
Assume-Guarantee Scenarios:

Semantics and Synthesis�

Shahar Maoz1 and Yaniv Sa’ar2

1 School of Computer Science, Tel Aviv University, Israel
2 Dept. of Computer Science, The Weizmann Institute of Science, Israel

Abstract. The behavior of open reactive systems is best described in an
assume-guarantee style specification: a system guarantees certain
prescribed behavior provided that its environment follows certain given
assumptions. Scenario-based modeling languages, such as variants of
message sequence charts, have been used to specify reactive systems
behavior in a visual, modular, intuitive way. However, none have yet
provided full support for assume-guarantee style specifications.

In this paper we present assume-guarantee scenarios, which extend
live sequence charts (lsc) — a visual, expressive, scenario-based lan-
guage — syntax and semantics, with an explicit distinction between sys-
tem and environment entities and with support not only for safety and
liveness system guarantees but also for safety and liveness environment
assumptions. Moreover, the semantics is defined using a reduction to
gr(1), a fragment of ltl that enables game-based, symbolic, efficient
synthesis of a correct-by-construction controller.

1 Introduction

It has long been recognized that the behavior of open reactive systems [11],
discrete event systems that interact with their environment over time, and of
other systems, is best specified using an assume-guarantee style specification:
a system guarantees certain prescribed behavior provided that its environment
follows certain given assumptions (see, e.g., [14, 20]). Environment assumptions
may be related to the laws of physics (when interacting with the physical world)
or to knowledge about the behavior of external systems (when interacting with
other systems). They are crucial in many application domains, because some
system requirements may only be realizable under assumptions about behaviors
the environment will never or will always eventually exhibit. Scenario-based
languages, however, which have been used to specify reactive systems behavior
in a visual, modular, intuitive way, have not yet provided full support for the
assume-guarantee paradigm.

� This research was supported by The John von Neumann Minerva Center for the
Development of Reactive Systems at the Weizmann Institute of Science. In addition,
part of this research was funded by an Advanced Research Grant awarded to David
Harel of the Weizmann Institute from the European Research Council (ERC) under
the European Community’s 7th Framework Programme (FP7/2007-2013).

R.B. France et al. (Eds.): MODELS 2012, LNCS 7590, pp. 335–351, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

336 S. Maoz and Y. Sa’ar

One such language is live sequence charts (lsc) [5, 8], a visual language for
scenario-based modeling, which extends classical sequence diagrams with a dis-
tinction between mandatory-universal behavior (hot elements) and provisional-
existential behavior (cold elements). While lsc allows one to specify possible
and mandatory scenarios that a system should follow, and negative scenarios
that a system should never allow, its current syntax and semantics do not allow
one to condition the realization of these system guarantees on the fulfilment of
certain behaviors of the environment. In other words, it does not support envi-
ronment assumptions. This limits the expressive power of the language and its
applicability to specifying real-world systems.

In this paper we present assume-guarantee scenarios, an extension of the lsc
language with support for environment assumptions. We define the syntax and
semantics of the extended language, allowing one to express safety assumptions,
that is, what the environment is assumed never to do, and liveness assumptions,
what the environment is assumed to always eventually do. The extension does
not add external constructs to the language. Rather, it is defined by embedding
assumptions implicitly in the lscs, in keeping with the scenario-based nature of
the language, just like safety and liveness system guarantees are specified in lscs
implicitly in the scenarios, using the distinction between hot and cold elements.

Moreover, we formulate the semantics of the extended language in gr(1), a
fragment of linear temporal logic (ltl). The gr(1) formulation allows us to build
on the game-based, symbolic, efficient synthesis algorithm of [26] and generate
a correct-by-construction, executable controller. Assuming the environment ad-
heres to the assumptions, the generated controller behavior meets the guarantees.

We have implemented our ideas using Jtlv APIs [28] and integrated them
into PlayGo [9]. We extended PlayGo’s visual editor to support the extended
language syntax, and implemented both the reduction to the gr(1) fragment
and the solution of the gr(1) synthesis. The resulting controller is realized in a
standalone, generated executable Java application.

We discuss related work below. Sect. 2 recalls the lsc language and presents a
semi-formal overview of the assume-guarantee extension using examples. Sect. 3
recalls the gr(1) fragment of ltl, which we use as the target for the definition of
the semantics of the extended language. Sect. 4 presents our main contribution:
the semantics of assume-guarantee scenarios, formulated in gr(1) form. Sect. 5
presents a running example, and the second contribution of our work: synthesis
of assume-guarantee scenarios. Sect. 6 describes our implementation and Sect. 7
concludes with a discussion and future work directions.

1.1 Related Work

Several scenario-based specification languages have been suggested in the liter-
ature, each with a different semantics. We discuss some of these here, focusing
on the distinction between system and environment and on the ability to specify
assumptions and guarantees.

Haugen et al. [13] present STAIRS, a requirements specification method-
ology based on UML2.0, where the semantics of interactions is given using

Assume-Guarantee Scenarios: Semantics and Synthesis 337

interaction obligations. STAIRS does not distinguish between system and en-
vironment controlled objects. Thus, one may interpret its semantics to include
only system guarantees and no environment assumptions.

Knapp and Wuttke [15] use UML2.0 interactions as a specification in a model-
checking setup. They interpret a sequence diagram as an observer of the message
exchanges and state changes in a system. Again, no distinction is made between
system and environment entities / controlled messages and thus the work can
be viewed as checking system guarantees, with no environment assumptions.

Whittle and Schumann [30] generate a statechart from a set of scenarios an-
notated with OCL constraints. The construction distinguishes messages sent by
the user from messages sent by the system, and thus may be viewed as relying
on implicit assumptions. However, these are only safety assumptions.

Krueger et al. [17] consider a translation of an MSC specification into a stat-
echart. In the process, scenarios are projected onto each of the components par-
ticipating in them. This may be viewed as considering each component alone to
be a system and the other components as its environment. However, an explicit
distinction between assumptions and guarantees is not discussed.

Additional scenario-based specification languages, such as VTS [1] and PST [2]
do not explicitly distinguish between system controlled and environment con-
trolled events, and thus do not support assumptions.

Greenyer [6] presents a translation of timed and untimed modal sequence
diagrams [8] specifications into UPPAAL-TIGA [3], for the purpose of synthesis.
Environment assumptions are supported through the use of assumption MSDs,
scenarios explicitly tagged as specifying assumptions. In contrast, we chose to
integrate assumptions into the same scenarios, so that a single scenario can
specify a combination of system guarantees and environment assumptions. We
believe this provides more flexibility. To the best of our knowledge, [6] is the
only previous work that supports liveness and safety assumptions in the context
of scenario-based specifications and synthesis.

Finally, Kugler et al. and Harel and Segall [12,18] present controller synthesis
from lsc. These works, however, consider ‘classic’ lscs, where the semantics ig-
nores the temperature of environment controlled events, and thus do not support
environment assumptions.

2 An Overview of Assume-Guarantee Scenarios

We start off with background about classic lsc and then demonstrate the con-
tribution of the assume-guarantee extension through a presentation of a small
example, a scenario-based specification of a vending machine. Part of the speci-
fication is presented here. Additional lscs are presented in Sect. 5. The overview
is semi-formal. Required formal definitions are given in the following sections.

2.1 Background on LSC

Live sequence charts (lsc) [5,8] is a scenario-based specification language, which
extends classical message sequence charts (msc) mainly with a universal inter-
pretation and a distinction between mandatory and possible behavior. We give

338 S. Maoz and Y. Sa’ar

Fig. 1. Three scenarios from the vending machine specification. Note the distinction
between system entities (panel, cashier, dispenser) and environment entities (user,
heater). Also note the distinction between hot and cold elements, the hot environ-
ment controlled message reachMax in lsc PrepareTeaOK and the hot false condition
on the user lifeline in lsc NoInsertCoinUntilServeTea (see Sect. 2).

a short, simplified overview of the language, with an emphasis on the parts most
relevant to our present work. Detailed descriptions are available in [5, 8].

An lsc consists of lifelines, messages, and conditions. A lifeline represents
an interacting entity, controlled either by the system under development or by
its environment (other systems, users etc.). A message represents a call between
one entity and another. A message is a system message if it is sent from a lifeline
controlled by the system, and is an environment message otherwise (if it is sent
from a lifeline controlled by the environment). The lsc defines a partial order
on its messages, induced by the vertical ordering of messages sent and received
along the lifelines.

As an example, Fig. 1 (top left) shows the lsc InsertCoins. This lsc has
one environment lifeline (controlled by the user) and two system lifelines, rep-
resenting the system’s panel and cashier. The first message insertCoin is an
environment message and the second message incCoins is a system message.

The current state of an lsc is represented by a system cut , marking the
progress of events along the lsc’s lifelines. The minimal cut represents the state
where the chart is closed. A cut induces a set of enabled and violating messages
and conditions: a message is enabled in a cut of a chart if it appears immediately
after the cut in the partial order defined by the chart; a message is violating in
a cut of a chart if it appears in the chart, but is not enabled in the cut.

Assume-Guarantee Scenarios: Semantics and Synthesis 339

Messages have a hot or a cold temperature (red line or blue line syntax): a
hot enabled message must eventually occur, while a cold enabled message may
or may not eventually occur. A cut is hot if at least one of its enabled system
messages is hot, and is cold otherwise. When an enabled message occurs, the
chart progresses to the next cut. When a violating message occurs, progress
depends on the temperature of the cut: if the cut was cold, the chart closes
gracefully (the cut is set to be the minimal cut); if the cut was hot, this is a
violation of the requirements and thus should have never occurred. In the lsc
InsertCoins the first message is cold and the second message is hot.

Conditions have a hot or a cold temperature too and they are evaluated as
soon as they are enabled. A hot enabled condition must be evaluated to true,
while a cold enabled condition may or may not be evaluated to true. When a
condition (hot or cold) is evaluated to true, the chart progresses to the next cut.
When a condition is evaluated to false, progress depends on its temperature:
if the condition was cold, the chart closes gracefully (the cut is set to be the
minimal cut); if the condition was hot, this is a violation of the requirements
and thus should have never occurred.

System messages can be marked as either execution (solid line) or monitoring
(dashed line). All environment messages are marked as monitoring. A chart is
active if its current cut has an enabled (system) message for execution. In the
lsc InsertCoins the first message is marked for monitoring while the second is
marked for execution. The cut after the first message is sent is active.

The semantics of a single lsc uses the partial order on messages and conditions
defined by the chart, adds a universal interpretation, and relates to the hot
(mandatory) and cold (optional) elements in it. Messages that do not appear in
a chart are not constrained by the chart to occur or not to occur at any time,
including in between the occurrence of messages that do appear in it.

For example, the semantics of the chart InsertCoins specifies the basic sce-
nario of coin insertion: whenever the user inserts a coin (the user sends an
insertCoin message) to the panel, the panel should eventually send incCoins

message to the cashier (this increases the cashier’s coins property). Implicitly,
this also means that after insertCoin is sent, the system message incCoins

must come before another insertCoin message is sent by the environment.

2.2 LSCs with Environment Assumptions

InsertCoin is a classic lsc: it specifies a system guarantee. What is impossible
to specify in classic lsc are assumptions on the behavior of the environment.
This is possible in the extended language. We give two examples below.

lsc PrepareTeaOK (Fig. 1 (top right)) describes the use case where the user
asks the system to prepare tea and the number of coins inserted is exactly 3.
Whenever the user sends a prepareTea message, the cold condition coins==3

is evaluated. If it is false, the scenario exits gracefully. If it is true, the chart
continues: the system’s panel must eventually send its own lockPanel message
and then ask the heater (controlled by the environment) to heat the water. This
is followed by an assumption that the heater will eventually send a reachMax

340 S. Maoz and Y. Sa’ar

message back to the system’s panel (note that reachMax is a hot message con-
trolled by the environment). When a reachMax message is eventually received,
the panel should eventually send a makeTea message to the dispenser.

lsc NoInsertCoinUntilServeTea (Fig. 1 (bottom left)) involves the user, the
panel, and the dispenser. It specifies that whenever the user sends a prepareTea

message to the panel, the usermust not send aninsertCoinmessage unless the dis-
penser has sent its own serveTeamessage. Note that if the user sends insertCoin
after she sends prepareTea and before the dispenser has sent the serveTeames-
sage, then the lscwould reach a hot false condition on the user’s lifeline, that is,
this would constitute a violation of the assumption (when the serveTeamessage is
sent, the chart closes gracefully because it reaches a cold false condition).

These two lscs demonstrate the power of assume-guarantee scenarios in com-
bining system guarantees and environment assumptions within a scenario-based
specification setup.

3 Generalized Reactive Specification

We recall the definition of the class of generalized reactive of rank 1 specifications
(gr(1)) [4, 26], a fragment of ltl, which we use as the target for the definition
of the semantics of assume-guarantee scenarios.

Linear temporal logic (ltl) [21,27] extends propositional logic with operators
that describe variables valuations along infinite computation paths. Given a finite
set of atomic propositions P , ltl formulae are constructed as ϕ ::= p | ¬ϕ | ϕ∨
ϕ | Xϕ | ϕUϕ, where Xϕ is the next temporal operator, roughly meaning
that ϕ is true in the next step in the computation, ϕUψ is the until operator,
roughly meaning that in any sequence of future steps ϕ is true until ψ is true.
We use the usual abbreviations of the Boolean connectives ∧, → and ↔ and
the usual definitions for true and false. Additional future temporal operators,
F (eventually) and G (globally), are defined as abbreviations to trueUϕ and

¬F¬ϕ, respectively.
Definition 1 (The Class of Generalized Reactivity of Rank 1). Let V =
{v1, . . . , vn} be a finite set of Boolean variables, X ⊆ V be a set of input variables,
and Y = V \ X be a set of output variables. The class of generalized reactive of
rank 1 specifications (gr(1)) is defined to be ltl formulae of the form

ψ :
(
ϕe
a ∧ ϕe

t ∧ ϕe
g

) −→ (
ϕs
a ∧ ϕs

t ∧ ϕs
g

)
(1)

where:

(i) ϕe
a and ϕs

a are Boolean formulae which characterize the initial values that
are assumed by the environment, and guaranteed by the system, respectively.

(ii) ϕe
t and ϕs

t are formulae of the form
∧

i∈I
GBi where each Bi is a Boolean

formula that is a combination of variables from X ∪ Y and expressions of
the form Xv where v ∈ X and v ∈ X ∪ Y, respectively. Intuitively, ϕe

t

characterizes possible input to the controller, and ϕs
t characterizes possible

transition of the controller.

Assume-Guarantee Scenarios: Semantics and Synthesis 341

(iii) ϕe
g and ϕs

g are formulae of the form
∧

i∈I
GFBi where each Bi is a Boolean

formula. The formula ϕe
g characterizes liveness assumptions on the envi-

ronment input, and the formula ϕs
g characterizes liveness guarantees on the

controller.

Open systems are systems that interact with their environment, that is, receive
some inputs and react to them. For such systems specifications are usually par-
titioned into assumptions and guarantees. The intended meaning is that if all
assumptions hold then all guarantees should hold as well. That is, if the envi-
ronment behaves as expected then the system will behave as expected as well.
In the next section we present the semantics for assume-guarantee scenarios.

4 Assume-Guarantee Scenarios: Semantics

We are now ready to present our main contribution, i.e., an ltl-based semantics
for a specification consisting of a set of assume-guarantee scenarios. We form the
semantics within the gr(1) fragment.

4.1 Formal Settings

To model lsc behavior, we present formal settings similar to those presented
in [7, 12, 19]. Given a set of lscs, L = {L1, . . . ,Ln}, we define Ms(L) (resp.
Me(L)) to be the set of messages that the system (resp. environment) can send
in the charts. The sets of system and environment messages are disjoint, i.e.,
Ms(L) ∩Me(L) = ∅. We define a formal model using the following variables:

• me is an input environment message variable over the domain of all possible
messages that the environment can send in L, and an additional no-op value
for doing nothing. Intuitively, to every messagem ∈ Me(L)∪{“no-op”} sent
by the environment, the synthesized strategy will “know” how to react.

• ms is an output system message variable over the domain of all possible
messages that the system can send in L, and an additional no-op value for
doing nothing. Intuitively, in every state, the synthesized strategy entails
which system message m ∈ Ms(L) ∪ {“no-op”} should be sent.

• l1, . . . , ln is a set of output cut variables . Each li encodes a cut-automaton for
Li. The domain of li, which we denote byDom(li), consists of all possible cuts
in Li, including a minimal cut of the chart (denoted by the value min). We
add two unique sink values vios and vioe, to represent hot-violation of the
system guarantees and environment assumptions, respectively. The variable
li maintains where the execution is at the moment along each lifeline in Li.

1

Each Li semantics is captured by the transitions of the cut-automaton that
update its corresponding li variable according to the taken steps. The minimal
cut value min indicates that the chart is currently closed. If a message is not a
part of the chart then the cut-automaton can perform an idle step. The value

1 Note that there are other ways to encode a cut (e.g., a variable per lifeline per lsc).
Our formal settings is independent of any one specific encoding.

342 S. Maoz and Y. Sa’ar

vios captures the fact that the system performed a hot violation, and the chart
can no longer be satisfied. On the other hand, the value vioe indicates that the
environment did not fulfil its assumptions, and the chart is vacantly satisfied.
We denote by ρLi the transition of the cut-automaton for Li.

4.2 Superstep Requirements

Formally, a superstep is a series of messages sent by the system, encapsulated
between two messages sent by the environment. When assumptions are not in-
cluded in the semantics, as in the closed lscs synthesis handled in [12, 18], an
artificial technical step is needed in order to enforce the superstep semantics.
This exposes the internals of gr(1) and requires to deal with the mechanics of
the game structure. Thus, it ties the solution to the gr(1) synthesis algorithm.

When assumptions are allowed, as in our open scenarios, a more natural and
elegant way to describe the superstep semantics is available. Rather than working
with the internals of the gr(1) game structure, we define the superstep semantics
using two guarantees and two assumptions: G.1, G.2, A.1, and A.2 (see below).
Thus, our approach defines a standalone ltl semantics that is independent of the
mechanics of the synthesis algorithm (it could be solved with any ltl synthesis
solution given that it is expressive enough to cover our specification).

First, we require the system to perform only a finite number of messages and
give the environment a fair chance to communicate its messages.

Guarantee 1 (superstep: system fair turn): The system always stops send-
ing messages eventually.

GF (ms = no-op) (G.1)

We also require the system to perform a message only if the environment is not
sending a message.

Guarantee 2 (superstep: system safe turn): If the environment sent a mes-
sage (i.e. me is different from no-op) then the system cannot send a message.

GX (me �= no-op → ms = no-op) (G.2)

Next, we require the environment to send one message at a time, allowing the
system a fair chance to react to each message sent by the environment.

Assumption 1 (superstep: alternating turn): If the environment sent a
message in the last step (i.e. me is different from no-op) then the environment
cannot send a message in the next step.

G
(
me �= no-op →X (me = no-op)

)
(A.1)

Finally, we require the environment to send a message only when the system is
ready to receive one, allowing the system a fair chance to finish its (guaranteed
to be) finite number of steps.

Assumption 2 (superstep: environment fair turn): If the system sent a
message in the last step (i.e. ms is different from no-op) then the environment
cannot send a message in the next step.

G
(
ms �= no-op →X (me = no-op)

)
(A.2)

Assume-Guarantee Scenarios: Semantics and Synthesis 343

Note that the superstep requirements are fixed; they are not part of the
application-specific semantics of the lsc specification. That is, the superstep
requirements model our settings, whereas the additional requirements for the
system (Subsect. 4.3) and for the environment (Subsect. 4.4, described below)
model the application-specific semantics of the given lsc specification.

4.3 System Requirements

Given a set of lscs L = {L1, . . . ,Ln}, the application-specific system’s semantics
is defined using three guarantees: G.3, G.4, and G.5 (see below). To identify
stable states in Li, we define Acti ⊆ Dom(li) to be the subset of active cuts
from the domain of all cuts in the cut-automaton, i.e., cuts that contain an
executable message that the system should perform.

First, we require the system to guarantee that each chart starts from its min-
imal cut.

Guarantee 3 (system: initial state): For every lsc Li ∈ L, the system starts
from a state in which the cut variable li is set to the minimal cut.

∧n
i=1 (li = min) (G.3)

Second, we require the system to guarantee that each chart follows its transi-
tional semantics as discussed in Subsect. 4.1.

Guarantee 4 (system: transition): For every lsc Li ∈ L, the system con-
tinuously preserves the transitions of the cut-automaton of Li.∧n

i=1
GρLi (G.4)

Finally, we require the system to guarantee to infinitely often visit a stable state,
i.e., that infinitely often all charts visit inactive cuts in which there are no exe-
cutable messages to be performed by the system.

Guarantee 5 (system: stable state): The system always eventually reaches
a state where every Li ∈ L is not active.

GF
∧n

i=1 (li /∈ Acti) (G.5)

4.4 Environment Requirements

Given a set of lscs L = {L1, . . . ,Ln}, the application-specific environment’s
semantics is given using three assumptions. Assumptions A.3, A.4 characterize
liveness requirements, and A.5 characterizes safety requirements (see below). To
identify states in which the system is waiting for messages from the environment
in Li, we define Expi ⊆ Dom(li) to be the subset of expecting cuts from the do-
main of all cuts in the cut-automaton, i.e., cuts that contain executable message
to perform by the environment.

Furthermore, given a cut c ∈ Dom(li) we define Ee(c) to be the set of hot en-
vironment messages enabled in cut c (i.e., if c ∈ Dom(li)\Expi, then Ee(c) = ∅).
Intuitively, in cut c the system assumes that the environment messages Ee(c) are
bound to happen eventually. On the other hand, the semantics of cold environ-
ment messages do not require any assumption, and are treated just like cold

344 S. Maoz and Y. Sa’ar

system messages (that is, a violation of a cold environment cut closes the chart
gracefully and is not considered a violation of the requirements).

First, we require the environment to comply with a restricting (safety) prop-
erty stating that if the system is in an expecting cut, then the next message
sent by the environment is either no-op or one of the messages from the set of
enabled hot environment messages. That is, the environment must focus on the
hot messages at hand.

Assumption 3 (environment: active environment): For every lsc Li ∈ L
and every expecting cut c ∈ Expi, if in the last step the system was in cut c,
then in the next step the environment sends either no-op message, or a message
from the set of hot enabled environment messages.

∧n
i=1

∧
c∈Expi

G
(
li = c→X (me ∈ {Ee(c) ∪ no-op})

)
(A.3)

Note that the requirement needs a rather loose restriction on the next step
message since there could be cases where there are more than one possible hot
environment message that is enabled. In such cases we would like to consider all
possible combinations in which the environment meets its assumptions.

On the other hand, we require the environment to comply with the liveness
property that states that when the system is in an expecting cut, then each
enabled hot environment message must eventually be sent.

Assumption 4 (environment: fair environment): For every lsc Li ∈ L,
every expecting cut c ∈ Expi, and every hot enabled environment message m ∈
Ee(c), the environment always eventually either sends message m, or the system
is not in cut c.∧n

i=1

∧
c∈Expi

∧
m∈Ee(c)

GF (li = c→ (me = m)) (A.4)

The transition system semantics makes sure that if two hot environment mes-
sages are enabled in an expecting cut, and the first is being sent, then the follow-
ing cut is also an expecting cut, which still awaits for the second hot environment
message to be sent. Furthermore, unless the chart is closed, the execution cannot
return to the previous expecting cut, thus the second hot environment message
is bound to eventually be sent.

Note that from the system’s perspective, the expecting cut is cold, that is, the
system is allowed to violate it. However, as long as the system does not violate
the expecting cut, the left side of the implication in both assumptions A.3 and
A.4 hold, and the environment must follow in a way that would satisfy the right
sides of these implications.

Finally, we would like to support explicit environment safety assumptions. The
transition semantics makes sure that whenever a cut reaches a hot environment
violation caused by an environment condition, li is set to the sink value vioe.
Even though variable li is a system output (that the environment cannot control
directly), the guarantee of the transition semantics to indicate a hot environment
violation, enables the environment to reason in its strategy all possible future
violations of its assumptions.

Assume-Guarantee Scenarios: Semantics and Synthesis 345

Formally, we require the environment to avoid letting the system reach (in
the future) the sink value that indicates a hot environment violation.

Assumption 5 (environment: safe environment): For every lsc Li ∈ L,
the environment is never allowed to reach a hot environment violation.∧n

i=1
G (li �= vioe) (A.5)

4.5 Summary

The combination of all the above ltl assumptions and guarantees (A.1–5 and
G.1–5), consists of a semantics for an lsc specification. We formalize it in a
gr(1) form, as shown in Equ. (2).

en
v
ir
o
n
m
en
t

A.3
∧n

i=1

∧
c∈Expi

G
(
li = c→X (me ∈ {Ee(c) ∪ no-op})

) ∧

A.4
∧n

i=1

∧
c∈Expi

∧
m∈Ee(c)

GF (li = c→ (me = m))
∧

A.5
∧n

i=1
G (li �= vioe)

∧

su
p
er
st
ep

A.1 G
(
me �= no-op →X (me = no-op)

) ∧

A.2 G
(
ms �= no-op →X (me = no-op)

)

implies

G.1 GF (ms = no-op)
∧

G.2 GX (me �= no-op → ms = no-op)
∧

sy
st
em

G.3
∧n

i=1 (li = min)
∧

G.4
∧n

i=1
GρLi

∧

G.5 GF
∧n

i=1 (li /∈ Acti)

(2)

5 Assume-Guarantee Scenarios: Synthesis

The formulation of the semantics in the gr(1) form allows us to take advantage
the game-based, symbolic, efficient synthesis algorithm of [26] and generate a
correct-by-construction, executable controller from a specification consisting of
a set of assume-guarantee scenarios. Below we motivate the need for synthesis,
in comparison with weaker forms of execution. We then give an overview of the
synthesis algorithm.

5.1 Running Example

As a running example we use a scenario-based specification of a vending ma-
chine. The specification consists of six lscs, the three lscs presented earlier

346 S. Maoz and Y. Sa’ar

Fig. 2. Three additional lscs from the vending machine specification (see Sect. 5)

in Fig. 1 and discussed in Sect. 2, namely InsertCoins, PrepareTeaOK, and
NoInsertCoinUntilServeTea, and three additional lscs, as shown in Fig. 2.

lsc LockPanel (Fig. 2 (left)) describes the implementation of the panel’s
locking mechanism. Whenever the lockPanel message is sent, the panel should
eventually lock itself by setting its enabled property to false, and then eventually
unlock itself by setting the enabled property to true.

lsc MakeTea (Fig. 2 (middle)) describes the behavior the system should follow
whenever the panel sends the dispenser a makeTea message. In this case, the
dispenser should send a self message to serveTea, an abstraction of a different
scenario that entails the proper way to serve the tea. The chart continues to
specify that after serveTea, the cashier’s coins property must be exactly 3 (it
is a hot condition), and be followed by a decCoins(3)message that will consume
3 coins (decrease the coins property by 3).

lsc RetrieveCoins (Fig. 2 (right)) enables a cancellation functionality. If the
user sends a retrieveCoinsmessage to the panel and the panel is enabled (note,
a cold condition), then the system must send the user a takeCoins message
(give back the coins to the user) and follow with a setCoins(0) message that
sets the cashier’s coins property to 0. Furthermore, the chart also specifies that
during the process of cancellation, the dispenser cannot send a serveTeamessage
(sending this message would make the hot false condition on the right hand
side of the chart enabled, and thus result in a hot violation of the requirements).

Finally, the specification includes initial values for two properties: coins is
set to 0 and enabled is set to true.

5.2 Why Do We Need Assume-Guarantee Synthesis?

lsc specifications are underspecified, since the language allows various kinds of
non-determinism. Thus, a special mechanism is needed in order to execute an
lsc specification. This execution mechanism is generically termed play-out [10].
The core of the play-out process is a strategy mechanism that is responsible for

Assume-Guarantee Scenarios: Semantics and Synthesis 347

choosing the next method to execute. The choice is based on the specification
and the current state of the system. Different kinds of play-out mechanisms may
be defined. Each may be viewed as a different operational semantics for lsc.
However, only synthesis can guarantee deadlock free execution (if one exists,
see Subsect. 5.3), where if the environment behavior satisfies the assumptions
then the system behavior would satisfy the guarantees. To motivate the need
for assume-guarantee synthesis, we demonstrate the weaknesses of previously
suggested play-out mechanisms below.

A naive operational semantics, termed play-out in [10], chooses a single system
message that is enabled in some active lsc and that does not violate the current
cut in all active lscs, and executes it. Naive play-out does not guarantee that
no violations will eventually occur (or rather that at each step there will be
an enabled message that is not violating). Violations might happen since naive
play-out makes its choices locally, without considering their future consequences.

For example, in the vending machine, after the user inserts a coin, the system
must increase the coins property (lsc InsertCoins). After three coin insertions
and sending prepareTea, the cold condition coins==3 in PrepareTeaOK will
hold and naive play-out would send a lockPanel message and a heat message
to the Heater. Moreover, to follow lsc LockPanel, and since naive play-out does
not consider future executions, it will immediately execute setEnabled(false)
and setEnabled(true). Now, if the user chooses to send retrieveCoins, the
panel is enabled, the coins property will be set to zero, and so after reachMax is
sent and makeTea is sent, a hot violation will be unavoidable in lsc MakeTea.

A better operational semantics for direct execution of scenario-based speci-
fications is smart play-out (spo) [7]. spo can reason about possible violations
within a single superstep. It guarantees to lead the system to a state where no
lsc is active (a stable state), in preparation for the next environment message
(if such a superstep exists).

However, looking only one superstep ahead is insufficient. For example, con-
sider our vending machine specification, when prepareTea message is sent,
smart play-out would fail to see the consequences of completing the superstep in
LockPanel, since the violation is bound to occur only after two more supersteps
(after the user will send retrieveCoins and the heater will send reachMax).

Both operational semantics presented above are rather weak and may in fact
be viewed as unsound, as they may result in (partial) executions that cannot be
extended to ones that satisfy the semantics of the lsc specification.

A stronger operational semantics for direct execution of scenario-based spec-
ifications is the synthesis presented in [12, 18], which we term closed synthesis.
Closed synthesis reasons about the ongoing interaction between the environ-
ment and the system, and guarantees that in every state that the execution
may reach, there exists a superstep that leads the system to a stable state.
However, closed synthesis does not support environment assumptions. Thus,
in our example, it will not be able to rely on the assumption induced by lsc
NoInsertCoinUntilServeTea and thus would conclude that a controller can-
not be synthesized: without this assumption a controller cannot be synthesized

348 S. Maoz and Y. Sa’ar

because the user may insert a coin while the heater heats the water, and thus
force the system to serve tea when coins > 3, which would violate the hot
condition in lsc MakeTea.

This discussion shows that assume-guarantee synthesis is indeed required.

5.3 Assume-Guarantee Scenarios Synthesis

The solution we use for synthesis requires a winning strategy. Given a gr(1)
specification, computing a winning strategy for the system is done by solving a
Streett game [29] where the system tries to either satisfy all its guarantees, or
constantly falsify one of the environment’s assumptions. We do this following the
symbolic fixpoint algorithms described in [4, 26]. Roughly, the algorithm starts
from the set of all states and iterates ‘backwards’ by removing states from which
the system is unable to force the execution to either reach all of the system’s
liveness guarantees, or constantly violate one of the environment’s assumptions
(each set of states where the assumption is constantly violated is computed using
another nested fixpoint).

The fixpoint is reached when no additional states can be removed. If to every
environment initial choice there exists a system initial choice in the fixpoint set,
then the specification is realizable. A controller that implements the system’s
winning strategy can be constructed from the intermediate values of the fixpoint
computation (see [4,26]). If the specification is realizable, then the construction
of such a controller constitutes a solution to the synthesis problem.2

Going back to our example, assume-guarantee synthesis generates a controller
that meets the specification. Specifically, it avoids the problems encountered by
naive and smart play-out by sending the setEnabled(false) message but not
sending the setEnabled(true)message until after the heater has sent reachMax
(as it has to eventually). It also relies on the assumption that after prepareTea is
sent, the user will not send an insertCoin message to the panel until serveTea
is sent (as specified in lsc NoInsertCoinUntilServeTea).

6 Implementation

We have implemented our ideas using Jtlv APIs [28] and integrated them into
PlayGo [9]. PlayGo is an eclipse-based IDE built around the language of lsc
and the play-in/play-out approach [10]. It includes a compiler that translates
lscs (given in a UML compliant form, using a profile, see [8]) into AspectJ
code (based on [22, 23]), and provides means for visualization, exploration, and
debugging of lsc executions. Jtlv is a Java-based framework for the develop-
ment of formal verification algorithms, implemented as an Eclipse plug-in. The
framework provides editors and developer-friendly high-level APIs.

We extended PlayGo’s visual editor to support the extended language syntax,
and implemented the reduction to the gr(1) game setup. The synthesis algorithm

2 If the specification is unrealizable, then the synthesis computation fails. We have
work in progress on addressing this case [24].

Assume-Guarantee Scenarios: Semantics and Synthesis 349

itself is implemented using Jtlv. Finally, the resulting controller, as computed
by the algorithm, is not only statically presented to the engineer. Rather, we
translate it back and represent it using a play-out strategy, by generating the
Java code PlayGo can use to guide the execution of the system.

7 Conclusion and Future Work

We have presented an extension of live sequence charts that supports envi-
ronment assumptions. The semantics of the extended language is given in the
form of a gr(1) formula, and thus enables the efficient synthesis of a correct-
by-construction controller. The work is implemented and demonstrated with
running examples.

In a related work in progress [24] we deal with the debugging of unrealizable
scenario-based specifications (with or without assumptions). When a specifica-
tion is unrealizable, we reverse the roles of the system and the environment and
compute a counter strategy [16,25]. The counter strategy serves as a formal proof
that shows how an adverse environment can adhere to the assumptions (if any)
while forcing any system to fail in fulfilling its guarantees.

In Sect. 4 we have defined a global stability guarantee G.5. An alternative,
weaker semantics, could have used a local stability guarantee:

∧n
i=1

GF
(
li /∈

Acti
)
. Note that this semantics may induce a more complex synthesis solution,

but which is still of course within the gr(1) fragment. Moreover, the global vari-
ant implies the local one. Although we have chosen to present the global stability
guarantee, we believe that the local one may be useful in some contexts and may
perhaps be more in line with the breakup of the specification into scenarios. We
leave the choice between the two alternative semantics open for discussion.

Finally, one may consider an alternative, tighter semantics for lsc, using the
stronger gr(k) form (see Chap. 4. of [21]), which handles formulae consisting of
k conjunctions of gr(1) implications. gr(k) is more expressive than gr(1) (in
fact gr(k) is as expressive as ltl), however solving it is computationally harder
(exponential in k, [25]). gr(1) can serve as an efficient precondition to the more
locally aware formulation of gr(k).

In the context of scenario-based specifications, the essence of the difference
between gr(1) and gr(k) is in the question of whether all assumptions should be
grouped together into a single conjunct on the left side of the gr(1) implication,
or whether each scenario should induce its own local implication between as-
sumptions and guarantees. It is not clear whether the gr(k) semantics captures
the idea of scenario-based specifications better than the gr(1) semantics. We
leave the formal definition of the alternative gr(k) semantics and its evaluation
against the gr(1) semantics for future work.

References

1. Alfonso, A., Braberman, V.A., Kicillof, N., Olivero, A.: Visual timed event scenar-
ios. In: Finkelstein, A., Estublier, J., Rosenblum, D.S. (eds.) ICSE, pp. 168–177.
IEEE Computer Society (2004)

350 S. Maoz and Y. Sa’ar

2. Autili, M., Inverardi, P., Pelliccione, P.: Graphical scenarios for specifying temporal
properties: an automated approach. Autom. Softw. Eng. 14(3), 293–340 (2007)

3. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
UPPAAL-Tiga: Time for Playing Games! In: Damm, W., Hermanns, H. (eds.)
CAV 2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007)

4. Bloem, R., Jobstmann, B., Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of reac-
tive(1) designs. Journal of Computer and System Sciences 78(3), 911–938 (2012)

5. Damm, W., Harel, D.: LSCs: Breathing Life into Message Sequence Charts. Formal
Methods in System Design 19(1), 45–80 (2001)

6. Greenyer, J.: Scenario-based Design of Mechatronic Systems. PhD thesis, Univer-
sity of Paderborn, Department of Computer Science (2011)

7. Harel, D., Kugler, H., Marelly, R., Pnueli, A.: Smart Play-out of Behavioral
Requirements. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS,
vol. 2517, pp. 378–398. Springer, Heidelberg (2002)

8. Harel, D., Maoz, S.: Assert and negate revisited: Modal semantics for UML se-
quence diagrams. Software and Systems Modeling 7(2), 237–252 (2008)

9. Harel, D., Maoz, S., Szekely, S., Barkan, D.: PlayGo: towards a comprehensive tool
for scenario based programming. In: ASE, pp. 359–360. ACM (2010)

10. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using
LSC’s and the Play-Engine. Springer (2003)

11. Harel, D., Pnueli, A.: On the Development of Reactive Systems. In: Apt, K.R.
(ed.) Logics and Models of Concurrent Systems. ATO ASI Series, vol. F-13, pp.
477–498. Springer (1985)

12. Harel, D., Segall, I.: Synthesis from scenario-based specifications. Journal of Com-
puter and System Sciences 78(3), 970–980 (2012)

13. Haugen, Ø., Husa, K.E., Runde, R.K., Stølen, K.: STAIRS towards formal design
with sequence diagrams. Software and Systems Modeling 4(4), 355–367 (2005)

14. Jackson, M.: The world and the machine. In: Perry, D.E., Jeffrey, R., Notkin, D.
(eds.) ICSE, pp. 283–292. ACM (1995)

15. Knapp, A., Wuttke, J.: Model Checking of UML 2.0 Interactions. In: Kühne, T.
(ed.) MoDELS 2006. LNCS, vol. 4364, pp. 42–51. Springer, Heidelberg (2007)

16. Könighofer, R., Hofferek, G., Bloem, R.: Debugging formal specifications using
simple counterstrategies. In: FMCAD, pp. 152–159. IEEE (2009)

17. Krüger, I., Grosu, R., Scholz, P., Broy, M.: From MSCs to Statecharts. In: DIPES,
pp. 61–72 (1998)

18. Kugler, H., Plock, C., Pnueli, A.: Controller Synthesis from LSC Requirements. In:
Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503, pp. 79–93. Springer,
Heidelberg (2009)

19. Kugler, H., Segall, I.: Compositional Synthesis of Reactive Systems from Live Se-
quence Chart Specifications. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009.
LNCS, vol. 5505, pp. 77–91. Springer, Heidelberg (2009)

20. Kupferman, O., Vardi, M.Y.: Module Checking Revisited. In: Grumberg, O. (ed.)
CAV 1997. LNCS, vol. 1254, pp. 36–47. Springer, Heidelberg (1997)

21. Manna, Z., Pnueli, A.: The temporal logic of concurrent and reactive systems:
specification. Springer (1992)

22. Maoz, S., Harel, D.: From multi-modal scenarios to code: compiling LSCs into
AspectJ. In: SIGSOFT FSE, pp. 219–230. ACM (2006)

23. Maoz, S., Harel, D., Kleinbort, A.: A compiler for multimodal scenarios: Trans-
forming LSCs into AspectJ. ACM Trans. Softw. Eng. Methodol. 20(4), 18 (2011)

24. Maoz, S., Sa’ar, Y.: Counter play-out: Executing unrealizable scenario-based spec-
ifications (in preparation, 2012)

Assume-Guarantee Scenarios: Semantics and Synthesis 351

25. Piterman, N., Pnueli, A.: Faster solutions of Rabin and Streett games. In: LICS,
pp. 275–284. IEEE Computer Society (2006)

26. Piterman, N., Pnueli, A., Sa’ar, Y.: Synthesis of Reactive(1) Designs. In: Emerson,
E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 364–380. Springer,
Heidelberg (2005)

27. Pnueli, A.: The temporal logic of programs. In: FOCS, pp. 46–57. IEEE (1977)
28. Pnueli, A., Sa’ar, Y., Zuck, L.D.: Jtlv: A Framework for Developing Verification

Algorithms. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174,
pp. 171–174. Springer, Heidelberg (2010)

29. Streett, R.S.: Propositional dynamic logic of looping and converse is elementarily
decidable. Information and Control 54(1/2), 121–141 (1982)

30. Whittle, J., Schumann, J.: Generating statechart designs from scenarios. In: ICSE,
pp. 314–323. ACM (2000)

	Assume-Guarantee Scenarios: Semantics and Synthesis
	Introduction
	Related Work

	An Overview of Assume-Guarantee Scenarios
	Background on LSC
	LSCs with Environment Assumptions

	Generalized Reactive Specification
	Assume-Guarantee Scenarios: Semantics
	Formal Settings
	Superstep Requirements
	System Requirements
	Environment Requirements
	Summary

	Assume-Guarantee Scenarios: Synthesis
	Running Example
	Why Do We Need Assume-Guarantee Synthesis?
	Assume-Guarantee Scenarios Synthesis

	Implementation
	Conclusion and Future Work
	References

