Frank Ortmeier
Peter Daniel (Eds.)

Computer Safety,
Reliability, and Security

SAFECOMP 2012 Workshops:
Sassur, ASCoMS, DESEC4LCCI, ERCIM/EWICS, IWDE
Magdeburg, Germany, September 2012, Proceedings

LNCS 7613

@ Springer

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Alfred Kobsa

University of California, Irvine, CA, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Germany
Madhu Sudan

Microsoft Research, Cambridge, MA, USA
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbruecken, Germany

7613

Frank Ortmeier Peter Daniel (Eds.)

Computer Safety,
Reliability, and Security

SAFECOMP 2012 Workshops: Sassur, ASCoMS,
DESEC4LCCI, ERCIM/EWICS, IWDE
Magdeburg, Germany, September 25-28, 2012
Proceedings

@ Springer

Volume Editors

Frank Ortmeier

Otto-von-Guericke-Universitat, Fakultit fiir Informatik

Institut fiir Technische und Betriebliche Informationssysteme (ITI)
Universititsplatz 2, 39106 Magdeburg, Germany

E-mail: frank.ortmeier @ovgu.de

Peter Daniel

SELEX ELSAG, Liverpool Innovation Park
Edge Lane, Fairfield, Liverpool, L7 9NJ, UK
E-mail: ewicstc7 @prdaniel.co.uk

ISSN 0302-9743 e-ISSN 1611-3349

ISBN 978-3-642-33674-4 e-ISBN 978-3-642-33675-1
DOI 10.1007/978-3-642-33675-1

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012947423
CR Subject Classification (1998): K.6.5,D.2, C.2,F3, H4,D.3,1.2

LNCS Sublibrary: SL 2 — Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Safety, reliability, and security are becoming vital in almost all technical domains.
The reason is that computer pervasion is steadily increasing and more and more
systems are becoming networked. This often leads to the term of cyber-physical
systems, i.e., systems influencing our environment that are connected by mod-
ern computer networks. Examples are smart traffic guidance, intelligent power
lines, or autonomous vehicles. Despite the commonality in safety challenges, each
domain has very specific stakeholders, requirements, standards, etc.

To account for this, we decided to give various domain experts a common
meeting place in the form of domain-specific workshops at SAFECOMP. The
common theme is safety and security. Bringing these experts together at one
place and collecting their articles in one volume fosters collaboration and the
exchange of ideas.

For SAFECOMP 2012, we accepted five domain-specific, high-quality work-
shops. Each workshop had well-known chairs and an international program com-
mittee. Altogether 69 researchers from 15 countries reviewed the following 44
articles.

Architecting safe collaborative mobile systems was the aim of the ASCoMS
workshop (chairs: Anténio Casimiro and Jorg Kaiser). Building autonomous
mobile systems is already challenging. However, for transition from academia
to real-world scenarios, safety guarantees are mandatory and a prerequisite for
acceptance.

Our daily life heavily depends upon the correct functioning of many com-
plex large-scale infrastructures such as communication, power, or water sup-
ply. The DESECALCCI workshop (chairs: Christian Esposito, Marco Platania,
and Francesco Brancati) focused on dependable and secure computing for such
systems. Until recently, security for such systems could be reduced to physical
security (i.e., protecting the infrastructure by security personal). As systems be-
come widely connected, this is no longer sufficient and new approaches must be
developed.

The emergence of cyber-physical systems is speeding up exponentially. The
ERCIM/EWICS/DECOS workshop (chairs: Erwin Schoitsch and Amund
Skavhaug) brought together stakeholders from many major European research
projects and programs to exchange ideas on making such systems safer and more
reliable.

Design and operation of most technical systems is no longer only an engineer-
ing challenge. It requires the interaction of mechanical, electrical, and software
engineers for digitally engineering such a system. The 3rd International Work-
shop on Digital Engineering — IWDE (chairs: Gunter Saake and Veit Képpen)
brought together researchers from these domains, which share the common vision
of jointly digitally engineering safe and secure systems.

VI Preface

Safety assurance and certification are amongst the most expensive and time-
consuming tasks in the development of safety-critical systems. The SASSUR
workshop (chairs: Alejandra Ruiz, Tim Kelly, Mehrdad Sabetzadeh, and Didier
Van den Abeele) focused exactly on bridging this gap. It covered new methods,
approaches, and tools on tackling this problem.

Summarizing, I have to say that correspondence and organization of these
five workshops for SAFECOMP took a lot of my time. But when looking at the
program now, I would like to express my deepest thanks to all workshop chairs.
You did a fantastic job. The program was very tempting and a great extension to
SAFECOMP 2012. I would also like to thank in particular Michael Lipaczewski,
who did a great job in organizing this volume and collecting all the articles,
introductions, copyright forms, etc.

I hope you are all enjoying this volume and are maybe even benefitting from
some new ideas and achievements presented here.

August 2012 Frank Ortmeier

Organization

Next Generation of System Assurance Approaches for
Safety-Critical Systems Workshop (Sassur 2012)

Chairs

Didier Van Den Abeele Alstom Transport, France

Tim Kelly University of York, UK

Alejandra Ruiz Tecnalia, Spain

Mehrdad Sabetzadeh Simula Research Laboratory, Norway

Steering Committee

Annie Combelles Inspearit, France

Javier Diaz University of Granada, Spain
Huascar Espinoza TECNALIA, Spain

John Favaro Intecs, Italy

Paolo Panaroni Intecs, Italy

Fulvio Tagliabo Centro Ricerche FIAT, Italy

Program Committee

Katrina Attwood University of York, UK

Fabien Belmonte Alstom, France

Ronald Blanrue EADS/Eurocopter, France

Marc Born ikv++ technologies ag, Germany
Sergio Campos Tecnalia Research & Innovation, Spain
Daniela Cancilla Atego, France

Cedric Chevrel Thales Avionics, France

C. Michael Holloway NASA Langley Research Center, USA
Olaf Kath ikv++ technologies ag, Germany
Andreas Keis EADS/Innovation Works, UK

Uwe Kremer TUV SUD, Germany

Xabier Larrucea TECNALIA, Spain

Mark Nicholson University of York, UK

Jiirgen Niehaus Safetrans, Germany

Kenji Taguchi AIST, Japan

Jose Luis De La Vara Simula Research Laboratory, Norway
Harold Weffers Eindhoven University of Technology,

The Netherlands

VIII Organization

Workshop on Architecting Safety in Collaborative Mobile
Systems (ASCoMS 2012)

Chairs

Antoénio Casimiro University of Lisbon, Portugal

Jorg Kaiser Otto-von-Guericke-University of Magdeburg,
Germany

Program Committee

Luis Almeida FEUP, Portugal

Leandro Becker UFSC, Brazil

Andrea Bondavalli University of Florence, Italy

Thomas Fuhrman GM, USA

Karl Goeschka Vienna University of Technology, Austria

Rolf Johansson SP, Sweden

Marcelo Lemes EMBRAER, Brazil

Priya Narasimhan Carnegie Mellon University, USA

Edgar Nett Otto-von-Guericke-University of Magdeburg,
Germany

Stefan Schemmer RT Solutions, Germany

Elad Michael Schiller Chalmers University of Technology, Sweden

Paulo Verissimo University of Lisbon, Portugal

Workshop on Dependable and Secure Computing
for Large-scale Complex Critical Infrastructures
(DESEC4LCCI 2012)

Chairs

Francesco Brancati Resiltech, Italy

Christian Esposito Institute of High Performance Computing
and Networking (ICAR), Italy

Marco Platania Sapienza University of Rome, Italy

Program Committee

Angelo Corsaro PrismTech, UK

Michele Colajanni University of Modena, Italy

Bojan Cukic West Virginia University, USA

Francesco Flammini University “Federico I1” of Naples, Italy

Felicita Di Giandomenico ISTI-CNR, Italy

Abdelmajid Khelil
Catello Di Martino
Edgar Nett

Ricardo Jimenez Peris
Sara Tucci Piergiovanni
Luigi Romano

Nuno Silva

Paulo Verissimo

Marco Vieira

Organization X

TU Darmstadt, Germany

University of Illinois at Urbana-Champaign, USA

Otto-von-Guericke-University of Magdeburg,
Germany

Universidad Politecnica de Madrid, Spain

CEA LIST, Italy

Parthenope University of Naples, Italy

Critical Software SA, Portugal

University of Lisbon, Portugal

University of Coimbra, Portugal

ERCIM/EWICS/Cyberphysical Systems Workshop

Chairs

Erwin Schoitsch
Amund Skavhaug

Program Committee

Friedemann Bitsch
Sandro Bologna
Wolfgang Ehrenberger
Francesco Flammini
Robert Genser

Janusz Gorski
Maritta Heisel

Floor Koornneef
Peter Ladkin

Meine van der Meulen
Odd Nordland

Frank Ortmeier
Thomas Pfeiffenberger
Francesca Saglietti
Christoph Schmitz
Erwin Schoitsch

Rolf Schumacher
Amund Skavhaug

Austrian Institute of Technology, Austria
NTNU, Trondheim, Norway

Germany
Ttaly
Germany
Italy
Austria
Poland
Germany
The Netherlands
Germany
Norway
Norway
Germany
Austria
Germany
Switzerland
Austria
Germany
Norway

X Organization

International Workshop on Digital Engineering

(IWDE 2012)

Chairs
Veit Koppen

Gunter Saake

Program Committee

Abdel-Badeeh M. Salem
Andreas Brenke
Raimund Dachselt
Matthias Giidemann
Frank Ortmeier

Dirk Reiners
Hermann Rohling
Michael Schenk
Gunter Saake

Otto-von-Guericke-University Magdeburg,
Germany

Otto-von-Guericke-University Magdeburg,
Germany

Ain Shams University, Egypt

HS Niederrhein, Germany

TU Dresden, Germany

Inria, Grenoble, France

Otto-von-Guericke University Magdeburg,
Germany

University of Louisiana at Lafayette, USA

TU Hamburg, Germany

FhG IFF Magdeburg, Germany

Otto-von-Guericke University Magdeburg,
Germany

Table of Contents

Next Generation of System Assurance Approaches
for Safety-Critical Systems Workshop (Sassur 2012)

Introduction to Sassur 2012
Alejandra Ruiz, Tim P. Kelly, Mehrdad Sabetzadeh, and
Didier Van Den Abeele

AdvoCATE: An Assurance Case Automation Toolset
FEwen Denney, Ganesh Pai, and Josef Pohl

Towards a Case-Based Reasoning Approach for Safety Assurance
ReUse .
Alejandra Ruiz, Ibrahim Habli, and Hudscar Espinoza

Modeling for Safety in a Synthesis-Centric Systems Engineering
Framework
Jasen Markovski and J.M. van de Mortel-Fronczak

A Model Based Approach for Safety Analysis........................
Fabien Belmonte and Elie Soubiran

Towards a Model-Based Evolutionary Chain of Evidence for Compliance
with Safety Standards
Jose Luis de la Vara, Sunil Nair, Eric Verhulst, Janusz Studzizba,

Piotr Pepek, Jerome Lambourg, and Mehrdad Sabetzadeh

A New Approach to Assessment of Confidence in Assurance Cases
Xingyu Zhao, Dajgian Zhang, Minyan Lu, and Fuping Zeng

An Unified Meta-model for Trustworthy Systems Engineering..........
Eric Verhulst and Bernhard H.C. Sputh

A Preliminary Fault Injection Framework for Evaluating Multicore
SYSEEINS . .ttt
Anna Lanzaro, Antonio Pecchia, Marcello Cingue,
Domenico Cotroneo, Ricardo Barbosa, and Nuno Silva

Meeting Real-Time Requirements with Multi-core Processors
Daniel Kdistner, Marc Schlickling, Markus Pister,
Christoph Cullmann, Gernot Gebhard, Reinhold Heckmann, and
Christian Ferdinand

Assessing Software Interference Management When Modifying
Safety-Related Software.......
Patrick J. Graydon and Tim P. Kelly

22

36

50

64

79

XII Table of Contents

Workshop on Architecting Safety in Collaborative
Mobile Systems (ASCoMS 2012)

Introduction to ASCoMS 2012 149
Antonio Casimiro and Jorg Kaiser

Towards Dependable and Stable Perception in Smart Environments
with Timing and Value Faults, 151
Luis Marques and Antdénio Casimiro

An Approach Supporting Fault-Propagation Analysis for Smart Sensor
SYSTEIMS . . ottt 162
Sebastian Zug, Tino Brade, Jorg Kaiser, and Sasanka Potluri

Use of Quality Metrics for Functional Safety in Systems of Cooperative
Vehicles ... 174
Kenneth Ostberg and Rolf Johansson

From Autonomous Vehicles to Safer Cars: Selected Challenges for the
Software Engineering i 180
Christian Berger

Modelling of Safety-Related Timing Constraints for Automotive

Embedded Systems. 190
Oscar Ljungkrantz, Henrik Lonn, Hans Blom, Cecilia Ekelin, and
Daniel Karlsson

Workshop on Dependable and Secure Computing
for Large-Scale Complex Critical Infrastructures
(DESEC4LCCI 2012)

Introduction to DESECALCCI 2012 it 205

Christian Esposito, Marco Platania, and Francesco Brancati

Quantitative Security Evaluation of a Multi-biometric Authentication

SYSEEINL . .t 209
Leonardo Montecchi, Paolo Lollini, Andrea Bondavalli, and
Ernesto La Mattina

Protecting the WSN Zones of a Critical Infrastructure via Enhanced

STEM Technologyot e e e e 222
Luigi Romano, Salvatore D’Antonio, Valerio Formicola, and
Luigi Coppolino

On Securing Communications among Federated Health Information

SYSEEINS . .ttt 235
Mario Ciampi, Giuseppe De Pietro, Christian FEsposito,
Mario Sicuranza, Paolo Mori, Abraham Gebrehiwot, and
Paolo Donzelli

Table of Contents

How Secure Is ERTMS?
Richard Bloomfield, Robin Bloomfield, Ilir Gashi, and Robert Stroud

International Cooperation Experiences: Results Achieved, Lessons
Learned, and Way Ahead i
Craig Gibson, Matteo Melideo, Luigi Romano, and
Salvatore D’Antonio

A Federated Simulation Framework with ATN Fault Injection Module
for Reliablity Analysis of UAVs in Non-controlled Airspace

Magali Andreia Rossi, Jorge Rady de Almeida Junior,
Andrea Bondavalli, and Paolo Lollini

HSIENA: A Hybrid Publish/Subscribe System

Fabio Petroni and Leonardo Querzoni

WSDM-Enabled Autonomic Augmentation of Classical Multi-version
Software Fault-Tolerance Mechanisms
Roeland Dillen, Jonas Buys, Vincenzo De Florio, and Chris Blondia

Formal Verification of a Safety Argumentation and Application to a
Complex UAV Systemmot
Julien Brunel and Jacques Cazin

Nuno Silva and Rui Lopes

Model-Based Assessment of Multi-region Electric Power Systems
Showing Heterogeneous Characteristics
Silvano Chiaradonna, Felicita Di Giandomenico, and Nicola Nostro

ERCIM/EWICS/Cyberphysical Systems Workshop

Introduction to the ERCIM/EWICS Cyberphysical Systems
Workshop 2012 . ..o
Erwin Schoitsch and Amund Skavhaug

The Cyber-Physical Attacker
Roberto Vigo

Dependable and Secure Embedded Node Demonstrator
Przemystaw Osocha, Jodao Carlos Cunha, and Fabio Giovagnini

Towards Secure Time-Triggered Systems
Florian Skopik, Albert Treytl, Arjan Geven, Bernd Hirschler,
Thomas Bleier, Andreas Eckel, Christian FEl-Salloum, and
Armin Wasicek

XIV Table of Contents

Towards a Framework for Simulation Based Design, Validation
and Performance Analysis of Electronic Control Systems
Alexander Hanzlik and Erwin Kristen

Compiling for Time Predictability
Peter Puschner, Raimund Kirner, Benedikt Huber, and
Daniel Prokesch

Towards the Automated Qualification of Tool Chain Design
Fredrik Asplund, Matthias Biehl, and Frédéric Loiret

A Systematic Elaboration of Safety Requirements in the Avionic
Domain.o
Antoaneta Kondeva, Martin Wassmuth, and Andreas Mitschke

Parallel NuSMV: A NuSMV Extension for the Verification of Complex
Embedded Systems.
Orlando Ferrante, Luca Benvenuti, Leonardo Mangeruca,
Christos Sofronis, and Alberto Ferrari

Supporting Assurance by Evidence-Based Argument Services
Janusz Gorski, Aleksander Jarzebowicz, Jakub Miler,
Michat Witkowicz, Jakub Czyznikiewicz, and Patryk Jar

Towards Composable Robotics: The R3-COP Knowledge-Base Driven
Technology Platform i
Erwin Schoitsch, Wolfgang Herzner, Carmen Alonso-Montes,
P. Chmelar, and Lars Dalgaard

Addressing the Needs of an Aging Population: An Experiment

for Monitoring Behaviour in a Domestic Environment
Marte E.B. Skjonsfiell, Aslak R. Normann, Dag Sjong, and
Amund Skavhaug

International Workshop on Digital Engineering
(IWDE 2012)

Introduction to IWDE 2012
Veit Koppen and Gunter Saake

Modeling the Effects of Software on Safety and Reliability in Complex
Embedded Systems. ...
Max Steiner, Patric Keller, and Peter Liggesmeyer

Towards Artificial Perception i
André Dietrich, Sebastian Zug, and Jorg Kaiser

Table of Contents

A Case Study of Radio-Based Monitoring System for Enhanced Safety

of Logistics Processest e
Michael Soffner, Mykhaylo Nykolaychuk, Friederike Adler, and
Klaus Richter

Visual Approach Facilitating the Importance Analysis of Component
Fault Trees.o e e e e
Yi Yang, Patric Keller, and Peter Liggesmeyer

Simulation of Structural Effects in Embedded Systems and Visualization
of Dependencies According to an Intended Attack or Manipulation
Sven Kuhlmann, Jana Fruth, Tobias Hoppe, and Jana Dittmann

From Discrete Event Simulation to Virtual Reality Environments
Sebastian Nielebock, Frank Ortmeier, Marco Schumann, and
André Winge

Program Comprehension in Preprocessor-Based Software..............
Janet Siegmund, Norbert Siegmund, Jana Fruth, Sven Kuhlmann,
Jana Dittmann, and Gunter Saake

Author Index

XV

Next Generation of System Assurance
Approaches for Safety-Critical
Systems Workshop (Sassur 2012)

Introduction to Sassur 2012

Alejandra Ruiz', Tim P. Kelly®, Mehrdad Sabetzadeh’, and Didier Van Den Abeele’

"ICT-European Software Institute, TECNALIA, Parque Tecnoldgico Ed. 202, Zamudio, Spain
? Department of Computer Science, University of York, York, United Kingdom
? Simula Research Laboratory, Norway
* Alstom Transport, France
alejandra.ruiz@tecnalia.com, tim.kelly@york.ac.uk,
mehrdad@simula.no, didier.van-den-abeele@transport.alstom.com

Abstract. Safety assurance and certification are amongst the most expensive
and time-consuming tasks in the development of safety-critical systems. The in-
creasing complexity and size of these systems combined with their growing
market demand requires the industry to implement a coherent reuse strategy. A
key difficulty appears when trying to reuse products from one application
domain in another, because different domains are subject to different safety
regulations. Subsequently, for a reused product, the full safety assurance and
certification process has to be applied, just as for a new product. This reduces
the return on investment of such reuse. Further, market trends strongly suggest
that many future safety-critical systems will be comprised of heterogeneous,
dynamic coalitions of systems of systems. For this type of systems, it is crucial
to develop sound strategies that would allow safety assurance and certification
to be done compositionally.

1 Overview

The innovation and productivity in the market of safety-critical embedded systems is
curtailed by the lack of affordable safety assurance and (re)certification approaches.
Major problems arise when evolutions to a system entail reconstruction of the entire
body of certification arguments and evidence.

Modern engineering and business practices use massive subcontracting and Com-
mercial Off The Shelf (COTS) component-based development that provide little visi-
bility into subsystem designs. In the aerospace domain, experience shows that despite
the difficulties and costs incurred over the certification of COTS components, these
components pose relatively few problems, and in most cases, with only minor nega-
tive impact. This observation suggests that the required levels of safety can be met by
adopting broadly-used COTS products, thus laying the groundwork for a reuse strat-
egy in aerospace system design. In the automotive domain, ISO 26262 has introduced
the concept of SEooC (Safety Element out of Context) where a component is evalu-
ated against “presumed” operational context conditions. Once the component be-
comes part of a specific system in an actual operational context, the evaluation is

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 3-712012.
© Springer-Verlag Berlin Heidelberg 2012

4 A. Ruiz et al.

optimised by comparing assumed context conditions against actual context condi-
tions. This is in the right direction though it deserves to be investigated further.

Incremental and modular certification is a hot topic on the different European R&D
agendas. For instance, the ARTEMIS platform of embedded systems has included this
topic as one of the most challenging and influential for the next generation of systems
and systems of systems (Annual Programme 2012 and Strategic Research Agenda).
The EU FP7 program has recently launched several projects on safety certification as
result of its Call 7 for embedded systems.

2 Objectives

SASSUR aims at bringing together experts, researchers, and practitioners, from di-
verse communities, such as safety and security engineering, certification processes,
model-based technologies, software and hardware design, safety-critical systems and
applications communities (railway, aerospace, automotive, health, industrial manufac-
turing).

The topics of the proposed workshop are extremely important from an economical
and social view and yet some of them still constitute emerging research areas, possi-
bly without well-established or recognized results and require integration of knowl-
edge and cross fertilization from different domains. SAFECOMP is an excellent op-
portunity to bring together people from diverse critical systems communities, such as
automotive, avionics, railway... Jointly, these communities can help create a critical
mass of research, development and innovation in safety critical areas. An open ex-
change of ideas and experiences will benefit the global community, leading to new
insights and stimulating further development.

The SASSUR workshop is intended to explore new ideas on compositional and
evolutionary safety assurance and certification. In particular, SASSUR will provide a
platform for thematic presentations and in-depth discussions about reuse and compo-
sition of safety arguments, safety evidence, and contextual information about system
components, in a way that makes assurance and certification more cost-effective,
precise, and scalable.

3 Topics

Contributions were sought in (but are not limited to) the following topics:

Industrial challenges for cost-effective safety assurance and certification
Cross-domain product certification

Integration of process-centric and product-centric assurance

Compliance management of standards and regulations

Evidence traceability

Transparency of the safety assurance and certification processes: metrics and busi-
ness cases

e Evolutionary approaches for safety and security assurance and certification

Introduction to Sassur 2012 5

Case-based assurance approaches

Open-source tools for supporting of safety assurance

Mixed-criticality systems and multi-core platforms

Model-based methods and tools for safety assurance and certification support .

4 Workshop Contributions

Safety assurance and safety certification processes are some of the main concerns on
the industry. On one hand industry needs to be competitive so new technologies are
being included on the developments. The Integrated Modular Avionics (IMA) archi-
tecture on the avionics domain is becoming popular but still innovative and brings
questions for the reuse of the certification artefacts. Also multi-core technologies are
an important issue while dealing with certification and continue being an area for
research. Also on the certification topic evidence evolution is an open issue.

Model based developments are emerging on critical systems, and new frameworks
and methods need to be discussed to help decrease the entrance barrier on the indus-
try.

For safety assurance, the use of safety cases is very popular however this area is
willing to improve on confidence and some support on automation.

The papers presented on SASSUR deal with the topics mentioned before and create
topics for discussion and address new areas for research. Overall 6 long presentations
and 4 short presentations have been accepted for the workshop. A synopsis of each
presentation is given below.

AdvoCATE: An Assurance Case Automation Toolset : It introduces a tool suite for
construction of safety cases and further provides a number of quantitative metrics to
analyze the progress of safety case construction. An architectural view of the tool
suite is provided and explained, along with illustrations and interoperability features.
While the paper is focused primarily on tooling aspects, it manages to provide a con-
cise outline of some of the authors' earlier work on automated generation of safety
cases from proofs, and how that work blends into the tool suite. Behind the descrip-
tion of the tool capabilities, authors introduce a number of principles supporting the
toolset. Among them, interoperability of the specification is a topic carefully consid-
ered in AdvoCATE, both with similar tools (e.g. for safety case specification) and
with complementary tools (e.g. formal verification tools). Finally, authors present the
measurement capabilities built on metrics derivation

Modelling for Safety in a Synthesis-Centric Systems Engineering Framework: This
paper presents a framework for model-based systems engineering relying on formal
methods to automatically synthesize control designs. It gives an overview about the
principles of Supervisory Control Synthesis, describes the systems engineering
framework and a case study involving control of theme park vehicles (3 other case
studies are briefly mentioned, too).

Towards a Case-Based Reasoning Approach for Safety Assurance Reuse: The authors
address certification issues for Modular Avionics (IMA) platform and presents an

6 A. Ruiz et al.

approach using case-based reasoning (CBR) to facilitate the production of safety cas-
es. In order to take into account new challenges, which are related to the use of multi-
core and mixed-criticality technologies, the authors discuss the importance of tech-
niques based on modular argumentation.

A model based approach for safety analysis: This paper describes a model-based
safety analysis approach applied to the railway domain. It covers Preliminary Hazard
Analysis (PHA) and Failure Mode and Effect Analysis (FMEA) as two safety engi-
neering activities running in paralell with development activities. The approach is
based on SysML and some extensions incrementally done in the IMOFIS and
VERDE projects. The paper presents the on-going work to define the modeling
bridges between the proposed graphical modeling language (SysML-based) and the
Altarica language. The focus of the paper is the adds to support FMEA in the SysML-
based language extensions and the formalization of the model transformation.

A Preliminary Fault Injection Framework for Evaluating Multicore Systems: The
paper describes an experimental fault injection mechanism and framework for evalu-

ating multicore systems. The general background of multicore architecture issues
compared to single core architectures is being introduced, followed by an intro to the
framework itself and its application in two scenarios with Linux as application. A
preliminary case study using the Machine Check Architecture of the Intel Core i7 to
analyse error handling in the Linux Operating System is provided.

Meeting Real-Time Requirements with Multi-Core Processors: The paper concerns
WCET analysis for multi-core systems, an open industrial challenge and obstacle to
the adoption of multicore architectures for safety-critical embedded systems. The
papers reviews timing anomalies due to concurrent access to shared resources and
high-performance architectural features and techniques, provides experimental results
and summarize some important recommendations for obtaining predictable multi-core
architectures for hard real-time systems.

A New Approach to Assessment of Confidence in Assurance Cases: This paper pre-
sents an approach to assessing the confidence in safety arguments through converting
ARM-based representations into Toulmin form and then using Hitchcock's reasoning
assessment criteria as the basis of a of Bayesian Belief Networks model of confi-
dence.

An Unified Meta-Model for Trustworthy Systems Engineering: The paper aims to
provide the theoretical principles and associated meta-model of systems engineering.

It presents and explains a meta (meta) model for Systems Engineering of potentially
safety-critical systems. It talks around a number of concepts including requirements
vs. specifications, product vs. process views.

Assessing Software Interference Management When Modifying Safety-Related Soft-
ware: This paper is about an important issue in safety-related software development,
unintended interference, and its associated assessment. It introduces and refines a
workflow to identify interference and how to manage it systematically.

Towards a Model-Based Evolutionary Chain of Evidence for Compliance with Safety
Standards: The development and evolution of chains of evidence underlying a com-
pliance / safety case are clearly of high relevance to industry. Making the way that

Introduction to Sassur 2012 7

elements are addressed to be as standardised as possible across multiple regulators in
a domain is laudable and challenging. This paper gives a clear overview of the current
state of a number of issues that need to be addressed with respect to evidence chains.
It is not so detailed on solutions and validations of these solutions.

We hope that you enjoy SASSUR 2012.

General Chairs:

Mehrdad Sabetzadeh - Simula Research Laboratory, Norway
Tim Kelly - University of York, UK

Didier Van Den Abeele - Alstom Transport, France
Alejandra Ruiz - TECNALIA, Spain

Steering Commitee

Annie Combelles - Inspearit, France

John Favaro & Paolo Panaroni - Intecs, Italy
Huascar Espinoza - TECNALIA, Spain
Fulvio Tagliabo - Centro Ricerche FIAT, Italy
Javier Diaz - University of Granada, Spain

Program Committee:

Fabien Belmonte - Alstom Transport Information Solution, France
Jose Luis De La Vara - Simula Research Laboratory, Norway
Kenji Taguchi - AIST, Japan

Daniela Cancilla — Atego, France

Olaf Kath - ikv++ technologies ag, Germany

Harold Weffers - Eindhoven University of Technology, Holland
Sergio Campos — TECNALIA, Spain

Marc Born - ikv++ technologies ag, Germany

C. Michael Holloway - NASA Langley Research Center, USA
Ronald Blanrue - EUROCOPTER

Uwe Kremer — TUEV, Germany

Jiirgen Niehaus- Safetrans, Germany

Xabier Larrucea — TECNALIA, Spain

Andreas Keis — EADS, Germany

Mark Nicholson - University of York, UK

Acknowledgment. We would like to give special thanks to OPENCOS Project (FP7
programme) and to RECOMP Project (ARTEMIS programme) that have kindle spon-
sor this workshop.

AdvoCATE: An Assurance Case Automation Toolset

Ewen Denney, Ganesh Pai, and Josef Pohl

SGT / NASA Ames Research Center
Moffett Field, CA 94035, USA
{ewen .denney, ganesh.pai, josef. pohl}@nasa .gov

Abstract. We present AdvoCATE, an Assurance Case Automation ToolsEt, to
support the automated construction and assessment of safety cases. In addition
to manual creation and editing, it has a growing suite of automated features.
In this paper, we highlight its capabilities for (i) inclusion of specific metadata,
(ii) translation to and from various formats, including those of other widely used
safety case tools, (iii) composition, with auto-generated safety case fragments,
and (iv) computation of safety case metrics which, we believe, will provide a
transparent, quantitative basis for assessment of the state of a safety case as it
evolves. The tool primarily supports the Goal Structuring Notation (GSN), is
compliant with the GSN Community Standard Version 1, and the Object Model-
ing Group Argumentation Metamodel (OMG ARM).

Keywords: Assurance cases, Safety cases, Metrics, Safety management, Safety
process, Safety toolset, Formal methods.

1 Introduction

Structured, evidence-based arguments are increasingly being adopted as a means for
assurance, e.g., as dependability or assurance cases [15]], and more popularly as safety
cases [[18]], for safety assurance in several domains including automotive, medical de-
vices, and aviation. Safety cases have already been in use for some time in the de-
fense, rail, and oil & gas sectors. The practitioner has a broad choice of tools, e.g.,
[, 131144 [17], to use in creating structured safety assurance arguments (manually) in a
variety of notations such as the Goal Structuring Notation (GSN) [10], and the Claims
Argument Evidence (CAE) notation. This is, by no means, a comprehensive list of
available safety case construction tools, each of which have different foci, e.g., linking
to type theory, use of different notations for graphical representation of safety cases, etc.
However, common to all the tools is manual safety case creation with limited support
for auto-generation or automatic assembly. Creating safety cases manually can be time
consuming and costly.

Our goal is to develop a framework for the automated creation and assembly of as-
surance cases, using model-based transformation. In particular, we want to (i) leverage
our earlier work on using the output of formal methods to create auto-generated safety
case fragments [3]], and additionally (ii) automatically combine them with the results of
traditional safety analyses, also transforming these into safety case fragments [8]. The
latter is aimed at supporting lightweight, automatic assembly and integration of safety

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 8-211 2012.
(© Springer-Verlag Berlin Heidelberg 2012

AdvoCATE: An Assurance Case Automation Toolset 9

cases into traditional safety, and development processes [6]]. We aim to support the more
general notion of assurance cases, although in this paper we focus on safety cases.

We present AdvoCATE, the Assurance Case Automation ToolsEt, a suite of tools
and applications based on the Eclipse platfor, to build and transform safety cases.
The core of the system is a graphical safety case editor, integrated with a set of model-
based transformations that provide functionality for translating and merging pre-ex-
isting safety cases from other formats, and for incorporating automatically generated
content from external formal verification tools. The tool metamodel (Section 2.1]) ex-
tends the GSN, e.g., through the inclusion of metadata (Section 2.2). The tool (Sec-
tion [3) supports basic manual creation and editing (Section [£.])), and interoperability
with other safety case tool formats (Section [4.2)). The metadata supports automation
in safety case creation, for assembly of safety case fragments that have themselves
been auto-generated using formal methods (Section), generation of safety case met-
rics (Section [@), and transformations to generate “to-do” lists, textual narratives, and
tabular representations (Section [7).

We are using AdvoCATE in the ongoing construction of a safety case for the Swift
Unmanned Aircraft System (UAS), under development at NASA Ames.

2 Extended Goal Structuring Notation

2.1 Metamodel

In AdvoCATE, we have defined and implemented an Extended Goal Structuring Nota-
tion (EGSN) metamodel, to extend “traditional” GSN with additional information, e.g.,
node metadata, to be used to define more features and operations. The EGSN meta-
model has been developed as a combination of several different safety and assurance
case models; it is compatible both with the GSN standard [[10], and the Argumentation
Metamodel (ARME, from the Object Management Group. There is a mapping from
any EGSN-based model to ARM, and vice versa; the major difference is that EGSN
explicitly contains all of the standard constructs, and only the two relationships as de-
fined in the GSN. This is, of course, extensible and extra relationships and/or reasoning
elements (in ARM terminology), can be added as needed.

The top level of any safety case model based on the EGSN metamodel (Fig.[I)) is a
SafetyCase element. Essentially, this is the container that holds all elements of the safety
case; it has no attributes, and children of SafetyCase can be concrete instances of either
of the the abstract elements Node or Link. A Node generalizes the different types of
GSN elements, i.e., Goal, Strategy, Assumption, Justification, Context, and Evidenceﬁ.
The attributes of a Node are:

— identifier, which holds a unique name for a given node.
— description, which is user-supplied content describing/defining the node.

! http://www.eclipse.org

2 GSN s itself in compliance with ARM, which is available at:
http://www.omg.org/spec/ARM/

3 Strictly speaking, the GSN uses the term Solution. We use the term Evidence interchangeably
with Solution.

http://www.eclipse.org
http://www.omg.org/spec/ARM/

10 E. Denney, G. Pai, and J. Pohl

| ModelElement K1 <<enumeration>>
< «
E SafetyCase < NodeColor
= Blue
node — Red
s link — Green
. — None
| Assumption H Node 0.
D = description : EString 0.1 E Link
= toBelnstantiated : EBoolean © = identifier : EString
r~ = identifier : EString 0.1
P = attributes : EString from
= comment : EString
£ Context [/ © color : NodeColor
H IsSolvedsy | InContextof
H justification
5 strategy g Goal

= toBeDeveloped : EBoolean = toBeDeveloped : EBoolean

Fig. 1. EGSN metamodel in UML, representing model elements, attributes and relationships

— color, an attribute which is meant to indicate the color used for display; informally,
we use it to convey the relative importance, source, or node state.

— comment, which we use to give informal information about a node.

— toBelnstantiated, which we use to denote abstract GSN elements that require fur-
ther instantiation of specific content within the description, and

— attributes, which are used to hold extra metadata about the node, e.g., classification
of the node as a high- or low-level requirement, and merging points with auto-
generated content.

We can modify the attributes (above) as required and they are inherited by each node
specialization. The Goal and Strategy elements also contain an additional attribute,
toBeDeveloped, which denotes that the elements are yet to be developed, e.g., by us-
ing strategies to connect them to sub-goals/solutions. The GSN standard limits applying
the toBeDeveloped annotation to only Goal and Strategy elements, whereas the attribute
toBelnstantiated applies to any node.

A Link is also an abstract entity and contains the attribute identifier. Links have con-
tainment relationships, which relate the Node, from which the link comes, and o which
it goes. These relationships refer to the abstract entity Node and not directly to the
derived entities. The InContextOf link, represents a one-way association between the
Goal (Strategy) element, and the Context, Assumption or Justification elements respec-
tively; the IsSolvedBy link, denotes a one-way association between Goal, Strategy, and
Evidence elements.

2.2 Node Metadata

We tag nodes with metadata to convey meaning about the significance or provenance
of particular nodes in a safety case, such as whether they relate to the mitigation of a
specific hazard, or whether they represent requirements that can be formally verified
using external tools.

AdvoCATE: An Assurance Case Automation Toolset 11

Node metadata is expressed as a set of attributes associated with each node. We use
metadata to define transformations on the safety case and during metrics computation.
At present, we have a pre-defined list of attributes that may be used. Eventually, this will
be replaced with a user-definable dictionary of attributes based on an ontology. There
is a strict syntax for defining attributes, as below, and multiple attributes are comma-
separated.

1. High-level and Low-level requirements
— High-Level Requirement
— Low-Level Requirement
2. Risks
— Risk[Likelihood,Severity]
where
— Likelihood ::= Extremely Improbable | Extremely Remote | Remote | Probable
— Severity ::= Catastrophic | Hazardous | Major | Minor | No Safety Effect
3. Hazards
— Hazard[ldentifier]
where identifier is a string giving a reference identifier in a hazard table.
4. Provenance
— autocert:n
where n is a number giving an AUTOCERT [9] requirement. The auto-generated
fragment produced by verifying the formal requirement number n, will be merged
into the safety case at this node (described in more detail in Section[3)).

The tool has been designed so that different attributes affect the display (color) of the
nodes, e.g., the attributes Risk, Hazard, and Requirement affect node color. The idea is
to provide a visual indicator to the user to convey specific semantics.

For instance, for requirement attributes, High-Level Requirement will assign a red
node color, whereas Low-Level Requirement will assign a green color. The Hazard at-
tribute will turn a node red as well. For the Risk attribute, the color scheme is dependent
on the combination of Severity and Likelihood, and is based on a risk categorization ma-
trix, e.g., such as the one defined in [19]]. Node color will turn red, green, or remain blue
depending on whether the risk region in the risk categorization matrix is high, medium,
or low. Once a color has been set by an attribute, it cannot be manually changed. In
the case of multiple attributes, the color set by the first attribute takes precedence. The
rules used to determine node colors are currently hard-coded, but we plan to make it
user-definable in future.

3 Tool Chain Architecture and Implementation

In this section, we briefly describe the different frameworks and components that com-
prise the AdvoCATE tool chain (Fig.[2)), and their integration.

Eclipse. AdvoCATE is distributed as a set of plug-ins to the Eclipse platform. Eclipse
uses a number of utilities of the underlying frameworks, namely the Eclipse Mod-
eling Framework (EMF) and the Graphical Editing Framework (GEF). AdvoCATE

12 E. Denney, G. Pai, and J. Pohl

AdvoCATE*
[Transformation
Safety case editor machines*
E ti .
ook Graphiti VIATRA2
Graphical Editing (Model
Framework (GEF) Transformations)

Eclipse Modeling Framework (EMF)

Eclipse Framework (Plugin development)

* Implemented in AdvoCATE

Fig. 2. Frameworks in the AdvoCATE tool chain architecture

uses the generated EMF editing tools. In principle, we could provide extension
pointﬂ to extend AdvoCATE as well.

Graphical Editing. The graphical component, at the core of the safety case editor, per-
mits the addition and manipulation of elements of a safety case. It also provides a
visual representation of the relationships between the safety case model elements.
The safety case model created is maintained as a separate resource from its visual
representation, and the diagram. In this way, the model can be used and manipu-
lated separately without affecting the graphical representation. Similarly, none of
the information of the graphical representation affects the model except when ex-
plicitly specified, e.g., color can be stored as part of the properties. The two files
are combined to create the diagram that is rendered on the screen and is editable by
the user. Both representations are contained inside an Eclipse project. The model
data file is connected to the Ecore metamodel, i.e., it must be a well-formed repre-
sentation of that metamodel.

Graphiti. We built the graphical component in the Graphiti framework, an application
interface (API) built upon the GEF. As shown in Fig. [2| the GEF is itself built on
top of EMF. Graphiti simplifies the development of graphical tools for editing and
displaying models, by automating much of the low-level implementation used to
manipulate graphical objects such as rendering, moving, selecting, etc.

Translation. The tool uses XSLT to convert external data into the appropriate XML
format (such as the AUTOCERT-generated XML, Section[3)), which can be merged
with a pre-existing assurance case. The file formats for assurance cases developed
in other tools, such as ASCE, are parsed using Java DOM XML libraries.

VIATRAZ2. VIATRA?2 (VIsual Automated model TRAnsformations) [20], a project deve-
loped within the Generative Modeling Technology (GMT) framework, is a toolset
designed for engineering life-cycle support from specification to maintenance. In
the scope of AdvoCATE, it is used to hold intermediate model representations (such

* Plug-ins typically will provide extension points, by connecting to any of which we gain access
to their functionality, e.g., the context menus and diagram creation utilities are extended from
the core Eclipse user interface.

AdvoCATE: An Assurance Case Automation Toolset 13

Fle Edt View Nwigste Search Poject Bun Sample Window Help
2 iB-0-LQ- A WG O ESP Hmo |a &% ~ o @

£ newcomplete

B

oo
S =

bk orens 5
e

B

Fig. 3. AdvoCATE screenshot displaying auto-layout on the auto-assembled Swift UAS safety
case fragment, which contains both manually created and auto-generated fragments

as the EGSN Ecore representation) and enact transformations on those models.
Through the transformation system, we can manipulate and transform safety case
models into other models (such as text, a CSV table, or a modified safety case).

4 Basic Functionality and Interoperability

Although the primary goal of AdvoCATE is to support automation, it also contains the
basic manual functionality that one would expect from a safety case tool, i.e., creating
and editing. In this section, we describe this manual functionality, giving an overview
of some basic use-cases for the tool: to create a new safety case diagram/model, and
to open a pre-existing model (as a diagram) for further editing or manipulation. Ad-
ditional basic functionality includes saving, printing, translating from/to other formats,
and merging external data.

4.1 Creating and Editing Safety Cases

Fig.[Blshows a bird’s eye view of the structure of an end-to-end safety case fragment for
the Swift UAS. It has been automatically assembled/composed from a manually created
fragment and an auto-generated fragment, after which it underwent auto-layout.
Editing a diagram typically takes place within a more detailed view (Fig. d)) that
shows more node information, as well as the editing features. We can select, move and
resize nodes as required; node descriptions are editable either directly on the canvas,
or in the properties panel, whereas attributes are edited only via the latter. Edits are
reflected in the diagram in real-time, through automatic refresh. In Fig. [l the canvas
shows that the goal with identifier N48087573 (at the top right of the canvas) is selected
and being edited. The properties panel beneath the canvas shows the corresponding

14 E. Denney, G. Pai, and J. Pohl

@%ar e | QA @food 7 | @ | & ds v Blvt= G e [@ <Ecore>

3 C.egs
| TR-SUAS-SC.cgsn

I properties =v=0

~ Properties
ident Nag087573
‘Avionics software satisties safety requirements applicable during descent

cHB%9,

Fig.4. AdvoCATE screenshot showing a zoomed-in view for editing, with a Properties panel
underneath the canvas, the Project explorer as the left panel, and the Palette containing EGSN
constructs in the right panel

attributes that can be edited, and we can add new values directly, as required. Attribute
editing uses specialized syntax (Section to include pre-defined node metadata.

Safety cases can be split up into separate interconnected diagrams using the Goal
Developed Elsewhere symbol ([16], p. 66). Note that this does not provide true modu-
larity in the sense of the modular GSN notation [10], which we do not yet support, but
it does make large safety cases more manageable.

We can link to other documents such as webpages, spreadsheets, or text documents.
These documents can either be local to the system or remotely stored, e.g., on a web
server. We provide a specific syntax to make references to external documentation: in
the description attribute for a node, the reference to the external document is specified
as a fully qualified URL in the properties panel. The resource will be displayed in a web
browser or the user will be prompted to open/save the resource.

Diagrams can be exported as an image in scalable vector graphics (SVG) format, and
subsequently converted to portable document format (PDF).

4.2 Interoperability

AdvoCATE supports the import/export of a variety of safety case formats—currently
those produced from the ASCE [1]], CertWare [13]], and D-Case [[14] tools. A translation

5 Using the Batik toolkit: http: //xmlgraphics.apache.org/batik/

http://xmlgraphics.apache.org/batik/

AdvoCATE: An Assurance Case Automation Toolset 15

engine acts as an import/export utility translating file formats from these tools into
EGSN, and vice versa. If an EGSN file already exists it can be imported directly.

The translation works by using ARM as the interoperability metamodel, i.e., there
are bidirectional translations between ARM and the different safety case formats. Con-
sequently we only need to define a translation from each format to/from ARM rather
than defining point-to-point connections between each tool. The ARM is also conve-
nient for merging external information.

One of the challenges in model transformation, as between EGSN and other safety
case formats, is that each metamodel has different attributes, and sometimes differ-
ing model elements. To preserve information between translations, we annotate the in-
formation as comments in the EGSN metamodel. The annotations indicate the source
metamodel and what the information actually represents. For instance, in EGSN, we
label nodes with a user-modifiable identifier. In ASCE, there is both a unique “refer-
ence” and a user specified identifier. If, in ASCE, the user specified identifier is not
provided, the unique reference is used instead. This information is preserved by storing
it in the EGSN metamodel, tagging it as being from ASCE and by labeling it as the
“user-id”. This way, if translating back to ASCE, the information is preserved and the
ASCE model can be regenerated without information loss. There are a number of such
cases which we handle in a similar way.

The one exception to this is layout data; in most cases, the model is stored separately
from the layout. As a design decision, we decided not to preserve layout information.

5 Automated Assembly

AdvoCATE can automatically assemble safety cases by combining manually created
fragments with content produced by external tools. Currently, this is limited to the for-
mal verification tool AUTOCERT [9], though we plan further tool integrations in future.

Rather than perform formal verification itself, AdvoCATE integrates results from
formal verification or formal methods with safety case construction. In general, there
are two ways to achieve this: (i) the output of a tool can produce evidence or, depending
on the level of detail it provides, be transformed into an actual argument fragment of a
safety case [8]], and (ii) safety case fragments can be transformed into formal specifica-
tions that are then input to a tool.

An AUTOCERT specification formalizes software requirements that we derive from
system safety requirements, during safety analysis. Formal verification takes place in
the context of a logical domain theory, i.e., a set of axioms and function specifications.
To verify the software, we use formal verification of the implementation against a math-
ematical specification and test low-level library functions against their specifications.

5.1 From Formal Proofs to Safety Cases

AUTOCERT generates a document (in XML) with information describing the formal
verification of requirements. The core of this is the chain of information relating re-
quirements back to assumptions.

Each step is described by (i) an annotation schema for the definition of a program
variable [4], (ii) the associated verification conditions (VCs) that must be shown for

16 E. Denney, G. Pai, and J. Pohl

the correctness of that definition, and (iii) the variables on which that variable, in turn,
depends. We derive the goals (and subgoals) of the safety case from the annotation
schema. The subgoals are the dependent variables from those annotation schema. We
represent each VC related to a goal as a subgoal. An argument for a VC is a proof,
generated using a subset of the axioms. This proof forms the evidence connected to the
VC goal, and includes the prover used as a context. Function specifications from exter-
nal libraries used in the software and its verification also appear as goals. Arguments
for these goals can be made with evidence such as testing or inspection. Each subgoal
derived from an annotation schema is a step in the verification process.

During the process of merging the manually created and the auto-generated safety
cases, we replace specific nodes of the manually created safety case with the tree frag-
ments generated from AUTOCERT; specifically, the top-level goals of the latter are
grafted onto the appropriate lowest-level nodes of the former. These nodes are denoted
with unique attributes, autocert : n, relating the node to a tree in the automatically
created file, meaning that the goal with tag n is to be solved with AUTOCERT. Addition-
ally, these nodes are formal equivalents of informally stated goals, developed through
an explicit strategy of formalization, though the formalization at this stage is both per-
formed and checked manually.

5.2 From Safety Cases to Formal Specifications

Often, a safety case fragment may be created before the software verification is com-
pleted. In this case, we can use the autocert : n annotations on the nodes to generate
a formal specification. Based on the type of node in which the identifier occurs, the
tool infers whether the labeled node is a requirement or an assumption. Thereafter, we
can transform and graft back onto the safety case the proofs that result after running
AUTOCERT on the generated specification.

6 Generation of Safety Case Metrics

6.1 Maetrics Derivation

There has been some criticism of safety cases as lacking a measurement basis and,
therefore, impeding systematic, repeatable evaluation [21]. We attempt to address this
weakness of safety cases, using AdvoCATE, by defining and implementing a (prelimi-
nary) set of safety case metrics. Our goal is to create a transparent, quantitative founda-
tion for assessment/review. It is worth noting that metrics alone (including those given
here) do not necessarily constitute an assessment; rather, together with a model for
interpretation, they can provide a convenient mechanism for decision-making by sum-
marizing the state and key properties of a safety case during its evolution.

We distinguish between (i) base metrics, which express a direct measurement of,
or value assignment to, a safety case property, e.g., the number of claims in a safety
argument, and (ii) derived metrics, which are an analytical combination of base metrics,
expressing a measure of, or a value assignment to, a safety case property that is not
directly measurable, e.g., coverage.

AdvoCATE: An Assurance Case Automation Toolset 17

Table 1. (Excerpt) GQM based derivation of safety case metrics and their specification

Goal G1. Coverage of Claims: Analyze the argument structure for the purpose of establishing the
extent of coverage with respect to the claims made and the evidence presented from the viewpoint
of the assessment team in the context of the safety case of the Swift UAS.

Questions Metrics

QI1.1. What is the total number of claims made? |[BM1.1. Total #(Claims)

Q1.2. What is the total number of claims that end|DM1.2. Total #(Developed claims)

in evidence, i.e., developed claims?
Q1.3. What fraction of the total number of|{DM1.3. Coverage (Claims)
claims are developed claims?
Specification:

— BM1.1. Total #(Claims) = C, C > 1.
— DM1.2. Total #(Developed claims) = Cp, Cp > 0.

—DM1.3. Coverage (Claims) = Fraction of developed claims = COV¢e = %3.

We consider an underlying process for safety case assessment, e.g., based on inspec-
tions [[L1]], or reviews [[12] to get insights into where metrics can be useful for decision
making during assessment, and the interpretation models required. Thereafter, we use
the Goal-Question-Metric (GQM) method [2]] to define appropriate measurement goals,
identify questions that characterize the goal, and specify the relevant metrics.

For instance, in a staged argument review [[12]], quantitative measures applied at the
step of checking well-formedness can summarize the relevant properties, e.g., the num-
ber of goals with missing evidence/strategies. This can be useful when assessing large
argument structures, where manual review of the entire structure, for well-formedness,
can be time consuming. Similarly, during the argument criticism and defeat step, cov-
erage of the top-level claim by evidence is a property for which metrics can be defined.

Table [l gives an example of how GQM has been used to define metrics that, we be-
lieve, meet the goal of analyzing claims coverage. We state the measurement goal by
instantiating the GQM template (the italicized text in Table [T, identify questions that
characterize the goal, and define the metrics that answer the questions quantitatively. In
Table[I] the base and derived metrics are distinguished by the prefixes BM and DM re-
spectively. In this way, by defining additional measurement goals, we have speciﬁecﬁ a
preliminary set of safety case metrics (Table2)). For this paper, we have mainly focused
on metrics that address the structural and syntactical properties of argument structures
described using the GSN.

Note that although tool support can also be used to highlight violations, e.g., of
well-formedness properties, this is mainly useful during argument development, where
the intent would be to “find and fix”. From the perspective of an assessor, however,
the broad intent is to evaluate the argument for essential qualities [11]]. When properly
defined and interpreted, we hypothesize that metrics can be indicators of these qualities.

6.2 Metrics Implementation

The generation of the safety case metrics, as given in Table Pl is an automated op-
eration, which uses some of the node metadata (Section[2.2)) to count the nodes in the

® The full GQM-based derivation of the metrics, and their formal specifications, are out of the
scope of this paper.

18 E. Denney, G. Pai, and J. Pohl

Table 2. Safety case metrics, with their valid values

Metric [Symbol [Type [Valid Values
Measures of Size
Total #(Hazards considered in the safety case) H Base >0
Total #(Hazards identified in hazard analysis) HI Base >0
#(High-level safety requirements per hazard H;) r(H;) Base >0
Total #(High-level safety requirements) RurL Base >0
Total #(Low-level safety requirements) Rrr Base >0
#(Developed claims per hazard H;) cp(H;) |Base >0
#(Claims per high-level safety requirement HLR;) C(HLR;) Base >0
#(Claims per low-level safety requirement LLR;) C(LLR;) |Base >0
Total #(Claims) C Base >1
Total #(Developed claims) Cp Derived >0
Total #(Undeveloped claims) Cup Derived >0
Total #(Uninstantiated claims) Cur Derived >0
Total #(Strategies) S Base >0
Total #(Undeveloped strategies) Sup Derived >0
Total #(Uninstantiated strategies) Sur Derived >0
Total #(Contexts) K Base >0
Total #(Assumptions) A Base >0
Total #(Justifications) J Base >0
Total #(Evidence) E Base >0
Measures of Coverage
Coverage (Claims) COVe |Derived 0,1
Coverage (High-level safety requirements) COVRgy,,, |Derived 0,1
Coverage (Low-level safety requirements) COVg, , |Derived 0,1
Coverage (Hazards considered) COVep |Derived 0,1
Coverage (Hazards Identified) COVyr |Derived 0,1

EGSN-based safety case model, e.g., counting the nodes containing “high-level require-
ment” as an attribute gives the value assignment for the metric Ry .. Presently, only
certain node types can be distinguished based on node attributes and metadata. Conse-
quently, only a subset of the metrics identified in Table [2lhave been implemented.

Fig. |3 shows the implemented metrics and the computed values when applied to the
Swift UAS safety case fragment [8] (also shown as a bird’s eye view in Fig. B). As
we define more expressive/detailed node metadata, we can implement the remainder
of the metrics from Table 2] as well as additional metrics such as “confidence in a
claim” [[7]].

7 Transformation Operations

We describe three automated operations defined in AdvoCATE, for generating artifacts
that support safety case development and assessment:

To-do Lists. One simple form of assessment is determining those parts of the safety
case that need further development. AdvoCATE uses a Model2Text transformation
to create a simple to-do list, listing the undeveloped and uninstantiated nodes. Fig.
shows an excerpt of such a to-do list, for the Swift UAS safety case fragment.

---SIZE METRICS---

Goals: 220

AdvoCATE: An Assurance Case Automation Toolset 19

Developed: 157
Undeveloped: 63
Uninstantiated:

Strategies: 107

Undeveloped: 13
Uninstantiated:

Contexts: 133
Assumptions: 5

Justifications:

Evidence: 65

3

TOTAL NODES: 533

R1_HL : Number
R2_HL : Number
R3_HL : Number
R1_LL : Number
R2_LL : Number

of
of
of
of
of

claims
claims
claims
claims
claims

—-- COVERAGE METRICS ---
COV_C : Developed claims
COV_R_HL : Coverage of High-Level Requirements = 0.8
COV_R_LL : Coverage of Low-Level Requirements = 0.88

Number of High-Level Requirements = 3
Number of Low-Level Requirements = 2

(High-Level Requirement 1) = 182
(High-Level Requirement 2)
(High-Level Requirement 3) =1
(Low-Level Requirement 1) =
(Low-Level Requirement 2) =

[
[

I
=W
NN
N

to total claims = 0.71

Fig.5. AdvoCATE calculation of metrics for the Swift UAS safety case fragment

Undeveloped Goals To Do:

ID:N43752193 :: Failure hazards during Cruise phase are mitigated
ID:AC486 :: srcWpPos is a position in the NE frame (i.e. has_unit(srcWpPos, pos(ne)) holds.)
ID:N63112384 :: Modem interface is correct ID:N11943209 :: FMS design is correct

Uninstantiated Goals To Do:

ID:N87102962 :: Autopilot module satisfies {Higher-level Requirement X}

Derived from parent ID: N92654598 :: Argument that Autopilot module satisfies higher level
requirements

ID:N59408212 :: {Subsystem X} failure hazard during descent is mitigated

Derived from parent ID: N3143972 ::

Argument over all Swift UAV subsystems (identified

failure hazards)

Fig. 6. (Excerpt) To-do list generated by AdvoCATE, for the Swift UAS safety case fragment

Narrative Form. The generation of a safety case narrative form, i.e., a structured doc-
ument providing the content of the safety case in a readable form, uses an inter-
mediate tree model. The safety case can then be flattened into a sequence that is a
pre-order traversal of the tree, giving a description of the content of the safety case
without the diagrammatic form.

Tabular Form. We generate a comma separated value (CSV) format of the document
(Fig. [I) using an intermediate model for the transformation. The CSV template
relates a goal with an arbitrary number of contexts and strategies. The strategies
are further related to any number of assumptions, contexts, justifications, and sub-
goals. For each goal the operation generates these relationships. The operation then
repeats the process for each sub-goal related to each strategy. The rationale for a
specific CSV format of a safety case, and the resulting tabular form, is based on the
experiences gained [S]] from the ongoing creation of the Swift UAS safety case.

20 E. Denney, G. Pai, and J. Pohl

PARENT GOAL CONTEXT STRATEGY SUBGOAL/SOLUTION
Strategy Type Context Assumptions Justifications
N18584532: Argument .
. N80058283: Range of safety over all UAS N91753638: SWIFT IN2946770: SWIFT UAS
N27216417: SWIFT UAS " UAS Design "
N (Location and Site) of subsystems and Communication Infrastructure
is safe h Management Plan and h
operation interactions between Design Documentation is safe
subsystems 9
N24389172: Specified IN20743322: Airborne system
configuration (SWIFT UAV) is safe

N83345544: SWIFT UAS

N44679952; Weather :
subsystem interactions are

conditions safe
N86072314: Specified IN67094880: SWIFT Ground
Mission stations are safe

N2946770: SWIFT UAS
Communication
Infrastructure is safe

N70618522: Argument
of hazard mitigation over
all identified SWIFT UAV
hazards

N20743322: Airborne
system (SWIFT UAV) is
safe

IN49558532: Definition
lof acceptable risk and
risk categories

IN44519454: Interaction
hazards

IN2965510: Identified
hazards and hazard N69623828: SWIFT UAV

ies during Swift failure hazards are mitigated
UAV Hazard analysis

IN40609843: Hazards arising
from the operating
i of SWIFT UAV

IN84863913: Definition
of hazard from MIL-
STD-882D

are mitigated

Fig. 7. (Excerpt) CSV format of the Swift UAS safety case generated using AdvoCATE, subse-
quently imported into a spreadsheet, resulting in a tabular view

8 Conclusion

In this paper, we have described AdvoCATE, an Eclipse-based toolset that uses model-
based transformation and extended GSN to support the automated construction and
assessment of safety cases.

We have just begun to develop the wealth of functionality for automated construction
that can be implemented using transformations, e.g., a simple extension will be the
generation of traceability matrices linking requirements, hazards and evidence. A more
involved transformation will be argument refactoring. Our next step will be to include
modular extensions to GSN, patterns, and to provide automated features for their use. To
support safety case assessment, we have defined and implemented a preliminary set of
metrics based on the syntactic/structural properties of argument structures documented
using GSN. As future work, we intend to define integrated measures that combine the
metrics based on both syntactic and semantic properties, building on our previous work
on confidence quantification [7]. We will also define interpretation models based upon
which metrics can be used, during assessment, for decision making.

For tool validation, we continue regression testing of the interface and transforma-
tions, and we also plan to verify the algorithms that AdvoCATE implements. We be-
lieve that the capabilities of AdvoCATE, highlighted in this paper, are promising steps
towards cost-effective safety assurance, and transparency during assessment and cer-
tification. Eventually, our goal is to support “round-trip engineering” of safety cases,
linking safety-relevant, operational, and development artifacts.

Acknowledgements. This work was funded by the VVFCS element under the SSAT
project in the Aviation Safety Program of the NASA Aeronautics Mission Directorate.
We also thank Abel Hegediis and Michael Wenz for their help with VIATRA2 and
Graphiti, respectively, and Corey Ippolito for access to the Swift UAS data.

AdvoCATE: An Assurance Case Automation Toolset 21

References

(1]
(2]
(3]

(4]
(3]
(6]

(7]
(8]

(91
[10]
[11]

[12]

[13]
[14]
[15]

[16]
[17]

(18]
[19]
[20]

[21]

Adelard LLP: Assurance and safety case environment (ASCE),
http://www.adelard.com/asce/|(last accessed May 2011)

Basili, V., Caldiera, G., Rombach, D.: Goal question metric approach. In: Encyclopedia of
Software Engineering, pp. 528-532. John Wiley (1994)

Basir, N., Denney, E., Fischer, B.: Deriving Safety Cases for Hierarchical Structure in
Model-Based Development. In: Schoitsch, E. (ed.) SAFECOMP 2010. LNCS, vol. 6351,
pp. 68-81. Springer, Heidelberg (2010)

Denney, E., Fischer, B.: Generating customized verifiers for automatically generated code.
In: Proc. Conf. Generative Programming and Component Eng., pp. 77-87 (October 2008)
Denney, E., Habli, 1., Pai, G.: Perspectives on software safety case development for un-
manned aircraft. In: Proc. 42nd Intl. Conf. Dependable Systems and Networks (June 2012)
Denney, E., Pai, G.: A Lightweight Methodology for Safety Case Assembly. In: Ortmeier,
F., Daniel, P. (eds.) SAFECOMP 2012. LNCS, vol. 7612, pp. 1-12. Springer, Heidelberg
(2012)

Denney, E., Pai, G., Habli, I.: Towards measurement of confidence in safety cases. In: Proc.
Sth Intl. Symp. Empirical Soft. Eng. and Measurement, pp. 380-383 (September 2011)
Denney, E., Pai, G., Pohl, J.: Heterogeneous aviation safety cases: integrating the formal
and the non-formal. In: 17th IEEE Intl. Conf. Engineering of Complex Computer Systems
(July 2012)

Denney, E., Trac, S.: A software safety certification tool for automatically generated guid-
ance, navigation and control code. In: IEEE Aerospace Conf. Electronic Proc. (2008)
Goal Structuring Notation Working Group: GSN Community Standard Version 1 (Novem-
ber 2011), http://www.goalstructuringnotation.info/

Graydon, P., Knight, J., Green, M.: Certification and safety cases. In: Proc. 28th Intl. System
Safety Conf. (September 2010)

Kelly, T.P.: Reviewing Assurance Arguments - A Step-by-Step Approach. In: Proc. Work-
shop on Assurance Cases for Security - The Metrics Challenge, Dependable Systems and
Networks (July 2007)

Kestrel Technology LLP and NASA Langley Research Center: CertWare tool,
http://nasa.github.com/CertWare/ (last accessed May 2011)

Matsuno, Y., Takamura, H., Ishikawa, Y.: Dependability case editor with pattern library. In:
Proc. 12th IEEE Intl. Symp. High-Assurance Systems Eng., pp. 170-171 (2010)

National Research Council Committee on Certifiably Dependable Software Systems: Soft-
ware for Dependable Systems: Sufficient Evidence? National Academies Press (2007)
Spriggs, J.: GSN - The Goal Structuring Notation. Springer (2012)

Steele, P., Collins, K., Knight, J.: ACCESS: A toolset for safety case creation and manage-
ment. In: Proc. 29th Intl. Systems Safety Conf. (August 2011)

UK Ministry of Defence (MoD): Safety Management Requirements for Defence Systems.
Defence Standard 00-56, Issue 4 (2007)

U.S. Department of Transportation, Federal Aviation Administration: System Safety Hand-
book. FAA (December 2000)

Varrd, D., Balogh, A.: The model transformation language of the VIATRA2 framework.
Science of Computer Programming 68(3), 214-234 (2007)

Wassyng, A., Maibaum, T., Lawford, M., Bherer, H.: Software Certification: Is There a
Case against Safety Cases? In: Calinescu, R., Jackson, E. (eds.) Monterey Workshop 2010.
LNCS, vol. 6662, pp. 206-227. Springer, Heidelberg (2011)

http://www.adelard.com/asce/
http://www.goalstructuringnotation.info/
http://nasa.github.com/CertWare/

Towards a Case-Based Reasoning Approach
for Safety Assurance Reuse

Alejandra Ruiz', Ibrahim Habli?, and Huéscar Espinoza'

"ICT-European Software Institute, TECNALIA, Parque Tecnoldgico Ed. 202, Zamudio, Spain
? Department of Computer Science, University of York, York, United Kingdom
{alejandra.ruiz,huascar.espinoza}@tecnalia.com,
ibrahim.habli@york.ac.uk

Abstract. The increasing complexity and size of electronic systems in the aero-
space industry, combined with the growing market demand, requires the
industry to implement an efficient safety assurance strategy. Reuse of safety ar-
gumentation and evidence for certification is one of the potential means for
achieving such a strategy. Typically, major problems arise when the evolution
of complex avionics entails the reconstruction of the entire body of safety justi-
fication, often resulting in expensive and time-consuming assurance and certifi-
cation processes. This paper investigates the use of Case-Based Reasoning
(CBR) as a strategy for representing, retrieving and reusing previously assured
safety cases. This is supported by the existence of patterns of safety cases,
which determine a unified knowledge representation scheme for retrieving
further safety cases. We illustrate the approach with the development of modu-
lar argumentation for an Integrated Modular Avionics (IMA) platform.

Keywords: cased-based reasoning, safety assurance, avionics, certification.

1 Introduction

In the aerospace industry, safety-critical systems are increasingly more reliant on
software, with millions of lines of software code running onboard advanced aircraft.
The higher complexity and size of software combined with the growing market de-
mand requires the industry to implement a coherent and an efficient safety assurance
strategy. Driven by these considerations, the avionics domain in particular is transi-
tioning from federated architectures to Integrated Modular Avionics (IMA) architec-
tures. IMA defines a logically centralized and shared computing platform, which is
physically distributed on the aircraft to meet redundancy requirements [10]. IMA
promotes flexibility and enforces temporal and physical segregation of application
components that are integrated in a single system. More precisely, IMA aims at reduc-
ing space, weight and power requirements. Further, it aims at reducing maintenance
and certification costs by allowing incremental certification of avionics building
blocks.

As described in [23], one of the most important issues in the reuse of an IMA
platform in a given project is to reuse as much certification credit as possible from

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 22-B5] 2012.
© Springer-Verlag Berlin Heidelberg 2012

Towards a Case-Based Reasoning Approach for Safety Assurance Reuse 23

previous projects. DO-297/ED-124 is the current guidance document for IMA, but it
still lacks sufficient support for dealing with changes made in existing IMA systems
or when reusing design elements of an IMA. The number of acceptance criteria (e.g.,
safety requirements and characteristics such as fault/error handling and failure modes)
and the combination of safety arguments and evidence that need to be considered in a
new integration project, strongly suggest that the pre-qualification documents of an
IMA platform are not reusable without a appropriate justification.

The concept of reuse is not limited to the reuse of software and hardware compo-
nents. It is also applicable to the reuse of safety assurance artefacts, including safety
argumentation used for certification. Over recent years, there has been an increasing
interest in the use of safety cases for providing justification for system safety. A
safety case provides a means to "communicate a clear, comprehensive and defensible
argument that a system is acceptably safe to operate in a particular context” [4]. The
development of a safety case has been a common practice for the assurance of safety-
critical systems, particularly in the UK [19]. Recently, the requirement for a safety
case has been included in emerging standards, e.g. the new automotive functional
safety standard ISO 26262 [20], the US Food and Drug Administration’s guidance on
the production of infusion pump systems [21] and the aerospace guidelines for the
development of civil aircraft and system ARP 4754A [22].

One of the goals of the underlying work, which is still in its early stages, is to de-
fine a framework to manage the reuse of safety assurance artefacts —evidence, argu-
mentation and contextual information — from system components across IMA-based
systems. The intention is to reuse the safety arguments across different IMA configu-
rations. There are a number of barriers affecting reuse of safety assurance in this con-
text. For instance, if the knowledge of the rationale behind safety-case construction is
not explicit and is owned by only a few experts, the reuse opportunity is quite low.
Safety case patterns [5] are considered to be one of the main approaches for managing
reuse of safety assurance. A safety case pattern provides a means of explicitly and
clearly documenting common elements found in safety cases, and it also promotes the
reuse of best practices for safety assurance.

This paper presents our preliminary research on the use of safety case patterns in
combination with Case-Based Reasoning (CBR) as a reuse strategy that could be used
to represent and retrieve previously examined safety cases. CBR is a knowledge-
based technique for solving new problems by referring to similar previously experi-
enced concrete problems and solutions, captured as cases [25]. This is supported by
the existence of repeatable patterns of safety cases, which emerge through common
approaches to arguing safety. These patterns determine a unified knowledge represen-
tation scheme which will be used to retrieve further safety cases. We illustrate the
approach with the development of modular argumentation for an IMA platform.

This paper is organised as follows. Section 2 describes the domain background and
related work. Section 3 provides details on the proposed approach as well as the chal-
lenges of using CBR for safety assurance. Finally, Section 4 presents our preliminary
conclusions.

24 A. Ruiz, I. Habli, and H. Espinoza
2 Background and Related Work

2.1 Regulatory Scenario in the Avionics Domain

The avionics domain is highly regulated where multiple standards apply in the proc-
ess of safety certification. Fig. 1. shows some of these standards (more precisely
guidelines and guidance documents).

System

ARP 4754A: Guidelines For Development Of
Civil Aircraft and Systems

System

DO-297: Integrated
Modular Avionics (IMA)
Development Guidance

Assessment
ARP 4761: Guidelines and Methods for Conducting
the Safety Assessment Process on Civil Airborne

Systems and Equipment

and Certification
Considerations

Hardware Software

DO-254: Design Assurance Guidance

for Aitbormne Electronic Hardware DO-178C: Software Considerations in Airborne

Systems and Equipment Certification

Fig. 1. Standards in the avionics domain

ARP 4754A [11] and ARP 4761 [12] provide guidelines for the development and
safety assessment of aircraft and aircraft systems, targeting reduction of the number
and severity of failure conditions in aircraft/system designs. These processes iterate
down through systems and subsystems but at some point they establish requirements
for hardware and software items. DO-254/ED-80 [9] and DO-178 [8] are quite similar
in concepts and application but one is related to the production of hardware and the
other to software. Both standards are objective-based and process-centred. They de-
fine objectives that should be satisfied by the chosen development, verification and
support processes.

One important concept from these standards is the risk criteria. A Functional Ha-
zard Assessment (FHA) should be conducted at the beginning of the aircraft/system
development lifecycle. The result of the failure conditions addressed in the FHA will
determine the assurance levels. The Development Assurance Level (DAL) “is the
measure of rigor applied to the development process to limit, to a level acceptable for
safety, the likelihood of errors occurring during the development process of air-
craft/system...” [12]. The DAL, ranging from Level A (the highest) down through
Levels B, C, D to E, is assigned in correspondence with the severity classification of
failure conditions. These levels will affect to the number of objectives to comply with.
For instance, DO-178B describes 66 objectives and requires that all of them must be
applied to Level A, 65 to Level B, 57 to Level C, and 28 to Level D.

Towards a Case-Based Reasoning Approach for Safety Assurance Reuse 25

DO-297 [10] applies where IMA architecture is deployed. IMA is the term used for
a distributed computing network aboard aircraft, which supports avionics applications
of many different assurance levels, and is designed for flexibility in configurations
and modularity. It supports assurance evidence reuse to reduce effort required when
reusing components in different systems.

IMA technology has introduced the possibility to fragment the certification process
into several tasks: (a) module and/or platform acceptance, (b) application acceptance
(software and hardware), (c) IMA system acceptance (integration of multiple applica-
tions), (d) aircraft integration (e) change of modules or applications and (f) reuse of
modules or applications.

2.2 The Multi-Core and Mixed-Criticality Technology Case

A challenging issue in the aerospace industry is that in some cases, new technologies
emerge before certification processes can be adapted. This is the situation of multi-
core technologies. In the avionics domain, functions are allocated to systems and
subsequently to items. Some critical functions are supposed to work independently on
a single core with their dedicated resources. When this is not the case, partitioning is
used for which an argument is needed in order to justify that spatial and temporal
independence exist between each partition.

With the introduction of multi-core computers into IMA architectures, multiple
partitions may run concurrently on a single computing card all accessing memory or
I/O interfaces at the same time. As a consequence, such deployments may exhibit
mutual influences at the IMA execution platform, which has to be addressed by sys-
tem and application designers.

The use of multi-core technologies is particularly a challenge in mixed-criticality
IMA configurations. Mixed criticality is the concept of allowing applications at
different levels of criticality to co-exist on the same computational platform. In a
mixed-criticality system, low-critical and high-critical applications coexist and must
therefore share processing time in a ‘safe’ way. Unfortunately, certification of such
systems is more difficult, because it requires that even the components of less critical-
ity be certified at the highest criticality level. An alternative is to present sufficient
evidence so as to show that lower-critical applications do not interfere with the high-
critical applications. This is one of the objectives of the underlying work.

2.3 Argumentation and Modular Safety Cases

The idea behind a safety case [4] is that the application of an argumentation approach
to the concept of target compatibility would require definitions, assumptions, and
limitations to be made visible. This allows a much clearer evaluation for the contribu-
tion and limit to the overall correctness of the software and therefore its contribution
to safety of the system. The underlying work subscribes to the view of using such
kind of argumentation in the avionics domain as a basic pre-condition to improve
safety assurance reuse.

26 A. Ruiz, I. Habli, and H. Espinoza

As systems are becoming more and more complex, so does the safety assurance
process. One of the solutions in the context of safety argumentation is the concept of
modular safety cases. In [16], Kelly proposes a contract-based approach for assuring
safety across the argument modules within the safety cases. Modular safety cases can
increase its reuse level by means of patterns. Kelly in [4] proposes the use of safety
case patterns as a way for reusing successful safety strategies. Several patterns have
been published [5]. In [6] a different approach to safety case patterns is presented,
where patterns are related to certification objectives and how they help introducing
conformance items for the IEC 61508 [7] standard on safety cases and improving
transparency in certification processes.

2.4 The Case-Based Reasoning Approach

Case-based reasoning is an analysis technique for solving new problems by referring
to similar previously experienced concrete problems and solutions, captured as cases.
This is based on the hypothesis that similar problems are likely to have similar solu-
tions [24]. Case-based reasoning is an effective analysis technique when it is infeasi-
ble to rely solely on general domain knowledge or generic associations between prob-
lem attributes and conclusions. Research has shown that experts in technical fields
such as medicine, engineering, planning and finance rely on past cases to generate
hypotheses about new situations.

There are a number of reasons for choosing CBR as a safety assurance reuse strat-
egy. The main requirement for our problem context (certification in avionics and
IMA) is that the solution should be able to support a significant variability from one
project to another in terms of justification diversity (See Section 2.3). Additionally the
reuse solution is intended to deal with a fairly wide range of kinds of arguments and
certification data. Traditional rule-based knowledge approaches are not suitable for
this requirement, as they require strong domain knowledge and representation. In
CBR, as opposed to rule-based approaches, knowledge about the domain is acquired
and maintained through unrelated but similar cases and does not need a domain expert
or knowledge about the problem domain. The generic concept of our approach hence
moves away from a rule-based implementation, as for each type of IMA platform and
company context, specific rule-sets would need to be encoded.

CBR applied to safety assurance is new and few published work exists in this area.
However some examples on how these techniques have been applied to safety related
topics have been reviewed. A web-based system is presented in [1] for managing the
Hazard and Operability (HAZOP) analysis based on a case based reasoning support
The system shows the end user previous result from HAZOP analysis on similar envi-
ronments so it can be adapted for the new case. Instead of doing the analysis from the
scratch, the system tries to reuse the best practices from previous situations.

PHASUITE [2] is another CBR system for HAZOP analysis in a systematic way.
PHASUITE framework consists of four main parts: information sharing, representa-
tion, knowledge base and reasoning engine. CBR techniques are used for the man-
agement of models which capture the knowledge concerning the system.

The work in [3] explains a framework that shows the first results for an industrial
application where their conceptual semantic case-based framework for safety analysis
is tested. Their framework facilitates the reuse of previous HAZOP and FMEA
experiences in order to reduce the time and effort associated with these analyses.

Towards a Case-Based Reasoning Approach for Safety Assurance Reuse 27

A prototype is described in [17] for a semantic-case framework used in the aerospace
domain, using a specific ontology. The prototype is able to guide the user for the defi-
nition of well-structured requirements.

3 Outlining a CBR Approach for Safety Assurance Reuse

3.1 Problem Description

We were particularly interested in evaluating a CBR approach for a case study on
certification activities related to IMA platform integration, including computing and
networking. The input of this certification activity is the qualification data of hard-
ware and software components (e.g. computing unit or operating system) of IMA
platforms. The outcomes of this incremental activity in certification will be used to
build the certified IMA system’s certification data (this includes the IMA platform
plus applications on top of it).

In this context, the IMA platform architect role establishes a certification baseline
about sizing hypothesis (memory, processor throughput), certification standards ap-
plicable (DO254, DO178), and functionality expected (e.g. API A653). The IMA
platform architect also fixes the execution platform perimeter for the module supplier,
including hardware (e.g., processing unit, IO units, and memory units) and software
(OS, drivers, platform system functions, etc.). The module supplier provides what
DO-297 calls the usage domain (characteristics and usage constraints). The module
supplier also provides qualification material for certification demonstrations. Finally,
the IMA platform architect validates the module supplier’s data and provides formal
acceptation. Acceptance of a module can only be performed in the context of the air-
craft or engine certification program or modification project [10].

- T
~ Process Arguments |

_— . - - Product Arguments
T N -~ e AN
e . N\ / - ~ N\
/ \Af’f’"ca“"’ﬂ/‘ \ / / Application N) N\
- SR

T

IMA Systém Arguments
I
1

" P
\ | component
\\\(Soﬂware)

- | | |
Component J \ | I
(Application Specific| / \ ?g;“x;;’;t / !
Harovare) |/ N /
,// g h

(Software)

(Software)

and/or
Software)

andlor
Software)

and/or
Software)

and/or
Software)

- [e]
~ i)
IMA Platfofm Arguments]
Avionics Function Specific | 8
o I =3
General Purpose Pratom — ! S 18
‘ (Module) Sertification Process Arguments | Product Arguments - NE
e — v ol 8] |5
e ,/T T ModuIeA‘rguments @ ol 5
S — I S 2| | o 5
_ . ! 2
\/ Core \‘ T Certificati II h (" sharea ! g ; &
software)/ ertification x _Resources | | ol |E
N /) Domain#1 A~ \F S/ i FARIE!
T / . ™~ \‘ — | S)
[=)
Module Module Module \ | g ;
I N
7N N | g
/~ N 7 ™ | =
Component| | Component| [Component| [Component i #
Component | | Component| | (Hardware | | (Hardware | | (Hardware | | (Hardware |
T
L
I
L

(a)

I
Process Arguments| Product Arguments

(b)

Fig. 2. Relationship of IMA elements and the incremental certification concept

28 A. Ruiz, I. Habli, and H. Espinoza

Fig. 2.a describes the incremental aspects that are related to the IMA concept. The
IMA platform (certification domain #2) that is built from modules (certification do-
main #1) and associated configuration tools are in correlation with the IMA platform
Usage Domain. The usage domain defines the set of rules and constraints that allow
the customization of the IMA platform for a specific use while keeping the certifica-
tion credits obtained for the platform.

In this case study, we focus on the development of safety argumentation and pat-
terns to demonstrate compliance with avionics standards, as part of the justifications
needed to integrate the module into the IMA platform. The strategy is to define a set
of claims related to IMA platform level hazards. The claims are decomposed using
sub-claims, evidence, and other argumentation elements that are represented using the
Goal Structuring Notation (GSN) [13].

As the argumentation in GSN models must reflect a modular approach of the refer-
ence IMA architecture, it is necessary to identify possible architectural elements that
could be used to construct a specific IMA assurance argumentation. Fig. 2.b shows
the hierarchy of argumentation and its link to the IMA architecture. We have also
added two kinds of arguments: process arguments and product arguments [25]. Proc-
ess arguments are related to the assurance processes that should be used, the interme-
diate artefacts to be produced (requirements, specifications, test plans etc.), the kinds
of reviews, tests, and analyses that should be performed, and the documentation re-
quired to tie all these together. The product arguments consider the potentially haz-
ardous behaviours exhibited by the system and how they are mitigated.

Table 1. DO-297 objectives and hazards regarding partitioning associated

Objective Life Cycle LEVEL |Product|Elements asociated with hazards
Data
Description
Partitioning ensures that the behavior |Partitioning Module [Product |* Interrupts and interrupt inhibits (software and hardware)
of any hosted application is Analysis Data * Real time correspondence:
prevented from adversely affecting + frame overrun,
the behavior of any other application + interference with real time clock,
or function. + counter/timer corruption,

pipeline and caching)
lemory, I/O contention
Data flags
Recursion termination
* Control Flow defects :
+ incorrect branching into a partition or protected area (timing and space aspects)
* External device Interaction (e.g. displays):
+ loss of data (e.g. overwritten)
+ delayed data
+ incorrect data (unlikely across systems)
+ protocol halts (e.g. ack nacks)
V&V Data Module [Product [* Software traps:
+ divide by zero,
+ un-implemented instruction,
+ specific software interrupt instructions,
+ unrecognized instruction)
* Program overlays
* Buffer sequence (double jeopordy)
* Indirect non terminating call loops
* Holdup commands (performance hedges)
* Loops (e.g. infinite loops)

R

Failure Module [Product [* Control Flow defects (timing and space aspects):
Analyses and + incorrect branching into a partition or protected area,
Safety Analyses + corruption of a jump table (double duty?)

+ corruption of the processor sequence control
+ corruption of return addresses
+ unrecoverable hardware state corruption (e.g., mask and halt))
* Loss of input or output data
* Corruption of input or output data
* Corruption of internal data:
+ direct or indirect memory writes
+ table overrun
+ incorrect linking
+ calculations involving time
* Delayed data

Towards a Case-Based Reasoning Approach for Safety Assurance Reuse 29

For example, when building the safety argument for IMA platform/modules, we
take advantage of a Certification Authorities Software Team (CAST) document [18]
that gives some guidelines for assuring partitioning. Given these guidelines, we can
align our argumentation to the assessment required by the standards. The decisions
made on the architecture implementation have effects on the structure of the fault tree
so they will be part of the features analysed in the case representation. One of the most
dependable decisions made on architecture is how partitioning and sharing resources
are implemented. In order to work in a methodical way, we propose that architecture
services can be mapped with an IMA module and so they should follow the DO-297
requirements for certification.

Table 1 shows the objective of the DO-297 standard regarding partitioning and the
lifecycle data required for the certification of IMA platform modules. Associated with
the hazards there are the items that can be considered as the causes of hazards. These
items need to be taken into account for satisfying that specific objective. In order to
deal with these elements, we should offer evidence that the resources are accessible in
time and space. How each resource is accessible depends on the architecture design
and implementations decisions.

While the previous table describes a generic set of hazards extracted from standards
and guidelines, the project-specific hazards define technology-specific arguments iden-
tified from preliminary hazard analyses. In Fig. 3, we show an excerpt of safety argu-
mentation used for safe access to shared resources.

Strategy S2: Shared resources
#/2nd propagation paths are
identified

Goal G4: Goal G5: - Goal G6: Goal G7: Goal G8: Goal G10: Shared Goal G9: Logical units
= System Bus or = Cache is/are TlBissafe | ®Interruptions ™ Memory or = addresable 5 and co-processors
NoC is/are safe safe s are safe memory devices shared between cores/
logical cores are safe

[Strategy S4 Strategy 58 [trategy s11: (&3
Temporary [Suategy 56| #Interprocess = ENsuring
contention - interrupts / mutually

exclusive access

Cache eviction

Htrategy S3:
. Contention through
concurrent access
argumentation

[S—r trategy S9: Contention
. Strategy S5: Cache [Strategy S7: ./i mgy S10-

currently execution
concurrent access - Cache Y v o .
cores Contention by

coherex DMA traffic

Fig. 3. Excerpt of safety argumentation used for safe access to shared resources

One of the ideas that were implemented in this approach is the use of safety case
patterns. This is the key to reuse the good practices accepted by experts in the sector.
Patterns are widely used in engineering, and in relation to safety, some catalogues
have been designed [5] [6]. The same methodology is applied while representing the
knowledge for the domain. The cases are represented by the procedure follow in order
to fulfil the standard’s objectives and the product, that is, safety requirements that the
platform implementation must fulfilled.

For the next step, we propose to define a common pattern regarding sharing re-
sources so all instantiations of the pattern will have a similar structure that will help
the system on a future step to compare decisions from past cases and how the deci-
sions have affected the arguments. On Fig 4 a preliminary pattern used an example of
the proposal.

30 A. Ruiz, I. Habli, and H. Espinoza

G1: Shared resources G1: System bus
are accesible is accesible
CL: Run time
/ ST Argumentation G2:Hardware Menitoring
about all shared level access applications deals
resources are identified, @ -

J1: Access management management is with concurrent
working access and burst
request

level, Hypervisor level , T3: Argumentation

’ Operating system level, T2: Argumentation abou? architecture
Middleware level, about architecture = decision for
Application level & decision for

accesing the
accesing the resource in space
resource in time

can be done at: Hardware /g

E1: Results from scheduling analysis

E2: V&V Data for resource access

E1: Results from the scheduling analysis

Fig. 4. Preliminary pattern and its use on an example for shared resources

For the case characterization in a CBR approach, we will use the elements de-
scribed before (safety case patterns and hazards) as case and knowledge bases.

3.2 Case Characterization

The phases for CBR are shown in Fig. 5. The process starts when a new case arrives
and needs to be processed and finalized when the case is solved and the information
learned from the process is stored back in the knowledge repository.

{ New case ;

4

Retrieve information

Cases Repositol

Retrieved case

Y

General Knowledge Reuse case

Suggested solution
Y

Revise case

Validated solution
Y

I Retain information

Store case

Fig. 5. CBR general flow

One of the main tasks that should be done and is not described in the figure is case
characterization and how the knowledge for the cases is represented in the repository.
The cases should represent information balancing complexity and richness with
efficiency. Case descriptions are not just a feature vector with some values, but a
representation of an argumentation (goals, claims and evidence). This is one of the
challenges that must be achieved in order to apply these techniques to safety
assurance reuse.

Towards a Case-Based Reasoning Approach for Safety Assurance Reuse 31

Before defining the case characterisation, we identify all the “resources” to build
the CBR approach. These should be at least three:

1. New project data (new case). The set of data used to certify an IMA Platform by
integrating: (i) pre-qualification data of an IMA Platform (e.g., owned by the Plat-
form Integrator), and (ii) Module data (certification data for module acceptance)

2. Safety case patterns (general knowledge). The set of “experience” information to
be used as initial case base in the form of modular arguments organized in safety
case patterns.

3. Previous projects’ safety cases (case repository). The set of “experience” infor-
mation to be used in future projects as case base in the form of safety cases. They
must also contain “context” information.

Additionally, we identify the inputs and outputs in a specific CBR reuse project:

1. Inputs (new case): The set of data related to the module pre-qualification, which
must be adapted in the form of an “IMA module safety case”. The adapted inputs
(target) must be structured: safety cases plus additional structure (argument vari-
ables, arguments ontology).

4. Outputs (validated solution): The set of candidate safety cases related to the IMA
platform with a trust measure for each, which will be the “IMA platform safety
cases”. These may be incomplete safety cases that will provide a basis to humans
for completing the final safety case. This means that CBR does not need provide
conclusive solutions but at least advice to humans in decision making and reusing
as much previous experience as possible. The outputs must be also structured:
safety cases plus additional structure (argument variables, arguments ontology)

As a starting point to characterize cases, we take typical safety cases as they may be
presented for argumentation of product assurance or compliance with standards.
Typical safety cases will have the following concept types:

1. Types of goals as organized by the type of argumentation modules: conformance
arguments, risk reduction arguments, etc.

5. Types of claims as described in the current version of the paper (arguments to
demonstrate IMA segregation, partition, distribution, integration, etc.)

6. Types of evidences that may be based on an ontology/taxonomy and their charac-
teristics.

Within each of these three elements, we may find additional aspects, including:

— A lexical structure given by the textual information. This may lead to a struc-
tured textual language. This also raises the question of converting the textual
information (inputs) in the structured format required for a kind of propositional
language.

— Variables. Some of the elements of a safety case would need to be variables taking
values from a value space (variable types) which will include dependencies be-
tween variables. E.g., the “evidence” (option branch in a use case) to be provided
depends on the “DAL” identified for the function.

32 A. Ruiz, I. Habli, and H. Espinoza

— Values for variables. These could be extracted from safety cases for previous
projects or a library of possible values specific to a given company. For instance:
concrete means of compliance used by a company, technical information on IMA
platform (size, time constraints, computing capacity, etc)

— Relations between the aspects above. The main challenge is to find a way to keep
consistency between the three aspects above when authoring a safety case. The de-
cisions on how to build a safety case in a specific project may depend on the intri-
cate relation between all these aspects.

3.3 Case Retrieving and Reuse

The system should learn how the similarity among cases is defined and assessed in
order to retrieve the cases whenever a new situation arises. Commonalities should be
studied in each of the attributes that conforms and identifies the cases. At the same
time it should analyse the weight that each attribute should have when calculating the
general similarity.

The first step is to identify what will be the elements that will help index cases: ba-
sically they will be the types of goals, claims and evidences. Then we need to estab-
lish a voting approach to select the best similar cases.

Once the cases are retrieved, general knowledge also plays its part, as among the
retrieved cases, the system should be able to suggest a possible solution for the new
situation. When a past case matches exactly with the new situation, there is no need
for the retrieved solution to be adapted. However as it has been mentioned, this is not
a frequent situation. The information on how cases are reused is directly related to the
information on how the matching between cases is done.

The suggested solution is presented but must be validated with information. As the
domain where the system is intended to apply is avionics, information on how the
authorities understand the assessment. In this domain it is difficult to validate a solu-
tion in an automatic way, safety argumentations and evidence depth could vary from
one project to another and from one assessor to another.

The information on why a solution is valid or not will help to improve the match-
ing process and the task to adapt retrieving cases to a new situation in order to make a
plausible solution.

3.4 Discussion

One of the reasons that validate the CBR approach is that while dealing with certifica-
tion, standards can be vague and need interpretation. The quantity of evidence and/or
the depth needed could vary from one project to another. The use of past experiences
is informally applied in industry and argumentation about past experiences is accepted
by some authorities. A CBR system could help certification related teams to store and
share the knowledge gathered on previous projects to future situations even when the
team change.

The approach presented here is intended to decrease the efforts needed while de-
signing safety cases. According to [15], it is the argument that, product testing has
some limitations and so many regulatory authorities have recommended the use of
process-based techniques. However the process-oriented approach do not guarantee
the elimination of all potential risk. We plan to balance both approaches, use a

Towards a Case-Based Reasoning Approach for Safety Assurance Reuse 33

process oriented approach to fulfil the objectives of the standards and product-
oriented while testing the safety of a specific platform implementation.

The IMA architecture will be referenced for all cases on the example developed to
validate the case based reasoning approach. Although the same architecture is main-
tained, the implementation from one to another could differ and even different hard-
ware implementation will be under study for this example. Habli in [18] indicates that
architecture design and its variations are key to discover the elements that could con-
tribute to system failure conditions.

The methods and techniques used for gathering evidence have been selected for the
safety method database that is mentioned in [14]. The database relates to the different
methods not only with the domain but also with the different stages if the safety as-
sessment when they are used.

New cases are defined by the safety goal that should be in the argument, and the
design decisions taken for the implementation of the specific safety requirement. The
case based reasoning approach should provide the safety argumentation related to
those decisions that have been used on previous cases that have certain level of simi-
larity. It is also considered the different types of evidence which can support the ar-
gumentation planned; it is in this aspect where the safety database could play an im-
portant role.

For the retrieval activity, we propose a list of ranked similar cases, those will be
the cases to base the reuse of argumentation. The only case where the reuse will be
direct will be those cases where the similarity is total and all features have equal val-
ues. On the cases where this similarity is not complete, we should study the sum of
similarities among all from the features that identify the case and weigh those simi-
larities in correspondence with the importance of each feature.

The revision in the proposed example is always done manually where the sug-
gested solution is shown to the user who should be an expert on safety assessment and
certification. The solution shows a safety case which integrates the safety argumenta-
tion about the platform implementation, the certification objectives that should be
fulfilled and the possible evidences that support those arguments. The end user should
validate the solution or modify it to adjust it to the requirements. This validated solu-
tion will be stored on the cases repository to serve for future enquires.

This approach only serves when the patterns are used and integrated in the way it is
explained. When we have a safety case that does not follow that structure this ap-
proach cannot be followed.

If a new hazard is identified then the architecture pattern should be updated and
consequently all the cases that use it.

4 Conclusions

CBR techniques provide a promising approach for assisting engineers in their assur-
ance task while creating safety argumentations in relation with a specific architecture
for a specific standard. A CBR system could help in creating a methodology for safety
assessment and in this way decrease the time needed for assessing certain products,
particularly those developed in a modular way. This approach could help engineers to
maintain the best practice updated and at the same time helps engineers to focus on
the safety implications that one design could have compared to other.

34 A. Ruiz, I. Habli, and H. Espinoza

Future work, beyond solution implementation, is to define a propositional language
based on a domain-specific language. The expected CBR user interface to collect
inputs and show safety case as outputs would be as a graphical interface for safety
cases but with support of this propositional language (auto-completion assistant, type
checking, semantic checking).

Acknowledgment. The research leading to these results has received funding from
the FP7 programme under grant agreement n° 289011 (OPENCOSS) and from the
ARTEMIS programme under the project RECOMP. We would also like to thank
Integrasys, 7 solutions and University of Granada that are part of the project and have
conceived the ACP platform that was key for the pattern example described here.

References

1. Sahar, B., Ardi, S., Kazuhiko, S., Yoshiomi, M., Hirotsugu, M.: HAZOP Management
System with Dynamic Visual Model Aid. American Journal of Applied Sciences 7(7),
943-948 (2010)

2. Zhao, C., Bhushan, M., Venkatasubramanian, V.: PHASUITE: An automated HAZOP
analysis tool for chemical processes Part I: Knowledge Engineering Framework. Process
Safety and Environmental Protection 83(B6), 509-532 (2005)

3. Daramola, O., Stalhane, T., Moser, T., Biffl, S.: A conceptual framework for semantic
case-based safety analysis. In: 2011 IEEE 16th Conference on Emerging Technologies &
Factory Automation (ETFA), pp. 1-8 (2011)

4. Kelly, T.: Arguing Safety - A Systematic Approach to Managing Safety Cases. PhD thesis,
Department of Computer Science, The University of York (1998)

5. Hawkins, R., Kelly, T.: A software Safety Argument Pattern Catalogue, Department of
Computer Science, The University of York (2008)

6. Stensrud, E., Skramstad, T., Li, J., Xie, J.: Towards Goal-based Software Safety Certifica-
tion Based on Prescriptive Standards. In: International Workshop on Software Certifica-
tion, WoSoCER (2011)

7. IEC61508, 61508 - Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-Related Systems. International Electrotechnical Commission (2011)

8. RTCA DO-178/EUROCAE ED-12, Software Considerations in Airborne System and
Equipment Certification

9. RTCA DO-254/EUROCAE ED-80 Design Assurance Guidance for Airborne Electronic
Hardware

10. RTCA DO-297/EUROCAE ED-124 Integrated Modular Avionics (IMA) Development
Guidance and Certification Considerations

11. SAE ARP4754/EUROCAE ED-79, Certification Considerations for Highly Integrated or
Complex Aircraft Systems

12. SAE ARP4761, Guidelines and Methods for Conducting The Safety Assessment Process
on Civil Airborne Systems and Equipment

13. Origin Consulting GSN Community Standard Version 1 (2011)

14. Everdij, M.H.C., Blom, H.A.P., Kirwan, B.: Development of a structured database of safe-
ty methods. In: 8th International Conference on Probabilistic Safety Assessment and Man-
agement, PSAMS (2006)

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

Towards a Case-Based Reasoning Approach for Safety Assurance Reuse 35

Johnson, C.W., Robins, D.A.: Mith and barriers to the Introduction of Safety Cases in
Space-Based Systems

Kelly, T.: Using Software Architecture Techniques to Support the Modular Certification of
Safety-Critical Systems. In: Cant, T. (ed.) Proceedings of Eleventh Australian Workshop
on Safety-Related Programmable Systems, Melbourne, Australia. CRPIT. ACS (August
2005)

Hayhurst, K.J., Maddalon, J.M., Miner, P.S., Szatkowski, G.N., Ulrey, M.L., DeWalt,
M.P., Spitzer, C.R.: Preliminary Considerations for Classifying Hazards of Unmanned
Aircraft Systems. NASA (2007)

Certification Authorities Software Team (CAST): Guidelines for Assessing Software Parti-
tioning/Protection Schemes. FAA (2001)

Bloomfield, R., Bishop, P.: Safety and Assurance Cases: Past, Present and Possible Future
— an Adelard Perspective. In: 18th Safety-Critical Systems Symposium (SSS 2010), Bris-
tol, UK (2010)

International Organization for Standardization (ISO), ISO26262 Road vehicles — Func-
tional safety, ISO (November 2011)

U.S. Food and Drug Administration, Guidance for Industry and FDA Staff - Total Product
Life Cycle: Infusion Pump — Premarket Notification, Draft Guidance (April 2010)
Aerospace guidelines for the development of civil aircraft and system ARP 4754A
Eveleens: Integrated Modular Avionics Development Guidance and Certification Consid-
erations (2006)

Aamodt, A., Plaza, E.: Case-Based Reasoning: Foundational Issues, Methodological Var-
iations, and System Approaches. Artificial Intelligence Communications 7(1), 39-52
(1994)

Habli, I., Kelly, T.: Process and Product Certification Arguments — Getting the Balance
Right. Workshop on Innovative Techniques for Certification of Embedded Systems, the
Proceedings of 12th IEEE Real-Time and Embedded Technology and Applications Sym-
posium, San Jose, California, USA (April 2006)

Modeling for Safety in a Synthesis-Centric
Systems Engineering Framework

Jasen Markovski* and J.M. van de Mortel-Fronczak

Eindhoven University of Technology,
P.B. 513, 5600MB, Eindhoven, The Netherlands
{j .markovski,j.m.v.d.mortel}@tue.nl

Abstract. The ever-increasing complexity of safety-critical systems puts
high demands on safety assurance and certification. We focus on the de-
velopment of control software, where safety) requirements engineering
plays a crucial and delicate role. Nowadays, most of the safety features
are ensured by the (embedded) control software and, consequently, a
great deal of the operational failures primarily originate from require-
ment errors. We apply formal methods to systematically specify, model,
and validate safety (control) requirements, which we then employ to
automatically synthesize a control design based on a formal model of
the system at hand. The synthesized designs are correct by definition,
provided that the models capture all safety aspects of the system. We
structure the process in a synthesis-centric model-based systems engi-
neering framework that we apply in an industrial case study involving
safe coordination of movement of theme park vehicles. The framework
provides rigorous means for modeling of safety requirements, and it sup-
ports evolvable product design, requirement reuse, and early integration
with hardware prototypes for validation and testing.

1 Introduction

The constant increase in complexity of safety-critical systems combined with
the growing market demand for products with improved quality promotes safety
assurance and certification amongst the most costly undertakings in product de-
velopment. To cope with complex systems and reduce development costs, most of
the global safety requirements are ensured by coordinating (off-the-shelf) system
components, which themselves ensure local safe behavior by embedded control
software. This puts pressure on requirements engineering, which plays a cru-
cial role in determination of the quality of the end product. According to the
overview of [I], nearly three quarters of failures found in operational software
originate from errors or oversights in (safety) requirements. Cases in point are
many, cf. [33], some with catastrophical consequences, furthermore fortifying the
need for high-quality requirements specifications and rigorous analysis.

* Supported by Dutch NWO project ProThOS, no. 600.065.120.11N124.

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 36-J] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

Modeling for Safety in a Synthesis-Centric Systems Engineering Framework 37

Formal Methods for Safety-Critical Systems. On the one hand, formal methods
are advocated by [I6l29] as cost- and time-effective alternative for formal and
rigorous specification, modeling, verification, validation, and testing of safety re-
quirements. Moreover, they are already encouraged as appropriate, even manda-
tory, methodologies in the development of safety-critical software by several stan-
dards, like [3238]. However as noted in [17], relatively little emphasis is placed
on how formal methods integrate into the safety-critical system development
process, despite their successful application in multiple industrial cases studies
for the purpose of verification and validation like [20/9J21]. On the other hand,
it has been recognized in [23] that traditional approaches to software develop-
ment employing (re)coding-(validation-)testing loops have proven not entirely
adequate to handle the challenge, as safety (control) requirements frequently
change during the design process inducing a large number of time-consuming
design iterations. Thus, simply employing formal methods for certain product
design and development phases alongside or supporting the main design process
might not suffice, calling in [4] for a shift from process-based towards model-
based development from early stage to certification, deployment, evaluation,
evolution, and decommission of the system.

Supervisory Control. Our proposal for a synthesis-centric model-based systems
engineering framework partly addresses some of these issues in the develop-
ment of supervisory controllers for high-tech complex machines. Supervisory
controllers observe and coordinate high-level discrete(-event) system behavior.
They observe the discrete-event behavior of the uncontrolled system, make a de-
cision on which activities the system can safely perform, and send back control
signals that actuate the system. We note that the layer of supervisory control is
on a high level of abstraction, residing between the user and the resource con-
trol of the machine [§]. The automated synthesis of control designs is supported
by supervisory control theory of [31I8], which investigates synthesis of models
of supervisory controllers based on the models of the uncontrolled system and
the safety or control requirements. Thereafter, the synthesized models can be
employed to generate the control software or, alternatively, they can be directly
coupled with the prototype hardware using appropriate interfaces.

The models of supervisory controllers are referred to as supervisors, whereas
the model of the uncontrolled hardware is referred to as plant. Typically, it is
assumed that the supervisory controller can react sufficiently fast on system
sensory input, which enables modeling of the supervised system as a synchro-
nization between the plant and the supervisor, known as supervised plant. Plants
are usually represented by sets of sequences of events, or discrete-event automata
that generate formal languages, which model and correspond to sequences of ob-
served activities of the uncontrolled system. In the following, we simplify the
role of events for the sake of a more gentle introduction to the topic. The events
are split to uncontrollable events, which model activities like observations of sen-
sors, and controllable events, which model actions like interaction with actuators
of the plant. Consequently, supervisors cannot disable uncontrollable events,
as controllers cannot change sensor signals and need the feedback they carry.

38 J. Markovski and J.M. van de Mortel-Fronczak

On the other hand, they can disable controllable events in order to actuate the
machine in a safe manner, i.e., to prevent potentially unsafe state of the system
or dangerous situations. The safe behavior of the system is prescribed by a model
of the safety or control requirements.

Consequently, the supervisory controller synthesis problem is to synthesize
models of software controllers that observe discrete(-event) system behavior and
ensure their safe execution by disallowing activities of the system that might
lead to dangerous or otherwise undesired situations. The advantage is that the
synthesized controllers are correct by definition, i.e., the supervised system ad-
heres to all prescribed safety rules, provided that the plant and the control
requirements were correctly modeled. Therefore, validation of the synthesized
control software is always required, but the focus of the designers is no longer
on interpreting informal requirement specifications, coding, and testing, but on
analyzing requirements, their correct modeling, and validating system behavior.

Motivation and Contributions. Supervisory control has already been successfully
applied in a broad range of industrial cases: in [37] to ensure safety of patients
in a patient support system of Philips MRI scanners, in [19] to prevent dead-
lock behavior of parallel programs, in [I0] to enable safe and secure access of
web services, or in [27] to guarantee proper maintenance of high-tech Océ print-
ers. We noted that the control designs, which implement the modeled safety
requirements, describe unambiguously the safety aspects of the control system.
Therefore, they can serve as means of communication between the industrial
producer of the equipment and the client that makes the order.

Here, we focus on the formal modeling of safety requirements and the val-
idation of the control design. We illustrate the application of our framework,
directly applied in an industrial case study involving safe movement coordi-
nation of theme park vehicles. We developed control design that successfully
coordinated the movement of the vehicles. The flexibility and advantage of su-
pervisory controller synthesis was highlighted by a last minute addition of a
new sensory component. It took us only four hours to model the new compo-
nent, add it to the existing models, adjust the control requirements, synthesize a
supervisor, and validate it by directly interfacing it with the vehicle prototype.

The remainder of this paper is organized as follows. We present and discuss
the proposed systems engineering framework in the following section. Then, we
present the industrial case study and summarize the whole process from specifi-
cation to validation of control designs with early integration of prototype hard-
ware. We finish with a discussion involving challenges in supervisory control and
its integration with system safety engineering.

2 Synthesis-Centric Model-Based Systems Engineering

To structure the process of supervisory control synthesis we employ the frame-
work of [3426/5] depicted in Fig.[Il The modeling process begins with an informal
specification of the desired system, written by domain engineers. A design of the

Modeling for Safety in a Synthesis-Centric Systems Engineering Framework 39

redefine redesign m redeﬁnel m remodel l ﬂ vall(lfich ﬂ Yf],k,ja,tﬂ‘,m .

realize

simulate @‘
|
Specification ﬂ Model ‘ @ synthesize jn Model }» 3 i Realization
Supe B
|
1
|

-

i
|

i

Safety Safety S visory —E+4— Control i

- q/et)' 2 | Requirements L Controller N Software |

o e Requirements | g : | ; !
=t 2. o i integrate i
2 Specificati 5] . m(e%rate Interface % !
pecification Architectural - 1

k Desired m Design Desired| . imeérate | !
System System o ! | integrate !

9] % : refinement l‘ ! % !

& & Discrete-Event Hybrid =1 | Realization | |

Specification | ~ Design | ! y S !

y T E : Model Model Sw System !

m Um,u.ntmllcd Uncontrolled| ﬁ Plant Plant ST | (Hardware)| |

System System | A ' |

! t abstraction o |

! i

i X -
redefine redesign ﬂ redefine ﬂ redesign ﬂ rcmodcl‘ ﬁ validatel m valiclatelﬁi&l

‘ D Document O Model I:l Realization *—Domain engineer ﬂ Software/Model engineer @ Automated step ‘

Fig. 1. Model-based engineering framework for supervisory controller synthesis

architecture of the system follows, contrived by domain and software engineers
together. The design most importantly defines the modeling level of abstraction
and the control architecture. Subsequently, it is used to separate the plant and
the control or safety requirements, a joint task of domain and software engineers.
Here, a decision is made to which extent the control is managed by the software,
and which part is implemented in hardware. The resulting informal documents
specify the plant and control requirements, respectively. In the following, we
omit the roles of the engineers as they are clear from the context.

Most plants typically exhibit hybrid (discrete-event and continuous) behavior,
whereas supervisor synthesis requires a discrete-event abstraction. The hybrid
model is suitable for simulation purposes, and it can be abstracted to a discrete-
event model for synthesis purposes, required by [31I8]. This abstraction only
eliminates timing behavior, while preserving the sequencing of the events and
their consequence on the control design. In the design of the plant, decisions are
made on the level of abstraction that is used, and what is significant discrete-
event and hybrid behavior. Moreover, in many cases, the hardware prototype
of the system is already in place, and it only needs to be modeled for synthesis
purposes, or it has already been modeled for simulation and validation of its
components, resulting in a hybrid model that needs to be abstracted. In par-
allel, a model of the control requirements is made following the specification
documents, referring to the plant. The discrete-event version of the plant to-
gether with the model of the control requirements are input to the synthesis
tool, which automatically generates a supervisor.

Software-in-the-loop simulation can be used to validate the supervisor cou-
pled with the hybrid plant, and hardware-in-the-loop simulation can be used to
validate the supervisor against a hardware prototype. The latter offers an early
integration alternative before the actual control software is built as in [7]. If the
validation is not satisfactory, the control requirements and/or the plant model
need to be remodeled or redefined. In certain cases, a complete revision proves to
be necessary, which might even require redefining the specification of the whole
system. Finally, the control software is generated automatically, based on the

40 J. Markovski and J.M. van de Mortel-Fronczak

validated models. Note that software engineers in the framework act more as
‘model” engineers, shifting their focus from writing code to modeling.

Related Work. Model-based systems engineering methods are state-of-the-art
approaches towards reducing development time and cost, while retaining high
level of confidence in the correctness and safety of designs. The most promi-
nent commercially available frameworks are IBM Telelogic Harmony-SE, IN-
COSE Object-Oriented Systems Engineering Method, IBM Rational Unified
Process for Systems Engineering for Model-Driven Systems Development, Esterel
Technologies SCADE System, and Vitech Model-Based Systems Engineering
Methodology. They achieve a paradigm shift from traditional document-based
to model-based approach by focusing on design model formulation, as discussed
n [12]. These frameworks do provide methodologies and tools that support the
process of (manual) development of system models, but they do not support
automated model derivation as enabled by supervisory control synthesis. Our
academic framework is still under development and the way of specifying safety
requirements comes closest to the approach of Event-B, described in [2]. To spec-
ify models in Event-B, safety invariants need to be defined similar to the ones
that we employ in our framework. In Event-B, it is a task of the modeler to prove
these invariants correct with the available tools, whereas in our approach correct
models are synthesized automatically, satisfying specified safety requirements.

Framework Implementation. The proposed framework can be coupled to several
specification, synthesis, and verification state-of-the-art tools, depending on the
control architecture, the form of the safety requirements, and the additional
progress or liveness and performance requirements. For the traditional approach
to supervisory control, we employ discrete-event models in the form of automata.
The safety requirements are also given in the form of automata, which generate
the allowed sequences of events. To this end, we employ tools like TCT [13]
and Supremica [3] for monolithic synthesis, or the techniques introduced in [36]
for synthesis of distributed supervisors. We noticed in [26/27], however, that
specifying safety requirements in terms directly in terms of states provides high-
quality transparent safety formal specifications, supported by the tools NBC [24]
and the extended finite automata with data of Supremica [30].

As the supervision caters only for safe system behavior, and it does not
guarantee liveness properties of the supervised system, so several extensions
of the theory were proposed to extend modeling convenience and to increase
the expressiveness of the control requirements. To this end, standard safety con-
trol requirements are reinforced with liveness requirements, which specify in-
tended activities the supervised system should be capable of performing. The
work of [39] extends the NuSMV model checker for synthesis employing the
branching temporal logic CTL*. Similarly, control requirements in CTL" are
proposed and analyzed in [18]. In [35] a proposal to translate temporal logic to
standard event-based control requirements is presented, subsequently enabling
the usage of standard synthesis tools. However, all of these approaches suffer
from (doubly-)exponential complexity due to enforcing of liveness requirements

Modeling for Safety in a Synthesis-Centric Systems Engineering Framework 41

during the synthesis procedure. Consequently, the proposed frameworks can han-
dle only systems with 10* — 10° states reported in [3OUTSI35ITT].

Industrial Applications. Thus, for industrial application we remain in the do-
main of event-based [RI3] or state-based properties [24], decoupling supervisor
synthesis and liveness verification, and employing the most efficient special-
ized tools. To this end, we developed several transformation tools that align
the synthesis tool Supremica [3] with the model checkers UPPAAL [22] and
mCRL2 [I5], which can be employed for the purpose of verification of progress
properties of the supervised plant. The supervised plant is transformed to an
input model for the corresponding tool, preserving both state- and event-based
information in the format required by the temporal logic supported by the tool.
For UPPAAL the same data-structures can be employed, whereas for mCRL2,
we have to encode the state-based information into events. In any case, the
post-synthesis verification is a valuable tool that provides relatively early feed-
back to the modeler, bringing higher confidence in the control design. The
synthesis-based systems engineering framework has been applied to several in-
dustrial case studies like [37I27/T4]. The synthesized supervisors have been suc-
cessfully tested using hardware-in-the-loop integration, where the hardware is
directly supervised by the model of the supervisory controller. Control software
has also been generated and integrated within the software architecture of the
machines, but this step is not yet fully automated and it requires a manual
intervention.

The goal of the case study reported in [37] is safe positioning of patients inside
a Philips MRI scanner. To this end, models of the patient support system and
the user interface of the machine have been made, comprising 6.3 - 10° states
of the uncontrolled system. The control requirements that ensure patient safety
among else define the conditions for manual and automatic movements of the
tabletop on which the patient lies, prevent collisions of the tabletop with the
magnet, and enable the operator to safely control the system by means of the
user interface. The case study of [27] deals with coordination of maintenance
procedures of the printing process of a high-tech Océ printer. The printing pro-
cess applies a toner image onto a paper sheet. To maintain high printing quality,
several maintenance operations have to be carried out after a certain number of
prints. However, if possible, the execution of the maintenance operations should
not interrupt an ongoing printing procedure. Still, print quality must not be
compromised and, if necessary, a print job can be interrupted. The plant model
consist of the printing process comprised 25 automata with 2 to 24 states. For
this case, we employed parameterized state-based control requirements, which
translated to 500 state-based expressions as required for input to the synthesis
tool NBC [24]. In addition, several re-iterations of this case study has led us
to a framework based on the tool Supremica [3], which provides an extension
with performance evaluation in [2528], bringing additional confidence to the
design.

42 J. Markovski and J.M. van de Mortel-Fronczak

3 Industrial Case Study: Theme Park Vehicle

The case study elaborated in [14] illustrates industrial application of supervisory
control theory, in which safety plays a prominent role. Using this case study, we
explain how safety requirements can be modeled and coped with in the synthesis-
centric systems engineering framework described in Section 2.

The multimover, a theme park vehicle shown in Fig. [2 is a relatively new
concept in the amusement park business. It is an Automated Guided Vehicle
that drives around following an invisible track: an electrical wire integrated in
the floor. It offers the possibility for new rides with crossings, switches, junctions
and driving into and out of dead-end tracks, as opposed to the conventional roller
coaster or ferris wheel. It acts and drives according to a scene program that is
specified by the theme park. The track wire produces a magnetic field that can
be measured by sensors. Next to the track wire, floor codes are positioned that
can be read by means of a metal detector. These floor codes give additional
information about the track, e.g. the start of a certain scene program, a switch,
junction or a dead-end. The scene program, which is read by the scene program
handler, defines at what speed the vehicle should ride at a certain position, when
it should follow other vehicles, stop, rotate or play music, and in which direction
the vehicle should move at a junction. An operator is responsible for powering up
and deploying vehicles into the ride manually. He also controls the dispatching
of the vehicles in the passenger boarding and outboarding area. Ride Control
coordinates all vehicles and sends start/stop commands. The messages are sent
as wireless signals or by means of the track wire. Multimovers can interact with
each other so that passengers have influence on the ride experience, for example
with target shooting systems and similar competitive features. By gaining a
certain score, new scenes can be unlocked. This interactivity and the fact that the
passengers cannot see the actual track makes the ride more exciting because of
the unexpectedness of the vehicle’s actions. This concept makes the multimover
a very flexible vehicle that can be used in theme parks, museums and in other
recreational activities.

Safety is the most important aspect of this vehicle. Therefore, several sensors
are integrated in it to avoid collisions. Proximity sensors are used to avoid physi-
cal contact with other objects. We can distinguish two types of proximity sensors.
A long proximity sensor that detects obstacles in the vicinity of six meter and a
short proximity sensor that detects obstacles in the vicinity of one meter. The
vehicle should ride slower when an object is only detected by a long proximity
sensor and stop when an object is detected by the short proximity sensor. This
stop is not an emergency stop. When the short proximity sensor does not detect
an object any more, the vehicle should start riding automatically. Additionally,
a bumper switch is mounted on the vehicle that can detect physical contact with
other objects. The vehicle should respond to such a situation with an emergency
stop. After the emergency stop, the operator has to deploy the vehicle back into
the ride. Finally, an emergency stop has to executed when the battery power is
too low or when a system failure occurs. The vehicle should not become active
when the bumper switch is still active or the battery power is still too low.

Modeling for Safety in a Synthesis-Centric Systems Engineering Framework 43

User Interface
(3 LEDS/3 buttons) (on/off)

Scene Program Handler
(on/off)

Steer Motor Drive Motor
(on/off)
I Supervisory controller l]
I LY LY
Il Il [
Ride Control 2 ¥
(start/stop) l LED RC ‘ l Button RC ‘ l Motor RC ‘
Battery Bumper Switch
(empty/OK) (on/off) '
ity Somon BN ETE TN
(on/off)
Fig. 2. Multimover and its components Fig. 3. Control architecture

Safety Requirements. The functionality described above refers to the closed-loop
system, that is, the hardware and the controller. To facilitate further discussion
on safety requirements, we give an overview of the control architecture in Fig.

At the lowest level, the components (transducers) of the multimover are de-
picted: a LED, a button and a motor. The next level is the level of resource
control. This resource control contains feedback control of these individual com-
ponents, e.g. a PID-controller for a motor. The upper level, supervisory control,
coordinates the discrete behavior of all components so that safety requirements
are satisfied. Specifically, two aspects are taken into account:

— Proximity handling. The supervisory controller has to assure that the
multimover does not collide with other vehicles or obstacles. To this end,
proximity sensors are integrated at the front and back which can detect an
obstacle if it is within a certain range of the multimover. To avoid collisions,
the multimover should drive with a safe speed and stop if the obstacle is too
close to it.

— Emergency and error handling. The system should stop immediately
and should be powered off to prevent any further wrong behavior when a
collision or a system failure occurs (e.g. a malfunction of a motor). To detect
collisions, a bumper switch is mounted on the multimover. The same applies
when the battery level is too low. The LED interface should give a signal
when an emergency stop has been performed. The multimover should be
deployed back into the ride by an operator manually.

To structure the control problem and enable distributed synthesis techniques,
we divide the control problem of the multimover into following five subproblems:

— LED actuation. The operator must be able to check in which state the
multimover is by looking at the Interface LEDs. This means that the states
of the LEDs represent the current state of the multimover. It is a task of the
supervisor to actuate the LEDs according to the state of the multimover, as
defined in Table [l

44

J. Markovski and J.M. van de Mortel-Fronczak

Table 1. LED actuation

Emergency Reset Active
ResetLED On off Off
ForwardLED Off On Off
Backward LED Off On Off

— Motor actuation. The drive motor, the steer motor and the scene program

handler have to be switched on and off according to the state of the multi-
mover. If the multimover is in the state Active, the motors can be switched
on. If the multimover is in the state Reset or Emergency, the motors have
to be switched off.

Button handling. The user interface of the multimover contains three but-
tons. First, the reset button is used to reset the vehicle if the multimover
is active and deployed into the ride or is in the state Emergency. Subse-
quently, the forward button and the backward button is used to deploy the
vehicle into a certain direction. A control task of the supervisor is to enter
the corresponding state when a button is pushed.

Proximity and Ride Control handling. On each side of the multimover,
two proximity sensors are mounted: one long proximity sensor and one short
proximity sensor. If the long proximity sensor detects an object in the trav-
eling direction, the multimover should slow down to a safe driving speed. If
an obstacle is detected by the short proximity sensor, the multimover should
stop to prevent a collision.

Ride Control can send a ‘general start/stop’ command to all multimovers
in order to stop and start the complete ride. Since a ‘general stop’ command
of Ride Control can be considered as a short proximity stop, this control task
is similar to proximity handling. If Ride Control is sending a ‘general start’
command again, the multimover should start riding automatically (depend-
ing of the state of the proximity sensors in the current driving direction).

The control task of the supervisor is to slow down or stop the multimover

if a proximity sensor is activated in the travelling direction of the multimover
or if Ride Control is sending a ‘general stop’ command.
Emergency handling. To guarantee passenger safety, the multimover
should be deactivated immediately when an emergency situation occurs. We
can distinguish the following emergency situations: battery power too low,
bumper switch collision detection, drive motor driver failures (including not
connected or defect motor), wire signal lost, steering motor driver failures
(including not connected or defect motor).

It should not be possible to reset the multimover if the bumper switch
is still activated or the battery power is still too low. A control task of the
supervisor is to enter the Emergency state of the multimover when an
emergency situation occurs.

Models of Safety Requirements. To guarantee that the closed-loop system satis-
fies safety requirements, the supervisor can be synthesized based on the models

Modeling for Safety in a Synthesis-Centric Systems Engineering Framework 45

sm error

dm error
sm error sh error
dm error ba empty
sh error bs press

¢ bs press ¢ ba empty ba empty -
—————————— 5 Lemm T T T T = bs press
S 6] S >0 | 7 e

bs release ba ok

mm reset

mm reset mm reset
mm active mm active mm reset mm emergency

(a) (b) (©)

Fig. 4. Requirement models of the emergency handling module

of components and requirements mentioned previously. The component models
represent the actual behavior of the transducers and their resource (low-level)
control. For supervisory control synthesis, component models are defined by
automata. Each transducer including its resource control is modeled by one au-
tomaton. Automata consist of states and transitions labeled by controllable and
uncontrollable events. States of the component models represent all relevant
states of each resource (e.g. on, off, empty, active). Controllable events represent
relevant discrete commands/tasks (function calls) to the resource control (e.g.
enable, disable). These actions are controlled by the supervisor. Uncontrollable
events represent messages that are sent from the resource control layer to the
supervisory controller (e.g. a failure notification, a sensor event). These events
are not controlled by the supervisor. The component models are made with the
assumption that the resource control of the multimover is working correctly.
This means that if a command is given, the command is carried out correctly.
For example, if a command is sent to enable the drive motor, we assume that
in response the drive motor is switched on by its resource controller. Further-
more, we assume that the communication between the resource layer and the
supervisor is fast enough so that if an event occurs, e.g a button is pressed,
the supervisor timely receives the information about this occurrence. This also
means that events cannot overtake each other and cannot get lost.

As already mentioned, requirements have to be modeled by automata in the
event-based approach. The state-based approach allows the user to define re-
quirements also by logical specifications. As an example, we discuss the automata
modeling the requirements of the emergency handling module depicted in Fig. 4l
The first requirement, Fig. Hal specifies that the events mm active (represent-
ing the transition from the Reset state to the Active state of the multimover)
and mm reset (representing the transitions from the Active and Emergency
states to the Reset state of the multimover) are only allowed to take place if the
bumper switch is not activated. The second requirement, Fig. @0 specifies that
the events mm active and mm reset are only allowed to take place if the power
level of the battery is sufficient. The last requirement, Fig. dd specifies that the
event mm emergency (representing the transitions from the Reset and Active
states to the Emergency state of the multimover) is only allowed to occur after

46 J. Markovski and J.M. van de Mortel-Fronczak

activation of the bumper switch (bs press), the power level of the battery becom-
ing too low (ba empty), a parse error of the scene program (sh error), a failure of
the drive motor (dm error) or a failure of the steering motor (sm error). If one
(or a sequence) of these ‘emergency events’ takes place, the requirement allows
the occurrence of the event mm emergency. If the event mm reset takes place,
occurrence of the event mm emergency is not allowed. Note that this require-
ment only puts restrictions on the occurrence of the event mm emergency, all
other events are allowed to take place without restrictions.

Within the state-based supervisory control framework, requirements can be
modeled by logical expressions and automata. [26] proposes three generalized
state-based expressions, described as logical expressions based on propositional
logic. In the emergency handling module, we are only using one type of general-
ized state-based expression, namely a generalized transition-state formula:

— { mm reset, mm active } = BS Released | AN BA OK |

This generalized transition-state formula specifies that the multimover may only
switch to active or reset (mm active or mm reset) if the battery level is ok
(BA OK) and the bumper switch is released (BS Released).

Supervisor Synthesis, Implementation, Validation, and Testing. Based on the
component and requirement models, an optimal supervisor is synthesized, val-
idated and implemented. Both a centralized (monolithic) supervisor and a dis-
tributed supervisor are synthesized for the supervisory control problem of the
multimover. A centralized supervisor has been synthesized with the state-based
framework based on state tree structures of [24]. Furthermore, a distributed
supervisor has been synthesized with an aggregated approach of [36]. Both su-
pervisors guarantee that the supervised system fulfills the requirements specified.

We validated the control design in several phases as outlined in [26]. First,
the control requirements where checked for conflicts. Then, the synthesized su-
pervisors were evaluated to check whether the models of the controlled system
are consistent with the intended behavior. For this purpose, discrete-event sim-
ulation was used persistently. Specifically, the state-space stepper was used to
check whether the supervisor disables the right transitions in the right states
when evaluating the closed-loop system behavior. The toolset described in [6]
was used for discrete-event simulation. Moreover, validation of the models was
performed by interfacing the supervisor with a hardware prototype. Finally, a
prototype of a supervisory controller with the synthesized supervisors is imple-
mented in the existing control software of the multimover. This implementation
is first tested by means of simulation, and thereafter, on the existing implemen-
tation platform where the developed control software is tested.

The synthesis-centric framework was employed in parallel with the traditional
approach in the development of the movement controller for the theme park
vehicle. The flexibility of the approach and the advantage of the automated
synthesis and early integration capabilities was highlighted when the number of
proximity sensors was to be extended. The engineering process used presently

Modeling for Safety in a Synthesis-Centric Systems Engineering Framework 47

requires approximately two days for making necessary changes to the control
system and software testing. The synthesis-based engineering process described
in this paper requires approximately four hours to cope with the same change
and deliver a validated control design.

4 Concluding Remarks

We gave a compact overview of a model-based engineering framework relying on
supervisory controller synthesis, as we find it employed in systems engineering.
We find that the use of formal models is a key element for successful application
of a synthesis-based systems engineering process. Model-based specifications are
consistent and less ambiguous than informal specification documents, forcing
the engineers to clarify all aspects of the system early in the design process. The
proposed framework most importantly affects the control design development
process, switching the focus from interpreting requirements, coding, and testing
to analyzing requirements, modeling, and validating the behavior of the system.
It is typically remarked that introducing formal models early in the development
process prolongs the production time of initial control design, but it greatly
improves the validation phase, reducing the number of reiterations needed for
correct control design and mitigating testing costs. Moreover, the framework
provides for automated synthesis of supervisory controllers, which implement
the safety requirements by definition, so one can directly proceed with model
validation and test the control design by integration with the prototype of the
hardware early in the design process. Finally, the proposed framework is flexible,
as it gives early feedback to the modeler regarding conflicting requirements and
wrongful assumptions, and it can easily withstand changes in the control design
or validation and testing errors.

The promise of automatic control software generation captured the interest
of the industry, with supervisory control becoming even more captivating as
engineers nowadays are familiar with building models for simulation and valida-
tion purposes. Moreover, this technique enables rapid prototyping, i.e., the ob-
tained models can be coupled with (prototype) hardware components to evaluate
the control requirements before building and testing expensive control software.
However, we foresee the need for deeper integration with the design process, as
we believe that the developed models provide a sound basis for ensuring safety
and quality of the developed products. Since we are developing our systems engi-
neering framework for application in an industrial environment, we are working
towards supporting the process of safety certification as well, based on the de-
veloped models of the system and the safety requirements.

References

1. A systematic literature review to identify and classify software requirement errors.
Information and Software Technology 51(7), 1087-1109 (2009)

2. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press (2010)

48

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

J. Markovski and J.M. van de Mortel-Fronczak

Akesson, K., Fabian, M., Flordal, H., Malik, R.: Supremica - an integrated envi-
ronment for verification, synthesis and simulation of discrete event systems. In:
Proceedings of WODES 2006, pp. 384-385. IEEE (2006)

Anderson, S., Felici, M.: Safety, reliability and security of industrial computer sys-
tems. Reliability Engineering & System Safety 81(3), 235-238 (2003)

Baeten, J.C.M., van de Mortel-Fronczak, J.M., Rooda, J.E.: Integration of Super-
visory Control Synthesis in Model-Based Systems Engineering. In: Proceedings of
ETAI/COSY 2011, pp. 167-178. IEEE (2011)

Baeten, J., van Beek, D., Cuijpers, P., Reniers, M., Rooda, J., Schiffelers, R.,
Theunissen, R.: Model-based engineering of embedded systems using the hybrid
process algebra Chi. ENTCS 209, 21-53 (2008)

Braspenning, N., van de Mortel-Fronczak, J., Rooda, J.: A model-based integration
and testing method to reduce system development effort. ENTCS 164(4), 13-28
(2006)

Cassandras, C., Lafortune, S.: Introduction to discrete event systems. Kluwer Aca-
demic Publishers (2004)

Cha, S., Son, H., Yoo, J., Jee, E., Seong, P.H.: Systematic evaluation of fault
trees using real-time model checker UPPAAL. Reliability Engineering & System
Safety 82(1), 11-20 (2003)

Darondeau, P., Dubreil, J., Marchand, H.: Supervisory control for modal specifi-
cations of services. In: Proceedings of WODES 2010, pp. 428-435. IFAC (2010)
D’Ippolito, N.R., Braberman, V., Piterman, N., Uchitel, S.: Synthesis of live be-
haviour models. In: Proceedings of SIGSOFT 2010, pp. 77-86. ACM (2010)
Estefan, J.: Survey of Model-Based Systems Engineering (MBSE) methodologies.
Tech. rep., INCOSE (2008), http://www.incose.org

Feng, L., Wonham, W.M.: TCT: A computation tool for supervisory control syn-
thesis. In: Proceedings of WODES 2006, pp. 388-389. IEEE (2006)

Forschelen, S.T.J., Mortel-Fronczak, J.M., Su, R., Rooda, J.E.: Application of su-
pervisory control theory to theme park vehicles. Discrete Event Dynamic Systems,
1-30 (to appear, 2012)

Groote, J.F., Mathijssen, A.H.J., Reniers, M.A., Usenko, Y.S., van Weerdenburg,
M.J.: Analysis of distributed systems with mCRL2. In: Process Algebra for Parallel
and Distributed Processing, pp. 99-128. Chapman & Hall (2009)

Hinchey, M., Bowen, J.: Applications of Formal Methods. International Series in
Computer Science. Prentice Hall (1995)

Iwu, F., Galloway, A., McDermid, J., Toyn, L.: Integrating safety and formal anal-
yses using UML and PFS. Reliability Engineering & System Safety 92(2), 156-170
(2007)

Jiang, S., Kumar, R.: Supervisory control of discrete event systems with CTL*
temporal logic specifications. SIAM Journal on Control and Optimization 44(6),
2079-2103 (2006)

Kelly, T., Wang, Y., Lafortune, S., Mahlke, S.: Eliminating concurrency bugs with
control engineering. Computer 42(12), 52-60 (2009)

Kim, T., Stringer-Calvert, D., Cha, S.: Formal verification of functional properties
of a SCR-style software requirements specification using PVS. Reliability Engineer-
ing & System Safety 87(3), 351-363 (2005)

Lahtinen, J., Valkonen, J., Bjorkman, K., Frits, J., Niemela, I., Heljanko, K.: Model
checking of safety-critical software in the nuclear engineering domain. Reliability
Engineering & System Safety (to appear, 2012)

Larsen, K.G., Pettersson, P., Yi, W.: UPPAAL in a Nutshell. International Journal
on Software Tools for Technology Transfer 1(1-2), 134-152 (1997)

http://www.incose.org

Modeling for Safety in a Synthesis-Centric Systems Engineering Framework 49

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Leveson, N.: The challenge of building process-control software. IEEE Soft-
ware 7(6), 55-62 (1990)

Ma, C., Wonham, W.M.: Nonblocking Supervisory Control of State Tree Struc-
tures. LNCIS, vol. 317. Springer (2005)

Markovski, J.: Towards supervisory control of Interactive Markov chains: Control-
lability. In: Proceedings of ACSD 2011, pp. 108-117. IEEE (2011)

Markovski, J., van Beek, D.A., Theunissen, R.J.M., Jacobs, K.G.M., Rooda, J.E.:
A state-based framework for supervisory control synthesis and verification. In:
Proceedings of CDC 2010, pp. 3481-3486. IEEE (2010)

Markovski, J., Jacobs, K.G.M., van Beek, D.A., Somers, L.J.A.M., Rooda, J.E.:
Coordination of resources using generalized state-based requirements. In: Proceed-
ings of WODES 2010, pp. 300-305. IFAC (2010)

Markovski, J., Reniers, M.A.: Verifying performance of supervised plants. In: Pro-
ceedings of ACSD 2012. IEEE (to appear, 2012)

Mertke, T., Menzel, T.: Methods and tools to the verification of safety-related
control software. In: Proceedings of SMC 2000, vol. 4, pp. 2455-2457 (2000)
Miremadi, S., Akesson, K., Lennartson, B.: Extraction and representation of a
supervisor using guards in extended finite automata. In: Proceedings of WODES
2008, pp. 193-199. IEEE (2008)

Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete-event
processes. SIAM Journal on Control and Optimization 25(1), 206-230 (1987)
RTCA Inc. and EUROCAE: DO-178B: Software considerations in airborne systems
and equipments certification (1992)

Schauf, A.: Safety implications of software in safety-critical devices. Journal of
System Safety 47(6), 1-5 (2011)

Schiffelers, R.R.H., Theunissen, R.J.M., van Beek, D.A., Rooda, J.E.: Model-based
engineering of supervisory controllers using CIF. Electronic Communications of the
EASST 21, 1-10 (2009)

Seow, K.T.: Integrating temporal logic as a state-based specification language for
discrete-event control design in finite automata. IEEE Transactions on Automation
Science and Engineering 4(3), 451-464 (2007)

Su, R., van Schuppen, J.H., Rooda, J.: Aggregative synthesis of distributed su-
pervisors based on automaton abstraction. IEEE Transactions on Automatic Con-
trol 55(7), 1627-1640 (2010)

Theunissen, R.J.M., Schiffelers, R.R.H., van Beek, D.A., Rooda, J.R.: Supervisory
control synthesis for a patient support system. In: Proceedings of ECC 2009, pp.
1-6. EUCA (2009)

UK Ministry of Defence: Defence standard 00-55 — The procurement of safety
critical software in defence equipment (1997)

Ziller, R., Schneider, K.: Combining supervisor synthesis and model checking. ACM
Transactions on Embedded Computing Systems 4(2), 331-362 (2005)

A Model Based Approach for Safety Analysis

Fabien Belmonte and Elie Soubiran

Alstom Transport, 48 rue Albert Dhalenne
93484 Saint-Ouen cedex, France
{fabien .belmonte,elie. soubiran—ext}@transport .alstom.com

Abstract. This paper deals with model based safety engineering in
Railway signaling systems development. Recently, model based system
engineering (MBSE) has brought new specification means for large in-
dustrial system. Alstom Transport develops its own MBSE methodology
supported by the SysML notation. In this context, a domain specific mod-
eling language (DSML) has been developed for the safety studies enabling
tight coupling with the MBSE environment. The paper describes a model
to model translation. The translation developed takes the functional part
of the system model and the dysfunctional viewpoint modeled within the
safety DSML to generate an Altarica model of the system. The generated
Altarica model is formal and allows, one from another, the dysfunctional
simulation of the system and the generation of sequences of events leading
to accidents.

1 Introduction

In Railways domain, signaling systems are highly safety critical. Those systems
are intended to prevent the trains from colliding and from derailing. The devel-
opment life-cycle of signaling systems is regulated by process-and-performance
oriented norms defined (for Europe but widely used around the world) in CEN-
ELEC standards (EN 50126 [2], EN 50128 [3], EN 50129 [4]). Concretely, the
development life-cycle is twofold, on one hand the designers develop a safe sys-
tem by observing a safety methodology, on the other hand the safety engineers
identify the accidental scenarios and insure that the system hazards leading to
these scenarios are mitigated within the design of the system.

Up to now, system design is generally described with textual requirements in
large documentation and the safety analyses are also performed within textual
documentation. But the documentation reveals only the result of system design
activity and the rationale of the retained solution is not recorded. Furthermore,
the results included in documentation are difficult to trace and to reuse because of
the manual operations required by the safety engineers. Recently, Alstom Trans-
port introduced a MBSE methodology, supported by the SysML notation [8] to
tackle the limitations of the textual approach. Given the fact that the SysML no-
tation does not fit the specific dysfunctiona semantic required to perform safety

L' A dysfunctional viewpoint highlights the way a system or function does not work
properly.

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 50-F3] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

A Model Based Approach for Safety Analysis 51

analysis, a Domain Specific Modeling Language (DSML) has been developed for
the safety activities [B]. It enables the traceability between each safety model el-
ement with its corresponding object element in the model of the system. This
DSML has been developed during the French IMOFIS R&D research program and
further extended during the ITEA2 R&D research program VERDE. In particu-
lar, the work presented here extends the IMOFIS safety DSML to apply formal
analysis and enables early validation. The remainder of this paper is the following:
the first part gives an overview of the safety process, the second part describes our
MBSE approach, finally the last part proposes a formal model to model transfor-
mation that targets the Altarica language.

2 Overview of the Safety Analysis

The safety process stems from the system development process. More precisely,
each safety step depends on a corresponding system development step (cf. Fig-
ure[Il). The aim of the overall safety analysis is to preserve traceability within a
deep causal analysis (from elementary faults to system accidents) and to allow
analysts to provide explanation of causation link from cause to effect at every
levels of the V descendant phase. Firstly, a Preliminary Hazard Analysis (PHA)
is performed to identify the accidental scenarios, secondly an iterative System
Hazard Analysis is conducted at each level of description of the system. These
are twofold, a causal and a consequence analysis insures an exhaustive analysis
of the events leading to the accidents.

In the PHA, accidents are identified by the hazardous situation and by the
operational concept in which they occur; this is the consequence analysis. Then
a causal analysis is performed in order to identify the barriers that prevent
hazards to be developed into accident. Accident is the result of the conjunction
of the hazard occurrence event and the barrier failure event both conditioned by
a specific operational context.

At the end of the PHA, the system designers start the definition of the func-
tional breakdown structure (FBS). The Figure 2l presents a typical hierarchy of
activities and operations that represent the FBS of a system. The tree structure
of the FBS ranges from high-level abstract functions allocated to (sub)systems

System lifecycle Safety lifecycle

Ll
s‘r\P*‘?N\@

Traceability: block/activity/requirements

S\J‘—"emdm‘s =
\‘-\evN P N .
Hazard Analysis
System modelling " A (DSL Safety)
(SysML) T
Change requests: Safety requirements \3}
ss\’“\w\
\S
e .

S““’(’:pd\n‘s

e

Fig. 1. Parallel and collaborative V process for system and safety

52 F. Belmonte and E. Soubiran

Activity describes also the

datafiow partafthe £ ... AD
functionnal structure : A
- Functionnal seed of
e the system

'
s
4
!
|f

'

[Su.bsystem function j (") [;3 j
@ @ @ (su.,ssss:,stem)() & @ @

Fig. 2. FBS

to concrete functions allocated to software or hardware components. Then, a
detailed failure mode analysis is applied systematically to every single function
of the FBS. This is the role of the Failure Mode and Effect Analysis (FMEA)
technique [I]. Each system’s function shall be analyzed in order to discover its
failure modes. A failure mode of a function is the manner by which a failure is
observed; it generally describes the way the failure occurs. Then for each fail-
ure mode of a function their causes and their consequences are identified. This
analysis uses inductive reasoning: from particular established fact (the failure
mode occurs) the analyst entails a more general fact (what could be deduce on a
larger set, in our case the system). Up to now this safety process was performed
within documentation. The traceability between system specification artifacts
and safety artifacts was established manually. Since the system specification
uses semi-formal modeling language (SysML), the use of a safety DSML offers
the following opportunities:

— To share a single repository of requirements;

To formalize the traceability links between system and safety model artifacts;
— To generate part of the safety model;

To automate the top-down part of the safety analysis.

3 Model Based Safety

This section presents the MBSE approach of this work and is split in four parts.
The first part concerns the system modeling approach, the second part presents

A Model Based Approach for Safety Analysis 53

the contributed safety DSL, the third part proposes Altarica as the formal target
of safety modeling and the last part describes the proposed process.

3.1 SysML and MARTE

SysML is now widely accepted as the general-purpose modeling language for sys-
tem engineering. In contrast to UML, it provides a requirement-driven approach
and proposes modeling elements, like blocks and constraint blocks, that miti-
gates the software-centered vision of UML. However, it stays interoperable with
other modeling languages since it is based on the XMI interchange format [7].
Hence, SysML can be used with specific modeling languages or profiles like our
DSML or MARTE [6].

In order to tackle the complexity of system modeling, Alstom decomposes
system models into several viewpoints. Each one has a clearly defined purpose
and the whole allows to present all facets of the system. We find, beyond others,
an operational view, a functional view, and a constructional view. For safety
analysis purpose, we are mainly interested by the operational and functional
views. Indeed, the operational view identifies for each subsystem the external
entities, the contexts, and the operational missions. On its side, the functional
view describes services and functions the system and subsystems must realize,
and results in the FBS presented above. Concretely, we get from these views
a structured description of the system environment and a data/control flow
oriented description of the functions. Finally, the MARTE profile allows us to add
to the system model real-time artifacts that can be exploited for safety analysis.
For instance, the loose semantic of SysML can be greatly enriched by adding VSL
based constraints on activities and sequences that will be furthermore traced in
the safety model for dysfunctional analysis purpose. A typical example consists
in a constraint that expresses the validity time of a message. These real-time
specification artifacts together with the requirements management of SysML
are mandatory to conduct a precise safety analysis.

3.2 The Safety DSML

The risk assessment starts with the identification of accidental scenarios. This
analysis is called Preliminary Hazard Analysis (PHA). Based on the definition of
accidental scenarios, fault trees are built to identify the causes of the accidents,
this is the deductive phase of the risk assessment called System Hazard Analysis -
Fault Tree (SHA-FT). Then, the safety analysts take into account the elementary
failures of the system one by one and identify their effects on the system. This
is the inductive process named SHA-FMEA. The PHA is modeled with event
tree formalism, the SHA-FT with fault-trees and SHA-FMEA with transition
systems. PHA needs to be linked with structural and operational model elements
of the system design model, and SHA are linked to structural and functional
model elements of the system design model. A DSL supported by semi-formal
modeling tool for risk assessment has been developed. It is able to communicate

54 F. Belmonte and E. Soubiran

with any system engineering modeling language as long as the model follows the
Eclipse Modeling Framework format. The main features are:

— Graphical representation of PHA and SHA;

— One model serialized, many views are available;

— Serialization of the global risk analysis into one fault tree;

— Requests on system design model and references of model element into risk
assessment;

— Customization of requests based on system engineering method used in sys-
tem design (e.g. which model element represents function?);

— Automatic layout of graphical representation (very useful for large model);

— Requirements repository and traceability purpose.

Structure of the PHA. The PHA aims at identifying the accidental scenarios
of the system. A scenario is defined by a hazard event that may develop into
accident. The consequence of this accident is identified. The principle of the
PHA is then to identify the barrier that prevents the hazard to be developed
into accident and the barrier that reduces the severity of the consequence of the
accident. The PHA (all the scenarios) are encoded in the model with a fault tree
formalism. One scenario is shown to the user within an event tree formalism
(The reader interested [5]).

Structure of the SHA-FMEA. The Safety meta-model (MM) has been
extended during the Verde project to enhance its expressiveness relatively to
FMEA modeling. The basic idea is to bring an adequate semantic, closely re-
lated to the Altarica’s one, for FMEA constructions. The SHA-FMEA is built
as a hierarchy of FMEAs, where each FMEA is associated to an activity or an
operation of the system model (cf. Figure B)). The relations sub/super FMEA,
depicted as dashed arrows, follow the relation induced by the use of callBe-
haviorAction and callOperationAction objects in the FBS. In other words, the
overview diagram gives the hierarchical presentation of the system from a safety
point of view. The top level node is the previously presented PHA, at depth 1
we have the system FMEA, at depth 2 the subsystems FMEAs and so on until
software FMEAs. Furthermore, the causes of a failure at depth 7 are explained
by failures at depth ¢ + 1. These cross-level references gives the ability to the
safety analyst to navigate quickly between related FMEAs. Finally, it allows us
to have, in our safety models, both a vertical traceability (system/subsystem/...)
of failure modes and a horizontal traceability (subsystem;/subsystems...) that
is mainly supported by the dataflow part of the system model. The overview
diagram also allows one to edit the dysfunctional characterization of the data,
by default we propose a three valued characterization: correct, erroneous, and
void, it then can be extended with custom values (TooHigh, TooLate...).

As shown in Figure @, a FMEA object is roughly a transition system. For a
given system object, the states of the associated FMEA are the nominal state
and the failure states, transitions from nominal to failure states are guarded by

A Model Based Approach for Safety Analysis 55

verv ofthecorext of the sy

[P, Snot]
S ‘

Functenissues.F1_Transysten
i door,Furctin ssues

rEadrzA |
F12a10

[PeaciFLa AT ws
ERERT

[o F1..1_valteTe|
@ F1 31 VaiseTE
% Undeces o Dt

N . [ererise e
el P15 velaaere

1% tnaecmsvwongons

gt

P

4 Emonsous nput

[P of a2 vt | 7
@132 Veoser [T s P oo
b | Fieaor i 05 sentor3

L @ Frss oo

V| Fseaseming | < Ve i
3 £ toSendng p

viona)
Netioning |

s of a5 yaason| ' '
@Fias Vet | [racrrias compaeors freact iz vadscorr| [meacirias coniecn
& Undeclea WenaDale | (e core s @ F143 Computecst

@ Eravcos companinat 7S @ Eroneo compasin r s
o cempaima TS =

4 lo utp roduci iaanTe

 Emonsous nput

Fig. 3. The overview diagram

constraints and/or events, they represent the causes of a failure. More precisely, a
failure mode is characterized by a system effect and a local effect. Beside natural
language descriptions, the system effect references a failure mode of the super
leveﬂ on its side the local effect characterizes outputs of the considered system
component from a dysfunctional point of view. A failure cause may reference
one or part of the following objects:

Atomic events, for instance “bug”, “shutdown”...

— Input events, they associate to parameters or ports of the system model a
dysfunctional value. The event is raised if the value is observed on the port.

System model constraints expressed in VSL or OCL. The guard is true if
the constraint evaluates to false.

Failure states of lower levels for hierarchical propagation and traceability of
failures.

An operational context that narrows the scope of a failure

From this short presentation, one may notice the high density of traceability
links within and between models (system and safety). The systematic use of
cross-reference allows us to gain in productivity since information is always one-
click distant, but also in completeness and coherence since it becomes quite easy
to write a set of OCL rules to perform ad hoc checking on models.

Finally, we propose for models that are conforms to our Safety MM a transla-
tion based semantic that targets Altarica’s guarded transition system. The main
benefit in fixing a precise semantic is that it allows us to automatize a part of
the safety analysis.

2 For the system FMEA, the system effects reference either hazards or barrier failures
that are used in accident cases of the PHA.

56 F. Belmonte and E. Soubiran

Nominal mode of F1.4.2_YalidateNDTTS

ﬁput event specification)

& NDTTS_jn
< woid

TBugin 5w Mo ﬁput event specificatian)
ormnpubation
Brpened I happper\ad) NDTTS_in
< BrrOnEoUs

Failure mode: Undected Wrong Data Failure mode: Walidation Mok Working Failure mode: Erroneous Tnput

2un dree Tesiaen e Syt affects descpton: The

computation of is erronzous computation of CoR is stopped System sffects description: The
computation of CSR is stopped

The function
<Fl .t4EAITEECC> goesin The Function The Function
Hel ; "W‘:WS <FL.4_ATP_CC> goesin <FL.4_ATP_CC: goesin
lessage. state; <No Message> state; <No Message>
— A z|

acal sffscts description: The validity of NDTTS|
is nok correctly bested

Local effects description: The Function is
stopped

ﬁutputs Specification of NDTSS_VaIidateaT ﬁutputs Specification of NDTSS_VaIidateq ﬁutputs Specification of NDTSS_VaIidateq
9 NDTSS_Validated @ NDTSS_Validated @ NDTSS_Validated
4 erroneous < void <4 void

Local effects description: Ths Function get an
erroneous (or noj value and then does nat..

Fig. 4. FMEA diagram for an operation

3.3 The Need of Formal Language: Altarica

The DSML presented above allows one to describe the dysfunctional viewpoint
of the system, but does not provide a formal semantic that enables automated
computational analysis. The scientific dependability community developed in
the 90’s a formal language, called Altarica, to perform such analysis [9]. Altarica
language provides a way to describe constrained automata. Furthermore, these
automata can be interfaced together through a concept of flow and hierarchically
organized by instantiating sub-automata. Hence this language is able to answer
the challenge of modeling together the functional behavior of the system, the
triggering of failures, and their propagation. An Altarica model consists in a set
of interrelated nodes. A node is composed of sub-nodes, flow and state variables,
events, transitions, and assertions. The meaning given, in this work, for each
item is the following:

— Sub-nodes provide a mean to describe the functional hierarchy (FBS).

— Flows encode the functional interfaces, but are typed with dysfunctional
values.

— States correspond to the failure modes described in FMEAs.

— Events are the failure occurrences.

— Transitions encode the condition to trigger a failure occurrence and the re-
sulting failure mode of the function.

— Assertions allow to specify the values of the outputs of the node considering
the values of the input and the failure modes.

A Model Based Approach for Safety Analysis 57

i “

&

. Refine. e SysML model
Concept [——P| Reqireme: Subavatan

Start of the

subsysiem step Y .
civi
Functions
______________ Requierments

PHA
Accident cases

SubSyster;

Verification

Libraes]

0K

Start of a
sub step

Safety
|
£
E
E H
Ly

I Altrica model

Minimal cut Ko
Models for safety analysis sequences

Fig. 5. The process

Traditional safety formalism, such as Fault Trees, Event trees, Petri Nets, etc. can
be extracted from the Altarica model of the system. Furthermore, the executable
semantic of Altarica allows to compute directly the traditional safety analysis
result sets (e.g. minimal cut-sets and accident sequences). Today, FMEAs are
performed manually. Since it is an exhaustive and inductive technique, hand-
made production are highly cost-consuming. By designing a safety DSML and
a system model transformation to Altarica, a productivity and quality gain is
expected. The following sections describes the methodology to achieve this goal.

3.4 The Proposed Process

In order to generate the Altarica model, the following process is proposed. The
figure shows a sub-system development phase. It is assumed that the above
system model is available. The first task of the sub-system designer is to refine the
requirements of the system level specification. Then the modeling phase aims at
specifying within three viewpoints (operational, functional and constructional)
the system to be developed. The parallel safety life-cycle depends on the SysML
model of the sub-system. Then, the SHA-FMEA is performed by the safety
engineer with the safety DSML workbench. Finally, the model transformation
developed in this work takes the functional specification of the model of the sub-
system and the FMEA of each function and generates the Altarica model. A
dedicated tool is used to perform the analyses of the Altarica model. As a result,
the set of accident sequences and the fault-tree of the sub-system is generated.
With this result-set the safety engineers validates the safety criteria. The case
should arises that some criteria are not fulfilled, the safety engineer requests
changes in the design of the system.

4 Model Transformation

In this section we present the model transformation developed during the Verde
project. It aims at providing an automatic and transparent translation tool
which is able to extract an Altarica model from both safety and system models.

58 F. Belmonte and E. Soubiran

The Altarica model can be then analyzed by dedicated fault tree and sequence
generation tools available on the market.

4.1 Overview of the Targeted Altarica Models
A model generated by our transformation is composed of four kinds of nodes:

1. The context node, it provides to all other nodes the current operational
context.

2. The environment nodes, they correspond to activities or operations which
are not dysfunctional specified in SHA-FMEA. They are useful to close the
model relatively to its dataflow specification. They basically send data which
can be corrupted to the rest of the model.

3. The FMEA nodes, they are the core of the Altarica model. They encode
the dysfunctional specification given in the safety model and the dataflow
specification given by the system model.

4. The PHA node, it is the top level node of the model. It acts as an observer
that checks if the state of the whole system triggers an accident.

The model transformation takes into account both system and safety viewpoint.
This allows us to extract the dataflow part from activities and the control part
from FMEAs. More precisely, pins and parameters are mapped to flow variables,
object flow to assertion on flow variables, while FMEAs provide guards, events,
and states to specify transitions.

4.2 Formalization of the Model Transformation

In this section, we assume that an Altarica model is a set of nodes and that a
node can be expressed as an octuple (I, SI, F, S, E,I,T, A) where:

— [is an identifier, it represents the name of the node

— S1 is a set of subnode instances. A subnode instance is represented as a pair
of identifiers, the first projection is the name of the instance, and the second
projection is the name of the node.

— F'is a set of flow definitions. A flow is defined by an identifier and a typeﬁ.

S is a set of state variable definitions. Like flows, state variables are defined

by an identifier and a type.

FE is a set of identifier and represents the set of events.

I is an initial state, it associates to each state variable an expression.

— T is a set of guarded transitions. A guarded transition is made of a boolean

expression acting as the guard, a triggering event, and a valuation of state

variables.

A is a set of boolean assertions, linking flow values to states of the node.

3 Models generated by the proposed translation only use enumerated type.

A Model Based Approach for Safety Analysis 59

Notation:

i. ||.]] (resp. ||.||f00) denotes the translation function (resp. the foo subfunc-
tion)

ii. The rule ||X|| — Y expresses “the translation applied to X evaluates into
Y”

iii. We denote by M the system model, m ranges over elements of M and A, €
M is the top level activity

iv. We denote by S the safety model, P is the PHA, F' is the SHA-FMEA and
L the library

v. We say that m € M and f € F are in relation if and only if the FMEA f
describes the dysfunctionnal behavior of m, and we write m ~ f

vi. X.a denotes the attribute a of the element X. In the following, we have tried
to give self-explanatory names for attributes.

Translation Rules:
In the following, we use two type abbreviations:

Ctat = ||L.ownedCtx||idgent

Ddys := || L.dataDys||;dent

Ctxt is the datatype which represents the operationnal context of the system.
Ddys is datatype that abstracts system data to dysfunctionnal data (correct,
erroneous, too high...). The translation subfunction ident is given at the end of
rules description.
e The main rule:

M) = | L letat U [[(Aos F)lenv U (M, F)[fmea U [|(Ao, P)lpha

The main translation rule is applied to a pair composed of a system model
and a safety model. It evaluates to a set of Altarica nodes computed by four
subfunctions. The first one computes the context node and is applied to the
library of the safety model. The second one computes the environment and takes
as arguments both top level activity and SHA-FMEA. The third one computes
the set of nodes that encodes the dysfunctionnal behavior of the system. The
last one translates the PHA.

e The ctxt rule produces the singleton node CtxtProvider:

|L||etet = (CtatProvider, 0, Fy, Sy, By, I, Ty, A M

The state variables, flow variables and events range over the operationnal con-
texts of the model:
F = (Cflow,ct.%‘t)

S1 := (Cstate, Ctat)
E; := ||L.ownedCtz||cvent

1 We intentionally omit braces for singleton sets.

60 F. Belmonte and E. Soubiran

I = (Cstatea 01)01 eCtxt

The transitions define a complete transition system over operationnal contexts:
Ty = A{..., (T, llcillevent (Cstate, l|cillident)), - - - }veieL.ownedcta
Finally, the assertion links the state of the node to its output flow:
A; = (Csiate = Criow)

e The env rule gathers operations and behaviors that are called in Ay but are
not dysfunctionally specified in the safety model. It then generates a set of nodes
that closes the Altarica model relatively to its dataflow part.

VmeAop

(A0, F)llene = 110m, f)llen

st VfES,Imn~f

H(ma f)”env — (m'namea ®7Fea Sea E67[67Te? Ae)

The flow and state variables correspond to the output parameters of system
component m and are typed by the dysfunctionnal datatype. Assertions enforce
the equality between state, initialized with the correct dysfunctionnal value, and
flow variables

Fe = { ey (Hpi”floun Ddys)7 .. '}VpiEm.parameter st isout(p;)

Se = { (X} (‘ |pi‘|identa Ddys)a .. ~}Vpi€m4pa7"ameter st isout(p;)
Ae = (Hpinlow = Hpi”ident) .. ~}Vpi6m.parameter st isout(p;)

Ie = {) (Hpi”identadl)a .. ~)}d1€Ddys

We define events as the cartesian product of the set of output parameters and
the set of dysfunctionnal values, and we map it to a set of labels. Guarded
transistions map each event to the corresponding valuation of the state variable:

Ee = (Hpi”ident + dj)a .. ~)}V(pi,dj)€m.parameter><Ddyﬂ

T, = { cey (T7 Hpi”ident + dj7 (Hpi”idenh dj))a ‘. -)}V(pi,dj)Em.parameterxDdys

e The fmea rule produces the set of node which elements correspond to the
pairs (system component, safety component) of the input models:

VmeM

(M, F)l fmea — U 11070l rmea
st 3fES, m~f

H(m,f)Hfmea — (m.name, SIf,Ff,Sf,Ef,If,Tf,Af)

5 The + operator denotes identifier concatenation.

A Model Based Approach for Safety Analysis 61

The subnode instances are given by the subFMEA of fin the safety model:

SIf = {) (HmiHinsta HmiHident)a .. }Vngf.Sumeea st my~f;

The flow variables correspond to the parameters of the system component, the

state variable of the node ranges over failure and nominal modes specified in the
FMEA:

Ff = {(Cflowa Ct.’L‘t) ceey (Hpi”idenh Ddy8)7 . ~}Vpi€m.parameter

St = (Fstate, || f-failMod||igent U || f nominal Mode||;dent)
If = {(FStatea anommalModeH)}

The events are the atomic events and constraint failures defined in the failure
causes:
E; = ||f.failureCause. AtomicEvent||;qent

Ul|f. failureCause.Constraint failure||;dent

The guarded transitions of the node correspond to failure causes of the FMEA.
Input events, operationnal context restrictions, subsystem failures are translated
as guards while atomic event and constraint failure are trigering events.

Tf = { . (giv €, (FStatea chi~d63t”ident)) .. ~}Vfc7,€f.failure0ause

gi = (Criow = ||fe;-opCta|igent A || fe; inEv]|input
Al|fe;.SubFail.owner| \idem.FS“b = ||fc;-SubFail||;dent)

state
€; 1= (| \fci.AtomEvenﬂ ‘ident)fci.AtomEvent;éNull
ei = (||fe; - CstrFail||ident) fe,.Cstr Fail# Null

For assertions, we need to consider two cases, either the system component m is
an activity either it is an operation. If it is an activity then the assertions will
encode the object flows of the activity:

Ar = {...(||o.target||igent = ||0.s0Urce||ident) - - .}VOEm.edgﬁ

U{~ .. (HmiHidenthlow = C(flow) .. ~}Vf,,€f45umeea st mi~f;
If it is an operation then the local effect description of the failures modes gives

the specification of outgoing flows.

Af = { e (HpiHident = H(pia f'failMOd)Hcase) .. ~}Vpi6m.parameter st isout(p;)

The case rule produces conditionnal branching represented here as a set of pair
condition value. In the current context, the conditionnal branching expresses that

5 The long names that are mandatory to access subnode flows are not specified here
but can be easily extracted from o.target.owner.behavior or o.target.owner.operation

62 F. Belmonte and E. Soubiran

if the node is in a given failure mode the flow variable takes the value specified
in this failure mode. The default branch always returns the correct value.

Hpa FMHcase — { .. (Fstate = HfmiHidenta Hfmi-oupld(p)Hident) .. ~}mei€FM
e The PHA rule produces the node PHA, it is the main node of the model:
H(AOvP)Hp - (PHAvst’®7SP7®aIP7TP7AP)

The set of instances of subnode in PHA is composed of a context provider, the
nodes forming the environment, and the FMEA nodes associated to (sub)sytem.
SI, := (ctztInst, Ctxt Provider)
U{(HmHinstv ‘|m|D}erPASumeea,me
U{(HmHem}a HmH)}Vmer st Vf Im~f
The state variable of PHA node is typed by the set of accident bounded in the
accident cases of the PHA, and the initial state is the "no accident” state a.
Sp = (Acstate, a U || P. AccidentCase||ident)
Ip = (ACStatea C_l)

In the PHA context, guarded transitions encode the accident scenarios. A guard
is then the conjunction of a hazard, a functionnal issue and an operationnal
context. Both hazard and issue result from failures at subsystem level.

T, =

U (Cflow - HC| ‘ident A Hh| ‘cause A HZ| ‘causea €, (ACStatea Ha| ‘ident))
V(h,i,c,a)
€P.AccidentCase

Where the cause rule builds the disjunction of possible causes for a given hazard
or issue:
VfmeP.subfmea.failMod
||| cause — \/ HfmﬂwnerHident'F;tzae = ||fm]lident
st fm.syseffect=x

Finally, the assertion translation scheme is roughly the same as in fmea:
Ay =A{...(||lotarget||igent = ||o-source||idgent) - - -}vocAg.edge

U{. .. (HmiHideanﬂow = CtthTO’Uider.Cﬂow) .. -}VfEP‘Sumeea,miNf[
e The ident rule extracts identifiers from named elements of the model:
HNHident — U HniHident
Vn;EN
[|nillident — ni-name
The event (resp. inst, flow) rule is a variant of the ident rule and appends
7ev” (resp. ”inst”, "flow”) to the generated identifier.

e The input rule translates input events to a boolean expression. It is used by
the fmea rule

1 InEv||input — A |1Pillident = [|dillident
V(pi,d;)EInEv

A Model Based Approach for Safety Analysis 63

5 Conclusion

This work is an on-going research activity related to the overall MBSE method-
ology within Alstom Transport and will pursue in the Artemis MBAT project.
This work follows the development of a specific modeling environment for safety
activities. Based on the existing DSML for safety, the system hazard analysis
viewpoint has been improved in order to enable translation of the safety model
conjointly with the functional specification of the system to a dysfunctional
model of the system. This later, modeled with the Altarica language, allows the
computation of the fault-tree analysis, the accident sequences and allows the
simulation of dysfunctional events. For the safety engineers, it improves both
its productivity and the accuracy of its study. Indeed, the MBSE approach, by
enabling tight coupling of the engineering environment, facilitates the informa-
tion traceability application and maintenance. Document based FMEA describes
only one level of consequence of failure occurrences, the formalization of all these
one-shot causal events with Altarica allows the analyze of the propagation of the
failure in the system. Additionaly, the results of Altarica analyses provide feed-
backs to the safety engineer on the criticity of the functions at each description
levels of the system. Hence, justifications of the Safety Integrity Level of the
barrier functions are provided to the safety case. The next step of this work will
be the validation of the overall transformation chain from specifications to mini-
mal cut-sets and accecibility sequences generation. The functional validation will
stem from the formal transformation presented in this paper.

References

1. Villemeur, A.: Reliability, availability, maintainability, and safety assessment. Wiley
J. (1992)

2. CENELEC, Railway applications. The specification and demonstration of reliability,
availability, maintainability and safety (RAMS), EN50126

3. CENELEC, Railway applications. Communications, signalling and processing sys-
tems. Software for railway control and protection systems, EN50128

4. CENELEC, Railway applications. Communication, signalling and processing sys-
tems. Safety related electronic systems for signalling, EN50129

5. Belmonte, F., Blas, A., Mejia, L.-F., Thomas, F.: Risk Evaluation in Railway Sys-
tems Supported By Modeling Languages and Tools. Lambda-Mu, 17éme Congres
de Maitrise des Risques et de Siireté de Fonctionnement. IMDR, La Rochelle (2010)

6. OMG. UML Profile for MARTE: Modeling and Analysis of Real-time Embedded
Systems, v1.1 (June 2011), http://www.omg.org/spec/MARTE

7. OMG. MOF 2 XMI Mapping, v2.4.1 (August 2011),
http://www.omg.org/spec/XMI/

8. OMG. OMG Systems Modeling Language (OMG SysML), v1.2,
http://www.omg.org/spec/SysML

9. Point, G.: AltaRica: Contribution & 'unification des méthodes formelles et de la
sireté de fonctionnement. LaBRI, Université Bordeaux I (January 2000)

http://www.omg.org/spec/MARTE
http://www.omg.org/spec/XMI/
http://www.omg.org/spec/SysML

Towards a Model-Based Evolutionary Chain
of Evidence for Compliance with Safety Standards

Jose Luis de la Varal, Sunil Nairl, Eric Verhulstz, Janusz Studzizba3,
Piotr Pepek’, Jerome Lambourg®, and Mehrdad Sabetzadeh'

! Simula Research Laboratory,

P.O. Box 134, 1325 Lysaker, Norway
{jdelavara, sunil,mehrdad}@simula.no
2 Altreonic
Gemeentest. 61A, B3210 Linden, Belgium
eric.verhulst@altreonic.com
3 Parasoft S.A.
Kielkowskiego 9, Krakow, 30-704, Poland
{januszst,piotr}@parasoft.com
4 AdaCore
46 rue d’ Amsterdam, 75009 Paris, France
lambourg@adacore.com

Abstract. Compliance with safety standards can greatly increase the
development cost and time of critical systems. Major problems arise when
evolutions to a system entail reconstruction of the body of safety evidence.
When changes occur in the development or certification processes,
identification of the new evidence to provide, the evidence that is no longer
adequate, or the evidence that can be reused poses some challenges. Therefore,
practitioners need support to identify how a chain of evidence evolves as a
result of the changes. Otherwise, execution of the above activities can be very
costly, and it can even result in abandonment of certification efforts. This paper
outlines a solution to deal with these challenges. The solution is based on the
use of model-driven engineering technology, which has already been applied
for safety certification but not from an evolutionary chain of evidence-based
perspective. The paper also sets the background for developing the solution,
describes real situations in which the solution can help industry, and discusses
possible challenges for developing it. The solution will be developed as part of
OPENCOSS, a research project on cross-domain evolutionary certification.

Keywords: safety, safety certification, evidence, chain of evidence, evidence

evolution, model-driven engineering, impact analysis, OPENCOSS.

1 Introduction

Most critical systems in domains such as avionics, railways, and automotive are
subject to some form of safety assessment as a way to ensure that the systems do not
pose undue risks to people, property, or the environment. The most common type of

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 64-78] 2012.
© Springer-Verlag Berlin Heidelberg 2012

Towards a Model-Based Evolutionary Chain of Evidence for Compliance 65

assessment is safety certification [18], whose goal is to provide a formal assurance
that a system is deemed safe by a licensing or regulatory body. Certification is
typically performed based on one or more standards that apply in a given domain.
Examples of standards include IEC61508, DO-178C for avionics, the CENELEC
standards for railways, and 1S0O26262 for the automotive sector [7, 13].

Demonstrating compliance with a safety standard involves the provision of
evidence to show that the relevant criteria in the standard are met. This imposes
unavoidable, high costs on companies [15]. Furthermore, system evolution often
becomes costly because it entails regenerating the entire body of evidence. The
evidence should be re-examined whenever the system is modified and, if the evidence
is no longer adequate, new evidence should be generated. This is closely related to
(change) impact analysis [4], which aims at identifying the potential consequences of
a change, or at estimating what needs to be modified to accomplish it.

As a result, when a system is certified, subsequent modifications are usually
avoided. This can also hinder innovation, as use of new technologies would require
re-certification. Consequently, new approaches centred on evidence evolution,
including chains of evidence (Section 2.1), are necessary.

This paper presents a solution sketch for managing evolutionary chains of evidence
and thus how to deal with the above challenges for safety certification. The solution
will be developed as part of the work in OPENCOSS [26], a large-scale European
research project whose goal is to devise a common certification framework for the
railway, avionics and automotive domains, addressing evidence evolution.

The solution is based on the use of model-driven engineering (MDE) [37], thus it
supports a model-based evolutionary chain of evidence. As we discuss below, MDE is
an enabler for performing several tasks related to evidence and chains of evidence
management. For example, MDE can facilitate standard interpretation, electronic
evidence management, and identification of chains of evidence.

In addition, the paper (1) sets the background on which the solution is based and
that makes us believe that it is necessary and feasible, (2) describes realistic situations
in which evidence and thus chains of evidence evolve, and (3) outlines the challenges
that we might face. The set of challenges are related to both technology issues and
business issues (e.g., industrial acceptance).

The rest of the paper is organized as follows. Section 2 presents background work.
Section 3 describes situations in which evidence evolves. Section 4 outlines the
envisioned solution, whereas Section 5 discusses the challenges that we foresee.
Finally, Section 6 summarises our conclusions and future work.

2 Background

This section introduces: (a) safety certification; (b) OPENCOSS; (c) two surveys on
certification and evidence management; (d) past work on evidence management and
on model-based safety certification, and; (e) some related projects and initiatives.
Overall, past work has not focused enough on evolution of chains of evidence.

66 J.L. dela Varaet al.

2.1 Safety Certification

Safety-critical systems are typically subject to a rigorous safety certification process.
The purpose of certification is to provide assurance that the system is safe to use in a
specific environment under specific conditions [7].

Satisfaction of safety objectives according to a specific standard involves gathering
convincing evidence during the lifecycle of the system. In general, evidence can be
defined as “the available body of facts or information indicating whether a belief or
proposition is true or valid” [28]. However, one can seldom argue that evidence for
safety certification serves as a definitive proof of the truth or validity of safety claims,
but only whether the evidence is sufficient for building (adequate) confidence in the
claims. Hence, we define evidence for safety certification as “information or artefacts
that contribute to developing confidence in the safe operation of a system”. Such
information or artefacts must also be linked to the requirements/objectives of the
safety standard(s) that need to be met.

A chain of evidence is a set of pieces of evidence that are related (e.g., the agent
that has created a requirements specification, the test cases derived from the
requirements, etc.). Therefore, traceability between these pieces of evidence exists.
By evolutionary, we mean that a chain of evidence can suffer changes (e.g., a
requirement is modified), and thus it can evolve. As a result, the chain of evidence
might not be adequate anymore (e.g., the related test cases might have to be updated).

Safety evidence can be supported by argumentation. Safety arguments are a set of
inferences between claims and evidence that leads from the evidence forming the
basis of the argument to a top-level safety claim. This claim is typically that the
system is safe to operate in its intended environment [7].

2.2 OPENCOSS

OPENCOSS [26] is a FP7 European project that aims (1) to devise a common
certification framework that spans different vertical markets for railway, avionics and
automotive industries, and (2) to establish an open-source safety certification
infrastructure. The ultimate goal of the project is to bring about substantial reductions
in recurring safety certification costs, and at the same time increase product safety
through the introduction of more systematic certification practices. Both are expected
to boost innovation and system upgrades considerably. The project consortium
consists of 17 partners from 9 different countries.

The problems that OPENCOSS addresses are: (1) lack of precision and large
variety of certification requirements; (2) lack of composable/system view for
certification; (3) high and non-measured costs for (re)certification, and; (4) lack of
openness to innovation and new approaches. The project will deal with: (1) creation
of a common certification language (metamodel); (2) compositional certification; (3)
evolutionary chains of evidence (whose envisioned solution is outlined in this
paper); (4) transparent certification process, and; (5) compliance-aware development
process.

Towards a Model-Based Evolutionary Chain of Evidence for Compliance 67

2.3 Earlier Surveys on Certification Issues and Evidence Management

This section summarises part of the results of two surveys that have been conducted at
the beginning of OPENCOSS in order to gain an overall understanding of practices
related to the project.

In the first survey [1], a total of 85 valid responses were obtained on certification
issues. The main conclusions related to this paper are:

e Certification was considered as important for 68% of the respondents.
e The demotivating factors for certification are:
o Effort, cost, complexity, inconsistency, bureaucratic (paperwork)
(60.7%)
o Change management (evolving standards, evolving products),
differences national/ international (21.4%)
o Rigidity, lagging market and technology (17.9%)

In the second survey [25], a total of 15 responses were obtained from OPENCOSS
partners. It aimed to set a baseline concerning the state of the practice on safety
certification within the consortium. The main conclusions related to this paper are:

e Traceability between evidence was acknowledged as a major concern for
safety certification by most of the partners.

e 11 partners selected MDE as a suitable way to manage traceability, and only
matrices were selected more times.

e Most of the partners recommended using models to structure certification
documentation.

e 27 types of traceability between types of evidence were identified.

The results of the surveys suggest (1) the need of mitigating the demotivating factors
for certification, (2) the importance of chains of evidence (traceability), and (3) the
suitability of using MDE technology for evidence management.

2.4 Safety Evidence Management and Evolution

This section reviews some existing research and tools that have dealt with safety
evidence, its management, and its evolution.

Some works on the nature of safety evidence (e.g., [17]) have discussed process-
based evidence (i.e., about the process followed) and product-based evidence (i.e.,
about system characteristics), and what type of evidence can be regarded as better
suited for demonstrating safety. In general, the conclusion is that both types of
evidence are necessary and are related.

Other works have defined evidence items for IEC61508 [35] and for the nuclear
domain [16], have provided classifications of artefacts that can be used as evidence
(e.g., [12]), or have proposed ways to structure evidence in -certification
documentation (e.g., [39]). Within OMG, there are two initiatives aimed at
standardizing the notion of and the concepts related to assurance evidence [22] and
arguments [24]. In relation to this paper, the main weakness of these works is that

68 J.L. dela Varaet al.

they have not dealt with chains of evidence. Other works have modelled standards
such as TEC61508 [29] and DO-178B [42], identifying their main concepts and
relations. However, they have not dealt with evolutionary chains of evidence.

Research-based prototypes have been developed for (1) specification of certificates
associated to source code [34], V&V activities [38], and the activities of the
development process [41], and (2) expert judgement-based quantification of
confidence on evidence [35]. MDE-based prototypes for evidence management are
presented in the following subsection.

Some existing commercial tools that directly or indirectly deal with evidence
management are:

e Atego Workbench [3], which supports traceability, impact analysis, and
versioning of software development work products.

e GoedelWorks [2], which supports IEC61508, IEC62061, I1S026262,
ISO13849, ISO-DIS25119 and ISO15998, supports the specification of
dependencies between (evidence) entities, and provides an entity lifecycle
(Defined, InWork, FrozenForApproval, and Approved).

e Medini Analyze [19], which supports ISO 26262 and allows specification of
traceability to express dependencies between (evidence) elements.

e Parasoft Concerto [33], which supports management (i.e., lifecycles) of
requirements, test and defects, as well as traceability between them and impact
analysis.

In summary, we consider that new research efforts that address and study in detail
chains of evidence (of more types) and their evolution are necessary.

2.5 Model-Driven Compliance with Safety Standards

MDE can be a suitable and very useful technology for safety evidence management
[32]. It is based on the use of models as main artefacts for concept representation and
for communication, and of supporting tools for model verification and transformation.

MDE supports: (1) creation of interpretations of standards; (2) specialization of
standards to industrial contexts (Fig. 1); (3) alignment of standards to organizational
practices; (5) planning for certification; (6) electronic evidence management, and; (7)
evidence reuse. Future, open issues to be addressed are: (1) facilitation of analysis and
determination of the correspondence between different standards; (2) link of MDE-
based safety certification with MDE-based development; (3) link of MDE-based
evidence with argumentation, and; (4) use of MDE for management of evolutionary
chains of evidence. The latter point would be the main contribution of the envisioned
solution presented in this paper.

MDE has been used as basis for the development of prototypes aimed at: (1)
facilitating the agreement upon the evidence to provide [9]; determining traceability
between requirements and design [21]; (3) creating evidence repositories [30], and;
(4) tailoring standards to specific companies, systems, and projects [31].

Towards a Model-Based Evolutionary Chain of Evidence for Compliance

| - target - source

ge
#] SRa : SafetyRequirement

The delay between two consecutive

‘] SRa: SafetyReguirement

Time from Actual detection from sensor to
alarm on operator control panel should be

- target

69

] SR1: SafetyRequirement
Fira Detection should happen

polls of the sensor should be less less than 1 second. within 2 seconds of occurence

than 200 milliseconds

: is allocated to .
<3 allocated o] Operator: UserRole . i allocated fo
_ g ControlSoftware : | + uses
Tincludes < SoftwareBlock
: Fire & Gas Protection System :
HeatSensorDriver = level = Syst: ﬂ— e A s CTOTRCHON SYSTEM &
= “SoftwareBlock By &V = System Teontrols = Program mableElectronicSystem

= level = Module

derived from] IHeatSensor : Interface

g HazardAnalysisActivity
1 Activity

Fig. 1. Example of IEC61508-baed evidence information [29]

ived from

Model-based impact analysis is also related to MDE-based evolutionary chains of
evidence. Various techniques exist for this purpose, with often differing requirements
about the traceability links that need to be defined and also the semantics of the links.
For example, a traceability information model and an algorithm based on this model
for automatically analysing the impacts of change in UML models have been
proposed in [5]. While useful, the conceptualization of the traceability links in most of
the existing work is at a coarse level of abstraction, hindering their application for
safety certification. A reference, better-suited approach can be found in [21], which
addressed impact analysis regarding requirements and design.

2.6 Related Projects and Initiatives

When reviewing existing work on evidence management as a part of the work in
OPENCOSS, and in addition to some works mentioned above, we have found several
projects and initiatives that addressed or are addressing this issue:

e DECOS [6], which dealt with reuse of pre-validated hardware and software
components and of functional blocks for design and certification purposes.

e EVOLVE [8], which aimed to create of a methodological framework for
early V&V of evolutionary products.

e FormalSafe [11], which provided a framework to reuse development
artefacts targeted at providing evidence for safety certification.

e ModelME! [20], which studied the use of MDE technologies for supporting
safety certification.

e Open-DO [27], which aims to build a community around certification-
oriented free software tools and libraries, addressing continuous certification.

e SafeCer [36], which aims to increase system development efficiency and
reduce time-to-market by facilitating compositional certification.

More details about these and other projects can be found in [25]. Although they have
addressed evidence evolution and/or management, application of MDE for
evolutionary chains of evidence has seldom been explored.

70 J.L. dela Varaet al.

3 Situations in Which Evidence Evolves

This section presents seven situations that practitioners can face during the
development and certification processes, that might make a chain of evidence become
inadequate for safety certification, and that can increase development time and cost.
The situations have been discovered on the basis of previous experience on safety
certification, and on input from and discussions with practitioners and researchers.

Situation 1) Incomplete set of evidence

This is probably the most basic situation in which a chain of evidence might not be
adequate. It corresponds to the development scenario in which evidence is gathered
and structured for a non-certified system. Therefore, evidence is collected, or at least
structured, progressively. Until all the pieces of evidence that are part of a chain of
evidence have not been gathered and structured, such a chain is inadequate.

This situation is related to other scenarios reported in research such as incremental
certification and compositional/modular certification [10]. Nonetheless, the
envisioned solution presented in this paper does not address adequate composition of
evidence, beyond having all the necessary pieces of evidence of a chain. That is, the
envisioned solution will not deal with composition adequacy assessment in a semantic
way, but simply in a syntactic way (i.e., a chain of evidence must be complete). Such
a semantic analysis will also be addressed in OPENCOSS, but not mainly by the
authors of this paper.

Situation 2) System modification and recertification

This situation corresponds to a development scenario in which an already-certified
system is modified and thus a new certification (i.e., recertification) is required. For
example, a new system can be developed on the basis of an existing one (system
modification). Such a new system can include, for instance, some new component.

In relation to tools for development of critical system, the safety assessment of the
tools is not referred to as certification, but as qualification [18]. A tool is not certified
“as safe”, but qualified in the sense that its results (e.g., source code) can be used as
evidence for safety certification without needing, for instance, to review them.

For these tools, the situation outlined would be referred to as requalification. For
example, a tool aimed at verifying coding standards can require requalification as new
versions are released, or clients request configurations of the tool that have not been
qualified before. Qualification documentation consists of a tool qualification plan, the
tool operation requirements and test cases, and the test results. Requalification would
require identification of the necessary changes in these documents, based on new
evidence to provide.

Situation 3) Modifications during the development process of a system

While a critical system is developed, and even though a waterfall process is followed,
changes in a system and its associated documentation (which can be used as evidence)
can occur at any moment. For example, (a) a new hazard might be identified as a
result of an accident in another system. Such a hazard should be analysed, and would
impact other artefacts (safety requirements, design, test cases, etc.). Another scenario

Towards a Model-Based Evolutionary Chain of Evidence for Compliance 71

is, for instance, (b) a necessary change in the architecture of system. This might
impact other artefacts such as design specifications, test cases, or even source code,
which might become inadequate.

In this situation, a chain of evidence might become inadequate because of (a)
missing pieces of evidence or (b) the impact of the change of other piece of evidence.

Situation 4) Change in the confidence on evidence

Another situation in which evidence can evolve and thus a chain of evidence can
become inadequate is the result of the change of the confidence on a piece of
evidence. Confidence refers to how adequate the piece is on the basis of some
criterion. For example, an expert can judge evidence adequacy, or evidence linked to
an argument can be regarded as stronger (i.e., more adequate). A piece of evidence
can be considered better or worse than another based on adequacy assessment.

The simplest way of adequacy assessment is probably to determine if a set of
evidence is complete (i.e., it allows justification of the fulfilment of all the criteria of
a safety standard). Such a type of approach can be found, for instance, in [31].
Nonetheless, there are cases in which adequacy assessment can be more complex,
based on specific pieces of evidence that are qualitative or quantitative assessed (e.g.,
[35]). In these cases, a change in the adequacy of a piece of evidence can affect the
adequacy of the rest of pieces of a chain of evidence. For example, a change during
the development of a system (e.g., related to requirements specification) that is made
by an agent whose competence is not “high” (no “top confidence” on the agent) can
negatively affect the confidence of the related pieces of evidence (e.g., a test case).

Situation 5) New context for a system

When an already certified system is to be used in a context other than what the system
was certified for, then some pieces of evidence might become inadequate or new
evidence might have to be provided. For example, a system for a type of train and a
specific line (e.g., from Brussels to Paris) that is to be reused for the same type of
train but in another line (e.g., from Rome to Milan) would not be certified per se, but
new evidence (or arguments) would have to be provided. In the railway domain, this
situation also matches the use of generic, certified applications in a specific train or
line, in which impact analysis is necessary in order to determine what chains of
evidence are not adequate and thus what new evidence must be generated.

Another situation related to context change is certification against another safety
standard. That is, adequate evidence and chains of evidence for a standard might not
be so for another (second standard). The second standard could correspond to a new
standard, a new version of a standard, or a different interpretation of a standard (e.g.,
by a different certification authority). For example, new evidence might have to be
provided for a system certified against DO-178B because of the release of DO-178C.

Situation 6) Agreement with a certification authority

This situation corresponds to scenarios in which new or different evidence is
requested by a certification authority. For example, an authority might request new
evidence for some safety criteria at some moment, after having agreed previously
upon how to show compliance with such criteria, in order to gain more confidence on

72 J.L. dela Varaet al.

the global safety of a system. As a result, a chain of evidence might be inadequate, for
instance, in relation to Situation 1 (incomplete evidence).

Situation 7) Component reuse
The last situation presented and in which evidence for safety certification can evolve
is related to component reuse in a system. Although closely related to Situation 1,
they are not exactly the same. As a result of component reuse, new evidence might
have to be provided in order to have an adequate set of chains of evidence. For
example, reuse of an event recorder system for different trains might require provision
of different evidence, or new evidence about the system might have to be provided.
As mentioned in Situation 1, semantic analysis (of a component-based chain of
evidence) is out of the scope of the envisioned solution presented in this paper.

4 Envisioned Solution

This section outlines the envisioned solution for model-based evolutionary chains of
evidence. More concretely, a (research) process for realising the solution is presented.
In addition, MDE technologies such as those described in [30, 31] will be used as a
reference for the development of the tool support resulting from the solution. These
technologies might be also combined with non-MDE ones (e.g., with [41]).

The process consists of six activities: (1) specification of the lifecycle of a chain of
evidence; (2) identification of chains of evidence in safety standards; (3) impact
analysis of the change of a piece of evidence on the rest of pieces of a chain; (4)
validation of the chains identified; (5) analysis of the chains of evidence in actual
projects, and; (6) determination of how the chains can be mapped into the common
certification language specified in OPENCOSS. An activity that is not described is the
evaluation of the (improvement) effect of the solution on practice.

Although the process is presented sequentially, backward steps might be necessary
as the solution is developed. For example, “validation of the chains identified” might
result in the discovery of some new piece of evidence of a chain. Some activities
might also be performed in parallel. For example, “determination of how the chains
can be mapped into the common certification language” can be executed at any
moment of the process, which will be performed in parallel to the OPENCOSS tasks
aimed at specifying the language.

The activities of the process are described as follows.

1) Specification of the lifecycle of a chain of evidence

The first activity will be to define and model a lifecycle for chains of evidence.
Although no proposal for such a lifecycle exists yet, we plan to base it on existing
proposal for evidence lifecycle. We will focus on the lifecycle proposed in the safety
assurance evidence metamodel by OMG [24] because of being a standard.
Nonetheless, we will also analyse other alternatives in order to try to specify the most
suitable lifecycle for chains of evidence. We will study current practice (i.e., other
lifecycles for evidence or chains of evidence used in industry, such as the one
proposed by GoedelWorks [2]) and the notion of (software) certificate [34, 38].

Towards a Model-Based Evolutionary Chain of Evidence for Compliance 73

The main issue for this activity will be to determine how evidence lifecycle relates
to the lifecycle of a chain of evidence, having to address the possible needs found. In
addition, since automation of management of chains of evidence is planned, we will
have to analyse which transitions between states might be fully automatic. Others
might require validation by users. In this sense, we think that fully automation will
depend on the chains of evidence (i.e., the evidence types of its pieces). For example,
a change in a requirement can automatically make its associated test case inadequate.
Indeed, tools such as Parasoft Concerto [33] provide this functionality. However,
human intervention might necessary, for instance, in scenarios related to the change
of the confidence on a piece of evidence.

2) Identification of chains of evidence in safety standards

The second activity will aim to discover chains of evidence. For this purpose, (1)
existing metamodels of safety standards (e.g., [29, 42]) will be used, and/or (2)
metamodels for relevant standards will be created (e.g., for CENELEC standards of
the railway domain), and subsequently used.

For each relation between two entities of the metamodel, it will have to be
determined if the change of one of the entities can affect the other. For example, and
using Fig. 2 as a reference, if (an instance of) “Source Code” changes, then its
associated “Software Module Testing” will not be adequate. In addition, a finer
analysis might be necessary. Once the chains of evidence have been identified, we
will have to analyse what characteristics of the evidence types (i.e., attributes of the
entities) can make a chain inadequate as a results of a change. That is, a change in
some attributes might not have any impact on the adequacy of a chain of evidence.

| =] Activity | | || Software Module Test Specification ‘ ‘ || Source Code |
1| requires 1|- requires
1Finput 1 finput
| || Testing Activity |=-_-J_‘] Software Module Testing | ‘ || Code Review Report ‘
1 | output 1 tinput - requires |1
1 produces

| | seftware Module Test Results Report I—[>| | Report ‘

Fig. 2. Fragment of an IEC61508-based metamodel regarding software module testing [29]

3) Impact analysis of the change of a piece of evidence on the rest of pieces of a
chain of evidence

After identification of the chains of evidence, mechanisms for model-based impact
analysis must be determined in order to assess the effect that the change of a piece of
evidence of a chain will have on the rest of pieces of the chain.

The most basic mechanism will be the specification of constraints (probably in the
form of OCL [23]) aimed at enforcing the syntactic correctness of a chain of
evidence. Evaluation of such constraints can automatically detect if some piece of
evidence of a chain is missing.

74 J.L. dela Varaet al.

Impact analysis related to, for instance, the change of the confidence on a piece of
evidence will require further study. Using existing works as a reference (e.g., [5, 21]),
we will have to decide on the most suitable and precise way to assess change impact.
Probabilistic-based approaches such as the one proposed in [35] seem to be a
promising possibility. However, it is based on quantitative assessment, which might
pose challenges related to elicitation of expert knowledge. An alternative is
qualitative assessment (e.g., [24]). Even a combination of both types of approaches
might be the most suitable solution.

For deciding on the final alternative to adopt, we think that we will need input from
practitioners in relation to (1) how they assess evidence adequacy, and (2) how they
would like to do it, if they consider that improvements are necessary. At the end, the
goal is to develop a solution that fits practice and meets industry needs and wishes.

4) Validation of the chains of evidence identified

Another activity that will follow the identification of chains of evidence is their
validation. Even though we find (potentially) relevant chains, they might not be so in
practice. At the same time, we might miss some chain when analysing the
metamodels of the standards.

Two tasks are planned for validation of the chains of evidence. First, we will aim
to obtain feedback from practitioners (both suppliers and certifiers). They will
indicate if the chains identified are so in practice, as well as how they deal with their
evolution. Second, we will aim to analyse data from real projects in order to
determine if the chains can be found in documentation of past projects, and how
traceability was kept (e.g., by means of hyperlinks in electronic documentation).

When interacting with practitioners, we will also study the development tools that
they use and allow them to generate evidence (e.g., V&V tools). The tool support
resulting from the development of the solution will be integrated with tools used in
the development process (external tools) in order to automatically collect evidence.

5) Analysis of the chains of evidence in actual projects

The next activity will aim to analyse how the chains of evidence are instantiated in
new, actual projects. This activity will be facilitated in OPENCOSS, in which three
different case studies will be conducted to initially evaluate the solutions proposed in
the project (including the one presented in this paper).

In addition, we will try to reach other companies that might be interested in the
solution developed. For this purpose, we will make use of our industry network, for
instance, in the maritime and energy domain.

We expect that it will be necessary to tailor (the metamodels of) the safety
standards to the specific projects used in this activity. That is, specific interpretations
and instantiations of the standards will be necessary.

6) Determination of how the chains of evidence can be mapped into the common
certification language

The last activity will correspond to the mapping of the chains of evidence identified in
specific standards to the common certification language defined in OPENCOSS.
Otherwise, a cross-domain solution would not be provided.

Towards a Model-Based Evolutionary Chain of Evidence for Compliance 75

The chains of evidence must be reflected and supported, in an abstract way, by the
common certification language. In addition, the solution must be flexible and
customizable, allowing adaptation of the chains of evidence to the specific
characteristics of a development/certification project (e.g., requirements imposed by a
certification authority).

A goal of the common certification language is to facilitate cross-domain (or cross-
standard) certification. The language must help practitioners to determine, on the
basis of a set of evidence compliant with a given standard, the degree of compliance
with another standard. As a result, the need of providing new evidence could be
indicated. In relation to chains of evidence, the common certification language must
make their cross-domain correspondence possible. Therefore, (1) the language must
support (cross-domain) chains of evidence (i.e., the relations between evidence types
of a chain must be reflected in the language), and (2) it must be possible to determine,
for a given standard, how its chains of evidence correspond to the ones of the
common certification language.

5 Challenges

The previous section has outlined our envisioned solution for model-based
evolutionary chains of evidence. However, a realisation of the solution might be
curtailed because of the existence of challenges (and open issues) related to execution
of the process described and to the adoption of the solution.

We have identified the following eight main challenges.

1) Involvement of practitioners. Practitioners (both system suppliers and
certifiers) will have to participate in the project for (1) validation of the interpretations
of the standards, (2) validation of the chains of evidence identified, and (3) provision
of input about current industry practices and needs. Otherwise, the solution might not
fit practice and thus might not be accepted in industry.

2) Development of a common, cross-standard, and cross-domain solution.
OPENCOSS aims to provide common solutions for the railway, avionics and
automotive domain. Therefore, this aspect must be taken into account in the solution,
which must be suitable for the three domains. Each domain has its own standards,
with a different approach and terminology. There is certainly an overlap, but they are
different from a certification point of view.

3) Need of agreement with certification authorities. Also in relation to their
involvement, it is essential that certifiers agree upon the solution. For example, they
should agree upon and accept the results of impact analysis provided by the solution.

4) Intellectual property issues. This challenge is related to the need of (1) using
data from actual projects, and (2) being provided with suppliers and certifiers’ know-
how. In both cases, sensitive information must be properly handled.

5) Immature MDE technology. Based on past experience, we think that some
problems might arise as a result of the use of some MDE technologies. For example,
we might face problems regarding model scalability, transformation and management.

76 J.L. dela Varaet al.

6) Evidence collection from external tools. Although this challenge has been and
is being addressed in other projects (e.g., [14]), the need of collecting evidence from
external tools can pose interoperability problems in the tool support for the solution.

7) Impact of changes in a chain of evidence on arguments, and vice versa. An
aspect that will require further study is the possible relationships between chains of
evidence and arguments, and how their changes can affect each other. This might also
affect safety case development and maintenance.

8) Determination of the best-suited perspective for impact analysis. So far, we
have focused on information-based impact analysis (i.e., based on the information
provided as evidence). However, it must be determined if an activity-based
perspective would be more suitable for industry. That is, practitioners might prefer to
explicitly know what activities they have to (re)execute for having adequate evidence.

Finally, Table 1 shows a summary of the impact of the challenges on the solution.
Such an impact indicates if the corresponding challenge can hinder development,
validation, or acceptance by industry of the solution.

Table 1. Summary of the impact of the challenges

Challenge
Aspect affected 1 2 3 4 5 6 7 8
Development X[X[X | X[X]|X]|X
Validation X X | X
Industry Acceptance | X | X | X X | X X

6 Conclusions and Future Work

Safety assurance and certification can become very costly as a result of changes in the
development and certification processes of a system, or in the system itself. Industry
thus needs effective and efficient means that support identification of the evidence
that becomes inadequate after such changes, and of the new evidence to provide.

This paper has presented a possible solution to deal with evidence and chain of
evidence evolution. The solution will be developed as part of the OPENCOSS project,
and is mainly based on the use of model-driven technology. The suitability of this
technology can be argued on the basis of current practice and past research.

For realising the solution, we plan to (1) define the lifecycle of a chain of evidence
(2) identify chains of evidence in safety standards, (3) analyse the impact of the
changes of a piece of evidence on the rest of pieces of a chain, (4) validate the chains,
(5) analyse the chains in actual projects, and (6) determine how the chains of evidence
can be translated in an abstract, common certification language. We have also
identified eight challenges that could hinder development, validation, and acceptance
by industry of the solution.

As future work, we plan to continue working on the development of the envisioned
solution presented in this paper. Therefore, modifications might be made based on, for
instance, the challenges faced. Once the solution has been implemented, it will be

Towards a Model-Based Evolutionary Chain of Evidence for Compliance 77

validated in case studies as part of the work in OPENCOSS. Validation will allow us
to assess the actual, potential improvements that the solution can provide to industry.

Acknowledgments. The research leading to these results has received funding from
the FP7 programme under grant agreement n° 289011 (OPENCOSS) and from the
Research Council of Norway under the project Certus SFI. The authors would also
like to thank the OPENCOSS partners who have provided information and feedback
about evidence evolution, chains of evidence, and possible solutions to manage them,
and Leon Moonen for his suggestions regarding impact analysis literature.

References

e

O 0N

10.

11.

12.
13.
14.
15.
16.
17.
18.

19.

. Altreonic: Survey on Certification Issues,

http://www.altreonic.com/content/survey-certification-issues
(accessed May 15, 2012)

Altreonic: Trustworthy Systems Engineering with GoedelWorks,
http://www.altreonic.com/category/products/goedelworks (accessed
May 15, 2012)

Atego Workbench, http://www.atego.com/products/atego-workbench/
(accessed May 15, 2012)

Bohner, S.A., Arnold, R.S.: Software Change Impact Analysis. IEEE Press (1996)

Briand, L., Labiche, Y., Yue, T.: Automated traceability analysis for UML model
refinements. Information & Software Technology 51(2), 512-527 (2009)

DECOS project, http: //www.decos . at (accessed May 15, 2012)

Ericson, C.A.: Concise Encyclopedia of System Safety. Wiley (2011)

EVOLVE project, http: //www.evolve-itea.org (accessed May 15, 2012)
Falessi, D., et al.: Planning for Safety Evidence Collection. IEEE Software 29(3), 64-70
(2012)

Fenn, J., et al.: The Who, Where, How, Why and When of Modular and Incremental
Certification. In: 2nd IET International Conference on System Safety (2007)

FormalSafe project,
http://www.dfki.de/web/research/projects/base_view?pid=456
(accessed May 15, 2012)

Habli, .M.: Model-based assurance of safety-critical product lines. PhD thesis, University
of York (2009)

Herrmann, D.S.: Software Safety and Reliability. IEEE Press (1999)

iFEST project, http://www.artemis-ifest.eu (accessed May 15, 2012)

Jackson, D., Thomas, M., Millet, L.I.: Software for Dependable Systems. NAP (2007)
Johansson, M., Nevalainen, R.: Additional requirements for process assessment in safety—
critical software and systems domain. J. Softw. Maint. Evol. (2010), doi: 10.1002/smr.499
Kelly, T.P.: Can Process-Based and Product-Based Approaches to Software Safety
Certification be Reconciled? In: Improvements in Systems Safety. Springer (2008)
Kornecki, A., Zalewski, J.: Certification of software for real-time safety-critical systems:
state of the art. Innovations in Systems and Software Engineering 5(2), 149-161 (2009)
Medini Analyze,
http://www.ikv.de/index.php/en/products/functional-safety
(accessed May 15, 2012)

78

20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.
37.
38.
39.
40.
41.
42.

J.L. dela Varaet al.

ModelME! project, http: //modelme.simula.no/ (accessed May 15, 2012)

Nejati, S., et al.: A SysML-Based Approach to Traceability Management and Design
Slicing of Safety Certification. Info. & Software Technology (accepted paper, 2012)
OMG: Argumentation Metamodel (ARM) 1.0 — Beta 1 (2010),
http://www.omg.org/spec/ARM/ (accessed May 15, 2012)

OMG: Object Constraint Language (OCL) Version 2.3.1 (2006),
http://www.omg.org/spec/0OCL/2.3 .1/ (accessed May 15, 2012)

OMG: Software Assurance Evidence Metamodel (SAEM) 1.0 — Beta 1 (2010),
http://www.omg.org/spec/SAEM/ (accessed May 15, 2012)

OPENCOSS: Deliverable D6.1 - Baseline for the evidence management needs of the
OPENCOSS platform (2012)

OPENCOSS, http://www.opencoss-project.eu/ (accessed May 15, 2012)
Open-DO initiative, http: / /www.open-do.org/ (accessed May 15, 2012)

Oxford Dictionaries: evidence,
http://oxforddictionaries.com/definition/evidence?g=evidence
(accessed May 15, 2012)

Panesar-Walawege, R.K., et al.: Characterizing the Chain of Evidence for Software Safety
Cases: A Conceptual Model Based on the IEC 61508 Standard. In: ICST 2010 (2010)
Panesar-Walawege, R.K., Skyberg Knutsen, T., Sabetzadeh, M., Briand, L.: CRESCO:
Construction of Evidence Repositories for Managing Standards Compliance. In: De
Troyer, O., Bauzer Medeiros, C., Billen, R., Hallot, P., Simitsis, A., Van Mingroot, H.
(eds.) ER Workshops 2011. LNCS, vol. 6999, pp. 338-342. Springer, Heidelberg (2011)
Panesar-Walawege, R.K., Sabetzadeh, M., Briand, L.: Using UML Profiles for Sector-
Specific Tailoring of Safety Evidence Information. In: Jeusfeld, M., Delcambre, L., Ling,
T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 362-378. Springer, Heidelberg (2011)
Panesar-Walawege, R.K., Sabetzadeh, M., Briand, L.: Using Model-Driven Engineering
for Managing Safety Evidence: Challenges, Vision and Experience. In: WoSoCER 2011
(2011)

Parasoft Concerto,
http://www.parasoft.com/jsp/products/concerto/home. jsp (accessed
May 15, 2012)

Programatica project, http: //programatica.cs.pdx.edu/index.html
(accessed May 15, 2012)

Sabetzadeh, M., et al.: MODUS: A goal-based approach for quantitative assessment of
systems, http://modelme.simula.no/assets/modus.pdf (accessed May 15,
2012)

SafeCer project, http: //www.safecer.eu/ (accessed May 15, 2012)

Schmidt, D.C.: Model-Driven Engineering. IEEE Computer 39(2), 25-31 (2006)

Sherriff, M., Williams, L.: DevCOP. In: ISSRE 2006 (2006)

Sommerville, I.: Software Engineering, 7th edn. Pearson (2004)

Squair, M.J.: Issues in the Application of Software Safety Standards. In: SCS 2005 (2005)
The Qualifying Machine: In: [27]

Zoughbi, G., Briand, L., Labiche, Y.: Modeling safety and airworthiness (RTCA DO-
178B) information: conceptual model and UML profile. SoSyM 10(3), 337-367 (2011)

A New Approach
to Assessment of Confidence in Assurance Cases

Xingyu Zhao, Dajian Zhang, Minyan Lu, and Fuping Zeng

School of Reliability and System Engineering, Beihang University, Beijing, P.R. China
{zhaoxingyu,djz}@dse.buaa.edu.cn, {lmy,zfp}@buaa.edu.cn

Abstract. An assurance case is a body of evidence organized into an argument
demonstrating that some claims about a system hold. It is generally developed
to support claims in areas such as safety, reliability, maintainability, human
factors, security etc. Practically, both argument and evidence are imperfect,
resulting in that we can hardly say the claim is one hundred percent true. So
when we do decision-making against assurance cases, we need to know how
much confidence we hold in the claims. And the quantitative confidence would
provide benefits over the qualitative one. In this paper, an approach is proposed
to assess the confidence in assurance cases (mainly arguments) quantitatively.
First we convert Argument Metamodel based (ARM-based) cases into a set of
Toulmin model instances; then we use Hitchcock’s evaluative criteria for solo-
verb-reasoning to analyze and quantify the Toulmin model instances into
Bayesian Belief Network (BBN); running the Bayesian Belief Network, we get
quantified confidence from each claim of the assurance case. Finally, we
illustrate our approach by using a simplified fragment from safety cases and
discuss several future work.

Keywords: Assurance case, quantified confidence, informal logic, Toulmin
model, Bayesian Belief Network.

1 Introduction

The increasing complexity of software-intensive systems raises a new question that
how manufacturers and regulators could gain confidence in the dependable operation
of such software-intensive systems. Instead of assessing manufacturer compliance
with process-based regulations and standards, recently the industry areas have paid
much attention to the assurance cases which focused on demonstrating the
dependability of product-specific system. An assurance case is a body of evidence
organized into an argument demonstrating that some claims about a system hold [1].
As arguments and evidences are practically imperfect, we are difficult to determine
that the claim is true with 100 percent. So when we do decision-making against
assurance cases, we may ask questions like: How confident are we that the claim is
true? How do we express confidence quantitatively [9]?

Argument is the most commonly used concept in the area of both assurance cases
development and informal logic [2]. Borrowing ideas from the informal logic area to

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 79-P1]2012.
© Springer-Verlag Berlin Heidelberg 2012

80 X. Zhao et al.

assess and review cases qualitatively or quantitatively is not innovation. In [2], Yuan
argued that the informal logic argument schemes have important roles to play in
safety arguments construction and review process. In [3], Goodenough et al. outlined
an approach for determining the confidence based on the notion of defeasible
reasoning which is a concept from informal logic. We propose an approach based on
Hitchcock’s Toulmin model [S] arguments assessment criteria to quantitatively assess
the confidence of assurance cases.

In the next section of this paper, some related work and backing theories are briefly
introduced. After that, a detailed description of our approach to assess the confidence
in assurance cases is presented. First we convert the ARM-based [4] cases into the
Toulmin model instances. Then we use Hitchcock’s arguments assessment criteria to
analyze the Toulmin models and construct the basic structure of BBN. Furthermore,
we quantify the BBN and calculate the confidence of each claim in the assurance
cases. Finally, in section 4, a case study on a simple fragment of safety case is
discussed. The conclusion and future work to improve this approach are presented in
Section 5.

2 Related Work

2.1 Assurance Case and Its Confidence

Assurance cases are generally developed to support claims in areas such as safety,
reliability, maintainability, human factors, operability, and security, although these
assurance cases are often called by some more specific names, e.g. safety case or
reliability and maintainability (R&M) case. The assurance case has one or more top-
level claims in which confidence is needed and has supporting arguments connecting
the top-level claims with multiple levels of sub-claims. The sub-claims are in turn
supported by evidences and, where appropriate, assumptions. An assurance case is a
means to provide the grounds for confidence and to assist decision making [7]. One
typical application is the decision-making processes of safety certification in medical
device industry [1].

As both arguments and evidences are practically imperfect, we could never say the
claims in our assurance case are 100 percent true. So we consider the confidence of
each claim in the case should be provided as other elements (e.g. assumptions,
context) to facilitate the decision making. In addition, we need confidence due to we
need to work on ‘stopping rules’ of the case, i.e. when to stop expanding claims. This
is related to the degree of confidence that the claim is correct without the need for any
further supporting evidence, as stated by Bloomfield [8].

Currently the confidence in a safety case is often assessed by appealing to
qualitative reasoning. However, as indicated in [8], expressed in simplistic terms (e.g.
using traffic lights) is not clear how a lack of confidence will propagate through to
higher level claims. In addition, without quantitative confidence, we could not
provide guidance about how much benefit will ensue, or how confident one would be
in a claim after taking steps to enhance an assurance argument e.g., by adding
additional argument legs to support a claim [9]. So it is more than nature that we want

A New Approach to Assessment of Confidence in Assurance Cases 81

a claim with a quantified confidence rather than a qualified one. Once a proper
method which could quantify the confidence of claims is accepted, the quantified
claims could be merged into a wider assessment of system quantitative risk analysis
and play an important role in decision making under uncertainty. Especially, it will be
the basis to support the As Confident As Reasonably Practicable (ACARP) principle
[9], which will in turn affect the software certification and engineering process.

Littlewood, Bloomfield, Bishop and Wright have done a series of work related to a
formal quantitative treatment of confidence since 2003 [10] [11] [12]. After their
work, Denney et al. proposed an approach for measuring the confidence by
integrating probabilistic reasoning with Bayesian Networks for uncertainty modeling
and assessment [13]. Goodenough et al. outlined an approach for determining the
confidence based on the notion of eliminative induction and the defeasible reasoning.
In other words, they use Baconian probability to provide a measure of confidence
based on how many defeaters have been eliminated [3]. In this paper, we use the
Hitchcock’s evaluative criteria for solo-verb-reasoning as guidance to construct BBN
more systematically and then quantify the confidence with traditional Pascalian
probability instead of Baconian probability.

2.2 Good Reasoning on Toulmin Model

Toulmin model addresses all types of reasoning such as scientific, legal, aesthetic,
colloquial and management. Its general shape is shown in Figure 1. The claim is a
conclusion which is to be demonstrated. The data is the facts that we appeal to as a
foundation for the claim. The warrant links data and other grounds to the claim. The
qualifier represents the degree of confidence that can be placed on the claim. The
rebuttal represents counter arguments that can be used. Toulmin introduces the notion
of backing to support the warrant.

Data (Premise, Ground) ‘ So >

Qualifiers, Claim
(Conclusion)

Since

On account of

Fig. 1. Toulmin’s Argument Model

Case method has a close relationship with Toulmin’s model which is the basis of
the Adelard goal-based justification approach ASCAD [14]. Also following Toulmin,
Kelly proposed a graphical argumentation notation - Goal Structuring Notation [15]
and Gorski proposed an argument model for trust cases which had been implemented
in Trust-IT framework [16].

82 X. Zhao et al.

As stated by Hitchcock [6], Toulmin’s model applies not only to argumentations
(authors address verbalized reasoning to someone else) but also to solo verbal
reasonings in which reasoners draw conclusions for themselves from information at
their disposal. Hitchcock proposed an evaluative criterion for solo verbal reasoning
[6], which we choose as the guidance in our approach. Such reasoning is good if and
only if its grounds are justified and adequate, its warrant is justified, and the reasoner
is justified in assuming that no defeaters apply. These four conditions are individually
necessary and jointly sufficient for good solo reasoning aimed at working out a
correct answer to a question. Further explanation of these four conditions could be
found later in this paper. Why Hitchcock’s solo verbal reasoning criteria instead of
argumentation assessment criteria? First, the basis is the common view that case
should be developed by all stakeholders (such as designers, operators, maintainers,
managers, the public, government etc.) [20] rather than only system manufacturers.
So the concept of solo verbal reasoning is in line with the reality of how we should
develop and use the assurance cases, i.e. aiding decision-making for all stakeholders
instead of merely convincing other stakeholders for system manufacturers. Second,
we believe, when assessing assurance cases, one should pay more attention to the
logic and pragmatic aspects than rhetoric and dialectics aspects. As all stakeholders
are case developers, the different viewpoints of stakeholders and argumentation
among stakeholders could be treated as self-argumentation which could be reflected
in Hitchcock’s solo verbal reasoning criteria.

3 Proposed Approach

Following [17], where a safety case comprises two complementary arguments: safety
argument and qualitative confidence argument, we propose an approach to construct
the confidence argument through BBN. In our confidence argument, Hitchcock’s
reasoning assessment criteria is the decomposition strategy. As shown in Figure 2,
more detailed steps of our approach could be found later in this paper.

_] . Expert Opini d
A Rough Convert Hitchcock’ s reasoning Sz::?ttict %::Z‘}:::lm
Framwork EREAITBI QRS Specific Domain, Context

ARM based Case

¥ | ASetof Toulmin Model A Basic Structure of ¥ .| Quantified Bayesian Belief

o Instances "| Bayesian Belief Network o Network
CAE Case |(GSN Case

Fig. 2. Overview Steps to Assess Confidence in Assurance Cases

Y

3.1 Convert ARM-Based Case to Toulmin Model Instance

In [4], Object Management Group (OMG) defined a meta-model, i.e. ARM, for
representing structured arguments, as illustrated in Figure 3. The scope of ARM is to
allow the interchange of structured arguments between diverse tools by different

A New Approach to Assessment of Confidence in Assurance Cases 83

vendors. So both CAE style cases and GSN style cases can be treated as ARM-based
cases instances. To generalize the application scope of our method, we propose a

rough convert framework from ARM-based Case into a set of Toulmin model
Instances, as illustrated in Figure 4.

0.+ | BTagged

£ Taggedvalee 5 ModelElmant 0.7 target
Shey: String = identifier ; Sting
© value : Siring = description : String o

= content:_Sfring +* source

A

T Argumentelement]e’-" 0.* H Argument

.. Link
containsArgumentEkement ContainsArgumentLink

0.1 Argument
refersToAfyumentElement

[E annotation | [H Assertedreiationship|
[1 []
][

I]
i
T CitationElement] hasswurture

R ﬁ
@ 1 [E[Assertedinference] [E_AssertedContex
| | | |
[] L |

[Informationelement refersToArgument |g o | O™ alljmfrqument
B 1 .

[£ Assertedchallenge]
—
—
0.+ | [EAsseredEvidence] [F AssertedCounterEvidence]
‘ describes | [f f }
H Claim - e
= sssumed : Bookean = ArgumentReason
= toBeSupperted | Boolean
Ja

—
—

Fig. 3. Overview of Argument Metamodel

H Assertedinference [H AssertedEvidencel

Data (Premise, Ground)

Qualifiers, Claim (Conclusion)

£l Claim

‘ So
H Infor mationElement P e E——
© assumed : Boolkean
o toBe ted : Boolean
£l Claim
@ assumed @ Boolean H Assertedinference
= toBeSupported : Boolean

[B AssertedCounterEvidence

Warrant

E AssertedChallenge
ReasoningElement

Rebuttal

F] Assertedinference

H InformationElement

On account of

[AssertedEvidence

Backing

H Infor mationEle ment

E Claim
© assumed : Bookean
© toBeSupported : Boolean

Fig. 4. Convert Framework from ARM-based Case into Toulmin Models

84 X. Zhao et al.

Rectangles in the framework are the classes of ARM. The Data (Premise, Ground)
could be directly observed evidence or claims which are justified in related lower
level Toulmin model instance, respectively linked by the AssertedEvidence class and
AssertedInference class to the Claim of this Toulmin model instance. As there are two
kinds of warrants, namely the warrant can be self-evident and the warrant can be
further justified by its own argument, we use the class ReasoningElement which is an
abstract class that could derive class Claim and ArgumentReasoning to
present Warrant. When the warrant is a claim itself and need be justified by Backing,
the Backing is in the same situation with Data. The rebuttal could be an
exception of the warrant or count-evidence, linked by AssertedChallenge and
AssertedCounterEvidence respectively.

When this framework is iterated until every element in the ARM-based case is
analyzed, a set of Toulmin model instances is obtained. One practical difficulty when
apply this framework is to explicitly present a proper warrant in a uniformed form. To
facilitate our work, we treat warrants as special claims, so they are formed into a
proposition form ‘XX property is XX value’ as claims. Now it is just a rough
framework and more systematic, automatic one will be proposed in future work

3.2 Construct the Structure of Basic BBN

Under the guidance of Hitchcock’s reasoning assessment criteria, for each argument
in the set of Toulmin model instances which obtained earlier, we construct a basic
structure of BBN, as shown in Figure 5. Then all basic BBNs are connected through
interface nodes ‘Justified Premises’, ‘Justified Claim’ and sometimes ‘Justified
Applicable Warrant’, we get a whole BBN for the assurance case. The basic BBN for
leaf nodes in the assurance case shall be different with the non-leaf nodes, but we do
not explicitly distinguish them here for simplify. Precisely speaking, when the
‘Justified Premises’ directly represents the evidence, the node ‘Justified Premises’
should be further developed to facilitate the assessment of trustworthiness of
evidence, so what we do here is mainly to systematically measure the confidence
from arguments rather than evidences.

As there are four conditions—justified premises, adequate information, justified
applicable warrant, justified assumption that no exceptions apply—in Hitchcock’s
criteria, we get 4 main branches in our basic BBN structure respectively. For each
branch, combined with the domain knowledge of dependability of computer-based
systems, the deeper structure is depicted and discussed as below.

Justified Premises. First, we must be justified in accepting the ultimate grounds on
which we base our reasoning. To have some assurance of reaching our goal, we need
justification for our starting-points. For a single Toulmin model instance, there are
two types of premises — evidences which come from observation, written records,
history data etc. and claims which are justified in other Toulmin model instance. For
the latter, it is enough that there is just one node ‘Justified Premises’ in the first
branch, as all we need to do is to find the corresponding ‘Justified Claim’ node in
other basic BBN and replace it. If the ‘Justified Premises’ node represents an
evidence (i.e. a leaf node in the case), we directly quantify it with expert opinion at
the present stage.

A New Approach to Assessment of Confidence in Assurance Cases 85

O Justified Claim

N

Justified Applicable o Justified Assumption that
Warrant No Exceptions Apply

Present
NotPresent

O Justified Premises 2 Adequate Premises
Present
NotPresent

L

Present
7 MotPre sent

Present
NotFresent

¥ Present
MotPre sent

Defeater From
Measurement Factors

Defeater From Man
Whether Unprovided - Coverage of Equivalence Factors

Premises is Obtainable Partition of Premises

Obtainable

NotObtainable

Present
NotFresent

kil

Present
MNotFresent

Complete
7 NotComplete

Defeater From o Defeater From
Method Factors Environment Factors

L]

Present
Defeater From NotPresent
Machine Factors

Present
A NotPre sent

™

Defeater From
Material Factors

Present
NotFresent

Present
MotPres ent

Fig. 5. Basic BBN Structure for Each Toulmin Model Instance

Adequate Premises. If one tries to answer a question correctly on the basis of
obtainable information, one needs to take into account all the good relevant
information that is practically obtainable. So we develop two sub-nodes of ‘Adequate
Premises’, namely the node ‘Whether Unprovided Premise is Obtainable’ and the
node ‘Coverage of Equivalence Partition of Premises’.

The node ‘Whether Unprovided Premise is Obtainable’ is easily to be understood
that we could not provide all the relevant premises due to the time and cost in
practical engineering project. So if we provide all obtainable premises we could to
some extent say the adequate premises condition is justified.

Second, the premises must be relevant, in the sense that it could make a difference
to the answer one reaches. That is, considering all the new and old information, to
answer the question that could be different than the one justified by the information
already obtained. We grasp it with an example in software testing activity. Assume
that we have tested the target software with 5000 test cases without any failure, so the
tester may have a ‘confirmation bias’ that the software is good enough. But are these
5000 test cases adequate? The answer depends on the coverage of equivalence
partitions of test cases. If the 5000 test cases come from all different equivalence
partitions, we have high confidence to say the software is good enough. In contrary, if
the 5000 test cases represent only one equivalence partition, we are hardly to say the
software is good and we need generate more test cases. We need relevant test cases,
namely from different equivalence partitions which could make the test result fail,
instead of irrelevant test cases from the same equivalence partition which we know
will pass the test. So we add a node ‘Coverage of Equivalence Partition of Premises’
which will affect the adequate premises condition. We believe this idea is a possible
way to solve the ‘confirmation bias’ problem [18] of case method.

86 X. Zhao et al.

How to determine the equivalence partition of premises? It depends on what
warrant links the premise to claim. To be exact, we can extract equivalence partition
principle from the specific warrant. We could use the interesting argument in
Hitchcock’s paper [6] as an example, as shown in Figure 6. To support the claim that
all swans are white, one could use the warrant (which is well supported by direct and
reported observation) that birds of a single sex in a single species have uniform
coloring. So one will provide premise that those observations of swans of both sexes
in each of known species: mute swans, trumpeter swans, whistling swans, and
whooper swans were seen to be white. Through analyzing the warrant, we could
extract equivalence partition principle from the perspective of species and sex, i.e.
both sex in different species are different equivalence partitions. So we need to
obverse both sex in as many species of swans as possible to provide adequate
premises to the conclusion. Observing more swans of any one of those known species,
of either sex, is irrelevant (i.e. nothing to do with the adequate promises condition),
although it will increase the confidence that the premise is justified (i.e. this should be
reflected by the node ‘Justified Premises’). Once we found a new species of swan in
New Zealand, observing swans of this new species is relevant, which probably could
turn over the conclusion. So as the equivalence partition principle indicates, we
should observe swans of both sexes, of as many species as possible to provide the
adequate premises.

Premise: known species Claim: all swans are
of swan mute swans, white
trumpeter swans,

whistling swans, and
whooper swans were
seen to be white

Warrant: birds of a
single sex in a single

species have uniform
coloring

Fig. 6. Toulmin Model Instance

Justified Applicable Warrant. Conclusion must follow from one’s premises in
accordance with a justified general warrant. Hitchcock first emphasized that the phase
‘in accordance with’ means that the warrant actually applies to the inference. In other
words, the warrant is semantically equivalent to some generalization of the
reasoning’s associated conditional ‘if p; and ... and p,, then c¢’, where p; ..., p, stand
for the premises and c for the conclusion. We do not present this idea in our basic
BBN structure, as we believe this work should be correctly done in the framework
which converts the ARM into Toulmin model, to be specific, when refining the
ReasoningElement class of ARM into a warrant. As aforementioned, there are two
kinds of warrants, namely warrant can be self-evident and warrant can be further
justified by its own argument. For the former, like the situation that premises
represent evidence in the assurance case, we directly quantify it. For the latter, we just
treat it as a claim which could be found justified in another Toulmin model instance,

A New Approach to Assessment of Confidence in Assurance Cases 87

so in this situation the node ‘Justified Applicable Warrant” becomes an interface when
connecting the whole BBN.

Justified Assumption That No Exceptions Apply. As stated in [6], a well-known
feature of Toulmin’s model is that many warrants come with rebuttals, or exceptional
conditions under which the conclusion is incorrect. If the warrant which justifies
one’s inference is not universal, it must be justified by assuming that no exceptional
condition exists. Such exceptional conditions include not only the circumstances that
show the conclusion is incorrect but also the circumstances that show the warrant is
inapplicable to a particular system.

In order to aid quantify this last condition of Hitchcock’s criteria in BBN, we have
to ask ourselves, how to systematically find the exceptional circumstances? Or in
other words, what are the factors that could make these exceptional circumstances
different from the ideal circumstances? When consider this question in the field of
quality of computer-based systems, the question may be transformed into what factors
could make the product (in case) different from the ideal product where the general
warrant will be smoothly applied? Borrowing ideas from the product quality control
and management, SMIE analysis method is the answer we proposed, namely
machine, man, material, method, measurement and environment factors. For instance,
one general warrant may be ‘a component with correct input and correct computation
process could provide correct output’. This self-evidence warrant is justified
applicable on most programmable electronic component. But when the operation
environment is full of electromagnetic interference, the warrant is no longer
applicable in this exceptional circumstance. In other words, there is exception from
the perspective of environment factors. Following this idea, the last branch of basic
BBN structure is constructed.

3.3 Quantify BBN and Measure Confidence

To quantify the BBN and measure confidence for each claim in the assurance case,
we need assign a conditional probability table (CPT) to each non-leaf node of BBN,
and assign the prior probabilities or set observed evidence probabilities for the leaf
nodes and then connect the basic BBN into a whole BBN.

As Toulmin stated, criteria for evaluating arguments has strong field and context
dependency, which we believe becomes unquestionably true when there is an attempt
to quantitatively assess the argument. All the parameters used to quantify the BBN
should be obtained from the field-related statistical data, and inevitably domain expert
judgments, in the context of the target system. Here, combined with our structure of
basic BBN, we only propose brief, general guidelines on how to quantify the basic
BBN.

¢ Guideline 1: For the CPT of node ‘Justified Claim’, we could use the Noisy-And
[19] function to quantify it. So the parameters, 4 link probabilities and the leakage
k, should be discussed by stakeholders and settled down. The same for the CPT of
the node ‘Justified Assumption that No Exceptions Apply’ with Noisy-Or function.

88

4

In

X. Zhao et al.

Guideline 2: For the CPT of node ‘Adequate Premises’, we only concern how to
give P(Adequate Premises| Obtainable= obtainable, Coverage =not complete), as
the other 3 conditional probabilities we could simply set 100% present.

Guideline 3: For the nodes ‘Justified Premises’ and ‘Justified Applicable
Warrant’, how to quantify them depends on whether they present the leaf nodes in
the assurance case, i.e. whether they are the claims which need further argument or
they are self-evidence. For the former, we quantify the node with parameters read
from the corresponding node in other basic BBN. For the latter, it is to some extent
equal to give the trustworthiness of evidence, so we directly quantify them with
domain expert judgments at the present stage. Intuitively, we should go deeper into
the taxonomy of evidence and self-evidence warrants. For example, if a warrant is
mathematic theorem or settled law items, we could treat it as 100 percent justified.
If a warrant is a common sense concluded from history data, then we should use
the statistical probability to quantify it.

Guideline 4: For the serials of nodes which find exceptions from perspective of
SMIE, we should quantify them with the likelihood probability that the exceptions
happen in this case. Still, the likelihood probability comes from domain experts or
statistical data, which should be discussed and accepted by all stakeholders.

Simplified Case Study

this section, a simplified case study on a fragment of safety case is discussed. The

scalability of this proposed approach will be tested upon a big example in the future
work.

Figure 7 is a typical argument in safety cases. It is not hard to convert this case into

Toulmin model instance where the premise is ‘hazard A and B of system S are both
eliminated’, the warrant is ‘systems without any hazards are safe’ and the conclusion

is

‘system S is safe’. Given an argument shown in figure 7, how confident should we

believe that the system is actually safe and what is the basis for this confidence? To
answer this question, we adopt the approached depicted above. And the corresponding
basic BBN for this typical safety argument is shown in Figure 8.

Top-Claim

System S is safe

OverHazards

Argument Over

Context1
Hazards list
Hazards

Sub-Claim1 Sub-Clam2
Hazard A is identified Hazard B is identified
and eliminated and eliminated

Fig. 7. Simplified Typical Safety Argument

A New Approach to Assessment of Confidence in Assurance Cases 89

Justifed Claim
‘system S is safe’

59% [IE]

/’NU'H/ESEHIH% ‘,7\

Present

Caculated from
other basic BBN Mo exceptions in any

circumstances

Hazard A, B Have Justified Applicable
> Adequate Premises ppl
been Eliminated d O Warrant system without [Ju;ﬂﬁ;d Assumpl:n :hat
Present 99% L hazard is safe’ DB ALY
Present 90%] i T _
NotFresent 10% = oftesent 1% 7 Present 100% [Present 100% [|
NotPresent 0%
NotPresent 0% = I,
v]

Defeater From
Measurement Factors

7

Whether Unprovided Coverage of Equivalence — Defeater From Man
3 Hazard Information is (T3 Partition of Premises Faclors Present 0%
Obtainable i.e. Hazard Identify Scale Present 0% MNotPresent 100% el
Obtainable 20% Compiete 25% I MotPresent 100% I S— A
NotObtainable 80% =] o efeater From efeater From
Bk ormpisteld 5] Method Factors ® Enviranment Factors
Present 0% Present 0%
o] Defeater From MotPresent 100% || [lNotPresent 100% ™
Machine Factors
Present 0% Defeater From
NotPresent 100% = Material Factors

Present 0%
NotFresent 100%

~

Fig. 8. Corresponding Basic BBN for the Typical Safety Argument

In this case, for simplify, the CPT of the node ‘system S is safe’ is quantified by
the traditional logical AND operator, i.e. only when all the 4 main branches - justified
premises, adequate information, justified applicable warrant, justified assumption that
no exceptions apply -are presented, the claim is 100 percent justified, and in any other
conditions the claim is 100 percent not justified. Similarly, when quantify the CPT of
the node ‘Justified Assumption that No Exceptions Apply’, only in the condition that
all the SM1E factors are not presented, we 100 percent no exceptions presented, and
in any other conditions the node is quantified 100 percent ‘NotPresent’. The CPT for
node ‘Adequate Premises’ is shown in Figure 9. It is very arbitrary here and in
practice it should be discussed by experts and stakeholders.

Coverage of Equivalence Partition of Premises i.e. Hazard Identify Scale ‘ Complete NotComplete
Whether Unprovided Hazard Information is Obtainable Obtainable | NotObtainable | Obtainable | NotObtainable
[Present 1 1 0.8 1
» |NotPresent 0 0 0.2 0

Fig. 9. CPT for Node ‘Adequate Premises’

Now we assign prior probabilities to leaf nodes. For the node ‘Hazard A, B Have
Been Eliminated” we just get the numbers from two low level basic BBN which
support claims like ‘Hazard A has been eliminated’ (0.94 justified) and ‘Hazard B has
been eliminated’ (0.96 justified), and then multiply them and quantify the node
(0.94%0.96=0.9024 justified). In this case, the prior probabilities for ‘Coverage of
Equivalence Partition of Premises i.e. Hazard Identify Scale’ and ‘Whether
Unprovided Hazard Information is Obtainable’ directly comes from hazard analysis
expert. In practice they also could come from statistic data against some forecast
algorithm, like based on the lines of codes to predict the defects in software. As the
warrant ‘system without any hazards is safe’ has no exceptions in any circumstances

90 X. Zhao et al.

i.e. no factors from SM1E could influence the application of the warrant, so all the 6
nodes relating to this are assigned as 100 percent ‘NotPresent’. Run the BBN we get
the confidence of the claim ‘system S is safe’, 89% justified.

5 Conclusion

As assurance case has become a hot research topic, many researchers question the
whole efficiency of an assurance (safety) case, one of their reasons is the lack of
measurement of confidence. In this paper, we try to solve this problem with the aid of
theories from informal logic. To this extent, we move forward the interplay between
research in informal logic and research in computer system engineering. At present
stage, we only propose an initial framework of this approach and we deem it to be a
potentially helpful way towards the measurement of confidence in assurance cases.
Further examples and applications are needed to determine how helpful it will be
in practical cases. To improve the approach, we identify some future work. Firstly, as
indicated in [4], both CAE case and GSN case could smoothly convert into ARM-
based case. So an automatic convert tool could be developed to help convert the CAE,
GSN, ARM-based cases and Toulmin model instance. Secondly, combining with
domain knowledge (e.g. safety, security), the basic BBN structure should be further
developed and refined. Thirdly we should closely integrate domain knowledge with
the guideline of how to quantify the BBN. Domain statistics data and expert will
definitely play an important role here, and only go deeper into different fields we get
better efficiency. Finally and more significantly, once we got an acceptable
confidence, how should we use it to facilitate our decision-making e.g. perfect the
ACARRP principle. Existing certification process might be modified accordingly.

References

1. Weinstock, C.B., Goodenough, J.B.: Towards an Assurance Case Practice for Medical
Devices. CMU/SEI-2009-TN-018 (2009)

2. Yuan, T., Kelly, T.: Argument Schemes in Computer System Safety Engineering. Informal
Logic 31(2), 89-109 (2011)

3. Goodenough, J.B., Weinstock, C.B., Klein, A.Z.: Assessing Confidence in an Assurance
Case. CMU/SEI-2011-TR-Draft (2011)

4. Argumentation Metamodel (ARM). OMG Document Number: ptc/2010-08-36. Standard
document (2010), http://www.omg.org/spec/ARM

5. Toulmin, S.: The Uses of Argument. Cambridge University Press (1958)

6. Hitchcock, D.: Good Reasoning on the Toulmin Model. Argumentation 19(3), 373-391
(2005)

7. ISO/IEC TR 15026-1:2010, Systems and Software Engineering - Systems and Software
Assurance — Part 1: Concepts and Vocabulary (2010)

8. Bloomfield, R., Bishop, P.: Safety and Assurance Cases: Past, Present and Possible Future
- an Adelard Perspective. In: Making Systems Safer, pp. 51-67 (2010)

9. Bloomfield, R., Littlewood, B., Wright, D.: Confidence: Its Role in Dependability Cases
for Risk Assessment. In: International Conference on Dependable Systems and Networks,
Edinburgh, pp. 338-346 (2007)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

A New Approach to Assessment of Confidence in Assurance Cases 91

Bloomfield, R., Littlewood, B.: Multi-legged Arguments: the Impact of Diversity Upon
Confidence in Dependability Arguments. In: International Conference on Dependable
Systems and Networks (DSN 2003), pp. 25-34 (2003)

Littlewood, B., Wright, D.: The Use of Multilegged Arguments to Increase Confidence in
Safety Claims for Software-based Systems: A Study Based on a BBN Analysis of an
Idealized Example. IEEE Trans. Soft. Eng. 33(5), 347-365 (2007)

Bishop, P., Bloomfield, R., Littlewood, B., Povyakalo, A., Wright, D.: Towards a
Formalism for Conservative Claims about the Dependability of Software-based Systems.
IEEE Trans. Soft. Eng. 37(5), 708-717 (2011)

Denney, E., Pai, G., Habli, I.: Towards Measurement of Confidence in Safety Cases. In:
2011 International Symposium on Empirical Software Engineering and Measurement, pp.
380-383 (2011)

Bloomfield, R., Bishop, P., Jones, C., Froome, P.: ASCAD-Adelard Safety Case
Development Manual. Adelard (1998) ISBN 0953377105

Kelly, T.: Arguing safety-a systematic approach to managing safety cases. York,
University of York. PhD thesis (1998)

Gorski, J.: Trust-IT - a Framework for Trust Cases. In: Workshop on Assurance Cases for
Security - The Metrics Challenge, DSN 2007, Edinburgh, UK (2007)

Hawkins, R., Kelly, T., Knight, J., Graydon, P.: A New Approach to Creating Clear Safety
Arguments. In: Safety Critical Systems Symp. (2011)

Leveson, N.: The Use of Safety Cases in Certification and Regulation. Journal of System
Safety 47(6) (2011)

Hobbs, C., Lloyd, M.: The Application of Bayesian Belief Networks to Assurance Case
Preparation. In: Achieving Systems Safety, pp. 159-176 (2012)

Sun, L., Zhang, W., Kelly, T.: Do Safety Cases Have a Role in Aerospace Certification?
In: 2nd International Symposium on Aircraft Airworthiness, Beijing, China (2011)

An Unified Meta-model
for Trustworthy Systems Engineering

Eric Verhulst and Bernhard H.C. Sputh

Altreonic NV, Gemeentestraat 61A Bus 1, B3210 Linden, Belgium
{eric.verhulst,bernhard.sputh}@altreonic.com
http://www.altreonic.com

Abstract. This paper describes the theoretical principles and associ-
ated meta-model of a unified trustworthy systems engineering approach.
Guiding principles are “unified semantics” and “interacting entities”.
Proof of concept projects have shown that the approach is valid for any
type of process, also non technical engineering ones. The meta-model was
used as a guideline to develop the GoedelWorks internet based platform
supporting the process view (focused on requirements engineering), the
modelling process view as well as the workplan development view. Of
particular interest is the integration of the ASIL process, an automotive
safety engineering process that was developed to cover multiple safety
standards.

Keywords: unified semantics, interacting entities, systems engineering,
safety engineering, systems grammar.

1 Introduction

Systems Engineering (SE) is considered to be the process that transforms a
need into a working system. Discovering what the real need is, is often already
a challenge as it is the result of the interaction of many stakeholders, each of
them expressing their “requirements” in the language specific to their domain
of expertise. The problem is partly due to the fact that we use natural language
and that our domain of expertise is always limited. In order to overcome these
obstacles, formalization is required. The meta-model we developed is an attempt
to achieve this in the domain of SE. In terms of the guiding principles, unified
semantics comes down to defining univocal and orthogonal concepts. The in-
teracting entities paradigm defines how these concepts are linked. The result is
called a “systems grammar” in analogy with the rules of language that allow us
to construct meaningful sentences (an entity), a chapter (a system) or a book
(a system of systems). It defines the SE terms (standing for conceptual entities)
and the rules on how to combine the conceptual entities in the right way to
obtain a (trustworthy) system. What complicates the matter is that a system
in the end is defined not only by its final purpose but also by its history (e.g.
precursors), by the process that was followed to develop it and by the way its

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 92-[[05] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

http://www.altreonic.com

An Unified Meta-model for Trustworthy Systems Engineering 93

composing entities were selected and put together. Each corresponds to a differ-
ent view and it is the combination of these views that result in a unique system.
Note, that a process can also be considered as a system. The main difference
with a system that is being developed is that the composing entities and they
way they interact are different. For example humans will communicate and ex-
ecute a process that delivers one or more results. The system being developed
will be composed of several sub-systems that in combination execute a desired
function, often transforming inputs into outputs. A process can therefore be seen
as a meta-level system model for a concrete project.

An important aid in the formalisation of SE is abstraction, an activity whereby
lower level concepts are grouped in separate, preferably orthogonal meta-level
entities and whereby the specific differences are abstracted away. One could call
this categorisation, but this ignores that the meta-level entities still have meta-
level links (or interactions). This process can be repeated to define a next higher
level, the meta-meta-level, until only one very generic concept is left. The exer-
cise is complete if the reverse operation allows to derive the concrete system by
using refinement. One could say that this is not different from what modelling
defines. There is certainly an overlap, but what makes the approach different is
that our approach does not just try to describe what exists, but tries to find the
minimum set of conceptual entities and interactions that are sufficient to be used
as meta-models across different domains. This is often counter intuitive because
it doesn’t align with our use of natural language. The latter is often very flexible,
but therefore also very imprecise. Natural language is also associative whereby
human communication is full of unspoken context information. Engineers have
here a source of a fundamental conflict. To prove the “correctness” of a system,
it must be described in unambiguous terms. At the same time even when using
formal techniques, the use of natural language is unavoidable to discuss about
the formal properties and architecture of the system. Precise mathematical ex-
pressions are by convention bounded with imprecise natural language concepts.
In this paper we present a middle ground. As a full mathematical approach is
not yet within reach of the scale of systems engineering in general, we defined a
meta-model that formalises the SE domain in a generic way. Only 17 orthogonal
concepts were needed to define most SE domains. The resulting framework was
proven to be capable importing a specific safety engineering process. Also many
explicit guidelines or requirements of traditional safety engineering standards
are found back.

1.1 Related Work

The work presented in this paper is closely related with work going on in other
domains, such as architectural modelling. This has resulted in a number of graph-
ical development tools and modelling languages such as UML [I] and SysML [2].
Without examining them in detail, these approaches suffer from a number of
shortcomings:

— Often architectural models are developed bottom-up, e.g. as a means of rep-
resenting graphically what was first defined in a textual format. Hence, such

94 E. Verhulst and B.H.C. Sputh

approaches are driven by the architecture of the system and its implemen-
tation. As we witnessed often, even when formal methods are used, such an
approach biases the stakeholders to think in terms of known design patterns
and results in less optimal system solutions [3].

— Many modelling approaches focus only on a specific domain, requiring other
tools to support the other SE subdomains. This poses the problem of keeping
semantic consistency and hence introduces errors.

— Most of the tools have no formal basis and hence have too many terms
and concepts that semantically overlap. In other words, orthogonality and
separation of concerns is lacking.

Despite these short comings, when properly used, architectural modelling con-
tribute to a better development process. The approach we propose and imple-
mented in GoedelWorks [4J5] emphasizes the cognitive aspect of the SE process
whereby the different activities are actually just different “views” on the system
under development.

Note that the issues GoedelWorks aims to address are more and more being
recognised as revelant. Safety is an increasingly necessary property of systems,
but at the same time certification costs are escalating. A project that in par-
ticular looks at reducing certification costs by taken a cross-domain approach is
OPENCOSS [d].

The remainder of the paper is organized as follows. The motivation behind
the formalization of concepts and their relations are described in the next sec-
tion, which also presents the link between the abstract, domain independent
meta-ontological level, and the domain specific ontological level. The concepts
and the unified systems grammar itself are further described in section Bl This
formalization can also guide the definition and implementation of a concrete in-
stantiation of a SE process. We conclude by a short description of the import
of a large automotive focused safety engineering process flow, called ASIL [7].
Other pilot projects were executed as well, but not included by lack of space.

2 A Generic Framework for Systems Engineering

Here we give an introduction to our view on Systems Engineering, which provides
the framework of understanding the 17 concepts of System Engineering detailed
in section Bl

2.1 Intentional Approach to Systems Engineering

Systems Engineering is the process that transforms a “need” into a working
system. Initially we describe the system from the “intentional” perspective. Ex-
ample: “We want to put a human on the moon”. From this perspective we can
derive what the system is supposed to be (or to do). Another perspective is the
architectural one. This perspective shows us how the system can be implemented.
Part of the systems engineering work is to make the right trade-off decisions.

An Unified Meta-model for Trustworthy Systems Engineering 95

The “mission” is the top level requirement that the system must meet. In
order to achieve the mission, a system will be composed of sub-elements (often
called components, modules or subsystems). We call these elements “entities”
and the way they relate to each other are called “interactions”. The term system
is used when multiple combined interacting entities fulfil a functionality, that
they individually do not fulfil.

Note, that any system component has often been developed in a prior project,
hence the notion of “System of Systems” emerges naturally. Similarly an embed-
ded system is often assembled from standardised hardware and software compo-
nents, but it’s only when put together and an application specific layer is added
that the embedded system can provides us with the required functionality.

As entities and interactions form a system architecture, all requirements
achieve the mission of a system as an aggregate. Unfortunately, requirement
statements are often vague or imprecise, because they assume an unspoken con-
text. To be usable in the engineering domain we need to refine them into quan-
tifiable statements. We say that we derive specifications. In doing so, we restrict
the SE state space guided by the constraints that we must be able to meet by
selecting from all the possible implementations the ones that meet all our re-
quirements. In the SE domain we link specifications with test cases allowing us
to confirm that a given implementation meets the derived specifications in a
quantifiable way. An example requirement statement could be “a fast car”. The
derived specification could be “Topspeed 240 km/hr, 0 to 100 km/hr in 6 sec-
onds”. We can then define a test that will measure a given implementation. The
specification also defines boundary conditions (e.g. cost, size) for the implemen-
tation choices and the context in which the system will meet the requirements.
Hence, the input for the architectural design is taken from the specifications and
not directly from the requirements.

In practice the use of the terms requirements and specifications is not always
consistent and the terms are often confused. Even the term “requirement speci-
fications”, a rather ambiguous one, is often used. Hence, we consistently use the
term “Requirement” when the required systems properties are not linked with
a measurable test case. Once this is done, we can speak of a “Specification”.

From the structural or architectural perspective a system is defined by entities
and interactions between entities. An entity is defined by its attributes and
functional properties. Attributes reflect intrinsic qualitative and quantitative
properties of an entity (e.g. colour, speed, etc.) and have their own names, types
and values. A function defines the intended behaviour of an entity. An entity
can have more than one function. We use the term function in two ways:

1. The traditional “use case” of entities (corresponding with the intentional
view above);
2. The entities’ internal behaviour.

Functions define the internal behaviour as opposed to external interactions. In a
first approach, interactions are defined using a partial order, i.e. implemented as a
sequence of messages. Interactions are caused by events and are implemented by
messages. An interaction structure corresponds to a protocol and can be defined

96 E. Verhulst and B.H.C. Sputh

with inputs and outputs in form of a functional flow diagram. State diagrams
can be used to show event-function pairs on the transition lines between states.

An event is any transition that can take place in a system. An event can
be the result of an entity attribute change (i.e. of changing the entity’s state).
A message can cause and can be caused by an event whereby the interaction
between entities results in changes to their attributes and their state.

Interfaces belong to the structural part of an entity. An interface is the bound-
ary domain of interaction between an entity and another entity. Interfaces can
have input or output types, which define data, energy or information directions
at interaction areas between the entities.

Interfaces and interactions are related by the fact that an interface transforms
an entity internal event into an external message. A second entity will receive
such a message through its interface, transforming the external message into
an internal form. An interface can also filter received messages and invoke the
appropriate entity internal functions. It should be noted that while an interaction
happens between two entities, the medium, that enables the interaction, can be
a system in its own right. We also need to take into account that its properties
may affect the system behaviour. One should also note that the use of the terms
“events”, “messages” and “protocol” is more appropriate for embedded systems,
but an interaction can also be an energy or force transfer between mechanical
components. Or even two people discussing a topic.

Another important view in systems engineering is the project development
view, which is derived from the architectural decomposition of the system. In
this view, once all entities have been identified, they are grouped into work
packages for project planning. Each work package is divided into tasks with at-
tributes, such as: duration, resources, milestones, deadlines, responsible person,
etc. Defining the timeline of the workplan and the workplan tasks are important
system development stages. Selecting such metrics and attaching them to work
packages leads to the workplan specification.

2.2 Intentional Requirements, Concrete Specifications

As mentioned previously, a system is described at the highest level by its re-
quirements. Requirements are captured at the initial point of the system def-
inition process and must be transformed into measurable specifications. These
specifications are to be fulfilled by structured architectural elements (i.e. entities-
interactions, attributes-values, event-function pairs).

This means that at the cognitive level the qualitative requirements produce
entities, interactions (i.e. architectural descriptions) and specifications (i.e. nor-
mal cases, test cases, failure cases), work plans, and also issues, to be resolved.
The order of this sequence is essential and constitutes a process of refinement
whereby we go from the more abstract to the more concrete. Fig. [illustrates
this dependency using an extract of a ‘Shift by Wire’ project, done as part of
the ASIL project [7].

Using a coherent and unified systems grammar provides us with the basis for
building cognitive models from initially disjoint user requests. Requirements and

An Unified Meta-model for Trustworthy Systems Engineering 97

PRJ-2
Shift_by_wire (ASIL compliant)

MOD-2
Vehicle status indicator system

L

WP-2
Vehicle conditions indicator system development

et g Ny e

SPC-4 SPC-5 SPC-2 SPC-3
Unsafe states of the vehicles Engine status Vehicle speed information Power supply indicator
REQ-3 REQ-2
Unsafe driving conditions Drive conditions status information

Fig. 1. Graphical Representation of Dependency Links in a GoedelWorks Project

specifications are not just a collection of statements, but represent a cognitive
model of the system with a structure corresponding to the system grammar’s
relations.

Capturing requirements and specifications is a process of system description.
Specifications are derived from the more general requirements. This is necessary
in order to make requirements verifiable by measurements.

Specifications are often formulated with the (hidden) assumption that the sys-
tem operates without observable or latent problems. We call these the “normal
cases”. However, this is not enough. Specifications are met when they pass “test
cases”, which often describe the specific tests that must be executed to verify
the specifications. In correspondence to test cases we define “failure cases”, i.e.
a sequence of events that can result in a system fault and for which the system
design should cater. Note that security properties are considered as a sub-type
of safety cases.

3 The Notion of a Systems Grammar as a Meta-model

In this section we outline the meta-model and its 17 concepts. We first list and
define these concepts. To differentiate from the natural language terms, we use
upper case for the first letter. Next we discuss the relationships between the
concepts, the different views in SE and how this results in a process flow.

3.1 Overview of the Meta-model

When we use the term System we assume it is being developed in the context
of a Project. During the Project a defined Process is followed. The Meta-Model
consists of the following 17 concepts:

98

10.

11.

12.

13.

14.

15.

16.

17.

E. Verhulst and B.H.C. Sputh

. System: The System is considered to be the root of all concepts. It identifies

a System as being defined by a (development) Project on the one hand and
a (Systems Engineering) Process on the other hand.

. Project: The set of activities that together result in the system becoming

available and meeting all requirements. The Project is executed by following
a defined Process.

. Process: A set of partially ordered activities or steps that is repeatable and

produces the System.

. Reference: Any relevant information that is not specific to the system under

development but relevant to the domain in general.

. Requirement: Any statement about the system by any stakeholder who is

directly or indirectly involved.

. Specification: Specifications are derived from Requirements by refinement.

The criterion for the derivation is that the resulting Specification must be
testable.
Work Product: The result of a Work Package.

. Model: A model is a specific system-level implementation of a partial or full

set of specifications. A model is composed of Entities and is a Project related
Work Product.

. Entity: An Entity is a composing subset of a model. The interactions create

the emerging system properties.

Work Package: A set of Tasks that, using Resources, produce a Work Product
which meets its Requirements and Specifications. A Work Package shall at
least have a Development-, a Verification-, a Test- and a Validation-Task.
Development-Task: A Task that takes as input the specifications and devel-
ops the Work Products.

Verification-Task: A task that verifies that the work done in the Development-
Task meets the Process related Requirements and Specifications.
Test-Task: A Task that verifies that the result of a verified Work Product
meets the System related Specifications.

Validation-Task: A Task that verifies that the tested Work Product meets
the System related Requirements after integration with all Work Products
constituting the System.

Resource: A Resource is anything that is needed for a Work Package to be
executed.

Issue: An issue is anything that comes up during development that requires
further investigation, mainly to determine if the issue is a real concern.
Change Request: A Change Request is an explicit request to modify an
already approved Project Entity.

We make abstraction here from often domain specific sub-typing (often intro-
duced by qualifying attributes). One must be careful to keep the subtypes to
a minimal and orthogonal set. Otherwise, the terminology confusion creeps in
again.

The attentive reader will notice that the definitions above might not

fully agree with his own notions and still leave some room for interpretation.

An Unified Meta-model for Trustworthy Systems Engineering 99

This is largely due to the ambiguities of natural language and established but
not necessarily coherent practices in how people use the natural language terms.

While we cannot really change language we stick to the terms as they are but
clarify the definitions and why they were chosen. In addition, in the GoedelWorks
environment the structure helps to enforce a specific meaning.

3.2 Requirements vs. Specifications

It might come as a surprise, but many but bot all safety standards don’t even use
the term “specification”. Most standards use the term “requirement” often with
a qualifying prefix. An example are the High Level Requirements (HLR) and
Low Level Requirements (LLR) in DO-178C.[§] In ISO-26262 [9] a specification
is defined as a set of requirements which, when taken together, constitute the
definition of the functions and attributes of item or element.

To eliminate the ambiguity we clearly distinguish between Requirements and
Specifications. A Requirement only becomes a Specification when it is sufficiently
precise and constrained that we can define a way to test it. We can say that a
Specification is a quantified Requirements statement. It comes into being by
a refinement process that often will include trade-off decisions driven by the
Project constraints. The point is that development engineering activities can
really only start when the Specification stage has been reached, else we have
too many degrees of freedom. The latter does not exclude early proof-of-concept
prototypes.

3.3 Development, Verification, Testing and Validation

Another distinction is in the terms used to differentiate the Work Package Tasks.
Verification is here linked with Process Specifications whereas Development and
Testing are linked with System or Project Specifications. In the case of Devel-
opment, Specification statements are necessary input to guide the Development.
Although, we say that Testing verifies that the system Specifications were met,
we reserve the term Verification for verifying the way the Development was done.
The logic behind this is that testing should not be used to find the errors and
deviations of the development activities but to find the deviations from the Sys-
tem’s specified properties. Similarly, Validation comes after Testing and is meant
to verify that the System as a whole (which implies that it includes Integration)
meets the original Requirements statements. Note, that Validation will include
Testing activities, typically by operating the System in its intended environment.

3.4 The Main Complementary Views in SE

The meta-model we introduced covers three main views that together define
the system being developed. Before we elaborate on these, we should clarify
what we mean with the term “System”. In the SE context, the System is what
is being developed in a SE Process. However, a System is never alone, it is
an Entity that always interacts with two other Systems. The first one is the

100 E. Verhulst and B.H.C. Sputh

environment in which it will be used. This can literally be the rest of the real-
world or a higher level system. The second one is the (human) operator actively
interacting with the System. When developing a System, one must always take
these two other Systems into account. Their interactions influence the System
under development (typically by changing the System’s state, either by changing
its energy level, either by changing the operating mode). The reader will notice
that both Systems are characterised by the presence of elements that one never
has fully under control. A human operator can be assumed to always give correct
commands, but this cannot be guaranteed. The same for the environment. It can
be anticipated, but not predicted, how these two systems will behave. This is
the essence of safety engineering.

In the end SE can be seen as the converge of three views. The first one is the
well known requirements view. It is concerned with the properties that Systems
should and must have and relates to the well known question of “What is the
right System?”. The second is the Work Plan view. It consists of the activities
that centered around the development that produces the system. It is related
to the “what system?” question. The third one is the Process view. It answers
the question: “How is the System to be developed?”. It defines on the one hand
a partial order for the different Work Packages of the Work Plan, but it also
defines the evidence that needs to be present at the end of a SE Project. What
is less understood is that the deliverables of a SE engineering project are on the
one hand the System itself (a collection of Entities that create the System after
integration) and on the other hand the Process Work Products. In a systematic,
controlled SE Project all these Work Products together define the System. The
Work Products document it and together with the dependency chain provide the
evidence that it meets the Specifications and Requirements. The Process Work
Products are sometimes called the artefacts as if they were by-products, which
underestimates their value. They make the difference between development as
an engineering activity and development as a crafting activity.

3.5 Morphing Work Products as Templates, Resources and
Deliverables

Another important aspect to see is that a Process is also something that has to
be developed like any other System. Developing a Process also requires a Work
Plan and a set of Process Requirements resulting in Process Specifications. The
deliverables of such a Process developing Project are on the one hand the Pro-
cess itself (i.e. defined activities) and on the other hand the Specifications for
the Work Products to be developed in a concrete Project. In essence, a Pro-
cess will define Templates that need to be filled in during a concrete Project.
Hence, the Template becomes a Resource in a concrete Project whereby the De-
liverable is again a Work Product. A simple example is a test plan. A Process
will define what we can expect from a test plan in generic terms (e.g. complete-
ness, confidence, etc.). It acts as a Reference for further instantiation. Therefore,
an organisation will have to derive an organisation, often domain specific test
plan, but still a template enhanced with organisation specific procedures and

An Unified Meta-model for Trustworthy Systems Engineering 101

guidelines. In a concrete Project this enhanced template is a Resource. After the
Work Package developing an Entity has been approved it becomes part of the
evidence that the Entity meets the Requirements and Specifications.

This “morphing” of entities is another reason why terminology can be confus-
ing. It is related to implicit or explicit reuse of previously developed “Entities”
and actually this is what engineering does all the time. All new developments
somehow always include prior knowledge or reuse previously developed Enti-
ties that become components or Resources for new Projects. On the other hand
it simplifies the understanding of SE by being aware that the finality of a SE
Project is always a (coherent) set of Work Products. The Project and the Pro-
cess are never the finality but the main means to reach the approved state of
the Work Products.

3.6 Links and Entity Dependencies

In a real Project, the number of Entities grows quickly. This induces the need to
group and structure them. Therefore, we define “structural” links, i.e. an Entity
can be composed of sub-Entities. This is not an operation of refinement but one
of decomposition.

If we now make these Requirements concrete, we obtain Specifications that
are derived from them by refinement. For example, we can first build a phys-
ical simulation Model that given parameters allow us to determine the Entity
Specifications. The exercise of linking Specifications with Model Entities is one
of mapping.

The different Process steps actually create dependency relationships. The
Specifications depend on the Requirements. The Work Package related to devel-
oping will also depend on Resources. The composing Tasks also define depen-
dency relationships. The Validation will depend on the Testing with the Testing
depending on the Verification and the Verification depending on the Develop-
ment.

These dependency relationships give us also the traceability requirements, al-
lowing to trace back e.g. from the source code back to the original Requirements.
If the dependency chain is broken, we know that something was overlooked or
not fully analysed. This property is further discussed in the next section.

Using a car as example, we illustrate another aspect that is tightly related
with Requirements management. Assume that we have Requirements saying
“The car shall drive like a sports car®, “Fuel consumption shall be the lowest on
the market” and “The car must be bullet proof”. These Requirements are likely
in conflict. While the examples are straightforward, in practice this conclusion
is less trivial. This is why different Models are needed. Simulation modelling or
virtual prototyping allows us to verify the consistency of the Requirements in
view of the available technology (found back as parameters of the model). For
example, the designer will have to make trade-offs between either a fuel-efficient
and light car, either a powerful and light car but with a higher fuel consumption
or a very safe but heavy and fuel-inefficient car. Similarly, when using formal
models we use them to verify critical properties. Often there is a relationship

102 E. Verhulst and B.H.C. Sputh

between being able to prove such properties and the complexity, read: architec-
ture, of the System. For example if safety properties can’t be proven, often the
System will need to be restructured and simplified.

3.7 State Transitions and Process Flow

The dependency chains identified earlier seem to indicate that a Project always
proceeds top-down, from Requirements till implementation. When taken literally
(like in the waterfall process model), this cannot work because as we have seen
that Requirement statements do not necessarily form a coherent set and at least
some modelling will be needed to weed out overlapping or to make the trade-off
decisions. In practice, some Entities will already exist or have been selected (e.g.
when using COTS) and the dependency link is created later on. The way to
introduce iterative processes is by assigning a “state” to the Project entities and
combining them with the dependency relationships. Typically a Project entity
will be created and becomes “Defined”. At some point in time it will become
“In Work” and when it has been properly worked on, it can become “Frozen
for Approval”. Following a subsequent review, it can then become “Approved”.
More subtler states can be defined but we illustrate the principle using the main
ones.

The state “Approved” can only be reached if we follow the dependency chain
in the reverse order. An entity can only be approved if the preceding entities in
the chain have been approved. If any of them is not, or loses that status, e.g.
because of an approved Issue or Change Request, all depending entities loose
that status as well. The result is that we have for each Work Product (that
includes Models) a separate iterative flow, even if the overall Process flow is
following a V-model, illustrated in Fig. Bl The order doesn’t come from having
predefined a temporal partial order between the Work Packages but from the
precedence-dependency chains. Nothing prevents us from starting to work on
all entities concurrently. The only order that is imposed is the order in which
entities can be approved.

4 Unified SE vs. Domain Specific Engineering

Another aspect that is worth highlighting is that the unified Process flow and
meta-model we described is not specific to a particular domain. The reasoning
applies to business processes, which can be classified as social engineering pro-
cesses, as well as to technical engineering processes. In all cases, once we have
agreed on what we need, we can define what will meet the needs and how we
will reach that goal.

In the industry, much attention goes to supporting the development of safety
critical systems and as such safety standards often define for each domain which
process to follow. Each of them also has it own terminology. By introducing the
generic meta-model (actually a meta-meta-model) we can cater for the different
domains by defining subtypes. We illustrate this by analysing Requirements.

An Unified Meta-model for Trustworthy Systems Engineering 103

N\
Roadmap and
planning l

Requirements and
Specifications

System Design
SubSystem level
S“g:syis':m Verification and
9 Testing
\ /

‘ Development ’

Operations and
Mainenance

Production

Validation and
Testing

[k
7

System level
Verification and
Testing

Fig. 2. The overall V-Model Process Flow of GoedelWorks

Requirements are often obtained by defining “use cases”, often descriptions of
scenarios that highlight some operational aspect of the system. We subtype a
Requirement into three classes, i.e. the “normal case”, the “test case” and the
“fault case”, as refinements of the generic “use case”. These are defined as follows:

— Normal case: This related to a Requirement that covers the normally ex-
pected behaviour or properties.

— Test case: This relates to a Requirement that covers a mode in which the
system is “tested”. Test cases do not modify the “normal case” Requirements
but have an impact on the architectural design.

— Fault case: This relates to a Requirement whereby faults in the system are
considered. Faults are defined as occurrences whereby some components no
longer meet their “normal case” Specifications (derived from “normal case”
Requirements). Safety engineering then prescribes what we expect of the
System when these occur. Hence we can consider a “safety case” as a subtype
of a “fault case”.

The approach whereby we start from a higher level more abstract meta-model
allows us also to e.g. consider security aspects as a fault case. We can say that e.g.
a security case is a fault case whereby the fault is maliciously injected versus a
safety case whereby the fault is often physical in origin. This allows us to reuse a
safety engineering approach (for which documented standards exist) to a security
engineering approach (for which documented standards are often lacking).

4.1 GoedelWorks as a Supporting Environment

While the unifoied SE approach this paper presents, provides us with a coherent
framework, it’s applicability can only be validated by applying it to a real project

104 E. Verhulst and B.H.C. Sputh

whereby we have the issue that real projects very rapidly generate 1000’s of
entities. In addition we were of the opinion that such an environment needed to
support distributed multi-user project teams.

Therefore, first prototype environments were build, leading to early versions
called OpenSpecs and OpenCookBook [5]. They allowed to refine the system
grammar further, execute small test projects, but most importantly to find a
suitable web based implementation. The latter was not so trivial as the com-
plexity of a project database is rather high (largely due to the various links
between the entities) and because of the ergonomic needs.

The final implementation in GoedelWorks was therefore entirely based on a
client-server architecture using a browser as client and a database server. Addi-
tional requirements mostly relate to the useability:

— International multi-user support with entity specific access rights;

— Security and privacy of the project data;

— Capability to define, modify import and export processes and projects;
— Manage process and project entities following the system grammar;
Change and entity state management;

— Queries and dependency analysis;

— Creating “snapshot” documents (in HTML or PDF format);

— Resource and Task planning.

Without going into detail, such an environment acts as a unique and central
repository for Processes and Projects, facilitating concurrent team work and
communication from early Requirements capturing till implementation.

4.2 Importing the ASIL Automotive Centered Safety Integrity
Level Process Flow

While in principle GoedelWorks can support any type of Project and Process,
its meta-model was tuned for Systems engineering Projects with a particular
emphasis on safety critical Processes and certification, hence the importance of
traceability links. Organizations can add and develop their own Processes as
well.

To validate the approach an existing safety engineering process was imported,
called ASIL. It is a Process based on several safety engineering standards, but
with a focus on the automotive and machinery domain. It was developed by
a consortium of Flanders Drive [7] members and combines elements from IEC
61508, IEC 62061, ISO DIS 26262, ISO 13849, ISO DIS 25119, ISO 15998, CMMI
and Automotive Spice. These were obtained by dissecting the standards in semi-
atomic Requirement statements and combining them in a iterative V-Model
Process. It was enhanced with templates for the Work Products and domain
specific guidelines.

In total the ASIL Process identified about 3800 semi-atomic Requirement
statements and about 100 Process Work Products. Also 3 Process domains were
identified (Organizational Processes. Safety engineering and development Pro-
cesses, Supportive Processes. More details can be found in [4].

An Unified Meta-model for Trustworthy Systems Engineering 105

The imported ASIL still needs to be completed to create an organization or
Project specific Process. It is also likely that organization specific Processes will
need to be added. As each Entity in GoedelWorks can be edited, this is directly
possible on a GoedelWorks portal. Without going into details, the import of
ASIL proved that the meta-model approach works and is consistent. For the
interested reader, we refer to a generic description of the ASIL process flow in
the reference document [4].

5 Conclusions

This paper presented a unified meta-model to develop and execute System Engi-
neering Processes and Projects. SE was formalized through the use of a unifying
paradigm based on the observation that systems, including a process, can be
described at an abstract level as a set of interactions and entities. A second ob-
servation is that a key problem in SE is the divergence in terminology, hence the
use of unified semantics by defining a univoque and orthogonal set of concepts.
GoedelWorks as a practical implementation of a supporting environment was
developed. It was validated by importing a generic automotive focused process
flow.

References

1. Object Management Group: UML, http://www.uml.org/

2. OMG Systems Modeling Language, http://wuw.omgsysml.org/

3. Verhulst, E., Boute, R.T., Faria, J.M.S., Sputh, B.H.C., Mezhuyev, V.: Formal De-
velopment of a Network-Centric RTOS. Software Engineering for Reliable Embedded
Systems. Springer, Amsterdam (2011)

4. Trustworthy Systems Engineering with GoedelWorks. Booklet published by Altre-
onic NV (January 2012),
http://www.altreonic.com/sites/default/files/Systems
%20Engineering/20with’%20GoedelWorks.pdf

5. Mezhuyev, V., Sputh, B., Verhulst, E.: Interacting entities modelling methodology
for robust systems design. In: 2010 Second International Conference on Advances
in System Testing and Validation Lifecycle (VALID), pp. 75-80 (August 2010)

6. Espinoza, H., Ruiz, A., Sabetzadeh, M., Panaroni, P.: Challenges for an open and
evolutionary approach to safety assurance and certification of safety-critical sys-
tems. In: 2011 First International Workshop on Software Certification (WoSoCER),
November 29-December 2, pp. 1-6 (2011)

7. Automotive Safety Integrity Level Public Results (2011),
http://www.flandersdrive.be/ js/plugin/ckfinder/userfiles/files/
ASILY,20publicy,20presentation.pdf

8. Software Considerations in Airborne Systems and Equipment Certification (2012),
http://en.wikipedia.org/wiki/D0-178C

9. Automotive functional safety (2012), http://en.wikipedia.org/wiki/IS0_26262

http://www.uml.org/
http://www.omgsysml.org/
http://www.altreonic.com/sites/default/files/Systems%20Engineering%20with%20GoedelWorks.pdf
http://www.altreonic.com/sites/default/files/Systems%20Engineering%20with%20GoedelWorks.pdf
http://www.flandersdrive.be/_js/plugin/ckfinder/userfiles/files/ASIL%20public%20presentation.pdf
http://www.flandersdrive.be/_js/plugin/ckfinder/userfiles/files/ASIL%20public%20presentation.pdf
http://en.wikipedia.org/wiki/DO-178C
http://en.wikipedia.org/wiki/ISO_26262

A Preliminary Fault Injection Framework
for Evaluating Multicore Systems

Anna Lanzaro!, Antonio Pecchial, Marcello Cinque', Domenico Cotroneo?,

Ricardo Barbosa?, and Nuno Silva?

! Dipartimento di Informatica e Sistemistica
Universita degli Studi di Napoli Federico 11
Via Claudio 21, 80125, Naples, Italy
2 ASD-T Aeronautics, Space, Defense and Transportation
Critical Software SA
Parque Industrial de Taveiro, Lt 48, Coimbra, Portugal
{anna.lanzaro,antonio.pecchia,macinque,cotroneo}@unina.it,
{rbarbosa,nsilva}@criticalsoftware.com

Abstract. Multicore processors are becoming more and more attractive
in embedded and safety-critical domains because they allow increasing
the performance by ensuring reduced power consumption. However, mov-
ing to multicore systems raises novel dependability challenges: the num-
ber of cores, concurrency issues, shared resources and interconnections
among cores make it hard to develop and validate software deployed on
the top of multicore processors.

This paper discusses a preliminary fault injection framework, which
alms to investigate dependability properties of multicore-based systems.
The proposed framework leverages the error reporting architecture pro-
vided by modern processors and has been instantiated in the context of
the Intel Core i7 processor. Fault injection campaigns have been con-
ducted under the Linux OS to show the benefits of the framework.

Keywords: Dependability, Multicore, Fault Injection, Machine Check
Error, Intel Core i7.

1 Introduction

High performance, reduced size and weight, and power efficiency are key features
that make multicore processors desirable for several industrial domains. Re-
cent market trends indicate that safety-critical and embedded system domains,
such as avionic [4], [3], automotive [1], [2] and medical [5], are moving towards
multicore-based solutions. Even of more relevance, the adoption of multicore can
support achieving safety requirements imposed by standards (e.g., ISO-26262,
TIEC-61508, and DO-178B) because it makes it possible running independent
tasks on each core so to ensure properties such as, space and temporal isola-
tion. Furthermore, the inherent presence of replicated cores allows implement-
ing fault-tolerant solutions by means of virtualization [8]. Overall these features

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 106-[[T6] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

A Preliminary Fault Injection Framework for Evaluating Multicore Systems 107

exacerbate the need for strategies to evaluate dependability characteristics of
multicore systems.

Modern processors, e.g., Intel, AMD, ARM, IBM, Freescale, incorporate
hardware-implemented detection and fine-grained error-reporting architec-
ture to notify problems affecting processor units, such as memory and caches
hierarchy, TLB, bus. These mechanisms produce precise notifications and con-
text information about the errors reported by the hardware, which are valuable
to the software components running on the top of the processor. Among them,
software addressing recovery and isolation capability plays a key role in the de-
velopment of multicore systems due to the complexity introduced by the number
of cores, concurrency issues, shared resources and interconnections among cores.
Evaluating the overall system behavior under errors is crucial and requires spe-
cific methodologies in the context of multicore systems.

This paper proposes a preliminary fault injection framework to support
dependability evaluation of multicore systems. The key idea underlying the
framework is emulating machine check errors, i.e., errors occurring when
the processor detects problems affecting hardware components. Emulation is ac-
complished by writing into the registers of the error reporting architecture of the
processor rather than physically interfering with the actual hardware units. In
this way, the approach allows performing low-cost and controllable fault injec-
tion campaigns. The proposed framework has been instantiated in the context
of the Intel Core i7 processor. Explorative fault injection campaigns have been
conducted under the Linux OS to validate and to show the benefits of the frame-
work.

The rest of the paper is organized as follows. Section Plintroduces related work
in the area of fault injection. Section 3] discusses the framework and design chal-
lenges concerning its functional components. Section Ml introduces the reference
processor adopted in the study. Section [Bl describes a preliminary implementa-
tion of the fault injection framework and results obtained in the context of the
Linux OS. Section [0l concludes the work and indicates future research directions.

2 Related Work

Fault injection is a well-established technique for dependability evaluation of
systems in both industry and academia. It allows introducing faults into a given
system with the aim of observing its dependability behavior and assessing fault
tolerant mechanisms. More important, fault injection is currently recommended,
if not mandatory, and regulated by many international standards, to support
the system validation and certification process and to develop robust software.
For example, fault injection is an important constituent of the ISO 26262 [10]
standard to supplement software unit and integration testing.

Several fault injection techniques were proposed in order to inject hard-
ware faults. Hardware-based fault injection techniques insert into the system
real hardware errors by means of special-purpose and architecture-dependent
equipment or by interfering with the physical unit (e.g., by lowering the de-
vice voltage, increasing the temperature, radiations introducing electromagnetic

108 A. Lanzaro et al.

interferences) [9], [L1]. This approach has the advantage of reproducing real hard-
ware faults, but it is costly and risky to implement. Moreover, it makes it hard
the observation of the effect of the faults in the processor because of the interfer-
ences caused by the injectors. For these reasons, software-implemented fault
injection (SWIFI) techniques, which are closer to our work, have gained popu-
larity. SWIFT consists of reproducing via software the effects of hardware errors.
The injection can be performed at compile time inserting the effects of hardware
errors in the target code or at run time using time-out, exceptions or code in-
sertion to trigger the fault injection. Tools implementing SWIFT technique are
[12] [13], [14], [15].

The use of fault injection techniques for the assessment of multicore sys-
tems is still recent. Appropriate fault models encompassing faults that were
not a concern in single-core architectures (e.g., adopting SWIFI technique, the
execution of additional software for the injection could affect the scheduling of
the system tasks impacting real-time requirements) are required to guarantee
effective and low cost fault injection campaigns. Challenges in tolerating faults
in parallel execution on multicore systems are discussed in [6]. In [16], mSWAT
is presented. It is a detection and diagnosis technique for permanent and tran-
sient hardware faults in multicore architectures running multithreaded software.
The authors adopt fault injection by simulation in order to validate the detec-
tion mechanisms. However, assuming that at most one core is faulty, the fault
model encompasses only in-core faults and not faults that can occur in I/O con-
troller, memory sub-system, etc. In both [18] and [7] a simulation-based fault
injection analysis for multicore is presented. In [I7] the use of NFTAPE tool for
the evaluation of operating system behavior running on multicore processor is
proposed. In [20], the authors describe a method for predicting failures based on
the monitoring of the execution units in a Quad-core Intel processor.

3 Proposed Framework

Machine check errors (MCE) indicate the occurrence of problems affecting hard-
ware units of the processor. Modern processors usually notify MCEs by means
of an error-reporting architecture (exemplified in Fig.[I]) composed by a set of
global and per-core registers. The idea underlying our proposal is emulating
the occurrence of MCEs by writing into the registers of the error-reporting
architecture rather interfering with the device, such as in the mentioned hard-
ware fault injection approaches. The knowledge about MCEs and error codes
reported by the processor during the execution is inferred from the documenta-
tion provided by the manufacturer of the processor [19]. Modifying the registers
of the error-reporting architecture allows implementing a low-cost and control-
lable fault injection framework.

Fig. [l shows the functional components of the framework implementing the
injection approach. The system under test is composed by the multicore proces-
sor and a target workload. The latter could be an operating system, software
for embedded systems, or a virtualization-based solution, and represents the soft-
ware whose robustness is assessed under the occurrence of MCEs. The role of

A Preliminary Fault Injection Framework for Evaluating Multicore Systems 109

) system under test
experimentdata =~ porttrterooertoerooeeooes]

target
workload

N

S
core0 1 coreN
, I

!
< @
processor

monitor

CONTROLLER injector

faultload
w8
enerator

Fig. 1. Proposed fault injection framework

the remaining components depicted in Fig. [Ilis described in the following along
with relevant design challenges:

e MCE generator is the entity that automates the generation of the faultload,
i.e., the set of MCEs that will be injected in the target system during the
campaign. It should be noted that the number of combinations representing
all the possible error codes reported by the processor is extremely large.
The faultload generation should be optimized with criteria aiming to narrow
down the number of experiments. For examples, experiments might focus on
a given hardware unit or specific border values assigned to the error-reporting
registers of the processor.

e Injector is the component responsible for injecting MCEs into the error-
reporting architecture of the target processor, as shown in Fig.[Il The injector
should not distort the actual behavior of the system under test. For this
reason, if injection is accomplished via a software module, isolation between
the injector and the injection target can be achieved by running them on
different cores. A better solution is represented by the use of specialized
hardware supports, such as a debugger; however, this might not always be
available to analysts and requires additional costs. Even of more relevance,
injector must address spatial and timing features of the experiment.

e Monitor is responsible for collecting data concerning the fault-injection
outcomes. Data might include notifications reported in the system log, out-
put produced by the target workload, or state variables. Monitor should cope
with data loss caused by experiments leading to critical system failures, such
as reboot or panic. Again, monitoring and data collection features should not
impact the behavior of the target system.

e Controller is the entity responsible for iterating fault injection experi-
ments and coordinating the described components. For each experiment
it activates/deactivates the injector module, and stores monitoring data.
Moreover, controller should ensure that the workload is actually running at
the time injection is performed. To this objective, controller might leverage

110 A. Lanzaro et al.

Core 0|| Core1 Core 2| Core3 Core 4|| Core§ Core 6 | Core7

L1 Cache | L1 Cache
[L2cache |

L1 Cache| L1 Cache

[L2cache

L1 Cache| L1Cache

[L2cache |

L1 Cachd| L1Cache
L2 Cache |

Memory Controller
Memory Controller

5 5
£
8 8
= g
: :
£ E
: :
= o

\ L3 Cache |

‘ QPI Controller ‘

Fig. 2. Intel Core i7 architectural block diagram

operating system support (e.g., Linux OS get/set CPU affinity mask) to cope
with processes scheduling issues.

4 Case Study

The multicore processor targeted by the study is the Intel Core i7 2670QM [21].
Fig. @ shows a simplified block diagram of the architecture. It is a distributed
shared memory system consisting of 4 physical cores integrated on the same
chip. Cores are connected by a point-to-point and high-speed communication link
(Quick Path Interconnect). Each core appears to software as two logical cores
by means of the Hyper Threading Technology (e.g. Intel’s implementation of
Simultaneous Multi-Threading). Moreover, the processor introduces several new
features (e.g., integrated memory controller for each core, a memory hierarchy
with 3 caches levels) that assure high performance and power efficiency.

The processor provides a sophisticated error-reporting architecture called Ma-
chine Check Architecture (MCA). The MCA is composed by a set of registers
(Machine Specific Register - MSR) for reporting errors detected by hardware
components, such as memory, caches, and buses. As shown in the Fig. B the
MCA consists of 9 banks of registers replicated for each core and associated
to specific hardware units. Each bank is composed by 5 registers for reporting
hardware errors: two control registers (MCi CTL and MCi CTL2), a status register
(MCi STATUS), an address register (MCi ADDR), and a miscellaneous error infor-
mation register (MCi MISC). By means of the bank of registers, the MCA notifies
different category of errors:

e uncorrected errors (UC): errors not corrected by the processor;

e uncorrected recoverable errors (UCR): errors not corrected by the pro-
cessor and for which system software can attempt recovery actions. In par-
ticular, the recovery actions can be required (SRAR), optional (SRAO) or
not required (UCNA).

e corrected errors (CE): errors corrected by the processor without impacting
running processes.

Additional information about the type of errors affecting hardware units of the
processor is available in the first 16 bits of the status register (again, MCi STATUS).

A Preliminary Fault Injection Framework for Evaluating Multicore Systems 111

| ox4o0 | Mco_CTL ! ' !
| ox401 | MCO_STATUS o | ! xa01 | MCO_STATUS o!
: 0x402 | MCO_ADDR X0 : 0x402 | MCO_ADDR %
| 0x403 | MCO_MISC = | | 0x403 | MCO_MISC g
| oxc80 | MCO_CTL2 | | ox280 | MCo_CTL2 !
\e e _______C . \e e -_-____C .

Bank 1 Bank 1

Bank 2 Bank 2

Bank 3 Bank 3

Bank 8 Bank 8

Fig. 3. Machine Check Architecture

Details about the error codes adopted in the study are reported in the Table [T}
which has been taken from the processor documentation. This information sup-
ported the definition of realistic fault model for the target processor. Moreover,
3 global registers are provided by the processor: MCG CAP, MCG STATUS and
MCG CTL registers. In the context of our work, we considered the MCG CAP reg-
ister, which gives information about the capabilities of the MCA available in
the processor (e.g., bit SER P of such register indicates if the processor supports
recovery actions) and MCG STATUS register, which reports the status of the pro-
cessor at the time a MCE occurs.

Table 1. Status Register [15:0]

Type Format*

Generic Cache hierarchy 0001 0000 0000 11LL
TLB 0001 0000 0001 TTLL
Memory controller 0001 1IMMM 11LL CCCC
Cache hierarchy 0001 0001 RRRR TTLL
Bus and interconnections 0001 1PPT RRRR IILL

*TT - Type of transaction

LL - Level in the memory hierarchy

RRRR - Type of action associated with the error

MMM and CCCC - Memory transaction type and Channel
PP and T - Partecipation and Timeout

IT - Memory or I/O

112 A. Lanzaro et al.

CPU 2 BANK 8 Level Severity Description
0 NO No Action
MCGSTATUS MCIP RIPV EIPV 1 KEEP No panic
STATUS UNCORRECTED 0x0186 2 SOME No panic
ADDR 0x11111111 3 AO Action Optional
4 uc Uncorrectable
MISC 0x11111111 5 AR Action Required
NOBROADCAST 6 PANIC Panic
(a) Machine check error (b) Linux severity levels

Fig. 4. MCE description file and severity levels

5 Preliminary Application

A preliminary implementation of the framework described in Section [l has been
developed under the Linux OS. Implementation has been used to conduct ex-
plorative fault-injection campaigns to validate the proposed approach in a real
testbed adopting the Intel i7 processor.

In the proposed implementation the injector consists of mce-inject [22],
which is a well-known tool in Intel/Linux community. Each MCE is represented
by a textual description providing information about the location (i.e., cpu and
bank number) where the MCE will be injected and values assigned to MCG STATUS,
MCi STATUS, MCi ADDR, and MCi MISC registers of the MCA architecture. Fig. [4al
provides an example of MCE to be injected in the bank 8 of the cpu 2. It emu-
lates an uncorrected error affecting data of L2 cache during the snoop protocol
by means of the error code 0z0186 that will be written in the status register. A
bash script has been implemented to automatically generate the faultload, i.e., the
set of MCEs that are injected during a campaign. Given the textual description,
mece-inject sets the values of the registers of the MCA by means of a specific kernel
module of the Linux OS.

The workload is represented by the Linux OS (kernel version 3.1.10) run-
ning on the top of the Intel i7 processor. Preliminary experiments aim to explore
the Linux error-handling capabilities initiated by the do machine check proce-
dure. This is the OS exception handler that is actually triggered when a real
machine check occurs (interrupt 18 in the case of Intel processors). For each
MCE-injection experiment, the monitor component collects the error severity
determined by the kernel as a result of the injected MCE and the recovery ac-
tion triggered by the kernel based on the severity level. Values assumed by the
severity parameter under the Linux OS are reported in Fig. @0l

5.1 Campaign #1

The faultload of the first campaign consists of 4,096 MCEs. It emulates cache,
memory controller, and TLB errors by changing the bits of the status registers
according to the codes reported in Table [[l The set of emulated errors contains
uncorrected recoverable errors (UCR), uncorrected recoverable errors with action

A Preliminary Fault Injection Framework for Evaluating Multicore Systems 113

(a) Severity (b) Recovery actions

Fig. 5. SER P=0: recovery actions not supported by the processor

AO kill
SPURI 34 SOME 2
ous___ 990 .
1024 EIE
2046
(a) Severity (b) Recovery actions

Fig. 6. SER P=1: recovery actions supported by the processor

required (SRAR), optional (SRAO) or not required (UCNA). Moreover, the same
faultload has been injected into two different scenarios, i.e., (i) with the processor
not supporting recovery actions (i.e., the bit SER P is clean); (ii) with processor
supporting recovery by software (i.e., the bit SER P is set).

Figlhal and Figlhl show the MCEs severities and related recovery actions
provided by the Linux OS, when the bit SER P is clean. All the errors have
classified as uncorrectable; however, this set of experiments did not cause the
triggering of any specific a recovery action.

The same set of 4,096 errors has been emulated with the bit SER P set.
Experiments made it possible to highlight a rather different behavior of the error
handling mechanism indicated by Fig.[Baland Fig.[6h], respectively. Fig. Bal shows
the severity levels. The 50% of the injected MCEs is classified as PANIC: as a
result, the injection of this subset of errors actually caused the panic of the
machine, such as reported in Fig. Errors causing SOME and AO severities
represent total 24% and the 0.8%, respectively. These errors did not trigger
any specific action of the handler. Only 2 error codes affecting the cache unit,
i.e., 0x0134 - data load error and 0x0150 - instruction fetch error were actually
recognized by the handler, i.e., AR severity, and caused the 2 process kills shown
in Fig.

More important, experiments revealed a possible bug in the code that deter-
mines the error severity (Figltal). Around 25% of experiments caused a spurious
severity value, i.e., a numeric value that is not a severity level according to Fig.
Spurious values prevent to correctly determine the severity of errors leading

114 A. Lanzaro et al.

SPURIO
SPURIO SOME e SOME
us 224 p0 o

256

(a) Memory controller (b) TLB

Fig. 7. Severity and recovery actions grouped by error categories

to unexpected behaviors and were attributed by the handler to the NO PANIC
category Fig. We also observed that the kernel does not strongly differenti-
ate among errors affecting different hardware units. Fig. [Tal and Fig. [Tl report
the distribution of the severities observed for memory controller and TLB errors
with the bit SER P being set. In both cases, the 50% of the errors causes a
system panic regardless of the nature of the injected errors. Again, total 25% of
errors caused a spurious severity.

5.2 Campaign #2

Because of the inability of the handler to differentiate among error codes, a
further campaign has been performed to explore its recovery behavior. In this
campaign, rather than exhaustively trying different error codes, we used different
combinations of the diagnostic information provided by the MCA along with the
error notification (such as, the error is recoverable or not, an action is required
to recover from the error, the error corrupted or not the processor state, etc).

The campaign encompassed 192 MCEs injected when the bit SER P is set, i.e.,
recovery actions are supported. Results reported in Fig. [Bal and [8bl confirm that
the target handler mainly provides coarse-grained recovery actions, i.e., system
panic (82%) and process kill (3%). Again, the handler was not able to correctly
manage around 11% of the errors due to the presence of spurious severity values,
possibly causing an improper recovery action.

SPURIO\ SOME kill -
us 5 panic
21 . ‘ i 30
panic
\ 157 /

(a) Severity (b) Recovery actions

Fig. 8. Severity and recovery action for Campaign #2

A Preliminary Fault Injection Framework for Evaluating Multicore Systems 115

6 Conclusion

This paper proposed a fault injection framework developed for supporting de-
pendability analysis of multicore systems. The approach leverages the notion of
machine check error and the error-report mechanism implemented by modern
processors. So far, fault injection campaigns have been conducted to test the
functionalities of the framework under the Linux OS running on the top of the
Intel i7 processor.

In the future, we will improve the framework by addressing the emulation of
simultaneous errors affecting different cores, burst of errors, errors propagation
among cores. The framework will be used to validate error handling of differ-
ent operating systems, to analyze fault-tolerant mechanisms implemented across
cores, to assess the resiliency of a given system under errors, and to benchmark
the dependability behavior of different solutions adopting multicore.

Acknowledgment. This work has been supported by the European project
CRITICAL Software Technology for an Evolutionary Partnership (CRITICAL
STEP, http://www.critical-step.eu), Marie Curie Industry-Academia Part-
nerships and Pathways (IAPP) number 230672, in the context of the EU Seventh
Framework Programme (FP7).

References

1. Aussagues, C., Chabrol, D., David, V.: PharOS, a multicore OS ready for safety-
related automotive systems: results and future prospects. In: Software and Systems,
pp. 1-10 (2010)

2. Navet, N., Monot, A., Bavoux, B.: Multi-source and multicore automotive
ECUs-OS protection mechanisms and scheduling, vol. 2010 (2010)

3. Agrou, H., Sainrat, P., Gatti, M.: A design approach for predictable and efficient
multi-core processor for avionics. Digital Avionics (2011)

4. Kinnan, L.: Use of multicore processors in avionics systems and its potential impact
on implementation and certification. In: Avionics Systems Conference, DASC 2009
(2009)

5. Zhu, Y.: Medical Image Viewing on Multicore Platforms Using Parallel Computing
Patterns. IT Professional 12(2), 33-41 (2010)

6. Mushtaq, H., Al-Ars, Z., Bertels, K.: Survey of fault tolerance techniques for shared
memory multicore/multiprocessor systems. In: 2011 IEEE 6th International Design
and Test Workshop (IDT), pp. 12-17 (December 2011)

7. Lee, D., Na, J.: A Novel Simulation Fault Injection Method for Dependability
Analysis. IEEE Design & Test of Computers 26(6), 50-61 (2009)

8. Leveraging virtualization in Aerospace and Defense applications, Radisys white
paper (November 2011)

9. Madeira, H., Rela, M., Moreira, F., Silva, J.G.: RIFLE: A General Purpose Pin-
Level Fault Injector. In: Echtle, K., Powell, D.R., Hammer, D. (eds.) EDCC 1994.
LNCS, vol. 852, pp. 199-216. Springer, Heidelberg (1994)

10. International Organization for Standardization. Product Development: Software
Level. ISO/DIS 26262-6 (2009)

116

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

A. Lanzaro et al.

Gunneflo, U., Karlsson, J., Torin, J.: Evaluation of Error Detection Schemes Using
Fault Injection by Heavy Radiation. In: Proceedings of the Fault Tolerant Com-
puting Symposium - FTCS-19, pp. 340-347 (1989)

Segall, Z., Vrsalovic, D., Siewiorek, D., Kownacki, J., Barton, J., Dancey, R., Robin-
son, A., Lin, T.: FIAT - Fault Injection Based Automated Testing Environment. In:
Proceedings of the 18th IEEE International Symposium on Fault Tolerant Com-
puting - FTCS 1988, pp. 102-107 (1988)

Kanawati, G.A., Kanawati, N.A., Abraham, J.A.: FERRARI: A Tool for the Val-
idation of System Dependability Properties. In: Proceedings of the 22nd IEEE In-
ternational Fault Tolerant Computing Symposium, FTCS-22, pp. 336-344 (1992)
Kao, W.-L., Iyer, R.K., Tang, D.: FINE: A Fault Injection and Monitoring Envi-
ronment for Tracing the UNIX System Behavior under Faults. IEEE Transactions
on Software Engineering 19, 1105-1118 (1993)

Carreira, J., Madeira, H., Silva, J.G.: Xception: Software Fault Injection and Mon-
itorintg in Processor Functional Units. IEEE Transactions on Software Engineer-
ing 24 (1998)

Hari, S.K.S., Li, M.-L., Ramachandran, P., Choi, B., Adve, S.V.: mSWAT: Low-
Cost Hardware Fault Detection and Diagnosis for Multicore Systems. In: MICRO
2009, New York (December 2009)

Jacques-Silva, G., Kalbarczyk, Z., Iyer, R.K.: Dependability Assessment of Oper-
ating Systems in Multi-core Architectures. In: Fast Abstract in the 38th Int. Symp.
on Dependable Systems and Networks, Anchorage, Alaska (June 2008)

Faraji, I., Didehban, M., Zarandi, H.R.: Analysis of Transient Faults on a
MIPS-Based Dual-Core Processor. In: Int. Conf. on Availability, Reliability, and
Security - ARES 2010, Krakow, Poland (2010)

Lanzaro, A., Cotroneo, D., Duraes, J., Silva, N., Barbosa, R.: Multicore Systems:
Challenges for creating a representative fault model for fault injection. In: DASIA
Int’l Space System Engineering Conference, Dubrovnik, Croatia (May 2012)
Salfner, F., Troger, P., Tschirpke, S.: Cross-Core Event Monitoring for Processor
Failure Prediction. In: Int. Conf. on High Performance Computing & Simulation,
HPCS 2009, Leipzig, Germany (2009)

Intel 64 and TA-32 Architectures Software Developer’s Manual vol. 3: System Pro-
gramming Guide, http://www.intel.com/

Kleen, A.: Machine check handling on Linux. SUSE Labs (August 2004)

http://www.intel.com/

Meeting Real-Time Requirements
with Multi-core Processors

Daniel Késtner, Marc Schlickling, Markus Pister, Christoph Cullmann,
Gernot Gebhard, Reinhold Heckmann, and Christian Ferdinand

AbsInt GmbH, Science Park 1, D-66123 Saarbriicken, Germany

Abstract. Many multi-core processors exhibit characteristics that make
it difficult or even impossible to use them in safety-critical real-time sys-
tems. To prevent sporadic failures and late-stage integration problems,
the hardware properties of the processor and its peripherals have to be
checked for their real-time capability at an early project stage. Selecting
a configuration which enables predictable performance is an important
requirement to achieve compliance with current safety standards, e.g.,
1S0O-26262, IEC-61508, EN-50128, or DO-178B.

For timing-predictable hardware configurations safe worst-case execu-
tion time bounds can be computed by static analysis tools. Combined
with scheduling analysis at the system level the correct end-to-end timing
can be guaranteed. This article gives an overview of hardware features
leading to predictability problems, shows examples of predictability-
oriented multi-core configurations, and describes a tool-based methodol-
ogy to ensure the correct timing behavior.

1 Introduction

In recent years multi-core processing has evolved to be the predominant hardware
paradigm for desktop computers. Performing parallel computations by several
cores per chip makes it possible to significantly accelerate systems consisting of
multiple independent threads. Moreover compared to single-core processors the
lower clock rates contribute to a better energy efficiency of multi-core processors.
Also in embedded systems multi-core processors are increasingly used — a trend
facilitated by availability considerations and a significant price drop.

Whereas for desktop applications the predominant goal is to achieve a high av-
erage performance, safety-critical embedded systems impose other requirements.
A real-time system not only has to be logically correct, it must also exhibit the
correct timing behavior. A real-time task missing its deadline can cause severe
damage. In order to show that a task always terminates before its deadline its
worst-case execution time (WCET) has to be known. In multi-tasking systems
tasks can be preempted or blocked. This is considered in the worst-case re-
sponse time of the task (WCRT) which is computed from the WCET and the
time penalties due to preemptions or task blocking.

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 117-[[3T] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

118 D. Késtner et al.

With direct timing measurements by using logic analyzers, debuggers, or hard-
ware simulators timing information is only determined for one concrete input.
However, usually no full test coverage can be achieved and there is no safe test
end criterion. With modern processors the timing behavior of an instruction
depends on the instructions previously executed, e.g., due to cache or pipeline
effects. In consequence even MC/DC coverage is not enough to determine WCET
information since different execution paths cannot be distinguished and there is
no control which paths have been covered. Techniques based on code instrumen-
tation modify the code which can significantly change the cache behavior. The
times measured for the instrumented software do not necessarily correspond to
the timing behavior of the original software at all.

A safe method for timing analysis is static analysis by Abstract Interpretation
which provides guaranteed upper bounds for the WCET of tasks [19]. Static anal-
ysis based on Abstract Interpretation is recommended by many safety standards
and can be considered as the state-of-the-art for verifying non-functional pro-
gram properties. Combined with a system-level scheduling analysis guaranteed
upper bounds for the WCRT can be derived. Static analysis tools for computing
WCET and WCRT are in industrial use, like AbsInt’s aiT WCET Analyzer [17]
and Symtavision’s scheduling analyzer SymTA/S [§]. Dedicated tool couplings
enable a seamless timing analysis from code to system level [11].

Static WCET analyzers are available for complex processors and yield precise
results. However, a basic requirement is that the timing behavior of the processor
is predictable: it must be possible to determine an upper bound of the maximal
execution time which is guaranteed to hold. Additionally the behavioral variance,
i.e., the influence of processor state or execution history on the execution time
should be as low as possible.

In general, the main obstacle to predictable performance is resource sharing.
Even in single-core processors accesses to shared resources by concurrent tasks
can cause interferences since the ordering of accesses can vary significantly. With
speculative hardware mechanisms like caches, out-of-order pipelining, or branch
prediction predictability degrades.

On multi-core processors not only the interferences within each core have to
be considered. Now there may be additional interferences due to concurrent ac-
cesses to shared resources by different applications executed on different cores.
Existing multi-cores typically have not been developed with the goal of achieving
predictable performance unless configured for lockstep execution. Interferences
may be caused by accesses to common caches, common memory banks, or com-
mon flash memory prefetch buffers. Since different applications usually are only
combined in the integration phase there is the risk of severe timing problems
detected very late in the development process.

For a given multi-core architecture interferences have to be carefully exam-
ined. Then a configuration can be determined which enables or facilitates pre-
dictable performance. Developing multi-core processors with predictable timing
is an active area of research (cf. the research projects PREDATOR, MERASA,
CERTAINTY, or T-CREST).

Meeting Real-Time Requirements with Multi-core Processors 119

This article gives an overview of predictability challenges when using multi-
core architectures for applications with real-time constraints. Whereas [4] focuses
on the consequences of hardware features for static timing analysis this article
discusses the requirements of current safety standards and provides guidelines
for predictable hardware designs and configurations. Experiments are reported
which demonstrate the timing variance on multi-core architectures induced by
interferences between different cores.

2 Requirements of Safety Standards

All current safety standards, including DO-178B [14], DO-178C, IEC-61508 [9],
1S0-26262 [10], or EN-50128 [2], require the WCET and the WCRT of real-time
tasks to be known. Task interferences both in the spatial and temporal domain
have to be addressed. In mixed-criticality applications the entire software is sub-
ject to the highest criticality level used unless spatial and temporal independence
of all safety functions can be demonstrated. This has significant consequences for
hardware selection and system configuration: it has to be ensured that there are
no unpredictable timing-related interferences that might affect real-time safety
functions. Cache-related preemption costs, pipeline effects, and timing anoma-
lies have to be taken into account. For multi-core processors it has to be shown
that there are no inherent timing interferences between the cores. The latter as-
pect is especially important for standardized development frameworks focusing
on integrating components from different suppliers on Electronic Control Units
(ECUs). Examples are IMA in the avionics and AUTOSAR in the automotive
domain.

From a methodological perspective, all safety standards discuss the limitations
of dynamic tests and measurements methods. According to the DO-178B for
verification testing alone is not enough since testing cannot show the absence of
errors. The ISO-26262 points out typical limitations of dynamic testing: it has
to be shown that sufficient coverage has been achieved and it has to be argued
that code modification and instrumentation does not affect the test results. IEC-
61508 and EN-50128 take similar positions. In general, the standards recommend
to use static techniques to determine safe upper bounds on the WCET.

3 Static Timing Analysis

Static program analyzers compute information about the software under analysis
without actually executing it. Semantics-based static analyzers use an explicit (or
implicit) program semantics that is a formal (or informal) model of the program
executions in all possible or a set of possible execution environments. In general,
the state space of input data and initial states is too large to exhaustively explore
all possible executions for determining the exact worst-case execution times. The
theory of abstract interpretation [3] offers a semantics-based methodology for
static program analyses where the concrete semantics is mapped to a simpler
abstract model, the so-called abstract semantics. The static analysis is computed

120 D. Késtner et al.

with respect to that abstract semantics. Compared to an analysis of the concrete
semantics, the analysis result may be less precise, i.e., overestimate the exact
WCET, but the computation may be significantly faster. This means that upper
bounds for the execution times of basic blocks are determined, from which upper
bounds for the whole system’s execution time are derived. The most important
characteristics of static analyzers is whether they are sound or unsound. A static
analyzer is called sound if the computed results hold for any possible program
execution. The WCET bounds computed by a sound WCET analyzer will never
be exceeded by any possible program execution.

In addition to soundness, further essential requirements for static WCET an-
alyzers are efficiency and precision. The analysis time has to be acceptable for
industrial practice, and the overestimation must be small enough to be able to
prove the timing requirements to be met.

Over the last few years, a more or less standard architecture for timing analysis
tools has emerged [0, [6] which is composed of three major building blocks:

— control-flow reconstruction and static analyses for control and data flow,

— micro-architectural analysis, computing upper bounds on execution times of
basic blocks,

— path analysis, computing the longest execution paths through the whole pro-
gram.

The data flow analysis of the first block also detects infeasible paths, i.e., pro-
gram points that cannot occur in any real execution. This reduces the complex-
ity of the following micro-architectural analysis. There, basic block timings are
determined using an abstract processor model (timing model) to analyze how
instructions pass through the pipeline taking cache-hit or cache-miss informa-
tion into account. This model defines a cycle-level abstract semantics for each
instruction’s execution yielding in a certain set of final system states. After the
analysis of one instruction has been finished, these states are used as start states
in the analysis of the successor instruction(s). Here, the timing model introduces
non-determinism that leads to multiple possible execution paths in the analyzed
program. The pipeline analysis has to examine all of these paths.

The commercially available tool aiT by AbsInt GmbH implements this archi-
tecture. The tool is successfully employed in the avionics [7, 6l [17] and automotive
[13] industries to determine precise bounds on execution times of safety-critical
software (visit http://www.absint.com/ait for more information).

4 Predictability Challenges

The notion of timing predictability encompasses two important aspects:

— It must be possible to determine an upper bound of the maximal execution
time which is guaranteed to hold. This guarantee has to be statically deter-
mined which means that the hardware architecture has to be amenable to
static analysis techniques.

http://www.absint.com/ait

Meeting Real-Time Requirements with Multi-core Processors 121

— The behavioral variance, i.e., the different states the hardware can accept,
e.g., due to different cache fillings, or internal pipeline states, should be as
low as possible. This is important for timing measurements: the larger the
behavioral variance is

e the more the execution time depends on the execution history,
e the less meaningful is a measurement in a given execution context, and

e the larger can be the gap between the largest measured execution time and
the true worst-case execution time.

In fact, both aspects are related: the higher the behavioral variance of an archi-
tecture is the more complex will be the internal state of a static WCET analyzer.
In the following we will give an overview of hardware features affecting timing
predictability, first focusing on single-core architectures, then on multi-cores.

Modern embedded processors try to maximize the instruction-level parallelism
by the implementation of specific and sophisticated performance enhancing fea-
tures. For non-pipelined architectures one can simply add up the execution times
of individual instructions to obtain a bound on the execution time of a basic
block. Pipelines increase performance by overlapping the executions of consecu-
tive instructions. Hence, a timing analysis cannot consider individual instructions
in isolation. Instead, they have to be analyzed collectively — together with their
mutual interactions — to obtain tight timing bounds.

In general, the challenges for a timing analysis of single-core architectures
originate from the complexity of the particular execution pipeline and the con-
nected hardware devices. Commonly used performance-enhancing features are
caches, static/dynamic branch prediction, speculative execution, out-of-order ex-
ecution, branch history tables, or branch target instruction caches. Many of these
hardware features can cause timing anomalies [16] which render WCET analysis
more difficult. Intuitively, a timing anomaly is a situation where the local worst-
case does not contribute to the global worst-case. For instance, a cache miss —
the local worst-case — may result in a globally shorter execution time than a
cache hit because of hardware scheduling effects. In consequence, it is not safe
to assume that the memory access causes a cache miss; instead both states have
to be taken into account. An especially difficult class of timing anomalies are
domino effects [12]: A system exhibits a domino effect if there are two hardware
states a, b s.t. the difference in execution time (of the same program starting in
a, b respectively) may be arbitrarily high. E.g., given a program loop, the execu-
tions never converge to the same hardware state and the difference in execution
time increases in each iteration. In consequence, loops have to be analyzed very
precisely and the number of machine states to track can grow high.

As the runtime of embedded control software often is dominated by load/store
operations, memory subsystems nowadays introduce queues before the caches to
buffer them and overcome stall conditions like cache misses. Often this is com-
plemented by fast data forwarding for consecutive accesses into cache lines that
have already been requested by previous pending instructions, where the re-
quested data might already be present in the core. This reduces the number of
transactions over the system bus. In the abstract model of the timing analysis,

122 D. Késtner et al.

the representation of these features has to be close to the concrete hardware to
achieve satisfactory analysis precision. Due to their size especially the dynamic
branch prediction and the branch history tables consume a mentionable number
of bits in the abstract state representation which increases the memory con-
sumption of the analysis. Unknown or not precisely known effective addresses
of memory requests further increase the timing analysis search space due to the
number of possible scenarios (cache hit/miss, fast data forward or not, ...).

Concerning processor caches, both precision and efficiency depend on the pre-
dictability of the employed replacement policy [15), 4]. The Least-Recently-Used
(LRU) replacement policy has the best predictability properties. Employing
other policies, like Pseudo-LRU (PLRU), or First-In-First-Out (FIFO), or Ran-
dom, yield less precise WCET bounds because fewer memory accesses can be
precisely classified. Furthermore, the efficiency degrades because the analysis has
to explore more possibilities. Another deciding factor is the write policy. Typi-
cally there are two main options: write-through where a store is directly written
to the next level in the memory hierarchy, and write-back where the data is
written into the next hierarchy level if the concrete memory cell is evicted from
the cache. Here, the write-back policy is difficult to analyze because due to un-
certainties in the cache analysis, the precise occurrence of such a write-back
operation is not known, increasing the search space. This complexity multiplies
in the presence of multiple cache levels.

Another timing analysis challenge is to model processor external devices which
are typically connected with the caches over the system bus. Such devices are
memory controllers for static (SRAM, Flash) or dynamic memory (SDRAM,
DDR) or controllers for communication (CAN, FlexRay, AFDX). The corre-
sponding bus protocol and memory chip timing have to be modeled precisely.

Individually, each of the above features can be modeled without complexity
problems. Only their combination actually could result in a huge number of
possible system states during the abstract simulation of a basic block. However,
a smart configuration can decrease analysis complexity (cf. Sections 2 and F3).
Then, timing analysis is feasible even for modern and complex processors like
the Freescale MPC7448. Other space-reducing approaches like local worst-case
considerations cannot be used in general due to the presence of timing anomalies.

Some events in modern architectures are either asynchronous to program exe-
cution (e.g., interrupts, DMA) or not predictable in the model (e.g., ECC errors
in RAM, hardware exceptions). Their effect on the execution time has to be
incorporated externally, i.e., by adding penalties based on the computed WCET
and the worst-case occurrence of the events or by statistical means.

4.1 Multi-core Processors

Whereas timing analysis of single-core architectures already is quite challenging,
multi-core architectures are even more complex to predict. A multi-core proces-
sor is a single computing component with two or more independent cores; it is
called homogeneous if it includes only identical cores, otherwise it is called het-
erogeneous. Thus, all characteristic challenges from single-cores are still present

Meeting Real-Time Requirements with Multi-core Processors 123

in the multi-core design, but the multiple cores can run multiple instructions at
the same time. Some multi-core processors can be run in lockstep mode where
all cores execute the same instruction stream in parallel. This typically elimi-
nates interferences between the cores, so from a timing perspective the processor
behaves like a single-core.

When the processor is not run in lockstep mode, the inter-core parallelism
becomes relevant. To interconnect the several cores, buses, meshes, crossbars,
and also dynamically routed communication structures are used. Most multi-
core architectures offer a sophisticated memory hierarchy including private L1
caches, but also some shared caches. Access to the interconnect usually requires
an arbitration of accesses from the different cores. The shared physical address
space requires additional effort in order to guarantee a coherent system state:
Data resident in the private cache of one core may be invalid since modified
data may already exist in the private cache of another core, or data might have
already been changed in the main memory. Thus, additional communication
between different cores is required. In general, access to a shared resource might
cause the following traffic to appear on the processor’s interconnect:

A cacheable read access issued by one core

— may cause no communication in case of a cache hit,
— may initiate a read request in case of a cache miss, and
— may initiate a write access first to evict modified data from the cache.

A write access to a cacheable memory area issued by one core

— may cause no traffic in case of a cache hit,

— may cause coherency traffic in case of a cache hit to update directories of
other cores,

— may initiate a read access in case of a cache miss, and

— may initiate a write access first to evict modified data from the cache.

Hence, interconnect traffic initiated by one core in order to process an instruction
is composed of data traffic, eviction traffic, and coherency traffic.

To summarize, depending on the system configuration a single-core timing
analysis is feasible even for modern and complex systems. In general, the com-
plexity arising from the cross-product between processor pipelining features and
synchronization overhead between the different cores multiplies the search space
of the single-core case and may degrade the observable average case performance
(cf. Section[Dl). When all available performance-enhancing hardware features are
freely used the resulting timing bounds would prohibitively overestimate the
concrete WCET. This overestimation originates in the combination of execu-
tion paths with events that cannot happen in the real execution, but, due to
core synchronization uncertainties, cannot be statically excluded from the anal-
ysis. However, such systems would also exhibit a significant observable timing
variance which makes them unsuitable for hard real-time systems.

The next two sections now give examples for smart system configurations that
increase the predictability of WCET bounds on multi-core systems.

124 D. Késtner et al.

4.2 Configuring the MPC5668G

The Freescale MPC5668G is a dual-core processor designed for automotive ap-
plications that integrates several automotive features on a single chip, e.g., CAN
and FlexRay support. It comprises an e200z6 core and an €200z0 core, which
is a stripped-down version of the e200z6. The e200z6 core utilizes a seven-stage
pipeline for single-issue in-order execution and retirement of instructions. The z6
core uses an eight entry branch target buffer (BTB) for branch prediction. The
BTB entries are updated using the FIFO replacement algorithm. The cache is
unified, 32KB large, and 4-way (or 8-way) set-associative.

The MPC5668G offers significant leeway for configuration. To improve pre-
dictability we recommend the following:

No unified cache. The cache can be configured as a unified cache, used for
storing instructions and data, or as a disjoint cache where instructions and
data are separated. Unified caches are more challenging to analyze: If there is
a memory access whose address cannot be statically determined the analyzer
has to assume that both instruction and data cache are affected, causing a
further loss of precision. Hence the cache should be configured s.t. disjoint
ways are available for code fetches and data accesses (disjoint cache).

Cache locking. The cache uses a pseudo round-robin replacement algorithm to
determine which cache line to evict upon a miss. There is a single replacement
counter for all cache sets. This design is prone to high performance variations
and can have domino effects [I]. To avoid this, we recommend to lock the cache
down to one way for code and one way for data. The locked ways should be
filled with frequently accessed data or code. This improves the analysis results.

Disable Branch Target Buffer. The 20026 core uses a branch target buffer
(BTB) for dynamic branch prediction, which is updated using the FIFO
replacement policy. As FIFO has domino effects, the BTB should be entirely
disabled to make the core more predictable.

No shared SRAM. In general the whole memory is shared among the two
cores. However, the hardware allows for some partitioning s.t. conflicts on the
internal SRAM memory modules can be avoided. The MPC5668G features
two disjoint SRAM memory modules: an 80KB module, and a 512KB module.
To avoid any interferences on the internal SRAM, the application software
could be designed s.t. one SRAM module only is used by the z0 core, whereas
the z6 core solely uses the other SRAM module.

Handle flash prefetch buffers. To reduce access delays on the internal Flash
memory, the MPC5668G core implements four prefetch buffers that allow for
zero-cycle access delays in case a buffer already contains the requested data.
The prefetch buffers are shared between the two processors, and are used for
both instruction and data accesses. For predictability reasons, the prefetch
buffers should only be enabled for one of the cores, to avoid any interferences.
Furthermore, the prefetch buffers should be split up s.t. disjoint buffers are
used to satisfy instruction fetches and data accesses. This configuration does
not redeem the Flash module of all interferences. An access of any of the
cores might still be delayed by an access of the other one (address pipelining).

Meeting Real-Time Requirements with Multi-core Processors 125

To get rid of those inferences as well, the code executed by one core should
be put into the privately used SRAM module — where applicable.

The above configuration allows for an efficient static WCET analysis that yields
results that are quite precise.

4.3 Configuring the MPC8641D

The MPC8641D is a dual-core derivate of the MPC7448, which is a complex
single-core architecture employed in the avionics industry. The MPC7448 con-
sists of an e600 core with a complex, eight-level pipeline that allows out-of-
order and speculative execution and features first- and second-level caches with
PLRU and random replacement. Already as a single-core, this architecture is
non-compositional, exhibiting both domino-effects in the pipeline and the caches.
The MPC8641D tightly couples two such cores with a single shared bus. Each
access, either for the instruction fetches or any data access must pass this one
shared resource. Given the non-compositionality of the two cores, any clash on
the shared bus during execution could trigger a timing anomaly or even a domino
effect. This makes the timing behavior of the entire system very unpredictable,
unless interference on the shared bus can be avoided.
The individual cores can be made more predictable by configuration:

L1 Caches. Locking down the first level caches to have a LRU replacement
policy and using the write-through policy.

L2 Cache. Completely locking the random replacement second level cache for
use as scratchpad memory.

Performance Features. Deactivate non-predictable features like the dynamic
branch prediction.

Still the domino-effects which are possible in the complex €600 pipelines are
not avoidable. Therefore, to get a predictable multi-core system, clashes on the
shared bus need to be avoided. Two features of the IMA architecture and the
employed cores are very helpful for this goal:

Long Time Slices. The IMA architecture features time slices for the individual
tasks in the ten milliseconds range. Inside each time slice, the input/output
activities, which only make up a fraction of the slice, can be moved to the
beginning and the end of the individual time slice to create local copies of the
working set. Then the largest remaining fraction of the time slice can be used
for lengthy computations on the local copies of the data. This is beneficial
compared to the one millisecond time slices typically seen in the automotive
domain.

Private L2 Caches. The two cores are supported by private 1IMB second level
caches. One of the cores can use its cache as local private memory for instruc-
tions and data by locking it. This avoids bus accesses by this core during the
long computation phases of its tasks. During this time, the other core has
interference-free bus access.

Given the above design of the system, in which one core works on its private
memory most of the time and only short time slices are needed for bus accesses, a

126 D. Késtner et al.

clever scheduling can completely avoid clashes of accesses. Therefore, the normal
static timing analysis, which assumes continuous execution without interferences,
can be used to deal with each of the cores separately.

4.4 Other Multi-core Architectures

Whereas the processors described above require quite extensive modifications
in the hardware configuration there exist multi-core architectures whose off-
the-shelf hardware configuration is better suited for static timing analysis. An
example of such an embedded architecture is the Freescale MPC5643L, which is
designed for applications that require a high level of safety and provides lock-
step execution. This processor comprises two €200z4 cores that, contrary to the
€200z6, feature a less versatile, dual-issue five-stage in-order execution pipeline.
Both cores feature private L1 instruction caches, which use the pseudo-round
robin cache replacement policy similar to the unified cache of the MPC5668G.

To enable a static analysis with high precision it is advisable to use the same
cache locking approach as described above (see E.2]). The user may also choose
to disable the lockstep computation mode and allow the two cores to operate
in decoupled parallel mode so that they execute independently from each other.
However from the timing predictability point of view the decoupled parallel mode
is not advisable, because all internal memories and I/O channels are shared
between both cores.

5 Experimental Observations

This section describes an experiment using the MPC8641D processor (cf. Sec-
tion E3)) conducted at THALES Research and Technology within the CER-
TAINTY research project. It clearly demonstrates the execution time variance
of tasks executed on one core induced by parallel activities on the second core.

The experiment is composed of two parts. First, the second core of the pro-
cessor is disabled by setting the DEVDISR [e600 1] bit to 1. By doing so, the core
enters its stop state, in which it does not respond to interrupts. Also instruction

Table 1. Runtime increase of parallel running tasks compared to the isolated runtime.

bezier bsort canny fdct mult ndes gsort vecadd vecsum
bezier 38.8% - - - - - - - -
bsort 30.8% 38.1% - - - - - - -
canny 20.6% 21.2% 21.8% - - - - - -
fdet 39.9% 32.1% 24.8% 55.9% - - - - -
mult 30.8% 30.1% 21.9% 28.4% 31.6% - - - -
ndes 34.6% 30.4% 21.5% 47.8% 27.4% 43.4% - - -

gsort 28.7% 30.0% 20.2% 31.6% 32.8% 30.3% 33.0%
vecadd 29.7% 33.4% 22.1% 30.7% 32.1% 28.6% 30.4% 33.3% -

vecsum 28.3% 29.8% 19.5% 26.8% 27.0% 25.6% 28.2% 31.1% 26.7%

Meeting Real-Time Requirements with Multi-core Processors 127

fetching is stopped, snooping is disabled, and clocks are shut down to all func-
tional units of the core. Thus, it is guaranteed that the core does not have any
influence on shared resources of the processor.

The remaining core is now utilized to execute several benchmark programs
(e.g., bezier, ndes, etc.) in isolation and their runtimes are recorded. To guaran-
tee reliability of the measured runtimes, the core is brought to a deterministic
starting state before executing a task 7;, and runtime measurement is repeated
several times leading to an average isolated runtime for the executed task rt;.

Afterwards, the second core is re-enabled, and the benchmark programs are
duplicated forming benchmark groups B; and Bj;. Each task from Bj; is ad-
justed to guarantee full spatial isolation from all tasks By, i.e., by providing dis-
joint data and address spaces. The experiment described above is now repeated
with the tasks of B; running on the first core and the tasks of Bj; running on
the second core. Tasks running on both cores are started synchronously. Again,
the runtime of the tasks in B; running on core 1 — where each task is exactly the
same as in the first experiment — is measured and the experiment is repeated
several times. Then the resulting average runtime r¢;; for the task 7; € By when
executed in parallel with task T; € By is computed.

Using the runtime rt; from above, i.e., the runtime of task 7; running in
isolation on core 1, and the runtime rt;; of task T; € By when executed in
parallel with task T} € By, the percentage of deviation is formed by

Aij = (’I"tz] — 1) * 100.
Tti
The results are given in Table [l Tasks from the first benchmark group B; are
listed in rows, tasks from the second group Bj; are given in columns. Compared
to the isolated runtime of the tasks, an average runtime increase of 30% is
observed. The largest increase of 56% was observed when running one instance
of task fdct on each core.

Even though an increase in execution time was to be expected, an increase by
56% is surprisingly high. Note that there was full spatial isolation between all
tasks executed in parallel. Each task was started with a deterministic hardware
state. The MPC8641D has two DDR controllers, and L1/L2 caches are fully
private to each core. Data and address space of the concurrently executed tasks
are separated. Hence, the observed increase in runtime was mostly caused by
bus conflicts on the MPX bus and can be considered an ideal-case scenario.

Furthermore, note that the experiment considers the average task execution
times, not the WCETs. Obviously the gap between the isolated WCET bound
wcet; and the concurrent WCET bound wcet;; will be greater or equal to the
gap A;; described above.

If additional conflicts could occur, e.g., due to accesses to shared caches or
DDR controllers, by variations of the hardware start state, or by asynchronous
execution, not only the penalty A;; would be much higher. Also the overestima-
tion of the WCET analysis induced by uncertainties will be higher.

The experimental observation clearly shows that both minimizing accesses to
shared resources and using deterministic arbitration mechanisms are essential

128 D. Késtner et al.

for guaranteeing safe and precise bounds on the execution time of tasks within
multi-core environments.

The results are not specific for the MPC8641D processor, but illustrate the
potential performance impact of interferences due to shared resources. In [18]
similar results have been reported for the Intel SCC and the Texas Instruments
TMS320-C6678 processors.

6 Design for Predictability

Whereas the preceding sections mostly dealt with existing multi-core architec-
tures, here we will summarize how to assess predictability and list criteria for
predictable multi-core designs.

Most of the challenges of static timing analysis for multi-core architectures are
caused by the interference on shared resources. Resources are shared for cost, en-
ergy, and communication reasons. Even if the sharing of a resource only slightly
increases the concrete execution times of a task, it might be difficult for a static
analysis to prove this: If a resource is shared among several (resource-)users,
their accesses to this resource may be interleaved in a huge amount of ways, in
particular if the users are not tightly synchronized. Different access sequences
may result in different states of the shared resource. In addition to the different
interleaved access sequences that may already exhibit different execution times,
the resulting resource states may cause even more differences in the future tim-
ing behavior. This behavior is not a technical limitation of the static analysis
approach. Also dynamic measurement-based approaches would be difficult to
apply because of the high observable variance in execution time.

It is an open problem how to limit the information loss about concurrently
running tasks by suitable abstractions. Hence, limiting interferences must be a
high-priority design goal. If there can be no interferences at all in the concrete
system, it is easy for an analysis to exclude interferences even when abstracting
completely from other tasks. One obvious solution for multi-core processors is to
run them in lockstep mode — however, this means that the potential parallelism
of the processor is not exploited. To avoid this, it is essential to strive for a
good compromise between cost, performance, and predictability, concerning the
sharing or duplication of resources.

6.1 Design Principles

The PROMPT (PRedictability Of Multi-Processor Timing) design principles [4]
aim at embedded hard real-time systems in the avionics and automotive industry
requiring efficiently predictable good worst-case performance.

Often, the inherent amount of sharing within the set of applications is very
small. This makes it possible to design a target architecture with little inter-
ference on shared resources and thus little variance of execution times and high
predictability. According to the PROMPT principles the architecture is designed
in a multi-phase process. It starts with the design or the selection of the cores
that exhibit good predictability. Then the set of applications is considered:

Meeting Real-Time Requirements with Multi-core Processors 129

— Hierarchical privatization decomposes the set of applications according to
their sharing characteristics on the shared global state. The resulting par-
titioning of the set of applications can be used to define an isomorphically
structured target architecture with no more shared resources than required
by the set of applications.

— Sharing of lonely resources introduces sharing of costly and infrequently ac-
cessed resources. Input/output devices will most likely have to be shared, for
cost and space reasons.

— Controlled socialization tries to satisfy cost constraints with an acceptable
loss of predictability by the introduction of sharing.

We conjecture that without this or a similar design discipline the required mod-
ular development process will not be realizable without an unacceptable loss of
guaranteed performance. The improved precision of the execution-time bounds
will increase the chance to show the satisfaction of timing requirements, and
thereby avoid the need of over-commissioning and save resources.

6.2 Design Guidelines

In the following we will summarize some important recommendations for ob-

taining predictable multi-core architectures for hard real-time systems. The first

three guidelines aim at the predictability of a single core, whereas the remaining
guidelines discuss the predictability of the overall system.

1. A fully timing compositional architecture: Since an exhaustive enumeration
of architectural states is practically infeasible an abstract hardware model of
the analyzed architecture has to be used in static timing analysis. Timing
anomalies in combination with interferences on shared resources introduce a
high computational complexity and lead to imprecise WCET bounds. Ide-
ally an architecture without any timing anomalies — a so-called fully timing-
compositional architecture — is used.

2. Disjoint instruction and data caches: When unified instruction and data
caches are used, in case of uncertainty about the address of a memory access
or about the order between a data and an instruction cache access the in-
terferences between data and instruction accesses impairs the precision and
additionally leads to an inefficient analysis. Therefore, if possible, the hard-
ware should be configured for disjoint instruction and data caches.

3. Caches with LRU replacement policy: Employing replacement strategies like
FIFO or PLRU yields less precise WCET bounds and less efficient timing
analysis than when using LRU. Employing such strategies even introduces
domino effects. The recommended cache replacement strategy is LRU.

4. A shared bus protocol with bounded access delay: An unbounded access de-
lay leads to a potentially unbounded execution time of tasks that access
the shared resource. Guaranteeing the timing constraints is only possible for
bounded access delays.

5. Private caches: The uncertainty about cache contents of shared caches im-
pairs the precision and leads to a complexity explosion of the analysis. Each
core should have separate, private caches.

130 D. Késtner et al.

6. Private memories, or, only share lonely resources: The delay to access a
shared resource depends on the utilization of the resource. Too much sharing
may lead to a system that is not schedulable. Ideally each core should have
a private memory.

7 Conclusion

Ensuring the correct timing behavior of real-time systems is an essential part
of overall system correctness. Static analyzers based on Abstract Interpretation
provide safe upper bounds for the WCET of tasks. From these bounds response
time guarantees can be computed by schedulability analysis at the system level.
Abstract Interpretation based static analyzers can be considered as the state of
the art for WCET analysis and are recommended by all current safety standards.
Especially on multi-core architectures for safety-critical real-time systems the
hardware has to be carefully examined with respect to predictable performance
and has to be appropriately configured to avoid timing and stability problems.
The most important aspect is to eliminate interferences induced by shared re-
sources. In this paper we have given an overview of WCET analysis by Abstract
Interpretation and discussed the perspective of the current safety standards. We
have analyzed the relevant features of contemporary single-core and multi-core
processors with respect to predictability and examined the timing variance of
a typical multi-core processor. Configuration and design recommendations are
presented to enable predictable performance.

Acknowledgements. The work presented in this paper has been supported by the
European FP7 projects PREDATOR and CERTAINTY, and by the ARTEMIS-JU
project MBAT. The authors would like to thank THALES Research and Technology
for permitting use of the benchmark results within CERTAINTY.

References

[1] Berg, C.: PLRU Cache Domino Effects. In: Proceedings of the International Work-
shop on Worst-Case Execution Time Analysis, WCET (2006)

[2] CENELEC DRAFT prEN 50128. Railway applications — Communication, sig-
nalling and processing systems — Software for railway control and protection sys-
tems (2009)

[3] Cousot, P., Cousot, R.: Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In: Pro-
ceedings of the 4th ACM Symposium on Principles of Programming Languages,
pp. 238-252 (1977)

[4] Cullmann, C., Ferdinand, C., Gebhard, G., Grund, D., Maiza, C., Reineke, J.,
Triquet, B., Wilhelm, R.: Predictability Considerations in the Design of Multi-
Core Embedded Systems. In: Proceedings of Embedded Real Time Software and
Systems, pp. 36-42 (May 2010)

[5] Ermedahl, A.: A Modular Tool Architecture for Worst-Case Execution Time Anal-
ysis. PhD thesis, Uppsala University (2003)

[6]

[14]
[15]

[16]

[17]

[18]

[19]

Meeting Real-Time Requirements with Multi-core Processors 131

Ferdinand, C., Heckmann, R., Langenbach, M., Martin, F., Schmidt, M., Theiling,
H., Thesing, S., Wilhelm, R.: Reliable and Precise WCET Determination for a
Real-Life Processor. In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001.
LNCS, vol. 2211, pp. 469-485. Springer, Heidelberg (2001)

Ferdinand, C., Wilhelm, R.: Fast and Efficient Cache Behavior Prediction for
Real-Time Systems. Real-Time Systems 17(2-3), 131-181 (1999)

Henia, R., Hamann, A., Jersak, M., Racu, R., Richter, K., Ernst, R.: System
Level Performance Analysis — the SymTA/S Approach. IEEE Proceedings on
Computers and Digital Techniques 152(2) (March 2005)

IEC 61508. Functional safety of electrical/electronic/programmable electronic
safety-related systems (2010)

ISO/FDIS 26262. Road vehicles — Functional safety (2011)

Késtner, D., Ferdinand, C., Heckmann, R., Jersak, M., Gliwa, P.: An Integrated
Timing Analysis Methodology for Real-Time Systems. In: Embedded World
Congress (2011)

Lundqvist, T., Stenstrém, P.: Timing Anomalies in Dynamically Scheduled Mi-
croprocessors. In: Real-Time Systems Symposium, RTSS (December 1999)
NASA Engineering and Safety Center. Technical Support to the National Highway
Traffic Safety Administration (NHTSA) on the Reported Toyota Motor Corpora-
tion (TMC) Unintended Acceleration (UA) Investigation (2011)

Radio Technical Commission for Aeronautics. RTCA DO-178B. Software Consid-
erations in Airborne Systems and Equipment Certification

Reineke, J., Grund, D., Berg, C., Wilhelm, R.: Timing Predictability of Cache
Replacement Policies. Real-Time Systems 37(2), 99-122 (2007)

Reineke, J., Wachter, B., Thesing, S., Wilhelm, R., Polian, I., Eisinger, J., Becker,
B.: A Definition and Classification of Timing Anomalies. In: Proceedings of the
International Workshop on Worst-Case Execution Time Analysis (2006)

Souyris, J., Le Pavec, E., Himbert, G., Jégu, V., Borios, G., Heckmann, R.: Com-
puting the Worst Case Execution Time of an Avionics Program by Abstract In-
terpretation. In: Proceedings of the 5th Intl Workshop on Worst-Case Execution
Time (WCET) Analysis, pp. 21-24 (2005)

Verhulst, E., Sputh, B.: Hard Real-Time on Multicores: Shared Resources are the
Challenge. White paper, Altreonic (2012)

Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S., Whalley, D.,
Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T., Mueller, F., Puaut, I.,
Puschner, P., Staschulat, J., Stenstréom, P.: The Worst-Case Execution-Time
Problem — Overview of Methods and Survey of Tools. ACM Transactions on
Embedded Computing Systems 7(3), 1-53 (2008)

Assessing Software Interference Management
When Modifying Safety-Related Software

Patrick J. Graydon and Tim P. Kelly

University of York, York, YO10 5GH, UK
{patrick.graydon,tim.kelly}@cs.york.ac.uk

Abstract. Many systems deliberately manage interference between soft-
ware components, e.g. through partitioning. When engineers modifying
such software determine which items of verification evidence have been
invalidated by changes, they consider interference management measures.
A complete understanding of interference and its management is crucial
when engineers re-use evidence. In prior work, we suggested: (a) a guided
process for identifying interference and means of managing it; and (b) a
strategy for arguing about interference management. In this paper, we
present the results of a case study meant to answer two questions raised
by this prior work: (i) which views of the system engineers should con-
sider when identifying interference and its management; and (ii) whether
our argument pattern captures a practical way to argue about interfer-
ence management.

Keywords: software partitioning, interference, software change man-
agement, safety argument.

1 Introduction

Many software systems deliberately manage interference between software com-
ponents. For example, many operating systems provide spatial partitioning based
on hardware memory management. When modifying software, engineers assess
change impact and decide what evidence to regenerate. Complete understanding
of interference and how well it is managed is essential for making these choices.

Interference is typically assessed using ad hoc means. In some cases, engineers
use standardised partitioning schemes or refer to lists of considerations derived
from experience. A systematic method of assessing interference and its manage-
ment would both provide more rigour than ad hoc means and be better suited to
systems built on novel architectures. In prior work, we suggested such a method
and proposed patterns for arguing about interference management [8]. In this
paper, we present the results of a case study intended to drive further refinement
of the approach with a view toward eventual evaluation of its efficacy relative to
existing approaches.

In prior work, we suggested that analysts assessing interference systematically
consider the system from multiple views [8]. For completeness, we proposed
using each of the four views in a standard architectural model: (1) a conceptual

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 132-[[45] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

Assessing Software Interference Management 133

view describing software in terms of domain elements; (2) a module view that
describes the decomposition of the software; (3) an ezecution view that maps
modules to physical resources; and a (4) code view that maps modules, interfaces,
and run-time images to source and executable files [TO0/T1]. That work raised
questions of whether each of the four views is necessary, whether use of all four
is sufficient, and whether other standard views would be more useful. In this
work, we conducted a case study application of our method to a hypothesised
embedded control system to answer the first two of these questions.

In prior work, we proposed a pattern for arguing about how well a system
manages interference [8]. In that pattern, analysts decompose the goal of ad-
equate management over forms of interference. They then decompose goals of
adequately managing each form of interference over circumstances in which the
system manages interference differently. In this work, we investigated whether
applying this pattern to our specimen system would result in a combinatorial
explosion that would make the argument impractical.

In we discuss guidance and practice for software modification and
interference management assessment. In we present a model of inter-
ference and its management. In Section 4] we relate our method for identifying
interference and interference management. In we present our pattern
for arguing about how well systems manage interference. In [section 6l we report
the results of our case study assessment. Finally, we conclude in [section 71

2 Current Guidance and Practice

Modifications to existing software are frequently limited to a few modules. It
is expensive to repeat testing, review, and analyses for portions of the system
not impacted by the changes. Consequently, typical software safety standards
do not require this [I2/T4/T9]. Instead, engineers must analyse the impact of the
proposed changes and plan verification and validation activities accordingly.
The effects of change can spread beyond the modified modules. For example,
modifying one component could affect the data that it passes to an unmodified
component, changing that component’s behaviour. Some standards explicitly
recognise this. For example, RTCA DO-178B advises engineers analysing the
impact of change to consider “coupling between several software components that
may result in reverification effort involving more than the modified area” [19].
Typical software safety standards do not define how change impact analysis
should consider interference management. However, the planned changes might
affect the interference that software generates, its reaction to received inter-
ference, or both. Clearly, engineers performing change impact assessment must
understand how a system manages interference and how well it does so.

2.1 Current Approaches to Assessing Interference Management

Current guidance for assessing interference and its management is limited. Some
standards list considerations [12JT419]. For example [19]:

134 P.J. Graydon and T.P. Kelly

These aspects of the system should be considered when designing
partitioning protection to determine their potential for violating that
protection:

(1) Hardware resources: processors, memory devices, I/O devices, inter-
rupts, and timers.

(2) Control coupling: vulnerability to external access.

(3) Data coupling: shared or overlaying data, including stacks and pro-
cessor registers.

(4) Failure modes of hardware devices associated with the protection
mechanisms.

However, RTCA DO-178B offers no guidance on how to carry out a conforming
assessment [6/19]. It requires review and/or analysis of the software architecture
to “ensure that partitioning breaches are prevented” and testing that could re-
veal “violations of software partitioning” [19]. However, the standard offers no
guidance on how to perform these activities well enough to justify reverification
decisions. Other standards offer similarly little guidance [12/14].

Recognising this lack, the Certification Authorities Software Team (CAST)
has developed guidelines for assessing software partitioning schemes [6]. The
CAST guidance, drawing from Rushby’s work [20], advises developers to “first
categorize the type of protection being claimed” and then demonstrate that it
has been provided. Its guidance on how to accomplish this is limited to a list of
considerations that it cautions “is not intended to be all inclusive”.

Existing guidance is undoubtedly helpful. However, it is not a complete,
general-purpose approach to assessing what interference a system might be sub-
ject to and how well it manages this. Lists of considerations capture insight
gained through experience. However, experience alone is not an adequate basis
for evaluating novel systems. For example, some modern multicore microproces-
sors can scale clock rates in response to changing temperatures. This mechanism
gives rise to a form of interference wherein the workload of one core affects
the clock rate of adjacent core(s) and thus the runtime of the software they
execute [7]. The CAST guidance, predating this feature, cannot counsel consid-
eration of it. A general method is needed.

2.2 Standards for Partitioning

There are standards describing partitioning schemes. For example, ARINC 653
defines a partitioning scheme for integrated avionics applications [3]. In it, a
single processor or processor core may host multiple partitions, each isolated
from the others in both time and space. That is, partitions cannot overwrite each
other’s memory and are guaranteed a portion of execution time. Each partition
can, if needed, run a guest operating system to sequence multiple tasks.
ARINC 653 partitioning is robust but coarse-grained. Whilst it is desirable
to isolate applications sharing a processor from each other, it is also desirable
to protect smaller pieces of each application from other small pieces. Thus, the

Assessing Software Interference Management 135

existence of ARINC 653 and compatible operating systems does not obviate the
need for a general-purpose method for assessing interference management.

3 A Model of Interference and Its Management

In this work, we model software as a set of elements and consider how these might
interfere with each other. An element might be a procedure, a module, a task, a
process, a complete binary, or all of the software running on one processor core.
When analysing interference, analysts should define elements that identify the
parts of the software to be reasoned about. We adopt the definition of interference
proposed by the UK Civil Aviation Authority and used in prior work [BIg]:

Interference — Unintended (and thus undesigned) interaction between
elements of a software system.

Interference might be either spatial or temporal. Spatial interference occurs when
an element writes to storage it should not write to. For example, if an unini-
tialised pointer points to another element’s private memory, writing to it re-
sults in spatial interference. For completeness, ‘storage’ includes microproces-
sor registers, peripheral registers, flash devices, hard disk drives, and any other
components that store state. Temporal interference occurs when one element’s
activities have an unintended impact on the timing of another’s. For example,
elements running on different cores of the same processor might create temporal
interference through contention for shared memory devices.
Potential interference might be managed in three ways:

1. Prevention. Prevention precludes interference from arising during opera-
tion or shows that it does not. For example, static analysis can show that
procedures written in SPARK use no access types (i.e., pointers) and assign
values only to shared variables named in the procedure specification [IJ.

2. Blocking. Blocking prevents one element’s interference from reaching an-
other. For example, hardware memory management can prevent an element’s
stray write operations from affecting the private memory of other elements.

3. Tolerance. Tolerance allows elements to function acceptably despite inter-
ference. For example, elements can use checksums or canary values to detect
interference and trigger remedial action.

Most means of interference management are imperfect. Consequently, it is use-
ful to combine forms of management so that each compensates for the others’
weaknesses. For example, consider the two processes communicating using shared
memory depicted in Static analysis might verify that element 5 can-
not interfere with elements 1-4, but cannot show that element 2 is similarly
well-behaved. Hardware memory management might block interference between
elements 1 and 4. However, memory management at the process level cannot
block interference between elements 4 and 5 (or elements 5 and 3). Interference
between elements 2 and 3 (in the form of writes to Value i or Value ii) cannot be
blocked. Testing of element 2 might justify a claim of prevention, but only if it is

136

P.J. Graydon and T.P. Kelly

Process A Shared Memory Process B
Element 1 R/W Element 3 R/W | | Element 4
(SPARK Program) (Shared Data) (C Program)
l Calls o valuei l Calls
— Value ii
Element 2 R/W Element 5
(Assembly Lang. Program) » Valueiii < (SPARK Program)

Fig. 1. Example elements

adequately rigorous and conducted in a way that would detect spurious writes.
Moreover, a single event upset might still result in a write that is not predicted
by testing. Accordingly, it is useful to tolerate interference to element 3.

When modifying software, engineers must reason about how well a combina-
tion of mechanisms manages interference. Simply reasoning about partitioning
at one (coarse) level is not sufficient. Existing guidance typically comprises re-
minders to consider aspects of interference management that have proved im-
portant in the past. It is advisable to learn from the past. However, it is also
important to have a general method for assessing interference management in
any system, no matter how novel.

4 A Method for Identifying Interference and How a
System Manages It

In this section, we present a refined version of the method introduced in prior
work [8]. Our method is based on the guided enumeration techniques used in
software and system safety analyses, e.g. Hazard and Operability Studies (HA-
ZOP) [13I21], Software Hazard Analysis and Resolution in Design (SHARD) [18],
and Low-level Interaction Safety Analysis (LISA) [I6I18]. depicts the
method, which comprises the ten steps detailed below.

Identify Views. The analysts select views from which to analyse the system. It
is necessary to consider multiple views because interference visible in one view
may not be obscured in others. Engineering documents describe systems from
diverse viewpoints using different notations. For example, some developers pro-
duce Unified Modelling Language (UML) diagrams [I7]. Others use the Modular
Approach to Software Construction Operation and Test (MASCOT) [15]. In yet
other projects, architects describe the system using the Architecture Analysis
and Design Language (AADL) [2]. In prior work, we proposed considering four
standard architectural views: conceptual, modular, execution, and code [TO/IT].

Select Team. The analysis team must include experienced people who under-
stand the system from each identified viewpoint. Their knowledge of the system

Assessing Software Interference Management 137

‘ Identify Views ‘

1

No More Interference, Guidewords, ‘ Select Team ‘

or Means, But More Views
1 Il

‘ Select a View ‘

+

‘ Brief Team on View ‘

+

No More Interference or ‘ Identify the Means of Interaction ‘
Guidewords, But More Means
ol .

‘ Select a Means of Interaction ‘

-

No More Interference, But ‘ Determine Expected Interaction(s) ‘
More Guidewords
3 Il

‘ Select a Guideword ‘

+

Apply Guideword to Elicit Unwanted
Potential Interactions
More Interference l

+

Select an Unwanted Potential Interaction ‘

+

‘ Consider Consequences of Interaction ‘

-

Consider Means of Preventing
Interference or Showing Its Absence

Interference Interference
is Implausible is Plausible
y

Consider Means of Blocking or
Tolerating the Interference

h 4 ¢

Document Potential Interference and Its
Management

[| No More Means,
Guidewords, Interactions,

or Views

h 4

Stop

Fig. 2. Method for identifying potential interference and means of managing it

138 P.J. Graydon and T.P. Kelly

and experience assessing interference in similar systems is crucial, as it reduces
the likelihood that they will overlook potential interference.

Brief Team on View. Before attempting identify means of interaction from a
view, the team briefly reviews the system as seen from this view. This ensures
that each member can draw upon as complete an understanding as practicable.

Identify a Means of Interaction. The analysis team identifies ways in which
elements might interact. Different means of interaction will be visible in different
views. For example, examination of the modular view might show the potential
for interaction by messages or procedure call. The execution view might reveal
potential interaction through a shared processor core or DRAM module. The
code view might illustrate the potential for one element’s source to affect the
compilation of another’s. (In C, directives in .h file(s) can affect properties such
as the compiler’s alignment setting. If one element’s source includes a .h file of
another, the elements might interact in an unexpected manner [g].)

Determine Expected Interaction(s). The analysis team identifies the interactions
that are expected over each identified means of interaction. The distinction be-
tween expected and unexpected interactions is crucial because the former is not
interference and need not be pursued. However, the distinction is also subtle. For
example, suppose that two elements are meant to communicate via function call,
that there are no documented limits on parameter values, and that previous ver-
sions of the caller exercise a small portion of the parameter value space. Testing,
analysis, and historical evidence reflect only a subset of these element’s possible
function call interactions. When interference assessment is used in change impact
analysis, only those interactions should be expected. If the caller is modified and
might pass unprecedented values, developers must either:

— Make the new interaction expected by verifying that the called component
handles the unprecedented inputs correctly

— Treat the new interaction as interference and manage it, perhaps by using a
wrapper to block the unexpected inputs

Interactions via caches are another subtle case. Developers of real-time software
are aware that executing one element could change another’s runtime by alter-
ing the contents of a shared cache. However, typical approaches to determining
Worst-Case Execution Time (WCET) treat each task as though it will run in iso-
lation. Thus, interaction through a shared cache cannot be said to be expected.
If there is any doubt, an interaction should not be considered expected.

Apply Guidewords to Elicit Unwanted Potential Interactions. Analysts apply
each of a set of five guidewords to the identified interactions to elicit potential
unwanted interactions. The guidewords, are adapted from SHARD [18], are:

1. Omission — The interaction does not occur as intended
2. Commission — The interaction occurs when it is not intended

Assessing Software Interference Management 139

3. Early — The interaction occurs before it is intended to
4. Late — The interaction occurs after it is intended to
5. Value — The content of the interaction is not what was intended

The concrete meaning of each guideword will depend upon the type of interaction
that it is applied to. For example, when applied to a function call, value refers to
the parameter values. In contrast, when applied to interaction through a shared
cache, value refers to the data blocks that are loaded or evicted. Some guidewords
might be inapplicable to some types of interaction.

Consider the Consequences of Interference. If an interaction might occur but is
not expected, that interaction is potential interference. The risks that interfer-
ence might give rise to define the importance of managing that interference.
There are several approaches to risk assessment. If a project must conform to
a standard that defines an approach, the analyst should use that approach. If
not, analysts can perform a basic risk assessment by estimating the probability
and severity of risks arising from interference and characterising each form of
interference according to the highest risk that might result if the interference
arises. For example, consider the case of element A4 unexpectedly writing to
element B’s private memory. Suppose that B could give rise to a system hazard
by failing to operate as intended. Depending upon events beyond the system’s
control, it is judged probable that this would lead to a catastrophic loss.
System safety concerns dictate that B’s functionality must be assured to a degree
of confidence appropriate for this risk. Because this form of interference brings
this hazard as a consequence, managing it is of proportionately high importance.

Consider Means of Preventing Interference or Showing Its Absence. For each
form of potential interference, analysts consider both means of preventing inter-
ference and means of showing its absence. For example, consider interference in
the form of writes to private memory. Some efforts might preclude this form of
interference by selecting a programming language subset that does not include
pointers. Alternatively or in combination, testing (in an appropriate manner)
might yield confidence that the tested code does not perform such writes.

Consider Means of Blocking or Tolerating the Interference. Where interference
has not been prevented or cannot be shown to be absent, analysts consider
means of blocking or tolerating that interference. For example, flushing shared
caches during a task switch can block temporal interference arising from cache
contention in uniprocessors. Interference might be detected by computing and
checking an error-correcting code, prompting the system to take remedial action.

Document Potential Interference and Its Management. Finally, the analysts doc-
ument each form of potential interference and how the system manages it. At a
minimum, they record:

— A description of the form of interference
— The consequences of the interference
— How the interference is prevented, shown to be absent, blocked, or tolerated

140 P.J. Graydon and T.P. Kelly

Using FExperience and Standard Lists. Our method does not replace either expe-
rience with similar systems or the use of standard lists of considerations. Where
possible, analysts should consider these sources of insight.

5 Reasoning about Interference Management

In prior work, we proposed a pattern for reasoning about how well a system
manages interference [g]. presents an elaboration of this pattern de-
picted in Goal Structuring Notation (GSN) [4]. Goal G1 depicts the main claim
that the system adequately manages interference. The argument decomposes this
claim over forms of interference (strategy ST1 and context C2), yielding several
sub-claims of the form of goal G2. The argument further decomposes those sub-
claims over means of management (strategy ST3). This further decomposition
yields one to four sub-claims of the form(s) of goals G4, G5, G6, and/or G7. Ev-
idence of prevention, absence, blocking, or toleration supports each sub-claim.

In some cases, means of managing interference apply only in different but
overlapping circumstances. Returning to the example developed in [ection 9}
writes to undefined addresses might be prevented in a subset of the code, blocked
between elements in different processes, or tolerated when they impact a shared
memory block. In such cases, the argument must decompose claims over the
circumstances in which each combination of means applies (strategy ST2). This
form of argument makes clear to readers those circumstances that are covered
by multiple means of management and those that aren’t.

6 A Case Study to Answer Questions from Prior Work

This work does not assess the value of our as-yet incomplete method. Because
there is no baseline data on how completely existing ad hoc methods enumerate
interference, comparing our method to these would require a head-to-head ex-
periment. A control group would use their existing methods whilst a treatment
group would use ours, and the experimenters would assess the completeness of
the results. Since experience might affect the outcome, the participants would
have to be seasoned professional developers. Application and architecture novelty
might also affect the outcome, so the experiment would have to be replicated.

Our case study aims instead to answer three questions raised by the prior
work in which we proposed the method and argument pattern [§]:

1. Does consideration of each of the four of the views discussed in [ection 4

produce insight that consideration of the others does not?

Are there insights not produced by consideration of the four views?

3. Is it practical to divide interference and its management into “forms” and
“circumstances” , or are there too many permutations for this to be feasible?

[\

We expect that the answers to these questions will drive further development of
the method. Once complete, the method can be subject to a rigorous evaluation
of its efficacy and value.

Assessing Software Interference Management

G1 — <System> adequately
manages interference

C1 — <System
description>

E3

ST1 — Argument over

potential interference

Number of forms of interference

G2 — <System> adequately C3 — Consequences of
manages <interference> <interference>>

& o0
—

C2 — <List of potential
interference>

141

A

ST2 — Argument over
different circumstances

Number of circumstances

G3 — <System> adequately manages
<interference> in <circumstance>

ST3 — Argument over
means of management

Atleast 1 of 4

G4 — Measures
to prevent
<interference>

G5 —
<Interference>
does not arise

G6 — Measures
to block
<interference>

G7 — Measures
to tolerate
<interference>

are adequate in practice are adequate are adequate
GSN Key
|| Goal (claim) 2 Requires instantiation —» Solved (supported) by

// Argumentstrategy <>
() Argumentcontext <>

—1> In the context of
® Repeat ntimes

‘ Choice

Requires development

Requires development
and instantiation

Fig. 3. Top-level non-interference argument pattern

142 P.J. Graydon and T.P. Kelly

— Bearing Core 0: Dynamically scheduled soft
Coil (y) real-time tasks and interrupt
handlers

o — % - ‘l Health Monitoring and Logging L
MPC8641D £ 29 < »
H ® = o =
Micro- 28 =0 Core 1: Statically scheduled hard
controller = real-time tasks
< ¥ _
Position < Input | Calculation | Output | |=
SD Card Reader Sensor (y) Frame Begins Output | Next

Fig. 4. The specimen embedded control system

To answer these three questions, we applied the method described in[section 4
to a realistic but hypothesised specimen system, considered the results using the
logic described in and collected appropriate data.

6.1 Specimen System

For the purposes of this study, we created documents describing a hypothetical
embedded control system to be analysed. depicts this system, which
is based on a prototype system developed for a separate study [9]. We changed
some details of that system, rather than study it as-is, to make the system more
representative of challenging, cutting-edge safety-related control systems. For
example, we chose a multi-core target, added an operating system, and posited
the use of both SPARK code and vendor-provided C language drivers.

The purpose of our specimen system is to keep a Shaft centred within its
housing. Position Sensors monitor the Shaft’s position while Bearing Coils adjust
its position. One core of the dual-core microcontroller is dedicated to hard real-
time control. Soft real-time tasks, such as health monitoring and logging, run on
the other core. Core 0 handles all interrupts to simplify timing analysis. Input,
control calculation, output, health monitoring, and logging all run in separate
processes. Hardware memory management is used to provide spatial partitioning.
Processes communicate using shared memory blocks.

Conceptual View of the Specimen System. We described the conceptual view of
our specimen system using a UML diagram depicting its components and the
connections between them as in [I0]. The only means of interaction we considered
were receiving ports. To simplify our study, we did not analyse some receiving
ports that were qualitatively similar to others that we did analyse. We thought of
considering types of connection (e.g. direct connections, channels), but the varied
uses of each type precluded discussing consequences meaningfully. Considering
connections rather than receiving ports would have obscured the potential for
connections between components that are not meant to be connected.

Module View of the Specimen System. We described the module view of our
specimen system using: (1) a UML package diagram showing the mapping from

Assessing Software Interference Management 143

modules to packages; (2) a UML class diagram showing the mapping from im-
plementation classes to modules; and (3) a UML class diagram showing the
static relationship between implementation classes. We analysed only one mod-
ule, a sensor input module comprising vendor-sourced C-language code and
application-specific SPARK code. The means of interaction that we considered
were: (a) modification of class attributes; and (b) method invocations.

Ezecution View of the Specimen System. We described the execution view of our
specimen system using a UML class diagram to map modules to processes and a
timing diagram. The means of interaction that we considered were: (a) accesses
to a process’s private memory; (b) accesses to a shared memory area; (c¢) system
calls; and (d) competition for CPU time. We omitted consideration of access to
some processes’ private memory and some shared memory areas because these
were similar to others that we did analyse.

Code View of the Specimen System. We described the code view of our spec-
imen system using tables to map classes to source files and document source
file dependencies. The means of interaction that we considered were: (a) source
inclusion (e.g. #include in C); and (b) build procedure steps.

6.2 Study Results

Applying the method described in [section 4l to the specimen system described in
subsection 6.1] we identified 71 unwanted potential interactions. Organising these
into forms of interaction in order to apply the pattern shown in yielded
19 distinct forms of interference. Identifying circumstances in which each form is
managed differently yielded 39 distinct permutations of form and circumstance.

Question 1 (necessity of each view). Of the four architectural views that we
used in analysis, only the conceptual view failed to illuminate interference in
this system. While the view informed our understanding of the system, exam-
ining interactions revealed by the view did not help us to find interference that
we could not have found using other views. Moreover, the other views better
illuminated circumstances and means of management. For example, it was more
obvious from the module viewpoint than from the conceptual viewpoint that
some components comprise classes implemented in multiple languages, each of
which was associated with different interference prevention measures.

The SHARD technique uses a view similar to our conceptual view [I8]. SHARD
has been useful as a means of gaining understanding of software hazards early
in the development lifecycle so that they can be addressed by design [18]. How-
ever, in software modification scenarios, a detailed design already exists; there is
no need to trade detail for early feedback. Consequently, effort might be better
spent analysing more detailed views.

Question 2 (sufficiency of views). In prior work, we considered a different hy-
pothesised system from a perspective that included low-level hardware details

144 P.J. Graydon and T.P. Kelly

such as general purpose registers, special-purpose registers, buses, caches, and
memory modules [8]. That perspective was identical to the perspective used in
LISA [I6J18]. Using that low-level hardware view, we identified forms of inter-
ference that we did not identify in this effort, such as competition for shared
memory units [§]. Unfortunately, an execution view of a software architecture
might not contain the necessary low-level detail. We conclude that a low-level
hardware view, such as that used in LISA, should be used when assessing inter-
ference and its management in software modification scenarios.

Question 8 (practicality of argument pattern). We did not create multiple forms
of non-interference argument for our specimen system. Thus, we cannot comment
on whether such an argument would be more compact if organised as shown in
than if organised in some alternative way. However, we can report
that no form of interference that we identified was managed differently in more
than 11 different circumstances. Interference in the form of unintended writes to
shared memory areas was managed by 11 combinations of memory management,
dataflow analysis, use of redundant sensors, or re-use of the last frame’s control
outputs. The remaining 18 of 19 forms were managed differently in 3 or fewer
different circumstances. The size of this argument is not unreasonable.

7 Conclusion

In prior work, we proposed both a method for identifying interference and how
systems manage it and a pattern for arguing about that interference [§]. That
work raised questions about which architectural views analysts should consider
and the practicability of the proposed argument pattern. In this work, we con-
ducted a case study to address these questions. Our findings suggest that analysis
of software using a conceptual view, while useful during initial system design,
might be less useful when analysing interference in software change scenarios.
We also find that analysis from the conceptual, module, execution, and code
architectural views might be insufficient: detailed analysis from a view including
low-level hardware details is needed. Finally, we find no evidence that a com-
binatorial explosion in interference circumstances would make it impractical to
argue about our specimen system using the pattern shown in

This work does not present a complete method for assessing and reasoning
about interference in software modification scenarios. Instead, it describes a work
in progress. The study results, gained from analysis of a single hypothesised
system, cannot show that our method and pattern are valuable or even feasible
for all systems. Instead, they are a contribution toward refining our method and
constructing a complete and compelling approach to assuring modified software
systems. Further work will be needed to assess a complete method and approach.

Acknowledgement. We thank the CAA for collaboration that produced the
ideas refined in this paper.

Assessing Software Interference Management 145

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

AdaCore: Spark pro > language & toolsuite. Web page (October 2011),
http://www.adacore.com/home/products/sparkpro/language_toolsuite/
AADL | getting started. Web page (2011),
http://www.aadl.info/aadl/currentsite/start/index.html

ARINC 653P1-3: Avionics application software standard interface, Part 1, Re-
quired services. Specification, ARINC (November 2010)

Attwood, K., et al.: GSN Community Standard v. 1. Origin Consulting (2011),
http://www.goalstructuringnotation.info/documents/GSN_Standard.pdf
CAP 670: Air Traffic Services Safety Requirements. Civil Aviation Authority, West
Sussex, United Kingdom (October 2010), http://www.caa.co.uk

Certification Authorities Software Team (CAST): Guidelines for assessing software
partitioning/protection schemes. Position Paper CAST-2 (February 2001)
Charles, J., Jassi, P., Ananth, N.S., Sadat, A., Fedorova, A.: Evaluation of the
Intel® Core™ i7 Turbo Boost feature. In: Proceedings of the International Sym-
posium on Workload Characterization (IISWC), pp. 188-197 (October 2009)
Graydon, P.: Classifying, analysing, and arguing about barriers in modified soft-
ware systems. Technical Report SSEI-TR-000107, Software Systems Engineering
Initiative (May 2011)

Graydon, P.J.; Knight, J.C., Yin, X.: Practical Limits on Software Dependability: A
Case Study. In: Real, J., Vardanega, T. (eds.) Ada-Europe 2010. LNCS, vol. 6106,
pp. 83-96. Springer, Heidelberg (2010)

Hofmeister, C., Nord, R.L., Soni, D.: Describing software architecture with UML. In:
Proceedings of the 1st Working IFIP Conference on Software Architecture (1999)
Hofmeister, C., Nord, R., Soni, D.: Applied Software Architecture. Addison-Wesley,
Reading (1999)

IEC 61508-3: Functional safety of electrical/electronic/programmable electronic
safety-related systems — Part 3: Software requirements. International Electrotech-
nical Commission, 2nd edn. (April 2010)

IEC 61882: Hazard and operability studies (HAZOP studies) — Application guide.
International Electrotechnical Commission, 1st edn. (May 2001)

ISO 26262-6:2011: Road vehicles — Functional safety — Part 6: Product develop-
ment at the software level. International Organization for Standardization (2011)
Joint IECCA and MUF Committee on Mascot (JIMCOM): The Official Handbook
of Mascot, Version 3.1, Issue 1. Royal Signals and Radar Establishment, UK (1987)
McDermid, J.A., Pumfrey, D.J.: Safety analysis of hardware/software interactions
in complex systems. In: Proceedings of the 16th International System Safety Con-
ference, Seattle, WA, pp. 231-241 (1998)

OMG: OMG Unified Modeling Language™ (OMG UML): Infrastructure, Version
2.3. Object Management Group (May 2010)

Pumfrey, D.J.: The Principled Design of Computer System Safety Analyses. DPhil
thesis, University of York, York, UK (September 1999)

RTCA DO-178B: Software Considerations in Airborne Systems and Equipment
Certification. RTCA, Inc., Washington, DC, USA (December 1992)

Rushby, J.: Partitioning in avionics architectures: Requirements, mecha-
nisms, and assurance. Technical report NASA/CR-1999/209347, National
Aeronautics and Space Administration, Hampton, VA, USA (March 2000),
http://www.tc.faa.gov/its/worldpac/techrpt/ar99-58.pdf

The Chemical Industry Safety and Health Council: A Guide to Hazard and Oper-
ability Studies. Chemical Industries Association (1977)

http://www.adacore.com/home/products/sparkpro/language_toolsuite/
http://www.aadl.info/aadl/currentsite/start/index.html
http://www.goalstructuringnotation.info/documents/GSN_Standard.pdf
http://www.caa.co.uk
http://www.tc.faa.gov/its/worldpac/techrpt/ar99-58.pdf

Workshop on Architecting Safety
in Collaborative Mobile Systems
(ASCoMS 2012)

Introduction to ASCoMS 2012

Anténio Casimiro and Jorg Kaiser

The continuous emergence and improvement of sensor and communication
technologies creates new opportunities for designing embedded and mobile systems
that are able to interact with their environment, and exhibit “smart” and autonomous
behaviour. Furthermore, collaboration between mobile entities can also be envisaged
for improving their functionality. However, a fundamental challenge is to ensure that
safety requirements are satisfied despite the increased system complexity and the
uncertainties introduced by the operation in open and not well defined environments.
In particular, it is necessary to deal with temporal uncertainties that may affect the
environment perception as well as the coordination of mobile entities. In general, the
problem might be equated in terms of achieving functional safety. Then, the challenge
is to adapt the system to different performance levels as needed to ensure safety
according to the existing operational conditions (e.g. system and environment state).
In any case, some minimal level of performance is always needed to ensure that safety
can be achieved, which should be reflected on the architectural design.

This workshop on Architecting Safety in Collaborative Mobile Systems is intended
to address the multiple facets of this problem, with a special focus on applications in
the automotive and avionics domains. In fact, there are many reasons today for the
use of autonomous mobile systems, like unmanned aerial vehicles (UAVs) or smart
cars. For instance, UAVs can be used for environmental surveillance and control, and
smart vehicles coordinating their behaviours can be used to increase traffic throughput
and improve mobility without the need of using more space for the respective traffic
infrastructures. However, so far the existing solutions to ensure the needed safety
despite the uncertainties affecting their operation are still insufficient or inadequate.
Therefore, these systems are not allowed to operate in the public air space or on
public roads because the risk of causing severe damage or even threaten human lives
cannot be excluded with sufficient certainty. This justifies the importance of research
in this area, namely on topics such as:

Architectural design for safety-critical systems

Aspects of functional safety

Reliable perception of the environment

Coordination and adaptation strategies for safety-critical systems
System safety guidelines and standards

The workshop includes an invited talk and two sessions addressing safety issues in
automotive applications and dependability of sensor based systems. The invited talk
intends to bring an industrial perspective on the main problems lying ahead, and on
expectations on how research can contribute to address these problems. The session
on safety issues in automotive applications includes three presentations, focusing on
modelling of safety related timing constraints, on challenges for the software

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 149-150] 2012.
© Springer-Verlag Berlin Heidelberg 2012

150 A. Casimiro and J. Kaiser

engineering of safer cars and on the use of quality metrics for functional safety.
Finally, the session on dependability of sensor based systems provides two
contributions, on dependable and stable perception despite timing and value faults and
on supporting fault-propagation analysis.

Towards Dependable and Stable Perception
in Smart Environments
with Timing and Value Faults*

Luis Marques and Anténio Casimiro

FC/UL
lmarques@lasige.di.fc.ul.pt, casim@di.fc.ul.pt

Abstract. Future physical environments are expected to be pervasively
enriched with sensors, which mobile embedded applications can use to
safely interact in and with that environment. Unfortunately, due to the
open and uncertain nature of the environment and the wireless com-
munication, it is not possible to provide strict a priori guarantees with
regard to the quality and timeliness with which such environments can
be perceived.

In this paper we take a look at the threats to a reliable perception of
the environment, considering both timing and value faults. We discuss
how such threats can be mitigated and we explore possible paths towards
an integrated architecture to efficiently achieve a dependable and stable
perception of smart environments in the presence of timing and value
faults.

Keywords: smart environments, dependability, adaptation, stability,
real-time, fault-tolerance.

1 Introduction

For more than a decade now, there has been a significant interest in the area
of distributed sensors which communicate through wireless networking. This is
reflected in such concepts as “Cyber-physical Systems”, “Internet of Things”,
“Wireless Sensor Networks” (WSNs) and “Smart Environments”. What is com-
mon to all of these concepts is the vision of highly pervasive sensors which allow
the environment to be monitored at large scales, through the cooperation of
many individual systems.

This mesh of highly ubiquitous sensors can support a wide range of different
applications, some of which have already received significant attention, such as
habitat monitoring [I][2], object tracking [3], target tracking [4], detection of
pollutants [5], climate monitoring [6], energy consumption awareness [7], early
disaster warning systems [8], and smart vehicles [9].

* This work was partially supported by the EU through the KARYON project (FP7-
288195) and the FCT through the Multiannual Funding Program.

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 151-[[61] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

152 L. Marques and A. Casimiro

Different applications have different requirements with regard to the accu-
racy and timeliness with which the physical environment must be perceived. For
instance, a pollutant monitoring application may only require that gas concen-
trations be measured every few minutes or hours, and it may be that this data
does not need to be collected in real-time. Furthermore, the data may be able to
be collected and processed in a centralized fashion, allowing for sensor readings
to be compared and correlated in a batch and non-real-time manner, such as to
remove outlier values due to faulty sensors.

On the other hand, other applications can have strict accuracy and timeli-
ness requirements. For instance, target tracking and smart vehicles operating
as part of vehicular networks are examples of applications which require both
a highly accurate and a timely perception of the environment, to assure op-
erational safety. In general, mobile and cooperative systems, that cooperate in
and with the physical environment, will require stricter guarantees than more
“passive” systems, such as habitat monitoring.

Yet, the problem arises that in open and uncertain environments it is not
possible to provide a priori guarantees regarding the accuracy and timeliness with
which the information from the surrounding environment and other cooperative
systems can be obtained. Without such guarantees it becomes harder for mobile
systems, such as vehicles, to safely cooperate and interact.

Part of the problem stems from the way in which embedded systems have, tra-
ditionally, been designed, which is not compatible with such open environments.
Traditionally, embedded systems — particularly safety-critical systems — have
been engineered in a systematic way which allows providing the required prop-
erties in terms of timeliness, accuracy and validity of the sensed environment.

To provide timeliness guarantees, all scenarios are previously studied, all op-
erations are given deadlines, critical communication is performed using real-time
networks, and every task is scheduled using carefully crafted algorithms, which
execute code paths with worst case execution times designed to respect such
deadlines. To provide the necessary accuracy, the type and amount of sensors
used is carefully planned at system design time. The necessary redundancy is
built-in, to provide protection against both timing and value faults.

Since traditional systems are engineered in such a way that all requirements
are assured by design, their architectures have generally not focused on being
aware, at runtime, of how well system assumptions are being covered, nor do
they generally exhibit a large degree of runtime adaptability.

We argue that in open environments, in which the environment state informa-
tion is obtained with uncertain timeliness and accuracy, such systems must be
engineered to be adaptable and aware of their operational environment. We must
transition from hard limits to adaptable bounds, from no awareness of the op-
erating environment conditions to an awareness of runtime timing and accuracy
bounds, and from uncertainty to dependable perception and operation.

We previously proposed a generic technique to be aware of, and to depend-
ably adapt to, the varying communication timings of WSNs [I0]. Such tech-
nique, based on a stochastic analysis of the runtime latencies of the wireless

Towards Dependable and Stable Perception in Smart Environments 153

network, allows one to overcome the communication uncertainties of these open
environments. In fact, we evaluated the proposed technique and confirmed its
dependability in 802.15.4-based WSNs [11].

In this paper we discuss how similar techniques can incorporate the presence
of sensors with varying margins of error, sensor heterogeneity and value faults,
and how to achieve adaptation stability. We look at the various threats to a
reliable perception of the environment, discuss how they can be mitigated and
how to incorporate such strategies in an efficient architecture to achieve a stable
and dependable perception of the environments, even in the presence of timing
and value faults.

In the following section we start by exploring the desired properties of smart
environments and various threats to a reliable perception.

2 Threats to Reliable Perception

We can identify several properties of smart environments upon which a depend-
able perception of the environment relies. With regard to the values which rep-
resent the current state of the perceived physical environment, or the production
thereof, the following are four important properties.

— Accuracy — reflects the expected or computed margin of error of the con-
sidered value;

— Validity — indicates if the value may be outside of the expected or com-
puted margin of error, due to a value fault;

— Timeliness — the ability to produce and deliver the desired value within a
given deadline;

— Efficiency — the relation between the amount of resources expended and
the accuracy, validity and timeliness of the obtained value.

These properties are not completely orthogonal but, as defined here, are useful
constructs to allow reasoning about the threats to a reliable perception of the
environment.

The properties of accuracy, validity and timeliness will determine the percep-
tion reliability and, therefore, the application performance. The relationship
between these properties of the smart environment and the obtained perfor-
mance is necessarily application-specific. In open environments these properties
will also vary throughout time and space. As such, the reliability of the envi-
ronment perception, and consequent application performance, will depend on:
(1) the performance with which the applications or the smart environment itself
adapt to varying conditions; (2) the stability of the three properties; (3) the
relationship between (1) and (2).

Therefore, we must not only be aware of current environment conditions, but
also of how such conditions can vary throughout time and space. Only that way
can the application or the smart environment avoid adapting to new conditions
more frequently (or faster) than would be optimal for a given application.

Based on this understanding of the requirements to a reliable perception of
the environment, we can identify several threats and challenges to this reliability.

154 L. Marques and A. Casimiro

— The amount of information — with the amount of sensors spread out
throughout the environment expected to grow exponentially, there will be
added pressure on scarce resources like bandwidth (which will likely grow
slower than the amount of information) and computational power (which is
probably even more crucial in small and limited sensors);

— Sensor heterogeneity — the availability of sensors which provide the same
state information with different accuracies, or which provide complementary
state information, is an opportunity for optimization, but can also impair
perception quality if the best information sources are not chosen;

— The variability of information — for mobile systems, the geographical
variability of sensor information can have an impact on performance, by
jeopardizing adaptation stability;

— CPU hardware / software faults — computational faults in the systems
comprising either the smart environment itself or the cooperative systems
can compromise safety, by corrupting sensor information or coordination
information;

— Sensor transducer faults — in a world with a very large number of sen-
sors, possibly from many different manufacturers, it can be expected that
faulty sensor readings are a common occurrence, in absolute terms. The
faults can derive from transducer miscalibrations, transducer aging, envi-
ronmental effects, electromagnetic interferences, and various other sources;

— Communication interferences — both intra-network interferences (net-
work nodes competing for the transmission medium) and external interfer-
ences (e.g. background noise) can threaten reliable environment perception,
essentially by means of timing failures. Value faults can also occur, through
packet corruption, but those faults can be transformed into omissions;

— Network inaccessibility — communication interferences may also lead
the network to temporarily refrain from providing service, even if it is not
considered to have failed. Network inaccessibility can be characterized by
the specification of limits for inaccessibility duration and rate, where the
violation of those limits implies a permanent failure of the network.

— Clock desynchronization — clock drift and other sources of desynchro-
nization can impact distributed sensors, when relying on a notion of global
time;

3 Accurate and Timely Perception

The reliability of the environment perception and consequent application per-
formance will depend not only on the accuracy and timeliness of the sensed
information, but also on the stability of these metrics. In this section we discuss
existing work to achieve value accuracy, fault tolerance and timeliness, and to
what extent these techniques can provide the required properties in a stable way,
or be augmented to do so.

Towards Dependable and Stable Perception in Smart Environments 155

3.1 Timeliness

In the work described in [10], we previously proposed a technique to achieve
probabilistic timely behavior in WSNs. A central assumption of that work was
that although the timing variables had unknown bounds, which in addition could
change at any time due to the open nature of the environment, such bounds were
not completely arbitrary and unpredictable but that, instead, they were prob-
abilistic. Furthermore, we considered that these probabilistic bounds changed
slowly enough compared with the capacity of the application or the WSN itself
to recognize and adapt to new bounds.

In [II] we indirectly evaluated these assumptions in 802.15.4-based WSNs, by
measuring the adaptation effectiveness with regard to the end-to-end latencies,
under a variety of scenarios. We concluded that, even with the adaptation oc-
curring only at the application level (and not at the level of the WSN itself), we
could meet deadlines with the desired probability, plus or minus a small margin
of error (generally 1 or 2%, with some scenarios having a maximum margin of
slightly over 5%).

There are three important issues to adaptation stability which this work did
not cover. One is that these deadline fulfillment metrics are long-term averages;
the work in [II] did not focus on the short-term variability. A second is that it
was assumed that an application could adapt instantly after the new network
behavior was recognized. Yet a third is that we had devised this technique mostly
with stationary WSNs in mind.

Regarding this last point, notwithstanding our initial assumptions, in our
evaluation we verified that the proposed technique was effective not only in
stationary networks but also when sensor mobility was introduced. Despite the
significant additional dynamics, we observed only a small increase in the margin
of error of the probability of deadlines being fulfilled. In networks with more
spatial heterogeneity and/or faster node movement it might be necessary to
take proactive measures to assure that adaptation stability remains.

Regarding the short-term stability of the deadline fulfillment probability, al-
though this was not specifically tested we informally observed that there were no
significant variations from period to period. If stronger guarantees are needed,
one option that is likely viable is to dynamically change the WSN behavior to
adjust at runtime the amount of resources expended, to decrease variability. The
challenge is how to do this in a decentralized and efficient way.

Likewise, while applications may not be able to adapt instantly, especially
if they are far away from the source of network disruption, having the adapta-
tion occur at the level of the WSN will likely be an effective strategy to assure
temporal stability of timing bounds.

In fact, one of our conclusions from our evaluation in [I1] supports the ef-
fectiveness of this strategy. We observed that in more complex networks, with
more sources of uncertainty, we achieved (seemingly paradoxically) better adap-
tation effectiveness than in simpler networks. The reason for this is that all of
these sources of uncertainty can average out. Hence, in future smart environ-
ments, with large amounts of sensors and network nodes, we can expect that

156 L. Marques and A. Casimiro

decentralized network-level adaptations will be highly effective in smoothing out
short term timing variabilities.

3.2 Accuracy and Value Faults

In traditional embedded systems, the type and number of sensors are predeter-
mined according to the application requirements, and therefore fault masking
can be planned in a straightforward manner using the sensors’ manufacturer
specification sheet. In smart environments the amount and type of available
sensors is unknown at design time and can vary unpredictably. Therefore, the
accuracy and fault behavior cannot be assumed in such a black box style, but
must instead be checked and enforced at runtime.

An architecture for a dependable distributed sensor system is described in [12],
which allows for an efficient detection and masking of common types of sensor
faults. This architecture integrates a set of ideas that were previously developed
in isolation into a coherent and unifying concept. We here review some of the
underlying concepts and its suitability to be extended into an architecture for
accurate, timely and stable environment perception.

One strategy to implement fault detection is through the classical paradigm
of hardware replication. The work presented in [I3] had previously identified the
necessary number of sensors to tolerate different types of transducer faults; a
different method was described in [I4], based on maximizing the consistency of
sensor fusion results.

Another strategy is to detect anomalous values from a single sensor, by com-
paring the sensor output to a model of the system and noticing discrepancies, or
through a signal analysis of the sensor output; different approaches to implement
this are detailed in [I5], [I6] and [I7].

The distributed sensor architecture proposed in [12] combines ideas from these
different approaches, by performing each kind of fault checking as close as pos-
sible to the source of error, for efficiency. This architecture follows the model
of distributed fusion architecture, which had already been developed but which
generally do not consider fault tolerance [I8], extending previous work on fault-
tolerant sensors [19].

This architecture performs a series of tests and, in the end, outputs sensor
values together with a measure of their validity, which is a computed probability
of the respective value being faulty. This final validity is a combination of the
computed probabilities for each of the possible fault types.

One important aspect of this architecture is that it seems to be compatible
with the technique proposed in [10] to achieve probabilistic real-time guarantees.
For instance, regarding the distributed sensor fusion, the architecture does not
specify any particular protocol for the dissemination and aggregation of sensor
values, and therefore does not introduce incompatibilities with real-time network
protocols. Also, no specific algorithms are mandated for the local transducer
fault checks, so the algorithms can be chosen considering on their impact on
timeliness, for example based on their worst-case execution times.

Towards Dependable and Stable Perception in Smart Environments 157

The architecture considers that the accuracy and fault model of the sensors
is discoverable but does not contribute mechanisms to assure the provision of
specific accuracy or fault probabilities. There are two considerations here for
adaptation stability. One is that, even in stationary networks, the identified
fault probability can (and will likely) vary throughout time. This can happen
either because of changes in the sensor themselves or because of variations in the
amount and type of aggregated sensor information. The other is that, in scenarios
of mobility, such as vehicular scenarios, the quality of sensor information will
likely vary spatially.

3.3 Adaptation Stability and Application Performance

We consider that an adaptation is stable for a given application if another adap-
tation will not be required, with a given probability p, in the immediate interval
0 after it becomes effective. The values of p and § will vary with the considered
application and desired application performance.

In this subsection we clarify the impact of the adaptation stability in the
application performance through a hypothetical scenario.

Figure [illustrates a scenario with moving vehicles and heterogenous percep-
tion quality regions. Vehicle A is shown in its current position (black) and a past
position (grey).

[QoS region 1 [Qos region 2 [QoS region 3

Fig. 1. Timing Variables (Example)

The operational performance of vehicle B, for instance with regard to the dis-
tance that must be kept to vehicle C, will be depend on the perception quality
and stability that is achievable in QoS region 1. Since vehicles cannot instanta-
neously change their speed, and since frequent speed changes have a cost in terms
of fuel consumption and passenger comfort, the optimal distance will depend on
the expected probability of receiving within a given period sensory updates that
are accurate and valid. If such information is not received then the operational

158 L. Marques and A. Casimiro

performance will have to be degraded, if necessary to the point of switching to
a fail-safe mode (e.g. vehicle immobilization).

Due to the spatial QoS heterogeneity, as vehicles move they will have to adapt
to maintain operational safety and performance. If a more global awareness of
perception quality is available then this adaptation can be optimized to maximize
application performance. For instance, if QoS region 3 has a lower quality and
that information is available in QoS region 1 then the vehicles can preemptively
and gradually transition to the new optimal state, as they approach the region
with lower quality. In particular, an adaptation can be made at QoS region 1
or 2 which is stable enough that, with high probability, no further adaptation is
required when the vehicle reaches QoS region 3.

A possible way to achieve such awareness is for the smart environment partic-
ipants to disseminate their local awareness of perception quality and temporal
stability thereof. With regard to the timeliness, the historical latencies that are
collected already contain information about the temporal variability of network
latencies. In terms of sensor accuracy and validity, the distributed sensor fusion
architecture should be extended to collect historical information and to compute
the probability of valid updates being received within a period.

There are several challenges to an effective and efficient dissemination of the
achievable perception quality information. For instance, in Figure [Il we can ob-
serve that the perception quality achievable in region 3 can be disseminated to
other vehicles either directly by vehicle A or indirectly, by using the road-side
infrastructure. Which is the best choice can depend on a wide variety of factors.
If bandwidth is particularly scarce, then it might be more efficient for vehicle
A to directly communicate with vehicle B. If vehicle A is moving slowly, then
it might be preferable for the information to be disseminated through the road-
side infrastructure, so that it is available in a timely manner, before vehicle B
is too close to region 3. If multiple applications can benefit from that informa-
tion, then it might be preferable to use the road-side infrastructure as a central
hub of dissemination. Also, we can expect vehicles to host and support specific
applications, while a smart environment sensor infrastructure can be expected
to be more general purpose. Therefore, while vehicles might be preprogrammed
to disseminate the quality of certain specific environment attributes, the generic
environment sensors will have to learn what information is most beneficial to
surrounding applications.

A more specific consideration is how to predict future sensor validities based on
the disseminated past sensor information and/or validities. The non-parametric
approach, based on order statistics, used in [I0] may not be (fully) applicable to
this task. It will be necessary to evaluate what model best approximates the vari-
ations over time of such validities. This model will have to integrate an awareness
of both (1) how likely a fault is to occur in a specific sensor value, given past faults,
and (2) how likely a valid value is to be available until a given deadline, given what
fusible sensor values are expected to arrive.

Towards Dependable and Stable Perception in Smart Environments 159

4 Towards an Architecture for Dependable and Stable
Environment Perception

Although no specific architecture is proposed in this paper, from the issues pre-
viously examined we can start enumerating components, services, design aspects
and guiding principles that should comprise an architecture for dependable and
stable environment perception.

In general, we suggest an architecture which uses fault-tolerant distributed
sensor fusion to handle sensor accuracy and faults, that has an awareness of net-
work latencies, and where the communication deadlines can be probabilistically
assured by dynamically varying the amount of resources expended by the net-
worked sensors of the smart environment, to counteract network and application
dynamics.

The CPU hardware and/or software faults which change sensor values can be
dealt with by enforcing fail-silent behavior. Other techniques can be compared
for efficiency and performance in different scenarios, such as value voting and
the elimination of outliers.

The threat introduced by network inaccessibility can be dealt with using spe-
cialized techniques, as has already been done for other kinds of networks [20] [21].
These techniques can be compared for efficiency and performance with using re-
dundant networks paths, which are unlikely to suffer of inaccessibility at the
exact same times.

Clock synchronization is assumed in both the probabilistic timeliness solution
and in the fault-tolerant distributed sensor fusion architecture. Such clock syn-
chronization can be achieved by using algorithms specially optimized for smart
environments. There already exist algorithms optimized for WSNs [22][23]. These
can be improved upon to take into consideration factors that would be specific
to an architecture for smart environments. For instance, synchronization accu-
racy may not need to be homogenous; it may be more efficient for the accuracy
to be relatively better between nodes which are more relevant for sensor fusion,
which may rely on the transformation of sensed values according to the elapsed
time, as considered in [I2]. Also, an awareness of network latencies may be ex-
ploited for a more efficient synchronization algorithm, at no additional cost if
this information is already collected to assure timeliness.

There are many ways to mitigate network interferences [24]. To the extent
that such interferences are not unpredictable they will not have an impact on
timeliness, when using the considered probabilistic approach, but instead will
only affect the efficiency of the environment perception. Strategies for improving
that efficiency must not jeopardize timing properties. With regard to fault tol-
erance, the architecture can integrate the provision of timeliness properties with
sensor fusion, so that guarantees of accuracy and validity will not be threatened
by the necessary sensor information not being available in a timely manner.

A central aspect of this architecture is the components, protocols and/or
services for the discovery of sensor information, which should work in such a way
that the most beneficial combinations of fusible sensor state are made available.
Another fundamental aspect, as identified in section[3.3] is how to provide stable

160 L. Marques and A. Casimiro

perception quality properties to applications, throughout not only time but also
space.

We propose exploring architectural mechanisms that can efficiently satisfy
both of these aspects. In particular, we propose researching a mechanism for the
decentralized dissemination of both the available sensors and their fault models,
as well as what validity can be achieved in a given spatial region, according to
the combination of perceived network latency conditions, available sensors and
historical sensor validities.

5 Conclusion

The trend is clear that an ever increasing amount of sensors will be part of
the physical environment, eventually culminating in smart environments where
sensors are pervasive. While this presents an opportunity for increased autonomy
and performance of mobile applications, the lack of guarantees offered by these
environments creates a very hard challenge for application dependability and, in
particular, their operational safety.

We identified the main threats to dependability and presented various pos-
sibilities of how both accuracy and timeliness might be achievable in an ar-
chitecture for a dependable and stable environment perception. We built upon
previous work, and explored how to combine and extend one solution devised to
provide probabilistic timeline guarantees and an architecture for fault-tolerant
distributed sensor fusion.

We identified the limitations of these previous efforts in terms of percep-
tion/performance stability, and we suggested various research venues of how
such stability might be supplemented.

References

1. Tolle, G., Polastre, J., Szewczyk, R., Culler, D., Turner, N., Tu, K., Burgess, S.,
Dawson, T., Buonadonna, P., Gay, D., Hong, W.: A macroscope in the redwoods.
In: SenSys 2005: Proceedings of the 3rd International Conference on Embedded
Networked Sensor Systems, pp. 51-63. ACM Press (2005)

2. Szewczyk, R., Osterweil, E., Polastre, J., Hamilton, M., Mainwaring, A., Estrin,
D.: Habitat monitoring with sensor networks. Communications of the ACM 47,
34-40 (2004)

3. Priyantha, N.B., Chakraborty, A., Balakrishnan, H.: The Cricket Location-Support
System. In: 6th ACM MOBICOM, Boston, MA (August 2000)

4. Simon, G., Maréti, M., Lédeczi, A., Balogh, G., Kusy, B., Ndadas, A., Pap, G.,
Sallai, J., Frampton, K.: Sensor network-based countersniper system, pp. 1-12.
ACM Press (2004)

5. Tsujita, W., Yoshino, A., Ishida, H., Moriizumi, T.: Gas sensor network for air-
pollution monitoring. Sensors and Actuators B: Chemical 110(2), 304-311 (2005)

6. Leonard, N.E., Paley, D., Lekien, F., Sepulchre, R., Fratantoni, D., Davis, R.:
Collective motion, sensor networks, and ocean sampling. Proceedings of the IEEE,
Special Issue on the Emerging Technology of Networked Control Systems (95),
48-74 (2007)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Towards Dependable and Stable Perception in Smart Environments 161

Jiang, X., Dawson-Haggerty, S., Dutta, P., Culler, D.: Design and implementation
of a high-fidelity ac metering network. In: Proceedings of the 2009 International
Conference on Information Processing in Sensor Networks, IPSN 2009, pp. 253—
264. IEEE Computer Society, Washington, DC (2009)

Basha, E.A., Ravela, S., Rus, D.: Model-based monitoring for early warning flood
detection. In: Proceedings of the 6th ACM Conference on Embedded Network
Sensor Systems, SenSys 2008, pp. 295-308. ACM, New York (2008)

Lee, U., Magistretti, E., Zhou, B., Gerla, M., Bellavista, P., Corradi, A.: Mobeyes:
Smart mobs for urban monitoring with vehicular sensor networks. IEEE Wireless
Communications 13(5) (2006)

Marques, L., Casimiro, A.: Lightweight dependable adaptation for wireless sensor
networks. In: Proceedings of the 30th IEEE International Symposium on Reliable
Distributed Systems Workshops, 4th International Workshop on Dependable Net-
work Computing and Mobile Systems (DNCMS 2011), Madrid, Spain (2011)
Marques, L., Casimiro, A.: Evaluating lightweight dependable adaptation in
802.15.4 wireless sensor networks. Technical report, TR-2012-04, Dep. of Infor-
matics, Univ. of Lisboa, http://docs.di.fc.ul.pt/handle/10455/6873

Zug, S., Dietrich, A., Kaiser, J.: An architecture for a dependable distributed sensor
system. IEEE T. Instrumentation and Measurement 60(2), 408-419 (2011)

Chen, C., Brown, D., Sconyers, C., Zhang, B., Vachtsevanos, G., Orchard, M.E.:
An integrated architecture for fault diagnosis and failure prognosis of complex
engineering systems. Expert Syst. Appl. 39(10), 9031-9040 (2012)

Marzullo, K.: Tolerating failures of continuous-valued sensors. ACM Trans. Com-
put. Syst. 8(4), 284-304 (1990)

Koushanfar, F., Potkonjak, M., Sangiovanni-Vincentelli, A.: On-line fault detection
of sensor measurements. In: IEEE Sensors, pp. 974-980 (2003)

Isermann, R.: Model-based fault detection and diagnosis: status and applications.
In: Proceedings of the 16th IFAC Symposium on Automatic Control in Aerospace,
St., pp. 71-85 (2004)

Doebling, S.W., Farrar, C.R., Prime, M.B.: A summary review of vibration-based
damage identification methods. The Shock and Vibration Digest 30, 91-105 (1998)
Makarenko, A., Durrant-whyte, H.: Decentralized data fusion and control in ac-
tive sensor networks. In: Proceedings of the Seventh International Conference on
Information Fusion (2004)

Zug, S., Kaiser, J.: An approach towards smart fault-tolerant sensors. In: Pro-
ceedings of IEEE International Workshop on Robotic and Sensors Environments
(ROSE 2009), Lecco, Italy (November 2009)

Rufino, J., Verissimo, P., Almeida, C., Arroz, G.: Integrating inaccessibility control
and timer management in canely. In: ETFA| pp. 348-355. IEEE (2006)

Souza, J.L.R., Rufino, J.: An approach to enhance the timeliness of wireless commu-
nications. In: The Fifth International Conference on Mobile Ubiquitous Computing,
Systems, Services and Technologies (UBICOMM), Lisbon (November 2011)

Li, Q., Rus, D.: Global clock synchronization in sensor networks. IEEE Transac-
tions on Computers 55(2), 214-226 (2006)

Yoon, S., Veerarittiphan, C., Sichitiu, M.L.: Tiny-sync: Tight time synchronization
for wireless sensor networks. ACM Trans. Sen. Netw. 3(2) (June 2007)

Liang, C.J.M.: Interference characterization and mitigation in large-scale wireless
sensor networks (2011)

http://docs.di.fc.ul.pt/handle/10455/6873

An Approach Supporting Fault-Propagation
Analysis for Smart Sensor Systems

Sebastian Zug, Tino Brade, Jorg Kaiser, and Sasanka Potluri

Otto-von-Guericke Universitat Magdeburg
Department for Distributed Systems
Universitatsplatz 2,

39106 Magdeburg
{zug,brade,kaiser,sasanka}@ivs.cs.uni-magdeburg.de

Abstract. Distributed sensor-actuator-systems in automotive or avionic
applications have to fulfill safety requirements strictly. Those implemen-
tation has to be monitored during the development process and on run-
time. For this purpose we presented a data centric fault categorization,
fault representation and measurement validation concept.

In this paper we enhance our approach and describe a fault propa-
gation mechanism suitable for a permanent evaluation of tolerable fault
level. Based on a common fault representation each component is char-
acterized by its effects on the signal validity. As shown in an exemplary
scenario the proposed matrix notation provides a flexible and powerful
method to implement and monitor the fault propagation.

1 Introduction

Many mobile embedded systems rely on the reliable perception of their envi-
ronment as the basis for moving and actuating safely. They recently have been
addressed as cyber-physical systems emphasizing the tight links and loops be-
tween electronic intelligent devices and the physical world. Because more and
more vehicles like smart cars, autonomous transportation systems, service robots
for cleaning, mowing and other housekeeping tasks start sharing the same space
with other such vehicles and humans, the proof for safety has become a deci-
sive requirement for allowing such artifacts to leave their so far well defined and
segregated operational space. Communication opens many desirable but chal-
lenging opportunities. On the perception side, communication offers access to a
rich spectrum of sensors in the environment and on other smart vehicles. Dis-
tributed sensing allows extending the range of perception, the modalities, and
potentially the precision. However, at the same time, it becomes more difficult
to assess the quality of sensor information. For local sensors, the control algo-
rithms can safely assume a certain precision, a sampling rate and an error model.
These assumptions including well-known margins of uncertainty are reflected in
the control loop of the vehicle. A robust control loop tolerates some degree of

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 162-[[73] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

An Approach Supporting Fault-Propagation Analysis 163

uncertainty. Sensors may have a very subtle behavior in case of a failure. Pro-
viding checks for local sensors or hardening the control algorithm against such
failures is difficult [I]. However for external sensors, this is impossible without
an intimate knowledge of the sensor that is not available a priori in the general
case. Additionally, latencies and omissions of the wireless network put a new
class of uncertainties to sensor information. Therefore we provide an estimate of
the sensor data quality in terms of a validity value together with the sensor data
itself.

The nature of sensor faults and particularly the impact they have on gener-
ated sensor readings is very complex. Ni et. all [2] make a very useful distinction
between a data centric and a system centric perspective on sensor faults. The
data centric view largely ignores the root cause of a fault and analyses the
sensor data according to an anticipated signal behavior, statistical analysis or
assumptions about the environment. In terms of accepted dependability notions,
this approach provides checks against a well-defined sensor error model. This is
also the prevalent approach in control engineering where a robust control al-
gorithm resists some of these erroneous sensor data. A systematic way dealing
with sensor data faults is the FDI approach (Fault detection and isolation). The
system-centric view on the other side tries to identify a root cause of a failure
and forecasts the impact on the respective sensor data. The fault-tolerance com-
munity traditionally takes a system-oriented view on handling faults. Faults are
anticipated, the respective measures for predicting the effects of faults like fault-
trees and Failure Modes and Effects Analysis (FMEA) are performed and fault
handling schemes on the system level are introduced. It should be noted, that
the system-centric analysis is largely an off-line analysis in which the effects and
the propagation of a fault originating from a well-defined root cause is in the
focus of interest. In contrast, the data-centric approach is interested in the valid-
ity of an individual sensor reading and tries to identify faulty data without any
knowledge of the root cause on the basis of the perceived signal properties only.
This perspective is particularly attractive for sensor faults because identification
of the cause of a failure may be very difficult.

As emphasized by Ni et al. these two perspectives are by no means disjoint.
It is a matter of perspective. E.g. an expressive error model may well be derived
from thorough root cause analysis. Faulty behavior however, is analyzed solely
on the basis of the produced data. Additionally, the system centric approach can
be used to build more reliable sensors by dealing with the root cause of failures.

In our paper we take a data centric view. However, we are less interested in
deriving test and analysis methods for sensor data than in the question how we
can exploit the knowledge about test outcomes on the system level. In contrast to
the binary decisions ”good” or "bad” in the system centric view, the data centric
view rather provides a continuum of usefulness or trustworthiness in sensor data
within some bounds. E.g. sensor readings are typically affected by noise, offsets,
drift and other specific environmental perturbations. However, this does not
mean that they are completely useless. Respective filters and error detection
methods are able to suppress such effects to a large extent. Thus we strive for

164 S. Zug et al.

deriving validity measures for sensor data that are provided with the respective
value itself. This validity estimates can be exploited by remote nodes that fuse
multiple sensor sources for assessment and selection. The validity estimate is
derived from the quality and extent, to which the sensor data is checked for
errors. This issue is discussed in more detail in Sec. Bl

Estimating the validity of a single sensor reading however is only one, although
an important part towards assessing the overall impact of failures to the system.
We consider systems that combine and fuse individual sensor data to generate
higher level, application relevant information. Thus, there is a chain of filters,
estimators, and fusion components which finally produce the desired output
to the control functions. It is therefore important to analyze how errors (and
validity estimates) will propagate through this chain of processing elements and
influence perception quality. Thus the first objective of our paper is to present a
concept providing expressive validity information for sensor data to be used in
a distributed sensor-actuator system. To the best of our knowledge this is not
provided so far elsewhere. Secondly, we try to experimentally verify the usefulness
of the scheme. Because of the many failures possibilities and all their combination
that have to be considered, analytical models seem not appropriate to derive a
deep understanding of the impact of individual failures. Therefore, we propose an
approach based on simulating error propagation. This will require maintaining
information about the checks that were applied to the individual sensor inputs
together with some normalized validity estimation. In our paper we will discuss
the assessment of sensor data validity based on a well-defined fault and error
model. The basic idea is to map the complex behavior of a sensor failure to a
normalized model of sensor data validity. We call this failure semantics following
the ideas of Christian [3] defining a classification for distributed system failures.
Subsequently we discuss the refinement of the model with respect to simulate
error propagation through a chain of processing stages.

2 State of the Art

For a comprehensible handling of the expected different faults we need a uni-
form representation of the error. Because we take a data centric view, the error
level represents the deviation from the correct data value.. Such an abstraction
has to consider two opposing requirements. On one hand, the fault representa-
tion has to provide all relevant information (occurrence probability, effect on the
signal, duration) necessary for a fault effect analysis and fault propagation es-
timation. On the other hand, the abstraction should encapsulate the individual
fault characteristic as far as possible and provide a generic representation.

The established concepts for expressing possible faults and confidence
levels are focused on a compact fault representation. For instance, the
[Failure Modes and Effects Analysis (FMEA)| [4] implements a classification
scheme that analyzes the processing capabilities and expected fault char-
acteristic. As a result the user gets a single validity wvalue called

An Approach Supporting Fault-Propagation Analysis 165

[Risk Priority Number (RPN)| The RPN value maps the multiple aspects as oc-
currence, detection probability and amplitude of errors handled by multiple de-
tection mechanisms to a single number between 1 and 1000. Different application
areas (automotive, avionics, automation industries) develop individual standards
that contain a fault description and effect analysis. The ISO 26262 for instance
provides a process model for fault identification and validation [56]. The de-
gree of abstraction is high. ISO 26262 defines four Automotive Safety Integrity
Levels (ASIL). An ASIL determines the level of integrity in which a critical func-
tion should be executed. In a transformation step this has to be mapped to the
respective requirements for the architectural components.

In addition to these design-time oriented approaches there exists a number of
fault abstractions for run-time validations. The authors of [7] map all occurring
faults to three meta-models: “Short” indicates a temporal, sudden change of the
measurement signal, “Noise”, encapsulates all stochastic faults and “Constant”
covers all offset variants. Due to the missing specification of the fault amplitude
and occurrence probability, the approach does not provide a detailed fault propa-
gation analysis. More detailed representations are presented in [8l9]. The author
developed an evaluation scheme that maps the current fault state of a node on
a data validity value. The fault characteristic of a measurement is condensed
into a single value validity estimation (16 categories, integer values between 0
and 100). The evaluation value is assigned to each data set. Due to the missing
information about the implemented detection methods those single values are
difficult to interpret and to compare. Does a high validity value indicates the re-
sult of a simple detection method, that is probably unable to recognize a certain
fault or can we assume a set of detectors coverage all expectable faults?

Beside these problems the existing concepts of both domains (run-time, design-
time) do not support a hierarchical or component oriented system view. Due
to the high level abstraction, the values are determined for one specific hard-
ware/software implementation. If the structure is changed, the whole determi-
nation procedure has to be passed once again. In the same way the results are
not reusable on a higher level of system representation. The individual [RPNd
of a sensor, controller and actuator system cannot be mixed up to calculate a
common validity value.

3 Concept

As a consequence of the gaps in established fault representation methods we
developed a new fault semantic, combining a system and an event validity [I].
The first one characterizes the expected fault levels and their effect on the sys-
tem output. Its definition is based on the comparison of the node characteristics
(sensors, processor, periphery) with the assigned detection and fault-tolerance
capabilities. At the end, the system validity is to be determined based on the
design-time and it indicates the trustworthiness of a node. In addition to this
hardware oriented view, the event validity summarizes the results of the in-
dividual detection methods. On runtime all fault detection methods generate

166 S. Zug et al.

normalized output that are combined in the event validity. This information is
attached to each measurement. Only in combination of both information an ob-
jective evaluation of each data set is provided [I0]. The system validity provides
an evaluation of the event validity and it can be used to identify the detection
methods applied to a measurement. The output of high performance sensor can
be distinguished from a low level sensor with limited fault detection capabilities,
although a similar event validity were generated.

Up to now we determine the system validity with an adapted [FMEA}scheme
as a single value. As mentioned in the Chapter 2l such a high level abstraction
do not well support the further processing of the sensor data and particularly,
is not suited for tracing the effects of a fault. In this paper we describe a refined
fault representation and develop a vector representation maintaining the effects
of individual faults. In addition to the sensor data validity assessment it enables
the analysis of fault propagation in a distributed system. This extension allows
a flexible estimation of the system confidence level based on a continuously
automated fault propagation concept. Hence, the developer can monitor the
effect of a new filter, fusion algorithm, improved sensor, etc. immediately.

3.1 Fault Categorization

Every sensor signal suffers from multiple sources of external disturbances and
inherent internal errors resulting in a difference between the observed physical
unit and the captured value [II/T2]. The deviation depends on the physical
principles of the perception process, possible external disturbances and on the
hardware characteristics of the sensor node. In a distributed scenario the need
of (wireless) communication causes probably an additional delays, omissions,
missed links, etc. In contrast to other fault definitions, we define each difference
between digital representation and real physical value as a fault. This concept
covers deviations caused by outliers, spikes, offsets, etc. as well as effects of
the processing chain and system specification like saturation, discretization or
constant noise. We need this comprehensive data centric view for generating
a notion of system validity that reflects the impact of all these errors, their
dependencies and inter-relationship.

In Tab. [we structure the most relevant (sensor) fault types with respect to
their characteristics into five major divisions (A-E). Within these categories, a
fine grain of classification may still be possible, e.g. an offset may be constant
or a bad calibration or varying over time like temperature dependent offsets.
These differences and the respective detection schemes are however outside the
scope of this paper. For a more detailed discussion of sensor faults the reader is
referred to [I].

Based on this investigation we deduce two generic parameters necessary to
identify the effect of certain fault model:

— The occurrence probability p is a stochastic representation of the frequency
of derivation. For fault models in the last column (E) p becomes 1 related to
the permanent effect of the fault. Fault models assigned in one of the other
columns have a value in between 0 and 1.

An Approach Supporting Fault-Propagation Analysis

167

— Similar to the [FMEA] or its variants, a maximum deviation d indicates the
level of the disturbance. We assume d as the absolute difference between
correct and measured value.

Table 1. Classification of sensor faults according to occurrence characteristics and
knowledge of signal parameter

Al
A2
A3

short

C1
Cc2
Cc3

temporal extension

long

occurrence pattern

sporadic periodic
omission B1 time-correlated
outliers glitches
spikes
stuck-at D1 periodic
node crashes perturbation
permanent

network failures

E1l
E2
E3
E4

static

N.A.

drift

noise
delay
offset

Each fault model (A1-E4) is defined by a tuple [p, d];. For further processing
we organize these 12 parameter sets in two separate vectors p and d whereby
the position index is associated with a concrete fault model (A1=1 .. E4=12
element). If a certain fault model is not relevant for a sensor, the corresponding
entry is set to 0 in the p vector. Accordingly, the size of both vectors is constant.

Table 2. Shortened representation of an exemplary set of vectorized faul parameters

Fault models

A2 Outlier

E2 Constant noise
E4 Constant delay

Sensor faults Requirements
Occurrence Maximum Occurrence Maximum
probability = deviation probability = deviation

ps ds PR dr
0.037 16 cm 0.01 3 cm

1.0 1.6 cm 1.0 0.3 cm

1.0 40 ms 1.0 5 ms

The white columns of Tab. 2l illustrate the utilization of the vector fault rep-
resentation in a concrete case. They contain the set of fault parameters defined

168 S. Zug et al.

for the popular IR distance sensor GPD120[13] that, although popular suffers
from a number of deficiencies (precision, noise, energy consumption, sensitivity
to external light, etc.). Related to a previous careful investigation of this sensor
type we experimentally obtained values for the entries of the occurrence proba-
bility ps and maximum deviation dg vector. The subscripted “S” indicates the
fault vectors as assigned to a sensor output. Fault model A2 (outliers) occurs in
3.7 % of all measurements. The maximum deviation is quite high with 18 cm.
Beside the temporary outliers two fault models effects the perception process
permanently, the constant measurement noise and a constant delay (E2, B3). It
is remarkable, that for the last entry the deviation d contains a time value and
not a distance. The other elements of the vectors are set to zero. All parameter
sets of a sensor can be stored in a electronic data sheet that accompanies the
development process [14].

3.2 Fault Propagation

Each application component demands a certain validity level (maximum devi-
ation, noise, delay, etc.) for its inputs. If a measurement or a signal does not
meet these requirements, the system is not able to fulfill its tasks. In control
applications for instance the algorithms expect a certain range of measuring age
and noise level. A data set out of the specification range cannot be tolerated
and the system could result in an uncertain state. For this reason, the devel-
oper has to integrate a number of appropriate methods to close the gap between
the quality level of a component and the requirements of the other one. In case
of the mentioned control loop, the developer has to implement filters and an
estimator to provide smooth and approximated measurements without a delay.
The knowledge about the requirements and the appropriate algorithms has to
be realized by the developer. A proof that the measurement quality meets the
request has to be done in an elaborate evaluation.

The systematic adjustment of measurement quality and tolerable faults needs
an abstract specification of the requirements. Our detailed description of the
fault characteristics in a vectorized representation is very well suited for these
requirements. The gray columns of Tab. 2] depict an example of a character-
istic set of parameters. These concrete values are derived from a distributed
robotic scenario, where the measurements of a GP2D120 sensor node are used
for a robot trajectory control. If the distance measurements do not follow the
definitions in Tab. 2] the robot shows quite abrupt moves that disturbs other
sensors systems (odometry, acceleration sensors, gyroscopes). Comparing the
white columns (sensor specification) and gray columns (control requirements) in
Tab. [21it becomes clear, that the cheap distance sensor cannot fulfill the quality
demands without appropriate filter mechanisms. The amplitude of outliers for
instance has to be reduced by a factor of 5. Consequently, the vectors ps and
dg represents the starting point and the entries of pr and dg the intended fault
characteristic at the end point of the processing chain.

According to this idea, the changes of the signal characteristic by filters, fusion
algorithms, communication, etc. has to be monitored permanently. With such

An Approach Supporting Fault-Propagation Analysis 169

fault propagation the influence of a component on the common fault character-
istic can be analyzed and evaluated. The propagation concept has to fulfill two
tasks. Firstly, it has to provide the mapping of an input with an output fault
vector. Secondly, a metrics is needed for a comparison of the output fault vector
of the last component with the requirement vector. Both aspects are discussed
in the following paragraphs.

The mathematical mapping of an input fault vectors py;q and dy;q with output
fault vectors ppew and dyeq, can be applied in different ways. Related to the vector-
ized fault representation we choose a matrix multiplication based on homogeneous
coordinates. Such a transformation is used in projective geometry and allows espe-
cially a scaling and shifting of a vector entry in one operation. Following this idea
each component is characterized by a set of two matrices [M,,, My]. Each of them
has a size of 13x13 elements related to 12 fault models. One additional column and
row is necessary to provide an additional bias for the resulting value. For instance,
if the processing duration of a calculation increases the age of a measurement, the
additional delay can be considered in the matrix M.

The output fault vectors are calculated by poTld - My, = ppew and doTld My =
dnew- For a chain of multiple components the equation can be extended to

pg}dM;M;?M;:pnew (1)
dhy-Mj-M3- ... M} = dpew

The following paragraphs illustrate the different mapping situations using the
developed concept. For a comprehensible representation we reduce the fault vec-
tors Poid,doid,Prnew and dpew to the fault models — outlier, constant noise and
constant delay — shown in Tab. Bl Accordingly, the example-transformations
matrices M, and My contain 4x4 instead of 13x13 entries:

No effect. The component does not influences the occurrence probability or devi-
ation of a fault model. This relation is indicated by a single 1 on the main diagonal
in the assigned matrix column. As shown in Equ. (2)) the new entry for pje;se in the
fault probability vector is calculated by poutiicr - 0 + Proise - 1 + Pdetay -0+ 1-0 =
Dnoise- LThe concrete transformation matrix M, represents probably a gradient fil-
ter that detects outliers but do not smooth the measurement signal.

Proportional transformation. This effect is visible in the first column of the
transition matrix in Equ. (@). The single value of 0.1 in M, shows the reduction
of the occurrence probability for outliers by a factor of ten.

Poutlier g 0.1000 Poutlier
Proise . 0100 — Proise (2)
DPdelay 0010 DPdelay

1 old 0001 1 new

Elimination. If a filter works perfectly, it provides the complete elimination of
a fault model. In this case the hole column of the matrix is set to zero.

170 S. Zug et al.

Static offset. Beside a proportional relations between input and output indepen-
dent additional offsets can be quantified in homogeneous coordinates. Equ. (3]
gives an example for the transformation of a derivation vector d. The old delay
entry dgelay is increased by a constant value dgeiay -1+ 1 + 0.2ms. The bias of
0.2ms is just an example and can be caused by the runtime of the algorithm,
communication delays, etc.

If the proportional parts of the transformation are set to zero, the output fault
vector shows a constant entry for this fault model. Related to the delay such a
behaviour is needed in case of an estimation filter using “old” measurements to
approximate a current value.

Poutlier g 10 0 0 DPoutlier
Pnoise . 01 0 0 — Pnoise (3)
DPdelay 00 1 0 DPdelay

1 old 000.2ms 1 1 new

Interference. The last transformation category addresses the mutual interfer-
ence between different fault models. Following our sensor example we assume
now another outlier filter with a smaller trustworthiness. The limited detection
capabilities are visible by the proportional ratio of 0.3 in Equ.). Addition-
ally, the detection result is influenced by another fault model, the measurement
noise made a correct evaluation difficult. Hence, the new outlier probability is
calculated by Poutlier * 0.3+ Pnoise * 0.1= Poutlier-

T
Poutlier 03 0 0 0 Poutlier
Pnoise . O]- 1 0 0 _ Pnoise (4)
Pdelay 0010 Pdelay
1 0001 1
old new

The examples mentioned above contain single transitions only. If more than one
component are integrated in a processing chain, the transition mechanisms of
Equ. @) have to used as shown in Equ. ().

The resulting fault vectors (p, d) should be continuously compared to the
requirement vectors (pg, dg). At the moment we assess a system configuration
as valid if all entries of p and d are smaller than pr and dg. Future research will
focus on more elaborate metrics for the evaluation process.

4 Example

In this section we want to apply the mechanisms described in the previous sec-
tion on a concrete implementation integrating a GP2D120 distance sensor. As
already mentioned, the measurement quality of this sensor type does not meet
the requirements of the control application. The related fault vectors (pgs,ds)
and (pg, dr) are visible in Fig.[dlon the left and right side. For practical reasons,
the vectors contain only the relevant entries. The example scenario includes a

An Approach Supporting Fault-Propagation Analysis 171

Sensor specific Resulting Requierment
vectors vectors

s M} M3
i outier [0.037] i 051000] 1000 : i :
i Noise 10 | 0 100 0100 PloL ! X H
Delay 10 |1 0 010 0001 o X :
1 1 : 0 001 0001 : 1|5 1 :
e e e |
i outlier [16em | [018000 | 100 0 i 2.9cm i 3em :
§ Noise | 16em i 0 100 010 0 i 16em |1 2] 0.3em
: Delay 40ms | : 0 010 001 2ms | 42ms ~| 5ms
S 1 |i] o o001 000 1 1 1
ds M} M3 d dr
(a) Simple sensor node without appropriate filter strategy
pPs M,[Mg M;f M;} P PR
outier [0.037| [051000 | 04000 1000 125000 0.01 0.01
Noise 1.0 0 100 0100 0100 100 1.0 1.0
Delay 1.0 0 010 0010 0001 0 010 1.0 =1 1o
1 1 0 001 0001 0001 0 001 1 1

Sensor Ol,“her FIR Network Esti Controller
Filter

Outlier 16em | [018000 J[037 0 00 100 0 190 0 0 2.1em 3em

Noise 1.6cm 0 100 0 01100 010 0 01 0 0 0.19¢m <’ 0.3cm
Delay 40ms 0 010 0 0 10 001 2ms 0 0 0.09 0.1ms 4ms | 5ms
1 1 0 001 0 0 01 000 1 00 0 1 1 1
ds M} M3 M3 M} d dr

(b) Sensor node with suitable measurement quality

Fig. 1. Application example of the fault-propagation concerning different variants of a
sensor-filter-controller chain

communication component beside the filter and detection methods. The behavior
of the network is represented with the homogeneous coordinates.

The mismatching contents of p, d, pr and dr make an additional effort in
signal conditioning and filtering necessary. Fig. [l illustrates two different pro-
cessing chains for this scenario. In Fig. the sensor measurements are locally
filtered for outliers, communicated via a network and used as an input for the
control algorithm. We determine the transition matrices (M, M) of these steps
— gradient based outlier detection and network communication — based on a
Matlab/Simulink implementation. The fault effects and the corresponding ma-
trix entries are investigated using a set of recorded distance measurements. The
outlier filter cuts the respective outlier probability nearly to halve of the original
value. Additionally, it reduces the maximum deviation significantly. The network
related transformation has an effect only on the delay entry. Due to the fact that
a constant communication delay is assumed, those probability is set to fixed to
“1”. The delay entry in the deviation vector increases by 2 ms as visible in M3.
The fault vectors of the network output (p,d) can be calculated according to
Equ. @) by p% - M} M3 = p and df - Mj- M3 = d. Obviously, the fault level
of possible outliers meets the controller requirements but the amplitude of the

172 S. Zug et al.

measurement noise is too large. Accordingly, the age of the measurements cannot
be tolerated from the application.

Consequently, the developer designs a second implementation as shown in
Fig. He integrates an additional smoothing filter on the embedded sensor
node and implements an estimator in front of the controller. The first one, a
Finite Impulse Response Filter (FIR) is responsible for the reduction of noise
level. Additionally, it effects the remained outliers as visible in M?. At this stage
the deviation level is decreased by doytiier - 0.18 - 0.37 = doutiier- The maximum
noise level is reduced by the factor 0.11 after the FIR filter. The communication
component shows the application independent behavior as described in the para-
graph before. The new estimator applies a mathematical model to predict the
measurement results to minimize the age of the samples. Due to uncertainties
in the model the probability of outliers (and other fault categories) increases,
but the delay is limited by tenth with a small offset. The comparison of the
output fault vectors of the estimator with the requirement vectors shows the
applicability of the intended processing chain. The developer made a good job.

The presented fault propagation helps to evaluate the expected fault probabil-
ity and deviation systematically. If one or more components should be replaced
by a new one, we are able to monitor the consequences immediately.

In case of a missing transition matrix set, it has to be determined in a first
step. For this purpose we add the fault characteristic in our data sheet concept
embedded in Matlab/Simulink [I4]. The combination of an abstract fault rep-
resentation with the simulation capabilities of Matlab/Simulink will provide an
automated calculation of the transition matrices.

5 Conclusion

The fault propagation analysis presented in this paper complements and extends
the fault handling strategies for distributed sensor-based applications. The data-
centric concept of system and event validity developed for run-time assessment
of sensor faults is now exploited for design-time evaluation of a specific system
configuration. The development process can be monitored according to a require-
ment vector set that defines the fault-tolerance level of a certain component.

For large applications a multitude of requirement vectors can be embedded
on different layers. The concept provides a multi-level evaluation of the assigned
output fault vectors. Future work will strive for developing a respective frame-
work in Matlab/Simulink.

Acknowledgment. This work has partially supported by the EU under the
FP7-ICT Programme, through project 288195 “Kernel-based ARchitecture for
safetY-critical cONtrol” (KARYON).

References

1. Zug, S., Dietrich, A., Kaiser, J.: Fault-Handling in Networked Sensor Systems.
Concept Press Ltd., St. Franklin (2012)

10.

11.

12.

13.

14.

An Approach Supporting Fault-Propagation Analysis 173

Ni, K., Ramanathan, N.,; Chehade, M., Balzano, L., Nair, S., Zahedi, S., Kohler,
E., Pottie, G., Hansen, M., Srivastava, M.: Sensor network data fault types. ACM
Transactions on Sensor Networks (TOSN) 5(3), 1-29 (2009)

Cristian, F.: Understanding fault-tolerant distributed systems. Communications of
the ACM 34, 56-78 (1991)

Stamatis, D.H.: Failure Mode and Effect Analysis: FMEA from Theory to Execu-
tion, 2nd edn. ASQ Quality Press (April 2003)

ISO 26262-3: Draft International Standard Road vehicles — Functional safety - Part
3: Concept phase. ISO, International Organization for Standardization (2009)
Hillenbrand, M., Heinz, M., Adler, N., Matheis, J., Muller-Glaser, K.: Failure mode
and effect analysis based on electric and electronic architectures of vehicles to
support the safety lifecycle ISO/DIS 26262. In: 21st International Symposium on
Rapid System Prototyping (RSP 2010), pp. 1-7. IEEE (June 2010)

Sharma, A., Golubchik, L., Govindan, R.: On the prevalence of sensor faults in
real-world deployments. In: 4. Conference on Sensor, Mesh and Ad Hoc Commu-
nications and Networks, SECON 2007, pp. 213-222. IEEE (2007)

Sukumar, S., Bozdogan, H., Page, D., Koschan, A., Abidi, M.: Sensor selection
using information complexity for multi-sensor mobile robot localization. In: Inter-
national Conference on Robotics and Automation, pp. 4158-4163. IEEE
Elmenreich, W., Pitzek, S., Schlager, M.: Modeling Distributed Embedded Appli-
cations on an Interface File System. In: Proceedings of the Seventh IEEE Interna-
tional Symposium on Object-Oriented Real-Time Distributed Computing (ISORC
2004), Vienna, Austria, pp. 175-182 (2004)

Kaiser, J., Zug, S.: A fault-aware sensor architecture for cooperative mobile applica-
tions. In: 17th IEEE Workshop on Dependable Parallel, Distributed and Network-
Centric Systems, Shanghai (May 2012)

Kopetz, H.: Real-Time Systems: Design Principles for Distributed Embedded Ap-
plications. Springer (April 1997)

Dietrich, A., Zug, S., Kaiser, J.: Detecting External Measurement Disturbances
Based on Statistical Analysis for Smart Sensors. In: Procedings of the IEEE Inter-
national Symposium on Industrial Electronics (ISIE), pp. 2067-2072 (July 2010)
Sharp Cooperation: GP2D120 Data Sheet (2007),
http://sharp-world.com/products/device/lineup/data/pdf/datasheet/
gp2y0a2lyk e.pdf

Brade, T., Schulze, M., Zug, S., Kaiser, J.: Model-Driven Development of Embed-
ded Systems. In: 12th Brazilian Workshop on Real-Time and Embedded Systems
(WTR). Brazilian Computer Society, Gramado (2010)

http://sharp-world.com/products/device/lineup/data/pdf/datasheet/gp2y0a21yk_e.pdf
http://sharp-world.com/products/device/lineup/data/pdf/datasheet/gp2y0a21yk_e.pdf

Use of Quality Metrics for Functional Safety
in Systems of Cooperative Vehicles

Kenneth Ostberg and Rolf Johansson

SP Technical Research Institute of Sweden, Boras, Sweden
{kenneth.ostberg, rolf.johansson}@sp.se

Abstract. Looking at functional safety of vehicles, we have seen an evolution
from federated to integrated E/E architectures. When extending the way of
specifying and analysing functional safety to also address cooperative function-
ality, it is not possible to keep a static view of the boundaries of the system for
which to ensure safety. This is because the set of vehicles realizing a coopera-
tive function may change a lot during the execution of the cooperative function.
In this work in progress paper we suggest to move part of the task to show
safety, from design time to run time. This implies that it will become necessary
to monitor the system at run time, continuously calculate its quality and share
that information between the individual vehicles to assert that the system is
safe. In order to accomplish this, appropriate metrics are needed, both during
design time and run time. Inspired by information theory, this paper sketches
some common properties for metrics, and indicates how that can be beneficial.

Keywords: Safety, Redundancy, Quality, Software metrics.

1 Introduction

It is foreseen that in the near feature autonomous functionality in vehicles will allow
the dynamic formation of collective groups for collaboration and the realization of
services beyond the ability of isolated vehicles, e.g. group vehicles into a road train
(platoon). Also in the aircraft domain different kinds of cooperative functionality are
currently investigated. The problem discussed in this paper is the safe implementation
of this kind of cooperative functionality, while still fulfilling commercial constraints.
When claiming functional safety, it is important to understand from where the un-
derlying evidence and arguments have to be found. Di Natale and Sangiovanni-
Vincetelli elaborates in [5] on the trend from federative to integrated architectures. In
the former a number of control units realize “mostly independent or loosely intercon-
nected functions”. This means that when constructing a safety case for a functionality,
most (all) of the needed pieces of evidence and arguments can be found in the realiza-
tion of a dedicated system of sensors, control unit, and actuators. In the integrated
architecture, the functionalities can all be distributed and share resources with one
another. This means that pieces of evidence and arguments are shared, and that there
might be complicated dependencies between the separate efforts to prove the safety of

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 174-[179] 2012.
© Springer-Verlag Berlin Heidelberg 2012

Use of Quality Metrics for Functional Safety in Systems of Cooperative Vehicles 175

the different functionalities realized by the same architecture. As pointed out the ad-
vantages of integrated architectures are extensibility, flexibility and modularity. But
they also require more when it comes to functional safety, for example in regard to:
semantics of component models, and new methods and tools for analysing results of
composition. In the avionics domain the driver for the integrated architecture is IMA,
and in the automotive domain it is AUTOSAR.

From a functional safety perspective, it is critical to distribute safety requirements
among suppliers (in several tiers), and also to collect evidence and arguments from
the different organizations, in order to be able to build a safety case. [3] describes a
pattern for how to model safety requirements for this purpose. This expands the gen-
eral modelling support for functional safety of complex automotive designs that are
presented in [2]. The pattern of distributing responsibilities for enabling safety-critical
complex systems has been discussed in many papers. Bate et al [1] described this as
design and safety contracts, putting the thoughts of Meyer [4] into a safety context.

Building vehicles for cooperative functionality is yet one step further beyond the
integrated architecture, and this also requires more than when realizing an integrated
architecture. The design problem for cooperative functionalities is a system-of-
systems problem, where the set of systems may change a lot during run time. Never-
theless, all existing standards for functional safety require a complete safety case at
design time. But for cooperative functions, the set of parts may change at any time,
since the set of systems (vehicles) may change at any time.

One way to prove the safety for one cooperative functionality, would be to build
one complete safety case at design time valid for every possible run time scenario.
This might lead to designs that are commercially unattractive. Another approach
would be to take into account the possibility of graceful degradation of each function-
ality, and view each step of degradation as a safety case of its own. Then we could
move from design time to run time, part of the task of showing that all safety
requirements always are met. This implies, however, that we can express which prop-
erties of the parts of the system-of-systems that are of importance for fulfilling this
during run time. What is proposed in this paper is that traditional design time methods
have to be complemented by run time methods. An enabler for run time methods
would be to introduce quality metrics that can be used for arguing which levels of
safety integrity that are achieved (and how they change) during run time.

2 Basic Concept of Information Theory

Information theory is a mathematical theory about communication, focusing on
source coding and channel coding (and decoding) i. ¢ how to code information effi-
ciently when it is sent over a noisy communication channel. Source coding is about
data compression and channel coding is about error coding. To be able to make these
calculations it is necessary to quantify the concept of information in some way. In IT
the word information is a measurable quantity and is related to events and their prob-
ability. There are two aspects of information. Mutual information is related to the
communication between a sender and a receiver and includes aspects of redundancy.

176 K. Ostberg and R. Johansson

Self-information is related to the probability of a single event X. By starting with the
concept of self-information and extending its scope, there is hope that the concept of
mutual information will later on be useful to express redundancy in a system. IT can,
at least, serve as an inspirational source and give a deeper understanding of how in-
formation quality, redundancy and probability can be treated in a uniform way.

In IT, self-information is described with a simple formula (1) where I (X) denotes
self-information for event X. It has no unit and its domain is [0, 1] and a range of
[infinity, 0].

I (X) = -log2 Probability_of (X) 1)
If the probability of X is 100 % the self-information becomes:
I(X)=-log21=0 2)

If the probability is approaching 0% self-information approaches infinity. Self-
information can be interpreted as how surprised one becomes when event X happens
or how much information one can obtain from the event. If event X has a probability
of 100% to happen then there should be no surprise about it, thus its self-information
is 0. The more unsure one becomes about the event, the more information can be
gained from it. In [6] Kaiser and Zug elaborate on ideas about quality metrics and
self-assessment for sensor data. Our idea is to extend the scope of self-assessment to
denote all types of metrics dealing with quality measurements related to a single ob-
ject, both during design time and run time.

We believe that (1) has interesting properties that can be applied to quality metrics
in general. To get a better understanding of (1), let us look at information from two
different aspects: a spatial view and a temporal view, fig 1.

A Value Domain

Sample

Timing Error

Spatial Error

>
I v

Time Domain

Fig. 1. Spatial and temporal noise

In general, when information is sampled by a sensor we get a quantizing error or
quantizing noise. There is also some form of noise in the temporal domain, e.g. phase
noise due to an imperfect clock signal. The terms information and sensor are to be
taken very broadly. A lower quantizing noise means better quality. The same goes for

Use of Quality Metrics for Functional Safety in Systems of Cooperative Vehicles 177

the temporal domain. If these two error sources or noises were absent the information
would be of the “highest quality”. These two sources of noise are part of the probabil-
ity function for failure in a communication channel. Low noise increases the probabil-
ity of correct transmission, which in turn can be viewed as high quality. Quality can
be measured as “the absence of bad”, or the relation between what is considered good
in a measurement and what is considered fault, annoyance, disturbance, missing or
noise. If two quality metrics are independent as the case above with quantizing noise
and phase noise, it can make sense to combine them into a single metric. From these
arguments it seems reasonable to have zero to indicate the highest quality, or absence
of bad, and infinity to indicate the lowest quality, or absence of good for a metric. The
operation of addition to combine metrics will then preserve the notion of highest qual-
ity as well as lowest quality. It will also be simple to weight the metrics before addi-
tion with multiplication of scaling factors. From this point of view we suggest to
extend the use of formula (1) to not only be a quantity of probability but any relative
quality measure of something good (3).

M(X) = -log2 Probability_or_ Percentage_of_something_good (X) 3)

Formula (3) and (1) are indeed the same. The only difference is that its domain is not
restricted to the probability of an event, but rather any metric related to quality is ex-
pressed in a uniform way. This will put zero as the common reference value for
“highest quality”. The value is unit less and can thus be mixed freely if needed. Se-
lecting a good common reference point is important since it can impact the simplicity
of calculations and give better semantics to standard operators. Defining quality as
“absence of bad” turns quality metrics into being additive in same way as noise is
additive in a communication channel.

The use of quality metrics is not only useful during run time in regard to the safety
aspect, but it is also useful in the design and verification process. To argue that a sys-
tem is safe, it may not be sufficient in the future to rely only on good design practice.
Using relevant metrics during design time will improve quality and this practice has
the potential to be reused during run time. In general, any process or function that
operates on information will at best preserve the quality of incoming information, but
it can never improve the quality unless redundancy is introduced.

3 Functional Safety and Quality Calculations

The concept of functional safety can be described in different ways depending on the
application and on the related safety standard. Most of the standards are elaborating
on the theme “absence of unacceptable risk” where the risk is examined via risk anal-
ysis. Allowing vehicles to cooperate introduces additional risk, but it also provides
means to reduce risk. Cooperative vehicles are likely to have overlapping (redundant)
information. As redundancy is a means to reduce risk, the fact that vehicles are coope-
rating is an enabler for risk reduction. However, in reality the degree of redundancy
may vary a lot during operation (run time) mainly because of the varying availability
of reliable vehicle-to-vehicle communication, and of reliable sensor data.

178 K. Ostberg and R. Johansson

When building a safe cooperative system, there are in principle two strategies to
follow. The first one is to make a complete analysis beforehand in which is shown
that the necessary risk reduction is always achieved for the entire mission of the sys-
tem. The second one is to let the system itself calculate the actual available risk reduc-
tion continuously at run time, and adjust the mission in such a way that the achieved
risk reduction is sufficient. This strategy can be seen as graceful degradation, where
the mode of operation is adjusted so that the needed risk reduction always is fulfilled.

The process to determine the needed risk reduction is different between the differ-
ent safety standards, but in principle there is a common idea of required levels of
“safety integrity”. The idea is that the higher level of safety integrity, the surer we are
that there will be no safety-critical failure. In IEC 61508 these are called SIL (Safety
Integrity Level), with SIL4 denoting the highest level. In ISO 26262 they are called
ASIL (Automotive Safety Integrity Levels) with ASILD denoting the highest level.

When applying redundancy in a safety-critical system design, the safety standards
tells you how the required safety integrity of the redundant parts may be lower than
for the required safety integrity of the entire system. In the ISO26262 standard this is
called ASIL decomposition, and there is a defined set of rules (an “ASIL algebra”)
telling possible ways to determine the required safety integrity of redundant architec-
tural elements.

These kinds of rules assume that the redundancy itself can be guaranteed. This
guarantee is required to have at least an integrity level as of the redundant system
itself. If for example there is a requirement on ASILD that is realized by
ASILA+ASILC, the guarantee of the redundancy still have to be ASILD.

In a scenario with cooperative vehicles, it is most likely never the case that the no-
minal redundancy pattern can be guaranteed valid for the entire operation with a high
level of integrity. In order to be able to take benefit from such redundancy in the safe-
ty argumentation, it is thus necessary to measure it continuously during run time. This
requires however that what can be measured by the system itself during run time, can
be transformed into a metrics for safety integrity level according to the applicable
safety standard.

Our hypothesis is that different quality metrics measured during run time can be
used for estimating the achieved level of safety integrity. We can say that we are in a
quest for “an algebra of quality”.

In the end what is relevant is how much we can trust, or be confident, about the in-
formation in the system. Attributes such as standard deviation, degree of redundancy
and probabilities of correct values are important quality attributes. Looking closer at
information theory, IT, one realizes that these attributes are what IT is about. So our
view of (3) is that it transforms a product of probabilities into addition of quality
attributes when producing evidence according to a safety argument.

4 Conclusion

This paper describes work in progress related to enable the extension of safety stan-
dards to deal with cooperative functionalities. To argue the safety of a system consist-
ing of collaborative vehicles, appropriate metrics is needed; both during design time

Use of Quality Metrics for Functional Safety in Systems of Cooperative Vehicles 179

and during run time. The run time metrics will be used to assert the integrity of the
system continuously during operation and for comparison with the, at design time
identified, required safety integrity levels. These metrics will be shared, compared and
processed in different ways. At the moment, all kinds of metrics that will be needed
for different domains and services cannot be foreseen, but it is possible to assert that
they share some common properties and can be handled in a uniform way. Standard
operators as multiplication and addition will then have simple semantic meaning
when scaling and combining quality indexes. Information theory is based on probabil-
ity and has sound theoretical ground. Its definition of self-information has properties
that are wanted. Safety is also related to probability so it seems natural to try to extend
the scope of self-information to also be about quality metrics.

This paper has focused on quality metrics for safety on a technical ground. Focus-
ing more on quality metrics also has other merits. There exist efforts like ISO/IEC
15504 to evaluate and improve a design process, but their analysis is more based on
manual inspection than processing quality metrics. The work to understand how to
measure and process quality metrics during run time based on design time quality
metrics can hopefully also aid such efforts.

Acknowledgment. This work as been supported by the EU under the FP7-ICT
programme, through project 288195 "Kernel-based ARchitecture for safetY-critical
cONtrol" (KARYON).

References

1. Bate, I, et al.: A Contract-Based Approach to Designing Safe Systems. In: 8th Australian
Workshop on Safety-Critical Systems and Software, SCS 2003 (2003)

2. Chen, D., Johansson, R., Lonn, H., Papadopoulos, Y., Sandberg, A., Torner, F., Torngren,
M.: Modelling Support for Design of Safety-Critical Automotive Embedded Systems. In:
Harrison, M.D., Sujan, M.-A. (eds.) SAFECOMP 2008. LNCS, vol. 5219, pp. 72-85.
Springer, Heidelberg (2008)

3. Johansson, R., et al.: A Road-Map for Enabling System Analysis of AUTOSAR Based Sys-
tems. In: Proceedings of Critical Automotive applications: Robustness & Safety, CARS
(2010)

4. Meyer, B.: Object-Oriented software Construction. Prentice Hall (1988)

5. Di Natale, M., Sangiovanni-Vincentelli, A.L.: Moving From federated to Integrated Archi-
techtures in Automotive: The Role of Standards, Methods and Tools. Proceedings of the
IEEE 98, 603-620 (2010)

6. Kaiser, J., Zug, S.: A fault-aware sensor architecture for cooperative mobile applications.
In: Proc. 17th IEEE Workshop on Dependable Parallel, Distributed and Network-Centric
Systems (DPDNS 2012), Shanghai, China, May 25 (2012)

From Autonomous Vehicles to Safer Cars:
Selected Challenges for the Software Engineering

Christian Berger

Department of Computer Science and Engineering
Chalmers, University of Gothenburg, Sweden
christian.berger@chalmers.se

Abstract. In November 2007, the DARPA Urban Challenge took place
on the former George Airforce base in Victorville, California. Within
that competition, teams from all-over the world had to demonstrate the
autonomous driving capabilities from their robot cars in an urban-like
environment. From initially 89 competitors, only eleven qualified for the
final event wherein “Boss” from Carnegie Mellon finally won the race. In
this article, a short overview over European’s best team “CarOLO” and
its vehicle “Caroline” within that competition is outlined. Based on the
experiences from that competition, remaining challenges for the software
engineering are described to realize safer cars in the future.

Keywords: autonomous driving, automotive safety functions, software
engineering.

1 Introduction

The 2007 DARPA Urban Challenge was the third major challenge for au-
tonomously driving vehicles within the last decade. That competition was the
successor of the 2004 & 2005 DARPA Grand Challenges series wherein robot
cars had to drive safely within stationary surroundings. However, that last com-
petition increased the requirements to these robot cars significantly because they
had to deal safely within moving traffic while they had to obey the Californian
traffic regulations at the same time.

In Fig. the robot vehicle “Caroline” from team “CarOLO” of the
Technische Universitat Braunschweig is depicted. “Caroline” based on a 2006
Volkswagen Passat station wagon, which was modified to meet the requirements
of the DARPA Urban Challenge [3]. The main idea behind its sensor setup was to
rely on redundant and overlapping viewing areas on the one hand; on the other
hand, different measuring principles were used to avoid a sensor’s individual
weaknesses.

To detected moving traffic, “Caroline” used two IBEA Alasca XT sensors
together with one Hella IDIS Lidar and one SMS UMRR radar, which were
mounted at the vehicle’s front; on the rear side, one IBEO ML, one Hella IDIS
Lidar, and two SMS Blind Spot detectors were used to back out safely from

F. Ortmeier and P. Daniel (Eds.): SAFECOMP 2012 Workshops, LNCS 7613, pp. 180-[[89] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

From Autonomous Vehicles to Safer Cars 181

(a) Sensor setup of the autonomously driving (b) Computers in the vehicle’s trunk,
robot vehicle “Caroline”. which were used to process the mass
data to derive driving decisions.

Fig. 1. The autonomously driving vehicle “Caroline”—the contribution from the Tech-
nische Universitdt Braunschweig, which competed in the 2007 DARPA Urban Challenge
as the best European entry ([1I2])

a parking spot. For detecting the lanemarkings, four Point Grey Flea2 firewire
cameras were used [4]. The drivable area in front of the robot vehicle was detected
with an IDS pEye monocular color-camera together with two Sick LMS 291 single
layer laser scanners [5]. All data was processed in the vehicle’s trunk by several
computers, which were running with Debian Linux (cf. Fig. |[1(b)]).

As shown in Fig. Bl incoming sensors’ data was processed by the pipes and
filters architectural design pattern [7]: The perception layer gathers all data from
the sensors, which includes not only online data that is read from all mounted
sensors, but also a priori available offline data like annotated digital maps. That

System's Context

Sensor- and Actuator-based Autonomous System

Perception Layer Decision Layer Action Layer
D s e A 23 I St
IN Sensor 1 + i
Situational assessment

Action supervisor

Sensor data fusion

Short term planner

Action generator

Preset data 1

e 4 1 7
| Monitoring Logging [Recording] [Visuatization| |

Long term planner

Fig. 2. System architecture, which consists of a data perception layer, a decision layer,
and an action layer; the support layer is used to inspect non-reactively the data flows
(according to [6]).

182 C. Berger

layer creates and updates continuously an environmental model, which is the
input for the following decision layer. Within that layer, the model of the sur-
roundings is interpreted and evaluated to derive driving decisions. Therefore, a
short-term planner reacts on the current traffic situation while the long-term
planner tries to achieve the overall goal like reaching the final destination point.
From that layer, set points for the action layer are derived to be driven by control
algorithms. A more detailed description of “Caroline” can be found at [I] and [2].
While the depicted system architecture shows the specific realization of “Caro-
line”, a similar architecture can be found in recent projects like [8], which was
enhanced by an HMI layer and a state model for the driver’s actions; however,
those aspects were not part of the 2007 DARPA Urban Challenge competition
for driverless robots.

However, the 2007 DARPA Urban Challenge excluded the at least protected
traffic participants: Pedestrians and bicyclists [3]. To provide autonomously driv-
ing vehicles for daily usage, it is necessary to increase their reliability significantly
so that they act safely in various and even unpredictable traffic situations [9]. In
this contribution, selected challenges for the software engineering are described,
which arise from the goal to avoid casualties and fatalities, to reduce energy
consumption, and to increase the overall traffic flow on our roads. The paper is
structured as follows: First, a short overview over related work is provided, fol-
lowed by a description of selected challenges for the software engineering. Finally,
the paper summarizes the open issues and provides a short outlook.

2 Related Work

The 2007 DARPA Urban Challenge fostered the research and development of
robot vehicles especially for urban and rural environments. However as already
mentioned, the least protected traffic participants were excluded from that com-
petition. Therefore, subsequent projects like [I0] and [IT] address explicitly this
extended and more complex environment.

In Fig.[Bl three different charts are depicted to illustrate the impact of recent
automotive safety systems on the example of Germany. The green line shows
the increasing number of vehicles over time, which are used on German roads.
Despite that increased number of cars, the number of fatally injured traffic par-
ticipants has dropped significantly during the last decades. This drop can be
deduced from the increased number of available safety systems in the vehicles,
which is shown by the light red line. However, within the last decade, more and
more vehicle safety functions rely not only on the own vehicle data anymore; in-
stead, they are using also perceived data from the vehicle’s environment. Thus,
it can be deduced that an increase in the overall safety must include also data
from a vehicle’s surroundings. Therefore, more and more complex systems are
required to improve the overall road safety.

These increasingly complex systems can be regarded as so-called cyber-
physical systems (CPS) [12], which enable further possibilities on the one hand
[13]; on the other hand, new methods are required to safely and reliably develop

From Autonomous Vehicles to Safer Cars 183

A R
8 o Vehicle Data Surroundings Data -~
n ”’
’/
’
o n "
N InterseCtion
ist
® o ssis
fw o Brake
g™ Sm Assist
3 = Lane
23 Eg Assist
s
= (")
35 Su ESP
E7 Ex
T]
e >
© o
w o
N ,,/
© . Ptad
’/
©
o
< -
~ n
>

1960 1970 1980 1990 2000 2010

Fig. 3. Green line: Increasing number of vehicles in Germany (based on Statistisches
Bundesamt, www.destatis.de); dark red line: Decreasing number of fatally injured traf-
fic participants (based on Bundesanstalt fir Straflenwesen, www.bast.de); light red
line: Increasing number of safety & driver assistance systems (based on ADAC e.V.,
www.adac.de). The recent assistance systems rely additionally on the vehicle’s sur-
roundings data.

and test these more and more interconnected safety-critical systems [I4]. There-
fore, in [6] and [I5], an approach is outlined, which enables a virtualized testing
environment for autonomously driving vehicles. Furthermore, formal methods
could be successfully applied to focus on the correct implementation of the right
requirements [16] during the requirements elicitation at a large German automo-
tive OEM. However, there are still open issues for today’s software engineering
during the development and the lifecycle of these CPS, which are discussed in
the following section.

3 Selected Challenges for Software Engineering

In Fig. @ the lifecycle of a vehicle is shown. According to [17], the development
of these nowadays more and more complex and software-intense systems lasts
approximately 3.5 years, which is followed by a production cycle of roughly 7
years. However, the estimated usage duration of the vehicles is on average about
8 years. Therefore, decisions, which were met at development time must be valid
for approximately 18 years in the worst case. Thus, today’s software engineering
is faced with questions regarding the product’s long-term usage, which arise dur-
ing the entire lifecycle of complex and software-intense CPS, which perceive the
surroundings for interactions. Solutions to these questions are important espe-
cially for safety-critical automotive functions. Selected open issues are discussed

184 C. Berger

Development | Production

Fig.4. Automotive lifecycle according to [I7] annotated by selected challenges for
today’s software engineering

in the following, which are related to the design of embedded vehicle functions
that rely on data from the surroundings for a proper functioning.

1. How can we effectively apply formal methods for modeling requirements to
increase our confidence in the later implementation?

Today’s vehicles assist passengers not only with comfort functions but even
more with safety-critical vehicle functions in dynamically critical driving situa-
tions. For example, the vehicle can initiate a braking maneuver due to a predicted
collision, which is deduced from the gathered sensor data. Since November 2011,
the ISO 26262 is in effect to provide guidelines for the development of func-
tions with a certain automotive safety integrity level (A-SIL). However, formal
methods are suggested to be “recommended” and only semi-formal methods are
suggested to be “highly recommended”; nevertheless, there are also first suc-
cess stories from the pre-development stage for safety-critical vehicle functions,
which applied formal methods even for the requirements specification during the
requirement [16]. Thus, the aforementioned question also includes aspects how
new standards can be implemented effectively.

2. How can we identify and derive necessary parameters and their interrela-
tions (e.g. sensor setup and mounting positions) already very early during the
development to find the optimal design of a context-aware embedded function?

As shown in Fig. [3 recent automotive software functions rely more and more
on data, which is perceived from the vehicle’s surroundings. However, param-
eters and their interrelations like mounting positions or opening angles, which
significantly influence design decisions and the resulting vehicle function’s qual-
ity, are hardly to estimate in a correct and complete manner already at the
beginning of the development. However, the development of first prototypes con-
sume considerable resources on the one hand; on the other hand, sensors’ data

From Autonomous Vehicles to Safer Cars 185

from traffic situations, in which the vehicle function shall operate, must be avail-
able very early to develop a stable concept, which consists of both a hardware
and a software architecture.

3. How can we predict the impact of design decisions alongside the develop-
ment process (e.g. sensor type & position, viewing angles, logical software archi-
tecture, resulting distribution among ECUs, economic boundaries, ...) regarding
the quality of the resulting implementation?

This issue is related to the previous one and requires the extensive usage of
complex simulations. Especially for software functions, which base on environ-
mental data, a high responsiveness to a developer’s questions can be achieved
by appropriate simulation environments. Thus, experiments with these complex
systems could be carried out in such a virtualized environment to pose the right
questions during the development.

4. Which simulations must be repeated (for example by automated regression
stmulations) in case of changes in the requirements or in the implementation
and why?

However, while simulations can provide valuable answers, they are also time-
and resource-consuming. Therefore, models are required to derive figures for guid-
ing computationally intense simulation runs. Furthermore, when simulations are
used as a part of the software construction process as outlined in [I8/16], these
models shall provide information to decide which simulation runs are necessarily
required when requirements and/or the implementation changes.

5. Which real test-drives must be carried out to confirm results from previous
simulation runs and which real test-drives can be omitted without difficulty and
why?

Right before the start of production (SOP), vehicle functions must be for-
mally released to meet this fixed date. Therefore, simulations, which were a vi-
tal part during the development, shall provide information to decide which real
test-drives must be carried out to confirm previously derived simulative results.
Furthermore, this information can also be used to plan long-term robustness
test-drives effectively by providing information about traffic situations, which
were difficult to handle within the simulation.

6. How can results from simulations and real test-drives be adapted and pre-
dicted for software variants from a software product line?

Even more, these simulations must play a major role in today’s diverse vehicle
projects, which often only differ slightly. However, they are even more important
for the outlined systems, which also rely on data from the vehicle’s surroundings.
For example, a collision detection system in a premium car could rely on a more
expensive sensor compared to a system for a low-cost vehicle; however in the end,
the expected behavior from the customer’s point of view is identical regardless
of the underlying technology. Thus, simulations must be designed and carried
out to achieve synergies for different real CPS with similar behavior.

7. How can we use statistical vehicle data (e.g. maintenance, ...) from the field
to improve the development process and to predict the software quality for future
vehicle projects?

186 C. Berger

For example, maintenance data from the field could be analyzed to find an
erroneous behavior pattern of a software function. This pattern could be modeled
in a centralized simulation environment as a specific traffic situation to improve
further variants of the software function and to realize a “lessons learnt” for
the software development of oncoming vehicle projects. Furthermore, data from
vehicle flows is nowadays already used to predict traffic jams or to estimate
bottle-necks in the road infrastructure for example [19]. In the future, vehicle-
to-X data could also be used in an online manner during the journey to adapt
driving profiles according to the current traffic situation for example. However,
models from this highly volatile data are necessary to improve future vehicle
functions based on insights, which are deduced from a fleet’s field data.

8. How do we maintain our long-term software quality when e.g. sensors and
V2X protocols evolve?

However, the most challenging points arise from the long-term usage of these
software-intense and complex vehicle functions. Due to the traditional develop-
ment of automotive systems, vehicle functions are often separated and deployed
to their specific ECUs. However, this development model was rethought with
the development and introduction of AUTOSAR, which enables the OEMs to
separate vehicle functions from the hardware. But the concepts of AUTOSAR
must be enhanced when reconfiguration during the functions life-time is required
by changes in the surroundings as described by [20] for example. This change
can be caused simply by an exchange of existing sensors or even by evolving
communication protocols. Furthermore, another aspect is to tackle such a re-
configuration with proper design-time models according to the aforementioned
safety standards.

9. How can we predict and ensure reliability of our vehicle functions in a long-
term manner regarding mized traffic, which consists of vehicles with different
levels of “intelligence”?

Nowadays, vehicle systems realize functions, which are related to the own ve-
hicle and to the directly visible surroundings. However, when vehicle-to-X com-
munication is a vital part of a comfort or perhaps a safety system, simulations
must be significantly improved to include data about mixed traffic. This traf-
fic consists of vehicles with different “intelligence” levels ranging from none to
high. Furthermore, the structure of this mixed traffic will change and evolve over
time. Therefore, models for this mixed traffic will be mandatory and crucial in
the future the ensure the quality of interconnected and interrelated automotive
functions.

However, how can the aforementioned challenges be successfully addressed?
A possible solution was already pointed out in some of the aforementioned ques-
tions: Simulations must play a larger role within the software engineering. Con-
trary to other engineering disciplines, simulations are nearly mandatory during
the design of control algorithms for example or for the analysis of physical phe-
nomena. In those areas, they are an essential method during the development.
Furthermore and already 1999, [21] pointed out that simulative approaches are

From Autonomous Vehicles to Safer Cars 187

not only helpful for the analysis of the technical and physical context but they
can also assist to analyze processes in software engineering.

Regarding CPS, simulative approaches must be used more intensively to in-
crease the confidence in the resulting implementation because of its complex
surroundings. Real world tests will still play an important role in the foreseeable
future but simulations will additionally provide valuable insights and feedback
already at earlier stages during the development process where real prototypes
of there interconnected CPS are not yet available. Thus, a methodical incorpora-
tion of these simulative approaches in software engineering processes will become
increasingly important.

4 Conclusion

The 2007 DARPA Urban Challenge was a showcase that fostered significantly
the research and development for autonomously driving vehicles. Recent pro-
totypes proved long-term usability with ranges over more than 140,000mi [22].
Furthermore, first initiatives are successful to permit the usage of such vehicles
in public traffic in some states in the US.

However, as shown along the lifecycle of a vehicle, there still remain several
open issues to manage the development and maintenance of such a complex
and software-intense CPS from a software engineer’s point of view. The major
challenge is that more and more safety-critical vehicle functions rely on data from
the vehicle’s context, which is very volatile due to mixed traffic or evolution in
vehicle-to-X communication protocols for example. However, in contrast to the
avionics sector, which demands a software development according to DO 178C, or
the railway sector, which relies on a development that follows EN 50128, function
development according to ISO 26262 for safety-critical automotive functions is
very young because the standard was released in November 2011 first. Thus,
industrial success stories from development projects, which implement the ISO
26262, will arise primal in the upcoming years to show the practical benefit.

In this contribution, selected challenges for the software engineering for these
complex CPS were discussed. For many of these exemplary questions, simulative
approaches, which include explicitly the system’s context, could provide the
means for developers to analyze these interconnected and interrelated systems
already at early development stages. However, a further elaborated methodology
for their usages within the software engineering is required, which outlines how
and to which extent these simulations could be successfully used—especially for
more than only one project to achieve synergies.

References

1. Rauskolb, F.W., Berger, K., Lipski, C., Magnor, M., Cornelsen, K., Effertz, J.,
Form, T., Graefe, F., Ohl, S., Schumacher, W., Wille, J.M., Hecker, P., Nothdurft,
T., Doering, M., Homeier, K., Morgenroth, J., Wolf, L., Basarke, C., Berger, C.,
Giilke, T., Klose, F., Rumpe, B.: Caroline: An Autonomously Driving Vehicle for
Urban Environments. Journal of Field Robotics 25(9), 674-724 (2008)

188

2.

0 =

10.

11.

12.

13.

14.

15.

16.

C. Berger

Basarke, C., Berger, C., Berger, K., Cornelsen, K., Doering, M., Effertz, J., Form,
T., Giilke, T., Graefe, F., Hecker, P., Homeier, K., Klose, F., Lipski, C., Magnor, M.,
Morgenroth, J., Nothdurft, T., Ohl, S., Rauskolb, F.W., Rumpe, B., Schumacher,
W., Wille, J.M., Wolf, L.: Team CarOLO - Technical Paper. Informatik-Bericht
2008-07, Technische Universitiat Braunschweig, Braunschweig, Germany (October
2008)

. DARPA: Urban Challenge Technical Evaluation Criteria. Technical report,

DARPA, Arlington, VA, USA (2006)

. Lipski, C., Scholz, B., Berger, K., Linz, C., Stich, T., Magnor, M.: A Fast and

Robust Approach to Lane Marking Detection and Lane Tracking. In: Proceedings
of the IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 57—
60. TEEE (2008)

. Berger, K., Lipski, C., Linz, C., Stich, T., Magnor, M.: The Area Processing Unit of

Caroline - Finding the Way through DARPA’s Urban Challenge. In: Sommer, G.,
Klette, R. (eds.) RobVis 2008. LNCS, vol. 4931, pp. 260-274. Springer, Heidelberg
(2008)

. Berger, C.: Automating Acceptance Tests for Sensor- and Actuator-based Systems

on the Example of Autonomous Vehicles. Shaker Verlag, Aachener Informatik-
Berichte, Software Engineering Band 6, Aachen, Germany (2010)

. Raymond, E.S.: The Art of Unix Programming. Addison-Wesley, Boston (2003)
. Flemisch, F., Nashashibi, F., Rauch, N., Schieben, A., Glaser, S., Gerald, T., Re-

sende, P., Vanholme, B., Loper, C., Thomaidis, G., Mosebach, H., Schomerus, J.,
Hima, S., Kaussner, A.: Towards Highly Automated Driving: Intermediate report
on the HAVEit-Joint System. In: Proceedings of the 3rd European Road Transport
Research Arena, Brussels, Belgium, pp. 1-12 (November 2010)

. Berger, C., Rumpe, B.: Autonomous Driving - 5 Years after the Urban Challenge:

The Anticipatory Vehicle as a Cyber-Physical System. In: Goltz, U., Magnor, M.,
Appelrath, H.J., Matthies, H.K., Balke, W.T., Wolf, L. (eds.) Proceedings of the
INFORMATIK 2012, Braunschweig, Germany (September 2012)

Nothdurft, T., Hecker, P., Ohl, S., Saust, F., Maurer, M., Reschka, A., Bhmer,
J.R.: Stadtpilot: First Fully Autonomous Test Drives in Urban Traffic. In: Proceed-
ings of the International IEEE Conference on Intelligent Transportation Systems,
Washington, DC, USA, pp. 919-924 (October 2011)

Wang, M., Ganjineh, T., Rojas, R.: Action Annotated Trajectory Generation for
Autonomous Maneuvers on Structured Road Networks. In: Proceedings of the 5th
International Conference on Automation, Robotics and Applications, Wellington,
New Zealand, pp. 67-72 (December 2011)

Lee, E.A.: Computing Foundations and Practice for Cyber-Physical Systems: A
Preliminary Report. Technical Report UCB/EECS-2007-72, University of Califor-
nia, Berkeley, CA, USA (2007)

Geisberger, E., Broy, M. (eds.): agendaCPS - Integrierte Forschungsagenda Cyber-
Physical Systems (acatech STUDIE). Springer, Heidelberg (2012)

Giese, H., Rumpe, B., Schitz, B., Sztipanovits, J.: Science and Engineering of
Cyber-Physical Systems. Dagstuhl Reports 1(11), 1-22 (2012)

Berger, C., Rumpe, B.: Engineering Autonomous Driving Software. In: Rouff, C.,
Hinchey, M. (eds.) Experience from the DARPA Urban Challenge, pp. 243-271.
Springer, London (2012)

Siegl, S., Hielscher, K.S., German, R., Berger, C.: Automated Testing of Embedded
Automotive Systems from Requirement Specification Models. In: Proceedings of
the 12th IEEE Latin-American Test Workshop, Porto de Galinhas, Brazil, pp. 1-6
(March 2011)

17.

18.

19.

20.

21.

22.

From Autonomous Vehicles to Safer Cars 189

Schauffele, J., Zurawka, T.: Automotive Software Engineering. Friedr. Vieweg &
Sohn Verlag, Wiesbaden, Germany (2003)

Basarke, C., Berger, C., Rumpe, B.: Software & Systems Engineering Process
and Tools for the Development of Autonomous Driving Intelligence. Journal of
Aerospace Computing, Information, and Communication 4(12), 1158-1174 (2007)
Jiang, R., Hu, M.B., Jia, B., Wang, R., Wu, Q.S.: Effect of Adaptive Cruise Con-
trol Vehicles on Phase Transition in a Mixture with Manual Vehicles. In: Appert-
Rolland, C., Chevoir, F., Gondret, P., Lassarre, S., Lebacque, J.P., Schreckenberg,
M. (eds.) Traffic and Granular Flow 2007, pp. 105-115. Springer, Heidelberg (2009)
Weiss, G., Zeller, M., Eilers, D., Knorr, R.: Towards Self-organization in Automo-
tive Embedded Systems. In: Gonzdlez Nieto, J., Reif, W., Wang, G., Indulska, J.
(eds.) ATC 2009. LNCS, vol. 5586, pp. 32—-46. Springer, Heidelberg (2009)
Christie, A.M.: Simulation: An Enabling Technology in Software Engineering.
CROSSTALK - The Journal of Defense Software Engineering 12(4), 25-30 (1999)
Thrun, S.: What we’re driving at (2010)

Modelling of Safety-Related Timing Constraints
for Automotive Embedded Systems

Oscar Ljungkrantz, Henrik Lonn, Hans Blom, Cecilia Ekelin, and Daniel Karlsson

Advanced Technology & Research
Volvo Group Trucks Technology
Gothenburg, Sweden
{oscar.ljungkrantz,henrik.lonn,hans.blom,cecilia.ekelin,
daniel.b.karlsson}@volvo.com

Abstract. Timing and functional safety are important aspects when developing
automotive embedded systems. The two aspects have however mostly been
studied as separate aspects, up to now. This paper presents an investigation of
safety-related timing constraints within the functional safety standard ISO
26262. Although the standard defines several such timing constraints it also
leaves room for interpretation, which is discussed in the paper. Clear interpreta-
tions are needed to support current trends towards model-based development. A
few extensions are proposed to the state-of-the-art modelling languages EAST-
ADL and TADL to specify the timing constraints.

Keywords: Automotive embedded systems, fault/failure modelling, functional
safety, ISO 26262, timing, EAST-ADL.

1 Introduction

The embedded systems in motor vehicles are getting increasingly complex. Drive-by-
wire solutions, diagnostic services, safety systems, infotainment systems and hybrid
electric vehicles all add to the complexity. This challenge has in part been addressed by
the automotive industry in different collaboration and standardisation initiatives. The
AUTOSAR architecture addresses software standardization and enables a common
market for automotive software components, see [1]. AUTOSAR was presented in
2004 [2] and can now be considered a de facto standard. EAST-ADL [3] complements
AUTOSAR with descriptions a