation Stability and Application Performance

	Towards an Architecture for Dependable and Stable Environment Perception
	Conclusion
	References

	An Approach Supporting Fault-Propagation
Analysis for Smart Sensor Systems
	Introduction
	State of the Art
	Concept
	Fault Categorization
	Fault Propagation

	Example
	Conclusion
	References

	Use of Quality Metrics for Functional Safety
in Systems of Cooperative Vehicles
	Introduction
	Basic Concept of Information Theory
	Functional Safety and Quality Calculations
	Conclusion
	References

	From Autonomous Vehicles to Safer Cars:
Selected Challenges for the Software Engineering
	Introduction
	Related Work
	Selected Challenges for Software Engineering
	Conclusion
	References

	Modelling of Safety-Related Timing Constraints
for Automotive Embedded Systems
	Introduction
	Modelling Language
	Overview of the Safety-Related Timing Constraints
	Proposed Modelling Language Extensions
	Fault Tolerant Time Interval (FTTI)
	Interpretation
	Examples
	Modelling

	Emergency Operation Interval (EOI)
	Interpretation
	Examples
	Modelling

	Conclusions and Further Work
	References

	Workshop on Dependable and Secure Computing for Large-scale
Complex Critical Infrastructures (DESEC4LCCI 2012)
	Introduction to DESEC4LCCI 2012
	Quantitative Security Evaluation
of a Multi-biometric Authentication System
	Introduction
	Related Work
	Targeted System and Scenario
	Security Threats to Biometric Authentication Systems
	Scenario Description and Analysis Objectives

	Modeling Approach
	The ADVISE Formalism
	ADVISE Model

	Evaluation and Results
	Variant #1: Two Biometric Traits, Single Encryption Key
	Variant #2: Three Biometric Traits, Single Encyption Key

	Variant #3: Three Biometric Traits, Three Encyption Keys

	Conclusions
	References

	Protecting the WSN Zones of a Critical Infrastructure
via Enhanced SIEM Technology
	Rationale and Contribution
	Enhanced SIEMs for CIs
	Data Treatment Framework of MASSIF SIEM
	Protecting the WSN Zones of a Dam Infrastructure
	Conclusions and Future Work
	References

	On Securing Communications
among Federated Health Information Systems
	Introduction
	Security Requirements
	Proposed Solution
	State of the Art in Securing Web Services
	Securing Web Services in InFSE
	Use Cases
	Summary

	Related Work
	Final Remarks and Future Work
	References

	How Secure Is ERTMS?

	Introduction
	Overview of ERTMS
	Scope of Analysis
	Threat Model
	Methodology
	Trust Relationships
	Weaknesses and Vulnerabilities
	General Observations
	Specific Observations

	Scenario Analysis
	Related Work
	Discussion and Conclusions
	References

	International Cooperation Experiences:
Results Achieved, Lessons Learned, and Way Ahead
	Rationale and Contribution
	The QualiPSo Experience
	Short Description of the Project
	Specific Results Achieved

	The INSPIRE + INSPIRE-INCO Experience
	Short Description of the Project
	Specific Results Achieved

	The Massif Experience
	Short Description of the Project
	Specific Results Achieved and Expected

	Conclusions and Wish List
	References

	A Federated Simulation Framework
with ATN Fault Injection Module for Reliablity Analysis of UAVs in Non-controlled Airspace
	Introduction
	Related Works
	ATN Environment and Simulation Framework
	ATN
	The Federated Simulation Framework

	Fault Injection
	Fault Injection in ATN
	Network Faults

	Safety Evaluation
	Conclusion
	References

	HSIENA: A Hybrid Publish/Subscribe System
	Introduction
	Background
	SIENA Pub/Sub System
	Related Work

	HSIENA Architecture and Algorithms
	Overview and Design Principles
	Data Structures
	Broadcast Layer Reconfiguration Protocol
	Content Based Layer Reconfiguration Protocol
	Concurrency Management
	Event Routing

	Conclusions
	References

	WSDM-Enabled Autonomic Augmentation of Classical Multi-version Software
Fault-Tolerance Mechanisms
	Introduction
	Key Technologies and Standards
	Basic Principles and Components
	Budget Application Strategy (BAS)

	Performance Analysis
	Results
	Discussion

	Conclusions and Future Work
	References

	Formal Verification of a Safety Argumentation
and Application to a Complex UAV System
	Introduction
	The ForSALE Language
	ForSALE Basic Concepts
	Semantics
	Concrete Graphical Syntax

	The UAV Insertion Case Study
	ForSALE Support Environment
	Related Work
	Conclusion and Future Work
	References

	Electronic Reliability Estimation:
How Reliable Are the Results?
	Introduction
	Reliability Estimation – Methodology, Case Study and Tools
	Reliability Estimation Methodology
	Case Study
	Tools

	Results
	Limitations and Lessons Learned
	Conclusions
	Future Work
	References

	Model-Based Assessment of Multi-region Electric Power Systems
Showing Heterogeneous Characteristics
	Introduction
	Overview of the Multi-region EPS Model
	The EPS Configuration under Analysis, Measures of Interest and Scenarios
	Analysis Results
	Conclusions
	References

	ERCIM/EWICS/Cyberphysical
Systems Workshop
	Introduction to the ERCIM/EWICS
Cyberphysical Systems Workshop 2012
	The Cyber-Physical Attacker
	Introduction
	CPS Essentials
	Attacker Model
	A Protocol Perspective
	Expressiveness of Existing Frameworks
	Conclusion and Future Work
	References

	Dependable and Secure Embedded Node Demonstrator
	Introduction
	Embedded Node Architecture
	Power Node Demonstrator
	Use Case Scenarios
	Conclusion
	References

	Towards Secure Time-Triggered Systems

	Introduction
	Basic Concepts and Related Work
	The SCOTTY Approach
	A Security Architecture for Time-Triggered Communication
	Scalability and Legacy Support of the Security Architecture

	Discussion and Conclusion
	References

	Towards a Framework for Simulation Based Design,
Validation and Performance Analysis of Electronic Control Systems
	Introduction
	Motivation and Objectives
	System Model

	The Data Time Flow Simulator
	Application Example
	System Assessment Phase
	Single Signal Assessment Phase

	Conclusion
	References

	Compiling for Time Predictability
	Introduction
	Desirable Code-Timing Properties
	How to Make Execution Times Predictable
	Generating Single-Path Code
	If-Conversion
	The Single-Path Transformation
	Preparing for the Single-Path Transformation.
	The Actual Transformation.

	Single-Path Transformation and Partial Predication

	Conclusion and Outlook
	References

	Towards the Automated Qualification
of Tool Chain Design
	Introduction
	Approach
	Tailoring of the Tool Chain
	Analysis of the Composition
	Risk Type 1
	Risk Type 2
	Risk Type 3

	Related Work
	Summary and Future Work
	References

	A Systematic Elaboration of Safety
Requirements in the Avionic Domain
	Introduction
	From System Safety Requirements to Item Safety Requirements
	Safety Requirements Specification and Refinement
	Safety Analysis

	The Safety Requirements Elaboration and the ARP4754 System Development Process
	Case Study
	Case Study Description
	Applying the Requirements Elaboration Process on the DMS

	Conclusion and Future Work
	References

	Parallel NuSMV: A NuSMV Extension for theVerification of Complex Embedded Systems
	Introduction
	FormalSpecs Verifier Verification Framework
	Parallel NuSMV Tool
	Cruise Control Model
	Experimental Results
	Cruise Control Model
	Additional Experiments

	Conclusions and Future Works
	References

	Supporting Assurance by Evidence-Based
Argument Services
	Introduction
	Evidence Based Arguments – The TRUST-IT Model
	Tool Support – NOR-STA Services
	Scope
	Implementation
	Service Quality

	Demonstration Scenario: Safety Assurance
	Present Experience
	Conclusions
	References

	Towards Composable Robotics: The R3-COP
Knowledge-Base Driven Technology Platform
	Introduction
	The R3-COP Concept: Framework and Interoperability
	The Knowledge Base for Design and Development (DDKB)
	The Knowledge Base for V&V (VVKB)
	Conclusions
	References

	Addressing the Needs of an Aging Population: An Experiment for Monitoring Behaviour
in a Domestic Environment
	Introduction
	Welfare Technology
	Overview of the Implemented System
	Some Results
	Zone Occupancy
	Orientation and Pedometer Data
	Presentation
	Experience of the Test Subject

	Discussion
	Conclusion
	References

	International Workshop
on Digital Engineering (IWDE 2012)
	Introduction to IWDE 2012
	Overview
	Objectives
	Topics
	Workshop Contributions
	Program Committee
	References

	Modeling the Effects of Software on Safety�and Reliability in Complex Embedded Systems
	Introduction
	Demonstrator: RAVON
	Behavior-Based Network Description

	Related Work
	State-Event Fault Trees
	Modeling Approach
	Process Chain
	Translation from iB2C to SEFT
	Translation from SEFT to DSPN
	Analysis in TimeNET

	Results
	Conclusion
	References

	Towards Artificial Perception
	Introduction and Motivation
	Contributions
	Outline

	Related Work
	Roadmap
	Initial Situation
	Spatial Arrangement
	Dealing with the Dynamically Changing Environments
	Middleware Integration

	Conclusion
	References

	A Case Study of Radio-Based Monitoring
System for Enhanced Safety of Logistics Processes
	Introduction
	The Collision Detection System's Architecture
	Collision Detection Component
	Abatec LPM Software and Hardware Components

	Application Scenario
	Evaluation
	Measurement Accuracy of the LPM System
	Efficiency of LPM System and Collision Detection

	Conclusion and Outlook
	References

	Visual Approach Facilitating the Importance
Analysis of Component Fault Trees
	Introduction
	Previous Work
	Problem Statement

	Visualization of the Important Analysis
	Design
	Visualization
	Interaction
	Scalability

	Application Scenario
	Evaluation
	Conclusion and Future Work
	References

	Simulation of Structural Effects in Embedded Systems
and Visualization of Dependencies According to an Intended Attack or Manipulation
	Introduction and Concepts Used
	Addressed Standards and Used Technologies

	Modelling an Electronic (CAN) System in AnyLogic
	Implementation of the Electronic Control Units (ECU)
	Implementation of the Sensors and Actuators
	Implementation of the Overall Model

	Validation
	Outlook
	References

	From Discrete Event Simulation to Virtual
Reality Environments
	Introduction
	Related Work
	Concept of the Coupling
	Temporal Coupling – Synchronization
	Spatial Coupling
	User Interaction

	Evaluation
	Conclusion
	References

	Program Comprehension
in Preprocessor-Based Software
	Introduction
	Background
	#Ifdef Hell
	Program Comprehension

	Measurement of Program Comprehension
	Software Measures
	Self Estimation
	Tasks
	Think-Aloud Protocols

	Improving Program Comprehension
	Background Colors
	Tool support
	Augmented Reality

	Conclusion
	References

	Author Index

