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Preface

The MODELS conference serves as the premier venue for disseminating and
discussing high-quality work in the area of Model-Driven Development (MDD).
The conference series covers all aspects of MDD, including software and system
modeling languages, methods, tools, and their applications.

Authors were invited to submit papers to be reviewed for the MODELS 2012
foundations and applications tracks. Foundations-track papers make significant
contributions to the MDD body of knowledge in the form of new ideas and results
that advance the state of the art in MDD. Three categories of foundations-track
papers are included in these proceedings. Technical papers describe original sci-
entifically rigorous solutions to challenging model-driven development problems.
Empirical papers present evaluations of MDD practices, or scientific validations
of proposed solutions through, for example, empirical studies, experiments, case
studies, simulations, formal analyses, and mathematical proofs. Exploratory pa-
pers describe new, non-conventional MDD research positions or approaches that
challenge the status quo and describe solutions that are based on new ways of
looking at MDD problems.

The MODELS 2012 applications track aimed to provide a realistic and ver-
ifiable picture of the current state of practice in MDD and to provide a forum
for analyzing experience related to the industrial adoption of model-driven tech-
niques. Applications-track papers describe and analyze the application of MDD
techniques to industrial case studies, or describe innovative solutions and con-
cepts arising from practical deployment of tools and techniques.

The MODELS 2012 review process was designed to support the role of
MODELS as a MDD community development agent and as a dissemination
vehicle for high-quality MDD-related knowledge and experience. MODELS re-
sponsibilities with respect to community development include providing useful
feedback to all authors of submitted papers through written reviews, and ensur-
ing that only the best papers are disseminated through the conference proceed-
ings.

MODELS 2012 introduced a Program Board (PB) to help ensure, to the
extent humanly possible, that the reviews received by submitters provided good
feedback, and that the selection process was as rigorous and fair as possible. The
PB assisted the Program Committee (PC) chairs with the monitoring of reviews
submitted by PC members and with initiating and monitoring discussions in the
online PC meeting.

In the course of the 2012 review process each paper was reviewed by at least
three members of the Program Committee, and the reviews were monitored by a
PB member assigned to the paper. Each paper was extensively discussed at the
online PC meeting, and due consideration was given to author responses. The
PB then met to finalize the selection of papers by making acceptance decisions
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on those papers for which online PC discussions did not converge on a clear
decision. The PB did not have the authority to override any final decisions made
during the online PC discussions. In this sense, the PB served primarily to assist
the PC chairs in their decision-making role.

This year, out of 151 foundations-track papers submitted, the PC and the PB
accepted 35 papers, that is, a 23% acceptance rate. Of the 30 applications-track
papers submitted, the PC and the PB accepted 15 papers, resulting in a 50%
acceptance rate.

The PC chairs also conducted a submitter survey to obtain feedback on the
quality of reviews. Authors of 90 papers (out of a total of 181 papers) rated each
review they received. Authors were asked to indicate whether the review was very
useful, useful, not useful, or not useful at all. Just over 75% of the respondents
indicated that their reviews were either useful or very useful (approximately 27%
rated their reviews as very useful and approximated 48% rated their reviews as
useful). Feedback like this helps us determine the effectiveness of the MODELS
review process and we greatly appreciate the effort of the authors who submitted
completed survey forms.

In closing, we thank the PC, the PB, and the additional reviewers who con-
tributed to the MODELS 2012 review process. Their outstanding contributions
help ensure that MODELS continues to play a vital role in the MDD community.
Thanks to all the authors who submitted papers to MODELS, and we congrat-
ulate those authors whose papers appear in these proceedings. These papers
reflect the quality of the current state of the art in MDD research and practice.
We also thank Richard van de Stadt for his CyberChairPRO support. Lastly, we
thank members of the steering and organizing committees for the support they
gave us during the planning and execution of the MODELS 2012 review process.

October 2012 Robert B. France
Jürgen Kazmeier

Ruth Breu
Colin Atkinson
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Ábel Hegedüs
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Quantitative Reactive Models�

Thomas A. Henzinger

IST Austria

Formal verification aims to improve the quality of hardware and software by
detecting errors before they do harm. At the basis of formal verification lies
the logical notion of correctness, which purports to capture whether or not a
circuit or program behaves as desired. We suggest that the boolean partition
into correct and incorrect systems falls short of the practical need to assess the
behavior of hardware and software in a more nuanced fashion against multiple
criteria.

We advocate quantitative fitness measures for systems, specifically for mea-
suring various aspects of function, performance, and robustness. Among all sys-
tems that are correct with respect to a given set of requirements, usually some
are preferred to others; and among all systems that are, in a strict boolean
sense, incorrect, surely some are more acceptable than others. A quantitative
theory of reactive models provides such preference metrics and acceptability
measures for reactive systems, that is, systems —such as concurrent and em-
bedded processes— which interact with their environment in a sequence of steps
over time.

An appealing quantitative theory should support quantitative generalizations
of the paradigms that have been success stories in qualitative reactive modeling,
including

– executability and the distinction between safety and liveness considerations;
– compositional design and analysis of complex systems;
– property-preserving abstractions and abstraction refinement;
– specification by temporal logic and verification by model checking;
– automatic synthesis by solving games played on state spaces.

A quantitative theory may be probabilistic, and it may refer to the consump-
tion of resources such as time, space, and power, but we focus on quantitative
theories that replace the classical boolean notion of correctness by numerical
distances between systems and requirements. For example, if a system does not
satisfy a requirement, then various correctness distances measure how close the
system comes to satisfying the requirement. Dually, if a system satisfies a re-
quirement, then various robustness distances measure how much the system can
be perturbed without violating the requirement [1]. Synthesis, which in a qual-
itative setting is a constraint-satisfaction problem, becomes —in a quantitative
framework— an optimization problem, which asks for the construction, from a
set of possibly inconsistent requirements, of the preferred system [2,3].

� This work was supported in part by the ERC Advanced Grant QUAREM and by
the Austrian Science Fund NFN on Rigorous Systems Engineering (RiSE).
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Abstract. The intensive use of models in Model-Driven Engineering
(MDE) raises the need to develop meta-models with different aims, like
the construction of textual and visual modelling languages and the spec-
ification of source and target ends of model-to-model transformations.
While domain experts have the knowledge about the concepts of the do-
main, they usually lack the skills to build meta-models. These should be
tailored according to their future usage and specific implementation plat-
form, which demands knowledge available only to engineers with great
expertise in MDE platforms. These issues hinder a wider adoption of
MDE both by domain experts and software engineers.

In order to alleviate this situation we propose an interactive, iterative
approach to meta-model construction enabling the specification of model
fragments by domain experts, with the possibility of using informal draw-
ing tools like Dia. These fragments can be annotated with hints about
the intention or needs for certain elements. A meta-model is automati-
cally induced, which can be refactored in an interactive way, and then
compiled into an implementation meta-model using profiles and patterns
for different platforms and purposes.

Keywords: Meta-Modelling, Domain-Specific Modelling Languages,
Interactive Meta-Modelling, Meta-Model Design Exploration.

1 Introduction

Model-Driven Engineering (MDE) makes heavy use of models during the de-
velopment process. Models are usually defined using Domain-Specific Modelling
Languages (DSMLs) which are themselves specified through a meta-model. A
DSML should contain useful, appropriate primitives and abstractions for a par-
ticular application domain. Hence, the input from domain experts is essential to
obtain effective, useful meta-models [13].

The usual process of meta-model construction requires first building (a part
of) the meta-model which only then can be used to build models. Even though
software engineers are used to this process, it may be counter-intuitive to non-
meta-modelling experts, which may prefer drafting example models first, and
then abstract those into classes and relations in a meta-model. As Oscar Nier-
strasz put it, “... in the real world, there are only objects. Classes exist only in

R.B. France et al. (Eds.): MODELS 2012, LNCS 7590, pp. 3–19, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. Different meta-model realizations depending on its future usage

our minds” [19]. In this way, domain experts and final users of MDE tools are
used to working with models, but not with meta-models. Asking them to build
a meta-model before drafting example models is often too demanding. In gen-
eral, an early exploratory phase of model construction, to understand the main
concepts of the language, is recommended for DSML engineering [4,13].

Another issue that makes meta-model construction cumbersome is the fact
that meta-models frequently need to be fine-tuned depending on their intended
use: designing a textual modelling language (e.g., with xText1), a graphical lan-
guage (e.g., with GMF or Eugenia [14]), or the source or target of a transforma-
tion. As illustrated in Fig. 1, the particular meta-model usage may impact on
its design, for instance to decide whether a connection should be implemented
as a reference (e.g., for simple graphical visualization), as an intermediate class
(e.g., for a more complex visualization, or to enable iterating on all connection
instances), as a bidirectional association (e.g., to allow back navigation if it is
used in a transformation), or as an intermediate class with composition (e.g.,
to enable scoping). The use of a specific technological platform, like EMF [24],
has also an impact on how meta-models are actually implemented, e.g., regard-
ing the use of composition, the need to have available a root class, and the use
of references. As a consequence, the implementation meta-model for a particu-
lar platform may differ from the conceptual one as elicited by domain experts.
Specialized technical knowledge is required for this implementation task, hardly
ever found in domain experts, which additionally has a steep learning curve.

In order to alleviate this situation, this paper presents a novel way to define
meta-models and modelling environments. Its ultimate goal is to facilitate the
creation of DSMLs by domain experts without proficiency in meta-modelling
and MDE platforms and technologies. For this purpose, we propose an itera-
tive process for meta-model induction in which model fragments are given either
sketched by domain experts using drawing tools like Dia2, or using a compact
textual notation suitable for engineers which allows annotating the intention
of the different modelling elements. From these fragments, a meta-model is

1 http://www.eclipse.org/Xtext/
2 http://projects.gnome.org/dia/

http://www.eclipse.org/Xtext/
http://projects.gnome.org/dia/


Bottom-Up Meta-Modelling: An Interactive Approach 5

automatically induced, which can be refactored if needed. Finally, the resulting
meta-model is compiled into a given technology (e.g., EMF or MetaDepth [8]),
optimized for a particular purpose (visual or textual language, transformation)
and a particular tool (e.g., xText or GMF).

Paper Organization. Section 2 overviews the working scheme of our proposal.
Its main steps are detailed in the following sections: specification of fragments
(Section 3), meta-model induction and refactoring (Section 4), and compilation
of the induced meta-model for different purposes and platforms (Section 5).
Next, Section 6 presents tool support. Finally, Section 7 compares with related
research and Section 8 ends with the conclusions.

2 Bottom-Up Meta-Modelling

Interactive development [21] promotes rapid feedback from the programming
environment to the developer. Typically, a programming language provides a
shell to write pieces of code, and the running system is updated accordingly.
This permits observing the effects of the code as it is developed, and to explore
different design options easily. This approach has also been regarded as a way
to allow non-experts to perform simple programming tasks or to be introduced
to programming, since a program is created by defining and testing small pieces
of functionality that will be composed bottom-up instead of devising a design
from the beginning.

Inspired by interactive programming, we propose a meta-modelling framework
to facilitate the integration of end-users into the meta-modelling process, as well
as permitting engineers with no meta-modelling expertise to build meta-models.
The design of our framework is driven by the following requirements:

– Bottom-up. Whereas meta-modelling requires abstraction capabilities, the
design of DSMLs demands, in addition, expert knowledge about the domain
in two dimensions: horizontal and vertical [1]. The former refers to technical
knowledge applicable to a range of applications (e.g., the domain of Android
mobile development) and experts are developers proficient in specific imple-
mentation technologies. The vertical dimension corresponds to a particular
application domain or industry (e.g., insurances) where experts are usually
non-technical people. Our proposal is to let these two kinds of experts build
the meta-models of DSMLs incrementally and automatically starting from
example models. Afterwards, the induced meta-model can be reviewed by a
meta-modelling expert who can refactor some parts if needed.

– Interactive. Creating a meta-model is an iterative process in which an initial
meta-model is created, then it is tested by trying to instantiate it to create
some models of interest, and whenever this is not possible, the meta-model
is changed to accommodate these models [13]. The performed changes may
require the detection of broken test models and their manual update. In our
proposal, if a new version of the meta-model breaks the conformance with
existing models, the problem is reported together with possible fixes.
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Fig. 2. Working scheme of bottom-up meta-modelling

– Exploratory. The design of a meta-model is refined during its construction,
and several choices are typically available for each refinement. To support the
exploration of design options, we should let the developer annotate his ex-
ample models with hints about his intention, which are then translated into
some meta-model design decision. If two models contain conflicting annota-
tions, this is reported to the developer who can decide among the different
design options. We also consider the possibility of rolling back a decision.

– Implementation-agnostic. The platform used to implement a meta-model
may enforce certain meta-modelling decisions (e.g., the use of compositions
vs references). This knowledge is sometimes not available to meta-modelling
experts, but only to experts of the platform. For this reason, we postpone
any decision about the target platform to a last stage. The meta-models
built interactively are neutral or implementation-agnostic, and only when
the meta-model design is complete, it is compiled for a specific platform.

Starting from the previous requirements, we have devised a process to build
meta-models that is summarised in Fig. 2. First, a domain expert creates one
or more example models using some tool with sketching facilities, such as Vi-
sio, PowerPoint or Dia. These examples are transformed into untyped model
fragments made of elements and relations (step 1). An engineer can manipulate
these fragments and define new ones, and also annotate his particular insight
of certain elements in the fragments (step 2). A meta-model is induced from
the fragments and their annotations (step 3), and it can be visualized to gather
feedback about the effect of the fragments. At this point, there are two ways
to evolve the meta-model: by adding new model fragments and updating the
meta-model accordingly, or by performing some refactorings from a catalogue
on the induced meta-model (step 4). In both cases, a checking procedure de-
tects possible conformance issues between the new meta-model and the existing
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fragments, reporting potential problems and updating the fragments if possible
(step 5). Finally, in step 6, the user selects a platform and purpose of use, and
the neutral meta-model (and the fragments) is compiled into an implementation
one, following the specific idioms of the target technical space. The compilation
rules are customizable, and new compilations can be defined.

Realizing this approach poses several challenges. First of all, both engineers
and non-technical experts need to develop model fragments. Engineers must be
provided with a comprehensive set of annotations to specify design intentions.
For non-technical experts, fragments are defined by sketches that have to be
interpreted, for instance taking advantage of spatial relationships (e.g., contain-
ment). Secondly, the induction process is not a batch operation, but it is an
interactive process that must take into account both the current version of the
meta-model and the previous and new model fragments, detecting conflicts if
they arise. Thirdly, a mechanism to let the users supervise the decisions of the
induction algorithm has to be defined, as well as a set of meta-model refactorings
to enable the resolution of conflicts. Finally, we compile meta-models for specific
platforms and uses, which requires studying the requirements of the considered
platforms. These issues are discussed in Sections 3, 4 and 5.

3 Definition of Model Fragments

In our approach, users provide model fragments –examples of concrete situations–
from which a meta-model is induced. Model fragments can be specified by a
domain expert, typically using a drawing tool, or by an engineer, using a more
concise syntax that can include annotations to guide the induction process.

As a running example, suppose we need to design a DSML to model sim-
ple factories and assist domain experts in modelling networks of machines. The
machines receive and produce parts to conveyors, which can themselves be in-
terconnected. Factories can include generators of two kinds of parts: dowels and
cylinders. The left part of Fig. 3 shows a model fragment with a particular
network as it would be sketched by a domain expert. It includes a machine con-
nected to input and output conveyors, each transporting a different type of part.
The right part of the figure shows the same fragment using the textual syntax
that the engineer would use. Actually, we have an importer from Dia drawings
that translates the sketches into textual fragments.

The textual syntax allows the engineer to enrich the fragments with domain
and design annotations to guide the meta-modelling induction process. Domain
annotations assign a meaning or feature to certain aspects of the fragment ele-
ments. For instance, the annotation @container attached to Conveyor indicates
that, conceptually, conveyors are containers of items while these are being trans-
ported (see line 2 in Fig. 3). It is not necessary to repeat the same annotation for
all objects of the same kind, but it is enough to annotate one of them. Another
example of domain annotation is @global, regarding the shareability of elements
between different models. For example, a global clock may be used to synchro-
nise all simulation models of a system. If an element is not tagged as @global,
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1 fragment ”conveyorSequence” {
2 @container
3 cin: Conveyor {
4 rel asm = a;
5 }
6 cout: Conveyor {}
7 a: Assembler {
8 rel outs = cout;
9 }

10 p1: Dowel {
11 rel conv = cin;
12 }
13 p2: Cylinder {
14 @general
15 rel conv = cout;
16 }
17 }

Fig. 3. Model fragment definition: Graphical concrete syntax used by the domain ex-
pert (left), and compact textual syntax used by the engineer (right)

it is assumed to be local, i.e., accessible in the scope of the current model only.
These annotations may be translated later into meta-modelling design decisions
or used to guide the meta-model compilation process.

On their side, design annotations refer to meta-modelling decisions that should
be reflected in the meta-model generated from the fragments. These decisions
can also be given later by refactoring the induced meta-model, but the engineer is
given the possibility to define them in advance using annotations. For instance,
the @general annotation specifies that a certain reference or attribute should
be kept as general as possible, i.e., it should be placed as high as possible in
the inheritance hierarchy. This may cause the creation of an abstract class in
the meta-model, as a parent of all classes owning the reference or attribute. For
example, the annotation in Fig. 3 (line 14) will cause the creation of a parent class
for dowels and cylinders, defining the common reference conv. Other examples
of design annotations are @external, to indicate cross-references, or @partial,
to indicate that a class is only partially defined and should be completed with
others through merging or inheritance.

Altogether, annotations are a means to record an insight of the engineer at a
given point in the running session, and will be used at some point in the future
to guide the meta-model induction process.

4 Bottom-Up Meta-Model Construction

Whenever the user enters a new fragment, the meta-model is updated accord-
ingly to consider the new information. The annotations in the fragment are
transferred to the meta-model, and this may trigger meta-model refactorings.
Any conflicting information within and across fragments, like the assignment
of non-compatible types for the same field, is reported to the user and auto-
matically fixed whenever possible. Next, we describe our meta-model induction
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Fig. 4. Processing a reference with different target type in the meta-model and a
fragment (left). Meta-model induced from the fragment in Fig. 3 (right).

algorithm, how meta-model refactorings are applied, and the strategy for conflict
resolution.

4.1 The Meta-Model Induction Algorithm

Given a fragment, our algorithm proceeds by creating a new meta-class in the
meta-model for each object with distinct type. If a meta-class already exists in
the meta-model due to the processing of previous fragments, then the meta-class
is not newly added. Then, for each slot in any object, a new attribute is created
in the object’s meta-class, if it does not exist yet. Similarly, for each relation
stemming from an object, a relation type is created in its meta-class, if it does
not exist. The minimum cardinality of relations is set to 0 by default, or to 1 if
all objects of the same kind define the reference. The maximum cardinality can
be set to 1 or unbounded. We take the convention of mapping plural reference
names to multivalued references, and singular to monovalued ones.

If two relations with the same name point to objects of different type, our
algorithm creates an abstract superclass as target of the relation type, with a
subclass for the type of each target object. This situation is illustrated to the
left of Fig. 4, where the new abstract class BC is created as parent of both B and
C. In this example, BC would not be created if the B meta-class is abstract and
the C object defines features that are compatible with those in B. The minimum
cardinality of the relation type r is set to min(a, 1) because it should accept at
least one element (the one provided in the fragment), but the previous minimum
cardinality (value a) may be zero. The maximum cardinality b of the relation is
kept. As we will explain in Section 4.3, any automatic design decision made by
the algorithm is reported to the user, so that he can change it.

As an example, Fig. 4 shows to the right the meta-model induced from the
fragment in Fig. 3. According to the heuristic, the conv and asm relations (sin-
gular) were assigned upper bound 1, while outs (plural) received upper bound *.
For the lower bound, it is 0 in asm because the fragment contains conveyors not
connected to assemblers, but it is 1 in outs because all assemblers are connected
to some conveyor in the fragment. Additionally, the @general and @container
annotations were copied from the fragment to the meta-model.
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on the meta-model to the right of Fig. 4 (right).

4.2 Refactoring of Meta-Models

The annotations transferred from the fragments to the meta-model may trigger
refactorings in it to reflect the annotated intentions. For example, the left of
Fig. 5 shows the refactoring triggered by the @general annotation, which is simi-
lar to the pull-up refactoring [10]. It pulls up the annotated attribute or relation
as general as possible in an inheritance hierarchy. If the annotated attribute or
relation is shared by two classes that are not related through inheritance, then
an abstract, parent class is created for them so that the attribute or reference
can be pulled up (i.e., Fowler’s extract superclass refactoring [10] is applied). The
target of the pulled relation receives as lower bound the minimum of the lower
bounds, and as upper bound the maximum of the upper bounds. The situation
is similar for the source, but in this case the upper bound is generalised to * as
the pulled relation must merge those from A and B (i.e., we take * as the upper
bound instead of the sum of the upper bounds b’+d’).

The right of Fig. 5 shows the result of executing this refactoring to the meta-
model in Fig. 4, due to the @general annotation in reference conv. A new abstract
class AbstractDowelCylinder is created as parent of both Dowel and Cylinder,
acting as target of the reference.

4.3 Interactivity and Exploration by Supervising Decisions

Our induction process and the triggered refactorings are automated mechanisms.
If there are several design alternatives available, then our algorithm takes a de-
cision; therefore, some supervision on behalf of the user may be needed. Our aim
is that the environment assists the user in refining the meta-model interactively
as it is being built. To this end, our induction algorithm records the decisions
taken, and presents possible alternatives to the user in the form of “open issues”.

Each open issue presents one or more alternatives, each one of them associated
to a refactoring. Whenever an alternative is selected, the corresponding refactor-
ing is applied to the meta-model. This interactive approach enables non-expert
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users to refine a meta-model by observing the effects of their actions and follow-
ing suggestions from the environment. The user may apply refactorings manually,
through a catalogue of refactorings provided as part of the environment, if his
level of expertise allows him to decide how to change the meta-model.

On the other hand, our induction algorithm is conservative as it does not
break the conformance of previous fragments when the meta-model needs to be
changed to accommodate new fragments; if the algorithm finds a disagreement,
then it raises a conflict. However, the resolution of an open issue by means of a
refactoring may break the conformance. According to [5], changes in meta-models
can be classified into non-breaking, breaking and resolvable, and breaking and
unresolvable. Our refactorings automatically update the fragments if a change is
non-breaking or resolvable. For unresolvable ones, the user is asked to provide
additional information or to discard the no longer conformant fragment.

We have defined three kinds of open issues: conflict, automatic and suggestion,
which are briefly explained next.

Conflict. The definition of new fragments may imply the update of the meta-
model. For example, the cardinality of existing relations may need to be changed,
or new classes may need to be created. If a fragment contains contradictory
information, e.g., if the same attribute is assigned incompatible types in different
objects, then a conflict arises. For instance, there is a conflict if a conveyor
defines an attribute attr id=‘‘c1’’, and another conveyor defines attr id=2.
In this case, our algorithm chooses one of the types (e.g., String) and notifies
the conflict and the alternative to the user (e.g., choosing Integer). This open
issue must be resolved at some point by the designer. Changing the type of an
attribute from Integer to String is an example of breaking and resolvable change
(e.g., the conveyor with id=2 would be automatically changed to id=‘‘2’’),
while a change from String to Integer is breaking and unresolvable, and requires
the intervention of the user. Our algorithm chooses by default an alternative
that is non-breaking or, at least, resolvable.

Automatic. These are decisions automatically taken by the induction algo-
rithm when several alternatives exist. For instance, the name of the superclass
automatically introduced for Dowel and Cylinder is built by concatenating
the subclasses’ names prefixed by “Abstract” (i.e., AbstractDowelCylinder).
The user is notified about this design decision, and is offered the possibility of
changing the superclass’ name.

Suggestion. Some meta-model improvements may be possible, like the applica-
tion of guidelines or meta-model design patterns. These are provided as sugges-
tions which, if accepted, will trigger a certain meta-model refactoring. As an
example, if a reference is multivalued but its name is singular, our engine will
suggest the user to give it a plural name. So far, we support simple suggestions,
but our aim is to define and implement a catalogue of meta-modelling good
practices that help non-expert users improve the quality of their meta-models.
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5 Meta-Model Compilation for Specific Platforms

The bottom-up meta-modelling process results in a conceptual meta-model that
still needs to be implemented in a particular platform (e.g., EMF, MetaDepth),
and tweaked for a particular purpose. For example, in EMF, an extra root class
is frequently added (e.g., if the models will be edited with the default tree ed-
itor), making heavy use of composition associations. If we aim at creating a
model-to-model transformation, then we often implement references as bidirec-
tional associations to ease the definition of navigation expressions. Therefore, we
propose to define a number of transformations from such a neutral, conceptual
meta-model into implementation ones for specific platforms and purposes.

Fig. 6 shows a feature model that gathers some compilation variants from our
neutral meta-model. We currently support two platforms: EMF andMetaDepth.
For each one of them, one can select different profiles or purposes: transforma-
tion, visual language and textual language definition. Each platform and profile
has different options, which can help to fine-tune the compilation. The imple-
mentation of the modularity mechanism for meta-models is also subject of two
variants: package merge or cross-references between meta-models.

Next, we enumerate the different compilations that we support up to now.

– EMF platform. This compilation produces an ecore meta-model. Option-
ally, by setting the Editable flag equal to true, the compilation generates a
root class and composition associations to allow any class to be reachable
from the root class via composition associations. Each reference from a class
annotated with @container to a class annotated as @containee is converted
to a composition. Finally, EMF uses references instead of full-fledged associ-
ations, and references can only have cardinalities at the target end. For this
reason, this compilation generates two opposite references for those relations
in the neutral meta-model with cardinality different from * in the source.
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– MetaDepth platform. This compilation produces a MetaDepth meta-
model, which takes advantage of some special features of metaDepth, like
Edges to model bidirectional associations and associative classes. In contrast
to EMF, MetaDepth does not support composition, therefore the compila-
tion generates OCL constraints for those references between @container and
@containee objects.

– Transformation profile. In this profile, we can configure two aspects to op-
timize navigation expressions. By selecting Opposite Navigation all relations
become bidirectional, so that writing navigation expressions will be easier in
languages making use of query expressions (like QVT). The Global Reference
Iteration option should be selected when we foresee having to iterate over
references in a global scope. In this case, an intermediate class is generated
to permit the iteration. If MetaDepth is selected as target platform, this
option generates an Edge instead.

– Textual language profile. In xText, there is the convention of using a fea-
ture called “name” to allow cross-references to objects. Thus, any class that
is target of a non-containment reference must include an attribute “name”,
otherwise it is added by the compilation. Additionally, xText offers the pos-
sibility to automatically provide import facilities for textual files as well as to
integrate a DSML with Java types. This requires adding certain classes and
attributes to the meta-model, which is automatically done by the compiler
if the variants Import Aware and Java Integration are selected. Finally, some
DSMLs may require associating the line/column information to the elements
(this is even required in tools like TCS), which is implemented making all
classes inherit from a common LocatedElement class.

– Visual language profile. In this case, we can select whether to include in
classes attributes to store the size and position of elements in the canvas.

As an example, Fig. 7 shows to the left the neutral meta-model obtained by the
induction process. This meta-model was obtained from the fragment in Fig. 3 and
two additional fragments: one specifying a Generator connected to a Conveyor,

Machine Conveyor outs 

asm 

1..* 

* 

Dowel Cylinder 

conv 

* 
@general 

Assembler Generator 

EMF{Editable}  
      + 
Transform{} 

Machine outs 

asm 

1..* 

* 

Dowel Cylinder 

* 

Part Assembler Generator 

Factory 

* * machines conveyors 
* 

0..1 

nexts * * 

nexts 

* 
* 

* 
Conveyor 

@container 

@containee 
Part 

conv 
0..1 

Fig. 7. Compiling to EMF for transformation
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1
2

4

56

3

Fig. 8. Example of interaction with the tool

which produced the Machine abstract class, and another one connecting two
Conveyors, which generated the nexts relation. The AbstractDowelCylinder

class was renamed to Part through a renaming refactoring. Since none of the
new fragments contained Parts, the lower bound of the source of conv was set
to zero by the algorithm. Finally, an additional @containee annotation was man-
ually added to Part. The figure also shows the compilation of this meta-model
into EMF using the transformation profile. For the EMF platform, we chose
the generation of a root class, and the reference between the @container and
@containee was compiled into a composition. Additionally, the transformation
profile makes each reference bidirectional. A wizard asks the user any informa-
tion needed to complete the compilation, like the name of the root class and
association ends. Moreover, all model fragments are compiled using the same
options, so that a set of testing models becomes available for free.

6 Tool Support

Realizing our approach requires specialized, integrated tool support that has to
go beyond the dominant style of meta-modelling nowadays: top-down and based
on a batch processing style. To this end, we have implemented a tool for Eclipse
that gives interactivity to our approach3. Next, we describe the elements of our
tool by going through an interaction example that is shown in Fig. 8.

1. Sketching fragments. If a domain expert is involved in the meta-modelling
process, he may first sketch fragments that represent scenarios in the domain.

3 Available at http://sanchezcuadrado.es/projects/interactive-metamodeling

http://sanchezcuadrado.es/projects/interactive-metamodeling
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We have implemented an import facility that takes a diagram sketched with the
Dia tool and generates a model fragment ready to be evaluated. This facility
implements simple heuristics to determine sensible names for objects and ref-
erences, and takes advantage of the visual containment relationships between
elements to generate equivalent annotations.

A drawing tool such as Dia (and others like Visio) offers a wide variety of
symbols, organized in categories, that can be used to sketch fragments. How-
ever, we do not expect that a non-technical user respects the semantic meaning
of the symbols (in the figure, the symbol to depict a conveyor is actually a
representation of a network hub). Instead, a symbol is used if the pictogram
resembles what the user wants to convey. Nonetheless, it is important that each
meta-model element is assigned a meaningful name within the domain. For this
purpose, symbols can be attached a legend with their name.

2. Editing fragments. Engineers can create fragments by using the textual no-
tation introduced in Section 3. Actually, the sketched fragments are translated
into this second textual notation for their subsequent edition and manipulation,
e.g., to add annotations or to refine the name of the types. In the example, the
engineer has added the @container and @general annotations, as well as a new
attribute id to Conveyors. Textual fragments are edited by using a text editor
(built with xText) with syntax highlighting, error reporting, templates and au-
tocompletion. A key binding and the “Update metamodel” menu option permits
processing the current fragment.

3. Visualizing the meta-model. Processing a fragment induces a new version of
the meta-model. However, there is no editor to modify the meta-model. Instead,
the meta-model is visualized so that the user can check its state and evolve
it in three ways: processing new fragments, applying manual refactorings or
addressing open issues. Implementation-wise, the current version of our tool
uses the Zest framework to render and layout meta-models.

4. Addressing open issues. The interactive and exploratory nature of our ap-
proach is realised through the open issues view. This view gives the user infor-
mation about conflicts as well as suggestions of possible refactorings. Selecting
an issue will show possible fixes that in turn will launch a refactoring. In the
figure, two issues are reported: (1) the introduction of a new superclass, and (2)
a conflict related to incompatible types for the id attribute. For the first issue,
our system proposes a rename action (if needed). Additionally, every command
and updated fragment is recorded and can be queried in the history tab. Sessions
are persistent, that is, the state of the session is stored after each evaluation so
that it can be interrupted and resumed later.

5. Applying a refactoring. Selecting a proposal from the open issues view will
raise a refactoring. The refactoring may require the user to provide some in-
formation, as is the case of the figure, where the name of the class is asked
(in this case Part is given). Afterwards, the visualization of the meta-model is
automatically updated (step 6).

These steps are performed iteratively until all concepts of the domain are
represented in the meta-model. At this point, the meta-model can be compiled
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for some particular purpose, as explained in Section 5. The user then selects the
purpose (for instance, creating a textual DSML with xText), and the environ-
ment automatically selects dependent features (e.g., xText implies EMF) and
shows a wizard that asks the user for optional features. Finally, the meta-model
is generated in the selected format, for instance Ecore.

7 Related Work

There are some works dealing with the inference of meta-models from models.
The MARS system [12] enables the recovery of meta-models from repositories
of models using grammar inference. The objective is being able to use a set
of models after migrating or losing their meta-model. Actually, the induction
process can be seen as a form of structural learning [15]. In contrast, our pur-
pose is enabling the interactive construction of meta-models, also by domain
experts.

There are a few works using test-driven development (TDD) to build meta-
models iteratively. For instance, in [7], the authors attach test cases to the meta-
classes in a meta-model. Test cases are executable models written in PHP, and
perform some kind of transformation like code generation. If a test case shows
that a meta-model is inadequate, this must be manually modified. Similarly,
in [20], the authors combine specifications and tests to guide the construction
of Eiffel meta-models. Specifications are given as Eiffel contracts, whereas tests
are written using the acceptance test framework for Eiffel. Another example
is [22], which supports the specification of positive and negative example mod-
els from which test models for meta-model testing are generated. In our case,
the meta-model is automatically induced from model fragments, and there is a
greater level of interactivity. Moreover, meta-models are updated through refac-
torings, which simplifies their evolution and the propagation of changes to model
fragments (i.e., side effects). A catalogue of meta-model refactorings, although
not directly related to TDD of meta-models, is available in [18]. We provide
support for many of them. Finally, the idea of testing meta-models by creat-
ing test cases is orthogonal to our approach, and could be integrated in our
environment.

Techniques to build MDE artefacts “by example” have emerged in the last
years, but it is still novel for meta-models. In the position paper [4], the au-
thors identify some challenges to define DSMLs by demonstration. They discuss
the usefulness to bridge informal drawing tools with modelling environments,
as the former are the working tools of domain experts. They also recognise the
difficulty for experts to manually build meta-models, and suggest an iterative
process. Recently, the authors have realised their ideas in a framework where do-
main experts can provide model examples using a concrete syntax, from which
a meta-model describing their abstract syntax is inferred [3]. While their pro-
posal is similar to ours, we also stress that meta-models may be different de-
pending on the target platform and usage. Hence, we support the automated
induction of a neutral meta-model, its refactoring and different compilations
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into implementation meta-models, guided through annotations and selection of
configurations.

In our approach, newly introduced fragments may raise conflicts if the frag-
ments contain contradictory information. Some application domains where the
resolution of conflicts has been extensively studied are model merging [17],
change propagation in software systems [9] and distributed development [6]. It
is up to future work to identify how the conflicts that may arise when evolving
a meta-model relate to these previous works.

Another line of related work concerns the expressiveness of model fragments.
While one could simply use object diagrams, in [16], the authors extend object
diagrams with modalities to declare positive and negative model fragments and
invariants (i.e., fragments that should occur in every valid diagram). Their goal
is to check the consistency of a set of object diagrams, and for that purpose they
use Alloy. In our case, the goal is different as we use fragments to automatically
induce a meta-model. While we consider negative fragments, they are not yet
taken into account by the induction algorithm.

A way to simplify and make the development of meta-models systematic is
through design patterns. In [2], some design patterns for meta-models are pro-
posed, while in [23], the requirements for meta-models are represented as use
case diagrams and the meta-models are evolved by applying patterns. We plan
to integrate patterns in our approach to guide the induction phase and refactor
meta-models towards patterns. Integrating end-users in the meta-model con-
struction process has also been regarded as a means to improve the quality
of the resulting meta-model. In [11], the authors propose a collaborative ap-
proach to meta-model construction which involves both domain and technical
experts. The approach is supported by a DSL to represent the collaborations
among stakeholders (change proposals, solution proposals or comments) while
the meta-model is being developed.

Finally, our meta-model refactorings and subsequent propagation to the model
fragments can be seen as a simplified scenario of meta-model/model
evolution [5].

8 Conclusions and Future Work

In this paper, we have presented a novel approach to the development of meta-
models to make MDE more accessible to non-experts. For this purpose, we have
proposed a bottom-up approach where a meta-model is induced from model
fragments, which may be specified using informal sketching tools like Dia. A
specialized textual notation is also provided for advanced users, who can an-
notate the fragments to guide the automatic induction of the meta-model. The
process is iterative, as fragments are added incrementally, causing updates in the
meta-model, which can be refactored in the process. Finally, the meta-model can
be compiled for specific platforms and usage purposes.

Even though we allow the specification of negative fragments, these are not
currently used to induce the meta-model, which is left for future work. We would



18 J. Sánchez-Cuadrado, J. de Lara, and E. Guerra

like to perform an empirical evaluation of the approach with our industrial part-
ners. We also plan to improve the tool support. One direction is to enhance
collaboration by building a web application where domain experts can sketch
fragments that are automatically integrated in the environment for their refine-
ment by an engineer. Another goal is to automatically build a visual modelling
environment out of the sketched fragments. The integration of different imple-
mentation meta-models compiled from the same neutral meta-model, e.g., to
support different syntaxes for a DSML, is also future work.

Acknowledgements. This work was funded by the Spanish Ministry of
Economy and Competitivity (project “Go Lite” TIN2011-24139) and the R&D
programme of the Madrid Region (project “e-Madrid” S2009/TIC-1650).

References

1. Baldwin, C.Y., Clark, K.B.: Design Rules: The Power of Modularity, vol. 1. The
MIT Press (2000)

2. Cho, H., Gray, J.: Design patterns for metamodels. In: DSM 2011 (2011)
3. Cho, H., Gray, J., Syriani, E.: Creating visual domain-specific modeling languages
from end-user demonstration. In: MiSE 2012 (2012)

4. Cho, H., Sun, Y., Gray, J., White, J.: Key challenges for modeling language creation
by demonstration. In: ICSE 2011 Workshop on Flexible Modeling Tools (2011)

5. Cicchetti, A., Ruscio, D.D., Eramo, R., Pierantonio, A.: Automating co-evolution
in model-driven engineering. In: EDOC 2008, pp. 222–231 (2008)

6. Cicchetti, A., Ruscio, D.D., Pierantonio, A.: Managing Model Conflicts in Dis-
tributed Development. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter,
M. (eds.) MODELS 2008. LNCS, vol. 5301, pp. 311–325. Springer, Heidelberg
(2008)

7. Cicchetti, A., Ruscio, D.D., Pierantonio, A., Kolovos, D.: A test-driven approach for
metamodel development. In: Emerging Technologies for the Evolution and Main-
tenance of Software Models, pp. 319–342. IGI Global (2012)

8. de Lara, J., Guerra, E.: Deep Meta-modelling withMetaDepth. In: Vitek, J. (ed.)
TOOLS 2010. LNCS, vol. 6141, pp. 1–20. Springer, Heidelberg (2010)

9. Egyed, A.: Automatically detecting and tracking inconsistencies in software design
models. IEEE TSE 37(2), 188–204 (2011)

10. Fowler, M.: Refactoring. Improving the Design of Existing Code. Addison-Wesley
(1999)

11. Izquierdo, J.L.C., Cabot, J.: Community-driven language development. In: MiSE
2012 (2012)

12. Javed, F., Mernik, M., Gray, J., Bryant, B.R.: MARS: A metamodel recovery
system using grammar inference. Inf. & Sof. Technology 50(9-10), 948–968 (2008)

13. Karsai, G., Krahn, H., Pinkernell, C., Rumpe, B., Schneider, M., Völkel, S.: Design
guidelines for domain specific languages. In: DSM 2009, pp. 7–13 (2009)

14. Kolovos, D.S., Rose, L.M., Abid, S.B., Paige, R.F., Polack, F.A.C., Botterweck,
G.: Taming EMF and GMF Using Model Transformation. In: Petriu, D.C., Rou-
quette, N., Haugen, Ø. (eds.) MODELS 2010, Part I. LNCS, vol. 6394, pp. 211–225.
Springer, Heidelberg (2010)

15. Liquiere, M., Sallantin, J.: Structural machine learning with galois lattice and
graphs. In: ICML 1998, pp. 305–313. Morgan Kaufmann (1998)



Bottom-Up Meta-Modelling: An Interactive Approach 19

16. Maoz, S., Ringert, J.O., Rumpe, B.: Modal Object Diagrams. In: Mezini, M. (ed.)
ECOOP 2011. LNCS, vol. 6813, pp. 281–305. Springer, Heidelberg (2011)

17. Mens, T.: A state-of-the-art survey on software merging. IEEE TSE 28(5), 449–462
(2002)

18. Metamodel refactorings, http://www.metamodelrefactoring.org/
19. Nierstrasz, O.: Ten things I hate about object-oriented programming. Journal of

Object Technology 9(5) (2010)
20. Paige, R.F., Brooke, P.J., Ostroff, J.S.: Specification-driven development of an

executable metamodel in Eiffel. In: WISME 2004 (2004)
21. Perera, R.: First-Order Interactive Programming. In: Carro, M., Peña, R. (eds.)

PADL 2010. LNCS, vol. 5937, pp. 186–200. Springer, Heidelberg (2010)
22. Sadilek, D.A., Weißleder, S.: Towards automated testing of abstract syntax specifi-

cations of domain-specific modeling languages. In: CEUR Workshop Proceedings,
CEUR-WS.org, vol. 324, pp. 21–29 (2008)
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Abstract. UML profiling is pragmatic choice that lets language designers 
define a Domain-Specific Modeling Language (DSML) by tuning UML to meet 
specific domain. An alternative approach is to define a pure-DSML. Each 
approach has its own benefits and drawbacks. We propose an approach and a 
tool that helps get the best from both approaches; maximizing reuse while 
retaining a focused and adapted DSML. We guide the language designer in the 
definition of a metamodel based on one or more UML profiles. Language 
designers then recast UML so that only what they need will appear in this 
metamodel. From that, the tool automatically generates the pure-DSML and the 
transformations between it and UML. However, the new pure-DSML is only a 
facade; models can be manipulated using the pure-DSML abstract syntax but 
they are actually stored in fully-compliant UML abstract syntax and therefore 
remain compatible with UML tools.  

1 Introduction 

At the present time, there seem to be two main approaches to defining a Domain-
Specific Modeling Language (DSML): either by defining a UML profile [1] or by 
defining a brand new DSML. The UML profile mechanism was motivated by the 
desire to reuse the effort and language design expertise invested in the development 
of UML as well as to exploit the important infrastructure support built around it, such 
as tooling, training, and documentation. Indeed, UML provides a rich set of constructs 
with their notation and with the recent introduction of the fUML specification [2], 
well-defined semantics. This provides a solid base for a broad spectrum of different 
DSMLs. 

An alternative is to design a DSML from scratch. In this paper we shall call such a 
language a pure-DSML. This has the obvious benefit of freeing language designers 
from constrains imposed by UML allowing the most direct and concise expression of 
domain concepts and phenomena.  

Each approach has benefits and drawbacks so that there is no general rule that 
universally places one above the other. Relying on standards can lead to major cost 
savings. On the other hand, custom solutions can lead to higher productivity and 
better quality.  
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In this paper we propose an approach and a tool that combine the advantages of 
both alternatives. It was motivated from the observation that, in our experience with 
both approaches to language design, pure-DSML metamodels are often just subsets of 
the UML metamodel with just a few additional metaclasses and some terminological 
differences. Our approach generates what appears as a pure-DSML to the modeler, 
but which is actually just kind of “facade” behind which sits standard UML, thereby 
allowing full reuse of the UML infrastructure. 

We present the benefits and drawbacks of both approaches to design DSMLs in 
section 2. This helps us to highlight the limitations that we need to overcome to get 
the best features of each alternative. Then, in section 3, we introduce our approach 
and show how these limitations are addressed. In section 4 we briefly give details of 
an implementation of the approach. In section 5 we demonstrate how a facade 
language masks out the UML in practice and thereby lets users think in terms of 
domain concepts instead of UML. Section 6 presents related work. Finally, we 
summarize the paper together with some discussions in section 7.  

2 Approaches to the Design of DSMLs 

Working directly with problem domain concepts rather than computer technology 
concepts is one of the foundations of model-based engineering (MBE). This is the 
premise behind DSMLs. This coincides nicely with the vision specified in the 
ISO/IEC/IEEE 42010 standard [3] which suggests that each stakeholder needs 
dedicated viewpoints to address his or her concerns. Such viewpoints should use 
syntactical forms that express those concerns in the most direct and intuitive form. It 
is the responsibility of language designers and methodologists to provide DSMLs that 
support these viewpoints. And, it is the responsibility of tool designers to provide 
appropriate user interfaces to corresponding language authoring tools.  

Clearly, a key objective is to align the DSML constructs with the domain concepts. 
The most common approach to this is to first design a domain model, which is a 
concrete artifact intended to capture the ontology of the target domain. Such a model 
should be completely free of any language implementation details. Each concept in 
the domain model is then described, most often using informal natural language. This 
model then serves as a guide for implementing a concrete DSML.  

2.1 The Pure-DSML Approach 

In this approach, a common way to implement a DSML is to design a metamodel 
based on the domain model but supplemented with constraints and usually refactored 
somewhat due to various implementation concerns. This defines the abstract syntax 
and terminology of the modeling language. The semantics of the DSML constructs 
can be described formally, although it is much more common to describe them 
informally with a textual description in some natural language. In practice, language 
semantics specifications are often inadequate leaving too much room for varied 
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interpretations. In addition, a concrete syntax, also called notation, is provided for the 
human user to author models with the DSML. 

Last but not least, the tooling infrastructure for the DSML must also be defined and 
implemented. Even though important research and development has been done in 
recent years to provide tools that help in the implementation of DSMLs, it remains a 
time-consuming task that requires highly specialized expertise. This is compounded if 
the chosen notation is graphical.  

If done with care, this approach leads to a relatively compact DSML and tools 
infrastructure that are nicely aligned with the domain. Both problems and solutions 
can be expressed directly and succinctly using such a language. However, over the 
long-term, maintaining pure-DSMLs and custom tooling can become very 
burdensome and expensive, drawing both time and resources away from core business 
concerns. This includes the cost of supporting and evolving tools as well as 
developing and maintaining training materials and providing language courses. In 
addition, developing a system using multiple viewpoint languages based on 
independently-designed DSMLs can lead to complex design and tool integration 
problems.  

2.2 Approaches Based on Reusing Existing Metamodels 

An alternative to design pure-DSMLs from scratch is to reuse the time, effort, and 
expertise that went into an existing language such as UML. This typically involves a 
number of different refactorings of the base language metamodel to accommodate 
domain-specific concerns. The following types of refactorings may be needed:  

─ Extension is the addition of new metaclasses for capturing domain-specific 
concepts not present in the base language.  

─ Pruning is used to eliminate those parts of the base language that are not used in 
the DSML. We adopt a broad definition of pruning: anything that reduces the 
expressivity. It usually involves removing unnecessary concepts, adding 
constraints, or merging concepts.  

─ Terminology adaptation is used to alias base language concepts, their properties 
and operations to suit the domain.  

This type of approach has the benefits of reuse but, if done in an ad hoc manner, the 
full benefits may not be gained. The profiling mechanism of UML offers a structured 
method for metamodel refactoring.  

2.3 The UML Profile Mechanism and Its Limitations 

Being a general-purpose modeling language, UML provides a rich source of general 
modeling concepts and a well-vetted metamodel that reflects years of experience in 
modeling language design.  

The profile mechanism provides both extension and pruning capabilities. However, 
the profiling mechanism limits these capabilities since profiles must be compatible 
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with standard UML. This ensures that profile-based models can be manipulated 
correctly by UML-compliant tools. One primary constraint is that the standard UML 
abstract syntax cannot be reconfigured and that standard UML semantics cannot be 
contradicted. Profiles can only be more constraining and, above all, must be 
consistent with UML. In addition, the profiling mechanism does not provide an 
aliasing feature that would allow renaming of standard UML constructs to fit the 
domain terminology.  

Extension through Stereotypes. In a UML profile, extension is done using 
stereotypes. A stereotype is defined as an extension of a UML base metaclass (the 
metaclass that it specializes) or a refinement of an existing stereotype. Although the 
notation for the Extension concept in UML is reminiscent of standard MOF 
Generalization (suggesting conceptual similarity), its semantics are quite different. 
Specifically, a stereotype instance cannot be instantiated independently of an instance 
of its base metaclass. These unique semantics mean that stereotypes are really just 
metadata attachments that serve to annotate metaclass instances.  

A stereotype can be defined as being mandatory (i.e., the “isRequired” property of 
the extension set to true). This means that all instances of the base metaclasses in the 
model must have their own attached stereotype of this type. For example, in case of a 
model based on a Java profile, all instances of UML Class in the model must be 
stereotyped with a JavaClass stereotype, which adds constraints to the base concept 
consistent with the Java language definition (e.g., no multiple inheritances).  

However, it is possible to interpret the semantics of stereotype extension in a 
number of subtly different ways. One may see it:  

─ As a simple association (which is how it is implemented),  
─ As a kind of generalization, or 
─ As merely a way of adding properties to the base metaclass.  

Some profiles even create empty stereotypes, using extension merely to achieve 
aliasing. Consequently, within a single profile different stereotypes may rely on 
different interpretations. For instance, in SysML [4], the Block stereotype is intended 
to be used differently than the RequirementRelated stereotype. The former is an “in-
place” stereotype since the Block concept fully displaces the Class concept in SysML, 
whereas the latter is an “annotating” stereotype “used to add properties to those 
elements that are related to requirements via the various dependencies described” 
(16.3.2.4 of [4]). For Block, the extension is a kind of generalization while for 
RequirementRelated the extension is a simple association.  

Consequently, to ensure accurate representation of the language designer’s 
intentions, the interpretation to give to each extension must be defined explicitly.  

Pruning the UML Metamodel. As an alternative to a pure pruning feature, UML 
provides a metaclass filtering function known as “isStrict”, which applies at the time 
that a profile is applied to a UML model. The filtering rules allow selecting which 
metaclasses are visible in the profiled model (details of the filtering rules are defined 



24 F. Noyrit, S. Gérard, and B. Selic 

in clauses 18.3.7 and 18.3.8 of [1]). Unfortunately, filtering can only be applied at the 
metaclass level so that individual metaclasses properties and operations cannot be 
filtered out.  

This filtering feature is rarely used in practice to define a profile or to define a 
corresponding DSML interface for tools. Consequently, instead of interpreting the 
profiles definitions, UML developers and tool vendors often create manually specific 
“filtered” user interfaces for each profile to hide those parts of UML that are not needed.  

Furthermore, this type of filtering still leaves the full UML metamodel unchanged 
merely hiding unnecessary metaclasses from view of the modeler: filtering applies at 
the M1 level not at M2. The full complexity of the UML is still seen by tools, such as: 
model-to-model (M2M) tools (e.g., QVTo [5][6] or ATL [7]), model-to-text (M2T) 
tools (e.g., Acceleo [8]), or various model analysis tools. These tools and their users 
must cope with the full UML abstract syntax as well as the extensions defined in the 
profile. This is further complicated by the fact that navigating from a stereotype to its 
base metaclass instance and vice versa is not straightforward.  

Additional constraints, such as OCL [9] constraints, can be used to further 
constrain elements of the UML metamodel. For instance, one could define an OCL 
constraint that all instances of Class must have at least one Operation (regardless of 
whether the Class is extended by a stereotype or not). However, these rules are not 
provided to hide the complexity; they are only used to validate (most of the time a 
posteriori) that a model conforms to a more constraining syntax.  

Implicit Rules for Stereotype Applications. Multiple stereotypes can be applied on 
the same UML element. However, most of the time, this is not something profile 
designers expect. For instance both Requirement and Block stereotypes in SysML 
extend the UML Class concept. However nothing in the profile forbids applying both 
stereotypes to the same instance of Class, even though this does not make sense. We 
refer to this as the issue of stereotype application compatibilities.  

Another potential issue arises whenever a stereotype extends a non-leaf metaclass, 
since this creates an opening for inappropriate stereotyping. This possibility is often 
overlooked by language designers. For instance, the Requirement stereotype, which 
extends the Class metaclass, can also be applied to instances of a StateMachine, 
which happens to be a kind of Class in UML. Of course, stereotyping a StateMachine 
as a Requirement is not meaningful and should not be allowed. We call the scope of 
applicability of a stereotype the set of metaclasses to which it can be applied.  

Generate Specific Viewpoints. A UML profile in addition to defining the abstract 
syntax, concrete syntax and semantic adaptations, may also implicitly define the 
viewpoints of a language. For instance, SysML provides a requirement modeling 
viewpoint, a system modeling viewpoint, a parametrics viewpoint, etc. Such 
viewpoints are often defined in the form of dedicated sub-profiles. However, this does 
not state explicitly which UML concepts are intended to be used in which viewpoint – 
leaving it up to tool designers to figure out.  
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One way to make those viewpoints more explicit would be to use the metaclass 
filtering feature for each sub-profile. To the best of our knowledge, however, no 
standard profile used that design pattern. Also, as stated before, filtering does not 
provide the necessary granularity nor does it hide complexity from other tools.  

In addition, specific user interfaces are designed most of the time for a single 
profile. In cases where a user needs a viewpoint that uses multiple profiles, there is 
usually no adequate tool support.  

2.4 Providing Pure-DSMLs through UML Profiles  

Despite these limitations of profiles, we feel that it is a practical choice because of all 
its reuse and other benefits cited earlier. Therefore, the key idea behind our 
FacadeMetamodel approach—a kind of “recasting” of UML—is that users can be 
“doing UML without being aware of it”, retaining thus the benefits of UML without 
suffering the drawbacks of inflexibility and complexity.  

However, it is not always possible to tell what the language designer’s intentions 
were, by simply inspecting a profile definition. At best, the textual specifications 
identify how to use the different stereotypes and how they should be interpreted. 
While humans can sometimes infer the most likely intent even if it is underspecified 
or understand natural language specifications, computers cannot. Because profile 
definitions lack many explicit specifications, specific tool support for each viewpoint 
of profile has to be manually coded. It is, therefore, necessary to make the intentions 
of profile designers explicit and, more importantly, computer interpretable. 
Specifically, to obtain the advantages of pure-DSMLs, language designers must 
explicitly capture their intent in terms of: how stereotype extensions are to be 
interpreted, the scope of applicability of stereotypes, their application compatibilities, 
aliasing, etc. In the following section, we explain how our approach provides such 
capabilities. 

3 The FacadeMetamodel Approach 

This approach is based on defining a facade definition model for each viewpoint in the 
profile(s). These definition models are then interpreted to generate corresponding 
facade metamodel and UML custom diagrams for tools. To describe this approach, we 
will make use of two sample UML profiles (Fig. 1), which were artificially designed to 
cover most of the common patterns used in defining UML profiles. The full process for 
creating a facade metamodel is a multi-step procedure described below.  



26 F. Noyrit, S. Gérard, and B. Selic 

 

Fig. 1. Definition of sample UML profiles ProfileA and ProfileB 

3.1 Step 1: Qualify the Intent of the Extensions 

As noted earlier, the UML Extension concept, which relates a stereotype to its base 
metaclass, can have multiple interpretations serving different ends. Therefore, in our 
approach it is first necessary to clarify the intent of this relationship. This has two 
objectives: (a) to disambiguate the relationship between a stereotype and its base 
metaclass and (b) to clarify the scope of applicability of the stereotype. Metaclasses in 
the facade metamodel are called facade metaclasses, properties (either attributes or 
references) are called facade properties and operations are called facade operations.  

Our approach recognizes two different interpretations of extensions:  

─ Tag. In this interpretation, the extension acts as an ordinary association; that is, it 
attaches additional information to instances of the base class (left hand side of Fig. 
2). It matches “annotating” stereotypes. In the facade metamodel, each desired 
stereotype is represented by a new facade metaclass. A bidirectional association is 
added to represent the relation between the facade metaclass that represents the 
base metaclass and the facade metaclass that represents the stereotype. It is defined 
as composite association with the facade metaclass that represents the base 
metaclass as the owner. This new association facilitates navigation between the 
base metaclass and the stereotype in either direction. In this interpretation the 
scope of applicability of the stereotype is necessarily the base metaclass and all its 
subclasses.  

─ Sub-Metaclass. In this interpretation the Extension acts as a generalization (right 
hand side of Fig. 2). It matches “in-place” stereotypes. The language designer can 
explicitly specify the scope of applicability. For example, if the Extension has 
Class as the base metaclass, it normally means that the stereotype is automatically 
applicable to all subclasses of Class (including StateMachine, Node, etc.). But, this 
may not be desirable, so we require the applicability of the stereotype to be 
explicitly defined for each subclass of the base class. A new facade metaclass and a 
new generalization are added to the facade metamodel only for applicable 
subclasses.  
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Fig. 2. Pattern of the Tag (left) and Sub-metaclass (right) interpretations of extensions 

These qualifications apply transitively to all sub-stereotypes of the stereotype rooted 
at an Extension. For instance, defining the Extension between Spec and Class in 
ProfileA (Fig. 1) as a Tag means that RTSpec and DataSpec will also be interpreted 
as Tags. Also, different Extensions from a stereotype can have different 
interpretations. For instance, the two Extensions of Characteristic in ProfileB (Fig. 1) 
could have different interpretations. If they are all defined to have a Tag 
interpretation, only one facade metaclass is created. Otherwise, separate facade 
metaclasses will be created to represent the stereotype.  

If the Extension is defined as isRequired and the interpretation is set to Sub-
Metaclass, the facade metaclass that represents the base metaclass in the facade 
metamodel is forced to be abstract. If the interpretation is Tag, however, multiplicities 
for the association ends are set according to the multiplicities of the extensions’ 
member ends. This results in a 1..1-1..1 association, which forces the need for a third 
interpretation:  

─ Merge. In this case, the language designer probably simply intends to merge the 
properties of the stereotype with those of the base metaclass. We haven’t 
implemented this interpretation in our tool yet.  

On our case study, the facade definition model could contains the definitions shown 
in Table 1 (abstract stereotypes are in italics, stereotypes with required extension are 

in bold and ↳ is used to denote sub-stereotypes). 

Table 1. Clarification of the extensions in the example in Fig. 1 

Stereotype Interpretation Scope of applicability 

Spec,↳RTSpec, ↳DataSpec Tag - 

Controller Sub-Metaclass 

Activity, AssociationClass, Class, 
Component, Device, Interaction, 
Node, ExecutionEnvironment, 
StateMachine, FunctionBehavior, 
OpaqueBehavior, 
ProtocolStateMachine, Stereotype 

Sensor, ↳RTSensor Sub-Metaclass Component 

Characteristic (Component) Sub-Metaclass Component 

Characteristic (Feature) Sub-Metaclass 
Connector, ExtensionEnd, Operation 
Port, Property, Reception 

Module Sub-Metaclass Component 

Note that Controller, Sensor, RTSensor and Characteristic (Component) do have 
Component in their scope. However they cannot be applied alone because they must 
be applied in combination with Module, which is required.  
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3.2 Step 2: Define Stereotype Application Compatibilities 

In cases when the interpretation of an extension is Sub-Metaclass, compatibilities between 
stereotype applications can be defined. For instance the application of both Characteristic 
and Sensor to a Component must be explicitly declared as compatible if the language 
designer wants a new facade metaclass to represent this combination. By default, 
stereotypes interpreted as Sub-Metaclass are incompatible, that is, they cannot be applied 
to the same metaclass instance. For each compatible combination, a new facade metaclass 
and corresponding new generalizations are added to the facade metamodel.  

For example, on our case study, we might specify the compatibilities presented in 
Table 2 in the facade definition model.  

Table 2. Clarification of stereotype application compatibilities in the example in Fig. 1 

Scope Stereotype application compatibilities 

Component 
Module, (Sensor, ↳RTSensor) 

Module, Characteristic 
Module, Controller 

Note that stereotype application compatibilities conform to the stereotype 
hierarchies. For instance, defining compatibility with Sensor implies compatibility 
with RTSensor.  

3.3 Step 3: Generate a Preliminary Facade Metamodel 

Once Extension qualifications, scope of applicability, and stereotype compatibilities 
have been specified, a tool can automatically generate a preliminary facade 
metamodel. We present here the different patterns used to generate it. Fig. 3 shows a 
fragment of the generated metamodel for our example.  

 

Fig. 3. Representation of an extract from the generated preliminary facade metamodel 
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The preliminary facade metamodel consists of facade metaclasses corresponding to 
the UML metaclasses supplemented with facade metaclasses that represent stereotype 
applications to UML metaclasses. In this preliminary facade metamodel, the name of 
facade metaclasses that represent stereotype applications are prefixed with the name 
of the UML metaclass to which they apply.  

─ Tags. The Tag stereotypes (Class_Spec, Class_RTSpec and Class_DataSpec) are 
related to the base facade metaclass (Class) with a composite bidirectional 
association to facilitate navigation.  

─ Sub-Metaclass. Metaclasses that represent a stereotype application specialize 
directly the UML metaclass unless there is a required stereotype to apply on this 
UML metaclass. For example, because Module is required, Component becomes 
abstract and all stereotypes that were defined as compatible with Module become 
subclasses of Component_Module. In our prototype tool, we allow only one 
required stereotype to be defined with Sub-Metaclass interpretation, because the 
alternative would result in needlessly complex generation patterns. This restriction 
will be removed when we implement the Merge interpretation.  

─ If a stereotype is used by multiple facade metaclasses in the facade metamodel, to 
avoid the creation of multiple facade properties in each facade metaclass that 
represents a combination of stereotype applications, we add a new abstract facade 
metaclass in the facade metamodel. This abstract facade metaclass contains 
common facade properties of the stereotype, while combinations that represent its 
application specialize from it. For instance, Class_Controller and 
Component_Controller both specialize Controller_applied. This simple design 
pattern guarantees consistency of facade properties among facade metaclasses that 
represent stereotype combinations.  

3.4 Step 4: Customize the Preliminary Facade Metamodel 

In the next step the language designer customizes the preliminary facade metamodel 
to better match the domain. Possible customizations include:  

─ Aliasing (i.e., renaming) facade properties, facade operation and facade 
metaclasses (NB: the names must be unique).  

─ Refinement of multiplicities of facade properties. To ensure compatibility with 
UML, the refined multiplicity ranges must be narrower than the original ones (i.e., 
higher lower value and/or lower upper value).  

─ A facade metaclass can be made abstract but with the obvious constraint that there 
must exist at least one concrete facade metaclass among its subclasses.  

─ Facade metaclass, facade operations, and facade properties can be pruned. For this, 
we adopt the solution proposed in [10].  

On our example we might decide to apply the following 
aliasing: Component_Module  Module, Class_Controller  Controller, 
Component_Controller  ControllerModule.  
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3.5 Step 5: Generate the Facade Metamodel 

Generation of the facade metamodel consists in generating an ordinary metamodel 
from the customized preliminary facade metamodel and storing, in the facade 
definition model, the mapping that exists between the actual facade metamodel and, 
the UML metamodel and the profiles. Part of the metamodel of the facade definition 
is given in Fig. 4.  

 

Fig. 4. Fragment of the metamodel of the facade definition 

The UML or profile elements are referenced through representedElement while 
facade metamodel elements are referenced via representingElement. A facade 
metaclass can be the representation of a combination of stereotype applications. This 
information is stored in appliedStereotypes. The abstract property is used to make a 
facade metaclass abstract. AliasName stores the alias to apply and kept is used for the 
pruning feature. The lower and upper properties are used to override multiplicities.  

The facade definition model contains now all the information to transform models 
that conform to the facade metamodel to UML models and vice versa. These 
transformations could be used to override the parsing and serializing functions that 
are used to load and save models. However, instead of generating specific 
transformations for each facade language we generate a generic override that 
interprets the facade definition model to transform elements. In addition, the facade 
definition model can also be used to generate custom diagrams for UML authoring 
tools. Although some manual coding is still required to complete the custom diagram, 
this greatly reduces the development effort required to develop dedicated user 
interfaces for the different viewpoints provided by one or more profiles.  

4 Implementation of the FacadeMetamodel Approach 

We implemented our approach in Eclipse. The facade metamodel is generated as an 
Ecore [11] metamodel. The facade language can be created as usual in Eclipse with 
EMF. It consists in creating a GenModel from witch model, edit, and editor code is 
generated. The only difference is that we want this language to be only a facade, so 
that the actual data stored is pure UML. Concretely, it consists in providing a specific 
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implementation of the EMF Resource. This override interprets the facade definition 
model at runtime to transform, on loading, the UML elements into elements of the 
actual facade metamodel. During editing, the model is stored in memory where it 
conforms to the facade metamodel. Upon saving the opposite is done: the UML 
elements that correspond to the elements of the facade model are generated.  

The facade definition can also be used to generate a custom user interface. In 
Papyrus [12], it consists mainly in generating a custom palette that creates the 
stereotyped elements, the specific properties view focused on wanted and aliased 
UML properties, and a specific model explorer.  

5 Using the Facade Language 

If we consider the example UML model on the left hand side of Fig. 5, the 
corresponding facade model appears as shown on the right hand side of Fig. 5.  

 

Fig. 5. The UML model (left side) is rendered using the facade language (right side) 

However, as shown in Fig. 6. the facade model does not contain anything except a 
reference to the corresponding UML model.  

<?xml version="1.0" encoding="UTF-8" standalone="no"?> 
<source uri="platform:/resource/Example/model.uml"/> 

Fig. 6. Content of the facade model 

The facade language appears to the modeler as a regular pure-DSML. Therefore, 
all existing tools (such as Acceleo, QVTo, ATL) can use the facade language 
transparently, even though the model is ultimately a UML model. In other words, the 
facade is a pure-DSML that has its own tool infrastructure but it remains compatible 
with the UML tool infrastructure. To illustrate this we give an Acceleo M2T 
transformation for UML models in Fig. 7 and the same M2T transformation for 
facade models in Fig. 8. They show that instead of thinking in terms of stereotype 
attached to Class instances (the “getAppliedStereotype('ProfileA::Controller')” and 
“getAppliedStereotype('ProfileB::Module')”), the facade language enables expressing 
transformations in terms of domain concepts (the “oclIsTypeOf(ControllerModule)”).  
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[module 
generate('http://www.eclipse.org/uml2/3.0.0/UML')] 
[template public generateElement(aClass : Class)] 

[if 
((aClass.getAppliedStereotype('ProfileA::Controller') 
<> null) and 
(aClass.getAppliedStereotype('ProfileB::Module') <> 
null))] 
[file (aClass.name+'.txt', false)] 
ControllerModule = 
[aClass.getValue(aClass.getAppliedStereotype( 
'ProfileA::Controller'), 'p4')/] - 
[aClass.getValue(aClass.getAppliedStereotype( 
'ProfileB::Module'), 'p8')/] 

[/file] 
[/if] 

[/template] 

Fig. 7. Acceleo M2T transformation for UML models 

[module generate('facade')] 
[template public generateElement(aClass : Class)] 

[if (aClass.oclIsTypeOf(ControllerModule))] 
[file (aClass.name+'.txt', false)] 
ControllerModule = 
[aClass.oclAsType(ControllerModule).p4/] - 
[aClass.oclAsType(ControllerModule).p8/] 

[/file] 
[/if] 

[/template] 

Fig. 8. Acceleo M2T transformation for facade models 

Note that the UML model must be handled only through the facade language or the 
custom diagram type. If the UML model is edited directly with a standard UML 
editor, it can be corrupted such that it no longer conforms to the facade language.  

6 Related Work 

The following work inspired our approach or sought at similar goal.  
The problem of bridging pure-DSMLs and UML profiles has been addressed in 

[13], which proposes generating transformations between the pure-DSML and the 
UML profile from a weaving model. However, as the authors note in their paper, the 
mapping structures they defined are still insufficient to describe the relationship 
between profiles and pure-DSMLs. The main reason is that they do not clarify the 
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semantics of the Extension relation between a stereotype and its base metaclasses. 
Also, they assume that the metamodel of the pure-DSML already exists. That 
assumption makes the definition of the mapping much more complex and, in some 
cases, the mapping cannot even be defined.  

The authors of [14] recognized that profile definition lacks explicit support for 
UML pruning, aliasing etc. Therefore, instead of directly implementing specific user 
interfaces, they propose to refine the UML profile definition with “customizations”, 
which allow defining aliases, pruning some properties and associations, and allowing 
or forbidding some owned elements and owner elements. This customization is then 
interpreted by a UML editor to provide the adapted user interface. However, this 
approach does not provide a pure-DSML metamodel, so that the full UML is hidden 
only in UML editors but not in other tools.  

The OMG is currently working on defining a Metamodel Extension Facility, a new 
mechanism that would offer more capabilities while aiming at being retro-compatible 
with existing profiles. It notably provides more filtering capabilities and it allows 
declaring the scope of applicability of extensions. It also provides a means to define 
incompatibilities between stereotype applications. This is a first step toward making 
more explicit extensions choices. However, it does not provide an aliasing feature and 
the refinement of the metamodel is possible only by adding new constraints. Also, it 
maps the existing concept of Extension to the concept of Generalization (defined in 
SMOF [15]). This has the benefit of clarifying the interpretation of the Extension 
concept but it does not meet all our requirements, such as annotation profiles used in 
various model analyses, which often consider extensions as if they are ordinary 
associations.  

We also refer to [10], whose authors propose a solution to prune big metamodels 
(such as UML) to reveal only the “effective-metamodels” i.e. a focused metamodel. 
This applies directly to our pruning requirement, but, it does not let language 
designers customize the pruned metamodel nor does it handle profiles.  

Creating a virtual schema is not a totally new idea. We refer to Virtual EMF [16], 
which provides virtual views on heterogeneous models. EMF Facet [17] also provides 
a way to add virtual information to a metamodel, but it is limited to adding derived 
properties. In addition, the definition of a facet requires manual definition of queries, 
which is time demanding. Even though these tools take a similar approach, they do 
not address the same problem nor do they aim at virtualizing the entire metamodel.  

7 Discussions and Summary 

Our objective was to enable users to do UML modeling but without being aware of it. 
Indeed, we observed that the trade-off between designing a pure-DSML and 
designing a UML profile is not easy choice. We also observed that many pure-
DSMLs are often just specialized subsets of UML with slightly different terminology 
and a small number of additional metaclasses or properties. Consequently, we 
advocate reusing a standard highly evolved modeling language with well-defined 
semantics as a pragmatic choice on which to base a DSML.  
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However, the current profile mechanism does not offer enough flexibility for 
adapting UML. We therefore propose an approach and a tool that let language 
designer generate what we refer to as a facade. A facade is an aliasing, a pruning and 
an extension of the UML that appears like an ordinary pure-DSML but its models are 
stored internally as fully-compliant UML models. Using our approach, many pure-
DSMLs will not have to be created from scratch anymore, because both the semantics 
and syntax of UML can be reused. Despite being based on UML, modeling languages 
generated in this manner can be compact and highly expressive, fully capable of 
concise and precise expression of domain-specific concepts. More important, our 
solution reuses today available standards.  

One could create manually a metamodel that meets its specific needs by reusing 
the UML metamodel supplemented by one or more profiles. He/she could then create 
the transformations that translate models from this new pure-DSML to UML and vice 
versa. Finally he could create dedicated user interface to manipulate the models. 
However, this approach would be not only time-consuming but also error-prone. Our 
approach does it automatically and prevents language designers from creating a pure-
DSML that is not completely compatible with UML.  

In future work we aim at providing more customizations of the preliminary facade 
metamodel to let, for instance, language designer remove necessary properties with 
the requirement to implement a getter and a setter.  
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Abstract. In MDE, software systems are always synchronized with their
models since changes are made first to the model whenever there are
changes in the requirement specifications. While MDE has a lot of po-
tential, it requires maturity and tool support. In this research we present
a framework for a workflow management system based on the MDE
approach. We propose a domain specific language, T� (T-Square) for
rapidly specifying details of (workflow) tasks and their associated user
interfaces which may be used with the NOVA Workflow, an executable
workflow management system. T� includes syntax for writing procedu-
ral statements, for querying an ontology, for declaring user interfaces, for
applying access control policy, and for scheduling tasks, using Xtext to
write the grammar. We apply transformation methods, based on Xtend,
to generate executable software from the abstract task specifications. A
running example from health services delivery illustrates the usefulness
of this approach.

Keywords: Workflow Management System, Model Driven Engineering,
Ontology, Domain Specific Language.

1 Introduction

Today software systems are more complex than ever before providing features
such as transactions, discovery, fault tolerance, event notification, security, and
distributed resource management. Higher level languages have been invented
to alleviate the complexity of modern software systems. Advances in languages
and platforms during the past two decades have minimized the need to rein-
vent common and middleware services by providing libraries, APIs, etc. but
researchers and developers still need to focus on such technical issues, a major
impediment to rapid software development. Software researchers and developers
require abstractions of their system to help them program in terms of their de-
sign intent rather than in terms of the underlying computing environment [23].
Model Driven Engineering (MDE) raises the level of abstraction in program
specification and aims to increase automation in software development. MDE
offers a promising approach to further alleviate the complexity of platforms and
permits the user an effective way to express domain concepts.
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A model is specified by modeling notations or modeling languages. Model-
ing languages are often tailored to certain domains, and such a language is
often called Domain Specific Languages (DSL). A DSL can be visual (e.g., Busi-
ness Process Modeling Notation (BPMN) [1], Yet Another Workflow Language
(YAWL) [26]) or textual (e.g., CSS, regular expressions, ant, SQL). DSLs help
developers focus on problem domains rather than on technical details.

Workflow models are used to describe the behaviour of complex processes
(workflows) which may have characteristics like concurrency, resource sharing
and synchronization. Workflows often require massive data and knowledge man-
agement and sometimes need to be modified at short notice. With these aspects
in view, we present a DSL called T� (T-Square) for writing workflow task spec-
ification. It incorporates the following features: a) a simple syntax for i) writing
procedural statements, ii) querying and manipulating ontologies, iii) designing a
rich user interface (UI), iv) code generation, v) specifying access control policy,
vi) dynamically scheduling tasks; b) abstraction of communication details; and
c) ease of customization by dramatically reducing the number of lines of code.

The user-friendly syntax for querying and manipulating ontologies in T� al-
lows the developer to use domain concepts directly in his/her programming.
Ontologies are used in T� for data and knowledge persistence. An ontology
is a knowledge representation technique which can represent complex business
rules declaratively. In contrast to traditional knowledge-based approaches, on-
tologies seem to be well suited for an evolutionary approach for the capture of
domain knowledge and for the specification of requirements [27]. Software model-
ing languages and methodologies can benefit from the integration with ontology
languages in various other ways, e.g., by reducing language ambiguity, and by
enabling validation and automated consistency checking of facts [25]. Moreover
intelligent applications for example, ontology driven workflows, may be built
based on ontology reasoning. T� has been incorporated in the NOVA Workflow
workbench [17]. A workflow may be designed graphically in NOVAWorkflow and
workflow task specification is written using T�. The control flow along with the
task specification are automatically transformed to executable server side (J2EE)
components and client side applications (e.g., mobile applications). The auto-
mated transformation of workflow models and task descriptions to executable
software greatly reduces the effort required for adapting requirement changes to
software applications.

Our work is especially motivated by problems from health services deliv-
ery [16]. Health care frequently requires that workflows conform to national
or provincial guidelines, which contain tasks and procedures that must be cus-
tomized to a local setting (e.g., hospital, clinic or doctor’s office). These work-
flows not only need to be modified frequently, their business logic is often partialy
or wholly dependent on domain knowledge that is coded by an ontology. On-
tologies are common in health care to standardize terminology across districts.
For example medication ontologies may be used by pharmacists and physicians
to organize and standardize the knowledge and concepts involved in modern
medicine. T� allows us to use this knowledge during workflow enactment to
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guide the control flow. Ensuring the correct transformation of T� code to a
software system gives us the confidence that the generated software components
will produce correct workflows, a very essential feature for safety critical systems
such as health care.

The rest of the paper is organized as follows: in section 2 we propose the
model driven approach for workflow development; in section 3 we give details
of the proposed language T� together with a running example; in section 4 we
present some related works and in section 5 we conclude the paper.

2 Model Driven Workflow Development with T�

T� is a procedural language with declarative features. It has been designed to
develop certain aspects of workflows which can be used in many workflow sys-
tems. Workflow systems are often designed with graphical workflowmodeling lan-
guages such as BPMN, YAWL, the Compensable Workflow Modeling Language
(CWML) [21], etc. These languages use abstract notation for tasks and control
flow to visualize workflow but to describe the detailed specification of a task, some
workflow systems use XML-based languages, while others use a general-purpose
programming language (GPL) such as C++, Java, etc. A control flow consists of
two artefacts: i) the flow relation, and ii) branching conditions. When a workflow
executes, it follows the flow relation as described in the graphical model and exe-
cutes the tasks (i.e., specifications written in XML orGPL). During execution, the
branching conditions are evaluated to guide the control flow.

We propose T� for describing tasks and branching conditions, but for defin-
ing the flow relation and visualizing a workflow, existing workflow languages
may be used. T� has been incorporated in NOVA Workflow [17] which uses the
graphical workflow modeling language CWML and has an executable workflow
engine. CWML is a block structured workflow modeling language [21] which has
compensable components along with common workflow components (e.g., atomic
tasks, control flow operators, such as XOR, OR, AND, etc.). Each atomic task in
CWML is associated with a task description file (written in T�) containing pro-
cedures. XOR, OR, and Internal Choice control flow operators require branching
conditions to route the flow; these branching conditions are specified in T� as
procedures which may consult an associated ontology.

Fig. 1 shows the overall architecture of the proposed approach using T� for
model driven workflow development. We developed an editor for T� using Xtext
[6] and integrated it with the NOVA Editor (for modeling workflows). Specifica-
tions written in T� are automatically transformed to executable Java programs
using Xtend [2]. Each task specification may consist of code for user interface,
business logic, access control, etc. One writes the user interface related code
in a procedure named view, the business logics (e.g., action statements) in a
procedure named action, the access control related code in a procedure named
accessPolicy, etc. In T�, if a task description file contains a procedure named
view, the view procedure is transformed to a client side Java application. The
automatic transformation technique for T� generates code for Android [3] ap-
plication. All other procedures are transformed to executable Java server side
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Fig. 1. Overall architecture

programs; in NOVA Workflow we used J2EE server side components. A view

method may invoke other procedures; this will initiate an asynchronous data
communication to the server by Web Service (RESTful message). If a task ex-
ecutes, meaning the execution of a procedure named action at the server side,
the NOVA Workflow engine updates the control flow of the workflow according
to the graphical workflow model. For querying and manipulating ontologies we
used Pellet [24] which is a sound and complete OWL-DL reasoner with extensive
support for reasoning about individuals. In T�, ontology queries are written in
the SQWRL (Semantic Query-enhancedWeb Rule Language) [19] format but are
translated to the SPARQL-DL query format since the Pellet reasoner supports
SPARQL-DL. SQWRL is a query language for OWL [11][5] built on SWRL [4], a
rule language which includes a high-level abstract syntax for Horn-like rules. The
basics of description logic, OWL and SPARQL-DL may be found in [7] [5] [20].
We chose the SQWRL query syntax for T� because of its simplicity.

3 The T� Language

A workflow management system often deals with many users and resources.
Typical requirements of a workflow management system are presented here by
a real life problem description. The ‘Guidelines for the management of cancer-
related pain in adults’ [9] is a guideline for pain management of cancer related
pain. The guidelines suggests the use of Opioids for cancer patients. Opioids are
very useful in cancer care to alleviate the severe, chronic, disabling pain but
there are common side effects in patients taking opioids which include: nausea
and vomiting, drowsiness, itching, dry mouth, miosis, and constipation. The
proper use of opioid dosage is important.
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Fig. 2. Pain management workflow model defined in CWML

We designed a workflow model from the guideline. Fig. 2 shows the sequence
of tasks. A patient is admitted to the system and then pain is assessed. The ‘As-
sessment’ task assesses all causes of pain, determines pain location, pain inten-
sity, and documents all previous analgesics. The ‘Care Management’ is an AND
split which activates all of its outgoing branches. During the workflow execution,
tasks in these branches can execute concurrently. The ‘AND Join1’ is an AND join
which synchronizes the control flow of its incoming branches. The ‘Select Opioid
Regimen’ is an XOR split which activates only one of its outgoing branches. The
patient’s opioid regimen is determined by her pain intensity and medication in-
formation. The ‘Strong Opioid Regimen’ is a composite task which is unfolded to
a subnet workflow. The guideline also suggests different re-assessment times for
patients depending on the patient’s pain intensity and opioid regimen. We used
loops to model the fact that re-assessment tasks are done repeatedly.

The following requirements are clear from the given problem description: i) use
of domain concepts; ii) user interaction; iii) data persistence; iv) task and control
flow; v) task scheduling; vi) access control policy. To represent the domain con-
cepts we built an ontology from the guideline. Fig. 3 shows the class hierarchy
of the ontology. We defined three subclasses of Medication named StrongOpioid,
WeakOpioid, and NonOpioid according to the guideline. A patient can be either
in the ‘Non Opioid’, ‘Weak Opioid’ or ‘Strong Opioid’ regimen depending on his
current medication. If a patient is taking any StrongOpioid medicine he is under
‘Strong Opioid’ regimen. Some of the class definitions are given below:

StrongOpioid ≡ Medication and (( (hasFrequency value Q4h) and (hasMeasures value units) and

(isMadeOf value Acetaminophen) and (hasDose some double[≥ 1.0])) or ( (hasFrequency value Q4h)

and (hasMeasures value units) and (isMadeOf value Oxycodone) and (hasDose some double[≥ 1.0]))

or ... )

PatientUnderStrongOpioid ≡ Patient and (hasMedication some StrongOpioid)
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Fig. 3. Simplified class hierarchy of ‘Pain
Ontology’

For example, we see that StrongO-
pioid is a Medication which has cer-
tain properties: Acetaminophen 1 tablet
(units) or more every 4 hours (i.e., Q4h),
or Oxycodone (eg. Percocet) 1 tablet
(units) or more every 4 hours (i.e.,
Q4h), etc. In the following subsections
we provide the syntax of T� and see
how it relates to the above mentioned
requirements.

3.1 Writing Procedural
Statements

Variables in T� are inferred variables;
variable types are determined from their
use. Variables in T� may be indexed as
array indexes but a declaration of the
size is not required. The size is adjusted
dynamically at execution time. If no in-
dex is used, it refers to the 0th index of
a variable. In T�, procedures may be in-
voked by ‘call by value’ or ‘call by reference’. The ‘call by reference’ of a variable
is indicated by a leading ‘&’. In T� syntax for the Assignment operation, If-Else
statements, For-loops, etc., are similar to that for the C family of languages.

Note that in T� every procedure returns a value, and return types are not
required for procedures. In T� some utility procedures such as size, today,
currentTime, date, month, year, time, and tokenize have been incorporated
to deal with strings, arrays, dates and times.

3.2 Querying and Manipulating Ontologies

Ontologies allow data and rules to be organized efficiently so as to permit the
calculation (i.e., inference) of implicit knowledge from explicit information. Us-
ing ontologies to drive workflows allows for a more compact representation of the
workflow and changes made in an ontology (which are often simple to implement)
can avoid the need to change the workflow (which can be more complicated). An
important aspect in the design of T� was the facility to query and manipulate on-
tologies. It provides four different tags to perform Create (C), Read (R), Update
(U), and Delete (D) operations (CRUD operations) in an ontology. T� allows
us to write queries in the easy-to-use SQWRL format. One can perform queries
combining concepts and facts from the Tbox and/or Abox. The Tbox describes
conceptualizations and contains assertions about concepts such as subsumption
(Man � Person) [7]. The Abox contains role assertions between individuals
(hasChild(John,Mary)) and membership assertions (John : Man). Similar to
the ‘select’ operator of SQWRL, the ‘select’ operator in T� takes one or more
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arguments, which are typically variables used in the pattern specification of the
query. A particular value may be passed as a query criterion; if a variable is used
in an ontology query without a leading question mark (?) then the value is read
by the query engine. For example, the following query, written in the SQWRL
format, retrieves all persons in an ontology with a pain intensity that is greater
than 5, together with their pain intensities:

var p, pain, v = 5;
{R$ Patient(?p), hasPain(?p, ?pain), greaterThan(?pain, v)→

select(?p, ?pain) $R}
The query engine will populate the variables passed as arguments of the ‘select’
operator. Selected results may be sorted in ascending (descending) order by the
‘orderBy’ (‘orderByDescending’) operator. To create a new instance/individual
or relation in the ontology Abox, the OntAssertion statements may be used
directly from T�. The following OntAssertion statements create a new ‘Patient’
individual and inserts a data property for the relation ‘hasPain’.

var p;
{C$ p := Patient(“Alex”) $C}
{C$ hasPain(p, 6) $C}
Note that a reference of the newly created Patient individual is assigned to the
variable ‘p’. An individual may be created with an auto-incremented identity
(id) if in the ontology there exists a data property named ‘hasId’, where the
domain of ‘hasId’ is ‘Thing’ and range is ‘Long’ data type. The following code
shows how to create a new Patient individual with an auto-incremented id.

{C$ p := Patient(newid) $C}
OntDel statements may be used to delete an individual or a relation from an
ontology Abox. The following code shows how to delete a Patient with id=1010.

var p, pid = 1010;
{R$ Patient(?p), hasId(?p, pid)→ select(?p) $R}
{D$ Patient(p) $D}
In this code fragment, a search operation is performed on an ontology for a Pa-
tient individual with id=1010 and a reference is retrieved; the Patient individ-
ual’s reference is then passed as an argument to the delete operation. To update
a data property or object property of an individual, OntUpdate statements may
be used. Following code fragment shows the use of an update operation.

var p, P, bDate, Age, age, newAge, cDate = today();
{R$ Patient(?P), hasBirthDate(?P, ?bDate), isEqual(?bDate, cDate),

hasAge(?P, ?Age) → select(?P, ?Age) $R}
foreach( p in P, age in Age){

newAge = age + 1;
{U$ hasAge(p, age => p, newAge) $U}

}
This code fragment updates the ages of all patients whose birthday is today.
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3.3 Designing User Interfaces

Applications such as health services delivery require that data be gathered from
many sources. Many “forms”, often specific to a local setting, are required. For
example in a palliative care program the care team for any particular patient can
be comprised of 10–15 professionals (nurses, social workers, specialists of various
kinds) and in the course of treatment, 40 or more forms must be filled in, some
repeatedly. Data gathered must be available to a variety of people in a variety
of settings. Health services delivery (and other paper-based services such as the
insurance industry) are catching up to the electronic age. Health professionals
and clients alike are demanding electronic health records so electronic forms are
a necessity. T� was designed to meet these needs.

To print a text or a number in a UI, the getLabel procedure may be used. The
getLabel procedure produces a ‘Label’ view component in the UI. One can pass
either a string literal or a variable as argument of the getLabel procedure. If a
variable is passed, the variable is bound to a ‘Label’ view component. Whenever
this variable is updated, the change is reflected in the ‘Label’.

var wid = 112;
getLabel(“WorkflowInstance : ”);
getLabel(wid);

This code fragment produces two labels; during execution, the first label will
display the text “Workflow Instance:” and the second label will display the
number ‘112’.

The getText procedure produces a ‘Text Field’ view component. A ‘Text
Field’ is a common UI component to take user input. The getText procedure
can take one or two arguments: i) a string to produce a label, and ii) a variable
(optional) to display the initial text in a ‘Text Field’. A destination variable
name after the symbol ‘>>’ is required for a getText. The user input is captured
by the destination variable. Optionally, some statements (also known as action
statements) may be written inside curly braces after the destination variable
name of a getText procedure. These action statements will be executed when
a user finishes her entry into the ‘Text Field’. The following code fragment uses
the getLabel and getText procedures:

var hospitalName, displayText = “NoInput”;
getText(“EnterHospitalName : ”) >> hospitalName{

displayText = “Hospital : ” + hospitalName; };
getLabel(“EnteredText : ”, displayText);

This produces a ‘Text Field’ where the user will enter text input; the entered
text will be stored in a variable named ‘hospitalName’. As soon as the user
finishes entering text into the ‘Text Field’ the action statement (enclosed with a
curly bracket) will execute and assigns a value entered by the user to the variable
named ‘displayText’. Since the variable ‘displayText’ is bound to a ‘Label’, when
its value changes, the ‘Label’ view component will be updated and will display
the hospital name entered in the ‘Text Field’.
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The getInteger procedure is similar to the getText procedure; this also
produces a ‘Text Field’ to take input from the user, but the difference is that
only numbers are allowed here. The following code fragment gives an example:

var basicPay = 14, hourlyPay, totalHr = 0, totalSalary = 0;
getInteger(“Hourlypayment : $”, basicPay) >> hourlyPay {

totalSalary = hourlyPay ∗ totalHr; };
getInteger(“TotalHourWorked : ”) >> totalHr {

totalSalary = hourlyPay ∗ totalHr; };
getLabel(“TotalSalary : $”, totalSalary);

The first ‘Text Field’ will display the value of the ‘basicPay’ variable which is
‘14’. The user may change it by inserting a different number; the entered number
will be stored in the variable named ‘hourlyPay’. The user can also enter the
total hours worked in the second ‘Text Field’. Whenever the user finishes entering
numbers in either of the ‘Text Fields’ the total salary is calculated and displayed
in the UI by a ‘Label’.

The getDouble and getDate procedures are similar to the getInteger;
here the user can enter a floating point number and date respectively. The
getTextMultiple procedure is similar to the getText procedure but it produces
a ‘Text Area’ (for multiline text input) instead of a ‘Text Field’. The getBoolean
procedure takes one argument as input to display a title for a ‘Check box’ (a
view component to select or de-select an item). The user may select or de-select
the ‘Check box’ and a true or false value is assigned to the associated destina-
tion variable of a getBoolean procedure. If action statements are written for a
getBoolean procedure, they will be executed after the user selects or de-selects
a check box item.

var painCrisis;
getBoolean(“PainCrisis”) >> painCrisis;

The above code fragment will display a ‘Check box’ in the UI. The destination
variable of the ‘Check box’ is ‘painCrisis’ which will be assigned with a ‘true’ or
‘false’ value depending on the selection of the ‘Check box’. Since the ‘painCrisis’
variable is bound to a ‘Check box’ view component, if the value is changed from
another portion of the procedure, it will be reflected in the UI. This feature may
be useful to display a form to update existing information. For example if we
want to display a patient’s existing Pain Crisis information and allow the user
to modify it, we can use the following code:

var painCrisis, id = 1010;
getBoolean(“PainCrisis”) >> painCrisis;
{R$ Patient(?p), hasId(?p, id), hasPainCrisis(?p, ?painCrisis) →

select(?painCrisis) $R}

The getOne procedure is used to select one item from a list of items. This pro-
cedure will either display a ‘Drop Down’ view component (if one source variable
is provided as argument) or a ‘Table’ with ‘Radio buttons’ (if more than one
source variable is provided). The user cannot select more than one item from
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the displayed list. A destination variable name is required for a getOne procedure
where the selected item (user input) will be stored. Optionally another destina-
tion variable name may be mentioned to store the position of the item selected
from the source variable. If action statements are given for a getOne procedure,
they will be executed as soon as the user selects an item. In the following ex-
ample a list of countries is retrieved from an ontology by performing the read
operation. A getOne procedure is used to display the list of country in a ‘Drop
Down’. Another getOne procedure is used to display a list of provinces in another
‘Drop Down’. Since the provinces are different from one country to another, on
the selection of a country, a further query is performed on the ontology to re-
trieve related province information; this is done in the action statements. The
‘province’ variable is bound as the source variable with the second getOne pro-
cedure; as a result, if provinces’ information were updated they will be reflected
in the ‘Drop Down’.

var c, country, province, selectedProvince;
{R$ Country(?c) → select(?c) $R}
getOne(“Country : ”, c) >> country {

{R$ Province(?province), hasCountry(?province, country) →
select(?province) $R}

};
getOne(“Province : ”, province) >> selectedProvince;

Note that the ‘source’ variable fills a ‘Drop Down’ view component but if we want
to display one item from the items available in the ‘Drop Down’ we may use the
‘destination’ variable. For instance, in a patient’s admission record update form,
we want to display the patient’s existing province in the ‘Drop Down’; this can
be achieved by assigning the name of the province to the destination variable.

The getMultiple procedure is similar to the getOne procedure but here the
user may select more than one item from the source variable(s). The values of
the source variable(s) are either displayed in a list of Check Boxes or in a ‘Table’
with ‘Check Boxes’ (for more than one source variable).

The getButton procedure produces a button in the UI. When a button is
pressed, the statements associated with it are executed. T� provides two pro-
cedures to arrange the view components in the UI; namely openLayout and
closeLayout. The openLayout procedure takes an integer parameter which indi-
cates the number of columns. All view components mentioned after a openLayout
procedure will follow this arrangement. A closeLayout procedure stops putting
view components in the order started by an openLayout procedure. An
openLayout procedure can be nested with another openLayout procedure; in
this way a complex table layout structure may be achieved.

3.4 Automatic Code Generation

Task specifications written in T� are automatically translated to executable Java
code by Xtend. This is one of the main advantage of using MDE for building
software systems. We use T� to design a user interface for a task from Fig. 2.
The code below shows the view procedure of the ‘Assessment’ task.



46 F. Rabbi and W. MacCaull

01. func view(){
02. var wInstance, pc;
03. . . .//Other variable declaration

04. wInstance = getCurrentInstance(); // Get current workflow instance id

05. {R$ PainCourse(?pc), hasName(?pc, ?pcName) → select(?pcName)$R}
06. . . .// Read other pain assessment information from ontology

07. {R$ Drug(?drug) → select(?drug)$R}
08. . . .// Read Frequency, Route, Unit information from ontology

09. openLayout(2); openLayout(2); // Nested Table Layout

10. getMultiple(“PainLocation”, pLocation) >> painLocation;
11. getMultiple(“PainTimeOfDay”, pTime) >> painTime;
12. closeLayout();openLayout(2);
13. getOne(“PainDuration”, pDuration) >> painDuration;
14. . . .// Code to display other view components

15. getButton(“(+)”) {
16. drugList[size(drugList)] = selDrug; // Adding a new drug into drugList

17. . . .// Add frequency, route, dose information into list

18. };
19. getButton(“(−)”){
20. clear(drugList, medPos); // Removing selected item from list (Table)
21. . . .// Remove frequency, route, dose information from list

22. };
23. closeLayout(); openLayout(1);
24. getOne(“MedicationInformation”, drugList “DrugName”, freqList

25. “Frequency”, routeList “Route”, unitList “Unit”, doseList “Dose”)
26. >> destDrug, medPos; // Showing medications in a table

27. closeLayout();
28. // make a submit button to send information to server

29. submit(wInstance, painLocation, painTime, painDuration, . . .); }
The transformation method automatically produced 1160 lines of Java code,
and a few xml configuration files to manage the android UI including network
operations. The value of the MDE approach, incorporating a simple-to-use DSL
and automatic code generation is abundantly clear.

The output of this procedure is shown in Fig. 4, which is a screenshot from
a Tablet device operating on ‘Android’ operating system. The ‘Pain Location’,
‘Pain Duration’, ‘Drug Name’ etc., information comes from the ontology and is
displayed in the UI. The clinician selects a drug name, frequency, route, and unit
from ‘Drop Down’ view components and inserts dose in a ‘Text Field’ and adds
them into the ‘Medication Information’ table by clicking on the (+) button.
When each piece of medication information is sent to the server, it is stored
in the ontology Abox which will support further reasoning on this data. We
performed such reasoning to select a patient’s opioid regimen after the execution
of the ‘Assessment’ task. We used the ontology reasoning to classify medications
into opioids. The rules for different opioids were incorporated into the ontology.
In this way, complex rules of domain knowledge can be effectively handled by
using the reasoning power of an ontology. During execution only one outgoing
branch of the XOR task ‘Select Opioid Regimen’ is activated. A patient goes
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Fig. 4. Assessment form: Output of the view procedure of the ‘Assessment’ task

into strong opioid regimen if he is currently on a strong opioid or he is on a
weak opioid with moderate severe pain or unstable pain. A patient goes into the
weak opioid regimen if his pain intensity is mild with unstable pain, otherwise
he goes into the non opioid regimen. The code is provided below; the procedure
getBranchCondition takes two parameters: workflow instance id and branch
number and returns true for that branch that should be activated for a particular
workflow instance.

01. xorsplittask Select Opioid Regimen;
02. func getBranchCondition(wInstanceId, brNo){
03. var p, pid, pIntensity, pUnderStrong, pUnderWeak, pc, painCourse;
04. {R$ Patient(?p), hasWfInstance(?p, wInstanceId), hasId(?p, ?pid),
05. hasPainIntensity(?p, ?pIntensity) → select(?p, ?pid, ?pIntensity) $R}
06. {R$ PatientUnderStrongOpioid(?pUnderStrong), hasId(pid)
07. → select(?pUnderStrong) $R}
08. {R$ PatientUnderWeakOpioid(?pUnderWeak), hasId(pid)
09. → select(?pUnderWeak) $R}
10. {R$ Patient(p), hasPainCourse(p, ?pc), hasName(?pc, ?painCourse)
11. → select(?painCourse) $R}
12. if(brNo = 1){
13. if(pUnderStrong �= null || (pUnderWeak �= null && pIntensity ≥ 4) ||
14. (pUnderWeak �= null && painCourse = “GettingWorse”) ||
15. (pIntensity ≥ 4 &&
16. (painCourse = “Fluctuating” ||painCourse = “Getting Worse”)))
17. return true; }
18. else if(brNo = 2){
19. if( (pIntensity ≥ 2 && (painCourse = “Fluctuating” ||
20. painCourse = “GettingWorse”)) || (painCourse = “Getting Worse”))
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21. return true; }
22. else if(brNo = 3)
23. return true;
24. return false; }

A patient is administered with his prescribed medicine in the ‘Strong Opioid Reg-
imen’, ‘Weak Opioid Regimen’, and ‘Non Opioid Regimen’ tasks; the ‘Re Assess-
ment’ task executes concurrently with these tasks. The ‘Strong Opioid Regimen’
is a composite task which is unfolded to a subnet workflow. This subnet workflow
deals with any opioid toxicity or side effects found during the treatment procedure.

3.5 Dynamic Task Scheduling

Time plays an important role for task scheduling. Several explicit time con-
straints have been identified for time management [15]. The parameters delay
and duration suffice to capture most time constraints. Delay is the time duration
between two subsequent tasks. This time constraint indicates that tasks can start
only when its predecessor tasks are finished. Duration is the time span required
to finish a task. In [18] we incorporated time in Nova Workflow and presented
the formal semantics of Timed Compensable WorkFlow Nets. The workflow in
Fig. 2 is a Timed Workflow net. Each atomic task in this workflow is associated
with a pair of time parameters, [delay, duration]. Delay time ‘0’ indicates that
the task becomes enabled as soon as its predecessor tasks have finished their
execution. Duration time ‘24H’ for task ‘Re Assessment’ indicates that the task
should finish its execution within 24 hours after it becomes enabled. But in real
life, the requirements for delay and duration may not be static. For example, in
our workflow, if the patient’s symptoms are not under control, daily assessments
need to be done in person by an attending health professional. If symptoms are
under control the assessment can be completed weekly. The nurse may need to
modify the duration time for the ‘Re Assessment’ task for a particular patient at
various points during care. Using T� one can specify dynamic time constraints
for tasks by providing two procedures, getDelay and getDuration, for each
atomic task. The following code fragment shows the getDuration procedure of
the ‘Re Assessment’ task.

func getDuration(){
var wInstance = getCurrentInstance(), p, aInt;
{R$ Patient(?p), hasWfInstance(?p, wInstance),
hasInterval(?p, ?aInt) → select(?p, ?aInt) $R}

return aInt;
}

The getDuration procedure queries the ontology and depending on the pa-
tient’s pain level and other symptoms the ontology reasoner returns the assess-
ment interval (variable aInt) attribute which was updated from the task ‘Modify
Re Assessment Duration’ for this patient. So the duration of the task ‘Re As-
sessment’ is now dynamic which satisfies the dynamic scheduling requirement
for a task. The getDelay procedure may be specified similarly.
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3.6 Specifying Task-Based Access Control Policy

Privacy of information is an essential requirement of modern day information
systems. The potential misuse of sensitive information has grown considerably
with electronic storage of information. In health services many providers need to
have ready access to some parts of a patient’s data and access is largely depen-
dent on the role of the health professional and the current task [14]. Ontologies
are used to organize the facts and rules pertaining to patients, data and the role
of the caregivers.

Different access control policies may be specified for different tasks by writ-
ing a procedure named accessPolicy for each task. A utility procedure named
getCurrentUserwas provided in T� to determine the current signed in user. An
ontology based access control policy may be easily specified by T�. For example,
in our ontology we have defined a hierarchy of roles (see Fig. 3). Caregiver is
a superclass of Physician and Nurse. A User individual has the hasRole rela-
tionship with Role. The following code fragment specifies an access policy for
the task ‘Re Assessment’ which gives access to the users who have the Caregiver
role. This procedure will be consulted before any other procedures execute at
the server for the task ‘Re Assessment’.

func accessPolicy(){
var uid = getCurrentUser(), u, role;
{R$ User(?u), hasId(?u, uid), hasRole(?u, ?role),
Caregiver(?role) → select(?u) $R}

if(u �= null) return true;
else return false; }

4 Related Work

Much research has been done in last two decades to handle similar problems. An
adaptive process management system, ADEPT2, was presented by Reichert et.
al., in [22] which supports dynamic change of process schema and definition. In
ADEPT2 a block structured workflow modeling language similar to CWML has
been used, although CWML has more features such as compensation. The main
difference between ADEPT2 and NOVA Workflow is their underlying persistent
technology and data structure; ADEPT2 does not support ontologies and the
activities in ADEPT2 are written in a GPL. In ADEPT2 web forms are auto-
matically generated from the workflow model although ADEPT2 does not allow
action statements for UI operations. ADEPT2 performs a dynamic validation of
process schema change which makes the workflow system consistent. In NOVA
Workflow a consistency check is performed whenever any record is inserted into
or updated from an ontology Abox.

In [12] the authors presented an evolutionary approach for the model-driven
construction of Web service based Web applications on the basis of workflow
models founded on DSLs and a supporting technical framework. The Workflow
DSL is an executable specification language for workflow based Web applications
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which allows the use of various graphical notations taken from the workflow
modeling field, e.g., BPMN, Petri Nets, UML activity diagrams etc., as well as
custom notations. This model driven design approach makes development faster
by reusing components but it is not ontology based. Workflow development with
T� can benefit from reusing an ontology.

In [13] the author worked on ontology oriented programming and proposed a
compiler which produces a traditional object-oriented class library that captures
the declarative norms of an ontology. The developer is required to use a GPL
and the approach is not model driven.

In [10] the authors introduced the knowledge representation features of a
multi-paradigm programming language called Go! that integrates logic, func-
tional, object oriented and imperative programming styles. In that paper the
authors described the Go! language and its use for ontology oriented program-
ming, comparing its expressiveness with OWL. This is related to our work since
the authors also proposed a language for building executable ontologies. How-
ever the syntax proposed for T� is simple and abstract and T� provides syntax
for control flow and UI design.

In [8] Baker et. al., surveyed a large number of existing workflow systems and
listed their features considering different problem aspects. But none of them is
following ontology based model driven approach as in T�. Although T-Square
has been implemented in the NOVA Workflow and integrated with CWML, it
is not limited to CWML, it may be integrated with other workflow modeling
languages, because it provides a nice way to separate business logic from control
flow. What is missing in existing approaches, such as BPMN based commercial
tools, is the latter use general purpose programming languages (GPL) or XML
based languages which cannot provide proper abstraction allowing the developer
to concentrate on the domain model.

5 Conclusion

In this paper we provided the syntax and semantics for the T� language. A
developer may learn the simple syntax of T� and start developing applications
without needing detailed knowledge of the complex API’s for Ontology, Web Ser-
vice, Android, etc. Code is generated automatically, allowing the developer to
fully concentrate on the domain model and system analysis. If there is a change
in user requirements, the developer can make the change in T� and the NOVA
workflow system will automatically update the software accordingly. The output
of NOVA Workflow is currently an Android application which runs on mobile
devices but different transformations may be applied to generate other applica-
tions, for iPad, the Web, etc. End users interact with the client application.

Since the reasoning process over an ontology is time consuming, in future we
will work on a bigger case study and deal with the problems of scalable on-
tology reasoning. One approach is to use a relational database and materialize
an ontology into a database; research to speed up the materialization to per-
mit frequent updates is required. We are investigating an incremental ontology
materialization approach.
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Abstract. Self-adaptation enables software systems to respond to chang-
ing environmental contexts that may not be fully understood at design
time. Designing a dynamically adaptive system (DAS) to cope with this
uncertainty is challenging, as it is impractical during requirements anal-
ysis and design time to anticipate every environmental condition that
the DAS may encounter. Previously, the RELAX language was proposed
to make requirements more tolerant to environmental uncertainty, and
Claims were applied as markers of uncertainty that document how design
assumptions affect goals. This paper integrates these two techniques in
order to assess the validity of Claims at run time while tolerating mi-
nor and unanticipated environmental conditions that can trigger adap-
tations. We apply the proposed approach to the dynamic reconfiguration
of a remote data mirroring network that must diffuse data while mini-
mizing costs and exposure to data loss. Results show RELAXing Claims
enables a DAS to reduce adaptation costs.

1 Introduction

Dynamically adaptive systems (DASs) are systems built to continuously monitor
their environment and then adapt their behavior according to changing environ-
mental conditions. [4]. The inherent uncertainty associated with the operational
environment of a DAS is challenging as it is often impractical to anticipate
every environmental condition that a DAS will encounter throughout its life-
time [4,30]. Previously, the RELAX [30] requirements specification language was
proposed to make requirements more tolerant to environmental uncertainty, and
Claims [28,29] were applied as markers of uncertainty to record the rationale for a
decision made with incomplete information in a DAS. This paper integrates both
techniques to assess the validity of Claims at run time while tolerating minor and
unanticipated environmental conditions that can otherwise trigger adaptations.

Certain properties about the DAS or its execution environment might not be
known until run time. This uncertainty forces developers to make assumptions
about the design or configuration of the system. A Claim [28,29] can be used at
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design time to document and analyze assumptions about how a DAS achieves
its goals in different operational contexts. For example, a Claim can be used to
document that data should be encrypted since a network might not be secure.
A Claim can also be monitored at run time to prove or disprove its validity [28],
thereby triggering an adaptation to reach more desirable system configurations
if necessary. Nevertheless, Claims are also subject to uncertainty, in the form of
unanticipated environmental conditions and unreliable monitoring information,
that can adversely affect the behavior of the DAS if it spuriously falsifies a Claim.

This paper proposes the RELAXation of a Claim in recognition that environ-
mental uncertainty may prevent a DAS from categorically proving or disproving
a Claim at run time. Specifically, our approach uses RELAX operators to intro-
duce a fuzzy logic layer upon the evaluation criteria that establishes a Claim’s
validity. Ideally, RELAXing a Claim should enable a DAS to tolerate environmen-
tal uncertainty that may otherwise mistakenly disprove a Claim. In this manner,
RELAXing a Claim may also reduce adaptation costs for a DAS by preventing
frequent, and perhaps unnecessary, adaptations and reconfigurations of its goal
realization strategies at run time.

In this paper we propose a stepwise process for RELAXing Claims. First,
sources of uncertainty that can disprove the validity of a Claim must be identi-
fied. Next, a Claim applicability metric must be derived to compute the veracity
of a Claim at run time. Both ordinal and temporal RELAX operators can be ap-
plied to relax the constraints that define this applicability metric. At run time,
if the value produced by a RELAXed Claim applicability metric drops below a
predetermined threshold, then the value of the corresponding contribution link
must be updated and, if necessary, the system may have to reconfigure towards
a different goal realization strategy depending on the current set of valid Claims.

We assess the effectiveness of RELAXing Claims by applying the proposed ap-
proach to an industry-provided remote data mirroring network [11,12]. Remote
mirroring is a technique that improves data protection and availability by repli-
cating and distributing data to all nodes within a network, such as that used for
cable television servers. We RELAX Claims that captures sources of uncertainty
that can trigger network reconfigurations in response to adverse conditions, such
as network link failures and dropped network messages. The remainder of this
paper is organized as follows. Section 2 provides background information on re-
mote data mirroring, goal-oriented requirements modeling, RELAX, and Claims.
Section 3 presents the proposed approach for RELAXing Claims. Next, Section 4
presents experimental results. Section 5 describes related work. Lastly, Section 6
summarizes results and overviews future directions.

2 Background

This section provides background information on remote data mirroring, goal
modeling, the RELAX requirements specification language, and Claims.
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2.1 Remote Data Mirroring

Remote data mirroring (RDM) [11,12] is a data protection technique that stores
copies of data at physically isolated locations to protect data against loss, un-
availability, or corruption. An RDM can be configured in terms of the network’s
topology, such as a minimum spanning tree, as well as how data is distributed
among data servers. For instance, synchronous propagation distributes data
whenever it is modified. In contrast, asynchronous propagation batches data
modifications, ideally enabling multiple edits to the same data to be coalesced.
Each configuration provides different levels of data protection, performance, and
cost. That is, while synchronous propagation provides better data protection
than asynchronous propagation, it incurs a network performance penalty as ev-
ery change must be distributed across the network. Asynchronous propagation
provides better network performance than synchronous propagation but it also
provides a weaker form of data protection because batched data could be lost in
the event of a site failure.

2.2 Goal-Oriented Requirements Engineering and Modeling

A goal declaratively specifies the objectives and constraints that a system-to-be
and its execution environment must satisfy [14]. A key objective in goal-oriented
requirements engineering (GORE) is to systematically elicit, analyze, and re-
fine high-level goals into finer-grained goals. While goals that represent required
functional properties can be evaluated in an absolute manner, a special category
of goals called soft goals can only be satisficed [5] or satisfied to a certain degree.
Soft goals typically represent non-functional properties (e.g., performance) that
constrain how functionality should be delivered to stakeholders.

A goal-oriented requirements model provides a graphical framework for cap-
turing relationships between goals. Formally, a goal-oriented requirements model
is a directed acyclic graph where a node represents a goal and an edge repre-
sents a specific type of refinement. For instance, the i* framework [31] provides
an agent-oriented approach for modeling strategies of multiple actors within so-
cial contexts. In i*, a Strategic Rational (SR) model captures how a system’s
configuration addresses the interests and concerns of an actor.

The i* SR goal model in Figure 1 captures the following soft goals for the RDM
application: “Minimize Operational Expenses”, “Maximize Data Reliability”,
and “Maximize Network Performance”. In order to satisfice these soft goals, the
RDM must achieve functional goals such as constructing a connected network
and distributing data. These functional goals can be achieved through alternative
goal realization strategies (modeled in i* as tasks) that include constructing
different network topologies, such as a minimum spanning tree or a redundant
topology, and changing propagation parameters.

2.3 RELAX Specification Language

RELAX is a specification language that explicitly addresses uncertainty in adap-
tive systems. In particular, RELAX was developed to identify and declaratively
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Fig. 1. i* SR goal model for the remote data mirroring application

specify sources of uncertainty that occur at the shared boundary between the
system-to-be and its environment [10] . Sources of uncertainty are specified us-
ing ENV, MON, and REL elements. ENV specifies properties about the operating
context of the DAS, MON lists sensors in the monitoring infrastructure of the
DAS that can directly observe and contribute information towards determining
the values of ENV properties, and REL defines relationships for computing ENV

properties from MON elements.
The RELAX language uses fuzzy logic to express uncertainty in requirements

and, by definition, enable developers to systematically design systems that are
more flexible and amenable to adaptation. To this end, RELAX provides both
ordinal and temporal operators to add flexibility in how and when a functional-
ity may be delivered, respectively. For example, a key requirement in the RDM
application states that “The system shall distribute new data throughout the
network”. Environmental uncertainty, in the form of unpredictable link failures
and dropped network messages may temporarily hinder the satisfaction of this
requirement. RELAXing this requirement to specify that “The system shall dis-
tribute new data throughout the network AS EARLY AS POSSIBLE” provides
temporal flexibility to account for unanticipated events while distributing data.
Other RELAX operators include AS LATE AS POSSIBLE, AS CLOSE AS POS-
SIBLE TO, AS MANY AS POSSIBLE, and AS FEW AS POSSIBLE.

2.4 Claims

Claims were introduced by the NFR framework [5] where they were used to
record decision rationale. This role was extended in REAssuRE (REcording of
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Assumptions in Requirements Engineering) [29] where Claims are used as mark-
ers of uncertainty to record the rationale for a decision made with incomplete
information in a DAS. REAssuRE showed that Claims are useful where dynamic
adaptation is used to maximize the satisficement of a system’s soft goals by dy-
namically selecting between alternative goal operationalizations. The extent to
which alternative operationalizations satisfice the system’s soft goals under ev-
ery context cannot always be predicted by the requirements engineer, and Claims
serve to record this uncertainty. At run time, Claims can be monitored to test
their veracity. If a Claim holds, then the predicted impact of the operationaliza-
tion on the soft goal is assumed to hold too. If the Claim is falsified by evidence
collected by run-time monitoring then the predicted impact of the operational-
ization on the soft goal is considered unsound and the optimal configuration of
operationalizations must be re-evaluated.

In i*, Claims are attached to contribution links, whose values represent the
predicted degree of satisficement provided by a task at one end of the link and
a soft goal on the other end. In Figure 1, Claim c1 asserts that the operational-
ization strategy “Use Redundant Topology” has a strongly positive (++) effect
on satisficement of the soft goal “Maximize Reliability”. If a Claim proves to be
false, such as if RDM nodes were vulnerable to common-cause failures, then the
value of the contribution link to which it is attached should be revised to reflect
the observed reality. When this happens, the goal model needs to be updated
and dynamically re-evaluated. A reconfiguration is triggered if re-evaluation de-
termines that an alternative goal operationalization exists that has a greater
predicted net impact on the soft goals.

This automatic determination of the best operationalization is as follows:
Let the function satisfices represent the contribution value for a task, soft goal

pair:
satisfices: T × SG→ C

where T is the set of tasks, SG is the set of soft goals, and C is the set of possible
contribution values {- -, -, =, +, ++}. These as are interpreted as corresponding
to the range of integer values {-2, -1, 0, 1, 2}, respectively. Moreover, i is an
index in the set of tasks that represent alternative operationalization of goal g,
and tig is thus one of these tasks.

The task selected as the operationalization strategy for goal g is the one
with the net greatest value of contribution link values for all of the soft goals
it influences. This is given by the following weighted sum formula in which w
represents the relative priority of each softgoal, given as a numeric weight. Note
that for simplicity in the remote data monitoring example, we treat each softgoal
as being of equal priority, so w = 1 in all cases.

maxi

∑
sg∈SG

wsgsatisfices(tig, sg) (1)

In the RDM example, if falsification of c1 meant that the contribution link
value linking “Use Redundant Topology” and “Maximize Reliability” reduced
to neutral (=), then taking the aggregate of the contribution link values of “Use
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Redundant Topology” and its alternative “Use MST Topology” over the three
soft goals, the latter would emerge as the better solution because its set of contri-
bution link values (+,=,-) has a higher net contribution value than that of “Use
Redundant Topology” (-,=,=). This evaluation would trigger an adaptation to
replace the network configuration that implements “Use Redundant Topology”
with “Use MST Topology”.

3 Approach for RELAXing Claims

Next we describe how to RELAX a Claim and illustrates with an example.

3.1 Motivation for RELAXing Claims

Figure 2 shows a Claim refinement model that captures assumptions for why
a redundant network topology contributes positively to the “Maximize Relia-
bility” soft goal in Figure 1. Although the underlying assumptions might seem
reasonable, they are subject to system and environmental uncertainty. In par-
ticular, Claims c4 and c5 state that link faults do not partition the network nor
do they occur coincidentally, respectively. Thus, if two or more network links fail
simultaneously then top-level Claim c1 becomes automatically falsified.
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Prevents Network 

Partitions

c6.  Catastrophic 
natural disaster 
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Uncertain Claim Axiomatic Claim Refinement Link

Legend:

Fig. 2. A Claim refinement model describing why redundancy improves reliability in
RDM application

In this scenario, it is possible for multiple network link failures to occur simul-
taneously while the network remains connected. Although a redundant network
topology prevents the network from becoming disconnected in this scenario, the
top-level Claim c1 would become disproven by the simultaneous failure of two or
more network links. The objective of introducing RELAX operators into the spec-
ification of a Claim is to lessen the thresholds or bounds that define the veracity
of the Claim itself. Ideally, RELAXing a Claim prevents transient and unantici-
pated environmental conditions from unnecessarily disproving the validity of a
Claim at run time and thus triggering consequential adaptations.
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3.2 Process for RELAXing Claims

Figure 3 presents a data flow diagram that overviews the Claim RELAXation
process. We describe each step in the Claim RELAXation process in detail:

(4)
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Fig. 3. Data flow diagram describing process for RELAXing Claims

(1) Generate i* SR Goal Model.Given a set of requirements and constraints,
a requirements engineer must generate an i* SR goal model to capture the goals,
tasks, resources, and soft goals of the system-to-be. It must also specify how the
alternative goal realization strategies affect the contribution links of soft goals.
As an example, the i* SR goal model in Figure 1 captures the various goal real-
ization strategies that the RDM application can use to replicate data across the
network, as well as how these strategies affect each soft goal.

(2) Augment i* Goal Model with Claims. The i* SR goal model generated
in (1) must be augmented with Claims [29] to document uncertain assumptions
about how goal realization strategies affect the contribution links of soft goals.
To this end, a Claim refinement model can be used to specify a set of assumptions
that collectively support the veracity of a top-level Claim. In a Claim refinement
model, certain low-level Claims can be considered axiomatic and need not be
monitored at run time. In contrast, evidence for or against the assumption of an
uncertain Claim has to be collected at run time [21].1

Figure 2 presents a Claim refinement model for the RDM application. The
top level Claim in this model, c1 states that redundancy prevents network par-
titions, and thus a redundant topology helps the “Maximize Reliability” soft
goal. The validity of this top-level Claim is based on the validity of three sub

1 As an optional step, a requirements engineer can specify how the value of a contri-
bution link should be updated if an attached Claim is falsified, otherwise the value
will default to neutral (“=”).
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Claims. Namely, redundancy prevents network partitions because, while network
link faults are likely (c2 ), common cause failures are unlikely (c3 ), and network
link faults do not partition the network (c4 ). Similarly, Claim c3 is refined into
additional assumptions that collectively state that common-cause link failures
are unlikely because link failures tend to not coincide (c5 ), catastrophic natural
disasters are improbable (c6 ), and routers use diverse software systems (c7 ). At
run time, Claims c2, c4, and c5 must be monitored to prove or disprove their
validity. In contrast, Claims c6 and c7 are considered axiomatic and need not
be monitored.

(3) Identify ENV, MON, and REL Properties. A requirements engineer must
identify ENV, MON, and REL properties for each leaf-level non-axiomatic Claim in
the Claim refinement model. Furthermore, each ENV property must be mapped
to its corresponding MON elements. Specifically, an ENV property that a DAS
can directly observe with its sensors can be expressed solely by MON elements.
In contrast, an ENV property that a DAS cannot directly observe with its sensors
must be indirectly inferred via an REL relationship that might comprise MON

elements, as well as constraints and algorithms.
Figure 2 presents three ENV properties associated with leaf-level Claims in the

Claim refinement model. Within these leaf-level Claims, ENV1 refers to the num-
ber of faulty links in the RDM network, ENV2 measures the time between any
two link faults, and ENV3 captures whether the network is connected or parti-
tioned. Since ENV1 is a property that can be directly observed by LinkMonitor

sensors, it can be evaluated as follows: ENV1 =
∑|Links|

i=1 faulty(i), where |Links|
is the number of links in the RDM network, and faulty(i) returns 1 if the ith

link has failed and 0 otherwise. ENV3, on the other hand, cannot be directly
observed by sensors and must instead be computed algorithmically by aggregat-
ing information from available MON elements. In particular, ENV3 represents
the number of partitions in the RDM network that must be computed with a
reachability algorithm [25] that examines which RDM nodes can be reached by
traversing active network links.

(4) Apply RELAX Operators to Leaf-Level Claims. A requirements engineer
must identify sources of uncertainty that can affect ENV properties associated
with each non-axiomatic leaf-level Claim in a Claim refinement model. In addi-
tion, a requirements engineer must also determine which of these ENV properties
can be safely RELAXed without affecting the satisfaction of invariant goals and
requirements. If an ENV property can temporarily deviate from its expected
value, then a corresponding RELAX operator must be applied to specify how
its value can vary due to environmental uncertainty. Once a RELAX operator is
applied, bounds must be established to constrain the extent to which the ENV

property can vary without unnecessarily disproving a Claim.
As an example, consider that while Claim c2 states that network link failures

are common, unreliable monitoring information that fails to detect link failures
can disprove this Claim. Nevertheless, the validity of Claim c1 should not be
necessarily disproven because no link failures are observed. As such, Claim c2
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can be RELAXed to state that it SHALL hold when UNTIL n units of time have
passed without link failures. Likewise, Claim c4 can be RELAXed to state that
it SHALL hold when the number of connected components in the network is
AS CLOSE AS POSSIBLE TO one when network link failures occur. Lastly,
Claim c5 can be RELAXed to state that it SHALL hold when network links fail
at the same time AS CLOSE AS POSSIBLE TO never.

(5) Derive Claim Applicability Metrics. A requirements engineer must de-
rive a Claim applicability metric for each non-axiomatic leaf-level Claim in the
Claim refinement model. Specifically, a Claim applicability metric uses fuzzy logic
functions (i.e., triangle, trapezoid) to evaluate monitoring information and as-
sess the validity of a Claim at run time. The peak of a Claim applicability metric
function represents the ideal case (i.e., when the assessment is solidly true),
and the respective tails are still acceptable but not optimal. As input, each
Claim applicability metric accepts monitoring information from sensors in MON.
If necessary, MON values may need to be mapped to ENV properties through
REL relationships. As output, a Claim applicability metric generates a numerical
value, between zero and one, that is proportional to the Claim’s validity.

Figure 4 shows three RELAXed Claim applicability metrics that can be used
to evaluate the validity of Claims c2, c4, and c5. As this figure illustrates, the
applicability metric for Claim c2 returns values close to one as the number of
faulty links increases, thereby validating the assumption that network link faults
are likely to occur. Similarly, the applicability metric for Claim c4 returns one
when the number of connected components in the RDM network equals the
desired number of connected components. Since a connected network has exactly
one connected component, then this applicability metric serves to validate the
assumption that link failures do not partition the network. Lastly, the Claim
applicability metric for Claim c5 returns values close to one as the time between
link failures increases, thereby validating the assumption that network link faults
are not coincidental.

(A) Applicability Metric for Claim c2
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Fig. 4. RELAXed Claim applicability metrics for Claims c2, c4, and c5

Since each Claim applicability metric is associated with a leaf-level Claim,
its value must be propagated upwards through the Claim refinement model in
order to compute the validity of the top-level Claim. Depending on the type of
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the Claim refinement link, two methods can be used to compute the applicability
value of a parent Claim. While the applicability value of an AND-refined Claim is
equal to the minimum value of each sub-Claim, the applicability value of an OR-
refined Claim is equal to the maximum value of each sub-Claim. As an example,
assume that the applicability values of Claims c2, c3, and c4 in Figure 2 are
equal to 0.92, 0.89, and 0.98 respectively. In this scenario, the applicability value
of top-level Claim c1 equals 0.89, the minimum value of all AND-refined Claims.

3.3 Adapting in Response to Falsified Claims

A RELAXed Claim is falsified when its Claim applicability value drops below a
predetermined threshold. When a Claim is falsified, the value of the contribution
link to which it is attached must be updated to indicate that a given goal real-
ization strategy does not necessarily address current environmental conditions.
While the value of a contribution link could be inverted (e.g., converting a “+”
to a “-”), this approach would correspond to an arbitrary transformation that
might not hold either. In the absence of new evidence, a DAS cannot assume
anything about the value of the contribution link except that the original value
is probably wrong. Thus, the value of a contribution link of a falsified Claim
becomes neutral and undefined, regardless of its original polarity or strength.
Alternatively, a requirements engineer can override these default values on a
per-Claim basis if desired (see footnote in Section 3.2, Step (2)).

Once the value of a contribution link is updated, the DAS must re-evaluate
the entire set of goal realization strategies to determine whether it should self-
reconfigure towards a more suitable goal realization strategy. In this manner,
run-time updates to the goal model drives the self-reconfiguration.

4 Experimental Results

This section describes experimental results for demonstrating the utility of
RELAXing Claims.

4.1 Experimental Setup

In the following experiments, each RDM must replicate and distribute new data
to all other RDMs. We modeled and implemented an RDM network as a com-
pletely connected undirected graph where each node and edge represents an
RDM or a network link, respectively. The network itself comprises 25 RDMs
and 300 network links that can be activated to distribute data. The operational
characteristics of each RDM node and network link, such as workload or capacity,
were generated from a random uniform distribution based on RDM operational
models previously presented by Keeton et al. [11,12]. Throughout the simula-
tion, approximately 25 new data items were randomly inserted at different RDMs
from which they had to be efficiently distributed across the network.
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The RDM network might self-adapt at run time in response to adverse en-
vironmental conditions, such as link failures, repeatedly dropped messages, or
unreliable monitoring data. To this end, each RDM implements the dynamic
change management (DCM) protocol introduced by Kramer and Magee [13]
such that it may reach passive and quiescent states in bounded time. An RDM
in a passive state can accept data distributed by other RDMs but may not repli-
cate nor distribute data itself. Similarly, a quiescent RDM can neither distribute
nor accept data from other RDMs since both its neighbors and itself are in
passive states.

In addition, we implemented a rule-based adaptation engine that leverages
Claims constructs as conditionals for adaptation. Specifically, the applicability
of each Claim is monitored and evaluated at run time. If a Claim becomes falsified,
then the value of its contribution link is updated to reflect this new informa-
tion. Next, the set of goal realization strategies are re-evaluated to select the one
that best addresses soft goals given current system and environmental condi-
tions (see Section 2.4). If an adaptation is required, then a target configuration
is selected and the DCM protocol is executed to generate an adaptation path
that safely transitions the executing RDM network from its source to its target
configuration.

The first experiment explores how a DAS can leverage RELAXed Claims to trig-
ger adaptations at run time, and the second experiment explores how RELAXing
Claims can reduce adaptation costs in uncertain environments. For statistical
purposes, we conducted 40 trials of each experiment. Where applicable, we plot
the mean values with corresponding error bars.

4.2 No Environmental Uncertainty

This experiment evaluates how a falsified RELAXed Claim can trigger the run-
time reconfiguration of a DAS. For this scenario, the values of the contribution
links in Figure 1 suggest that the best goal realization strategy is to use a re-
dundant network topology with synchronous propagation. As such, Figure 5(A)
depicts the initial configuration comprising 25 RDMs using synchronous propa-
gation and 32 active network links, 8 of them redundant. This configuration is
based on the validity of Claim c1 (see Figure 2) that states that a redundant
network topology prevents network link failures from partitioning the network.
Nevertheless, for this scenario we disabled adverse environmental conditions to
purposefully cause the falsification of this Claim and thereby enable us to eval-
uate how the RDM network self-reconfigures in response.

Since network failures are not possible in this scenario, the applicability of
Claim c2, which states that network link faults are likely, gradually decreases
until it falsifies top-level Claim c1. The falsification of Claim c1 states that,
for the given set of system and environmental conditions, the “Use Redundant
Topology” goal realization strategy does not necessarily prevent network parti-
tions and therefore does not contribute as positively (“++”) to the “Maximize
Reliability” soft goal. As a result, the value of the corresponding contribution
link in Figure 5(B) changes from “++” to “=” to reflect reduced confidence
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Fig. 5. Adaptation progression in response to falsified Claim c1

that a network topology contributes positively to the “Maximize Reliability”
soft goal.

Once the value of the contribution link is updated, the DAS re-evaluates
its goal operationalizations. As Figures 1 and 5(B) illustrate, once Claim c1 is
falsified, the best goal realization strategy becomes to use a minimum spanning
tree (MST) topology with synchronous propagation. The reconfigured RDM net-
work, shown in Figure 5(C) comprises 25 RDMs propagating data synchronously
through 24 active network links. Combined, a MST minimizes operational costs
while synchronous propagation maximizes network reliability. Note that while
asynchronous propagation would also maximize performance, it is not the op-
timal solution for this scenario since its advantages are offset by contributing
equally negatively against the “Maximize Reliability” soft goal.

4.3 Environmental Uncertainty

This experiment compares the benefits, in terms of adaptation costs, that RE-
LAXed Claims can provide over traditional Claims in uncertain environments. For
this work, we define adaptation costs based on the adaptation quality property of
settling time et al. [26]. Specifically, we measure adaptation costs by counting the
number of components placed in passive and quiescent states during adaptation.
Thus, the null hypothesis, H0, states that there is no difference in adaptation
costs between RELAXed Claims and traditional Claims. Similarly, the alternative
hypothesis, H1, states that RELAXed Claims will incur lower adaptation costs
than traditional Claims. The rationale for H1 is that a RELAXed Claim is more
tolerant to uncertain environmental conditions that might otherwise disprove a
traditional Claim and thus trigger an unnecessary adaptation.

As in the previous experiment, the RDM is initially configured to use a re-
dundant network topology and synchronous propagation. However, while the
previous experiment did not introduce any forms of environmental uncertainty
into the RDM, we now randomly kill network links, drop messages, and either
delay or introduce noise into monitoring information. These types of environ-
mental conditions are intended to affect the applicability of Claims c3 and c4,
as well as the applicability of top-level Claim c1.
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Figure 6 presents a bar chart with the various adaptation cost metrics tracked
throughout each experimental simulation, where error bars denote statistical sig-
nificance where applicable. Specifically, the first two bars count the mean number
of adaptations performed in each trial. The remaining bars count the mean num-
ber of components in passive and quiescent mode throughout these adaptations,
respectively. As this plot illustrates, RELAXing Claims significantly reduces the
number of adaptations triggered by environmental uncertainty, and also signifi-
cantly reduces the number of components placed in passive mode during adap-
tations (p < 0.05). Although statistically insignificant, this plot also illustrates
a decreasing trend in the number of components that are placed in quiescent
mode during adaptations, thus minimizing the impact on system functionality
even in the face of environmental uncertainty.

Fig. 6. Comparing adaptation costs between RELAXed Claims and traditional Claims

Given the differences in adaptation costs between RELAXed Claims and tra-
ditional Claims we reject the null hypothesis H0. Likewise, we accept the al-
ternate hypothesis, H1, as it concerns both the total number of adaptations
performed and the number of components placed in passive mode during adap-
tations. These differences in adaptation costs are caused primarily by the falsi-
fication of Claim c5 (see Figure 2). While coincident link failures automatically
falsify non-RELAXed Claim c5, in most cases it did not disprove its RELAXed
Claim counterpart as long as the network remained connected. As such, RE-
LAXing Claims enable the RDM network to reduce the number of adaptations it
incurred in response to adverse environmental conditions.
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5 Related Work

This section presents related work on model-based approaches to the require-
ments engineering of a DAS. In particular, this section includes related work on
documenting and analyzing obstacles and sources of uncertainty, requirements
monitoring, and requirements reflection.

Documenting and Analyzing Obstacles and Sources of Uncertainty.
A number of requirements-level techniques have been developed to deal with
changing environmental conditions faced by a DAS. For instance, Letier and
van Lamsweerde [15] introduced a goal modeling approach for identifying and
resolving obstacles that can prevent the satisfaction of a goal. Obstacles are
identified by negating requirements and then elaborating preconditions for the
obstacles to arise. Letier and van Lamsweerde [17] also introduced a probabilistic
framework for specifying the partial satisfaction of goals. While these approaches
are intended for functional goals, conceptually their techniques could be applied
to identify and evaluate conditions that can falsify assumptions.

Fuzzy logic has been used to represent effects of uncertainty on the satisfac-
tion of goals and requirements. RELAX [4,30] and FLAGS [2] are requirements
specification languages for making more flexible the satisfaction criteria of func-
tional goals to cope with uncertainty. RELAX can also be used in goal-modeling
for identifying and mitigating sources of uncertainty. Serrano et al. [23] intro-
duced an approach for RELAXing the contribution links of soft goals, thereby
enabling a DAS to evaluate the satisficement [5] of soft goals while coping with
uncertainty. None of these approaches, however, focus on how uncertainty can
affect the validity of assumptions at run time – the focus of this paper.

Requirements Monitoring. Traditionally, requirements monitoring frame-
works [7,8,20] use monitoring information to trace through state-based mod-
els that specify allowed states of the system. This information enables a DAS to
identify and address conditions that can prevent the satisfaction of requirements.
Utility functions have also been applied to monitor requirements [9,19,27]. Our
approach is similar to these approaches in that it is intended to detect and re-
spond to run-time conditions that prevent a DAS from satisfying its objectives.
Instead of directly monitoring requirements, however, our approach monitors
Claims to detect falsified assumptions that can obstruct goals. Both types of
techniques can and should be used in conjunction at run time.

Requirements Reflection. Sawyer et al. [22] suggested that requirements
should be run-time entities about which can be reasoned to determine their
level of satisfaction and used to support adaptation decisions. Our approach
adopts this view in that it uses Claims to reason about requirements at run
time. GMoDS [6] also maintains run-time representations of goals, where a goal
can transition between achieved, failed, obviated, or removed states. In contrast
to our approach, GMoDS does not perform reasoning about goal satisfaction.

Another approach by Chen et al. [3] maintains run-time goal models to reason
about tradeoff decisions aimed at achieving survivability assurance. As with our
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approach, their live goal models postpone the necessary quality tradeoff deci-
sions until run time. Unlike our approach, however, their approach deals with
functional goals, selectively allowing them to become disconnected from the goal
model to spare resources. Awareness Requirements (AwReqs) [16,24] refer to
the success or failure of other requirements, providing information on run-time
divergence from specified requirements as a feedback loop in an explicitly control-
theoretic model of requirements-driven dynamic adaptation. Although AwReqs
do not focus on detecting run-time divergence from assumptions, exploring the
management of requirements and assumptions at run time would be interesting.

Ali et al. [1] present a goal-based framework for modeling and analyzing con-
textual requirements. Their approach shares similarities with our use of Claims,
where context plays a similar role to the domain assumptions that are repre-
sented with Claims. While context analysis is similar to Claim refinement, any
connection between context and monitoring is implicit.

6 Conclusions

Recent research in RE has applied dynamic adaptation to mitigate uncertainty
about the environmental contexts that a system-to-be may encounter at run
time [2,3,4,18,28,29,30]. This paper has presented an approach to account for
system and environmental uncertainty by RELAXing Claims when there is un-
certainty about the evidence for or against a Claim’s truth. We argue that failing
to recognize both the fallibility of monitoring information, as well as the transient
effects of minor environmental disturbances, are likely to cause erratic behavior
in a DAS, and may risk unnecessary, and perhaps costly, adaptations. We evalu-
ated our Claim RELAXation technique by applying it to an industry-provided case
study of RDM system. Experimental results performed on an RDM simulator
show that RELAXing Claims enables a DAS to reduce the number of adaptations
when compared to traditional non-RELAXed Claims.

Future work will explore several open issues raised by our investigations. First,
we will continue to explore how RELAX can be used to tolerate uncertainty
from the environment and the monitoring infrastructure, as RELAX is applied to
Claims and functional goals. Next, we are interested in making the propagation
of a failed Claim to the goal model more flexible. Currently, a failed Claim results
in loss of trust in the predicted degree of soft goal satisficement. Finally, we will
explore how the RELAXation process can be more automated.
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Abstract. Model-driven techniques have proven to yield significant benefits for
context-aware systems. Specifically, semantically-rich models are used at runtime
to monitor the system context and guide necessary changes. Under the closed-
world assumption, adaptations are fully known at design time. Nevertheless, it
is difficult to foresee all the possible situations that may arise in uncertain and
complex contexts. In this paper, we present a model-based framework to support
the dynamic evolution of context-aware systems to deal with unexpected context
events in the open world. If model adaptations are not enough to solve uncertainty,
our model-based evolution planner guides the evolution of the supporting models
to preserve high-level requirements. A case study about a context-aware Web
service composition, which is executed in a distributed computing infrastructure,
illustrates the applicability of our framework. A realization methodology and a
prototype system support our approach.

1 Introduction

In nature, organisms adapt themselves to be more suitable to an environment. As or-
ganisms live in intricate, changing environments, software is executed in complex and
heterogeneous computing infrastructures in which a diversity of events may arise (e.g.
security threats and server failures). Thus, it is desirable to translate the ideas of adap-
tation in the natural world to software in order to solve these situations. Dynamic adap-
tation of software behavior refers to the act of changing the behavior of some part of a
software system as it executes, without stopping or restarting it [20]. This type of adap-
tation is particularly important in critical systems that cannot be stopped to implement
the adaptations (e.g. software for electronic commerce and banking).

Adaptations are carried out in response to changing conditions in the supporting
computing infrastructure and in the surrounding physical environment. Therefore, a re-
quirement for dynamic adaptation is context awareness. The context is any information
that can be used to characterize the situation of an entity [13]. The information that is
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collected from the context is used as a basis for automating tasks such as installation,
adaptation, or healing [8] (i.e., self-* properties associated with autonomic computing).

Several research works have recently proposed the use of models at runtime as a fea-
sible way to guide dynamic adaptations in domains as diverse as service compositions
[23,2], mobile devices [24], and home automation [8]. Models at runtime can be defined
as causally connected self-representations of the associated system that emphasize the
structure, behavior, or goals of the system from a problem-space perspective [6]. In re-
sponse to changes in the context, the system itself can query these models to determine
the necessary modifications in the underlying architecture. Therefore, instead of pro-
gramming complex scripts to describe adaptation actions to change the behavior of the
system during execution, easy-to-understand and technology-independent models can
be used to express dynamic adaptations.

Nevertheless, most current model-driven approaches for dynamic adaptation still
tend to be based on the closed-world assumption, in which the boundary between the
system and the environment is known beforehand and is unchanging [4]. Under this as-
sumption, models at runtime can remain stable for a long time. However, in the unpre-
dictable open world, software should react to continuous and unanticipated changes in
complex and uncertain contexts [4]. In order to manage uncertainty in the open world,
the supporting models should be able to evolve at runtime for better functioning and
system “survival”. We define dynamic evolution as the process of moving the software
to a new version (which cannot be supported by predefined dynamic adaptations) in
order to manage unknown context events1 at runtime.

There is a small number of approaches that manage uncertainty using models at
runtime. Some of them focus on analyzing the collected context information using an
ontology [26], and others focus on modeling uncertainty at the requirements and design
phases for later use at runtime [27,10,17]. Even though these approaches are interest-
ing, the models that are created at design time to deal with uncertainty do not evolve
at runtime. Therefore, the capacity of reaction to face new unknown context events de-
creases because the initial models are unable to support them. Moreover, this situation
affects the feasibility of models at runtime as a means to guide the dynamic evolution
of critical systems that cannot be stopped to modify the supporting models.

Our contribution is a model-based framework that supports the dynamic evolution
of context-aware systems to deal with the uncertainty caused by unexpected context
events in the open world. This framework is particularly useful in systems that are built
upon service operations or component operations that can be activated or deactivated
at runtime depending on contextual situations (e.g. in service-oriented applications that
can activate a set of services to protect themselves, or in smart-home software that
can start or stop components, such as lighting devices). This framework answers the
following questions: 1) Which corrective actions can trigger the dynamic evolution of
the system to preserve the expected requirements when unknown problematic context
events are faced?; 2) Which requirements can be affected by unknown context events?;
and 3) How can the system self-evolve to manage arising unknown context events? The
answers to these questions are offered through easy-to-understand and highly-abstract

1 We refer to unknown context events as those situations arising in the context that were not
foreseen at design time.
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models at runtime. In order to exemplify the applicability of our approach, the frame-
work is applied to a typical Web service composition running in a heterogeneous con-
text. A realization methodology and a proof-of-concept prototype are also presented.

The remainder of this paper is structured as follows: Section 2 describes a motivating
scenario. Section 3 describes our model-based framework for the dynamic evolution of
context-aware systems. Section 4 describes the feasibility of our approach. Section 5
presents related work. Section 6 presents conclusions and future work.

2 Motivating Scenario

In order to illustrate the need for dealing with unexpected context events in the open
world, we introduce a critical service composition that supports on-line product shop-
ping at EUROTECH, a multinational retailer of technology products. In Figure 1, the
Service oriented architecture Modeling Language (SoaML) [25] is used to design the
architecture model for this service composition. The EurOTECH participant connects
the SHOPPINGPROCESSOR service provider with other service providers (participants
are either specific entities or kinds of entities that provide or use services [25]). The
collaboration use (called architecture) is an instance of the EUROTECH service archi-
tecture. This specifies that the SHOPPINGPROCESSOR service provider adheres to that
service architecture. The role bindings indicate the roles played by participants.

Fig. 1. The EUROTECH participant

The operation for product searching is provided by the SEARCHPRODUCT Web ser-
vice, which is part of the HKWHOLESALESUPPLIER composite service. The product
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information is sent to the customer by the SHOWPRODUCTINFO Web service and the
information for other related products is listed by the SHOWRELATEDPRODUCTS Web
service. Customers can add products to the shopping cart through the HKWHOLE-
SALESUPPLIERSHOPPINGCART Web service. When the customer is ready to checkout,
he or she is authenticated by the GOOGLEAUTHENTICATION Web service. The PAY-
MENTCALCULATOR Web service calculates the total amount to be paid. The payment is
done through the BARCLAYSBANKCREDITCARDPAYMENT Web service. Finally, the
in-house EMAILINVOICE Web service sends an e-mail to the customer with the invoice
and the UPSSHIPPING Web service is invoked to deliver the product.

In order to support the dynamic adaptation of the system to keep this process avail-
able 24/7, systems engineers have programmed a set of predefined adaptation actions for
specific context events. For instance, if the BARCLAYSBANKCREDITCARDPAYMENT

service operation is unavailable, then other service operations can be invoked instead.
Nevertheless, implementing scripts with predefined adaptation actions has the follow-
ing drawbacks: 1) if there are no predefined adaptation actions for a particular context
situation, then no adaptation is carried out; and 2) implementing adaptation actions
through complex scripts makes it difficult to reason about the system as it grows. These
situations help us to identify the following challenges for context-aware systems in the
open world: 1) context-aware systems should be able to count on corrective actions that
trigger the dynamic evolution of the system to preserve the expected requirements when
facing unknown context events; 2) the evolution actions to guide the system to a better
configuration should be sufficiently expressive and easy-to-understand in order to facil-
itate the development of the logic behind autonomic management; and 3) the dynamic
evolution of the system should be carried out by auto-generated evolution actions in
order to avoid human intervention.

3 Model-Based Framework for the Dynamic Evolution of
Context-Aware Systems

The dynamic adaptation of context-aware systems is possible by modifying the sys-
tem’s architecture model at runtime through predefined adaptation actions [8,2]. This
approach works well under the closed-world assumption. However, predefined adapta-
tion actions are not enough in the open world where several unforeseen context events
can arise (e.g. sudden security attacks in a service-oriented system or memory overload
in a device that controls lighting in a smart home). These unknown events create uncer-
tainty about the way the system should deal with them (e.g. Should the lighting device
be restarted or should a backup device replace it on-the-fly?).

Therefore, we propose the following strategy to manage problematic unknown con-
text events through the dynamic evolution of the system and to meet the three chal-
lenges presented in Section 2. First, the corrective actions for dealing with uncertainty
are expressed as abstract tactics. Tactics are last-resort surviving actions or strategies to
preserve the requirements that can be negatively impacted by unknown context events.
Therefore, tactics trigger the dynamic evolution of the system to preserve require-
ments at runtime. Evolution actions are expressed as easy-to-understand models. Also,
a model-driven mechanism auto-generates evolution actions to move the system to a
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better configuration. The prerequisite for carrying out dynamic evolutions is to count
on models that are causally connected to the system (i.e., if the system changes, they
change and vice versa). Since we are interested in managing the uncertainty that arises
from the context in which the software is deployed, our approach is related to external
uncertainty [15].

To make this strategy a reality, we propose a framework that states the models, tools,
and artifacts that can support the dynamic evolution of context-aware systems to face
uncertainty (see Figure 2). Our framework carries out unanticipated software changes
at runtime continuously. It focuses on changing the system architecture by evolving a
causally connected architecture model and it supports the autonomic evolution of the
system (no human workload or system restarts are required to evolve the system) [7].

Fig. 2. Framework for the dynamic evolution of context-aware systems

The proposed framework has two phases, namely Preparing for Dynamic Evolution
and Dealing with Dynamic Evolution. The models that are set up in the Preparing for
Dynamic Evolution phase to support the dynamic evolution of context-aware systems
are: 1) an architecture model, which describes the architecture of the system; 2) a con-
text model, which formalizes the context knowledge; 3) a set of tactic models, which de-
scribes surviving tactics to preserve the requirements at runtime; 4) a variability model,
which describes the dynamic configurations of the system; and 5) a requirements model,
which describes requirements in an abstract way.

In the Dealing with Dynamic Evolution phase, the knowledge in the models that
are created in the previous phase is used to guide the self-evolution of the system.
The context monitor keeps an eye on context information at runtime. The evolution
planner queries the information that is collected by the context monitor to determine if
a requirement in the requirements model may be negatively impacted by an unknown
context event. In order to preserve a requirement that has been affected, the evolution
planner chooses a surviving tactic model. Based on the tactic model chosen and the
variability model, the evolution planner generates abstract evolution actions. Then, the
reconfiguration engine uses these actions to evolve the architecture model accordingly.
Finally, the execution engine uses the evolved architecture model to modify the system.
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3.1 Preparing for Dynamic Evolution

The objective of this phase is to set up the models that can be used to deal with unknown
context events at runtime. These models can be divided into two groups. The first group
consists of an architecture model and a context model. These two models are commonly
used to drive the dynamic adaptation of the system [16,24]. This group can also include
a requirements model that expresses the requirements to be fulfilled by the context-
aware system at runtime. The second group consists of two novel models, a variability
model and a set of tactic models, which extend the initial set of models to support
the dynamic evolution of the system. The following subsections describe in a general
way the aforementioned models. Specific examples illustrate the applicability of our
approach. Figure 3 summarizes the models in our case study2.

Fig. 3. The models in the Preparing for Dynamic Evolution phase of our case study

2 The models that are used in the case study can be downloaded from our website [1].



76 G.H. Alférez and V. Pelechano

An Architecture Model. This model describes the software architecture, which de-
pends on the solution domain. For example, the architecture of a service composition
can be represented by a SoaML architecture model (see Figure 1), or the architecture
of a component-based system can be described by an architecture description language
(ADL). Our framework is flexible with the notation used to describe this model.

A Context Model. This model supports the formal analysis of the collected context
information. Specifically, it keeps the updated context knowledge at runtime to reason
about when to trigger an autonomic system change. In order to examine the compliance
of predefined situations in the context, systems analysts extract context conditions from
the context model as Boolean expressions.

For example, in order to solve the need to express the context in a way that sup-
ports formal reasoning of its current status, the on-line product shopping system at
EUROTECH uses an ontology-based context model that leverages Semantic Web tech-
nology. Specifically, it uses the Web Ontology Language3 (OWL) to support the formal
analysis of the context information that is captured at runtime (see Figure 3). Individuals
have datatype properties that are used to represent the current context state. For exam-
ple, the ISAVAILABLE datatype property indicates whether or not a service operation
is currently available. Context conditions in our case study consider QoS parameters in
the form of hard bounds. However, probabilistic contracts, which require statistical test-
ing to check deviations of the QoS parameter, can also be used. Each context condition
is represented as a triple in the form of (subject, predicate, object). For example, the
following predefined context condition is triggered when the current response time of
the UPSSHIPPING Web service operation is greater than 2 seconds: UPSShippingHiRe-
spTime = (UPSShipping, HasResponseTime, >2,000 ms).

A Requirements Model. This model is leveraged at runtime to count on the repre-
sentation of the requirements that the context-aware system must preserve at runtime.
Requirements in this model have to be fulfilled despite arising unknown context events.
There are several notations for requirements modeling, including UML Use Case dia-
grams and Goal Modeling (i*, GRL, and KAOS [19]).

Since our case study is particularly interested in keeping non-functional requirements
(NFRs) at runtime (e.g. security, performance, and availability), the GRL [22] has been
used for requirements modeling because it focuses on NFRs. Figure 3 depicts the goal
model for the on-line product shopping system at EUROTECH. This model has soft-
goals that describe the NFRs to be kept by the context-aware system in order to reach
the top-level goal (e.g. the HIGH SECURITY softgoal). It also contains tasks that specify
specific surviving tactics to reach the softgoals (e.g. the DECEPTION task4). Since tasks
represent core assets to keep the QoS of the system, they make a positive contribution
to softgoals. Based on the temporal relationships of the tasks, they can be annotated as
sequential, parallel or exclusive [28]. In addition, each softgoal has a priority defined at
design time. If more than one softgoal has been affected at runtime, a task connected to

3 http://www.w3.org/TR/owl-ref/: OWL Web Ontology Language.
4 Deception (or honeypot) ensures survivability by inducing enemy behaviors that may be

exploited.

http://www.w3.org/TR/owl-ref/
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the softgoal with the highest priority is executed first. Also, each task has a predefined
priority. Tasks with the highest priority are chosen first at runtime.

A Variability Model. This model describes the dynamic system configurations and the
variants of the system. These variants may provide better QoS, offer new functionalities
that did not make sense in the previous context, or discard some functionalities. Our
approach requires a variability modeling technique to implement the variability model,
such as feature modeling [5], the Common Variability Language (CVL) [18], or any
domain-specific language to express variability.

In the on-line product shopping system at EUROTECH, the variability model has been
implemented with a feature model, which is a hierarchically arranged set of features. A
feature is distinguished characteristics of a system (see Figure 3). Feature modeling was
chosen to implement the variability model because it offers coarse-grained variability
management and has good tool support for variability reasoning. Features are hierar-
chically linked in a tree-like structure through variability relationships such as optional,
mandatory, and alternative [5].

In general terms, a system can be viewed as a set of functionalities that must be
preserved at runtime. These functionalities are made up of components or services.
These can be added or removed from a system at runtime when new context events
arise. To this end, systems can be abstracted as a set of features that represent variant
functionalities of the system in a variability model. Therefore, evolution actions can be
described in terms of the activation or deactivation of features in the variability model.
The set of all currently active features is the current configuration of the system.

In feature models, variation points are used to express decisions leading to different
variants at runtime. These variation points can be bound during operation to adapt to
contextual changes. Variation points are represented as interior nodes (e.g. the LOOK

FOR A PRODUCT feature). Since only one variant can be chosen at a time in a partic-
ular variation point, there is an alternative relationship between a variation point and
its variants. Each variant is denoted with an optional feature because it can be added
or removed according to specific needs (e.g. the HK WHOLESALE SUPPLIER and the
AMERICAN SUPPLIES CO. features).

A Set of Tactic Models. In our approach, tactics are considered as the last resort to
be used when the system does not have predefined adaptation actions to deal with
arising problematic context events. Writing complex scripts to specify tactics can be
cumbersome. However, highly-abstract tactic models can be used to express the tactical
functionality to be triggered on the underlying system to preserve requirements that are
affected (one requirement can be preserved by many tactics). Therefore, tactic models
are causally connected to software that implements the tactics. Also, tactic models are
merged into the variability model at runtime to include the tactical functionality in the
evolved system configuration. The only merging prerequisite is that these two models
conform to the same metamodel. Each tactic model can have restrictions to indicate
whether or not the tactic can run in parallel with other current active system functional-
ities. If not, it is necessary to activate or deactivate current functionalities to apply the
tactic. Tactic models are expressed as broadly as possible in order to be reused.
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Since the variability model in our case study is implemented as a feature model, the
tactic models are also expressed as feature models to support their merging at runtime
(to conform to the same metamodel). Figure 3 shows the tactic model that describes
the functionality for the deception tactic. The root feature indicates the tactic’s func-
tionality, and leaf features express coarse-grained functionalities to fulfill the tactic. A
restriction states that this tactic can run in parallel with the current active features.

3.2 Dealing with Dynamic Evolution

In this phase, the models that have been created in the Preparing for Dynamic Evolution
phase are used to manage external uncertainty when facing unknown context events
at runtime. To this end, this phase adds a dynamic evolution layer upon a dynamic
adaptation layer (see Figure 4). This layer extends our previous work with dynamic
evolution capabilities [8,2].

The dynamic adaptation layer triggers the self-adaptation of the system according
to predefined adaptation actions. This layer is supported by the following three tools.
The first tool is a context monitor. It processes context information that is collected by
sensors and updates the context model accordingly (see step 1 in Figure 4). The context
monitor captures the basic metrics of significant quality attributes from the context. The
monitoring frequency is defined at design time. The second tool is a reconfiguration en-
gine that self-adapts the supporting architecture model. The third tool is an execution
engine that uses the modified architecture model to modify the underlying system. Dif-
ferent execution engines can be used depending on the solution domain. For example,
the execution engine for a component-based system can be implemented on the OSGi
framework5. The execution engine can install or uninstall components based on changes
in the architecture model [8].

Fig. 4. Dealing with the Dynamic Evolution phase

The dynamic evolution layer supports the self-evolution of the system to deal with
unknown context events in the open world. The evolution planner is constantly looking

5 http://www.osgi.org: OSGi Alliance.

http://www.osgi.org
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for unknown context events based on information collected in the context model (see
step 2). If the evolution planner realizes that there is an unknown context event, then
it looks for the requirement that can be affected by this event (see step 3). Afterwards,
the evolution planner looks for a surviving tactic to preserve the affected requirement
(see step 4). According to the discovered tactic, the evolution planner merges a tactic
model into the variability model to produce an evolved variability model that supports
the tactic’s functionality (see step 5). Then, it generates and executes an evolution pol-
icy that indicates the activation or deactivation of features (i.e., evolution actions) in
the evolved variability model according to the triggered tactic (see steps 6 and 7). Af-
terwards, the reconfiguration engine creates a reconfiguration plan that is based on the
generated evolution policy (see step 8). The execution of the reconfiguration plan mod-
ifies the architecture model (see step 9). Then, the execution engine uses the modified
architecture model to adjust the underlying system (see step 10). The following subsec-
tions describe the actions carried out by the evolution planner and the reconfiguration
engine. These are the two main tools that support dynamic evolutions.

Evolution Planner

The evolution planner is in charge of generating the evolution actions to face unknown
problematic context events. The main objective of the evolution planner is to protect
the affected requirements with surviving tactics. This tool’s output is a new system
configuration in terms of an evolved variability model that indicates the functionalities
to be activated or deactivated according to the selected tactic.

The evolution planner is constantly observing the context model to find situations
that may require the dynamic evolution of the system. The most basic situation to trig-
ger dynamic evolutions is when the reconfiguration engine does not find any predefined
context condition for a context event. In this case, the context event is considered as
unknown. However, the evolution planner can also use other mechanisms such as Gaia
[26] to reason about uncertain contexts using mechanisms such as probabilistic logic,
fuzzy logic, and Bayesian networks according to different situations. In order to deal
with unknown context events, the evolution planner carries out the following steps:

- Look for the Requirement That Can Be Affected. The objective of this step is to
look for the requirement that can be affected by an unknown context event. This is key
information because the surviving tactics are associated to requirements.

In order to find the requirement that can be affected in our case study, the evolution
planner uses forward chaining [21], a well-known method of reasoning in artificial
intelligence. This method evaluates arising context facts against rule premises, which
are defined at design time and kept in a knowledge base. A key advantage of forward
chaining in the open world is that new context data can trigger new inferences. Figure 5
shows a basic example when the unknown context event F1 (a fact) is detected. In this
case, rule R1 has a condition that matches this new fact (see step 1). Then, the forward
chaining method fires the new fact F2 (see step 2). The process continues until the
fact F3 is fired (see step 4). F3 indicates that the HK Wholesale Supplier Web service
operation can affect the High Security softgoal.



80 G.H. Alférez and V. Pelechano

Fig. 5. Forward chaining inference example

- Look for a Surviving Tactic. The objective of this step is to discover what to do to
preserve a requirement that has been negatively impacted by an unknown context event.
To this end, the evolution planner looks for a surviving tactic among the set of tactic
models.

In our case study, this discovery process is supported by querying information from
a GRL goal model, which implements the requirements model. For example, when the
evolution planner finds that the HK Wholesale Supplier Web service operation can af-
fect the High Security softgoal, it looks for the task with the highest priority under the
affected HIGH SECURITY softgoal. In this case, it finds the DECEPTION task.

- Merge a Tactic Model into the Variability Model. In order to inject the functionality
of the discovered tactic into the system, this step has two objectives: 1) to identify a tac-
tic model that describes the tactic to be triggered for preserving an affected requirement
at runtime; and 2) to merge the required tactic model into the variability model to count
on an enriched-evolved variability model that guides dynamic changes in the system
architecture.

In our case study, the evolution planner carries out two steps to merge tactic mod-
els into the feature-based variability model. First, the tactic model is considered as a
variant that can be added to the variability model. Second, the tactic model is inserted
under the variation point of the feature that has affected the requirement. For example,
in the case of the discovered “HK Wholesale Supplier Web service operation can affect
the High Security softgoal” context event, the deception tactic model is inserted as a
variant under the LOOK FOR A PRODUCT variation point (see Figure 6).

- Generate an Evolution Policy. Merging a tactic model into the variability model
may cause the activation or deactivation of features in the current configuration of the
variability model. Therefore, the objective of this step is to generate an evolution policy
that contains evolution actions to decide which system features need to be activated or
deactivated in the evolved variability model. An evolution policy (EP) for a particular
tactic (T) can be expressed as a list of pairs (F, S) where each pair is made up of a feature
(F) in the evolved variability model (EVM) and the state (S) of the feature (active or
inactive): EPT = {(F, S) |F ε [EVM] ∧ S ε {Active, Inactive}}.

In our case study, the generated evolution policies activate or deactivate features ac-
cording to the following rules: 1) since the features in the inserted tactic model are nec-
essary to keep a particular requirement working, all the features in the tactic model are
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Fig. 6. Evolved models in our case study

activated; 2) if the variant that represents the inserted tactic can run in parallel with other
variants, then the features in the evolved variability model keep their current states; and
3) if the tactic model requires the activation or deactivation of features in the initial
variability model, then the evolution planner triggers the necessary changes. For exam-
ple, the following evolution policy activates the deception functionality in the evolved
variability model according to the discovered “HK Wholesale Supplier Web service op-
eration can affect the High Security softgoal” context event (the active features in the
current configuration are highlighted in Figure 6): EPDeception = {(Deception, Active),
(Log Intruder’s Activities, Active), (Manage Sensors, Active), (Send E-mail to System
Administrator, Active)}.

Reconfiguration Engine

The reconfiguration engine creates a reconfiguration plan, which contains a set of re-
configuration actions to adapt the architecture model representing the underlying sys-
tem. The adapted architecture model keeps the consistency between the evolved vari-
ability model and the underlying system. Reconfiguration actions in the reconfigura-
tion plan are stated as architecture increments (A�) and architecture decrements (A∇).
These operations take an evolution policy as input, and they calculate the modifications
to the architecture model by adding (A�) or removing (A∇) model elements.

In our case study, the evolution policy is described in terms of the activation or de-
activation of features, and the reconfiguration plan is described in terms of elements in
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the architecture model. Therefore, it was necessary to query the mappings in a weaving
model [12] to determine which elements in the architecture model should be added or
removed according to the features in the evolution policy (see Figure 6). Each link in the
weaving model has two endpoints. The first endpoint refers to features in the initial vari-
ability model and in the set of tactic models (since these features can be present in the
evolved variability model). The second endpoint refers to elements in the architecture
model. In the case of the discovered “HK Wholesale Supplier Web service operation can
affect the High Security softgoal” context event, the generated reconfiguration plan to
reorganize elements in the architecture model is as follows: A� = {Deception, LogIn-
truderActivities, ManageSensors, SendEmailSystAdmin, NetworkComLog, DataWritin-
gLog} (see the resulting model in Figure 6).

4 Realizing Our Approach: Methodology and Prototype

In order to carry out our approach in a coherent way from requirements to runtime, we
propose a supporting methodology and a prototype system. First, the methodology in
[1] specifies the tasks, work products, roles and tools needed to create the models in the
Preparing for Dynamic Evolution phase. The Eclipse Process Framework (EPF) Com-
poser6 was used to create a plug-in that contains the method content [1]. The main bene-
fit of this plug-in is that other methodologies can reference it and reuse its content. In our
case study, the architecture model, the variability model, the requirements model, and
the set of tactic models were specified in the XML Metadata Interchange (XMI) format.
They were processed by the software infrastructure provided in the Eclipse Modeling
Framework (EMF)7 to specify and execute queries against them at runtime. The vari-
ability model and the set of tactic models conform to the MOSKitt4SPL8 metamodel;
the SoaML architecture model conforms to the SoaML metamodel, which extends the
UML2 metamodel to support service modeling [25]; and the goal model conforms to the
OpenOME metamodel9. The variability model and the architecture model were taken
as input to create the weaving model in the ATLAS Model Weaver10 tool.

The above models were used to carry out dynamic evolutions with a prototype (see
Figure 7). SALMon [3] was chosen as the context monitor because its components are
mostly technology-independent and they act as services, making the SALMon archi-
tecture customizable for our purpose. Context conditions were specified as SPARQL
Protocol and RDF Query Language11 (SPARQL) queries to the ontology in the con-
text model. By using SPARQL queries, we have implemented the operations to insert
new triples in the RDF graph of the ontology and to evaluate the values in the context
model in order to find out if a predefined context condition has been accomplished.
When an unknown context event arises, the evolution planner uses the generic rule

6 http://www.eclipse.org/epf/: EPF Project.
7 http://www.eclipse.org/modeling/emf/: EMF.
8 http://www.pros.upv.es/m4spl: MOSKitt4SPL.
9 https://se.cs.toronto.edu/trac/ome/: OpenOME.

10 http://www.eclipse.org/gmt/amw/: ATLAS Model Weaver.
11 http://www.w3.org/TR/rdf-sparql-query/: SPARQL.

http://www.eclipse.org/epf/
http://www.eclipse.org/modeling/emf/
http://www.pros.upv.es/m4spl
https://se.cs.toronto.edu/trac/ome/
http://www.eclipse.org/gmt/amw/
http://www.w3.org/TR/rdf-sparql-query/
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reasoner in Jena 212 to carry out forward chaining. In addition, the evolution planner
uses the EMF Compare13 APIs to merge the tactic model into the variability model.
It also uses the EMF Model Query (EMFMQ)14 to activate or deactivate features in
the evolved variability model during execution. The execution engine was implemented
with Swordfish15. Web services were created using the Java API for XML Web services
(JAX-WS) and deployed as bundles16 in Swordfish.

Fig. 7. A screenshot of our prototype to manage uncertainty in context-aware systems

5 Related Work

There are several related works in the area of self-adaptive context-aware systems [9].
Recent research has proposed using models at runtime as a feasible way to guide dy-
namic adaptations [23,24,8,14,16,2]. Nevertheless, these approaches lack support to
manage uncertainty in the open world. We focus our discussion on relevant model-
driven works that deal with uncertainty in context-aware systems.

In [26], the authors present a pervasive infrastructure to reason about uncertainty us-
ing learning that is based on Bayesian networks and rules that are written in probabilistic
logic. Similar to our context model, they also use ontologies to reason about uncertain
context information. However, they do not offer the mechanisms to adapt the underly-
ing system. There is an interesting research trend towards the analysis of uncertainty

12 http://incubator.apache.org/jena/: Jena.
13 http://www.eclipse.org/emf/compare/: EMF Compare Project
14 http://www.eclipse.org/modeling/emf/: EMF Model Query.
15 http://www.eclipse.org/swordfish/: Swordfish.
16 A bundle is a module containing Java implementation classes and additional data that can be

deployed in an OSGi runtime environment.

http://incubator.apache.org/jena/
http://www.eclipse.org/emf/compare/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/swordfish/
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using goal models at the requirements phase. For instance, in [27], the authors propose
attaching claims to softgoal contribution links to record the rationale for a choice of
goal realization strategy when there is uncertainty about the optimum choice. Never-
theless, it may be difficult to determine the whole set of claims in large and complex
systems. In [10], the authors introduce a goal-based modeling approach to develop the
requirements for a dynamic adaptive system while explicitly factoring uncertainty into
the process and the requirements. The requirements model in our approach can be spec-
ified using their technique to identify high-level goals in order to mitigate uncertainty.
Another trend focuses on the generation of models at design time that represent possible
target systems that are suitable for different environmental conditions. For example, in
[17], the authors propose a digital evolution-based approach to generate these models at
design time. Our model-based surviving tactics extend their approach in cases when the
model generation misses any unforeseen context event that may attempt against a re-
quirement at runtime. Finally, in [11], the authors describe three sources of uncertainty
and explain how they address those in the Rainbow Project. Our approach solves two of
them: the identification of a system problem (known and unknown problematic context
events) and the selection of an adaptation strategy (generation of an evolution plan).
Even though Rainbow includes an architecture model to adapt the system at runtime,
uncertainty management techniques are not model-driven.

The aforementioned approaches offer interesting solutions for analyzing the col-
lected context information in uncertain contexts and for modeling uncertainty at the
requirements and design phases for later use at runtime. However, the models created at
design time do not evolve at runtime to deal with arising problematic unknown context
events. According to our best knowledge, our work presents the first generic model-
driven framework to handle unknown context events through the dynamic evolution of
the system.

6 Conclusions and Future Work

In this paper, we have presented a model-based framework to support the dynamic evo-
lution of context-aware systems that deals with unexpected context events in the open
world. A case study illustrates the applicability of our framework and a realization
methodology and a proof-of-concept prototype validate the feasibility of the proposed
approach. Our framework has several benefits: 1) it can guide the creation of context-
aware systems that self-evolve when facing unknown context events in order to pre-
serve the expected requirements; 2) semantically-rich and easy-to-understand models
facilitate the development and maintenance of software that needs to self-evolve; 3) the
framework can be adjusted to different domains; and 4) human workload is reduced
thanks to the autonomic evolution of the system. There are several directions for future
work. One possibility is to extend our framework using the approach in [10] to manage
uncertainty from the requirements phase. A second possibility is to validate the evolved
architecture model at runtime to prevent negative effects in the system. In this manner,
if the architecture model reaches an inconsistent state, then the evolution planner gen-
erates a different strategy. A third possibility is to define mechanisms that can evaluate
at design time the completeness of the models to handle unknown context events.



Dynamic Evolution of Context-Aware Systems with Models at Runtime 85

References

1. Alférez, G.H., Pelechano, V.: Dynamic evolution of context-aware systems with models at
runtime, http://fit.um.edu.mx/harvey/dynamicevolution/

2. Alférez, G.H., Pelechano, V.: Context-aware autonomous web services in software product
lines. In: SPLC, pp. 100–109 (2011)

3. Ameller, D., Franch, X.: Service level agreement monitor (SALMon). In: Proceedings of the
Seventh International Conference on Composition-Based Software Systems (ICCBSS 2008),
pp. 224–227. IEEE Computer Society, Washington, DC (2008)

4. Baresi, L., Di Nitto, E., Ghezzi, C.: Toward open-world software: Issue and challenges. Com-
puter 39, 36–43 (2006)

5. Batory, D.: Feature Models, Grammars, and Propositional Formulas. In: Obbink, H., Pohl,
K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg (2005)

6. Blair, G., Bencomo, N., France, R.B.: Models@ run.time. Computer 42, 22–27 (2009)
7. Buckley, J., Mens, T., Zenger, M., Rashid, A., Kniesel, G.: Towards a taxonomy of software

change. Journal of Software Maintenance 17(5), 309–332 (2005)
8. Cetina, C., Giner, P., Fons, J., Pelechano, V.: Autonomic computing through reuse of vari-

ability models at runtime: The case of smart homes. Computer 42, 37–43 (2009)
9. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J., Becker, B.,

Bencomo, N., Brun, Y., Cukic, B., Di Marzo Serugendo, G., Dustdar, S., Finkelstein, A.,
Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M., Kramer, J., Litoiu, M., Malek,
S., Mirandola, R., Müller, H.A., Park, S., Shaw, M., Tichy, M., Tivoli, M., Weyns, D., Whit-
tle, J.: Software Engineering for Self-Adaptive Systems: A Research Roadmap. In: Cheng,
B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J. (eds.) Software Engineering for
Self-Adaptive Systems. LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009)

10. Cheng, B.H.C., Sawyer, P., Bencomo, N., Whittle, J.: A Goal-Based Modeling Approach to
Develop Requirements of an Adaptive System with Environmental Uncertainty. In: Schürr,
A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 468–483. Springer, Heidelberg
(2009)

11. Cheng, S.W., Garlan, D.: Handling uncertainty in autonomic systems. In: 22nd IEEE/ACM
International Conference on Automated Software Engineering (November 2007)

12. Del Fabro, M.D., Bézivin, J., Valduriez, P.: Weaving models with the Eclipse AMW plugin.
In: Eclipse Modeling Symposium, Eclipse Summit Europe (2006)

13. Dey, A.K.: Understanding and using context. Personal Ubiquitous Comput. 5, 4–7 (2001)
14. Elkhodary, A., Esfahani, N., Malek, S.: Fusion: a framework for engineering self-tuning self-

adaptive software systems. In: Proceedings of the Eighteenth ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2010, pp. 7–16. ACM, New York
(2010)

15. Esfahani, N., Kouroshfar, E., Malek, S.: Taming uncertainty in self-adaptive software. In:
Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European Conference
on Foundations of Software Engineering, ESEC/FSE 2011, pp. 234–244. ACM, New York
(2011)

16. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow: Architecture-
based self-adaptation with reusable infrastructure. Computer 37(10), 46–54 (2004)

17. Goldsby, H.J., Cheng, B.H.C.: Automatically Generating Behavioral Models of Adaptive
Systems to Address Uncertainty. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M.
(eds.) MODELS 2008. LNCS, vol. 5301, pp. 568–583. Springer, Heidelberg (2008)

18. Haugen, O., Møller-Pedersen, B., Oldevik, J., Olsen, G.K., Svendsen, A.: Adding standard-
ized variability to domain specific languages. In: Proceedings of the 2008 12th Interna-
tional Software Product Line Conference, SPLC 2008, pp. 139–148. IEEE Computer Society,
Washington, DC (2008)

http://fit.um.edu.mx/harvey/dynamicevolution/


86 G.H. Alférez and V. Pelechano

19. Horkoff, J., Yu, E.: Analyzing goal models: different approaches and how to choose among
them. In: Proceedings of the 2011 ACM Symposium on Applied Computing, SAC 2011, pp.
675–682. ACM, New York (2011)

20. Keeney, J.: Completely Unanticipated Dynamic Adaptation of Software. Ph.D. thesis, Trinity
College Dublin (2004), http://www.tara.tcd.ie/bitstream/2262/30726/
1/TCD-CS-2005-43.pdf

21. Labhart, J., Rowe, M., Matney, S., Carrow, S.: Forward chaining parallel inference. In: Pro-
ceedings of the IEEE 1990 National on Aerospace and Electronics Conference, NAECON
1990, vol. 3, pp. 1124–1131 (May 1990)

22. Liu, L., Yu, E.: Designing information systems in social context: a goal and scenario mod-
elling approach. Inf. Syst. 29, 187–203 (2004)

23. Menasce, D., Gomaa, H., Malek, S., Sousa, J.: SASSY: A framework for self-architecting
service-oriented systems. IEEE Software 28, 78–85 (2011)

24. Morin, B., Fleurey, F., Bencomo, N., Jézéquel, J.M., Solberg, A., Dehlen, V., Blair, G.: An
Aspect-Oriented and Model-Driven Approach for Managing Dynamic Variability. In: Czar-
necki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301,
pp. 782–796. Springer, Heidelberg (2008)

25. OMG: Service oriented architecture modeling language (SoaML) specification (March
2012), http://www.omg.org/spec/SoaML/1.0

26. Ranganathan, A., Al-Muhtadi, J., Campbell, R.: Reasoning about uncertain contexts in per-
vasive computing environments. IEEE Pervasive Computing 3(2), 62–70 (2004)

27. Welsh, K., Sawyer, P., Bencomo, N.: Towards requirements aware systems: Run-time res-
olution of design-time assumptions. In: 2011 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 560–563 (November 2011)

28. Yu, Y., Lapouchnian, A., Liaskos, S., Mylopoulos, J., Leite, J.C.S.P.: From Goals to High-
Variability Software Design. In: An, A., Matwin, S., Raś, Z.W., Ślęzak, D. (eds.) Foundations
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Abstract. Models@Runtime aims at taming the complexity of software
dynamic adaptation by pushing further the idea of reflection and con-
sidering the reflection layer as a first-class modeling space. A natural
approach to Models@Runtime is to use MDE techniques, in particular
those based on the Eclipse Modeling Framework. EMF provides facilities
for building DSLs and tools based on a structured data model, with tight
integration with the Eclipse IDE. EMF has rapidly become the defacto
standard in the MDE community and has also been adopted for building
Models@Runtime platforms. For example, Frascati (implementing the
Service Component Architecture standard) uses EMF for the design and
runtime tooling of its architecture description language. However, EMF
has primarily been thought to support design-time activities. This paper
highlights specific Models@Runtime requirements, discusses the bene-
fits and limitations of EMF in this context, and presents an alternative
implementation to meet these requirements.
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1 Introduction

The emergence of new classes of systems that are complex, inevitably distributed,
and that operate in heterogeneous and rapidly changing environments raise new
challenges for the Software Engineering community [3]. Examples of such ap-
plications include those from crisis management, health-care and smart grids.
These applications can be deployed on top of a distributed infrastructure that
goes from micro-controller to the Cloud. These systems must be adaptable, flexi-
ble, reconfigurable and, increasingly, self-managing [9]. Such characteristics make
systems more prone to failure when executing and thus the development and
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study of appropriate mechanisms for continuous design and runtime validation
and monitoring are needed. In the Model-Driven Software Development area,
research effort has focused primarily on using models at design, implementa-
tion, and deployment stages of development. This work has been highly pro-
ductive with several techniques now entering the commercialization phase. The
use of model-driven techniques for validating and monitoring run-time behav-
ior can also yield significant benefits. A key benefit is that models can be used
to provide a richer semantic base for runtime decision-making related to sys-
tem adaptation and other runtime concerns such as verification and monitoring.
Then, Models@Runtime [2] denotes model-driven approaches aiming at taming
the complexity of software and system dynamic adaptation. It basically pushes
the idea of reflection [11] one step further by considering the reflection layer as a
real model: “something simpler, safer or cheaper than reality to avoid the com-
plexity, danger and irreversibility of reality” [14], which enables the continuous
design of complex, adaptive systems.

A natural approach to Models@Runtime is to use MDE techniques, in par-
ticular those based on the Eclipse Modeling Framework (EMF) 1. For example,
Frascati [16] (implementing the Service Component Architecture standard) uses
EMF for the design and runtime tooling of its architecture description language.
However, EMF has primarily been thought to support design-time activities and
its use to support Models@Runtime reaches some limitations. This paper elicits
specific Models@Runtime requirements, discusses the benefits and limitations of
EMF in this context, and presents an alternative modelling framework imple-
mentation to meet these requirements.

The outline of this paper is the following. Section 2 briefly presents the Mod-
els@Runtime paradigm and its requirements. An overview of EMF benefits and
its limitations regarding its use at runtime are given by Section 3. The con-
tribution of this paper, the Kevoree Modeling Framework(KMF), is described
in Section 4. Section 4.2 gives an evaluation of our alternative implementation
in comparison to EMF. This contribution is discussed w.r.t. related work in
Section 5. Section 6 concludes on about this work and presents future work.

2 Models@Runtime Requirements

The Models@Runtime paradigm promises a new approach to MDE, by fading
the boundary between design-time (the typical phase where MDE is employed)
and runtime. More precisely, the goal of Models@Runtime is to enable the con-
tinuous design, evolution, verification of eternal running software systems [2]. A
typical usage of Models@Runtime is to manage the complexity of dynamic adap-
tation or verification in complex, distributed and heterogeneous systems, by
offering a more abstract and safer abstraction layer on top of the running sys-
tem than reflection. Heterogeneity and distribution creates specific requirements
for Models@Runtime infrastructure. (i) The overhead inevitably induced by this
advanced reflection layer should not prevent smaller (i.e. resource constrained)

1 http://www.eclipse.org/emf/

http://www.eclipse.org/emf/
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devices to benefit from the advantages of Models@Runtime (e.g. Java Embed-
ded, Android,. . . ). Modeling framework and all its needed dependencies must
be compatible with such devices in terms of memory footprint. (ii) The use of
models to drive the running configuration of a software system should enable re-
quired features of a distributed reflection layer such as efficient (un)-marshalling,
efficient model cloning and model thread safety access.

2.1 Reduced Memory Footprints

The memory footprint of a Models@Runtime engine basically determines the
types of nodes able to run this engine. The more demanding is the Mod-
els@Runtime engine in terms of memory, the more difficult it is to deploy it
on the smallest devices (e.g. Android phones, gateways with low power CPUs),
and the more centralized should the adaptation/verification be. Lazy loading
technique can be used to virtually reduce the memory overhead by not loading
unused model elements. In this case, only a few large devices would be able to
reason and make decisions for all the smaller devices. This would reduce the reli-
ability of the overall adaptation and verification process: if the large devices fail,
the overall system cannot safely adapt anymore. Moreover, model exchanges for
the synchronization of the system in this strategy would dramatically increase
network load.

2.2 Dependencies

The number and size of dependencies is also an important criteria. Each device
must provision all the dependencies needed by the modeling framework to run a
Models@Runtime based distributed application. As these applications are based
on a structured data model, this data model should not generate useless depen-
dencies. Heavy dependencies would indeed increase the time needed to initialize
a node or update it when new versions of those third parties are available.

2.3 Thread Safety

A Models@Runtime is generally used in highly concurrent environment. For
instance, different probes integrated in a device update a context model. This
model is then used for triggering the adaptation reasoning process. This context
model should enable safe and consistent read and write for the reasoners to take
accurate decisions. The Models@Runtime infrastructure must ensure that the
multiple threads of your application can access and modify the models without
worrying about the concurrent access details. In particular, it should be possible
to navigate in parallel the collections defined in the model to implement fast,
yet safe, validation or reasoning algorithms on multi-core/thread nodes.

2.4 Efficient Model (Un)Marshalling and Cloning

A device should be able to locally clone its own model for verification or reasoning
purposes so that it can reason on a fully independent and safe representation
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of itself, which can later on be re-synchronized with the current model. Also,
devices should be offered efficient means to communicate their Models@Runtime
to neighbors so that collective decisions can be made. The Models@Runtime
infrastructure must thus provide efficient model cloning and (un)marshalling
capabilities.

2.5 Connecting Model@Runtime to Classical Design Tools

This requirement is directly bound to the first goal of fading the boundary be-
tween design-time and runtime. A Models@Runtime infrastructure must provide
a transparent compatibility with design environments. For example, a graphical
simulator used for the design of finite state machines (FSM) should be plug-
gable on an application that keeps FSM at runtime and serve as a debugger or
a monitor of the running system [1,7].

3 EMF Benefits and Limitations

A natural way to implement a Models@Runtime platform is to rely on tools
and techniques well established in the MDE community, and in particular, the
de facto EMF standard. This section provides a brief overview of EMF and
then discusses the suitability of this modelling framework with respect to the
requirements identified in the previous section.

3.1 EMF Overview

EMF is an eMOF implementation and code generation facility for building tools
and other applications based on a structured data model. From a model spec-
ification, EMF provides tools and runtime support to create Domain Specific
Language (DSL) on top of the Eclipse platform. Most important, EMF provides
the foundation for interoperability with other EMF-based tools and applications
using a default serialization strategy based on XMI. Consequently, EMF has
been used to implement a large set of tools and thus, evolved into an efficient
Java implementation of a core subset of the MOF API.

3.2 Advantages

As a first real benefit, EMF provides a transparent compatibility of the Mod-
els@Runtime infrastructure with several design environments. All the tools built
with frameworks such as Xtext [10,4], EMFText [8], GMF [15] or ObeoDesigner 2

can be directly plugged on the Models@Runtime infrastructure to monitor the
running system. The generated code is clean and provides an embedded visitor
pattern and an observer pattern [6]. EMF also provides an XMI marshaller and
unmarshaller that can be used to easily share models. Finally EMF offers lazy
loadings of resources allowing the loading of single model elements on demand
and caching them softly in an application.

2 http://www.obeodesigner.com/

http://www.obeodesigner.com/


An Eclipse Modelling Framework Alternative 91

3.3 Limitations

To highlights the limitations of EMF, we will use the following experiment based
on a simple Finite State Machine (FSM) metamodel with four meta-classes
(FSM, State, Transition and Action in Fig. 1). A FSM contains the States of
the machine and references to initial, current and final states. Each State con-
tains its outgoing Transitions, and Transitions can contain Actions. From this
tiny example, we discuss thread safety and dependencies, and we evaluate the
memory footprint, as well as model (un)marshaling and cloning.

Fig. 1. Finite State Machine Metamodel used for Experiments

Large Dependency Set. Figure 2 shows the plugin/bundle dependencies for
each new EMF generated code. By analyzing these dependencies one can see
that the generated code is tightly coupled to the Eclipse environment and to the
Equinox runtime (Equinox is the version of OSGi by the Eclipse foundation).
Although this is not problematic when the data model is integrated as an Eclipse
plugin (with all dependencies imposed by the Eclipse environment); these de-
pendencies are more difficult to resolve and provision when this metamodel is
used outside Eclipse, i.e. in a standalone context.

For the simple FSM metamodel, a standalone JAR executable outside of the
Eclipse tool (a Java archive that including all dependencies) has a size of 15 MB
for only 55 KB generated files. This footprint is rather difficult to reduce with
tools like ProGuard3, since it contains a large number of reflexive calls, which
could potentially and implicitly affect any code in these 15 MB.

3 ProGuard is a code shrinker (among other features not relevant for this paper) for
Java bytecode: http://proguard.sourceforge.net/

http://proguard.sourceforge.net/
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The large number and size of dependencies is one of the main limitations of
EMF when the model must be embedded at runtime.

Static Registries and Multi-class Loader Incompatibility. Many runtime
for dynamic architecture (e.g. OSGi, Frascati, or Kevoree) need to use their
own class loader to properly manage and improve dynamic class loading.
Consequently, the second limitation comes from the use of static registries in
EMF, that leads to incompatibilities with runtime using multi-class loaders.

Lack of Thread Safe Access to the Models. EMF does not provide
thread safe accesses to the models 4. This requirement is important for a Mod-
els@Runtime infrastructure, because the support for dynamic and distributed
architectures requires concurrent access to models.

Cloning Overhead. Another limitation is the large memory footprint of mar-
shaling, unmarshaling and cloning in the EMF implementations. To measure this
limitation, we programmatically created a model with 100,000 State instances,
with a transition between each state and an action for each Transaction. The
results for EMF are the following.

On a Dell Precision E6400 with a 2.5 GHz iCore I7 and 16 GB of memory,
the model creation lasts 376 ms, its marshaling to a file lasts 7021 ms and

Fig. 2. Dependencies for each new metamodel generated code

4 http://wiki.eclipse.org/EMF/FAQ#Is_EMF_thread-safe.3F

http://wiki.eclipse.org/EMF/FAQ#Is_EMF_thread-safe.3F
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uses 104 MB of heap memory. The cloning using EcoreUtil lasts 3588 ms, and
loading the model from a file lasts 5868 ms5.

3.4 Synthesis

Table 1 summarizes the advantages and limitations for the usage of EMF as a
foundation for a Models@Runtime infrastructure. For each criterion, we put a
∨ when EMF provides advantages, × when we see limitations of using EMF for
building Models@Runtime infrastructure, ∼ when we see possible improvements.

Table 1. EMF features compared with Models@Runtime requirements

Memory footprints ×
Lazy loading ∨
Dependencies ×
Thread safety ×

Efficient model (un)marshalling and cloning ∼
Connecting design tools ∨

4 Kevoree Modeling Framework

KMF, or Kevoree Modeling Framework 6, is our alternative realization of EMF,
which was formerly developed as part of our Kevoree Models@Runtime engine.
This section presents the design choices we made to support a generic and effi-
cient Models@Runtime infrastructure compatible with EMF. The general idea
of KMF is threefold:

1. KMF aims at keeping the compatibility with EMF to guarantee the com-
patibility with design environment and the marshalling and unmarchalling
of models.

2. KMF aims at leveraging the powerful features provided by modern pro-
gramming languages (here, Scala) [13] to provide a proper design to handle
models.

3. KMF aims at providing a generic Models@Runtime infrastructure to ease
the heterogeneity and the distribution management.

4.1 Model Handling

Regarding the Table 1, KMF provides the same features than EMF for code
generation facilities and models (un)marshalling. All the generated artefacts

5 This experiment can be downloaded http://goo.gl/CyLLC
6 https://github.com/dukeboard/kevoree-modeling-framework

http://goo.gl/CyLLC
https://github.com/dukeboard/kevoree-modeling-framework
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are written in Scala. Scala is a general purpose programming language de-
signed to express common programming patterns in a concise, elegant, and
type-safe way. It smoothly integrates features of object-oriented (Traits) and
functional languages, and provides bytecode compatibility with Java [13]. Scala
uses type inference to combine static safety with the concise syntax of dynam-
ically typed languages. The Scala features particularly relevant for KMF are
the following: ByteCode compatibility with Java libraries, concept of traits,
concept of Option, XML embedded, immutable List, concept of closure and
efficiency.

Domain classes are generated as a set of Scala traits to ease the support of
multiple inheritance and meta-model extension [5]. Traits are seen from Java
Code as a Type. They can only be initialized through the generated Factory (as
in EMF). Note that the generated Traits do not inherit from EMF EObject and
that all references are initialized. In particular, collections are initialized and
references to single objects with a lower bound of 0 rely on Options. These Scala
options are a neater way to deal with null pointers7. Indeed, Option does not
save the developer from ever having null, but that developer can only get null
when he wants it. If it is semantically impossible for a value to be null, the type
checker enforces it. The getters on collection use immutable lists. The generated
code provides helpers to add and remove model elements on collections, and
it also provides specific methods to ease mixed Java/Scala development. XML
template are directly embedded in the Scala generated code and type checked by
the Scala type checker. Fig. 3 shows an excerpt of the Scala traits generated for
the domain model meta-classes. It shows the use of immutable list and Option
for 0..n reference and 0..1 reference respectively.

4.2 Memory Footprint

To limit the dependencies, we decided to restrict the inheritance relationships
in our generated code only to generated classes and to classes from the Java
and the Scala frameworks. In this way dependencies are limited to the Java and
Scala frameworks. A standalone JAR for the same metamodel in KMF has a
size of 7 MB. After applying ProGuard, we obtain a JAR of 1.7MB. Indeed,
the Scala dependencies load many packages that are not used by KMF, such as
Scala-Swing, Scala-actors, etc.

Consequently, KMF has successfully been used on top of Dalvik 8, Avian 9,
JamVM10 or JavaSE for embedded Oracle Virtual Machine 11.

7 http://www.scala-lang.org/api/current/scala/Option.html
8 http://www.dalvikvm.com/
9 http://oss.readytalk.com/avian/

10 http://jamvm.sourceforge.net/
11 http://www.oracle.com/technetwork/java/embedded/downloads/javase/

index.html

http://www.scala-lang.org/api/current/scala/Option.html
http://www.dalvikvm.com/
http://oss.readytalk.com/avian/
http://jamvm.sourceforge.net/
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tra i t Tran s i t i on extends FsmSampleContainer {
private var input : java . lang . S t r i ng = ””

private var output : java . lang . S t r i ng = ””

private var source : fsmSample . State =

private var t a rg e t : fsmSample . State =

private var ac t i on : Option [ fsmSample . Action ] = None
. . .

}

tra i t FSM extends FsmSampleContainer {

// 0 . . n re ference
private var ownedState : s c a l a . c o l l e c t i o n . mutable . L i s tBu f f e r [

fsmSample . State ] = s c a l a . c o l l e c t i o n . mutable . L i s tBu f f e r [
fsmSample . State ] ( )

. . . .
// 0 . . n re ference method he lpe r s
def getOwnedState : L i s t [ fsmSample . State ] = {

ownedState . t oL i s t
}
def getOwnedStateForJ : java . u t i l . L i s t [ fsmSample . State ] = {

import s c a l a . c o l l e c t i o n . JavaConversions .
ownedState

}

def setOwnedState ( ownedState : L i s t [ fsmSample . State ] ) {
this . ownedState . c l e a r ( )
this . ownedState . i n s e r tA l l (0 , ownedState )
ownedState . f o r e ach{e=>e . setEContainer ( this , Some ( ( )=>{

this . removeOwnedState ( e ) }) )}

}

def addOwnedState ( ownedState : fsmSample . State ) {
ownedState . setEContainer ( this , Some ( ( )=>{this .

removeOwnedState ( ownedState ) }) )
this . ownedState . append ( ownedState )

}

def addAllOwnedState ( ownedState : L i s t [ fsmSample . State ] ) {
ownedState . f o r e ach{ elem => addOwnedState ( elem )}

}

def removeOwnedState ( ownedState : fsmSample . State ) {
i f ( this . ownedState . s i z e != 0 ) {

this . ownedState . remove ( this . ownedState . indexOf (
ownedState ) )

ownedState . setEContainer ( nu l l , None )
}

}

def removeAllOwnedState ( ) {
this . ownedState . f o r e ach{ elem => removeOwnedState ( elem )}

}

def getClone lazy ( subResult : java . u t i l . IdentityHashMap [ Object ,
Object ] ) : Unit = {
. . .

}
}

Fig. 3. Excerpt of generated Scala code for domain meta-classes
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4.3 Multi-thread Access

Model@Runtime serves as a common software reflection layer concurrently ex-
ploited by many processes; protection against such accesses may be coarse or
fine grain.

At fine grain the model essentially needs to be read concurrently while allowing
modifications. The KMF generated code realizes such protection by internally
using mutable collections (for performance reasons) but only exposing cloned
immutable list to outside via its public API. As a result processes can navigate
the cloned list while others perform CRUD operations on it. Each process needs
to actively ask a new cloned version to access to the modifications. Moreover,
the mutator methods (setter) can be protected behind synchronized blocks.

At coarse grain the model representation is entirely hidden behind a safe model
care tracker as in the Memento pattern [6]. This safe model care tracker sys-
temically clones the model on get operations and keeps a master representation.
This structure is particularly useful to keep an history of model representation
at runtime. KMF can optionally generate such structure using Scala actors to
protect concurrent access (get / put) to model care tracker.

4.4 Loader, Serializer and Cloner

When working with models, two tasks are essential and used before and after
each action on a model, namely marshalling and unmarchalling.

Where EMF offers a generic loader we propose to use the generation phase to
also generate a specific loader for each meta-model.

The EMF generic loader takes a model to load and its meta-model as param-
eters and intensively uses reflection mechanisms to perform the loading task. If
this kind of mechanism allows creating a single loader, its usage is not efficient.
The generated KMF code then provides meta-model specific loader, saver and
cloner to improve their efficiency. We use the XML API which is part of the
Scala standard library to parse and print XMI representations of object models,
with no need for extra dependencies, and because it is efficient.

The loading and cloning are performed in two phases. The first phase consists
in traversing the models for creating the objects in the order they are found
in the XMI file. The last step links the objects together according to the refer-
ences previously cached. Currently, the Maven plugin we propose is only able to
generate loaders and serializers for the XMI file format. EMF compatibility is
obtained through the XMI file format. A direct API compatibility can be per-
formed when EMF will separate the Ecore interfaces and Ecore implementation
in different bundles to avoid useless dependencies.

4.5 Experiment and Synthesis

Besides, the memory footprints used to store, load, save or clone a model has de-
creased compared to the reference EMF implementation. To measure the mem-
ory footprints, (un)marshalling and cloning, we do the same experiment. We
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Table 2. EMF and KMF efficiency

EMF KMF comparison

Model creation 376 ms 313 ms 1.2 times faster

Model clone 3588 ms 398 ms 9 times faster

Model save 7021 ms 2630 ms 2.66 times faster

Memory footprint 104MB of heap memory 61MB of heap memory 1.70 times lighter

Table 3. EMF and KMF regarding models@runtime requirements

EMF KMF

Memory footprints ×(104MB) ∨(61MB)
Dependencies × ∨ (Scala standard library)

(15MB) (1.7MB)

Lazy Loading ∨ ∨ (Proxy support)
Thread safety × ∨ (immutable lists, no registry)

Efficient model (un)marshalling and cloning ∼ ∨ (see Table 2)
Design tools compatibility ∨ ∨ (through XMI compatibility)

programmatically create models with 100 000 States with a transition between
each state and an action in each Transaction.

The results for KMF are the following. On a Dell Precision E6400 with an
Intel 2.5GHz iCore I7 CPU and 16GB of RAM, it takes 313ms to create the
models, 2630 ms to save it in a file, 61 Mbytes of Heap memory, 398ms to clone
and 3000s to load the model from a file12. Table 2 highlights the quantitative
performance comparison results between EMF and KMF.

Table 3 provides the qualitative comparison results between EMF and KMF.

5 Discussion

5.1 Refactoring Impact

The first major consequence of removing the runtime dependencies with EMF
is that all the methods defined in EObject are now unavailable. This could have
a significant impact on the existing code that uses these methods. In order to
limit the refactoring impact of this removal, we re-implemented the eContainer
mechanism of EMF in our generated code.

Another important design choice we made for KMF was to use Scala as the
default language for the generation and use of the code. Java has also been
considered as a language since Scala code is fully compatible with Java. However,
Scala code is not always friendly to use from a Java program13. To ease the use

12 This experiment can be download http://goo.gl/9Huwa (for eclipse project) or
http://goo.gl/0sWRo (for the maven project)

13 To give an idea, a Scala list built by concatenating the empty list (Nil) and the
element 1 would be written 1::nil in Scala. The construction of the same Scala list
in Java would yield $colon$colon$.MODULE$.apply((Integer) 1, nil);

http://goo.gl/0sWRo
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of KMF in a Java environment, we also provide a standard Java API, which
in particular exposes Java lists, by duplicating some methods that are suffixed
with “4J”. That requires all model navigation-related code to be rewrote to use
these new methods. The dual strategy could of course have been implemented:
generating Java code and exposing in addition a Scala API.

The main rationale behind the choice of Scala was that the Scala standard
library provides many facilities that are useful for Models(@runtime). In partic-
ular, the systematic introduction of Scala Option for each optional (i.e. having
lower bounds equals to 0) attribute or reference implies to explicitly test if the
element is defined or not, in a neater way than if (myRef == null) in Java,
and in a safer way than a NullPointerException popping at runtime. Here
again, this mechanism enforces developers to consider the optional aspect of
these elements and avoids lots of null-checks, but requires a deep refactoring.

5.2 Limitations

KMF has formerly been developed and tested using the Kevoree metamodel
originally designed with EMF tools. This first step allowed for setting up the
basis for model, loader and serializer generation. The use of a fairly different
metamodel (from Kermeta [12]) highlighted some missing features in the gener-
ation process, and strongly helped in improving KMF. However, KMF still has
some limitations.

For instance, reverse relations have already be flagged as missing in the
generated code.

EMF allows model elements to have some relations with elements from other
metamodels (references, attribute types, inheritance, etc). This mechanism has
been partially realized on a concrete use case, but it still need improvements and
implementation discussions.

Moreover, the generation of loaders and serializers relies on containment re-
lations between model elements, and it requires a root container element. Until
now, we considered metamodels that have only one single model element as root
of the containment tree, but this is not the general case. Indeed, all model el-
ements must have a container, but not necessarily under a single root for the
metamodel. There could be several containment roots (and several containment
trees) in a metamodel, with references to each other, but also across different
metamodels. Generators of loaders and serializers are not ready to accept such
kind of metamodels, but meeting this requirement is already considered as fu-
ture work.

KMF addresses performances issues of models in memory (heap). Complemen-
tary approaches like CDO addresses the management of models in persistence
memory (databases). The CDO (Connected Data Objects) Model Repository 14

is a distributed shared model framework for EMF models and metamodels. CDO
has a 3-tier architecture supporting EMF-based client applications, featuring a
central model repository server and leveraging different types of pluggable data

14 http://www.eclipse.org/cdo/

http://www.eclipse.org/cdo/
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storage back-ends like relational databases, object databases and file systems.
The default client/server communication protocol is implemented with the Net4j
Signalling Platform. This solution offers tools to easily do collaborative work and
history management. However, it uses EMF as a local representation. Conse-
quently it inherits a part of the drawbacks coming from EMF (e.g. dependencies
for client side, memory footprints). Moreover the use of external server to man-
age history is not useful for pervasive systems that may have a sporadic network
and even if it can embed server side on client, the overhead of the dependencies
is not suitable for lightweight systems.

6 Conclusion

This position paper has discussed the needs for adapting the de facto standard
in the MDE community, i.e. the Eclipse Modelling Framework (EMF), for a
more dynamic usage of models in the context of Models@Runtime. After high-
lighting requirements related to Models@Runtime, this paper has presented an
initial adaptation of EMF, named Kevoree Modelling Framework (KMF), im-
plemented in Scala and generating code for this language. Even if KMF only
supports XMI serialisation, it provides a significant speedup on model creation,
model (un)marshalling and model cloning. It also has a lighter memory footprint
than the reference implementation, and its runtime dependencies are limited to
the Java and Scala libraries, whereas the EMF generated code has tight de-
pendencies to Eclipse and Equinox. This significantly hinders the reusability of
the EMF code outside Eclipse, while KMF code can run Eclipse-free on various
Java virtual machines. Finally, and unlike EMF which is not thread-safe, KMF
provides a built-in support for in-memory safe concurrent access to models.

KMF is still at an early stage of existence and needs to be improved through
usage. Future work on KMF already addresses the limitations and points
discussed in section 5. Independently from the improvement of existing features
of KMF, we think that additional tools could promote its adoption.

Set Operations. Model merging or model comparison are common opera-
tions implemented by tools that use models as representations of their internal
data. Implementing mergers or comparators is often a complex, lengthy and
error prone task. As a future work, we plan to offer the possibility to gen-
erate meta-model specific set operations such as union, difference or intersec-
tion. These operations could decrease the complexity of implementing model
mergers.

Customizable Generation Plugin. In its current implementation, the plugin
allows for generation of all features (model, cloner, loader and serializer) or only
model and cloner. This customization of the plugin behavior will be improved
to enable the separate generation of each feature. Moreover, the loader and se-
rializer generators are hard coded in the plugin. It is thus problematic to use
other generators to create loaders and serializers that use another serialization
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format (namely XMI). In the future, we plan to improve the plugin parameteri-
zation to allow users to change the generators. This will also enable the seamless
integration of other generators (e.g. to create set operations).
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Abstract. Existing model persistence frameworks either store models
as a whole or object by object. Since most modeling tasks work with
larger aggregates of a model, existing persistence frameworks either load
too many objects or access many objects individually. We propose to
persist a model broken into larger fragments.
First, we assess the size of large models and describe typical usage

patterns to show that most applications work with aggregates of model
objects. Secondly, we provide an analytical framework to assess execution
time gains for partially loading models fragmented with different gran-
ularity. Thirdly, we propose meta-model-based fragmentation that we
implemented in an EMF based framework. Fourthly, we analyze our ap-
proach in comparison to other persistence frameworks based on four com-
mon modeling tasks: create/modify, traverse, query, and partial loads.
We show that there is no generally optimal fragmentation, that frag-

mentation can be achieved automatically and transparently, and that
fragmentation provides considerable performance gains.

1 Introduction

Modeling frameworks (e.g. the Eclipse Modeling Framework (EMF) [22] or Ker-
meta [11]) can only work with a model when it is fully loaded into a computer’s
main memory (RAM), even though not all model objects are used at the same
time. This limits the possible size of a model. Modeling frameworks themselves
provide only limited capabilities to deal with large models (i.e. resources and
resource lazy loading in EMF [22]). Model persistence frameworks (e.g. Con-
nected Data Objects (CDO) [1]), on the other hand, store models in databases
and load and unload single model objects on demand. Only those objects that
are used at the same time need to be maintained in main memory at the same
time. This allows one to work with models larger than the main memory can
hold otherwise.

We claim that existing model persistence solutions may provide a main mem-
ory efficient solution to the model size issue, but not a time efficient one. In this
paper, time efficiency always relates the time it takes to execute of one of four

R.B. France et al. (Eds.): MODELS 2012, LNCS 7590, pp. 102–118, 2012.
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abstract modeling tasks. These tasks are (i) creating/modify models, (ii) traverse
models (e.g. as necessary during model transformation), (iii) query models, and
(iv) partially loading models (i.e. loading a diagram into an editor).

An obvious observation is that some of these modeling tasks (especially travers-
ing models and loading parts of models) require to load large numbers of model
objects eventually. Existing persistence frameworks, store and access model ob-
jects individually. If a tasks requires to load a larger part of the model, all its
objects are still accessed individually from the underlying database. This is time
consuming.

Our hypothesis is that modeling tasks can be executed faster, if models are
mapped to larger aggregates within an underlying database. Storing models as
aggregates of objects and not as single objects reduces the number of required
database accesses, or as Martin Fowler puts it on his blog: ”Storing aggregates
as fundamental units makes a lot of sense [...], since you have a large clump of
data that you expect to be accessed together”, [7]. This hypothesis raises three
major questions: Do models contain aggregates that are often accessed together?
How can we determine aggregates automatically and transparently? What actual
influence on the performance has the choice of concrete aggregates?

To answer these question, we will proceed as follows: First (section 2), we look
at three typical modeling applications: which model sizes they work with and
what concrete modeling tasks they perform predominantly. This will give us an
idea of what aggregates could be and how often objects can be expected to be ac-
tually accessed as aggregates. Secondly (section 3), we will present our approach
to finding aggregates within models. This approach is based on fragmenting mod-
els along their containment hierarchy. We will reason that most modeling tasks
need to access sub-trees of the containment hierarchy (fragments). In the related
work section 4, we present existing model persistence frameworks and interpret
their strategies with respect to the idea of fragmentation. Furthermore, we dis-
cuss key-value stores as a basis for persisting fragmented models. The following
section provides a theoretical analysis and upper bound estimation for possible
performance gains with optimal fragmentation. In section 6, we finally present
a framework that implements our fragmentation concept. The next section is
the evaluation section: we compare our framework to existing persistence frame-
works with respect to time and memory efficient execution of the four mentioned
abstract modeling tasks. Furthermore, we use our framework to measure the in-
fluence of fragmentation on performance to verify the analytic considerations
from section 3. We close the paper with further work and conclusions.

2 Applications for Large Models

In this section, we look at examples for three modeling applications. We do this
for two reasons. The first reason is to discuss the actual practical relevance of
large models. The second reason is to identify model usage patterns: which of
the four modeling tasks (create, traverse, query, partial load) are actually used,
in what frequency, and with what parameters. At the end of this section, we
provide a tabular summary of our assessment.
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2.1 Software Models

Model Driven Software Development (MDSD) is the application that modelling
frameworks like EMF were actually designed for. In MDSD all artifacts includ-
ing traditional software models as well as software code are understood as mod-
els [23], i.e. directed labelled graphs of typed nodes with an inherent containment
hierarchy.

Model Size: Since models of software code (code models) provide the lowest
level of abstraction, we assume that models of software code are the largest
software models. In [18], we give an approximation for the size of code models
based on counting abstract syntax tree nodes in the Linux kernel and analyzing
the Linux kernels GIT repository. We also transferred all ratios learned from the
Kernel to other OS software projects and publicly reported LOC counts. The
results are presented in Fig. 1.

Usage Patterns: There are two major use cases in today’s software develop-
ment: editing and transforming or compiling. The first use case is either per-
formed on diagrams (graphical editing) or on compilation units (e.g. Java-files,
textual editing). Diagram contents roughly corresponds to package contents.
Both packages and compilation units are sub-trees within the containment tree
of a software model. Transformations or compilations are usually either done for
the whole model or again on a per package or compilation unit basis. Within
these packages or compilation units, the (partial) model is traversed. A further
use-case is analysis. Analysis is sometimes performed with single queries. But
due to performance issues, model analysis is more often performed by traversing
the model and by executing multiple queries with techniques similar to model
transformations. Software models are only accessed by a few individuals at the
same time.
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for existing software projects
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2.2 Heterogeneous Sensor Data

Sensor data usually comprises time series of measured physical values in the en-
vironment of a sensor. Our research group build the Humboldt Wireless Lab [24],
a 120 node wireless sensor network that produces heterogeneous sensor data:
data from a 3 axis accelerometers, data from monitoring all running software
components (mostly networking protocols), and other system parameters (e.g.
CPU, memory, or radio statistics). We represent and analyze this data with EMF
based models ([19]).

Model Size: HWL’s network protocols and system software components pro-
vide 372 different types of data sets. Each data set is represented as an XML
document. Per second each node in the network produces XML entities that
translate into an average of 1120 EMF objects. A common experiment with
HWL involves 50 nodes and measures of a period of 24 h. During such an exper-
iment, the network produces a model of 5× 109 objects.

Usage Patterns: There are two major use-cases: recording sensor data and
analyzing sensor data. Recording sensor data means to store it faster than it is
produced and (if possible) in a manner that supports later analysis. Sensor data
is rarely manipulated. Analysis means to access and traverse individual data sets
(mostly time series). Each data set or recorded set of data sets is a sub-tree in
the sensor data model. Recording and analysis is usually performed by only a
single (or a few) individuals at the same time.

2.3 Geo-spatial Models

3D city models are a good example for structured geo-spatial information. The
CityGML [8] standard, provides a set of XML-schemata (building upon other
standards, e.g. GML) that function as a meta-model. CityGML models repre-
sent the features of a city (boroughs, streets, buildings, floors, rooms, windows,
etc.) as a containment hierarchy of objects. Geo spatial models usually come in
different levels of details (LOD); CityGML distinguishes 5 LODs, 0-4 [8].

Model Size: As for many cities, a CityGML model is currently established
for Berlin [21]. The current model of Berlin covers all of Berlin, but mostly
on a low-medium level of detail (LOD 1-2). To get an approximation of the
model’s size, we counted the XML entities. The current Berlin model, contains
128× 106 objects. Based on numbers and average sizes per feature sizes in the
Berlin model, a complete LOD 3-4 model of Berlin would consist of 109 objects.
Extrapolating numbers to the world’s population that lives in cities, a LOD3-4
world 3D city model would contain 1012.

Usage Patterns: Compared to model manipulation, model access is far more
common and its efficient execution is paramount. If accessed, users usually load
a containment hierarchies (sub-tree) corresponding to a given set of coordinates
or address (geographic location): partial loads. Queries for distinct feature char-
acteristics within a specific geographic location (i.e. with-in such a partial load)
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are also common. Geo-spatial models are accessed by many people at the same
time.

Summary

The following table summarizes this section. Two + signs denote that execution
times of the respective tasks are vital for the success of the application; a single
+ denotes that the task is executed often, but performance is not essential; a −
denotes that the task is of minor importance.

application model size create/mod. traverse query partial load

software models 0− 109 + ++ + +
sensor data 109 ++ ++ - ++

geo-spatial models 109 − 1012 - - ++ ++

3 Model Fragmentation

3.1 Fragmentation in General

All models considered in this paper can be characterized as directed labeled
graphs with a fix spanning-tree called containment hierarchy. In EMF based
models, the containment hierarchy consists of containment references ; other
graph edges are cross-references.

Model fragmentation breaks (i.e. fragments) a model along its containment
hierarchy. All fragments are disjoint; no object is part of two fragments. Fragmen-
tation is also always complete, i.e. each object is part of one fragment. The set of
fragments of a model is called fragmentation. References between fragments are
called inter-fragment and references within a fragment are called intra-fragment
references. 1

3.2 Fragmentation Strategies

Originally a model is not fragmented; once it was fragmented, the fragmenta-
tion needs to be maintained when the model is modified. Further, we have to
assume that fragmentation has an influence on performance (refer to sections 5
and 7). We denote a set of algorithms that allows us to create and maintain a
fragmentation as fragmentation strategy.

There are two trivial strategies: no fragmentation and total fragmentation.
No fragmentation means the whole model constitutes of one fragment, such as
in EMF (without resources). Total fragmentation means each object constitutes
its own fragment. There are as many fragments as objects in the model. This
strategy is implemented by existing persistence frameworks like CDO.

1 Based on these characteristics, fragments can be compared to EMF’s resources (es-
pecially with containment proxies); refer to section 6, where we use resources to
realize fragmentation.
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Fig. 2. Example meta-model (left) and model (right). In the model: dashed ellipses
denote fragments, double lines inter- and normal lines intra-fragment references. The
references of feature f1 determine the fragments, the reference of f3 is a inter-fragment
cross-reference by accident.

3.3 Meta-model Based Fragmentation

In this paper, we propose and use meta-model based fragmentation as fragmen-
tation strategy. A meta-model defines possible models by means of classes and
their attribute as well as reference features. Whereby, the meta-model deter-
mines which reference features produce containment and which produce cross-
references. The meta-modeler already uses containment reference features to
aggregate related objects.

In meta-model based fragmentation, we ask the meta-modeler to additionally
mark those containment reference features that should produce inter-fragment
containment references. This way, the meta-model determines where the con-
tainment hierarchy is broken into fragments, and it becomes easy to create
and maintain fragmentations automatically and transparently (ref. to section 6).
Only containment reference features determine fragmentation, cross-references
can become inter-fragment references by accident. See Fig. 2 for an example.

4 Related Work

4.1 Model Persistence

EMF: Models are persisted as XMI documents and can only be used if loaded
completely into a computer’s main memory. EMF realizes the no fragmentation
strategy. The memory usage of EMF is linear to the model’s size.

There are at least three different approaches to deal with large EMF models:
(1) EMF resources, where a resource can be a file or an entry in a database; (2)
CDO [1] and other object relational mappings (ORM) for Ecore; (3) morsa [15]
a EMF data-base mapping for non-relational databases.

First, EMF resources [22]: EMF allows clients to fragment a model into dif-
ferent resources. Originally, each resource could only contain a separate contain-
ment hierarchy and only inter-resource cross-references were allowed. But since
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EMF version 2.2 containment proxies are supported. EMF support lazy load-
ing: resources do not have to be loaded manually, EMF loads them transparently
once objects of a resource are navigated to. Model objects have to be assigned to
resources manually (manual fragmentation). To actually save memory the user
has to unload resources manually too. The framework MongoEMF [10] maps
resources to entries in a MongoDB [16] database.

Secondly, CDO [1]: CDO is a ORM for EMF. 2 It supports several relational
databases. Classes and features are mapped to tables and columns. CDO was
designed for software modeling and provides transaction, views, and versions.
Relational databases provide mechanisms to index and access objects with SQL
queries. This allows fast queries, if the user understands the underlying ORM.

Thirdly, morsa [15]: Different to CDO, Morsa uses mongoDB [16], a NoSQL
database that realizes a key-value store (see below). Morsa stores objects, their
references and attributes as JSON documents. Morsa furthermore uses mon-
goDB’s index feature to create and maintain indices for specific characteristics
(e.g. an objects meta-class reference).

4.2 Key-Value Stores

Web and cloud computing require scaleability (replication and sharding3 in a
peer-to-peer network) from a database, and traditional ACID [9] properties can
be sacrificed if the data store is easily distributeable. This explains the popularity
of key-value stores. Such stores provide only a simple map data structure: there
are only keys and values. For more information and an comparison of existing
key-value stores refer to [14].

Model fragmentation does not need any complex database structure, since
a fragment’s content can be serialized (e.g. with XMI) and fragments can be
identified by keys (e.g. URIs). Key-value stores on the other hand provide good
scaleability for large models (sharding) or for parallel access (replication).

There are three different applications that inspired three groups of key-value
stores. First, there are web applications and the popular MongoDB [16] and
CouchDB [3] databases. These use JSON documents as values and provide ad-
ditional indexing of JSON attributes.

Secondly, there is cloud computing and commercial Google Big-Table [4] and
Amazon’s Dynamo [6] inspired data stores. HBase [12] and Cassandra [13] are
respective open source implementations. Those databases strive for massive dis-
tribution, they provide no support for indexing inner value attributes, but inte-
grate well into map-reduce [5] execution frameworks, such as Hadoop (HBase is
Hadoop’s native data store).

A third application is high performance computing. Scalaris [20] is a key-
value store optimized for massive parallel, cluster, and grid computing. Scalaris

2 Lately, CDO also supports non-relational databases, such as MongoDB [16]. Such
features were not evaluated in this paper; but one can assume characteristics similar
to those of Morsa.

3 Sharding denotes horizontal partitioning of a database, i.e. to put different parts of
the data onto different nodes in the network
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provides mechanisms for consistency and transactions and brings some ACID to
key-value stores.

5 Possible Performance Gains from Model Fragmentation

In this section, we analyze the theoretically possible execution times of partially
loading models with fragmentations of different granularity. This includes an
assessments for performance gains from optimal fragmentation strategies com-
pared to no or total fragmentation.

To keep this analysis simple, we have to make two assumptions that will
probably seldom hold in reality, but still lead to analysis results that provide
reasonable upper bounds for possible gains. The first assumption: we only con-
sider fragmentations where all fragments have the same size f . This means a
fragmentation for a model of size m consist of �m/f	 fragments4. The second
assumption: all fragmentations are optimal regarding partial loads. This means
to load a model part of size l, we only need to load �l/f	 fragments at most.

To determine the execution time for partial loading depending on the param-
eters model size m, fragment size f and size of the model part l, we need two
functions that determine the time it takes to read and parse a model and to ac-
cess a value in a key value store. The read and parse function is linear depending
on parsed model size s: parse(s) = O (s), the access function is logarithmic de-
pending on the number of keys k: access(k) = O(log(k)). Most key-value stores,
including HBase (that we use for our implementations) provide O(log) accesses
complexity (ref. also to Fig. 4).

With the given assumptions, parameters, and functions the time to execute a
partial load is:

tm,f (l) =

number of fragments to load︷︸︸︷⌈
l

f

⌉(
access(

⌈
m

f

⌉
) + parse(f)

)
︸ ︷︷ ︸

time to load one fragment

To actually use this cost function, we need concrete values for parse and access.
We measured the execution times for parse with EMF’s XMI parser for models
of various sizes and fit a linear function to the measured values (Fig. 3). For
access we measured the execution time for accessing keys in HBase for database
tables with various numbers of keys k. For k < 106 we use a linear function and
for k ≥ 106 a logarithmic function as a fit (Fig. 4).

Now, we can discuss the influence of fragment size f on tm,f(l). First, we use
a model of size m = 106 and vary f ∈ {100, . . . , 106}. Fig. 5 shows the computed
times t over loaded model objects l for the different fragment sizes f . We can
observe four things. First, there is no optimal fragment size. Depending on the
number of loaded objects, different fragment sizes are optimal. But intermedi-
ate fragment sizes provide good performance. With fragment size f = 102 for

4 �x	 denotes the ceiling of x.
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example, all partial loads take three times the optimal time at most. Second,
total fragmentation (f = 1) requires roughly 100 times more time than optimal
fragmentation, when larger numbers of objects ≥ 102 are loaded. Thirdly, no
fragmentation (f = m) is only a time efficient option, if we need to load almost
all of the model. But in those cases no fragmentation is usually not practical
for memory issues. Fourthly, for small partial models total fragmentation is far
better than no fragmentation, for large partial models no fragmentation provides
better performance.
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6 Implementation of Model Fragmentation

In this section, we present the EMF based persistence framework EMFFrag [17]
which implements the presented meta-model based fragmentation strategy (refer
to section 3).
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Fig. 6. EMFFrag partially loads a persisted model as internal model of dynamic EMF
objects and exposes the model as client model via EMF generated model code with
feature delegation

Design Goal: The main goal in our implementation is to (re)use EMF resource
as much as possible. EMF resources already provide many required function-
alities: they realize partial model persistence, resources manage inter-resource
references through proxies, resources lazy-load, they can be added and deleted,
and objects can be moved between resources. EMFFrag extends the existing im-
plementations of EMF resources. EMFFrag could be realized with a very small
code base of less than 800 lines of code.

Underlying Key-Value Store: EMFFrag uses a simple interface that ab-
stracts from concrete key-value stores. We provide an implementation for HBase
(this was used for all measurements in this paper). EMFFrag implements EMF’s
URIHandler interface to realize key-value store values as resources. Each frag-
mented model is stored in its own table.

Fragments and Fragmentation: EMF XMIResources are used as fragments
and ResourceSets act as fragmentations. The model is internally realized as a
purely dynamic (no generated sources) EMF model.

Transparent Load and Unload of Fragments: Fragments, Fragmentations,
and internal model are hidden from clients (ref. to Fig. 6). Clients use the model
through the usual EMF generated interfaces and classes. Those are configured
with reflective feature delegation to an EStore ([22] explains the concept). EMF-
Frag’s EStore implementation simply delegates all calls to internal objects. If
necessary, it creates an internal object for each client created object, and a client
object for each internal object. Client objects hold references to their internal
counterparts. Fragments manage client objects that correspond to the internal
objects they contain via Java’s weak references. When clients loose all strong ref-
erences to a fragment’s contents, the JVM collects the client objects as garbage
(despite existing weak references) and notifies the owning fragment. Thus, frag-
ments know if clients hold references to their objects, and they can safely unload
once no more client reference to their contents exist.
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Inter-fragment Containment References: Client model classes have to
be generated with enabled containment proxies (see [22]) to allow containment
references between resources (i.e. fragments). Users can use EMF Ecore anno-
tation to mark containment reference features as inter-fragment features. When
EMFFrag’s EStore implementation delegates a call that manipulates an inter-
fragment containment feature, it creates or deletes fragments accordingly and
puts objects into their respective fragments.

Inter-fragment Cross References: EMF persists references between XMI
resources with URIs. The first part of an URI identifies the resource (i.e. the frag-
ment within a key-value store). The second URI part (URI fragment part) iden-
tifies the referenced object within the containing resource. For all inter-fragment
containment references and for cross references within a fragment EMF’s default
intrinsic ID’s [22] are used.

Intrinsic IDs are similar to XPath expressions and identify an object via its
position in the containment hierarchy. Intrinsic IDs cannot be used for inter-
fragment cross references: when an object is moved, its intrinsic ID (URI frag-
ment) changes and all persisted referencing object use invalid URIs. For this
reason EMFFrag uses model-wide unique extrinsic IDs (an existing EMF func-
tionality). EMFFrag maintains a secondary index (i.e. another table in the key-
value store) that maps extrinsic IDs to respective intrinsic IDs. When an object
moves this entry is updated and all cross-references are updated automatically.
Extrinsic IDs and secondary index are only maintained for objects that are
actually cross referenced from another fragment to keep the index small.

7 Evaluation

This section has two goals. First, we want to compare our fragmentation ap-
proach to other model persistence frameworks. Secondly, we want to verify our
findings from section 5. All measurements were performed on a Notebook com-
puter with Intel Core i5 2.4ĠHz CPU, 8 GB 1067 MHz DDR3 RAM, running
Mac OS 10.7.3. All experiments were repeated at least 20 times, and all present
results are respective averages. Code executing all measurements and all mea-
sured data can be downloaded as part of EMFFrag [17].

7.1 Fragmentation Compared to Other Persistence Frameworks

To compare fragmentation to EMF’s XMI implementation, CDO, and Morsa,
we measured execution time for the three tasks (i) create/modify, (ii) traverse,
and (ii) query. To analyze traverse and query, we used example models from the
Grabats 2009 contest [2] as benchmarks. Those were already used to compare
Morsa with XMI and CDO here [15]. There are five example models labeled set0
to set4 and they all model Java software based on the same meta-model. Please
note: even though the models increase in size, their growth is not linear and the
internal model structure is different. To measure create/modify performance, we
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used a simple test model. We don’t provide any comparative measures for partial
loads. Partial loads are extensively measured for EMFFrag in the next section.

Fig. 12 shows the number of fragments that each framework produces for
each model. Morsa and CDO implement total fragmentation and the number of
fragments is also the number of objects in the model. For XMI there is always
only one fragment, because it implements no fragmentation. For EMFFrag, we
provided two different meta-model based fragmentations. The first one puts each
Java compilation unit and class file into a different fragment (labeled EMFFrag
coarse). The second one additionally puts the ASTs for each method block into a
different fragment (EMFFrag fine). The number of fragments differs significantly
for set2 and set3 which have to contain a lot of method definitions. We could
not measure CDO’s performance for set3 and set4 : the models are too large to
be imported with a single CDO transaction, and circular cross-references do not
allow us to import the model with multiple transactions.

Create/Modify: To benchmark the performance of instantiating and persist-
ing objects, we used a simple one class. We created test models with 105 objects,
a binary containment hierarchy, and two different densities of cross references:
one cross reference per object and no cross references. We used a transaction
size of 103 objects for CDO and a fragment size of 103 for EMFFrag.

Fig. 7.1 shows the average number of objects that could be persisted within
one second. The number of cross-references has only a minor influence on the
performance of CDO, Morsa, and EMFFrag. EMFFrag is a little slower than
XMI depending on the fragment size (Fig. 8). CDO and Morsa (both based on
complex indices that have to be maintained) can only create less than one tenth
of the objects per seconds that could be created with XMI and EMFFrag. Fig. 8
shows EMFFrag’s create performance for different fragment sizes.

Traverse: Fig. 9 shows the measurement results in traversed objects per second.
XMI performs well for small models, but numbers deteriorate for large models.
Interestingly, Morsa and CDO both use total fragmentation and achieve both a
comparable low 4,500 objects per second. EMFFrag performs depending on the
number of fragments: the less fragments the better. With the Grabats models,
fragmentation gives us about 10-18 times the number of objects per second
traversed than with CDO or Morsa do.

Query: The Grabats contest also provides an example query: find all Java type
declarations that contain a static method which has its containing type as return
type. Depending on the persistence framework, queries can be implemented in
different ways. With XMI and EMFFrag there are no indices that would help to
implement the query and we have to traverse the model until we found all type
declarations. CDO allows us to use SQL to query and Morsa provides a meta-
model class to objects index. We measured both: executing the queries with
these specific query mechanisms and with the previously mentioned traverse
based implementation.

The results are shown in Fig. 10. XMI performs badly for large models.
CDO and Morsa with SQL and meta-class index perform best. But even though
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EMFFrag needs to traverse the model its performance is similar to CDO and
Morsa. For set3 and fine fragmentation, EMFFrag even outperforms Morsa’s
index. Remember, with the fine fragmentation, EMFFrag does not need to load
any method bodies to execute the query (partial load). Using the traverse imple-
mentation, CDO’s and Morsa’s performance difference to EMFFrag is similar to
the measures for model traverse (here we basically perform a partial traverse).
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Fig. 13. Execution times for loading model parts with different fragmentation granu-
larity measured with EMFFrag (left) and analytical (right)

Memory Usage: During model traverse, we also measured the memory usage
(Fig. 11). XMI’s memory usage is proportional to model size, because it needs
to load the full models into memory. All other approaches need a comparable
constant quantity of memory independent of model size.

7.2 The Influence of Fragmentation on Partial Load Performance

In section 5, we looked at fragmentation analytically and provided a plot (Fig. 13,
right) that describes the expected influence of fragmentation granularity on par-
tial load execution times. New, we create the same plot, but based on data mea-
sured with EMFFrag. For this purpose, we used the same simple meta-model as
before (to measure create/modify) and generated models of size 106 with dif-
ferent fragment sizes f . We measured the execution times for loading parts of
different sizes l. The results are presented in Fig. 13, left.

The plots show a similar picture with comparable values. Although, the mea-
sured times are generally larger due to additional EMFFrag implementation
overhead that was not considered in our theoretical examination.

8 Future Work

Sorted and Distributed Key-Value Stores: Our fragmentation strategy is
based on unsorted key-value store accesses with O(log) complexity. Neither our
analysis, nor our implementation EMFFrag, or our evaluation consider sorted
key-value stores that allow us to access sequential keys with constant time
(scans). Neither did we consider distributed key-value stores which would allow
us parallel access. Key-value stores are easily distributed in peer-to-peer net-
works. This is done for two scaleability reasons: replication (allows more users
to access the same data in less time) and sharding (distributes data to allow
users faster and larger storage). Fragmentation can have an influence on both.
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Transactions: If multiple user access/modify a model transactions become a
necessity. Transaction can either be provided by the underlying data store (e.g.
with Scalaris [20]) or can be implemented into EMFFrag. On non-distributed
data stores, the usual transaction mechanisms can be implemented. More inter-
esting is to explore the influence of fragmentation on transactions (and version-
ing), because fragmentation granularity also determines the maximum transac-
tion granularity.

Large Value Sets: In large models, single objects can become very large them-
selves if they hold large sets of attribute values and references. CDO maps an
object’s feature values to individual entries in a database table and can manage
such objects, but does this slowly. EMFFrag (and Morsa), on the other hand,
consider objects as atomic entities and large object can become a performance
burden. We need to extend the fragmentation idea to large value sets. Similar
to all consideration in this paper, strategies for large value sets have to be op-
timized and evaluated for the abstract tasks manipulation, iteration (traverse),
indexed access (query), and range queries (partial load).

9 Conclusions

Large software models consist of up to 109 objects. Models from other appli-
cation can have a size of up to 1012 objects. Traversing models and loading
larger aggregates of objects are common tasks (section 2). Depending on frag-
ment size, partially loading models can be done faster than loading whole mod-
els or loading models object by object. There is no optimal fragment size, but
intermediate fragment sizes provide a good approximation (sections 5 and 7).
We provide a persistence framework that enables automatic and transparent
fragmentation, if appropriate containment features are marked as fragmenta-
tion points in the meta-model (sections 3 and 6). We compared our framework
to existing frameworks (EMF’s XMI implementation, CDO and Morsa) and
our framework performs significantly better for the tasks create/manipulate,
traverse, and partial loads. Execution times are 5 to 10 times smaller. Model
queries (that favor object-by-object based model persistence with indexes, such
as in CDO and Morsa) can be executed with comparable execution times (sec-
tion 7). All together, fragmentation combines the advantages of both worlds,
low memory usage and fast queries like with CDO or Morsa, and traverse and
partial load execution times similar to those of XMI.

Model fragmentation also determines the granularity of transactions, which
can be a disadvantage. Further problems are single objects with features that can
hold large value sets; the fragmentation approach has to be extended for frag-
mentation of such value sets (section 8). Our framework stores fragments in key-
value stores. Those scale easily (both replication and sharding is supported) and
integrate well with peer-to-peer computation schemes (e.g. map-reduce). Frag-
mentation is therefore a good preparation for modeling in the cloud applications
(section 4).
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Abstract. The wide adoption of MDE raises new situations where we need to
manipulate very large models or even infinite model streams gathered at runtime
(e.g., monitoring). These new uses cases for MDE raise challenges that had been
unforeseen by the time standard modeling framework were designed. This paper
proposes a formal definition of an infinite model, as well as a formal framework
to reason on queries over infinite models. This formal query definition aims at
supporting the design and verification of operations that manipulate infinite mod-
els. First, we precisely identify the MOF parts which must be refined to support
infinite structure. Then, we provide a formal coinductive definition dealing with
unbounded and potentially infinite graph-based structure.

1 Introduction

The growing adoption of Model-Driven Engineering (MDE) at all steps of software de-
velopment comes with new requirements for MDE theories and tools. In particular, this
work focuses on the need to process (i) finite but very large models, and (ii) infinite
models. A major challenge to process these categories of models consists in under-
standing the exact meaning of a query over a model for which the interpretation does
not know the size at a given point in time.

To illustrate the need to process finite but very large models, let us consider the
complete model representing the entire Eclipse platform (the minimal workbench with
OSGi). This model includes about 5 million model elements. Current model process-
ing tools require all the model elements in memory (e.g., Eclipse Modeling Framework
(EMF) [1]). With EMF, the model of the Eclipse platform Java code requires 900MB
in RAM memory. Steel et al. [2] provide an even bigger example: when they adopted
a MDE approach to analyze civil engineering models, they had to deal with more than
7.3 million computational objects. Programming languages provide a good source of
inspiration to deal with these issues. Through the notion of lazy evaluation, program-
ming languages allow (lazy) iterations on potentially infinite data-structures. Even in
Java, which does not support laziness natively, skilled programmers tend to manually
postpone object instantiations as much as possible, i.e. only when needed, in order to re-
duce instantaneous memory consumption. Recent work were inspired by this approach
to propose lazy model transformations to process very large models [3], or NoSQL-
based approaches for model persistence [4].
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Beyond the problem of very large models, stands the issue of processing infinite
models. This requirement becomes more and more critical with the growing adoption
of the models@runtime paradigm [5]. For instance, if we consider a monitoring sys-
tem which relies on a model at runtime to abstract information from a complex event
processing (the CEP) engine. The CEP will indefinitely provide information about the
environment and thus one cannot consider that the model at runtime will be bounded
as it could grow indefinitely. Another illustration can be found in the realm of reactive
systems, which are modeled by transition systems intended to run forever. In this case,
the model at runtime that records the trace of states and events triggered during execu-
tion is another form of infinite model. To deal with infinite models, we could leverage
mechanisms established in the area of web feeds, such as RSS syndication. In these
cases, data following a predefined format is timely and infinitely appended to an ini-
tial model (even though the RSS file usually corresponds to a sliding window because
older elements are removed). However, as far as we know, no model processing solution
adopts the notion of sliding window over an infinite flow of model elements in order to
deal with infinite models.

If we look at the current state of MDE theories and tools to deal with large and
infinite models, we make two observations. First, metamodeling formalisms and most
of the tools are deeply rooted on the assumption that models include a bounded number
of model elements and that this bound is known when computing a query over the
model. Second, there exist some ad-hoc implementations to deal with these issues, but
there is no formal definition of infinite models and no reference formal semantics for
a query over an infinite model. The consequence of these two observations is that it
is currently impossible to formally verify operations that process very large or infinite
models. This is a major challenge for the adoption of MDE in the use cases discussed
above.

In this paper, we tackle the two limitations listed above through two major
contributions.

– a detailed analysis of current metamodeling standards and a precise identification
on how they prevent the definition of infinite models. In order to face this, we
propose an extension to the MOF formalism to enable the local definition of an
infinite part of a model.

– a coinductive semantics for a query operation over an infinite part of a model. This
semantics relies on a formal definition of infinite models, and provides both a ref-
erence for various implementations and the foundations for the verification of op-
erations that must process models of unknown size.

The paper is organized as follows. Section 2 illustrates through a concrete example
how the current metamodeling formalisms such as MOF prevent the definition and ma-
nipulation of infinite models. Based on this observation, Section 3 introduces MOF
extensions supported by a formal definition of infinite models, and Section 4 proposes
a coinductive semantics supporting the manipulation of such infinite models. Since the
proposed formal semantics is independent of any implementation choice, we discuss in
Section 5 the various existing and possible implementations of coinductive operators.
Finally, we conclude and outline our perspectives in Section 6.
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2 Illustrative Example: How MOF Does Not Support Infinite
Models

Model Driven Engineering (MDE) considers software artifacts as abstract typed graphs
(i.e., models conforming to precisely defined metamodels). As discussed in the intro-
duction, we have to deal with increasingly large models. In many cases these models
may even be considered of unbounded and infinite size (i.e., their size is a priori un-
known). Since models are conforming to metamodels, such situations must be consid-
ered in the definition of metamodels. These metamodels are themselves implemented
using a meta-language, usually compliant with the Meta Object Facility (MOF) [6],
such as Ecore [1].

This section illustrates how a meta-language such as MOF ties MDE practices to
a vision of finite and bounded models and thus prevents the definition and manip-
ulation of infinite models. We illustrate these issues with the UML2 State Machine
formalism [7].

2.1 UML2 State Machine as an Illustrative Example

The state machine sketched in the bottom left corner of Figure 1 conforms to the State
Machine metamodel displayed in the middle left of Figure 1 (see the metamodel level).
This metamodel defines a StateMachine as composed of several State elements, includ-
ing an initial state, as well as several Event elements which it may react to. States are
pairwise linked through Transition elements as source and target states. Each transi-
tion is triggered by a set of events (Trigger) and in return sends events (SendEvent) as
the e f f ect of its firing.

The execution semantics of such a state machine processes as follows: The first
RuntimeEvent to be processed (that is, in our case, an In jectEvent element) is popped
from the eventToProcess queue belonging to the state machine. This element represents
an EventOccurrence of some event. A RuntimeEvent is either locally raised by the state
machine transitions (endogenous) or brought by the environment (exogenous) and sev-
eral other preceding events, which have been previously processed, constitute the cause
for which it occurs. Runtime events keep on being popped and put aside as unhandled,
until this set contains enough events, for some outgoing transitions of the current state
to be triggered. Then, actually firing the transition pushes some new events at the end
of the event queue, changes the current state of the machine and removes the triggering
events from the unhandled ones.

Since a model conforms to a precisely defined metamodel, the underlying model of
a state machine (graph of objects) follows the constrained structure expressed in the
metamodel, according to the MOF semantics.

2.2 Bounded Collections of Properties

As illustrated in Figure 1, the upper bound of the collection eventToProcess is rel-
ative to its cardinality. In MOF, this cardinality is reified in terms of the lower and
upper attributes of the Property construct (cf. top of Fig. 1). According to the OMG
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MOF Specification, the value of the upper attribute is typed by UnlimitedNatural
and must be of kind LiteralUnlimitedNatural taken from the UML’s Kernel [6,
§12.4 and §14.4]. The UML’s kernel leaves open the concrete semantics implemen-
tation but involves a notation for the unlimited value (*) which "denotes unlimited
(and not infinity)" [7, §9.11.7]. In the same specification, unlimited is reasonably inter-
preted as bounded (i.e., finite) in the type Collection used for the resulting collections,
for instance by navigating through relationships. Indeed "the semantics of the collec-
tion operations is given in the form of a postcondition that uses the IterateExp
of the IteratorExp construct." [8, §11.6.1]. Its execution semantics, which refers
to IterateExpEval, is explicitly bounded in the specification [8, §10.3.2.14]. Conse-
quently, the execution semantics of the iterators (e.g., the ones coming from OCL) on
the collection eventToProcess is bounded. This means that the iterators assume that all
elements are considered as available at any time of the iteration.
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2.3 Transitive Closure

The underlying cyclic directed graph structure of any MOF-based metamodel (cf. top
of Fig. 1) raises the issue of evaluating the transitive closure of a cycle. Such an issue
can be shown in Figure 1, with the execution semantics of the closure over the next
states (obtained from a given state with outgoing→ collect(target)). Since OCL 2.3,
the standard includes a closure operation [8, §7.7.5]. This is very useful to specify
recursive OCL operations. For instance, in Figure 1, the reachable states from a given
state can be specified as proposed in the following OCL expression.

context State :: reachableStates () : Set( State ) body :
{ self }−>closure(outgoing−>collect( target ));

As stated by the OCL specification for the operator closure, "the collection type of the
result collection is the unique form (Set or OrderedSet) of the original source collection.
If the source collection is ordered, the result is in depth first preorder.". Here again,
the underlying semantics refers to the type Collection. Consequently, the execution
semantics of the closure is a finite processing, which assumes that the whole model is
available for evaluation.

2.4 Discussion

Iterating both over the collection eventToProcess or the corresponding closure of the
reachable states is thus a finite process for which the whole model is required (e.g., a
state machine defined at design time to model the behavior of a given class). The col-
lection eventToProcess is bounded by the semantics of the attribute upper of a MOF
property, and sets the "width" (i.e., number of outgoing edges from the same node) of
the underlying graph of a conforming model. The reachable states process is finite,
as defined by the underlying unfolding semantics as considered in the OCL operator
closure, and sets the "depth" (i.e., length of a path with unique nodes) of the underly-
ing graph of a conforming model.

These are strong limitations imposed by current metamodeling formalisms since, as
illustrated in the introduction, such a state machine should also be considered as locally
infinite (e.g., state machine continuously updated to monitor at runtime a running and
non-terminating program). In the following sections, we introduce slight modifications
in MOF, which broaden its scope. In the context of infinite models, these modifica-
tions support the definition of a formal semantics for the MOF attribute upper and the
unfolding semantics as used in the OCL operator closure.

3 Defining Infinite Models

This section starts with two proposals to extend the scope of MOF and allow the identi-
fication in metamodels of the infinite parts of the conforming models (i.e., parts which
need to be manipulated despite their unknown size). These extensions are then used to
provide a formal definition of infinite models.
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3.1 Intuitive Presentation

While the semantics described by the OMG in the MOF specification involves a finite
interpretation of models, some situations require an infinite interpretation of the same
structure. For instance, a state machine can be considered as infinite (cf. right part of
Fig. 1) if it abstracts the execution trace of a non-terminating program. In practice, this
execution trace can be lazily built at design time while exploring the graph of reachable
states, or continuously built at runtime during the system execution (e.g., monitoring).

As seen in the previous section and illustrated in the example depicted in Figure 1,
a model can be infinite in two situations, respectively in the width and in the depth of
the underlying graph. In the following, we come back into these two situations and we
propose MOF extensions with a concrete syntax to locally characterize in a metamodel
the infinite parts of the conforming models.

– The collection defined in Figure 1 by the relation eventToProcess on StateMachine
may be considered as infinite in case of a non terminating execution (i.e., an infinite
sequence of runtime event). We are noting ω the upper bound of the multiplicity
of an infinite collection (cf. right part of Fig. 1), compared to the ∗ value which
defines an unbounded but finite collection (cf. left part of Fig. 1). We assume that
an infinite collection is ordered and then countable.

– A reflexive relation may be indefinitely unfolded and then, the computation of the
closure may not terminate (currently, common practices consider that the closure
computation terminates). This situation may even be mandatory if we consider in
this relation a multiplicity with a lower bound greater than zero. We propose to
graphically note such reflexive relations with infinite unfoldings as an arrow with
two heads (cf. � in Fig. 1, right)1. We are aware that infinite unfolding may come
from more complex cycles in a graph-based metamodel. For example in Figure 1,
we may consider the cycle between State and Transition as an infinite unfolding.
Common textual and graphical metamodeling notations cannot easily characterize
a cycle. Nevertheless, a reflexive relation may be derived from an OCL expression
characterizing the cycle. For example, the reflexive reference nextStates on State
in Figure 1 is derived as specified by the following OCL expression. This derived
reference characterizes the cycle between State and Transition.

context State :: nextStates : Set( State ) derive :
self . outgoing−>collect( target );

According to this new notation, the classical example proposed in the left of Figure
1 is modified as shown in the right of Figure 1 in order to locally consider infinite
structures (in our case to consider a possible infinite execution of a state machine).
Note that several collections and cycles voluntarily keep the initial semantics based on
a finite part of the model. For example, the collection of states (resp. transitions) which
compose a state machine is unbounded but remains finite, and the transitive closure of

1 Finite unfoldings where an explicit bound is known could be interesting. We could then add
an annotation on relations, belonging to the same type as the upper bound of the multiplicity
of collections. This extension is not taken into account in the scope of this paper.
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the reflexive relation cause always terminate. So this syntax allows to clearly define in
a metamodel the parts of a model which should be interpreted as infinite.

3.2 Formal Presentation

We propose a formal definition relying on the previous intuitive presentation of our
extended metamodeling facilities.

In the following formal definition, we assume that we have finite sets of meta-
elements (MetaElements) and relations (Relations), i.e., a finite metamodel. We are
also using Elements as the set of possible model elements without any type information.

Definition 1 (Infinite Model). Let ME ⊆ MetaElements be a bounded set of meta-
elements. Let R ⊆ {〈me1,r,me2〉 | me1,me2 ∈ME ,r ∈Relations} be the bounded
set of relations among meta-elements such that ∀me1 ∈ME ,∀r ∈Relations,
card{me2 | 〈me1,r,me2〉 ∈R} ≤ 1.

We define an infinite model 〈E,L〉 ∈ Model(ME ,R) as a multigraph built over an
unbounded set E of typed elements and an unbounded set L of labeled links such that:

E ⊆ {〈e,me〉 | e ∈ Elements,me ∈ME }
L⊆

{
〈〈e1,me1〉,r,〈e2,me2〉〉 〈e1,me1〉,〈e2,me2〉 ∈ E,〈me1,r,me2〉 ∈R

}
We define the auxiliary type Naturalω = N∪{∗,ω}. Naturalω is an extension of the
UnlimitedNatural type provided by the OMG MOF specification. It is used to rep-
resent a range of possible numbers of instances. Unbounded finite ranges can be mod-
eled using the ∗ value whereas unbounded infinite ranges can be modeled using the ω
value. The type Naturalω also comes equipped with the following order: m< ∗<ω, for
all m ∈ N.

We aim at characterizing the presence of infinity both at the level of collections (i.e.
the width of the underlying graph) and reflexive relations unfolding (i.e. the depth of
the underlying graph).

First, regarding the width of the graph, we define the upper property which aims
at distinguishing finite collections from infinite ones. Either for attributes or references
(i.e., relation), a maximum number of instances of a target concept can be defined using
the upper attribute, which value n is reflected in the following definition. Whether the
upper bound of a relation is finite or infinite impacts the semantics (and implementation
as well) of the model elements fetching operator get (cf. Section 4.2).

Definition 2 (Upper). The upper property characterizes an upper bound n of a multi-
plicity of a given relation, this bound been taken from Naturalω.

upper(〈me1,r,me2〉 ∈R,n ∈ Naturalω)� 〈E,L〉 �→
∀〈e,me〉 ∈ E,me = me1 ⇒ card({m2 ∈ E | 〈〈e,me1〉,r,m2〉 ∈ L})≤ n

where the card function returns either m ∈ N or ω.

Second, regarding the depth of the graph, we introduce the property ru_unstable ap-
plying on primitive as well as derived relations. It requires the definitions of (maximal)
model paths as the results of relation unfolding.
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Definition 3 (Model Path). Let 〈E,L〉 ∈ Model(ME ,R) be an infinite model. A
model path is a relation path through model elements, i.e. a sequence of triples {〈〈ei,mei〉,
ri,〈ei+1,mei+1〉〉}i∈I ∈ L, where either I = [0,sup[ is finite (sup∈N) or I =N is infinite.
Relying on the previous model path definition, we also assimilate a model path to the
(behavioral) trace of the model element creations.

Definition 4 (Maximal Path). Let 〈E,L〉 ∈ Model(ME ,R) be an infinite model. A
maximal path is a model path, such that if it is finite, then the final element of the
sequence has no relation to any element of the model.

The property ru_unstable states that a given relation only gives rise to finite unfold-
ings, whatever the maximal model path considered. We need to focus on maximal paths
as we express properties about possibly infinite unfoldings. Whether a given relation
of a model satisfies the ru_unstable property or not impacts the semantics and imple-
mentation of the OCL closure and other iteration operators applied to this relation (cf.
Section 4.3).

Definition 5 (Unstable Reflexive Unfolding). Considering model paths as creation
traces (cf. definition 3), a relation has only finite unfoldings if and only if it is unsta-
ble in any maximal model path π. This condition is rephrased as the following Linear
Temporal Logic (LTL) property: �♦¬r or equivalently ¬♦�r. Relying on our model
definition, it amounts to directly defining the following property:

ru_unstable(〈me,r,me〉 ∈R)� 〈E,L〉 �→ ∀π ∈ maximalpaths(〈E,L〉)
Iπ = N⇒∃i ∈ Iπ,mei �= me∨ ri �= r

where Iπ is the set of indexes of π and satisfies definition 3.

4 A Coinductive Semantics to Iterate Infinite Models

We discuss in this section the ways to manage model elements in the context of an
infinite model (Subsection 4.1) and we propose a formal definition of the operators
needed to querying such models. First we formalize the common operators for getting
model elements (Subsection 4.2), and then we rely on them to formalize an alternative
of the main iterators inspired from the OCL language (Subsection 4.3). We finally put
into practice the proposed operators, among others for the manipulation of infinite state
machines as defined in the right of Figure 1 (Subsection 4.4).

4.1 Reasoning on Model Elements: From Finite to Infinite Model

Standard inductive semantics aims at defining finite data-structures as well as reason-
ing and programming with them. Therefore, an inductive structure comes naturally
equipped first with an induction principle, allowing proofs by induction on the elements
of this data-structure ; and second with a generic reduce programming primitive, al-
lowing terminating recursive traversal of these data-structures. Induction principles are
commonplace for reasoning about terminating algorithms and finite data-structures. It
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comes in many flavours such as induction on natural numbers, lists, binary trees, etc. As
for the reduce and alike operators, they are also pervasive in programming paradigms,
mostly in functional languages, but also in Java (e.g. the Iterator interface) and OCL
(the iterate construction that operates on a finite collection).

Dually, coinductive semantics aims at defining potentially infinite data-structure.
Therefore, a coinductive data-structure comes equipped with a coinduction principle
and also a produce operator. The coinduction principle, among various usages, is at
work when typing compilation units in languages supporting separate compilation. In
Java for instance, you can type-check a bunch of classes, even if they are totally abstract
and don’t contain any piece of code. In this respect, checking type safety of two mutu-
ally dependent classes A and B works as if you were producing an infinite proof under
the form: A is type-safe if B is type-safe if A is type safe, etc. There, type-safety is only
proved to be a stable relation, with no base case at all. On the contrary, type-checking
a concrete method amounts to reason inductively on the code structure, with assumed
well-typed parameters and local object creations as base cases.

The produce operator (dual of the reduce operator) aims at producing potentially
infinite data (as it cannot obviously perform a terminating recursive full traversal of an
infinite structure), through the repeated execution of a piece of code that generates new
values each time, appended to the growing structure. The resulting structure is the limit
of this maybe infinite creation process, much akin to the fractal structures resulting from
infinite iterations of a subdivision process. Often enough, as it is the case for instance
in stream processing languages, the output structure is produced by a piece of code that
consumes/explores in turn another corecursive input structure, one element at a time.

These coinductive concepts are mandatory in order to define the formal semantics of
our MOF extensions (as used in the right part of Figure 1) independently of a particular
implementation. The infinite state sequences of a state machine (cf. right lower part)
should follow the semantics of the metamodel, just as plain finite models follow the
inductive semantics of the metamodel. These state sequences may be defined as being
produced from infinite sequences of transition-enabling events, following the execution
semantics of the state machine. A standard inductive viewpoint on these sequences
would be for instance to define an allInstances() OCL constraint that checks that
each n+ 1th state is the result of executing a transition from a nth state. As each OCL
operator is supposed to work on a collection of states taken as a whole, evaluating the
constraint on an infinite model would yield a non-terminating behavior and no outcome
at all. Moreover, how such a collection may be produced still remains an open question
in this case.

As can be seen, coinductive semantics, which amounts to producing infinite proofs
and data, may be found in various areas, even though not always presented as such.
Defining and formalizing a (coinductive) structure of models will help at elaborating
important and practical tools for infinite model manipulation. A coinductive seman-
tics may be implemented in several ways: in a programming language with lazy con-
structs that will evaluate only the finite browsed part of the model, or with data stream
primitives randomly producing new model elements consumed afterwards by the exe-
cution semantics when possible, or else with a prefetch semantics that estimates how
many model elements should be evaluated in advance, even if not needed. Each such
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implementation is interesting in its own right as it corresponds to a well-known class
of applications. In the remainder of this section, we propose a formalization of a coin-
ductive model semantics and the implementation standpoint is discussed in the next
section.

4.2 Getting Model Elements

On a model m = 〈E,L〉, we first assume the operator getRoots() which corresponds to
a minimal set of model elements from which any other model element can be accessed
(i.e., a covering set). The accessibility predicate is defined as the existence of a finite
model path from a model element to another. A set of model elements is defined as
minimal when it is a covering set such that no proper subset is also covering.

accessibility(e,e′ ∈ E) � ∃{〈ei,ri,ei+1〉}i∈I ∈ model path(〈E,L〉),
e0 = e∧∃i ∈ I,ei = e′

covering(S⊆ E) � ∀e′ ∈ E,∃e ∈ S,accessibility(e,e′)
minimality(S⊆ E) � covering(S)∧∀e,e′ ∈ S,¬accessibility(e,e′)

We can now specify the getRoots() operator which corresponds to the entry point facil-
ity on the model:

m.getRoots() ∈ {S⊆ E | minimality(S)}
We assume that the getRoots() operator return a finite set of roots. We note also that an
alternative model definition based upon rooted multigraph may be adopted and would
yield a non under-specified definition. In this case, the set of roots is uniquely defined.

Relying on the entry point previously defined by the getRoots() operator, we mainly
consider the get() operator for getting model elements from a model 〈E,L〉. Usually,
this operator allows to access to a property r from a model element e (written e.r
in OCL).

e.get(r ∈ Relations) � {e′ ∈ E | 〈e,r,e′〉 ∈ L}
where e ∈ E . In our formalization, we assume that the return value of the get() operator
is always a collection of model elements, tagged as either finite or infinite in our MOF
extension and processed accordingly with the appropriate iterator. We are aware that in
most model management APIs (e.g., EMF) or in the OCL query language, the return
value may exhibit different types according to the known multiplicity of the relation.

4.3 Iterating Model Elements

We propose in this section a formalization of an alternative version – called coiterate –
of the main generic OCL iterator iterate [8, § 7.6.5], from which all other iterators may
be defined. Both iterators allow to browse a collection returned by the get() operator
and to unfold a reflexive relation, for instance in order to compute its closure.

A particularity of OCL finite collections is that they are implicitly ordered. Indeed,
the nth element may easily be retrieved with the help of the iterate operator. It may
merely appear as a design clumsiness in the API for collections in the finite case. Yet,
the ordering of elements is mandatory in the infinite case, as elements will be processed
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sequentially, one by one, and the user may observe intermediate results of this infinite
computation. So we assume that collections, whether finite or infinite, are ordered.

The iterate operator processes the successive values of an (ordered) finite collection
in order to compute the final value of an accumulator of any type. Dually to this se-
mantics, the coiterate operator starts from an initial value which processing produces
a potentially infinite collection of new values. This approach, which applies the coin-
duction principles, allows to produce a new collection either from an already existing
infinite collection or more generally as the sequence of values built from successive
assignments of a variable of any type.

In order not to depart too much from the iterate operator, from a syntactic viewpoint,
we define coiterate as follows, first recalling the definition of iterate. We require that
coll:Collection(A) possesses the three basic operations provided on Collection by OCL:
isEmpty() which tests a collection for emptiness, first() which returns the first element of
a collection, and append(elem:A) which appends a new element elem at the end of the
collection. For the sake of readability, we also define the operation tail() which returns
the collection without the first element2. Note that, as e1, e2 and e3 are expressions and
not values in the following definitions, we must use substitutions3 in order to define
recursively (resp. corecursively) these iterators.

coll->iterate(elem: A; acc : B = e1 | acc = e2) �
i f coll->isEmpty() then e1 else let e′1 = e2[coll->first() | elem][e1 | acc] in
coll->tail()->iterate(elem: A; acc : B = e′1 | acc = e2)

coll->coiterate(acc : B = e1 | acc = e2; elem: A = e3) �
i f e1 = null then coll else let e′1 = e2[e1 | acc] in
coll->append(e3[e1 | acc])->coiterate(acc : B = e′1 | acc = e2; elem: A = e3)

The coiterate operator starts from a finite collection coll, to which it will append a po-
tentially infinite sequence of elements. For that purpose, it considers a variable acc,
initialized with value e1. From the current value of acc, if not equal to null, a new el-
ement elem with value e3 built from acc must be appended to the current resulting
collection, and the next value of acc is given by e2. This process is repeated as long
as acc is not null. So the resulting collection is finite if and only if acc finally be-
comes null, otherwise the collection is infinite. Moreover, both iterators are able to han-
dle several accumulating variables of any name at once, provided the variable elem is
defined.

4.4 Putting the Coiterate Iterator Into Practice

We illustrate how the coiterate iterator may be used, through the following two basic
examples. In the first one, the infinite collection of the natural numbers is built and in
the second one, the infinite collection of the squares of even numbers is built from the
first collection.

2 The operation tail() is defined in OCL by: coll->excluding(coll->first()).
3 e[u | u′] is the expression e where any occurrence of sub-term u′ has been replaced by u.
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1. Naturals �
Set{}−>coiterate(acc:Integer = 0 |

acc = acc+1; elem = acc)

2. Squares �
Set{}−>coiterate(acc: Collection (Integer) = Naturals |

acc = acc−>tail()−> tail (); elem = acc−>first ()∗acc−>first ())

Similarly, the operator coiterate may be used to browse the infinite collection of events
to process (cf. eventToProcess in the right part of Fig. 1) and then to specify the sim-
ulation of a state machine. For instance, the following listing define the body of an
operation simulate() on StateMachine which creates the trace (i.e., a sequence of states)
according to the events to process4.

context StateMachine :: simulate () : Sequence(State) body :
Set{}−>coiterate(

acc : Sequence(EventOccurence) = eventToProcess ;
current : State = self . initial |
current = self . step ( current , acc−>first ()) ;
acc = acc−>tail () ;
elem = current

)

Our definition of the iterate (resp. coiterate) iterator was shown to browse a collection
(resp. create a collection). However, it seems to be an elegant way to use these opera-
tors in order to also (co)iterate over unfoldings of a reflexive relation. In the following
listing, the coclosure operator of a reflexive relation is defined in terms of coiterate and
corresponds to a breadth-first traversal of the underlying graph. From this generic coclo-
sure operator we also specify an operation on State computing the potentially infinite
set of reachable states from a given state:

context T:: coclosure ( relation ) : Sequence(T) body :
Set{}−>coiterate(

acc : Sequence(State) = Sequence{self} |
acc = acc−>tail()−>union(acc−>first (). relation

−>asSequence())
elem = acc−>first () ;

)

context State :: reachableStates () : Sequence(State) derive :
{ self }−>coclosure( nextStates );

4 We consider the operation step() which returns the current state according to the event given
as a parameter.
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5 On the Implementation of Coinductive Operators

We have proposed in the previous section a formal specification to define and evaluate
infinite models relying on coinduction principles. Stemming from this first milestone,
our immediate next goal will be to explore pragmatical solutions to implement such
principles.

In all cases, and by definition, it is not possible to store the entire infinite model in
memory. When a causal dependency exists between the model producer and the model
consumer, the model can be lazily interpreted (from the producer) in order to build,
on demand (by the consumer), only the necessary model elements. In our example,
the state machine may be lazily executed during a step-by-step simulation. Such lazily
interpreted constructs have been recently proposed at the metamodel level in ATL [3].
In this case, infinite model processing is close to existing lazy interpretation (also called
call-by-need) of a data structure [9] and relies on the following properties :

– the model elements in the infinite model are only built when it is necessary,
– once an infinite model element has been built, it is never built twice.

However, in some situations it may be necessary to relax these properties. For example,
the last property implies memoization5 and may be relaxed in some cases because it
may render certain things impossible (e.g., because more elements may have to be re-
membered than system memory permits) or very inefficient (e.g., because of synchro-
nization issues in concurrent systems). A non-memoized lazy evaluation also called
call-by-name [10] may then be of interest. For example, such strategies have been ex-
plored in [4] as part of an approach for model persistence based on NoSQL databases.

Even if lazy interpretation seems promising, specifying the level of laziness is also
important. In the context of the MDE, different solutions are possible. For instance,
does model element creation entails creation of its references atomically? Or are these
references also created on demand?

When the model consumption is disconnected from the model production, the order
in which model elements arrive is out of control. Such an infinite model relies on the
following properties (inherited from data stream [11]):

– model elements in the infinite model arrive online,
– once an element from an infinite model has been processed it is discarded or archived.

Different semantics may be considered depending on several options. For instance,
model elements delivery must take into account the following options from [12]: Pull
vs. Push, Aperiodic vs Periodic and Unicast Vs. 1-to-N. Then, mechanisms for model
elements delivery may be inspired from known protocols in data stream, such as Re-
quest/Response (Aperiodic Pull), polling (Periodic Pull), Publish / Subscribe (Aperiodic
Push) or Broadcast Disks (Periodic Push). Moreover, an info gatherer may be used to
change the appearance of the real model elements delivery at the query language level.
In this case, we have also to take into account the conformity points when model inter-
pretation is coherent, for instance using an operation-based model representation [13].

5 With memoization, computation of a model element is not repeated: the element is kept in a
cache after its first usage.
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6 Conclusion and Perspectives

The contributions of this paper are motivated by the need to define and manipulate
infinite models (i.e. models whose comprehensive set of model elements is too large
to be loaded or even not available). After pinpointing how current metamodeling for-
malisms prevent such situations, we first propose MOF extensions to locally character-
ize in a metamodel the infinite parts of the conforming models. Then we introduce a
formal alternative semantics of the OCL operator iterate, called coiterate, providing an
implementation-independent semantics for manipulating infinite models. The coiterate
operator can be used both to browse an infinite collection, and to compute the infinite
closure of a transitive relation (or more generally a cycle in a model).

Such a coiterate operator would support the formal verification of operations manip-
ulating infinite models. This verification activity can be partially automated by proof
assistant which supports coinductive semantics. Among others, Coq is a valuable can-
didate in that respect [14]. This paper also discusses various possible implementations
of the coiterate operator, whether for reasons of partial availability or partial loading
of models.

More generally, iterate and coiterate iterators may be used for model transforma-
tion (e.g., QVT [15]). Indeed, the accumulator may be a model (i.e., modeling in the
large) which is finitely extended and returned (iterate) or indefinitely browsed in order
to produce a new model (coiterate). If we abstract away the pieces of code used as argu-
ments of these iterators, it turns out that iterate needs a function of type6 1+A×B→ B
whereas coiterate needs a function of type B → 1+A×B. In order to apply these it-
erators to model production or browsing, the types A and B may be generalized to
dependent types that denote arbitrary predicates over a (mega-)model structure, aiming
at identifying patterns of interest and providing entry points in these patterns. In this
context, we would need functions with respective types ∀e ∈ E.1+A(e)×B(e)→ B(e)
and ∀e ∈ E.B(e)→ 1+A(e)×B(e), where e are elements of the (mega-)model. Here,
A(e) and B(e) represent query or creation patterns, the functions induce transformation
rules and the iterators represent the execution of a global transformation engine. Finally,
specifying models and model transformations with type predicates allows to talk about
their respective properties within a single language of types. Turning questions about
models into typing problems also brings a rich amount of results in the scope, about type
checking, type inference and subtyping issues for models and model transformations at
once, as investigated in [16].

To conclude with it, some substantial amount of work will be necessary to draw
all the consequences of this promising approach for model transformation and to thor-
oughly compare and cross-fertilize it with existing solutions.
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Abstract. Model repositories based on the Eclipse Modeling Framework
(EMF) play a central role in the model-driven development of complex
software-intensive systems by offering means to persist and manipulate
models obtained from heterogeneous languages and tools. Complex EMF
models can be assembled by interconnecting model fragments by hard
links, i.e. regular references, where the target end points to external re-
sources using storage-specific URIs. This approach, in certain application
scenarios, may prove to be a too rigid and error prone way of interlinking
models. As a flexible alternative, we propose to combine derived features
of EMF models with advanced incremental model queries as means for
soft interlinking of model elements residing in different model resources.
These soft links can be calculated on-demand with graceful handling for
temporarily unresolved references. In the background, the interlinks are
maintained efficiently and flexibly by using incremental model queries as
provided by the EMF-IncQuery framework.

1 Introduction

The Eclipse Modeling Framework (EMF) [1] serves as the underlying model
management infrastructure for various industrial development tools, especially
in the avionics and automotive domain. These domains necessitate the handling
of large models with potentially millions of model elements. For maintainability
and scalability reasons, such EMF models are not persisted in a single XMI doc-
ument, but stored as an interconnected network of model fragments where each
fragment stores a certain part of the entire system model. In other application
scenarios, complete EMF models are used which are complemented with external
traceability models to explicitly persist traceability links between requirements
models, design models, analysis models or source code, for instance. In both
scenarios, EMF models are frequently manipulated by several development or
verification tools in complex toolchains operated by different design teams.
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Unfortunately, the interconnection of complex EMF-based system models im-
poses several technical problems due to the identification strategies of model
elements in the EMF infrastructure. When serializing a model, a model element
is either identified by a unique identifier generated by EMF, or by a relative path
of containment hierarchy in the given EMF resource. These techniques are used
when interconnecting models using associations (EReferences) e.g. for internal
traceability purposes: the target end of the association points to an object resided
in a different model resource. Such interconnections are also used in external
traceability scenarios where inter-model links are introduced from traceability
metamodel elements to existing metamodels which cannot be altered.

These scenarios demonstrate various shortcomings of the core EMF technol-
ogy. First, (1) interconnected EMF model fragments with circular dependen-
cies including only regular references cannot be serialized. Furthermore, without
truly intelligent multi-resource transaction management, (2) local changes in a
model fragment may introduce broken links unless all dependent model frag-
ments are manipulated together in working memory. Such broken links require
tool-specific resolutions — with a worst case scenario of fixing the links manu-
ally by the designer using text editors (and not the modeling tool). Finally, (3)
all traceability links captured by associations are explicitly persisted every time
even if traceability links could be derived from existing unique identifiers.

In the paper, we provide an approach1 for the soft interconnection of EMF
models based on derived features and incremental model queries. Derived features
are attributes and relations of the model calculated at runtime, and their values
are often not stored explicitly. When using derived relations, the corresponding
links only exist after the models are loaded. Therefore, model fragments can be
(de)serialized in arbitrary order issuing warnings about broken links when cer-
tain resources are unavailable or not loaded. In order to provide an efficient and
flexible handling of such soft links, we use the incremental model query frame-
work EMF-IncQuery as a technical foundation. As a result, it is sufficient to
identify a model element by a query instead of local or global identifiers, and
less amount of information needs to be persisted for traceability purposes. Fur-
thermore, the underlying model query technique provides excellent performance
with little memory overhead [2] for managing inter-model links2.

The rest of the paper is structured as follows. First, we illustrate intercon-
nected EMF models in Section 2 on an industrial case study and propose derived
features for managing soft interconnections. Then we propose model queries as
specification means for derived features, and thus for soft links (Section 3). An
incremental maintenance technique for soft links is described in Section 4. In
Section 5 the application of soft interconnections is described for traceability
modeling. Finally, related approaches and tools are described in Section 6 and
Section 7 concludes our paper.

1 Fully implemented and documented at http://viatra.inf.mit.bme.hu/incquery/
new/examples/query-driven-soft-links

2 The paper does not include performance specific contributions to EMF-IncQuery,
more details are available at http://viatra.inf.mit.bme.hu/performance

http://viatra.inf.mit.bme.hu/incquery/new/examples/query-driven-soft-links
http://viatra.inf.mit.bme.hu/incquery/new/examples/query-driven-soft-links
http://viatra.inf.mit.bme.hu/performance
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2 Soft Interconnection of EMF Models: An Overview

2.1 Case Study: Modeling and Managing Business Processes

Our approach will be demonstrated on an business modeling case study inspired
by a project carried out together with an industrial partner. While the actual
metamodels (shown in Figure 1) are significantly simplified here due to space
restrictions, they still demonstrate many practical industrial problems of inter-
connecting EMF models. In the case study, semi-automatic workflows (captured
as a process model) contain both automated and manual tasks. Architectural-
level deployment decisions are captured by a separate system architecture model
comprising of jobs and data resources referring to tasks in the business process
model. Finally, the instances of the processes managed by operators are captured
in an operation model containing a checklist for each process with task entries
assigned for each operator.

Fig. 1. The metamodels of the case study
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Business process metamodel Business processes (process package) are defined
by a fragment of the standard XPDL [3] metamodel. The ProcessElement top-
level type defines id (unique identifiers) and name attributes for each element.
A Process includes Activities that are either Tasks (atomic workflow steps) or
Gateways (e.g. fork-join, decision, loops), while the control flow of the process
is represented by the next and previous relations between activities. Based upon
their kind attribute, tasks can be service (for automated execution through API
calls), manual (where the operator initiates some job) and user (when the task
itself is performed by an operator or other assigned personnel).

System architecture metamodel The system architecture metamodel (system
package) defines a top-level ResourceElement that defines a name for each ele-
ment. This simplified architecture includes Systems (representing larger compo-
nents), Data elements that represent application data (e.g. configuration, input
or output files) that can be read or written during the execution of tasks in the
processes and Jobs (e.g. scripts or one-shot programs) that run on Systems. We
assume that each system must have a unique name and each job contained in
the same system must have different names. Otherwise, names are not globally
unique in this domain.

Operation metamodel The operation metamodel (operation package) is used
for representing Checklists followed by operators when performing the manual
tasks in processes. The top-level OperationElement adds a name and a unique
identifier for each model element. Each Checklist is related to a Process, and
includes a number of entries and a menu. The menu contains MenuItems that
have textual descriptions and a location, where the operator can access it. The
entries are ChecklistEntry elements, each corresponding to one task, an arbitrary
number of jobs, and optionally to a MenuItem. Finally, each entry can con-
tain further information (e.g. historical statistics or requirements) stored by a
RuntimeInformation element using a content map.

Inter-model connections These metamodels and thus the corresponding model
instances heavily depend upon each other (see Figure 1). The following logical in-
terconnections are present in our example: (1) a Job (from system) can be linked
to a Task (in process); (2) a Process is a referenced from Checklist; (3) a Checklis-
tEntry links to both to a process Task and a system Job; (4) a RuntimeInformation
(from operation) can be attached to a Job.

Many industrial tools (including the TIBCO Business Studio [4] used in our
industrial project for capturing XPDL models and the AUTOSAR standard [5])
store identifiers of external (inter-model) elements using (a list of) simple string
(or integer) attributes. In contrast, EMF uses EReferences (corresponding to
lazily initialized inter-object pointers) to interconnect different models (or model
fragments), which are resolved during the first traversal. For the current paper,
they are referred to as hard links, as all such cross-model references are explicitly
stored in a serialized model. In order to implement such standards over the
EMF infrastructure, the main challenge is to provide a transparent reference
maintenance mechanism that maps the textual identifiers to in-memory pointers
and also allows their modification.
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2.2 Soft Links for EMF Models by Query-Based Derived References

In the paper, we propose a soft linking technique for interconnecting EMF models
by combining derived features and incremental model queries. The term "query-
based soft links" refer to the fact that (1) certain model interconnections only
exist at runtime but they are not maintained explicitly in instance models, but
(2) the interconnected model elements can be accessed and navigated in a type-
safe way along derived features. Furthermore, (3) our query based technique
allows to define complex, n-ary interconnections of several model elements, and
(4) to identify model elements dynamically based upon query results (instead of
static unique IDs).

Derived features in EMF models represent computed information which can
be calculated from other model elements. Essentially, we distinguish between
derived attributes, which provide a data store for a(n instance of a) class and
derived references, which represent “virtual” interconnections between model el-
ement instances (represented graphically by the derived stereotype in Figure 1).
Derived features for soft links will be defined by using a declarative, high-level
graph-based query language (Section 3) and evaluated truly incrementally (Sec-
tion 4) as offered by the advanced model query framework EMF-IncQuery [6].
Our soft interconnection technique offers the following advantages:

– Handling circular dependencies: Circular dependencies between EMF
models can be handled easily with soft links. For instance, metamodels sys-
tem and operation are mutually dependent on each other along references
jobs and info, which can materialize in a circular dependency on the model
level preventing serialization using auto-generated regular EMF methods. As
soft links are not serialized, this problem no longer occurs.

– Graceful management of broken links. When EMF models are manip-
ulated by multiple tools, inter-model links can be easily broken, which result
in runtime exceptions when the corresponding model element is attempted
to be accessed along a broken link. Soft links provide graceful behavior in
case of broken links by issuing warnings in case of unresolved elements.

– Improved persistence. Whenever a model interconnection can be calcu-
lated by a query, this does not necessarily have to be explicitly persisted
into traceability models. As result, the load time of complex interconnected
models can be reduced.

– High performance. Due to the incremental caching mechanism of EMF-
IncQuery [2], derived features can be reevaluated very efficiently even in
case of complex definitions (e.g. transitive closures [7]). As a result, the
maintenance of soft links will be efficient with low memory overhead even
for large models with complex traceability structures.

3 Definition of Soft Links as Model Queries

In order to support the runtime management of soft interconnections between
models using derived features of EMF models, the graph pattern based model
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query language of EMF-IncQuery is used as the specification language for
derived features. Therefore a brief introduction to this query language is pro-
vided first, followed by a detailed description on how this general purpose query
language is adapted to specify the derived features for soft interconnections.

3.1 Model Queries by Graph Patterns: An Overview

Graph patterns [8] are an expressive formalism used for various purposes in
model-driven development, such as defining declarative model transformation
rules, capturing general-purpose model queries including model validation con-
straints, or defining the behavioral semantics of dynamic domain-specific lan-
guages. A graph pattern (GP) represents conditions (or constraints) that have
to be fulfilled by a part of the instance model. A basic graph pattern consists
of structural constraints prescribing the existence of nodes and edges of a given
type, as well as expressions to define attribute constraints. A negative application
condition (NAC) defines cases when the original pattern is not valid (even if all
other constraints are met), in the form of a negative sub-pattern. A match of
a graph pattern is a group of model elements that have the exact same config-
uration as the pattern, satisfying all the constraints (except for NACs, which
must not be satisfied). The complete query language of the EMF-IncQuery
framework is described in [9], while several examples will be given below.

3.2 Soft Links as Model Queries

Sample Soft Link First, we demonstrate on an example how the graph pattern
EntryJobCorrespondence(CLE,Job) (Figure 2) can be used to express the soft links
captured by the derived EReference jobs (connecting ChecklistEntry and Job in
Figure 1), that is, to identify those jobs that correspond to a task execution as
part of the checklist entry.

1 // ChecklistEntry.jobs link
2 pattern EntryJobCorrespondence
3 (CLE , Job) = {
4 Job.name(Job,JobName );
5 System.name(System,SysName );
6 Job.runsOn(Job,System );
7 ChecklistEntry.jobPaths
8 (CLE ,JobPath );
9 check(JobPath ==

10 SysName +’/’+JobName );}

Fig. 2. Model query to define EntryJobCorrespondence in graphical and textual syntax

This model query formulated as a graph pattern has two parameters: CLE
and Job, denoting the source and the target end of the soft link. The query
defines the designated set of jobs by checking the names of the given job element
Job and the system S it runs on (nJ and nS, respectively) and the path p stored
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in the entry. Model queries for the other soft links captured by derived features
defined in the metamodel are defined similarly in Listing 1.1 and Listing 1.2.

1 // Job.tasks link
2 pattern JobTaskCorrespondence
3 (Job,Task) =
4 {
5 Task.id(Task ,TaskId );
6 Job.taskIds
7 (Job,TaskId );
8 }
9 // Data.readingTasks link

10 pattern DataTaskReadCorrespondence
11 (Data ,Task) = {
12 Task.id(Task ,TaskId );
13 Data.readingTaskIds
14 (Data ,TaskId );}
15 // Data.writingTasks link
16 pattern DataTaskWriteCorrespondence
17 (Data ,Task) = {
18 Task.id(Task ,TaskId );
19 Data.writingTaskIds
20 (Data ,TaskId );}

Listing 1.1. Resource-Process map-
ping

1 // Job.info link
2 pattern JobInfoCorrespondence
3 (Job ,Info) = {
4 ChecklistEntry.info(CLE ,Info);
5 RuntimeInformation.id
6 (Info ,InfoId );
7 find EntryJobCorrespondence
8 (CLE , Job);}
9 // ChecklistEntry.task link

10 pattern EntryTaskCorrespondence
11 (CLE , Task) = {
12 Task.id(Task , TaskId );
13 ChecklistEntry.taskId
14 (CLE ,TaskId );}
15 // Checklist.process link
16 pattern ListProcessCorrespondence
17 (Checklist , Process ) = {
18 Process .id(Process ,ProcessId);
19 Checklist.processId
20 (Checklist ,ProcessId);}

Listing 1.2. Checklist entry mapping

The query language also supports the following language constructs:

– check(JobPath == SysName + ’/’ + JobName) checks that the model element
bound to variable JobPath is equal to the concatenated value of SysName
and JobName (note that the evaluation will use String.equals to compare
the value of EStrings).

– Using the find keyword, graph patterns are allowed to reuse other graph pat-
terns. Therefore, if a soft link is defined as a model query by a corresponding
graph pattern, this definition can be reused in other queries, and thus, in
other soft links (along derived features).

The soft links defined as model queries using the graph pattern based language
of EMF-IncQuery in the case study have two parameters, the first parameter
denotes the source (i.e. the container EClass) while the second parameter denotes
the target of the soft link. However, in the actual query language, this rule can
also be satisfied by using pattern annotations for multi-parameter queries that
explicitly specify which of the parameters is the context and which one will
correspond to the target (or value). Furthermore, the adherence to this rule is
checked at editing time by a built-in query language validator in the EMF-
IncQuery tooling [6].

4 From Incremental Query Evaluation to Soft Links

In this section, we outline how the soft links can be managed using the effi-
cient querying features of the EMF-IncQuery framework. Our approach can
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be integrated to notification based applications (like EMF) in a deep and trans-
parent way by mapping model changes to the values of derived features using
incremental evaluation.

4.1 Incremental Evaluation of Queries: an Overview

The key to efficient evaluation and change notification for derived features is
the incremental graph pattern matching infrastructure of the EMF-IncQuery
framework (first introduced in [10]), see the internal architecture in Figure 3.

The input for the incremental graph pattern matching process is the EMF
instance model and its Notification API where callback functions can be reg-
istered to instance model elements that receive notification objects (e.g. ADD,
REMOVE, SET etc.) when an elementary manipulation operation is carried out.

Fig. 3. The EMF-IncQuery architecture

Based on a query specification,
EMF-IncQuery constructs a RETE
rule network [10] that processes the
contents of the instance model to pro-
duce the query result at its output
node. Query results are then post-
processed by auto-generated query
components to provide a type-safe ac-
cess layer for easy integration into
applications. This RETE network re-
mains in operation as long as the
query is needed: it continues to receive
elementary change notifications and
propagates them to produce query
result deltas through its delta mon-
itor facility, which are used to in-
crementally update the query result.
These deltas can also be processed ex-
ternally, which is a key feature for
the integration of derived features
(Section 4.2).

By this approach, the query results (i.e. the match sets of graph patterns)
are continuously maintained as an in-memory cache, and can be instantaneously
retrieved. Even though this imposes a slight performance overhead on model
manipulation, and a memory cost proportional to the cache size (approx. the
size of match sets), EMF-IncQuery can evaluate very complex queries over
large instance models very efficiently. These special performance characteristics,
reported in [2], allow EMF-IncQuery-based derived features to be evaluated
instantly in most cases, regardless of the complexity of the query or the size of
the instance model.
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4.2 Integration Architecture

To support soft links captured as derived features, the outputs of the EMF-
IncQuery engine need to be integrated into the EMF model access layer at two
points: (1) query results are provided in the getter functions of derived features,
and (2) query result deltas are processed to generate EMF Notification objects
that are passed through the standard EMF API so that application code can
process them transparently. The overall architecture of our approach is shown
in Figure 4.

Fig. 4. Overview of the integration architecture, adopted from [11]

The application accesses both the model and the query results through the
standard EMF model access layer – hence, no modification of application source
code is necessary. In the background, as a novel feature, soft link handlers are
attached to the EMF model objects that integrate the generated query compo-
nents (pattern matchers). This approach follows the official EMF guidelines of
implementing derived features and does not require more effort to integrate than
ad-hoc Java code, or OCL expression evaluators. Note that these handlers can
be used for managing regular derived features as well.

When an EMF application intends to read a soft link (B1), the current value is
provided by the corresponding handler (B2) by simply retrieving the value from
the cache of the related query. When the application modifies the EMF model
(A1), this change is propagated to the generated query components of EMF-
IncQuery along notifications (A2), which may update the delta monitors of the
handlers (A3). Changes of soft links and derived features may in turn trigger
further changes in the results sets of other derived features (A4).

Illustrative Example. Figure 5 illustrates a detailed elaboration EMF-IncQuery
handlers, which process elementary model manipulation notifications to update,
and generate notifications for derived features. The figure corresponds to a case
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where the user assigns a new Job to a ChecklistEntry through the Editor which
is essentially a cle.getJobPaths().add(jobPath) method call on the Model. Dur-
ing the add method, the ChecklistEntry EObject sends an ADD notification to
the Notification Manager, which will notify the EMF-IncQuery Query Engine
about the model modification. The Query Engine updates the match sets of each
query and registers the match events in the Deltamonitor. Once its finished with
updating the RETE network, it invokes the callback method of each IncqueryFea-
tureHandler. Each handler has a Deltamonitor from which it retrieves the new and
lost match events since the last callback to processes them. During the process-
ing, the handler may send notifications of its own (e.g. the value set of the info
soft link of job is updated) that is propagated to listeners. Anytime the soft link
value is retrieved from the model (e.g. job.getInfo()), it accesses the handler for
the current value of the derived feature, which is returned instantly.

Fig. 5. Elaboration of the execution

Summary. In summary, the combined pattern matching and notification process-
ing ensures that EMF-IncQuery-based soft links (and derived features) behave
exactly as reeegular features of EMF instance models. This behavior ensures that
user interfaces, model validators etc. can safely depend on soft interconnections
built on soft links, without on-demand querying.

5 Applications in Traceability Modeling

The approach proposed in this paper can be interpreted in an external trace-
ability modeling context. Figure 6 illustrates a typical architecture applied to
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Fig. 6. External traceability modeling scenario

the examples of Section 2.1, where interconnections between three distinct mod-
els (belonging to the process, system and operation domains, respectively) are
augmented with explicit (external) traceability models T .

In such a scenario, trace models T in EMF typically conform to a custom trace-
ability metamodel that may describe simple binary (source-target) relationships
with the help of association classes that use explicit unidirectional references to
point to elements of the host models. In more complex cases, T may also include
ternary (or hyper-) edges that interrelate multiple elements (e.g. three element
types from all three domains, as in Figure 6).

5.1 Traceability-Specific Challenges

While this commonly used approach has an obvious advantage over internal
traceability/correspondence links (as used in our previous examples), namely
that the external models do not require the modification of the host metamodels,
it also involves a number of frequently encountered problems as mentioned in
Section 2.2:

– Fragility: Cross-resource hard EReferences are fragile, they may break when
a host model is manipulated without the traceability model being loaded
simultaneously. Additionally, in some scenarios, such as when using file-based
EMF resources, traceability links may even break during external operations
(e.g. when the files are moved within the workspace [12]).

– Identification of target elements : to work around the fragility issue, trace-
ability modeling solutions may use IDs or fully qualified naming schemas
(as presented in our previous examples) to store cross-references, even for
external traceability models. However, such identifying attributes need to
be present in the host models, and also necessitates an auxiliary mechanism
that ensures consistency rules (such as uniqueness) within the host domains.
If these prerequisites are not met, then additional, auxiliary techniques have
to be used (such as ECore annotations, or genmodel modifications to add ID
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maintenance capabilities to EMF domains, as used e.g. by EMFStore [13]
and CDO [14]).

– Persistence scalability issues: in complex system modeling scenarios, the
amount of EReferences can grow to be the dominant factor in storing the
entire model space, in terms of both in-memory and serialized persistence
overhead [2]. Hence, the performance of all model management-related op-
erations (e.g. serialization) may be severely negatively affected as the size
of the model resources grow, especially when taking the fragility issue into
consideration (i.e. that traceability models with hard EReferences need to
be loaded and manipulated together with host model fragments).

5.2 Traceability Management with Soft Links and Queries

The traceability architecture (components with black outline in Figure 6) can be
augmented or even replaced with model-integrated soft links (symbolized by red
outlined empty ovals) and traceability queries that can be accessed through the
EMF-IncQuery API (oval with dashed fill). Both techniques share incremental,
on-the-fly evaluation as their background.

Soft Links in a Traceability Context. From the traceability perspective, the
most important advantages of soft links are that they are (logically) bidirectional
references that are maintained on-the-fly. Thus, given that host metamodels are
allowed to be augmented, such traceability links can be added without regard
for circular serialization dependencies, that is, it is entirely up to the language
designer to specify where such EReferences are going to reside, making trace link
navigation also starting from host model elements feasible.

Additionally, as soft links provide graceful behavior for broken traceability ref-
erences, erroneous trace records may be marked with warning markers, instead
of throwing exceptions or runtime errors. These markers can then be corrected
by e.g. a user-aided, on-demand resolution process, which may be further sup-
ported by helper queries that locate the most likely target host model element
(esp. in the case when non-ID keys are used to identify model elements, such as
EntryJobCorrespondence in Figure 2 – in this case, a helper query may enumerate
those elements whose local names are similar).

As EMF-IncQuery query results can be represented by derived features as
well as generic collections of EObjects, this feature may be used in a straightfor-
ward way to fine-tune which EReferences are going to be explicitly persisted and
which ones are going to be calculated on-demand, when the models are loaded
into memory. This gives the tool developer precise control over performance vs.
compliance considerations (i.e. when certain traceability information is required
to be stored persistently).

Finally, soft links behave exactly like normal EReferences (send notifications),
easing the integration with user interface components or on-the-fly validators.

Using Traceability Queries for N-ary Links. If host metamodels cannot
be modified, or hyperedges (multilinks, connecting three or more element types)
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are desired for traceability modeling, the architecture of Figure 6 can be aug-
mented with generic queries. Such a case is illustrated by Figure 7. In this case,
a ChecklistEntry is connected to Tasks and, consecutively, to Data elements to
represent the traceability information between data elements that are read by a
given check list element. Such a ternary relationship (with * multiplicities) may
be implemented by the DataReadByChecklistEntry pattern (shown on the left in
Figure 7).

1 pattern DataReadByChecklistEntry
2 (CLE , Task , Data) = {
3 find ChecklistEntryTaskCorrespondence
4 (CLE ,Task);
5 find DataTaskReadCorrespondence
6 (Data , Task);
7 }

Fig. 7. Ternary links with traceability queries

This approach shares the functional benefits of soft links, with the one excep-
tion that it is not integrated into the EMF model layer and as such, it is not
API-transparent to EMF-based tools. Instead, the query results can be accessed
through an additional API provided by EMF-IncQuery (illustrated on the
right in Figure 7). Here, the results of the DataReadByChecklistEntry pattern are
processed using a generated DataReadByChecklistEntryMatch data transfer class
and the IMatchProcessor<> visitor interface. Though not shown in Figure 7, the
EMF-IncQuery API also exposes the delta monitor facility (Section 4) that
allows to track the changes in the result of such a query.

Summary. Soft links and traceability queries can be used to overcome the chal-
lenges presented by traceability-specific applications by complementing external
traceability models and supporting incrementally maintained bidirectional links
between interconnected model elements.

6 Related Work

In this section we first give an overview of existing approaches and tools that deal
with interconnection between models, then we briefly describe other model query
techniques for EMF. Finally, we list approaches that rely on derived features and
therefore may take advantage of our incremental evaluation techniques.

Interconnecting EMF Models. In [15] correspondences between models are han-
dled by matching rules defined in the Epsilon Comparison Language, where the
application conditions (called guards) use queries similarly to our approach. Ad-
ditionally, Epsilon also manages model integrity between EMF models using the
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novel Concordance framework [12]. It is able to handle intermodel links when
models are moved/renamed and helps in correcting invalid models caused by
metamodel changes. Anwar [16] introduces a rule-driven approach for creating
merged views of multiple separate UML models and relies on a correspondence
metamodel and OCL expressions to support model merging and composition.
VirtualEMF [17] allows the composition of multiple EMF models into a virtual
model based on a composition metamodel, and provides both a model virtualiza-
tion API and a linking API to manage these models. The approach is also able
to add virtual links based on composition rules. In [18] an ATL-based method is
presented for automatically synchronizing source and target models of a given
transformation, based on the definition of the transformation.

Compared to them, the main distinctive features of our approach is (1) the
fully incremental evaluation of queries for model interconnections, and (2) flex-
ible support for query-based, computed soft links. It is a nice task for future
research to combine the benefits of our current approach with the benefits of
these existing solutions.

Model Query Approaches. OCL [19] is a standardized navigation-based query
language, applicable over a range of modeling formalisms. Taking advantage of
the expressive features and wide-spread adoption of OCL, the project Eclipse
OCL through its Essential OCL language provides a powerful query interface
that evaluates OCL expressions over EMF models. Additionally, it also supports
the definition of invariants and operations to enrich the Ecore metamodel using
either the Complete OCL [20] or the OCLinEcore [21] languages. Balsters [22]
presents an approach for defining database views in UML models as derived
classes using OCL. The derived classes in this case are the result set of queries,
which is similar to the match sets provided by EMF-IncQuery.

There are several technologies for providing declarative model queries over
EMF, e.g. EMF Model Query 2 [23] and EMF Search [24]. Other graph pattern
based techniques like [25,26] have been successfully applied in an EMF context.

Cabot et al. [27] present an algorithm for incremental runtime validation of
OCL constraints and uses promising optimizations, however, it works only on
boolean constraints. An interesting model validator over UML models [28] incre-
mentally re-evaluates constraint instances whenever they are affected, but relies
on environments that support the recording of read-only access to the model,
unlike EMF. Additionally, general-purpose model querying is not viable.

These approaches provide possible alternatives to implement model queries,
thus, they can potentially be used for providing soft links. However, many of
them lack incremental evaluation support or require significantly more integra-
tion effort to enable their use for soft links.

Application of Derived Features. The PROGRES language [29] allows the rule-
based programming of graph rewriting systems and uses derived attributes for
encoding dynamic semantics. ConceptBase.cc [30] is a database (DB) system
for metamodeling and method engineering and defines active rules that react
to events and can update the DB or call external routines, the latter could be
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applied in models as derived features representing data stored in the Concept-
Base.cc DB. Neither tool has adopted EMF up to our best knowledge.

In [31] Diskin describes a formal framework for model synchronization that
uses derived references for propagating changes between corresponding models.
A recent work by Diskin et al. [32] proposes a theoretical background for model
composition based on queries using Kleisli Categories, in their approach derived
features are used for representing features merged from different metamodels.
The conceptual basis is similar to our approach in using query-based derived
features, however, it offers algebraic specification, while our approach might
serve as an implementation for this generic theoretical framework.

The MOF 2.0 tool in [33] allows the definition of derived features using OCL.
It handles derived attributes and operations as custom code provided by the user
and redirects calls using reflection. The FUJABA [34] tool suite also supports
derived edges by path expressions. Both tools work in a non-incremental way.

JastEMF [35] is a semantics-integrated metamodeling approach for EMF. It
uses derived features as side-effect free operations (i.e. queries) and refers to
them as the static semantics of the model. Therefore, our query-based approach
could be integrated with JastEMF without any problems.

In a previous paper [11], we offer an algorithm for incremental evaluation of
derived features and present technical details on the integration of existing native
implementations. The current paper provides details on applying incremental
queries for soft interconnections by using derived features in EMF.

7 Conclusion

Interconnections between model fragments of complex EMF models are usually
represented as regular associations and persisted using storage-specific URIs.
This approach proves to be rigid and error-prone in some application scenarios.

We proposed to use derived features as a flexible alternative to provide soft
interlinking between model fragments, and demonstrated an approach for in-
cremental evaluation of soft links with the use of model queries on an indus-
trial case study. Our approach supports circular dependency between mod-
els, graceful handling for unresolved links and is implemented using EMF-
IncQuery, which provides efficient evaluation capabilities for incremental model
queries.

As a primary direction for future work, we plan to integrate traceability
queries into the EMF model layer by constructing derived classes whose in-
stances behave like EObjects but their lifecycles are managed by an underlying
incremental query. Such constructs could be used to create n-ary traceability
models that are automatically kept in-sync, retaining the graceful handling of
soft links.
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Abstract. Understanding modern software products is challenging along
several dimensions. In the past, much attention has been focused on the
logical and physical architecture of the products in terms of the rele-
vant components, features, files, and tools. In contrast, in this paper,
we focus on the linguistic architecture of software products in terms of
the involved software languages and related technologies, and technolog-
ical spaces with linguistic relationships such as membership, subset, or
conformance. We develop a designated form of megamodeling with cor-
responding language and tool support. An important capability of the
megamodeling approach is that entities and relationships of the meg-
amodel are linked to illustrative software artifacts. This is particularly
important during the understanding process for validation purposes. We
demonstrate such megamodeling for a technology for Object/XML map-
ping. This work contributes to the 101companies community project.

Keywords: Megamodel, Linguistic architecture, Software language, Soft-
ware technology, Technological space, Object/XML mapping, MegaL.

1 Introduction

Understanding modern software products is challenging because they are com-
plex along several dimensions. We are specifically interested in the complexity of
software products due to the involved software languages, software technologies,
and technological spaces [7, 17] while possibly leveraging generative, reflective,
transformational, and model-driven engineering approaches.

Consider, for example, web applications. A given application may leverage
several software languages simultaneously: programming languages (e.g., Java,
PHP, JavaScript, or Python), reusable domain-specific languages (e.g., CSS,
XSLT, or SQL), library-based languages (e.g., JQuery, DOM), implicit languages
relying on particular frameworks or annotation schemas (e.g., particular configu-
ration or mapping languages for frameworks such as Hibernate or JAXB) as well
as problem-specific languages (such as the object models, schemas, or domain-
specific languages specifically designed for the application). Artifacts of these
languages are processed, generated, or affected by compilers, interpreters, code
generators, annotation injectors, etc.
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In order to facilitate the understanding of current software languages and soft-
ware technologies, the 101companies community project [11]1 aims at developing
a free, structured, web-accessible knowledge resource including an open-source
repository for different stakeholders with interests in software technologies, soft-
ware languages, and technological spaces; notably: teachers and learners in soft-
ware engineering or software languages as well as software developers, software
technologists, and ontologists.

In the context of the 101companies project, the present paper2, introduces
a megamodeling approach supported by a language MegaL and associated tools
for editing and exploration of megamodels. According to [1]: “A megamodel is
a model of which at least some elements represent and/or refer to models or
metamodels.” Different forms of megamodeling have been introduced and uti-
lized elsewhere [2,3,14,21,26,27]. Existing work essentially focuses on modeling
typical Model Driven Engineering entities such as models, metamodels and trans-
formations. Instead, we focus on conceptual entities such as (software) languages
and (software) technologies as well as a range of so-called digital entities includ-
ing languages, language processors, programs, libraries, files, directories, source
files, meanings of programs, and in-memory structures such as object graphs.
For instance, only by including languages (as opposed to their description by
metamodels or grammars), we are able to explain certain linguistically founded
aspects of software technologies.

We also say that the developed megamodeling approach addresses the ‘linguis-
tic architecture’ of software products, thereby complementing other, more estab-
lished dimensions of architecture: the ‘logical architecture’ as it is the subject of
‘classical’ software architecture as well as specific paradigms such as component-
, feature- or aspect-oriented software development; the ‘physical architecture’
which is typically concerned with building, packaging, and deploying software
and hence, with entities such as files and servers.

Contributions of the Paper

� We develop a megamodeling approach that is useful for understanding the
linguistic architecture of software products in terms of the involved lan-
guages, technologies, and linguistic relationships. This approach is supported
by the MegaL language and an associated tool suite under development.

� We demonstrate megamodeling in the challenging context of Object/Rela-
tional/XML [19,22,29] mapping (or O/R/Xmapping). In the paper, we focus
on one O/X mapping technology with a megamodel that is highly abstract
but still it includes the key characteristics of the technology in question.

� The value of our megamodels is a cognitive one: they facilitate understand-
ing of technologies and usage thereof. We strongly improve such cogni-
tive value by enabling a form of linked megamodels such that entities and

1 http://101companies.org
2 The paper’s website http://softlang.uni-koblenz.de/mega/ provides supplemen-
tary material including some megamodels of software products and technologies.

http://101companies.org
http://softlang.uni-koblenz.de/mega/


Modeling the Linguistic Architecture of Software Products 153

relationships are linked to resources (e.g., in the 101companies repository)
so that megamodels can be explored and validated.

Non-contributions of the Paper. Note that the goal of this paper is by no
means to define the ultimate megamodeling language in this context (such as
MegaL) in any exhaustive or formal way, but just on the contrary, to motivate
the overall approach and to illustrate its value with a concrete example. Also,
the megamodeling approach, as it stands, does not yet readily support any sort
of automated analysis or verification of software products. Instead, the current
focus is on enabling the description of entities and relationships in a linguis-
tic architecture in a way that is fit for validation purposes during the human
understanding process.

Road-map of the Paper. §2 motivates and illustrates the notion of linguis-
tic architecture. §3 describes entity and relationship types needed for modeling
linguistic architecture. §4 develops an initial megamodel for O/X mapping that
abstracts essentially from most aspects of the concrete O/X mapping technology
and the concrete software that uses O/X mapping. §5 derives a more detailed
megamodel that also captures interesting .NET-specific characteristics of O/X
mapping. §6 develops the notion of linked megamodels. §7 discusses related work.
§8 concludes the paper.

2 Illustration of Linguistic Architecture

Consider the upper frame in Figure 1. (The lower frame will be discussed in §6.)
The linguistic architecture of a software product is described in the MegaL/yEd
visual notation.3 The product is a C#-based application which makes use of
.NET’s Object/XML mapping technology.4 In fact, the product is a 101compa-
nies implementation, which is named xsdClasses and available online. Hence, the
application deals with companies (as in the human resources domain) including
operations for totaling and cutting salaries (symbolized by the model element
Operations.cs) as well as XML-related functionality for de-/serialization (see Se-
rialization.cs). There are model elements for XML types according to the XSD
language for XML schemas (see file Company.xsd) and C# classes (see file Com-
pany.cs) with fragments (see Company, Department, and Employee). There are
correspondence relationships between the XML and object types to express that
instances of these types can be (roughly) converted into each other (modulo the
X/O impedance mismatch [18]). Class generation is automated with a batch file

3 MegaL is currently a combination of an ontology and a set of concrete syntaxes; there
exist these flavors of the language: MegaL/yEd—a visual notation, MegaL/TXT—a
textual notation and MegaL/RDF—an RDF version of MegaL. The correspondance
between these notations is rather straightforward and it will be introduced by means
of illustration in the course of the paper.

4 http://msdn.microsoft.com/en-us/library/x6c1kb0s(v=vs.71).aspx

http://msdn.microsoft.com/en-us/library/x6c1kb0s(v=vs.71).aspx
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The upper frame uses the MegaL/yEd visual notation for megamodeling.

The lower frame shows linked artifacts of the product explained later in the paper.

Fig. 1. The linguistic architecture of a software product when displayed with the Me-
gaL/Explorer tool

(see CompanyXSD2CS.bat), which essentially invokes the .NET tool xsd.exe
(see dependsOn). Ultimately, the operation for cutting companies is invoked by
demo functionality (see Demo.cs) and applied to a specific company—the Acme
Corporation.5

5 http://en.wikipedia.org/wiki/Acme_Corporation

http://en.wikipedia.org/wiki/Acme_Corporation
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The shown linguistic architecture describes artifacts as they arise during de-
velopment time and runtime together with the relationships regarding dataflow,
language membership, schema/type conformance, and correspondence. Charac-
teristics of the .NET technology for Object/XML mapping are clearly identifi-
able. Consider, for example, the fact that the class generator is not described as
generating ‘arbitrary’ C#. Instead, the subset CSharpFromXsd is introduced for
referring to regular C# as produced by the generator. The identification of such
‘hidden’ languages is fundamental to the understanding of software technologies.

3 Entity and Relationship Types for Megamodels

The proposed form of megamodeling essentially involves the identification and
classification of entities and relationships that make up the linguistic architecture
of software products or the underlying software technologies. In this section, we
gather a set of entity and relationship types that may be used in megamodels.

3.1 Background

There exist megamodel-like models in different areas of computer science. Lin-
guistic relations have been of interest since the early days of computing as tomb-
stone diagrams testify. In Figure 2, on the left, we show a tombstone diagram,
as it is used in compiler construction to describe the bootstrapping process for
a C compiler, also written in the programming language C and compiling to M
(the machine language) such that initially another C compiler is needed—this
time written (or executable) in M . Hence, languages and compilers serve as
entities while relationships are concerned with dataflow or function application
and membership.

On the right, we show a much more recent diagram, as it appears in the
documentation of the ATL transformation language; the diagram shows the me-
chanics of a model transformation in terms of entities for the involved models
and metamodels as well as relationships for conformance and dataflow.

Further inspiration, specifically regarding linguistically relevant relationships,
can be drawn from fundamental research on modeling and model management.
The ‘conformsTo’ relationship is established in modeling for relating models and
metamodels [9, 16]. We also rely on yet other basic modeling relationships (as
in UML)—in particular ‘partOf’ and ‘dependsOn’. The ‘elementOf’ and ‘sub-
setOf’ relationships are hardly used directly in regular modeling, but it appears
in fundamental discussions, when the usage of languages is taken into account as
opposed to sole restriction to metamodel-based conformance [9, 16]. The ‘mod-
elOf’ or ‘representationOf’ relationship [16, 23, 24] is important for capturing
the roles of descriptions, definitions, specifications, programs, or more generally

6 Source: http://en.wikipedia.org/wiki/Tombstone_diagram
7 Source: http://wiki.eclipse.org/ATL/Concepts#Model_Transformation

http://en.wikipedia.org/wiki/Tombstone_diagram
http://wiki.eclipse.org/ATL/Concepts#Model_Transformation
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Fig. 2. Megamodels in different areas of computer science

models in megamodels. Ideally bidirectional intermodel mappings [5,6], with in-
terpretations at both the schema (metamodel) and the instance (model) level,
give rise to the ‘correspondsTo’ relationship in our terminology.

Based on this background, the MegaL ontology defines a set of entity and
relationship types as discussed below.

3.2 Entity Types of MegaL

We distinguish three kind of entities: abstract entities—they appear at the math-
ematical level of thinking; conceptual entities—they are cognitive elements such
as languages or technologies; digital entities—they correspond to artifacts that
reside in and are processed by computers.

In this paper, we use these types of abstract entities : Entity, Set, Pair, Relation,
Function, FunctionApplication (i.e., pairs pertaining to a function). For instance,
functions are needed to model the meaning of tools or programs. Further, we use
these types of conceptual entities : Language and Technology. Languages can be
viewed (in a simplified manner) as sets. Technologies can be viewed as compound
entities with components for tools, languages, and others. Finally, we use these
types of digital entities : Artifact (the base type for the following types), File,
Fragment (of a file), Program, Library, ObjectGraph.

The aforementioned entity types are just sufficient for the examples in this
paper. The megamodel ontology can be extended to cover different domains,
technological spaces, or engineering activities [8]. For instance, a megamodel in
the context of model-driven engineering may benefit in clarity from additional
digital entity types for models, metamodels, and model transformations.

3.3 Relationship Types of MegaL

Based on the fundamental relationships and the types of entities, as identified
above, the following relationship types can be derived. Again, the list is trimmed
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down for the scope of this paper. We apply a UML-like convention to use ‘:Type’
for a concrete (anonymous) entity of the given type.


 :Language subsetOf :Language

 :Artifact elementOf :Language

 :Language domainOf :Function

 :Function hasRange :Language

 :FunctionApplication elementOf :Function

 :Artifact inputOf :FunctionApplication

 :FunctionApplication hasOutput :Artifact

 :Artifact conformsTo :Artifact

 :Artifact partOf :Artifact

 :Artifact correspondsTo :Artifact

 :Artifact dependsOn :Artifact

 :Artifact dependsOn :Language

 :Artifact realizationOf :Function

 :Artifact definitionOf :Language

 :Program partOf :Technology

 :Library partOf :Technology

Megamodels initially just declare entities and relationships. Eventually, meg-
amodels may be linked so that both entities and relationships are meaningfully
demonstrated by actual artifacts of specific software products. This will be dis-
cussed in §6.

4 An Initial Megamodel for O/X Mapping

Megamodeling is demonstrated in this section for O/X mapping. In (schema-
first) O/X mapping [19, 25], one is concerned with marrying object-oriented
programming with XML-based data representation such that an object model
for data representation is generated from an XML schema and library function-
ality is responsible for mediating between XML documents (‘files’) and objects
back and forth. The population of objects from XML data is also called de-
serialization whereas the other direction is referred to as serialization. The no-
tion of O/X mapping is also known as XML data binding. In the context of the
.NET platform, the term XML serialization is used as well.

4.1 Stepwise Development of the Megamodel

Let us develop an initial megamodel for O/X mapping, step by step. We use
MegaL/TXT—this simple textual notation can express the same concepts as the
visual notationMegaL/yEd that we used earlier. The textual notation comes with
straightforward syntactic shorthands for recurring patterns [8] such as ‘→’ and
‘�→’ (instead of combinations of ‘domainOf’, ‘hasRange’, ‘inputOf’, ‘hasOutput’).

We begin with the languages involved in O/X mapping:

Languages XSD, CSharp, XML, ClrObjectGraphs .
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The C# (or CSharp) language is mentioned because it is assumed here that
schema-derived object models are represented in C#. We could make the object-
oriented programming language a parameter of the megamodel, but we commit
to C# here for concreteness’ sake. XSD is the language of XML schemas. XML
is the language of XML trees (or XML documents), i.e., the primary (‘on file’)
representation format for data. Finally, ClrObjectGraphs is the language of ob-
ject graphs. Again, we could make the in-memory representation of objects a
parameter of the megamodel, but we commit to .NET’s CLR representation
here for concreteness’ sake.

In fact, another language should be identified:

Language CSharpFromXsd subsetOf CSharp .

That is, CSharpFromXsd proxies for the C# subset that is used by the class
generator of the O/X mapping technology. In conservative discussions of O/X
mapping, this language is never articulated. However, awareness of this language
and its characteristics helps understanding O/X mapping.

The characteristics of schema-derived object models vary indeed for each O/X
mapping technology. In the case of .NET’s O/X mapping technology, we can
state the following characteristics for all x ∈ CSharpFromXsd : (i) x declares
classes only—as opposed to interfaces, enumerations, etc. (ii) The classes of x
declare fields and properties as members, but no methods. (iii) x use attributes
controlling XML serialization.

Let us now consider the major artifacts involved in O/X mapping. There are
two type-level artifacts involved in such O/X mapping: an XML schema and
an object model. There are also two instance-level artifacts involved: an actual
XML document and an actual object graph:

File xmlTypes elementOf XSD .
File ooTypes elementOf CSharpFromXsd .
File xmlDoc elementOf XML .
ObjectGraph clrObj elementOf ClrObjectGraphs .

We also need to impose ‘conformsTo’ relationships as constraints on the instance-
level artifacts: an arbitrary XML document would not be suitable; it must con-
form to the XML schema at hand; likewise for the object graph. Thus:

xmlDoc conformsTo xmlTypes .
clrObj conformsTo ooTypes .

Ultimately, we expect an O/X mapping technology to provide functionality for
class generation and for deserialization (as well as serialization, which we skip
here though). To this end, we introduce the following conceptual entities, in fact,
functions, and we apply them in the expected manner to relate the artifacts at
the type and instance levels. Thus:

Function classgen : XSD → CSharpFromXsd .
Function deserialize : XML → ClrObjectGraphs .
classgen(xmlTypes) �→ ooTypes .
deserialize(xmlDoc) �→ clrObj .



Modeling the Linguistic Architecture of Software Products 159

Fig. 3. An initial megamodel for O/X mapping drawn with the MegaL/yEd editor

4.2 Summary of the Megamodel

Figure 3 summarizes the megamodel in the form of a diagram drawn with the
MegaL/yEd editor.8 The visual and the textual notation convey the same infor-
mation. Note that icons and colors are bound to entity types in the diagram.
Some megamodel elements can be mapped to different visual elements. For in-
stance, ‘partOf’ relationships are represented by node embedding in the upper
frame of Figure 1, but a regular ‘partOf’ edge could also be used.

4.3 Discussion

The initial megamodel of this section was deliberately kept simple. This interme-
diate state also allows us to reflect on methodological questions of megamodeling:

� Do we model all important aspects of O/X mapping overall?
� What specifics of .NET’s O/X mapping technology should be modeled?

Without focus on O/X mapping, these questions take the following form:

� Do we model all general aspects of the kind of technology at hand?
� What specifics of a concrete technology should be modeled?

It is relatively easy to observe that the megamodel could be enhanced to incor-
porate additional aspects of O/X mapping, overall. For instance, we did not yet
model the fact that O/X mapping is carried out ‘for a purpose’: some OO pro-
gram is meant to use the generated object model to implement data-processing
functionality. As to the question of technology-specific aspects, we did not yet
model the components of .NET’s technology for O/X mapping. These and ad-
ditional aspects are addressed in the following section.

8 Our implementation uses yEd for megamodel editing http://www.yworks.com/en/

products yed about.html with GraphML http://graphml.graphdrawing.org/ for
the representation.

http://www.yworks.com/en/products_yed_about.html
http://www.yworks.com/en/products_yed_about.html
http://graphml.graphdrawing.org/
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5 A Megamodel for O/X Mapping with .NET

We advance the megamodel of the previous section to cover generally more
aspects of O/X mapping and to also apply more directly to the situation for the
.NET platform.

5.1 The Use of Schema-Derived Object Models

The value proposition of O/X mapping depends on the fact that it enables
essentially OO programming on XML data. We capture this aspect in the meg-
amodel by introducing a problem-specific program that is said to depend on the
schema-derived object model. This is another placeholder for an entity that does
not belong to the technology itself, but instead to the software product that uses
the technology. Thus:

File problemProgram elementOf CSharp .
problemProgram dependsOn ooTypes .

5.2 Technology Components for .NET

The technology consists of a code-generation tool, xsd.exe, a library, hosted by
the namespace System.Xml.Serialization, and custom attributes (annotations)
for metadata.9 We declare corresponding entities:

Program xsdDotExe . −− the ”xsd.exe’’ tool
Library XmlSerializer . −− namespace ”System.Xml.Serialization”
Language XsdMetadata .

We can model now the fact that the xsd.exe tool realizes the class generation
functionality for O/X mapping. In fact, the tool also realizes additional func-
tionality, e.g., related to O/R mapping. To this end, the tool can be used in
different modes controlled through the command line or an API, but we do not
model such variability here. Thus:

xsdDotExe realizationOf classgen .

Previously, we simply assumed a function, deserialize, for deserializing XML into
objects, without though clarifying the origin of the function. It is the problem-
specific program that essentially performs de-serialization. In fact, we assume
that some part of the program realizes serialization by making appropriate use
of .NET’s library for XML serialization. Thus:

Fragment deserialization partOf problemProgram .
deserialization dependsOn XmlSerializer .
deserialization realizationOf deserialize .

We can also clarify the role of metadata in O/X mapping. We assume that, sub-
ject to an appropriate interpretation of ‘partOf’ for languages, the C# language
indeed comprises a part for metadata such that metadata for O/X mapping is
a subset of general metadata.

9 http://msdn.microsoft.com/en-us/library/ms950721.aspx

http://msdn.microsoft.com/en-us/library/ms950721.aspx
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Language CSharpMetadata .
CSharpMetadata partOf CSharp .
XsdMetadata subsetOf CSharpMetadata .

Also, we can capture the characteristics of schema-derived classes to depend
on metadata for O/X mapping. We do not formalize other characteristics of
CSharpFromXsd. Thus:

ooTypes dependsOn XsdMetadata .

5.3 Additional Linguistic Details

Let us call problemLanguagea problem-specific language underlying the involved
type-level artifacts. We think of this language as being abstract, rather than
concretely represented by XML trees or object graphs. This language can be
viewed as a proxy for the domain that is covered with a Object/XML mapping
effort.

Language problemLanguage .
xmlTypes definitionOf problemLanguage .
ooTypes definitionOf problemLanguage .

It remains to establish a correspondence relationship between XML and object
types as well as the involved instances:

xmlTypes correspondsTo ooTypes .
xmlDoc correspondsTo clrObj .

At the instance level, the object graph, which is obtained by de-serialization, is
expected to be a representation of the original XML document and vice versa
such that the original document could be re-obtained by serialization from which
we abstract here for simplicity.

At the type level, correspondence means that (ideally) XML schema and ob-
ject model are related by bidirectional intermodel mappings (say, ‘structure-
preserving’ bijections) modulo difficulties due to the O/X impedance mis-
match [18]. The couple of de-serialization and serialization functionalities should
be considered the concrete interpretation of these mappings at the instance level,
but this view is not developed in detail here. More intuitively, we could say that
there is 1:1 mapping of types driven by name equality or similarity, and for each
couple of associated types there is also a correspondence at the ‘member’ level.

5.4 Discussion

We conclude with a discussion of potential directions for enhancing the meg-
amodel. We have focused here on de-serialization, but serialization could also
be of interest, if XML transformation or generation is to be modeled. Further,
we have not modeled any variability or configurability admitted the mapping
technology, as needed for advanced usage scenarios of the technology.
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We claim originality for analyzing O/X mapping by megamodeling. For com-
parison, the arguably most comprehensive catalog of O/X mapping technolo-
gies [25] uses an informal metamodel to compare technologies (tools) on the
grounds of capabilities and limitations—linguistically relevant entities and rela-
tionships are not considered.

6 Linked Megamodels

A difficulty with metamodeling and even more with megamodeling approaches
resides in the high level of abstraction they involve. This difficulty is even exacer-
bated by megamodels that deal with technologies, as in the previous two sections,
because of the gap between the abstract notation and the very concrete artifacts
a software engineer deals with, e.g., some files or objects. As a result it may be
hard to convince anyone that any given statement in the megamodel holds.

Linked megamodels close the gap between abstraction and concreteness by
linking each entity in the megamodel to a web resource. Thus, an entity is no
longer represented merely as an identifier, leaving all room for misunderstanding
and misinterpretation; instead, the identifier is linked to a unique resource that
can be browsed and examined at will. Relationships can also be linked. As a
result, it becomes much easier to understand and to validate megamodels.

6.1 Binding Placeholder Entities

Note that in the megamodel of the previous two sections, artifact placeholders
were used for some entities, e.g., xmlDoc and clrObj. When the goal is to validate
or illustrate the megamodel, then it is useful to ‘bind’ placeholders to actual
artifacts. This has been done in Figure 1 with the concrete artifacts being part
of a particular software product. That is, X/O mapping is illustrated thanks
to the xsdClasses implementation of the 101companies project. For instance,
the placeholder xmlDoc is bound to Company.xsd—an XML schema file of the
xsdClasses implementation.

6.2 Exploring Linked Megamodels

From the end-user perspective, linked megamodels are seen as hypertext docu-
ments that can be explored. Figure 1 shows a screenshot of the MegaL/Explorer
tool. The upper frame corresponds to a clickable image that is produced with Me-
gaL/Editor. Within the context of the explorer, a click on an entity displays the
corresponding resource in the lower frame. For instance, clicking on the CSharp
node leads to a wiki page for C# according to the 101companies project; click-
ing on xsd.exe node also leads to a page for the tool; clicking on a file, e.g.,
Company.xsd, displays the content of the file extracted from the 101companies
repository. Relationships (i.e., graph edges) are also clickable. In Figure 1, the
user has selected the (circled) correspondence link between the Company frag-
ments respectively in Company.xsd and Company.cs. As a result, the source
fragments are shown side by side in the lower frame—clearly showing what the
xsd.exe tool actually generates for a given example.
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_:xmlTypes rdf:type mgl:File .
_:xmlTypes rdfs:label "xmlTypes" .
_:xmlTypes mgl:elementOf lang:XSD .
_:xmlTypes mgl:inputOf _:classgen .

_:xmlDoc rdf:type mgl:File .
_:xmlDoc rdfs:label "xmlDoc" .
_:xmlDoc mgl:elementOf lang:XML .
_:xmlDoc mgl:conformsTo _:xmlTypes .
_:xmlDoc mgl:inputOf _:classgen .

_:classgen_app_1 rdf:type mgl:FunctionApplication .
_:classgen_app_1 rdfs:label "classgen" .
_:classgen_app_1 rdf:elementOf _:classgen .
_:classgen_app_1 rdf:hasOutput _:ooTypes .

... etc. ...

Entities are associated with a pre-
fix, e.g., rdf, corresponding to a
unique URI (not shown here). This
means that each entity is now asso-
ciated with a URL where the cor-
responding resource can be found.
Only ‘blank nodes’, i.e., those with
the prefix, are local identifiers. The
rdf and rdfs prefixes refers to RDF
and RDFS definitions respectively.
The prefix mgl refers to the MegaL
ontology which contains definitions
for both entity types (represented
as OWL classes) and relationships
types (represented as OWL proper-
ties).

Fig. 4. Figure 3 expressed in MegaL/RDF

_:CompanyDotXSD rdf:type mgl:File .
_:CompanyDotXSD rdfs:label "Company.xsd" .
_:CompanyDotXSD mgl:elementOf lang:XSD .
_:CompanyDotXSD mgl:inputOf _:CompanyXSD2CSDotBat .
_:CompanyElement mgl:partOf _:CompanyDotXSD .
_:CompanyElement rdf:type mgl:FileFragment .
_:CompanyElement rdfs:label "Company" .
... other fragments omitted ...

_:CompanyDotXSD mgl:partOf impl:xsdClasses .
_:CompanyDotXSD mgl:filename "./Company.xsd" .
_:CompanyElement mgl:xpathLocation

"//*[@name=\"Company\"]" .
... etc

The first block of triples shows some
properties of the file Company.xsd

including its decomposition into
fragments.

The second block models links
to online software artifacts. For
instance the impl prefix refers
to 101companies implementa-
tions, ./Company.xsd refers to
a file name, and the property
mgl:xpathLocation refers to a
fragment of the schema file.

Fig. 5. RDF-based links for the megamodel of Figure 1

6.3 MegaL/RDF, Linked Megamodels and Linked Data

Technically, linked megamodels are represented in RDF by following Linked
Data10 principles. Figure 4 and Figure 5 show fragments of two megamodel ex-
pressed in MegaL/RDF as sets of triples while using RDF/turtle syntax. The
first figure is concerned with the general megamodel for O/X mapping. It con-
tains therefore placeholders with generic names, e.g. xmlDoc and xmlTypes).
By contrast, the second figure is concerned with the bound megamodel for the
101companies implementation xsdClasses. It contains product-specific names,
e.g. , CompanyDotXSD, but also, and this is a very important aspect, links to
concrete software artifacts, which should be considered as resources according
to RDF principles.

10 http://linkeddata.org/

http://linkeddata.org/
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Since all information in the 101companies project is represented as RDF
triples, links between 101companies resources and external ones such as
Wikipedia pages, i.e., dbpedia11 resources in terms of RDF, this approach there-
fore enables the integration of megamodels and various other resources in the
Linked Data global data space.

7 Related Work

Megamodeling. Megamodeling is somewhat established in the communities of
modeling and model-driven engineering. Existing forms of megamodels do not
cover the range of linguistic relationships of MegaL (such as ‘elementOf’, ‘sub-
setOf’, and ‘correspondsTo’); they have not been used in a manner to understand
software technologies across technological spaces. We look at representative ex-
amples. In [27], megamodeling is applied to the human-computer interaction do-
main. In [10], a UML/OCL-based megamodel of MDA/MDE is provided, thereby
supporting reasoning about MDA/MDE. In [30], megamodeling is used for or-
ganizing and utilizing runtime models and relations in a model-driven manner
while also supporting a high level of automation. In [15], megamodeling is used to
coordinate “heterogeneous” models in the sense of conforming to a multiplicity
of metamodels expressed in different DSLs. In [13], megamodeling is applied to
model transformation with the objective of supporting the evolution of software
architectures. In [14], some forms of megamodels and associated applications are
surveyed.

Some model transformation approaches involve explicitly chains or composi-
tions of transformations, perhaps even involving different model transformation
languages and dealing with different ‘modeling spaces’. Such compositions can
be viewed as a form of executable megamodels. In [20], the authors motivate the
need for a precise semantics for model-to-model transformations, thereby en-
abling verification of correctness for compositions, thereby, in turn, encouraging
reusability.

Foundations of Modeling. Our work is substantially inspired by recent efforts
on the foundation of modeling from which we derive basic idioms of megamod-
eling. We rely on established relationships such as ‘conforms to’ and ‘element
of’ [9,16]. Further, there is the multi-faceted ‘represents/models’ relation [23,24].
We derive the correspondence relation from the field of model management.
In [5,6], a categorical approach to intermodel mappings including heterogeneous
(meta)model correspondences is developed.

Viewpoints. We consider megamodels as supporting another ‘point of view’ in
the tradition of viewpoints in software development [12]. Viewpoints are used in
practice, specifically for enterprise architecture [28], on the basis of the reference
model RM-ODP12 and the IEEE-1471 standard13. Each viewpoint is typically

11 http://dbpedia.org
12 http://www.rm-odp.net/
13 http://standards.ieee.org/findstds/standard/1471-2000.html

http://dbpedia.org
http://www.rm-odp.net/ 
http://standards.ieee.org/findstds/standard/1471-2000.html
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associated with one or more designated modeling languages [4] subject to dif-
ferent metaware [8] (i.e., metamodels and model-driven software technology). In
this paper, we enable the linguistic point of view.

8 Conclusion

We have developed a form of modeling that targets the linguistic architecture
of software technologies and software products. Megamodels serve as cognitive
models for the benefit of software engineers, software linguists, and others.

We expect to advance the 101companies project to provide megamodels sys-
tematically for a substantial number of software technologies and 101companies
contributions. We plan to use such megamodels in teaching software technologies
to undergraduates. Without megamodels, it is very difficult to convey sufficiently
abstract knowledge about, for example, technologies for Object/Relational/XML
mapping in university courses.

Future research should advance the megamodeling approach in several dimen-
sions. Megamodels should be extended to incorporate declarative descriptions of
relationships for conformance, correspondence, membership, and others so that
the cognitive value of such extended megamodels is improved. For instance,
newly identified languages, such as the C# subset used by the generator in our
example, could be properly described in this manner. Also, our understanding
of intermodel mappings, such as the mapping between XML and object types,
could be properly explained in this manner. Such descriptions could leverage
language support for code queries.

The notion of linked megamodels will be advanced so that some links can
be recovered semi-automatically from products that adhere to some tagging and
naming rules. Also, static and dynamic program analysis will be leveraged so that
the applicability of a generic megamodel to a specific product can be verified and
eventually inferred.
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Abstract. Contemporary software systems combine many artifacts
specified in various modeling and programming languages, domain-
specific and general purpose as well. Since multi-language systems are so
widespread, working on them calls for tools with cross-language support
mechanisms such as (1) visualization, (2) static checking, (3) navigation,
and (4) refactoring of cross-language relations. We investigate whether
these four mechanisms indeed improve efficiency and quality of devel-
opment of multi-language systems. We run a controlled experiment in
which 22 participants perform typical software evolution tasks on the
JTrac web application using a prototype tool implementing these mecha-
nisms. The results speak clearly for integration of cross-language support
mechanisms into software development tools, and justify research on au-
tomatic inference, manipulation and handling of cross-language relations.

1 Introduction

Developers building contemporary software systems constantly deal with mul-
tiple languages at the same time. For example, around one third of developers
using the Eclipse IDE work with C/C++, JavaScript, and PHP, and a fifth of
them use Python besides Java [1]. PHP developers regularly use one to two lan-
guages besides PHP [2]. Developers of large enterprise systems face a particularly
complex challenge. For instance, OFBiz, an industrial quality open-source ERP
system combines more than 30 languages including General Purpose Languages
(GPLs), several XML-based Domain-Specific Languages (DSLs), along with con-
figuration files, property files, and build scripts. ADempiere, another industrial
quality ERP system, uses 19 languages. The eCommerce systems Magento and
X-Cart utilize more than 10 languages each.1

We call systems using multiple languages, Multi-Language Software Systems
(MLSSs). Obviously, the majority of modern software systems are MLSSs.

To demonstrate how disturbing development of MLSSs is, lets consider an
example extracted from JTrac, an open-source, web-based bug-tracking system.
JTrac’s login page (Fig. 1) is implemented in three source code files in three dif-
ferent languages. The login page itself is described in HTML (Lst. 3), displayed
messages are given in a properties file (Lst. 1), and the logic evaluating a login
1 See ofbiz.apache.org, adempiere.com, magentocommerce.com, x-cart.com
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1 login . title = JTrac Login

2 login .home = Home

3 login .loginName = Login Name / email ID

4 login .password = Password

5 login .rememberMe = remember me

6 login .submit = Submit

7 login . error = Bad Credentials

Listing 1. A fragment of a
properties file

1 private class LoginForm extends StatelessForm {

2 private String loginName;

3 private String password;

4 public String getLoginName() {

5 return loginName;

6 }

7 public String getPassword() {

8 return password;

9 }

Listing 2. A fragment of Java login
logic

1 <table class ="jtrac">

2 <tr>

3 <td class ="label"><wicket:message key="login.loginName"/></td>

4 <td colspan="2"><input wicket:id="loginName" size="35"/></td>

5 </tr>

6 <tr>

7 <td class ="label"><wicket:message key="login.password"/></td>

8 <td><input type="password" wicket:id="password" size="20"/></td>

9 <td align="right">

10 <input type="submit" wicket:message="value:login.submit"/>

11 </td>

12 </tr>

Listing 3. A fragment of the HTML code describing JTrac’s login page

is described in Java (Lst. 2). The HTML code describes the structure of the
login page and its contents—how the input fields for login and password in-
sertion are laid out and how they are ordered. Since JTrac is built using the
web-development framework Wicket, the HTML code contains wicket identifiers,
which serve as anchors for string generation or behavior triggering, see lines 3,
4, 7, 8, and 10 in Lst. 3. The properties provide certain messages for the login
page. For instance, the property on line 3 in Lst. 1 provides the message string
for line 3 of the HTML code. The Java code (Lst. 2) provides authentication
logic. Most of this code is not shown here, to conserve space. In order, to cor-
rectly invoke the Java code, the field names (lines 2–3), the corresponding get
methods (lines 4 and 7), and the set methods (not shown), must use the same
name as the wicket identifiers on lines 4 and 8 in Lst. 3.

Now, imagine that a developer renames the string literal login.loginName on
line 3 in the HTML code to login.loginID. Obviously, the relation between the
properties file (line 3) and the HTML file is now broken. In effect, the message
asking for a login name is not displayed correctly anymore, see Fig. 2. The mis-
take is only visible at runtime. Observe that such small quiet changes of behavior
can easily be missed by testers. Similarly, renaming the string literal loginName
on line 4 in Lst. 3 to loginID breaks a relation to the field loginName in the Java
file (affects lines 2, 4, and 5 in Lst. 2). The effect of this change is even more
serious since JTrac crashes with an error page, see Fig. 3.

We believe that development of MLSSs could be significantly improved if Inte-
grated Development Environments (IDEs) included support for multi-language
development, known from single languages, such as (i) visualization (ii) static
checking for consistency, (iii) navigation and (iv) refactoring of cross-language
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Fig. 1. Error-free login page Fig. 2. Login page with a broken
relation between HTML and prop-
erty code

Fig. 3. Login page with a broken relation between HTML and Java code

relations. In the remainder we refer to these four mechanisms as Cross-Language
Support (CLS) mechanisms. In this paper, we address the following research
question on CLS:

Do Cross-Language Support mechanisms improve developer’s understanding
of the system and reduce the number of errors made at development time?

To investigate this question we run a controlled experiment in which 22 partic-
ipants perform typical development and customization tasks on JTrac, a repre-
sentative MLSS.

It is well known that maintenance and customization of software systems is
expensive and time consuming. Between 85% to 90% of project budgets go to
legacy system operation and maintenance [5]. Lientz et al. [12] state that 75% to
80% of system and programming resources are used for extensions and mainte-
nance, where alone understanding of the system stands for 50% to 90% percent of
these costs [18]. The results of our experiment demonstrate (i) that developers us-
ing CLS mechanisms find and fix more errors in a shorter time than those in the
control group, (ii) that they perform development tasks on language boundaries
more efficiently, and (iii) that even unexperienced developers provided with CLS
perform similarly or better than experienced developers in developing MLSSs.
Clearly, the integration of CLS into IDEs and development tools would con-
tribute to reducing the high cost of software maintenance and evolution. These
results confirm the importance of research on interrelating models and mod-
eling languages, such as trace models [7,14], multi-modeling [8], mega-models [9],
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macromodels [17], and relation models [15,16]. Additionally, the results motivate
research on automatic inference of cross-language relations.

The JTrac system plays a role of the experimental unit in our setup. We use a
prototype development editor, TexMo, as the experimental variable, by enabling
and disabling its cross-language support. JTrac and TexMo are presented in
Sect. 2. Section 3 describes our methodology and the setup of the experiment.
We analyze the results in Sect. 4, discuss threats to validity in Sect. 5 and related
work in Sect. 6. We conclude in Sect. 7.

Experiment artifacts referred in this paper are available online at
www.itu.dk/people/ropf/download/Experiment.zip. The archive contains TexMo’s
source code, the JTrac instance used for the experiment, all documents, ques-
tionnaires, answers, and statistics. Screen captures are available on request, as
they take up a lot of space.

2 Technical Background

2.1 JTrac: An MLSS Representative

We use the open-source web-based bug-tracking system JTrac as an experimen-
tal unit in our experiment. JTrac’s code base contains 374 files of which the
majority (291) contain code: Java (141), HTML (65), property files (32), XML
(16), JavaScript (8), and 29 other source code files such as Shell scripts, XSLT
transformations, etc. The remaining 83 files are images such as “.png”, “.gif”
and a single jar file. Most of the property files are used for localization of sys-
tem messages. The XML files are used for various purposes, for example to
give an object-relational mapping describing how to persist business objects. As
many other web-applications, JTrac implements the model-view-controller pat-
tern. This is achieved using popular frameworks: Hibernate (hibernate.org) for
object-relational mapping and Wicket (wicket.apache.org) to couple views and
controller code. Clearly, JTrac is a MLSS.

2.2 TexMo: A Multi-language Programming Environment

TexMo is a prototype of a Multi-Language Development Environment [16] devel-
oped by Pfeiffer. It is an editor that allows to interrelate source code in multiple
languages. TexMo uses a relation metaphor. Relations are defined between ref-
erences and keys. A key is a fragment of code that introduces an identifiable
object, a concept, etc. A reference is a location in code that relates to a key. Re-
lations are always many-to-one between references and keys. TexMo addresses
MLSSs development by implementing the CLS mechanisms as follows:

1. Visualization. TexMo highlights keys and references in gray. See reference
from l.1̇43 in Fig. 4b to l. 15 in Fig. 4a. Keys are labeled with a key icon
and references are labeled by a book icon; see Fig. 4, left to line numbers.
Inspecting markers reveals further details, such as how many references and
in which files refer to a key.

www.itu.dk/people/ropf/download/Experiment.zip
hibernate.org
wicket.apache.org
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(a) HTML code, which fills a message given by a property name.

(b) A properties key options.manageUsers.

Fig. 4. Declaration of a Wicket id and its use

2. Navigation. Users can access the key from any of its reference and navigate
from a key to any of its references. Navigation is activated via a contextmenu.

3. Static checking. TexMo statically checks cross-language relations. Broken re-
lations are underlined red and labeled by a standard error indicator, see Fig. 5.

4. Refactoring. Broken relations can be fixed automatically by applying quick
fixes. TexMo’s quick fixes are key centric rename refactorings. Applying a fix
to a key renames all references to the content of the key. Dually, applying a
quick fix to a reference renames this single reference to point to its key.

TexMo is an Eclipse plugin. It uses a universal model for representation of any
textual language. That is, any source code file is an instance of an EMF-based
DSL, which relies on the physical structure of its text. Code is represented as
paragraphs, words, parts of words, characters, and special characters like dots or
semicolons. This universal representation of source code permits the use of a uni-
versal relation model, to track relations across different programming artifacts, to
link arbitrary information across language boundaries and to synchronize these
relations whenever programming artifacts are modified by developers. Further
information about TexMo is available in [16].

3 The Experiment

We run a controlled experiment with 22 participants divided into two groups.
The control group A performs the tasks using TexMo with CLS disabled. The
treatment group B uses TexMo with all four CLS mechanisms enabled.

3.1 Hypotheses

We refine the initial research question into five specific hypotheses:

H1. Developers using CLS find and fix more errors than the developers in the
control group. This hypothesis aims at capturing the effectiveness of CLS.
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Since developers get more support by the IDE guiding to problems and
offering possible solutions, we expect them to find and fix more errors.

H2. Using CLS does not have negative impact on speed of work. Since CLS
provides more information that need to be processed by developers, it could
take longer working with CLS than without it (due to information flooding).

H3. The least experienced developers using CLS perform better than the most
experienced developers in the control group. Since we expect experienced
software developers to perform better than non-experienced developers, it
is interesting to investigate how close non-experienced developers can be
brought to the quality and performance of experienced ones by just offering
CLS. Note, that we refer to general experience in software engineering not
experience related to the experimental unit JTrac.

H4. Developers using CLS locate errors in source code, whereas developers in
the control group identify effects of errors. We expect developers in the
treatment group, those using CLS, to describe errors on a different level of
abstraction. They will locate errors, i.e., which code constructs in relation
with others are responsible for erroneous behavior, whereas developers in
the control group will identify effects of errors, i.e., the erroneous behavior
of the system. This would mean that developers using CLS have a deeper
understanding of the implementation of the system under development.

H5. Developers use CLS mechanisms. We expect developers offered CLS mech-
anisms to actually use them voluntarily.

3.2 Experiment Design

We use the terminology of Juristo and Moreno [10, Chpt. 4.2] in our description.

The Experimental Unit. JTrac is a representative of a MLSS. It uses more than
5 languages and with its size of nearly 300 source code files it is sufficiently large
to not be easily understandable by the experiment subjects within the given
time.

The Experimental Variable. We used TexMo as an IDE with CLS. We are not
aware of any other tool supporting the four CLS mechanisms simultaneously.
Other existing tools either only provide CLS for particular pairs of languages like
IntelliJ IDEA (jetbrains.com/idea), are no longer available, like X-Develop [20], or
they do not implement all four mechanisms simultaneously. Also, since TexMo is
an Eclipse extension it allows the participants to work in a familiar environment.

Factors. We follow a single-factor with two alternatives experiment design. The
factor alternatives are TexMo with visualization, navigation, static checking and
refactoring of cross-language relations disabled and the full-featured TexMo as
described in Sect. 2. Group B uses the full-featured TexMo and the control group,
Group A, uses the restricted TexMo. The latter simulates using a modern IDE.

jetbrains.com/idea
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The Response Variables. We have four response variables representing all quan-
titative outcomes: number of found errors, number of fixed errors, and the times
for finding and fixing errors.

The Pre-Experiment. Before the actual experiment we ran a pre-experiment
with five participants, three using the full-featured TexMo editor and two using
the control group version. The purpose of the pre-experiment was to check if
the experiment tutorials, task descriptions, and objects are consistent, correct
and can be understood. In response to the results of the pre-experiment we have
fixed incorrect file paths, typos, and wrong line numbers in the task document,
and we improved error markers in the TexMo editor. The participants of the pre-
experiment have not been used in the main experiment to avoid learning effects.
The results of the pre-experiment are not included in the statistics below.

The Pre-Questionnaire. To avoid bias in the distribution of participants in two
groups with similar technical experience, we let everyone answer a short ques-
tionnaire prior to the actual experiment. We asked 13 yes-no questions about
the technical experience of participants: did they develop web-applications be-
fore and whether they know and used the web-application frameworks Wicket
(wicket.apache.org) or Spring (springsource.org), the object relational mappers
Cayenne (cayenne.apache.org) or Hibernate (hibernate.org), the IDEs VisualStudio
(microsoft.com/visualstudio) or Eclipse (eclipse.org).

Only Wicket, Hibernate, and Eclipse are used in the experiment but we asked
for alternative technologies to minimize the risk that a participant tries to learn
about an important technology before the actual experiment.

The Experimental Subject. This experiment is conducted with 22 experimental
subjects falling into four major categories: software professionals along with PhD,
MSc, and undergraduate students at The IT University of Copenhagen.

The youngest participant is 18 and the oldest is 48, average age is around
29 years, median 28. Nineteen participants report that they have been working
as professional software engineers for at least half a year, with maximum of 13
years (average work experience: around 3 years, median 3 years). Two PhD and
one graduate student have no experience as professional software engineers.

We distributed the subjects in two groups, one per factor alternative. The
distribution was solely based on technological experience reported in the pre-
questionnaire, described above.

From the 22 participants, 19 reported to have experience with web-application
development, 1 already used Wicket, 5 used Hibernate, and 20 have experiences
using the Eclipse IDE. Participants were assigned randomly to distribute them
equally according to their experience. In Group A, 10 persons have experience
developing web-applications, none of them used Wicket before, 2 of them used
Hibernate, and 9 used the Eclipse IDE. Similarly, in Group B, 9 persons have
developed web-applications before, 1 of them used Wicket, 3 of them Hibernate,
and 9 of them Eclipse.

wicket.apache.org
springsource.org
cayenne.apache.org
hibernate.org
microsoft.com/visualstudio
eclipse.org
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(a) Declaration of the fieldsText id attached
to a span tag.

(b) Java code that fills a panel to the span HTML element

Fig. 5. Declaration of a Wicket id and its use

The demographic characteristics of the sample were established using a post-
questionnaire (see below). Group A’s average age is 29 years, with a median of
28, average work experience is 3.67 years with a median of 3 years. For Group B
the age average is 28.64 years with a median of 30, and average work experience
is 3.22 years with a median of 3 years.

The Tutorials. At the beginning of the experiment each participant received a
tutorial explaining how to compile, start, and stop JTrac. Group B received an
extended version explaining the CLS mechanisms of TexMo. To reduce bias, all
features are described using an example in a different domain than the one used
for the experiment—the development of a Safari browser extension.

The Tasks. The subjects were asked to perform three tasks representing typical
development and customizations tasks. Each task had to be completed, includ-
ing a brief per task questionnaire, within the 10 minutes. After 8 minutes the
participant was reminded that only two minutes were left. After 10 minutes the
participants were asked to proceed to the next task. We recorded screen contents
of subjects solving the tasks.

Task 1. The participants received an instance of JTrac in which a cross-language
relation was broken. Figure 5 shows the error: we renamed fields to fieldsText, the
wicket:id attribute in a span tag of the HTML code in line 35. This string literal
serves as a key for two references in the corresponding Java code. The renaming
leads to a runtime error whenever a new issue report is added to the system.

The participants where asked to locate the error in the source code, name all
files which contribute to the error, and to fix the error. The error can be fixed
by renaming the key fieldsText to fields or conversely by renaming the references
from fields to fieldsText. We considered both solutions as valid fixes.
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Fig. 6. Declaration of a Wicket id and its use

1 < t r>

2 <t d c l a s s=" l a b e l "><wi cke t : message key=" logon . logonID"/></ t d

>

3 <t d c o l s p a n="2">< i n p u t wicket : i d=" logonID" s i z e="35"/></ t d>

4 </ t r>

Listing 4. HTML code replacing lines 20 to 23 in Fig. 6

Task 2. We asked to rename the property options.manageUsers in line 143 Fig. 4b
to options.manageAllUsers. This renaming breaks a cross-language relation be-
tween a properties file and HTML code. The system will still run error free
but a message next to an icon on JTrac’s administration page is not displayed
anymore.

The participants were asked to name all files contributing to the newly intro-
duced error and to fix the error. We recognize both renaming options.manageUsers
to options.manageAllUsers in the HTML code and reverting the change applied
to the properties file as valid solutions.

Task 3. The participants were asked to replace a block of code. Figure 6 shows
the HTML code of JTrac’s login page. Lines 20–23 implement a table row dis-
playing labeled input fields. Line 21 contains a key login.loginName and line 22
contains another key loginName. A property file providing the text labels refers
the login.loginName. The loginName key is referred from a Java class that evalu-
ates user’s input.

The participants were asked to replace the code block in lines 20–23 with
the HTML code given in Fig. 4. Replacing this block removes two keys and
breaks several references across three files in different languages. We asked the
participants to name all files containing dangling references and to explain how
to fix the problem.

The Post-Questionnaire. The post-questionnaire gathered both qualitative and
quantitative data, mostly about the demographics: age, length of professional
experience, size of developed systems, experience in web-development, familiar-
ity with IDEs, whether they tried to learn technologies mentioned in the pre-
questionnaire. Some of the questions overlapped with the pre-questionnaire, to
verify consistency, or to check for temporal changes. We also asked if a partici-
pant experienced problems working with TexMo, and whether TexMo could be
beneficial for software development, to collect feedback about our tooling.
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Table 1. Success rate per task (n/a=not applicable). Each group has 11 members

Task 1 Task 2 Task 3 Average
A B A B A B A B

error located 9.09% 100% 45.45% 100% 0% 100% 18.18% 100%
error effect located 45.45% n/a 36.36% n/a 90.9% n/a 57.57% n/a
error fixed 0% 100% 45.45% 100% qualitative 22.72% 100%

4 Results

H1. Developers using CLS find and fix more errors than the developers in the
control group. We distinguish between locating an error and observing its effect.
A participant locates an error if she properly names all files contributing to an
error and navigates to corresponding lines within the code. She only observes the
effect of an error if she runs the application and identifies erroneous behavior.

The results are summarized in Tab. 1. All developers in Group B successfully
locate errors in all tasks. Only one developer in Group A locates the error in
Task 1, five locate the error introduced in Task 2, and none is able to locate the
errors in Task 3. Four developers in Task 1 and five developers in Task 3 managed
to partly locate errors, indicating some files contributing to an error but not all.

Tasks 1 and 2 ask the participants to fix the errors. In Task 3 the participants
explain how to fix the problem. This is why Tab. 1 contains no success rates
for fixing errors for Task 3. All members of Group B fix the error in Task 1,
compared to none in Group A. In Tasks 2 and 3, a substantially larger fraction of
participants fixes the errors in Group B than in Group A. On average Group B is
around five times more effective in locating errors than Group A and nearly four
times better in fixing errors than Group A. We conclude that CLS significantly
improves effectiveness of locating and fixing errors in the presented case.

H2. Using CLS does not have negative impact on speed of work. We measure
the time to locate errors (Group B) or observe effects of errors (Group A) and
the subsequent times to fix identified errors (both groups). The results per task
are illustrated in Fig. 7 (� and + symbolize outliers outside 3 times, or between
1.5-3 times the interquartile range). We only report the time for participants
completing a task, at least partly within the given time.

Group B finds and fixes errors faster than Group A, in Tasks 1 and 2. For
Task 3 Group A is slightly faster than Group B. But remember that we give the
time to observe an error’s effect for Group A and the time to locate an error for
Group B. To fix the error the members of the control group would still need to
locate it.

In Task 1 (column 1 in Fig. 7) only six participants in the control group locate
the error and none of them is able to fix it. Consequently, there is no correspond-
ing box-plot in the second column of Fig. 7. In Task 2, only five participants in
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Fig. 7. Time to find and fix errors per
group and task in seconds
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Fig. 8. Time to find and fix errors for the
most experienced third of Group A and
the least experienced in Group B

Group A suceed to locate and fix the error. For Task 3 ten Group A participants
locate the error. All eleven participants in Group B locate and fix all the er-
rors in all tasks (100% success rate). For Task 3, Group A members are slightly
faster. This is because the observable error effect appears directly on the login
page and is easy to find. Still, members of Group A are not able to find all files
contributing to the error, see Tab. 1.

Since Group B is always similarly fast (Task 3) or faster (Tasks 1 and 2) than
Group A, we conclude that CLS does not have negative impact on effectiveness
in the presented case.

H3. The least experienced developers using CLS perform better than the most
experienced developers in the control group. We ordered participants in both
groups based on age, professional experience, experience in engineering of large
software systems and web-applications, and the size of developed systems. In
our sample, high experience correlates with age, work experience, experience
in development of large systems, and with the sizes of systems developed. We
compare the four most experienced developers in Group A with the four least
experienced in Group B. Figure 8 illustrates the time used per task. We give the
time until a participant observed the effect of an error for Group A and the
time to locate an error for Group B. Only three of the selected four members in
Group A contribute data to the analysis, since one of the participants did not
finish the tasks within the allotted ten minutes.

Clearly, the least experienced members of Group B are faster in locating errors
than the most experienced members of the control group, in Tasks 1 and 2. Again,
in Task 3 the error is easily observable directly on the login page. Group A mem-
bers are slighty faster in finding the effect but do not find all files contributing
to the error.
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Table 2. Rate of Group B participants using CLS per task

Task 1 Task 2 Task 3

read markers 100% 100% 100%
used navigation 63.63% 72.72% 18.18%
used refactoring 63.63% 45.45% qualitative

For errors which are not easily observable, developers exploiting CLS are faster
in finding and fixing errors than developers without them, despite disadvanta-
geous difference in reported experience.

H4. Developers using CLS locate errors in source code, whereas developers in
the control group identify effects of errors. Members of Group B always locate
errors successfully, see Tab. 1. Only one participant in Group B decided to start
JTrac but did not even look at it. Significantly less members of Group A locate
errors. Usually, they do observe the effects, and only subsequently they search
for error locations if time is left. They rely on text search within the code base
for locating the errors.

Members of Group B reason right from the beginning about abstract struc-
tures of the implementation, rather than merely observing effects of errors. This
increases their effectiveness as indicated by the following quote from a post-
questionnaire: I liked the references part and the checking. Usually, if you change
the keys/references you get errors at runtime which is kind of late in the pro-
cess. At the same time members of Group A are often not aware, that errors are
caused by broken cross-language relations, as seen from their task notes. They
either do not locate the error, or admit that they do not know the reason, or
simply repeat the error message from the running system. Clearly, members of
Group B work on a higher cognitive level than members of Group A.

H5. Developers use CLS mechanisms. All participants in Group B actually use
visualizations. They actively investigate error markers by hovering the mouse
cursor over them to get more detailed error descriptions. Over 45% of partici-
pants for Tasks 1–2 use navigation and automatic refactoring, see Tab. 2. Most
do not use navigation, when replacing a code block, since they just deleted the
keys, which they could use as navigation start points. Those participants who
used navigation did so by undoing the changes and calling navigation from the
old keys. This indicates need for new user interface design that would allow ac-
cessing deleted relations in a natural manner. No participants used automatic
refactoring for Task 3, since TexMo does not implement automatic inference of
possible keys out of the newly inserted code.

Furthermore, members of Group A complain that there is no static checking
for the errors created when breaking cross-language relations. They expect this
feature from an IDE searching for error markers or warnings. It is difficult to



180 R.-H. Pfeiffer and A. Wąsowski

identify the errors [and]. . . to navigate through the source code structure. Con-
trary, Group B members not only do use CLS mechanisms, but also admit that
[TexMo] solves [a] commonly experienced problem when software project involves
multiple languages. These results strengthen our believe that higher speed and
success rate in Group B is not accidental, but indeed caused by the availability
of CLS mechanisms in their version of TexMo.

5 Threats to Validity

To ensure that the results and conclusions in Sect. 4 are statistically sound, we
test hypotheses H1 to H3 statistically. Hypothesis H4 relies on qualitative data
and hypothesis H5 only observes behavior of Group B, the treatment group. We
apply a χ-test to the sample data for hypothesis H1 and Student’s t-test to the
sample data of hypotheses H2 and H3. The effective null-hypothesis for every
test is that there is no difference between the experimental factor’s alternatives
(μA = μB), so CLS mechanisms do not aid software developers measurably.

We reject the null-hypothesis for H1, as all p-values are below significance level
(0.05), meaning that for all tasks the alternative providing CLS has a significant
impact on developers. For Tasks 1–3 developers in the treatment group perform
significantly better than in the control group.

Testing H2 and H3, results in a statistically significant performance gain for
the treatment group to locate errors, except if the errors are easily observable.
However, performance is not statistically significantly better for fixing errors if
we apply the test to the part of the control group that suceeded (no time to fix
the error is available for the subjects who failed). Applying the t-test assuming
time larger than 10 minutes for those participants who did not complete the
tasks, confirms a significant performance improvement when fixing errors using
CLS in Tasks 1–2. All statistical test data is available in the online appendix.

Internal Threats to Validity. The extended tutorial, explaining TexMo’s features,
might have caused a learning effect on members of Group B. They might have
been more aware of cross-language relations. We believe that these effects are
sufficiently minimized by choice of an example from a completely different do-
main. Also we assumed that in a standard development scenario, the developers
would be aware of CLS support, either through reading manuals or by observ-
ing user interface visualizations. A tutorial might have helped them to use them
faster in the beginning, which is justified within a frame of a short experiment
task. Undoubtedly, they would be able to use the CLS mechanisms even more
fluently, if they applied them in a daily work.

Arguably, the sample sizes for H1 tests are very small, while the χ-test is
best applied for larger frequencies [10]. We used it, mostly to get a feeling for
the data and to give an indication for a trend. Extending the experiments with
more participants will have to prove this trend. Similarly, sample sizes pose a
threat to validity when testing H2 and H3 with t-tests; in particular, testing
H3 where three data points of Group A are compared to four data points of
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Group B is questionable. Note though, that comparing to similar experiments in
related work [21,19] our sample size is large. Indeed this is the largest controlled
experiment about CLS mechanisms, that we are aware of.

It can be questioned if times for locating errors (Group B) are at all compa-
rable with times for just observing their effects (Group A). We believe that this
is not a problem since for the control group the time to observe the effect is a
lower bound for the time to locate an error. So we compare an optimistic under
approximation with complete time, and Group B still performs favorably.

External Threats to Validity. We ran a blind experiment. We tried to minimize
bias of the participants by relying on written questionnaires and provided only
minimal help on request. Typical help was to point the participants to the ap-
propriate Ant task to compile and run JTrac.

There is a risk that participants could have learned about technologies after
answering the pre-questionnaire. In the post-questionnaire we re-evaluate the
known technologies and note that only four participants learned about a pre-
viously unknown technology. Two of them studied Cayenne and Spring respec-
tively, which poses no threat as they are not used in the experiment. Another
two learned about Wicket and Hibernate. Since they fall in two separate groups
we do not think that this poses a threat to our grouping.

If our subjects were JTrac experts, they would be able to apply the fixes
faster and the disparity would likely be smaller. However, the task of changing
unknown code is a common scenario, so the results are valuable.

The factor alternative for control group, with disabled CLS, is not a plain
Eclipse. TexMo does not implement all features of Eclipse editors. In particular
it does not implement all the keyboard shortcuts. To allow for comparability
of results we decided to use the restricted TexMo in the control group, so that
the same functionality is available to both groups (besides CLS). We do not
think that this has a significant impact on the results. TexMo does provide
syntax highlighting and redo/undo support. We believe that industrial strength
implementation of CLS mechanisms would only improve the already promising
results of this experiment.

We established the cross-language relation model for JTrac manually. It relates
9 artifacts containing 51 keys, 87 references, via 87 relations with each other. Our
model does not contain false positives, which could have been the case, if it was
established automatically.

6 Related Work

Mens et al. [13] identify support for multi-language systems as a major chal-
lenge for software evolution. They postulate investigating techniques that are as
language independent as possible and providing real-world validation and case
studies on industrial software systems as valuable.
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Chimera [3] provides hypertext functionality for heterogeneous Software De-
velopment Environments (SDE). It allows for the definition of anchors that can
be interrelated via links into a hyperweb. Chimera supports navigation along the
links. The authors claim that developers in an industrial context appreciate us-
ing such links while working. Our paper confirms this belief through a controlled
experiment, not provided in [3].

Others agree [11], that multi-language systems pose a real problem in mainte-
nance and evolution. The authors of [11] focus on the process of understanding of
such systems, trying to improve it with a graph-based query mechanism to find
and understand cross-language relations. Their tool is used in industry, but no
empirical data on its effectiveness is available. Our experiment results indicate
that these techniques are likely very effective, too.

SourceMiner [6] is an IDE providing advanced software visualizations such
as tree maps to aid program understanding. The paper does not present any
empirical data. It would be interesting to combine SourceMiner with TexMo to
measure if these visualizations improve development of MLSSs beyound the CLS
mechanisms studied here.

Since the experimental unit JTrac is based on Wicket, we could have cho-
sen QWickie (code.google.com/p/qwickie) as a factor alternative. QWickie is an
Eclipse plugin, implementing navigation and renaming support between inter-
related HTML and Java files containing Wicket code. We favored TexMo, since
we wanted to allow for rerunning the experiment on other experimental units.
TexMo is not bound to a particular framework like Wicket.

Visualization mechanisms for relations across heterogeneous concrete syntaxes
are studied in the Human-Computer Interaction community. In [21,19] relations
across documents in different applications are visualized by links on user request.
Visual links are lines crossing application windows. Waldner et al. [21] study if
visualization of links between related information in several browser windows is
beneficial for understanding scattered information. They run an informal user
evaluation with seven participants concluding that Visual links prevent the user
from having to search information manually ... thereby limiting the error prob-
ability induced by overseeing information and the effort for the user. A similar
but more formal experiment with 18 participants on visual links is reported by
Steinberger et al. [19]. They argue that visual search across different views is
a typical task of knowledge workers, which has to be supported by tools. They
demonstrate that context preserving visual links are beneficial when searching
for interrelated information. Our experiment confirms usefulness of explicit vi-
sualization, even though TexMo uses a different visualization scheme.

Chen and coauthors [4] name modern MLSSs, such as Hibernate and Spring
“polyglot frameworks”. They implement rename refactorings between Java source
code and XML configuration files. Unfortunately, they do not provide any exper-
imental data confirming usefulness of such refactorings. Our experiment shows
that a substantial amount of developers use such refactorings when provided.

code.google.com/p/qwickie
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7 Concluding Remarks and Future Work

In this paper we report a controlled experiment evaluating cross-language sup-
port mechanisms. The result is, that visualization, static checking, navigation,
and refactoring when offered across language boundaries are highly beneficial.
CLS mechanisms perceptibly improve effectiveness of developers working on
JTrac, a representative MLSS. In the experiment scenario, users of CLS are
more effective than the control group with respect to both error rate and pro-
ductivity (working speed). Furthermore, we show that, within the experiment,
CLS mechanisms are actually used by developers and that they improve under-
standing of complex, unknown multi-language source code.

In future, we plan to replicate our experiment on larger samples to increase
confidence in the presented results. Furthermore, we plan to enhance TexMo
with more CLS mechanisms, in particular with more elaborate cross-language
refactorings, in order to be able to evaluate a broader range of support func-
tions. Ultimately, the present and future experiments will direct our efforts on
developing a new generation of development environments.
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Abstract. We present the results of a differentiated replication
conducted with professional developers to assess whether the presence
and the kind of documentation for the solutions or instances of design
patterns affect source code comprehension. The participants were di-
vided into three groups and asked to comprehend a chunk of the JHot-
Draw source code. Depending on the group, each participant was or not
provided with the graphical and textual representations of the design
pattern instances implemented within that source code. In the case of
graphically documented instances, we used UML class diagrams, while
textually documented instances are reported as comment in the source
code. The results revealed that participants provided with the docu-
mentation of the instances achieved a significantly better comprehension
than the participants with source code alone. The effect of the kind of
documentation is not statistically significant.

Keywords: Design Patterns, Controlled Experiment, Maintenance,
Replications, Software Models, Source Code Comprehension.

1 Introduction

Software maintenance is essential in the evolution of software systems and
represents one of the most expensive, time consuming, and challenging phases
of the whole development process. Maintenance starts after the delivery of the
first version of the system and lasts much longer than the initial development
process [5], [32]. As shown in the survey by Erlikh [10], the cost needed to per-
form maintenance operations ranges from 85% to 90% of the total cost of a
software project. Whatever is the maintenance operation, the greater part of the
cost and effort are due to the comprehension of source code [20]. In particular,
Pfleeger and Atlee [23] estimated that up to 60% of software maintenance is
spent on comprehension. There are several reasons that make comprehension
even more costly and complex, namely the size of a subject software and the
available documentation [28].
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The availability of software documentation and software models should pro-
vide a better support to comprehend source code, so reducing the needed effort
and positively affecting the efficiency with which developers perform mainte-
nance operations [2]. For example, Gamma et al. [11] assert that developers
would benefit from the documentation of design patterns to comprehend source
code, so easing its modification. Although there are a number of empirical in-
vestigations on design patterns (e.g., [6], [7], [15], [19], [22], [24], [29], [30]), only
few evaluations have been conducted on the practical benefits of explicitly re-
porting design pattern instances1 in the comprehension of source code [12], [25].
Furthermore, there are no empirical investigations using professional software
developers as the participants.

In this paper, we present the results of a differentiated replication2 conducted
with 25 professional software developers to assess whether the presence and the
kind of design pattern instances affect source code comprehension. The partic-
ipants have been working for software companies of the contact network of the
authors’ research groups. This network was created from research projects and
also included companies that: (i) host students from the universities of Basilicata
and Salerno for external interships or (ii) employ people who took a Master or
a Bachelor degree at these universities. The participants were divided into three
groups and were asked to perform a comprehension task on the source code of
JHotDraw. Depending on the group, the participants were provided with source
code added or not with design pattern instances either graphically or textu-
ally documented. To explicitly and graphically show these instances, we used
UML class diagrams [21], while textually documented instances are reported as
comment in the source code according to a template.

The work presented here is based on [12] and with respect to it the following
new contributions are provided: (1) a differentiated replication with professional
developers; (2) a different analysis on the effect of graphically and textually
documented design pattern instances; and (3) a deeper discussion on the achieved
results and on the possible future directions for this research.

The paper is organized as follows. In Section 2, we highlight the previously
conducted controlled experiments and how design pattern instances are docu-
mented in these experiments and in the replication presented here. In Section 3,
we show the design of this replication, while in Section 4 we show and discuss the
results achieved. Related work, remarks, and future work conclude the paper.

2 Documenting Design Pattern Instances

In the design of buildings and towns a design pattern describes a problem which
occurs over and over again in our environment, and then describes the core of the

1 A design pattern includes a name, an intent, a problem, its solution, some example,
and so on [11]. In the paper, we focus on the solutions and we will refer to them as
design pattern instances.

2 In this kind of replication, variations in essential aspects (e.g., different kinds of
participants) of the original experimental conditions are introduced [3].
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solution to that problem, in such a way that you can use this solution a million
times over, without ever doing it the same way twice [1]. This definition also
holds for design patterns in object-oriented software [11]. The core of both kinds
of design patterns is a solution to a problem in a given context. In object-oriented
software development a solution is named design pattern instance [13].

There is no a single standard format for documenting design patterns and
their instances. Rather, a variety of different formats have been proposed and
many of them are based on the UML (e.g., [11], [14]). However, only few stud-
ies have been conducted to assess the support provided by explicitly reporting
design pattern instances in the execution of maintenance operations and in the
comprehension of source code [12], [25]. In [12], for example, we presented a
controlled experiment and a replication to assess the benefit of documenting in-
stances with respect to not documenting instances at all. In the first experiment,
we considered graphically documented instances by using UML class diagrams,
while we considered textually documented ones in the replication.

Each graphical representation of design pattern instances showed a superset
of the information provided by the corresponding textual representation. For
example, in both the representations the roles each class played within the pat-
tern instances were indicated, while in the textually documented instances the
relations among classes (both abstract and concrete) and interfaces were not
shown. Figure 1(a) shows an example of graphically documented instance of the
Observer design pattern [11] within the source code of JHotDraw. Figure 1(b)
shows how the same instance is explicitly reported within the source code as
comment. The graphical instance shows more information and then should im-
prove the comprehension of source code. For example, from the class diagram,
we can understand that when a drawing (e..g, a container of figures) is changed
all the views are updated. More experienced professional software developers
could find unnecessary the further information that graphically documented in-
stance provides, because they can directly deduce it from the name of the design
pattern and the role of each class and interface.

2.1 Previously Conducted Experiments

The first experiment (UNIBAS in the following) was conducted with 17 Master
Students in Computer Science at the University of Basilicata. The participants to
the second experiment (a differentiated replication, UNISA in the following) were
24 Master Students in Computer Science at the University of Salerno. The main
differences between UNIBAS and UNISA concerned: (i) the participants involved
and (ii) the design used. The participants had a level of experience comparable,
but they came from different universities located in different regions. All the
involved participants had basic software engineering knowledge. In particular,
they knew the basics of requirements engineering, high- and low-level design of
object-oriented software systems based on the UML, software development, and
software maintenance. They had, however, a limited experience in developing
and maintaining nontrivial software systems.
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(a)

(b)

Fig. 1. A sample of instance for the Observer design pattern: graphically documented
(a) and textually documented (b)

Regarding the differences in the design, in UNIBAS the instances were graph-
ically documented by UML class diagrams. For UNISA, the instances were tex-
tually documented within the source code in terms of comment. In both the
experiments, the participants were asked to comprehend a chunk of JHotDraw
v5.1. A single factor experimental design was used in both the experiments.
The main factor was represented by the kind of documentation used to explic-
itly report the instances. This factor was denoted as Method and could assume
two values: DP (Design Pattern instance documentation) and SC (Source Code
alone). For UNIBAS, DP assumed the meaning of graphically documented in-
stances (from here on, GD), while in the replication textually documented (TD).
For SC, the source code did not contain any reference to the included instances.

To assess the effect of Method on a comprehension task, we considered three de-
pendent variables thatmeasure: (i) source code comprehension (Comprehension);
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(ii) the time to comprehend source code (Effort); and (iii) comprehension task ef-
ficiency (Efficiency). All the three variables are ratio scale measures.

Results. The results of the data analysis on both the experiments provided
evidence that participants achieved better Comprehension values when they used
the documentation of design pattern instances as complementary information to
the source code. The results also indicated that the capability of the participants
to correctly recognize design pattern instances impacted more than the type of
representation employed to document them. Furthermore, the participants in
both the experiments indicated that they trusted the explicitly reported design
pattern instances and found them useful.

As far as Efficiency is concerned, we observed that the participants were more
efficiently supported in the execution of comprehension tasks when source code
was added with the documentation of the design pattern instances. For Effort,
the participants to UNIBAS significantly spent less time when using design pat-
tern instances with respect to source code alone. We did not observe any signif-
icant difference for UNISA.

3 The Replication with Professionals

The replication was carried out by following the recommendations provided in
[17], [31]. The presentation of the replication is based on the guidelines suggested
in [16]. For replication purposes, we made available on the Web3 an experimental
package, the raw data, and a technical report with some analyses not reported
here for space reasons.

3.1 Goal

Applying the Goal Question Metric (GQM) paradigm [4], the goal of the replica-
tion can be defined as: Analyse the use of graphical and textual documentation
for design pattern instances for the purpose of evaluating them with respect to
the source code comprehension from the point of view of project manager, in the
context of professional software developers.

3.2 Context Selection

We conducted the experiment with 25 Italian software professionals. For each
company, we organized a laboratory session. This was the only possible strategy
because it is practically impossible to conduct a single experimental session with
professionals from different companies. All the laboratory sessions were carried
out under controlled conditions to avoid biasing the results, the experiment
supervisors were the same in each session.

3 www.dmi.unisa.it/people/risi/www/DesignPatternInstancesComprehension/

www.dmi.unisa.it/people/risi/www/DesignPatternInstancesComprehension/
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Before the controlled experiment, each professional was asked to fill in a pre-
questionnaire. This questionnaire was sent and returned by email. The infor-
mation gathered was used to classify the participants as junior (with working
experience from 1 to 3 years) and senior (with an experience more than 3 years)
professional software developers. The junior developers were 10, while 15 were
classified as senior. The participants stated that their experience on design pat-
tern development was from low to medium.

3.3 Selection of the Variables

The dependent variables are: Comprehension, Effort, and Efficiency. To compute
the values of Comprehension, we asked each participant to answer a comprehen-
sion questionnaire composed of 14 open questions. To quantify the quality of the
answers provided and then the source code comprehension achieved, we used an
approach based on the information retrieval theory [27]. Therefore, we defined:
(1) As,i as the set of string items provided as answer to the question i by the
participant s; (2) Ci as the correct set of items expected for the question i (i.e.,
the oracle4). For each answer, we can compute:

precisions,i =
|As,i ∩ Ci|
|As,i|

recalls,i =
|As,i ∩ Ci|
|Ci|

Precision (i.e., the fraction of items in the answer that are correct) and recall
(i.e., the fraction of correct items in the answer) measure the correctness of the
answers to a given question and the completeness of the answers, respectively.
To get a balance between correctness and completeness, we used a standard
aggregated measure based on the combination of precision and recall:

F−Measures,i =
2 · precisions,i · recalls,i
precisions,i + recalls,i

For each participant, the Comprehension value is computed by performing the
overall average of the F-Measure values of all the questions. Comprehension
assumes values in the interval [0, 1]. A value close to 1 means that a participant
got a very good comprehension of the source code since he/she answered very
well to the questions of the comprehension questionnaire. Conversely, a value
close to 0 means that a participant obtained a very bad comprehension.

To determine Effort, we used the time (expressed in minutes) to accomplish
the task, which was directly recorded by each participant, while Efficiency was
computed dividing Comprehension by Effort. Efficiency is a derived measure
that we considered to get a deeper understanding of the contribution provided
by the documentation of design pattern instances in the comprehension of source

4 The names of the classes and methods in the oracle might be different between TD
and SC as well as between TD and GD. This is because we removed any possible
reference to the design pattern instances from the comment and from the identifiers
when the participants used SC and GD.
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code. The higher the value of Efficiency, the more efficiently the participant is
supported in the accomplishment of the task.

Method is the only independent variable used. It is a nominal variable and
assumes values in {SC, TD, GD}. We also grouped the professionals (of TD and
GD) into participants, who correctly or incorrectly identified the needed design
pattern instances to answer the questions of the comprehension questionnaire:
DPCI (i.e., Design Patterns Correctly Identified) and DPnCI (i.e., Design Pat-
terns not Correctly Identified). The data analysis was conducted considering the
Comprehension values for the participants in these groups. We performed this
further analysis to understand whether different design pattern instances affect
source code comprehension. It was possible because we asked the participants
to indicate the instances exploited to answer each question.

3.4 Hypotheses Formulation and Experiment Design

We have defined and investigated the following null hypotheses:

Hn0 D X. The participants who used D design pattern instances (where D
can be GD or TD) did not achieve significantly better results in terms of X
(where X can be Effort, Comprehension, or Efficiency) than the participants
who used source code alone (SC).

Hn1 X. There was not a significant difference with respect to X when partici-
pants used GD or TD.

Hn0 D X is one-tailed because we expected a positive effect of explicitly re-
porting design pattern instances on the selected dependent variables. Hn1 X is
two-tailed because we could not postulate any effect of GD or TD on these vari-
ables. The goal of the statistical analysis is to reject the defined null hypotheses
and to accept the alternative ones (i.e., Ha0 D X and Ha1 X), which can be
easily derived (e.g., Ha1 X: There was a significant difference with respect to X
when participants used GD or TD).

We used the one factor with three treatments design [31]. The participant
working experience (i.e., the amount of years as professional developers) was
the blocking factor. Then, we equally distributed junior and senior experienced
professionals among the three groups: GD, TD, and SC. We assigned 9 partici-
pants (4 juniors and 5 seniors) to GD and 8 (3 juniors and 5 seniors) to TD and
SC, respectively. The use of a different experiment design (such as the within-
participant counterbalanced design) with non-trivial experimental objects (as in
this experiment) may bias the results introducing a factor difficult to be con-
trolled, i.e., the mental fatigue.

3.5 Experimental Tasks

We asked the participants to perform the following tasks:

Comprehension Task. The participants were asked to fill in the comprehen-
sion questionnaire, whose questions were divided into three groups to let
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Q2. Indicating the class/es and the method/s in charge of creating, drawing, and updating the
instances of the class Figure?

How much do you trust your answer+?

� Unsure � Not sure enough � Sure Enough � Sure � Very Sure

How do you assess the question+?

� Very difficult � Difficult � On average � Simple � Very Simple

What is the source of information used to answer the question+?

� Previous Knowledge (PK) � Internet (I) � Source Code (SC)
+ Mark only one answer

Fig. 2. A question example from the comprehension questionnaire

participants take a break if needed when passing from a group of questions
to the next one. This choice was taken for reducing fatigue effect biases. We
defined the questions to assess several aspects related to the comprehension
of the source code. All the questions (except Q11) were formulated using a
similar form/schema. Figure 2 shows a sample question for SC.
We also collected data on the source of information the participants used to

answer each question. In particular, we asked the participants who accom-
plished the task with source code added with documented design pattern
instances (i.e., GD and TD) to specify for each question whether the answer
was derived using: (DPI) design pattern instances, (PK) previous knowl-
edge, (I) Internet, or source code (SC). If the participants specified DPI,
they were also asked to indicate the instances used. The participants who
accomplished the task using the source code alone chose among: previous
knowledge, Internet, and source code. This was the only difference intro-
duced in the comprehension questionnaires used in the three treatments.
Whatever was the treatment, we asked the participant to indicate also the
confidence level (e.g., Sure) and the degree of complexity (e.g., Difficult) for
each question answered (see Figure 2). The analysis on this further informa-
tion is not reported for space constraint, but it is available in the technical
report.
The question in Figure 2 expected as the correct answer the following set

of items: CreationTool, ArrayFigure, StandardDrawingView, createFigure(),
draw(), and drawingRequestUpdate(). The correct answer could be derived
by the following instances of design patterns: Prototype, Composite, and
Observer (see Figure 1). In particular, the Prototype instance was useful
because it was in charge of managing the creation of a template figure, while
the Composite drew each base element of an object Figure. The Observer
instance was in charge of managing the paint and/or the repaint of an ob-
ject Figure. If a participant provided CreationTool, ArrayFigure, and draw-
ingChangeListeners() as the answer, the value for Comprehension is 0.44. It
results from 0.66 and 0.33 as the precision and recall values, respectively. In
fact, the number of correct items provided is 2 (CreationTool and ArrayFig-
ure), while 3 is the total number of items provided and 6 is the number of
correct items expected.
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Post-experiment Task. We asked the participants to fill in a post-experiment
survey questionnaire. The goal of this questionnaire was to obtain feedback
about the participants’ perceptions of the experiment execution. For space
reasons the results of the survey are not reported in the paper. Details can
be found in the technical report.

3.6 Experimental Procedure

The participants first attended an introductory lesson in which the supervisors
presented detailed instructions on the experiment. The supervisors highlighted
the goal of the experiment without providing details on the experimental hy-
potheses. No time limit to perform the task was imposed. We organized in-
dividual experimental sessions for professional developers working in the same
business unit. The participants were not allowed to communicate each other.

To perform the comprehension task, the participants were provided with lap-
tops having the same hardware configuration (i.e., equipped with a 1.5 GHz
Intel Centrino with 1.5 GB of RAM, a 60GB Hard Disk and Windows XP Pro-
fessional SP3 as operating system). To surf source code, we installed on each
laptop a general purpose and well known text editor (i.e., UltraEdit5). We also
provided the participant with an Internet connection to be used while performing
the comprehension task.

We asked the participants to use the following experimental procedure for
each group of questions within the comprehension questionnaire: (i) specifying
name and start-time; (ii) answering the questions using the source code (without
executing it) and the explicitly reported design pattern instances if present; and
(iii) marking the end-time. We did not suggest any approach to comprehend
source code. We only discouraged to read all the code.

We provided the participants with a paper copy of the following experimental
material: (i) the comprehension questionnaire and (ii) a post-experiment survey
questionnaire. The participants in GD were also provided with the source code
(without any references to the design pattern instances) and the paper copy of
a document where each design pattern instance was graphically reported (see
Figure 1(a)). The participants that used TD were provided with source code
that included the references to the design pattern instances in the comment (see
Figure 1(b)). For SC, the participants were provided with source code without
any kind of documentation to the instances implemented.

3.7 Analysis Procedure

To perform the data analysis, we carried out the following steps and used the R
environment6 for statistical computing:

1. We undertook the descriptive statistics of the measures of the dependent
variables, i.e., Effort, Comprehension, and Efficiency (see Section 4.1).

5 www.ultraedit.com
6 www.r-project.org

www.ultraedit.com
www.r-project.org
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2. To test the null hypotheses, we adopted non-parametric tests due to the
sample size and mostly the non-normality of the data. In particular, we
used the Mann-Whitney test [9] due to the design of the experiments (only
unpaired analyses were possible) and to its robustness [31] (see Section 4.2).
In all the statistical tests, we decided (as custom) to accept a probability
of 5% of committing Type-I-error [31]. The chosen statistical test allows the
presence of a significant difference between independent groups to be verified,
but it does not provide any information about this difference [18]. Therefore,
we used the Cohen’s d [8] effect size to obtain the standardized difference
between two groups that can be considered negligible for |d| < 0.2, small for
0.2 ≤ |d| < 0.5, medium for 0.5 ≤ |d| < 0.8, and large for |d| ≥ 0.8. We also
analyzed the statistical power for each test performed. Statistical power is
the probability that the test will reject a null hypothesis when it is actually
false (i.e., the probability of not committing a Type II error, or making a
false negative decision). The highest value is 1, while 0 is the lowest. The
higher the statistical power value, the higher is the probability to reject a
null hypothesis when it is actually false.

3.8 Differences and Similarities

The experience gained in the previously executed experiments [12] suggested
some variations in the experiment presented here. The variations have been
introduced to mitigate as many threats to validity as possible and to improve
the material and the data analysis:

Participants. They are professional developers and are more experienced than
the participants to UNIBAS and UNISA. This variation allowed reducing
external validity threats.

Experiment Design. We used the one factor with three treatments design.
The participants were divided into three groups. The control group was
the group of participants in SC. Differently, we have here two treatment
groups: GD and TD. As for UNIBAS and UNISA, the independent variable
is Method (i.e., the main factor), which is a nominal variable that assumes
three possible values: SC, TD, and GD.

Group Composition. We used the information gathered in a pre-questionnaire
to equally distribute high and low experienced professionals among the three
groups. The professional experience is the blocked factor for the experiment.

Data Analysis. Bearing in mind the new adopted design, we were able to bet-
ter analyze the effect of the documentation type on source code comprehen-
sion.

Training Session. The professionals did not carried out a training session on
tasks similar to the one used in the experiment. Two were the reasons: (1)
they had an adequate experience in performing maintenance operations on
source code implemented by others; (2) time and logistic constraints did not
make possible the execution of a training session (the use of professionals
might cause this kind of concern).
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Experimental Procedure. We allowed the participants to find information
on the Web useful to accomplish that task. Professional developers usually
exploit this medium as support for their daily work activities.

Comprehension Questionnaire. We removed mistakes and some sources of
possible confusion.

We preserved some design choices in the replication presented here:

Dependent Variables. They are well known and widely employed in the Em-
pirical Software Engineering community (e.g., [26]). These variables well
summarize the aspects we were interested in investigating. Another by-
product of this choice was in the evaluation of source code comprehension
that could be computed in a repeatable manner, so reducing construct va-
lidity threats.

Experimental Object. We used a chunk (i.e., vertical slice) of JHotDraw v5.1
that included: (i) a nontrivial number of design pattern instances and (ii)
well-known and widely adopted design patterns. In the selection process,
we have also taken into account a trade-off between the complexity of the
implemented functionality and the effort to comprehend it (about 3 hours
for low experienced participants). To mitigate external validity threats, we
tried as much as possible to define a realistic comprehension task.
We translated the comments from English into Italian to avoid biasing the
results because different participants may have different familiarity with En-
glish. Further, we removed any possible reference to the design pattern in-
stances from the comment and from the identifiers (e.g. CompositeFigure was
named as ArrayFigure) when the participants performed the comprehension
task with the source code alone and the graphically documented instances.
The source code was constituted of 1326 Lines of Code, 26 Classes, and 823
Lines of Comments. One of the authors manually detected the design pat-
tern instances in source code. To this end, he also used the documentation of
JHotDraw and the public dataset PMARt7. The following instances of de-
sign patterns were present in the source code used: State, Adapter, Strategy,
Decorator, Composite, Observer, Command, Template Method, and Proto-
type. For the State design pattern were two instances. These instances are
graphically represented (as much as possible) as in [11] and textually repre-
sented as shown in Section 2. We used JHotDraw because it is intentionally
designed to have very clear implementations of well-known design patterns.
Therefore, it can be considered a good experimental object.

4 Results

4.1 Descriptive Statistics and Exploratory Analysis

Table 1 shows some descriptive statistics (i.e., median, mean, and standard de-
viation) of Effort, Comprehension, and Efficiency grouped by Method. These

7 www.ptidej.net/downloads/pmart/

www.ptidej.net/downloads/pmart/
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Table 1. Descriptive statistics for GD, TD, and SC

Dependent Variable
GD TD SC

Mean Median St. Dev. Mean Median St. Dev. Mean Median St. Dev.

Effort 132 142.2 31.17 139 136.4 37.00 151 147.4 42.81
Comprehension 50.91 51.08 10.32 53.43 53.49 7.26 40.56 39.97 9.63
Efficiency 0.37 0.37 0.11 0.37 0.42 0.14 0.29 0.31 0.14

Table 2. Descriptive statistics for GD grouped by DPCI and DPnCI

Dependent Variable
DPCI DPnCI

Mean Median St. Dev. Mean Median St. Dev.

Effort 9 10.36 3.93 8.00 9.13 3.67
Comprehension 80 73 27.70 47 39.13 36.88
Efficiency 8.17 8.24 4.60 4.4 5.28 6.18

statistics show that the participants using source code alone (SC) spent on av-
erage more time (151 minutes) than the participants using documented design
pattern instances (132 and 139 minutes for GD and TD, respectively). On aver-
age the participants who used GD and TD achieved a better comprehension of
source code (50.91 and 53.43, respectively) than those who used SC (40.56). We
achieved similar results for Efficiency.

Table 2 shows descriptive statistics (i.e., median, mean, and standard devi-
ation) of Effort, Comprehension, and Efficiency for GD grouping observations
by DPCI and DPnCI. Similarly, Table 3 reports descriptive statistics for TD.
These descriptive statistics suggest that the participants who correctly recog-
nized the design pattern instances (both in TD and GD), to answer a given
question, achieved on average better Comprehension and Efficiency values than
the participants who did not correctly recognized them.

4.2 Hypotheses Testing

The results of the Mann-Whitney test are summarized in Table 4, together with
the Cohens’ d effect size and the statistical power values. The results show that
Hn0 GD Comprehension and Hn0 TD Comprehension can be rejected (p-values
are 0.033 and 0.009, respectively) with a large effect size and high statistical
power. Thus, the participants who used the documentation of design pattern
instances significantly better comprehended source code than those provided
with source code alone. Hn0 D Effort and Hn0 D Efficiency cannot be rejected.

Table 3. Descriptive statistics for TD grouped by DPCI and DPnCI

Dependent Variable
DPCI DPnCI

Mean Median St. Dev. Mean Median St. Dev.

Effort 10 9.61 3.41 10 9.97 4.93
Comprehension 73 67.06 30.88 45 38.50 36.13
Efficiency 7.69 8.46 5.91 3.94 5.76 8.08
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Table 4. Results for Hn0 D X

Documentation Hypothesis Influence (p-value) Effect Size Statistical Power

GD
Effort No (0.337) -0.137 (negligible) 0.075

Comprehension Yes (0.033) 1.113 (large) 0.966
Efficiency No (0.135) 0.527 (medium) 0.287

TD
Effort No (0.282) -0.273 (small) 0.115

Comprehension Yes (0.009) 1.586 (large) 0.875
Efficiency No (0.056) 0.806 (large) 0.354

Table 5. Results for Hn1 X

Hypothesis Influence (p-value) Effect Size Statistical Power

Effort No (0.810) 0.170 (negligible) 0.045
Comprehension No (0.665) -0.271 (small) 0.065
Efficiency No (0.664) -0.375 (small) 0.075

Table 5 shows the data analysis results for the null hypotheses Hn1 X. In par-
ticular, the results of the Mann-Whitney test indicated that the null hypothe-
ses cannot be rejected. Therefore, for all the dependent variables the difference
between the participants who used graphically documented and textually docu-
mented design pattern instances is not statistical significant.

4.3 Further Analyses - Analysis by Question

The DPCI participants in GD achieved significant better results in terms of
Comprehension than the DPnCI participants on the questions Q1 (p-value =
0.043) and Q5 (p-value 0.048). This result suggested that the design patterns
that better supported the participants in the execution of comprehension tasks
were: Prototype, Composite, Observer, and Template Method. Regarding TD,
the DPCI participants achieved significantly better results in terms of Compre-
hension on the question Q3 (p-value = 0.032). This indicated that only Com-
posite and Observer design patterns better supported the participants in the
source code comprehension. This result is interesting from the researcher’s point
of view because it seems that the interaction among the instances of different de-
sign patterns affects source code comprehension. Further and special conceived
investigations are, however, needed because our primary goal here was: to assess
whether the presence and the kind of documentation for design pattern instances
affect source code comprehension. In this further analysis, we did not considered
Q11 because it was formulated differently from the others.

4.4 Discussion

The results of this replication have largely confirmed those achieved in the
previous experiments [12]. The software professionals achieved significant bet-
ter Comprehension values when they received the documentation of the design
pattern instances as a complementary information to comprehend source code.
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In particular, the mean improvement achieved with the design pattern instances
graphically documented was 25.5%, while it was 31.9% for those textually doc-
umented. The participants who used textually documented design pattern in-
stances obtained on overage slightly better results in terms of Comprehension
with respect to the participants who exploited graphically documented instances.
A plausible justification for this result is that professionals were more comfort-
able with source code and the information provided in the comment (i.e., explic-
itly reported instances) was more than adequate to comprehend the code.

The time to perform the comprehension task did not increase with respect to
the use of the source code alone. This result could be considered as unexpected
because more documents/information to read and interpret could need more
effort to execute the task. This should be even more evident for design pattern
instances that were graphically documented. Then, these results suggest that
the additional information provided by the documented design pattern instances
reduced the effort to analyze the source code.

For GD, the descriptive statistics reported in Table 2 indicate that the av-
erage Comprehension value achieved by the participants when they correctly
identified the instances to answer the question is 70.2% greater than the average
value obtained when the instances were not correctly recognized. For TD, this
difference is 62.2%. This finding is interesting from both the researcher and the
project manager points of view. In fact, it seems relevant to help developers in
recognizing pattern instances more than the kind of documentation used.

Regarding the source of information, we observed that the participants em-
ploying GD largely indicated as first source of information the design patterns.
Differently, the participants employing TD indicated as first source of informa-
tion the source code, while design pattern instances were classified as the second
one. This slight difference in the results achieved on GD and TD could be due to
the fact that the design pattern instances are documented in the source code in
the latter case. Then, the participants considered the documented instances as
an integral part of the code. Although this difference, the results show that the
participants trusted the design pattern instances explicitly reported. It is also
worth noting that the Internet was almost never used: 8 participants (6 used TD
and 2 GD) stated that they on average used the Internet on 2 out of 14 questions.
Therefore, the Internet was not considered a relevant source of information.

4.5 Threats to Validity

Conclusion validity concerns issues that affect the ability of drawing a correct
conclusion. In our study, we used proper statistical tests. In particular, a non-
parametric test (i.e., Mann-Whitney test for unpaired analyses) was used to
statistically reject the null hypotheses.

Internal validity threats are mitigated by the design of the experiment. Each
group of participants worked only on one task, with or without the design pat-
terns instances. Fatigue is another possible threat for internal validity. We miti-
gate the fatigue effect allowing the participants to take a break. Another possible
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threat concerns the use of the Internet to exchange information. We prevented
that monitoring the participants, while performing the task.

Construct validity may be influenced by the metrics used and social threats.
The exploited metrics are widely used with purposes similarly to ours [26]. Re-
garding Comprehension, one of the authors not involved in the definition of the
task built the questionnaire. A further threat could be related to the modification
of the identifiers in the code.

External validity concerns the generalization of the results. Possible threats
are related to the complexity of the comprehension task and the choice of partic-
ipants. Regarding the first point, we selected a part of an open software system
large enough to be considered not excessively easy. As for the participants, they
are Italian professional junior/senior software developers. Moreover Southern
and Central Italy are over-represented with respect to Northern Italy.

5 Related Work and Conclusion

Only few studies have been conducted to assess the support that design pattern
instances provide in the execution of maintenance tasks and in the comprehen-
sion of source code [12], [25]. Prechelt et al. [25] studied whether design pat-
tern instances explicitly and textually documented in the source code (through
comment) improve the maintainers’ performance in performing comprehension
tasks with respect to a well-commented program without explicit reference to
design patterns. The study involved 74 German graduate students and 22 USA
undergraduate students, who performed maintenance operations on Java and
C++ code, respectively. The data analysis revealed that maintenance tasks sup-
ported by explicitly documented design pattern instances were completed faster
or with fewer errors. The most remarkable difference with our work is that we
additionally analyze the effect of pattern instances graphically documented. Fur-
thermore, we used professionals and the used experimental object is larger and
more complex (20149 LOCs including comments with respect to 360 and 560).

The results achieved in our experiment and those achieved in [12] and [25] give
strength to the usefulness of exploiting explicitly documented design pattern in-
stances in the execution of comprehension tasks. Therefore, it seems worthily
to document design pattern instances. This result, however, opens a managerial
dilemma: Are the additional effort and cost, due to create and maintain the doc-
umentation of design pattern instances, adequately paid back by an improved
comprehension of source code? Indeed, from a manager point of view, the adop-
tion of graphically and textually documentation, as means to represent design
pattern instances, should take into account the costs it will introduce. Further-
more, what is the less expensive method for representing instances? These points
represent future directions for our work.

Another remarkable result of our experiment is: design pattern based develop-
ment can increase the source code comprehension only in case the design pattern
instances are correctly recognized in the source code. This open an interesting
future direction for the research. In particular, it would be worth investigat-
ing: (i) the issues that led to certain patterns being better comprehended and
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recognized than others and (ii) new methods for representing design pattern
instances, so easing their recognition. It will be also worth investigating whether
the source code comprehension improves when graphically documented design
pattern instances are added with sequence diagrams.
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Mondelli for his support.
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Abstract. Advances in consistency checking in model-based software develop-
ment made it possible to detect errors in real-time. However, existing approaches
assume that changes come in small quantities and design rules are generally small
in scope. Yet activities such as model transformation, re-factoring, model merg-
ing, or repairs may cause larger model changes and hence cause performance
problems during consistency checking. The goal of this work is to increase the
performance of re-validating design rules. This work proposes an automated and
tool supported approach that re-validates the affected parts of a design rule only.
It was empirical evaluated on 19 design rules and 30 small to large design models
and the evaluation shows that the approach improves the computational cost of
consistency checking with the gains increasing with the size and complexity of
design rules.

Keywords: consistency checking, performance, incremental checking.

1 Introduction

Errors in design models range from basic well-formedness problems (e. g., syntactic
violations) to more advanced, multi-view inconsistencies. While designers may be will-
ing to tolerate these errors [10,1], the designer should nonetheless be aware of their
existence. Fortunately, recent progress on consistency management has demonstrated
that modeling tools can be made to detect errors in design models in real time while
retaining the free customizability of design rules. Existing approaches, such as the
Model/Analyzer [6], re-validate design rules only if they are affected by model changes.
Empirical evaluations have shown that such approaches are very fast: they can validate
the impact of a design change in milliseconds in average with the performance being
unaffected by the model size.

However, the performance of state-of-the-art incremental consistency checkers de-
creases with 1) the quantity of model changes, 2) the complexity of design rules, and
3) the number of design rules. For example, existing approaches assume that models
change in small increments only (e. g., a class is renamed, a new message is added to
a sequence diagram). Most model changes are indeed small. Unfortunately, there are a
range of quite common modeling activities that cause larger model changes. Examples
are model transformations [13], re-factoring [19], model branching or merging (as in
subversion) [18], and model repairs [7,9,15]. These activities may be arbitrary complex
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and pose a challenge to incremental consistency checking because the increment be-
comes too large to handle it instantaneously. This problem is aggravated with the com-
plexity of design rules. The more complex a design rule the more likely it is affected by
a model change. And the problem is even further aggravated with an increasing number
of design rules. The more design rules there are, the more likely are model changes
to affect multiple design rules. Combined, they strongly impact the performance of
incremental consistency checking.

This paper proposes a novel approach for improving the performance of incremental
consistency checking. The basic idea is to not validate design rules in their entirety but
to focus on the parts that are affected by model changes. Whether a part of a design rule
is affected by a change is determined fully automatically based on observations of the
design rule’s validation which is stored as a validation tree. The approach does require
an additional memory overhead for storing the validation tree. Complete validation trees
can be voluminous but a second novel contribution is in the reduction of the validation
tree to those parts of a design rule validation whose change can impact the validation
result as a whole. For example, if a = true and b = false in the conjunction a∧ b then
a change to a cannot affect the result of the conjunction and can be cut from the tree.

We evaluated our approach on 19 design rules, 30 industrial design models (ap-
proximately 130,000 elements), and roughly 1,500 random model changes. We will
demonstrate through empirical evaluations that our approach achieves up to 20-fold
performance for 19 designs rules we analyzed – the more complex the design rule, the
larger the performance gains. While the scalability of the proposed approach is still lin-
early dependent on the quantity of model changes and the number of design rules, the
performance gain implies that much larger model changes or quantities of design rules
can be handled instantaneously than was possible to date. The memory cost is in aver-
age only 2-fold more expensive compared to state-of-the-art and increases linear with
the size of the model. Our approach is fully automated, tool supported, and integrated
with the modeling tool IBM Rational Software Architect. The implementation supports
OCL as the constraint language and UML as the modeling language, but the approach
is designed to be applicable to arbitrary modeling languages and their corresponding
constraint languages.

The remainder of this paper is structured as follows. Section 2 defines the basic terms
and a running example that are used in this paper. In Section 3 the main principles of
our approach are shown. Section 4 shows the evaluation of our approach and Section 5
explains the threats of validity of the evaluations. An overview of the existing work on
this topic is given in Section 6 and, finally, Section 7 concludes the work and gives an
outlook about future work planned.

2 Definitions and Example

2.1 Basic Definitions

Definition 1. A model represents the main aspects of a software project that must be
implemented. It consists of model elements that contain properties, e. g., a name or
a reference to other model elements. A design rule defines requirements that must be
fulfilled in the model. A violation of a design rule causes an inconsistency in the model.
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The requirement of the design rule is expressed as a condition that validates to true
(consistent) or false (inconsistent). A design rule is written for a specific context that
can be a single model element (the design rule will be validated once) or a type of model
element (the design will be validated for each instance of this model element type in the
model). Each validation can cause a separate inconsistency.

DesignRule := 〈context, condition〉
condition : context→ {true, false}

Definition 2. A design rule condition consist of a set of hierarchical ordered expres-
sions where each expression consists of an operation (o), a set of 0 to * arguments (α)
and a validation result (σ). The arguments of an expression (ε) are expressions itself
and they are tree based ordered, i. e, each expression has exactly one parent and is in a
set of arguments of an other expression except the root expression (ε0).

condition :=

n⋃
i=0

εi|
{
∃i, j : εj ∈ εi.α if j > 0, i �= j

�i, j : εj ∈ εi.α if j=0, i�=j

ε := 〈o, α, σ〉

2.2 Running Example

Figure 1 introduces a small illustration to accompany the discussion in the paper. The
example depicts an UML model containing two diagrams, a class and sequence dia-
gram. The given model represents an early design-time snapshot of a video-on-demand
(VOD) system. The class diagram (left) represents the structure of the VOD system:
a ‘User‘ that controls the system and watches videos, a ‘Display‘ used for visualizing
movies and receiving user input and a ‘Streamer‘ for downloading and decoding movie
streams. The sequence diagram (right) describes the process of selecting a movie and
playing it. Since a sequence diagram contains interactions among instances of classes
(objects), the illustration depicts a particular user invoking ‘select‘ (a message) on
the ‘d‘ lifeline of type ‘Display‘ which then invokes ‘connect‘ on the ‘s‘ lifeline of
type ‘Streamer‘. The movie starts playing once the ‘play‘ message is issued which is
followed by ‘stream‘ and successive ‘draw‘ messages.

Messagem :
(∃l1 ∈ m.receiveEvent.covered,
l2 ∈ m.sendEvent.covered :

∃a ∈ l2.represents.type.ownedAttribute :
a �= null⇒ a.type = l1.represents.type)

⎫⎪⎪⎬
⎪⎪⎭ (1.1)

∧
(∀l ∈ m.receiveEvent.covered :
∃o ∈ l.represents.type.ownedOperation :
o.name = m.name)

⎫⎬
⎭ (1.2)

(1)

Design Rule (1) discusses two conditions the model must satisfy: 1) whether a given
message in a sequence diagram matches the direction of the class association (1.1), and
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play
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u:User d:Display s:Streamer

1:select

1.1:connect

1.2:play

1.3:stream

2:draw

Fig. 1. UML Class and Sequence Diagram of a Video on Demand System

2) whether the given message has a same-named operation (1.2). The two conditions are
expressed in one design rule and linked together by a conjunction (∧). This linking into
more complex design rules is common, for example, to avoid unnecessary validations.
As such, the search for a matching operation name (1.2) is useful only if the operation’s
class is identified correctly by the association (1.1).

Typically, rules are written from the perspective of a context – a type of model
element. The context for Design Rule (1) is the UML type ‘Message‘ (see Messagem
at the very top) and the rule has to be validated separately for each message in the se-
quence diagram in Figure 1. There are thus five validations of that rule necessary in the
illustration. Each evaluation validates the correctness of its message only.

If, for example, the design rule validates the message ‘connect‘ then, first, both ends
of the message are accessed through the receive event (l1 ∈ m.receiveEvent.covered)
and the send event (l2 ∈ m.sendEvent.covered). As it is possible in UML that
a message is assigned to more than one lifeline, the design rule iterates via an ex-
istential quantifier (∃l1, l2 . . .) over all returned lifelines which are assigned to the
variables l1 and l2. For message ‘connect‘ l1 is instantiated with the lifeline ‘s‘ of
type ‘Streamer‘ and l2 with the lifeline ‘d‘ of type ‘Display‘. Next, the owned at-
tributes (the association ends are expressed as attributes) of the senders lifeline type
(l2.represents.type.ownedAttribute) are compared to those of the receiver (a.type =
l1.represents.type). If one is found then there must be an association that connects
sender type and receiver type. The second part of Design Rule (1) accesses the receiver
lifeline – lifeline ‘s‘ in this example. All types (universal quantifier ∀) of the lifeline
must include an operation that is named after the message name. The ‘s‘ lifeline is
an instance of class ‘Streamer‘ that includes operations (‘ownedOperation‘ property)
such as ‘connect‘ and ‘stream‘. The existential quantifier then validates whether at least
one operation matches the name of the message (=‘connect‘). Thus, both conditions of
Design Rule (1) are satisfied and the condition validates to true (=consistent).

2.3 Problem Description

Current state-of-the-art requires the re-validation of the entire design rule [6] if a model
change affects it. This is computationally increasingly expensive with the complexity
of the design rule or the number of model changes, thus these approaches scale only for
small quantities of model changes (individual changes) and comparative small design
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rules. A solution explored in [3] is thus to describe design rules from the perspective of
different model changes. However, this requires manual overhead and introduces errors
if done incorrectly. Another solution would be to split up the design rule into smaller
parts. However, doing so increases the number of design rules but would not cause any
performance and memory advantages. This problem is aggravated by the quantity of
model changes (e. g., as in model re-factoring, branching, merging, repair). To illustrate
this, consider the case of a repair. Our previous work [9] demonstrated that between
ten to twenty kinds of changes can resolve a typical inconsistency. This number seems
small enough. However, for computing the effects of such repairs ([5] referred to them
as side effects), permutations of these ten kinds of choices need to be explored where
each permutations requires (incremental) consistency checking. The number of possible
repair alternatives increases exponentially.

3 Model/Analyzer Approach

This section introduces an approach that improves incremental consistency checking.
Our empirical evaluation shows a reduction up to 20-fold (average 10-fold) in context of
19 design rules we analyzed. Our approach automatically records the run-time behavior
of design rules to reason about which parts of the design rule validation are affected by
a model change. In the following, we demonstrate how to capture the validation of a
design rule in form of a validation tree and how to identify which part of the validation
tree is affected by a model change.

3.1 Principles

Incremental consistency checking builds a scope for each design rule – or in case of
Model/Analyzer for each design rule validation. If a model element changes then all
those design rule validations need re-validation that included the changed element in
their scope. Take, for example, a simple conjunction a ∧ b. In fact, Design Rule (1) is
a conjunction where a checks for the message direction and b checks for the method
declaration. During the initial validation of this conjunction, the consistency checker
will first validate a and if a is true then b will be validated also. If a is false then b
need not be validated because the result does not depend on b. The validation of the
conjunction a ∧ b results in either true (=consistent) or false (=inconsistent).

A model change only then affects the validation result of conjunction a ∧ b if either
a or b changes. Clearly, if neither a nor b change then the validation result cannot be
affected. However, not all changes to a or b affect the validation result. For example if
a = true, b = false and a changes then this change does not affect the result of the
conjunction (a ∧ b was false because of b and for as long as b remains false a change to
a does not matter). In this case, we may well discard a from the change impact scope
which means that a change to a should not trigger a re-validation of a∧ b (expressed in
Table 1, row 3). We see that initially, both a and b are validated (a = true, b = false)
but a is discarded from the scope (column ‘initial‘). If a changes (column ‘change a‘),
no re-validation is performed. If b changes, however, we need to validate a because it
may have changed since (by having discarded it from the change scope we no longer
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know what happened to it since). The scope stays the same unless a is false in which
case b may be discarded (recall from above that b needs no validation if a is false).

Row 4 in Table 1 depicts another situation where a = true and b = true. The
validation result of the conjunction is thus true and it is clear that both a and b may
affect this validation result if either one of them were to change. Thus, both need to be
validated and nothing can be discarded. This is the worst case for a conjunction where
there is no apparent savings in the validation time and scope (memory consumption).
However, even here we find savings in how incremental validation is performed. For
example, if b changes then it must have become false and no validation is necessary
to determine that the validation result of the conjunction is false also, i. e., a need no
re-validation and can be discarded from the scope.

Table 1. Initial Validation and Re-validation of a Conjunction

a b a ∧ b
validate/discard

initial change a change b

1 false false false a/− b/a −/−
2 false true false a/− b/− −/−

3 true false false ab/a −/− a/

{
b if a = false
− else

4 true true true ab/− −/b −/a

To illustrate the benefits, consider the total number of validations and dismissals in
Table 1. We see that the initial validation investigates at least a and often also b (in
average 1.5 validations depending on situation). Here, our approach’s performance is
identical to the traditional Model/Analyzer approach. However, the advantage of our ap-
proach becomes apparent with the changes. Traditional approaches have to pay the ini-
tial validation cost for all subsequent changes. In our approach, we see that for changes
to a only 0-1 (average 0.5) re-validations are necessary (instead of the 1.5). The same
is true for changes to b with an even lower average of 0.25. These saving are small if
we consider expressions individually but these saving accelerate with every expression.
As an example, assume that a in a ∧ b is another conjunction a1 ∧ a2: (a1 ∧ a2) ∧ b.
If a1 changes but a1 was discarded from the scope (Table 1) then no re-validation is
necessary. If a1 was not discarded then it may affect a1 ∧ a2 and we need to re-validate
a1∧a2 to be certain. Only if the re-validation of a1∧a2 shows that it indeed changes and
Table 1 reveals that its change may affect a ∧ b where a = a1 ∧ a2 then we re-validate
a ∧ b (where the validation result for a is already known because it was just validated).
The more complex the design rule, the more significant must be the savings. Consider
that a1 ∧ a2 = true and b = false. In this case, the a branch, consisting of a1 ∧ a2, is
discarded from the scope which means that neither a1 nor a2 can affect the design rule.
Each upward re-validation step is thus a double filter: 1) to assess whether the change
can impact the validation result of the step and 2) only if that validation result changes
then the step above is re-validated.

To achieve these performance gains, our approach must retain some intermediate
validation results from the initial validation or subsequent re-validation in form of
a validation tree (will be discussed below). However, we will demonstrate that this
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memory consumption is moderate because significant parts of the validation tree can be
discarded as shown in the small example above.

Naturally, our approach is not just limited to conjunctions. Design Rule (1) consist of
a conjunction but its arguments are more complex expressions such as quantifiers. Ta-
ble 2 shows the validated and discarded parts for the initial validation and re-validation
for possible changes on an existential quantifier. An existential quantifier is similar to
concatenated disjunctions. From this it follows that if the existential quantifier vali-
dates to true then one validation of the source elements must be kept to ensure that
this quantifier can change its state only if at least this validation fails. All others can
be discarded. Other logical expression, such as disjunctions, implications, negation, the
universal quantifier, . . . , are analogous and we omit their discussion due to brevity.

Table 2. Initial Validation and Re-validation of an Existential Quantifier

A = {a1, a2} ∃a ∈ A|a
validate/discard

initial add a3 delete a1 delete a2 change a1 change a2

1 {false, false} false Aa1/− Aa3/a1 Aa2/a1 −/− a1/− −/−
2 {false, true} true Aa1a2/a1 −/− −/− Aa1/a2 −/− Aa1/a2

3 {true, false} true Aa1/− −/− Aa2/a1 −/− Aa2/a2 −/−
4 {true, true} true Aa1/− −/− Aa2/a1 −/− Aa2/a1 −/−

3.2 Filtered Validation Tree

The validation tree is a structured log of the validation of a design rule and depicts every
expression performed, the order they were performed, the model elements that were
accessed, and all intermediate results generated. This validation tree will be generated
the first time a design rule is validated on a model element, i. e., on start-up and when
new model elements that match the context of a design rule are created. Figure 2 shows
a validation tree for the message ‘connect‘. Algorithm 1 describes how the validation
tree is built and how parts of it are discarded to reduce the impact of a model change
(CPU savings) and reduce memory.

At the beginning, the algorithm distinguishes (line 2) between expressions that have a
Boolean result (e. g., conjunction, existential quantifier) and all other expressions (e. g.,
model access, string or collection manipulations). If the expression is a Boolean expres-
sion then the first action (3) is to create a node in the validation tree that points to the
expression (ε) (e. g., the conjunction for Design Rule (1) becomes the root node in the
tree). The next step is the validation of the arguments (α) of the expression (6) which is
done by a recursive call of the validate algorithm for all its arguments. The validation
is guarded by a condition (5) that the argument needs validation only if the result is not
already in the validation tree. Of course, during the initial validation no results are in the
validation tree; however, we will see later that re-validation makes use of this algorithm
also and the need for this condition will be explained in the next section. An edge will
be added between the node of this expression and the node created during the validation
of each argument (7). The algorithm distinguishes between the different logical opera-
tion types (o). Due to brevity only the conjunction (8) and the existential quantifier (10)
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Algorithm 1. Initial Validation and Creation of a Validation Tree

1 validate(Expression e)
2 if (e.operation is a boolean operation)
3 add node(reference to e)
4 for (i=1 to #e.arguments) //validate arguments
5 if (e.arguments[i] is not in validation tree)
6 validate(e.arguments[i])
7 add edge(e.node, arguments[i].node)
8 if (e is-a conjunction)
9 if e.arguments[i].result!=false next

10 else if (e is-a existential)
11 if e.arguments[i].result!=true next
12 ...
13 else next
14 e.result = e.operation(e.arguments) //compute validation result
15 if (e is-a conjunction) //filter 1 validation tree (discard)
16 if (e.arguments[1] and !e.arguments[2]) remove edge(e,e.arguments

[1])
17 else if (e is-a existential)
18 if (e.result=true)
19 for (i=1 to #e.arguments)
20 if e.arguments[i]=false remove edge(e, e.arguments[i])
21 ...
22 else
23 e.result = e.operation(e.arguments)
24 if (e.operation accesses model elements)
25 add node(reference to model elements)

are given (there were discussed above in detail), but the other operations can be derived
from these two operation because of the rules of the Boolean algebra. Not all arguments
need to be validated to compute the validation result of the expression (9, 11 are analo-
gous to Table 1). After the validation has finished, the result is calculated (14) and the
filtering of the validation tree starts (15-21). The filtering of the validation tree is the
dismissal of previously validated nodes/edges (e. g., see Table 1 third row or Table 2
second row). For example, if the expression is a conjunction and the first argument is
true but the second one is false then the edge to the first argument can be discarded.

As was said, the algorithm distinguishes between Boolean and non Boolean expres-
sions. The non-Boolean expressions are usually model accesses (e. g., retrieve the name
of a message) or manipulations (e. g., remove an association from a collection). Those
expressions are processed in lines 23 to 25. Essentially, our approach keeps track of
all model elements accessed for which we create leaf nodes in the validation tree. The
actual results computed by these expressions are discarded eventually to minimize the
memory overhead of our approach. The leaf nodes typically only contain the references
to the model elements through which the results were computed. In Design Rule (1),
the source of the first existential quantifier is a property call: m.receiveEvent.covered
which includes accesses to two model elements: the ‘receiveEvent‘ of the message ‘m‘
and from its result the ‘covered‘ property. This sequence of two property calls reveals
the lifelines that act as message receivers. The leaf node will identify these accessed
model elements and properties. If one of them should change then the existential quan-
tifier would be (potentially) affected and may require re-validation. In our example the
existential quantifier that iterates over all the operations of class ‘Streamer‘ creates one
node and edge to the model element properties that are accessed to get the operations.



210 A. Reder and A. Egyed

Validation of Message m ‘connect‘

∧

∃l1 ∈ m.receiveEvent.covered

l2 ∈ m.sendEvent.covered

∃a ∈ l2.represents.type.ownedAttribute

⇒

�=

a[attr] null

=

a[attr].[Streamer] l1[s].represents.[Streamer]

∀ l ∈ m.rec . . .

∃ o ∈ l.rep . . .

=
discarded

o[stream] m[connect]

=

o[connect] m[connect]

Fig. 2. Validation Tree for Message ‘connect‘

For each operation in the source a sub tree representing the condition of the quantifier
is created. After the sub trees are created, all the sub trees that are not needed for the
validation result of the existential quantifier are discarded (refer to Table 2).

Since the validation of a design rule discards parts of the validation tree, we speak of
a filtered validation tree. The filtered validation tree contains only nodes representing
the Boolean expressions with their Boolean validation results. Both are cheap to main-
tain in terms of memory consumption. All other validation results are discarded after the
validation except for the model element/properties that were accessed to compute the
results. These model accesses are references to the design model and such references
are also cheap to maintain in terms of memory consumption.

3.3 Impact of a Change

Once a validation tree has been created, only those parts must be re-validated that are
affected by the change. The initial generation of a validation tree is strictly top down
whereas the incremental re-validation is mostly bottom up. The previous section dis-
cussed one part of the benefits of our approach in that the re-validation focuses on the
filtered validation tree only and ignores changes that would have affected discarded
parts of the validation tree. This saves both memory and improves performance be-
cause a change becomes less likely to affect the validation tree. This section discusses
another part of the benefits of our approach. It demonstrates that changes propagate up-
ward for as long as the nodes are affected by the change only. Since the validation tree
stores all intermediate Boolean results, only changes to these results must be computed
anew. The model elements accessed (scopes) are referenced at the bottom of the tree
(the leaves) and the impact of model element changes thus always start at the leaves
and is propagated upward towards the root.

We illustrate this on two change examples and the validation tree for message ‘con-
nect‘. The first change (change 1) is the renaming of the operation ‘connect‘ to ‘wait‘ in
Figure 1. The second change (change 2) is the renaming of operation ‘stream‘ to ‘play‘.
Their impacts on the validation tree are shown in Figure 3. Change 1 is drawn in a thick
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Validation of Message m ‘connect‘

∧
true

1→ false

∃
discarded due to 1

l1 ∈ m.rec . . .

l2 ∈ m.sen . . .

∃a ∈ l2.rep . . .

⇒

�=

a[attr] null

=

a[attr].[Streamer] l1[s].represents.[Streamer]

∀
true

1→ false

l ∈ m.rec . . .

∃
true

1→ false

o ∈ l.rep . . .

=

re-validated due to 1

false
2→ false

o[stream
2→ play] m[connect]

=

true
1→ false

o[connect
1→ wait] m[connect]

Fig. 3. Impacts of two Changes on the Validation Tree

solid black line and change 2 as a thick dashed line. Algorithm 2 shows the handling of
a change in pseudo code.

Change 1 affects the operation ‘connect‘ (o[connect
1→ wait]) which is now named

‘wait‘ (represented by the arrow with the number of the change on top of it from

connect
1→ wait). Algorithm 2 first identifies all the leaf nodes that reference the

changed model element. The re-validation is bottom up and starts at these leaf nodes
(27, 28). For each leaf node, the re-validation saves the previous, old result (31) and
re-validates the expression (32). Since the approach maintains the Boolean results in a
validation tree only, it follows that no results are saved for leaf nodes and the ‘oldValue‘
remains undefined. Leaf nodes are thus always re-validated and their results propagated
upwards (33) to the parent node (35). In our example, the new name of the operation
is retrieved and then propagated up to the equals expression in Figure 3. The equals
expression must be re-validated using the new value from the left branch and either
the old value from the right branch (if the validation tree has the value) or a computed
value otherwise (note lines 5-6 in Algorithm 1). In our example, the result of the equals
expression changes from true to false and as the value changed, the new value will
be propagated up to the existential quantifier, the parent of the equals expression. As
this was the only node that made the existential quantifier true, its change causes the
re-validation of other branches. Recall that during the creation of the validation tree
the branch for operation ‘stream‘ was discarded because it did not affect the valida-
tion result of the existential quantifier. This branch may have changed since and needs
to be re-validated. If there are no other elements or none of the other elements satisfy
the existential quantifier (as in our example), the result changes and the new result is
propagated up to the universal quantifier. This universal quantifier fails also because of
the fail to the existential quantifier and the new value is propagated to the conjunction,
the top node of the validation tree (it has no parent, line 34). This node will validate to
false also, the overall evaluation of this design rule changes from consistent to inconsis-
tent. As can be seen 11 out of 22 nodes (a complete re-validation) must be re-validated
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Algorithm 2. Processing a Model Change

26 processChange(Element elem)
27 for all (node:validation trees | node references elem)
28 revalidate(node.expression)
29
30 revalidate(Expression e)
31 oldResult = e.result // is empty if leaf
32 e.result = validate(e)
33 if (oldResult != e.result) // filter 2 stop bottom up propagation
34 if (e has parent node)
35 revalidate(e.parent)

due to this change only. Furthermore, the left part of the validation tree (the first ar-
gument of the conjunction) will be discarded thereafter because it cannot influence the
validation result after the change, cutting 11 nodes from the 22 nodes. This benefits
the next re-validation because a change becomes less likely to affect the new filtered
validation tree.

The second change affects operation ‘connect‘ (o[stream
2→ play]). Without the

first change this change would not have affected the validation tree because this branch
was discarded during the initial validation and only added again after the first change.
The operation ‘connect‘ is thus in the change scope now. However, the re-validation of
the second change stops at the equals relation because the result of this node does not
change (33), i. e., it remains false. The upward propagation of changes thus stops once
the re-validated result of a node is equal the previously known result (‘oldResult‘) of
that node. In this case 3 out of the 11 remaining nodes must be re-validated only.

In contrast to other approaches, where the change of one model element triggers a re-
validation of the design rule in its entirety, our approach only triggers the re-validation
of those nodes in the validation tree that are affected by a model change. Since a dis-
carded argument in an expression discards the entire branch, the reductions increase
with the complexity of the design rule (the number of nodes). For the non-discarded
arguments, it must be noted that the re-validation is mostly upwards from leaf to root
nodes and new validations (top down) are limited to sub trees only. If multiple model
elements change then the same validation tree may have to be validated multiple times,
but these re-validations always start at distinct parts of the tree and may only join at
common roots (and only if the change affects the parent expressions). Redundancies
are possible only if the changes trickle to common roots which is often not the case.
Further optimizations are possible here.

4 Evaluation

We empirically validated our approach on 30 industrial UML models ranging from
small to large models (127 to 67,723 model element/properties). These models were
evaluated on 19 design rules. The design models are in part taken from [6] and were
transformed from UML 1.4 to UML 2.1 (this explains the differences in model sizes).
The design rules were also taken from [6] and converted form Java to OCL design rules
(some of them could not be converted due to the limited expressiveness of OCL). The
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Table 3. Model Size, Design Rule Validations and Memory Overhead

Name #Model

Elements

#Scope

Elements

#Design Rule

Validations

MOH Brute f.

[MB]

MOH Filtered

[MB]

MOH MDT

OCL [MB]

Video on Demand 90 127 63 2 2 1

ATM 220 763 304 20 10 7

Microwave Oven 290 296 138 29 13 9

Model View Controller 418 834 393 16 12 7

eBullition 513 892 341 53 18 10

Curriculum 763 1,350 595 150 43 4

Teleoperated Robot 1,115 1,969 885 97 34 5

Dice 3 1,274 1,649 599 74 14 3

ANTS Visualizer 1,282 3,119 1,225 169 93 6

Inventory and Sales 1,296 1,898 803 250 17 4

Course Registration 1,406 1,822 712 97 19 4

UML IOC F05a T12 1,453 2,441 998 67 23 6

VOD 3 1,558 4,652 1,789 175 110 7

Vacation and Sick Leave 1,658 2,681 1,084 145 65 5

Home Appliance 1,707 2,115 784 267 53 6

HDCP Defect Seeding 1,784 2,199 985 72 36 7

DESI 2.3 1,974 4,727 1,838 188 106 7

iTalks 2,212 4,049 2,289 417 130 6

Hotel Management Sys. 2,583 4,244 2,033 359 87 5

Biter Robocup 2,632 6,265 2,334 227 129 8

Calendarium 2,809 6,160 2,694 326 79 6

UML LCA F03a T1 2,983 2,912 1,243 108 53 3

<unnamed> 5,373 6,804 2,906 973 129 7

NPI 7,110 8,536 2,930 1,353 97 7

Word Pad 8,078 17,907 8,186 860 513 20

dSpace 3.2 8,761 12,994 5,869 N.A. 259 11

OODT 9,828 26,650 11,384 752 434 21

Insurance Network Fees 16,255 27,442 10,562 N.A. 172 58

<unnamed> 33,347 33,844 16,627 N.A. 382 111

<unnamed> 64,061 67,723 40,297 N.A. 724 61

complete list of design rules and the Model/Analyzer tool can be found on our tools
homepage http://www.sea.jku.at/tools/.

Before we evaluate the performance of the new approach we have to ensure that the
validation of the design rules are correct. To validate this, we compared the results with
the standard MDT (Modeling Development Tools of Eclipse) implementation of OCL.
Given the large number models and over 90,000 correct design rule validations, the
approach can be considered correct.

The evaluation of our approach covers the memory overhead and the performance.
The evaluations were done using our implementation for the IBM Rational Software
Architect (RSA) on an Intel Core 2 Quad CPU @2.83GHz with 8GB (4GB available
for the RSA) RAM and 64bit Linux (3.1.9). We compare our evaluation results against
incremental approaches exclusively and do not address the improvements against batch
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Fig. 4. Evaluation Time (in ms) of MDT OCL and the Optimized Approach

evaluation which is already done in our former work [6]. We evaluated the memory
overhead based on three criteria: 1) the memory used by a Brute force validation, i. e.,
each intermediate validation result as well as the property calls are cached, 2) the mem-
ory overhead of the filtered validation tree, and 3) the memory overhead of the MDT
OCL validation which caches the scope only. For larger models the Brute force vali-
dation could not be completed due to out-of-memory exceptions (N.A.). The memory
consumption was measured using the ‘Runtime‘ interface of Java and before measuring
the garbage collector was activated. The measured data were double checked with data
from the TPTP profiler for eclipse.

Table 3 shows the evaluation results for the memory overhead (MOH in Mega Byte)
in relationship to the model sizes, the accessed model element properties, and the quan-
tities of validated design rules. Compared to the worst case (Brute force), the reduction
of the used memory (Filtered) is between 50% and 80% (except for the very small mod-
els). As can be seen, the reduction depends not only on the model size but also on the
number of validated design rules and accessed model elements. The main memory over-
head (MDT OCL) is caused by the scope that must be built, even for other incremental
consistency checking approaches that are scope based.

The evaluation of the performance is done in the same environment using
‘System.nanoTime()‘ (resolution 1μs). We compared the evaluation of the validation
using the MDT OCL environment with the validation of the filtered validation tree.
Figure 4 shows the timing results regarding the model size (a-left) and regarding the
design rule complexity (b-right). We measured the average re-validation of 50 random
model changes on each model. The model changes cover the modification of model
element properties, the addition of model elements and their deletion. As can be seen,
the re-validation times (measured in ms) are nearly independent of the model size, but
the state-of-the-art OCL validation times are about 2 to 20-fold slower than compared
to our new approach. Slightly different are the results for the design rule complexity.
Whereas the re-validation time remains stable for our new approach, the re-validation
using the MDT OCL increases linear with the design rule complexity (please note the
logarithmic scale on both axes for both diagrams).
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It is intuitive to believe that our approach should perform better for larger, more
elaborate rules because our approach does not require the re-validation of the entire
rule (=equivalent to the entire validation tree) but only some paths from the leaves to
the root. If a validation tree has m nodes (=expressions) then the run-time complexity of
the normal approach should be O(m) whereas the run-time complexity of the optimized
approach should be O(log(m)). Figure 4 (b) confirms this hypothesis for all rules. The
larger the rules (x-axis, measured in the average sizes of their evaluation trees), the more
significant the saving.

5 Threats to Validity

The threats to validity are mostly centered on the random testing of changes. Random
changes can lead to models that may not be valid and do not conform to the UML stan-
dard. Still, they are possible changes and it may be useful to know that our approach
is superiors, perhaps even with changes that are impossible. Another aspect has to do
with the fact that random changes may under represent expensive changes. This as-
sumes that there are changes that are likely and expensive. However, previous work has
shown that likely changes are rarely expensive changes [8]. The reason we relied on
random changes was simply our desire to perform large quantities of model changes.
Second, the validation time for the state-of-the-art MDT OCL validations is measured
without the generation of the scope because to do so the UML implementation must be
instrumented (as on the case of our former work). Using the new approach this is not
necessary any more. However, this implies that the results of our approach should be
even better because computing the scope would have been higher, as would have been
the memory cost.

6 Related Work

Cabot and Teniente present an event triggered approach to detect inconsistencies in
UML/OCL conceptual schema [4]. They use a list of events that trigger the re-evaluation
of consistency rule. An event is a modification in the model and using this events they
reduce the amount of rules that must be re-validated in the model. They also use a syn-
tax tree that is annotated with events that potentially violate the constraint expressed in
OCL. In contrast to our approach the use a static analysis of the OCL constraint and as
such the incremental characteristic is limit to single constraints only.

Jouault et al. [12] developed an incremental approach using ATL (AtlanMod Trans-
formation Language) to transform OCL rules and to trigger only those rules that are
affected by a model change. This approach similar to ours as it uses model element and
their properties to trigger the re-evaluation of constraints. But their main focus is on a
static analysis of the constraints where the trigger events are extracted whereas we are
able to consider parts of a constraint only. Unfortunately, they provide no evaluation of
their approach regarding the evaluation time and memory consumption.

Similar, Blanc et al. [3] achieve near instant performance thanks the re-writing of
design rules for each relevant model change. This requires the engineer to re-factor
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consistency rules to understand the impact of model changes. If done correctly, this
leads to good performance. However, since writing these annotations may cause er-
rors, they are no longer able to guarantee the correctness of incremental consistency
checking.

Bergmann et al. [2] present an query based approach. This approach is similar to
the approach presented in this paper, but they use a query language (IncQuery) that is
executed on EMF models. Their approach is based on the Viatra2 [20] framework and
in RETE [11] networks. In their approach the queries must be stored permanently in
memory and the values must be updated after each model change. In contrast, in our
approach we only store references on the model elements and the Boolean values of
the validation tree, which shortens the massive memory consumption problem. Unfor-
tunately, the smallest unit in their timings are 10ms which is rather high for the problem
addressed in our paper.

Nentwich et al. present xLinkIt [14], a language that evaluates the consistency of
“documents”, including UML design models. Design rules are expressed in a uniform
manner and xLinkIt is capable of checking the consistency of models incrementally.
However, it requires between 5 and 24 seconds for evaluating changes and the tool
is thus not able to keep up with an engineer’s rate of model changes. The approach
by Reiss [16] is in principle alike xLinkIt. Rather than defining consistency rules on
XML documents, Reiss defines consistency rules as SQL queries which are then eval-
uated on a database which may hold a diverse set of artifacts. Reiss’ use of a database
makes his approach certainly more incremental. However, the incremental updates in
his study take about 30 seconds to 3 minutes. ArgoUML [17] was probably the first
UML design tool to implement incremental design checking but it required annotated
consistency rules. Their annotations were lightweight but so where their computational
benefits.

In the context of pervasive computing Xu et al. optimized the re-validation of design
rules [21]. The also use validation trees to for their optimization but in contrast to our
approach they process modifications of the context (the location) only. However, as we
address model-based software development we have to deal with more types of changes.
Furthermore, we optimize the tree in the post process to achieve better results regarding
reduced memory consumption and re-validation effort.

7 Conclusions and Future Work

This work introduced a novel approach to the incremental validation of design rules
in design models. Empirical validation on 19 design rule has shown that our approach
reduces the time to re-validate a design rule up to 95%. This observation was made on
a large number of design models and we found that it outperformed the state of the art
under all situations by a large margin. Indeed, we have not encountered a single design
rule that would not benefit from our approach. This work paves the way for processing
a much larger number of model changes and/or more complex model changes with
instant or near instant response times. In our future work, we will use this re-validation
approach to simulate repair actions and determine the effects that such actions have on
the overall design model and on other design rules.
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Abstract. Design models represent modular realizations of stakeholders’ con-
cerns and communicate the design decisions to be implemented by developers. 
Unfortunately, they often suffer from inconsistency problems. Aspect-oriented 
modeling (AOM) aims at promoting better modularity. However, there is no 
empirical knowledge about its impact on the inconsistency detection effort. To 
address this gap, this work investigates the effects of AOM on: (1) the develop-
ers’ effort to detect inconsistencies; (2) the inconsistency detection rate; and (3) 
the interpretation of design models in the presence of inconsistencies. A con-
trolled experiment was conducted with 26 subjects and involved the analysis of 
520 models. The results, supported by statistical tests, show that the effort of 
detecting inconsistencies is 20 percent lower in AO models than in their OO 
counterparts. On the other hand, the inconsistency detection rate and the num-
ber of misinterpretations are 43 and 37 percent higher in AO models than in OO 
models, respectively. 

Keywords: Aspect-Oriented Modeling, Model Composition, Inconsistency, 
Developer Effort, Empirical Studies. 

1 Introduction 

Modeling languages (e.g., UML [11] and its extensions) provide different types of 
models, such as class and sequence diagrams, to represent the structure and behavior 
of software systems. These complementary models represent the design decisions that 
developers will implement later. In practice, these models often suffer from the incon-
sistency problems [16]. These inconsistencies are mainly caused by the mismatch 
between the overlapping parts of complementary models and the lack of formal se-
mantics to prevent these contradictions [2][3]. Consequently, developers must invest 
some effort to detect and properly deal with these inconsistencies [6]; otherwise, 
emerging misinterpretations of the design models can compromise the resulting 
implementation. 

Different modeling languages support different forms of modular decomposition 
and may influence how developers detect or even neglect inconsistencies [3]. This 
might be particularly the case with aspect-oriented modeling (AOM) [7][17] as it in-
tends to improve design modularity of otherwise crosscutting concerns. Current 
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research in AOM varies from UML extensions [7][17][19][20] to alternative strategies 
for model weaving. Unfortunately, nothing has been done to investigate whether as-
pect-oriented models can alleviate the burden of dealing with model inconsistencies. 
Someone might hypothesize that they might help developers to understand the design 
before implementing it. Others could also postulate that the improved modularization 
would reduce the effort to detect inconsistencies or even reduce misinterpretations 
arising between complementary design models. 

Unfortunately, it is by no means obvious whether these assumptions hold (or not). 
First, it may be the case that additional constructs in AO models lead to detrimental 
effects on design understanding. Second, it is still not clear if an aspect affecting mul-
tiple join points may increase the inconsistency detection and improve the model 
interpretation. Third, developers might get “distracted” by the global reasoning moti-
vated by the presence of crosscutting relations [10] between classes and aspects. At 
last, developers might even invest more effort using AO models while examining all 
points that are crosscut by the aspects [6].  

In this context, this paper reports a controlled experiment (Section 3) aimed at in-
vestigating the impact of AOM on: (1) the rate of inconsistency detection; (2) the 
developers’ effort to detect these inconsistencies; and (3) developers’ misinterpreta-
tion rate. We compare the use of AO models to OO models in a particular context: the 
use and understanding of design models by developers needed to produce the corres-
ponding implementation. The results (Section 4) supported by statistical tests and 
qualitative analysis, show that AO models alleviate the effort to detect inconsisten-
cies. But, it neither reduces inconsistency detection rate nor misinterpretation rate.  

Moreover, we also discuss some additional findings (Section 4.4). For instance, we 
observed that the downsides of AOM were, to a large extent, caused by the degree of 
quantification [10] of the aspects. That is, the higher the number of modules affected 
by an aspect, the lower the inconsistency detection rate and the higher the misinter-
pretation rate. Moreover, we observed that developers tended to detect inconsistencies 
more quickly in AO models when the scope of aspect pointcuts was narrow. Equally 
relevant was the finding that the required mental model is directly influenced by the 
number of crosscut relationships.  

To the best of our knowledge, our results are the first to pinpoint the potential 
(dis)advantages of AOM in imprecise multi-view modeling. After presenting how we 
tried to mitigate the possible threats to validity (Section 5), we make it clear the con-
tributions of our experiment in the light of the related work (Section 6) and present 
final remarks (Section 7). 

2 Background 

2.1 Aspect-Oriented Modeling 

Aspect-oriented modeling (AOM) languages aim at improving the modularity of de-
sign models by supporting the modular representation of concerns that cut across 
multiple software modules. This superior modularization of crosscutting concerns is 
achieved by the definition of a new model element, called aspect. An aspect can 
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crosscut several modules within a system. These relations between aspects and other 
modules are called crosscut relationships. These basic concepts and other aspect-
oriented modeling elements are usually represented as classic UML stereotypes in 
AOM languages [7][17]. The AOM language used throughout our study is a UML 
profile [17][19][20]. The choice of the UML profile for AOM is based on some rea-
sons. First, the Unified Modeling Language [11] is the standard for designing soft-
ware systems. Second, the use of stereotypes reduces the gap between subjects with 
low skill (or experience) and highly skilled (or experienced) subjects. Third, the mod-
el reading technique used by the subjects would not be influenced by new notation 
issues; therefore, the interpretation of the models is exclusively influenced by the use 
of the concepts in object-oriented and aspect-oriented modeling. Finally, UML profile 
for AO programming is the approach more common for structural and behavioral 
diagrams [11]. 

Fig. 1 presents an illustrative example of the models used in our study: a class and 
a sequence diagram of the AOM language used in our study. The notation supports 
the visual representation of aspects, crosscutting relationships and other AOM con-
cepts. The stereotype <<aspect>> represents an aspect, while the dashed arrow deco-
rated with the stereotype <<crosscut>> represents a crosscutting relationship. Inner 
elements of an aspect are also represented, such as pointcut (<<pointcut>>) and ad-
vice. An advice adds behavior before, after, or around the selected join points [7]. The 
stereotype associated with an advice indicates when (<<before>>, <<after>> or 
<<around>>) a join point is affected by the aspect. The join point is a point in the 
base element where the advice specified in a specific pointcut is applied. 

 

Fig. 1. An illustrative example of aspect-oriented models used in our study. (A) and (B) 
represent the conflicting structural diagrams. (C) and (D) represent the structural and sequence 
diagrams without inconsistencies. 
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2.2 Model Inconsistency and Detection Effort 

The multiple views of a software system inevitably have conflicting information [2]. If 
software developers do not detect and properly deal with these inconsistencies the 
potential benefits of the use of the models (e.g., gain in productivity) can be compro-
mised. Developers must invest some considerable effort (time) to detect these inconsis-
tencies; otherwise, the potential benefits of the use of models such as specification of 
the implementation of a system can be compromised. Two broad categories of incon-
sistencies were used in this study: (1) syntactic inconsistencies, which arise when the 
models not conforming to the modeling language’s metamodel; and (2) semantic in-
consistencies, where the meaning of the model element does not match that of the ac-
tual design model. We have particularly selected semantic inconsistencies that are: (i) 
detectable by developers [2], and (ii) difficult or impossible to detect automatically. 
We focused on inconsistencies that have been documented elsewhere [3] and used in a 
previous empirical study [2]. A complete description is also available at our comple-
mentary website [9], and two representative examples are presented below: 

1) Conflicting relationships: the nature of a relationship diverges in structural and 
behavioral models. For instance, according to the sequence diagram, the advice of an 
aspect A crosscuts the behavior of class B; however, the semantics of the advice in A 
dictates when the class diagram should have either a <<crosscut>> or a <<use>> rela-
tionship between A and B. For example, Fig. 1 presents this kind of inconsistency. 
The aspect t:TraceAspect crosscuts the c:CheckingAccount objects (Fig. 1.B). In this 
case, the relationship between TraceAspect and CheckingAccount should be <<cross-
cut>> instead of <<use>> (see Fig. 1.C) given the logging semantics of the advice 
logOperations(). In the structural diagram (Fig. 1.A), the aspect TraceAspect has a 
<<use>> relationship with the class CheckingAccount instead of <<crosscut>> rela-
tionship. 

2) Messages with different return types: the return type of a message m from an 
object A to an object B does not match with the return type of the method M in the 
corresponding class B in the class diagram. For instance, the method CheckingAc-
count.getBalance has conflicting return types: string in the class diagram and double in 
the sequence diagram. A similar conflict can occur with the return type of a around 
advice [17] and the return type from a method execution being advised by the latter.  

Developers detect inconsistencies when they identify conflicting information in the 
models and, then, report that the models cannot be implemented. This decision often 
relies on “guessing” the semantics of the model elements. To reach this conclusion, 
developers need to invest some effort: the time (in minutes) to go through the model 
and infer that the models suffer from inconsistencies.  

3 Study Methodology 

3.1 Goal, Research Questions, and Context 

We formulate the goal of this study using the GQM template [5] as follows: 

Analyze AO and OO modeling techniques for the purpose of investigating the im-
pact with respect to detection effort and misinterpretation from the perspective of 

developers in the context of multi-view design models. 
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Based on this, we focus on the three research questions: 

RQ1: Does AOM affect the efficiency of developers to detect multi-view model 
inconsistencies? 
RQ2: Does AOM influence effort invested by developers to detect model incon-
sistencies? 
RQ3: Do AO models lead to a different misinterpretation rate as compared to OO 
models? 

The context selection is representative of situations where developers implement 
classes (or aspects) based on design models. The experiment was conducted within 
two postgraduate courses at the Pontifical Catholic University of Rio de Janeiro 
(PUC-Rio) and the Federal University of Bahia (UFBA). Both courses are taught in 
the first year of Master and Doctoral programs in Computer Science. Therefore, all 
the subjects (18) hold a Master’s or Bachelor’s degree, or equivalent. In addition, 
eight (8) professionals from three companies also participated in the experiment. Most 
of the professionals held a Master’s or Bachelor’s degree. 

3.2 Hypothesis Formulation 

First Hypothesis (H1). The first research question investigates whether developers by 
using AO models produce a lower (or higher) inconsistency detection rate than by 
using OO models. Usually developers do not indicate the presence of existing incon-
sistencies in multi-view models [3]. The main reason is that they can make implicit 
assumptions about the correct design decisions based on previous experience. Moreo-
ver, they might feel forced to produce an implementation even in the presence of in-
consistency. Thus, our intuition is that developers identify fewer inconsistencies in 
AO models than OO models because they might get distracted by the global reasoning 
motivated by the presence of additional crosscutting relations in the models. Conse-
quently, they may have a higher number of implicit assumptions to assemble the “big 
picture” of a system. However, it is by no means obvious that this hypothesis hold. 
Perhaps, the increased modularity of AOM models may help developers to switch 
more quickly between the behavioral and structural views while implementing their 
aspects. Consequently, the software developer may localize more inconsistencies than 
in OO models. These hypotheses are summarized as follows: 

Null Hypothesis 1, H1-0: The inconsistency detection rate in AO models is 
equal or higher than in OO models. 
H1-0: DetectionRate (AO) ≥ DetectionRate (OO) 
Alternative Hypothesis 1, H1-1: The inconsistency detection rate in AO mod-
els is lower than in OO models. 
H1-1: DetectionRate (AO) < DetectionRate (OO) 

Second hypothesis (H2). The second research question investigates whether develop-
ers invest less (or more) effort to detect inconsistencies in AO models than OO mod-
els. The superior modularity of AO models may help developers to better match and 
contrast the structural and behavioral information about the crosscutting relations. In 
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this case, developers may switch more quickly between the behavioral and structural 
views while systematically implementing their aspects. Thus, our expectation is that 
the higher the number of crosscutting relationships (an aspect crosscutting a wider 
scope) in the model, the lower the effort to detect inconsistencies. This assumption is 
based on the superior ripple effects of inconsistencies observed in AO models when 
model composition techniques are applied [6]. This propagation can directly affect the 
effort in detecting inconsistencies, since developers, facing the complexity of the 
propagations, avoid doing any implementation. That is, by using AOM developers 
tend to get more quickly convinced about the severity of multi-view inconsistencies. 
This means that they are more likely to report them and not going forward on the 
design implementation. However, it is not clear whether this intuition holds because, 
at first, developers may examine all model elements affected (or not) by the inconsis-
tencies, or even the inconsistencies, to some extent, may even be confined in the 
aspectual elements. This leads to the second null hypothesis and an alternative hypo-
thesis as follows: 

Null Hypothesis 2, H2-0: The effort to detect inconsistencies in AO models is 
equal or higher than in OO models. 
H2-0: EffortToDetect (AO) ≥ EffortToDetect (OO) 
Alternative Hypothesis 2, H2-1: The effort to detect inconsistencies in AO 
models is lower than in OO models. 
H2-1: EffortToDetect (AO) < EffortToDetect (OO) 

Third hypothesis (H3). The third research question investigates whether the misinter-
pretation rate (MisR) of the developers is higher (or lower) in AO models than in OO 
models. The chief reason of the disagreement between developers’ interpretation is 
the contradicting understanding of the design models. They are often caused by in-
consistencies emerging from the mismatches between the diagrams specifying the 
multiple, complementary views of the software system [3]. Contradicting design 
models make it difficult for developers to think alike and, hence, producing code with 
the same semantics. The key reason is that software implementation widely depends 
on cognitive factors. Someone could consider that additional AOM concepts, such as 
crosscutting relationships or aspects, may negatively interfere in a common under-
standing of design models by different developers. For instance, developers need to 
precisely grasp the actual meaning of the crosscutting relations (in addition to all oth-
er relations), and when they are actually established during the system execution. 
Then, as developers have to examine all join points affected by the aspects, their extra 
analyses can increase the opportunities of diverging interpretations. However, this 
expectation might not hold because the crosscutting modularity may improve the 
overall understanding of the design a when compared to pure OO models. This would 
lead to the following null and alternative hypotheses: 

Null Hypothesis 3, H3-0: The misinterpretation rate (MisR) in AO models is 
equal or higher in AO models than in OO models. 
H3-0: MisR(AO) ≥ MisR(OO) 
Alternative Hypothesis 3, H3-1: The misinterpretation rate in AO models is 
lower than in OO models. 
H3-1: MisR(AO) < MisR(OO) 
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3.3 Experiment Design 

Selection of subjects. Subjects (18 students and 8 professionals) were selected based on 
two key criteria: the level of theoretical knowledge and practical experience related to 
software modeling and programming. The subjects studied in educational systems that 
place a high value on key principles of software modeling and programming. In addi-
tion, the subjects were exposed to more than 120 hours of courses (lectures and labora-
tory) exclusively dedicated to software design, software modeling, OO programming, 
and AO software development. It can be considered they underwent an intensive mod-
eling-specific and programming training. As far as practical knowledge is concerned, 
the main selection criterion was that subjects had, at least, 2 years of experience with 
software modeling and programming acquired from real-world project settings. 

Paired comparison design. All subjects were submitted to two treatments (AO and 
OO modeling) to allow us to compare the matched pairs of experimental material. 
Each treatment had a questionnaire with five multiple-choice questions. The first 
treatment had only questions with AO models while the second one had only ques-
tions with OO models. The subjects were assigned randomly and equally distributed 
to these treatments so that the effects of the order could be discarded. Therefore, the 
experimental design of this study is by definition a balanced design.  

As the subjects were submitted to two treatments, an ever-present concern was the 
information that the subject could gain from the first treatment to perform the experi-
ment with the second treatment. To minimize the “gain in information,” some expe-
rimental strategies [4][5] were followed. First, the models used in the study were 
fragments of class and sequence diagrams from realistic, industrial design models of 
different application domains. Hence, the subjects had no prior information and no 
accumulated knowledge about the semantics of the model elements. Second, each 
question had a class and sequence diagram representing different functionalities of a 
software system. Third, each pair of structural and behavioral models had different 
kinds of inconsistencies (Section 2.2), and the meanings of their elements were com-
pletely different. Therefore, we can assume that the performance of subjects was not 
influenced by the treatments of previous questions.  

Tasks. In both treatments, the subjects received a pair of corresponding class (structural) 
and sequence (behavioral) diagrams. They were asked how they would implement par-
ticular classes (or aspects) based on these diagrams. That is, rather than stimulated to 
review or inspect the diagrams, the subjects were encouraged to implement particular 
model elements (classes or aspects). The goal is to identify how developers would deal 
with inconsistencies in the context of concrete software engineering tasks. The subjects 
should choose, then, the most appropriated implementations between the five possible 
answer options. In each question, the subjects were required to register the time invested 
to answer the question (“start time” and “end time”). They were also stimulated to justi-
fy their answers on the answer sheet. In total, ten questions were answered. After the 
experiment, the subjects were also interviewed to clarify the results. 

Objects. In the questions of the first treatment, the OO class diagram had, on average, 
7 classes and 8 relationships, while in the second treatment the questions had an AO 
class diagram with, on average, 5 classes and 2 aspects, and 8 relationships. The cor-
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responding AO and OO sequence diagrams had, on average, 5 objects and 15 messag-
es between the objects (and/or aspects). Each pair of OO or AO diagrams had two 
kinds of inconsistencies. The inconsistencies were always related to contradictions 
between the class and sequence diagrams. That is, there was conflicting information 
between those diagrams, as the examples given in Section 2.2. Considering the an-
swer options in each question, they were planned according to the following schema. 
The first answer option is according to the class diagram while the second one is just 
according to the sequence diagram. The third answer option is based on the combina-
tion of the information presented in both diagrams. The fourth one is incorrect consi-
dering all two diagrams. All questions had a fifth answer option where the subjects 
could indicate that an inconsistency was detected in the models. The subjects were 
encouraged to carefully explain their answers. Further details of the experimental 
design can be found in [9]. 

3.4 Variables and Quantification Method 

The independent variable of this study is the choice of the modeling language. It is 
nominal and two values can be assumed: AO modeling and OO modeling. These 
variables describe the treatments, and we investigate their impacts on following de-
pendent variables.  

Inconsistency detection rate (Rate) and Inconsistency detection effort (Effort). The 
Rate variable is intended to measure the overall rate of inconsistencies detected by all 
subjects (RQ1). It represents the ratio of the number of subjects that detect inconsisten-
cies in a question divided by the number of subjects that answer the question without 
notifying the presence of inconsistency. The Effort variable represents the mean of 
time (minutes) spent by the subjects to detect inconsistencies in a question (RQ2). Note 
that subjects detect inconsistencies when they explicitly indicate that they are unable to 
achieve a suitable implementation from the contracting diagrams. 

Misinterpretation rate (MisR). This variable represents the degree of variation of the 
answers (RQ3). That is, it measures the concentration of the answers over the four 
possible alternatives (the fifth alternative represents the detection of inconsistency). 
Our concern is if the differences in (un)detected inconsistency affects the design inter-
pretation of the subjects. An undetected inconsistency is not necessarily problematic 
[3] if all subjects have the same interpretation. For example, if the 26 subjects have the 
same answer (e.g., the alternative “A”) for a question, then the inconsistencies in the 
diagrams did not lead to misinterpretations (MisR = 1). On the other hand, if the devel-
opers’ answers spread equally over the four alternatives, then the inconsistencies cause 
serious misinterpretations (MisR = 0). That is, the misinterpretation rate is 0 if answers 
are distributed equally over all options, and 1 if the answers are concentrated only one 
answer option. According to [3], this variable can be measured as follows. , … , 1 2 ∑ 1  

Where: 
K: The number of alternatives for a question 
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ki: The number of times alternative i was selected, where 0 ≤ i < K and  
(for all i : 0 ≤ i < K − 1 : ki ≥ ki+1) 

N: The sum of answers over all alternatives: N = ∑  

3.5 Operation 

Preparation phase. The subjects (students and professionals) were not aware of the 
research questions (and hypotheses) of our study in order to avoid biased results. The 
motivation of the students was to gain extra points for their grade. The results ob-
tained by the students had no effect on their grade; instead, their dedication and quali-
ty of the justifications of the sheet and interviews. The professionals received the 
same questions as a printable questionnaire. All subjects received a refresher training 
to be sure of their familiarity with the modeling concepts used in the study. 

Execution phase. The experiment tasks were run within two courses at two different 
Brazilian universities (PUC-Rio and UFBA). Both runs were carried out in a class-
room following typical exam-like settings. However, because of time constraints and 
location, the professionals run the experiment in their work environment. However, 
the experiment was carefully controlled. All subjects received 10 questions and the 
answer sheets. It is important to point out that there was no time pressure for the sub-
jects, but they were rigorously supervised to correctly register the time. Therefore, we 
are confident that the time was recorded properly. For clarification reasons, the sub-
jects were encouraged to justify their answers. After finishing the experiment, the 
subjects filled out a questionnaire to collect their background, i.e. their academic 
background and work experience. Observational studies were conducted to improve 
understanding how the tasks in the experiment were performed,. This allowed a more 
effective observation and monitoring of the tasks of the subjects. To obtain an addi-
tional feedback from the subjects, they were also encouraged to write down the ratio-
nale used to answer the questions. 

Interview phase. Additionally, a semi-structured interview approach [5] was per-
formed, which followed a funnel model, i.e. one initial open question was presented 
and followed by more specific ones. It was organized in topics with open and close 
questions in such a way that qualitative evidence on the research questions could be 
gathered. An interview guide was created based on the authors’ experience and the 
study design. The interviews were recorded and transcribed into text. All subjects 
were selected for interviews. Each interview lasted from 30 to 55 minutes, depending 
on how talkative the subjects were. 

4 Experimental Results 

4.1 RQ1: Detection Rate in AO and OO Models  

Descriptive Statistics. The first research question investigates if developers detect more 
(or less) inconsistencies in AO models or OO models. Developers detected more in-
consistencies in OO models than AO models. The superior detection rate in OO mod-
els can be explained comparing means and medians (Table 1). Developers detect, on 
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average, by about 43.24 percent more inconsistencies in OO models than AO models, 
i.e. a mean of 0.37 (AO) compared with a mean of 0.53 (OO). The difference observed 
between the medians also favors the OO models. This comprises a superiority of 42.85 
percent in the number of the cases in which developers reported to be unable to provide 
an implementation. The results suggest that OO models enable developers to identify 
more inconsistencies than AO models. This contradicts somehow the intuition that the 
improved modularity of AOM helps developers to localize inconsistencies.  

Hypothesis Testing. Since the Shapiro-Wilk and Kolmogorov-Smirnov normality tests 
[1] indicates that the data are normally distributed, the paired t-test is applied to test 
H1. The collected t-statistic is 4.03 with the p-value = 0.01 (Table 1). This small p-
value (< 0.05) indicates the first null hypothesis (H1-0) can be rejected. This implies 
that the average difference of the detection rate in AO and OO models is not zero. 
Therefore, there is strong evidence (at the 0.05 level significant) that developers 
detect more inconsistencies in OO models than in AO models. The mean differences 
between the pairs of AO and OO models indicate the direction in which the result is 
significant. For example, considering the varying detection rate for AO and OO mod-
els, the mean difference is negative (-0.16). This implies that the detection rate in AO 
models was statistically lower than in OO models. Moreover, the non-parametric 
Wilcoxon test is applied to eliminate any threat related to statistical conclusion validi-
ty. The low value of the p-value = 0.031 collected (< 0.05) also confirmed the afore-
mentioned conclusion. Therefore, we can reject the null hypothesis H1-0. 

Table 1. Descriptive statistics and Stastical tests for measures 

Variables Treat. Mean 
St 

Dev 
Min. 25th Med. 75th Max %diff

Wilcoxon Paired t-test 

p-value t p MD 

Detection 
AO 0.37 0.09 0.23 0.29 0.35 0.46 0.54

43.24 0.031 4.03 0.01 -0.16 
OO 0.53 0.11 0.38 0.42 0.5 0.67 0.69

Effort 
AO 5.28 1.67 4 4.08 4.22 7 7.8 

19.69 0.033 3.1 0.03 -1.48 
OO 6.32 1.57 4.33 5.06 6.08 7.71 8.65

MisR 
AO 0.51 0.07 0.38 0.45 0.52 0.57 0.58

37.25 0.029 2.94 0.04 -0.19 
OO 0.7 0.07 0.62 0.64 0.69 0.77 0.81

*with 4 degree of freedom, a significance level of α = 0.05, MD: mean difference, p: p-value, 

St Dev: standard deviation 

 

4.2 RQ2: Detection Effort in AO and OO Models 

Descriptive Statistics. The second research question investigates the effort that devel-
opers should invest to detect inconsistencies in AO and OO models. Developers spend 
more effort to detect inconsistencies in OO models than AO models. The mean of 
detection effort is 5.28 (minutes) in AO models and 6.32 in OO models. This com-
prises a representative increase of 19.69 percent against plain UML models. This 
lower effort in the use of AOM is also observed comparing the medians. The detec-
tion effort ranges from 4.22 (minutes) in AO models to 6.08 in OO models, which 
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represents an increase of 44.07 percent in the latter case. This phenomenon confirmed 
our initial intuition that the superior modularity of AO models would accelerate the 
inconsistency detection. In fact, during the interviews, the subjects (18) reported that 
the manifestation of inconsistencies in crosscutting relations made the implementation 
to be prohibitive. Hence, the subjects reported more quickly in the AO model than in 
OO models. We noticed they were keener to match and contrast the structural and 
behavioral information governing the crosscut relations. Therefore, developers often 
report conflicting crosscutting relations as the reason for not progressing towards the 
implementation. This implies that although developers detect fewer inconsistencies in 
AO models, they spend less effort to localize them.  

Hypothesis Testing. Since the Shapiro-Wilk and Kolmogorov-Smirnov normality tests 
[1] indicate that the data are normally distributed, the paired t-test is applied to test 
H2. The collected t-statistic is 3.1 with the p-value = 0.03 (Table 1). This small p-
value (< 0.05) indicates the second null hypothesis (H2-0) can be rejected. This sug-
gests that the average difference of the inconsistency detection effort in AO and OO 
models is not zero. Thus, there is strong evidence (at the 0.05 level significant) that 
developers invest more effort to detect inconsistencies in OO models than in AO 
models. The detection effort in AO and OO groups assumes a negative value for the 
mean difference (-1.48), while the p-value (0.03) is less than 0.05. This implies that 
detection effort in OO models is statistically higher than in AO models. Moreover, the 
non-parametric Wilcoxon test is applied to eliminate any threat related to statistical 
conclusion validity. The low value of the p-value collected (0.033) also confirmed the 
previous conclusion. Therefore, we can reject the null hypothesis H2-0. 

4.3 RQ3: Misinterpretation Rate in AO and OO Models 

Descriptive Statistics. The third research question investigates whether AO models 
lead to a higher or lower misinterpretation rate than OO models. Table 1 shows the 
descriptive statistics to the misinterpretation measures of AO and OO models. Recall 
that MisR varies between 0 and 1, and that MisR = 1 indicates that developers do not 
have misinterpretation. On the other hand, MisR = 0 indicates that the developers’ 
answers spread equally over the four different alternatives, which represent the most 
serious misinterpretations. OO models cause less misinterpretation (higher MisR val-
ue) than AO models. The misinterpretation rate is 37.25 percent lower in OO models; 
the mean is 0.51 in AO groups against 0.7 in OO groups. This upward trend is also 
observed in the medians: 0.52 in AO models against 0.68 in OO models, comprising 
an increase of 32.69 percent. The results suggest that the presence of inconsistencies 
in AO models entails a higher detrimental impact on model interpretation by develop-
ers than in OO models. Our initial expectation that by using contradicting AO design 
models would increase the number of diverging interpretations was confirmed. Dur-
ing the interviews and examining the answer sheets, the subjects (22) reported that the 
need to scan all join points affected by the aspects increased the likelihood of differ-
ent interpretations.  

Hypothesis Testing. We analyze the strength of the aforementioned result testing H3 
as follows. As in the previous analysis, the paired t-test is applied to test H3 as the 
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measures assume a normal distribution. Table 1 shows the pairwise p-values and 
mean differences across pairs for each measure. As the mean difference is negative (-
0.19) and p-value (0.04) is less than 0.05, we can conjecture that there is significant 
evidence that the number of diverging interpretations in AO models is statistically 
higher than in OO models. We also applied the non-parametric Wilcoxon test to 
check this conclusion. The p-value (0.029) also assumed a low value (p < 0.05). 
Therefore, as the p-value is less than 0.05, and the mean difference is negative, we 
can conclude that: there is evidence that the MisR in AO models is significantly lower 
than in OO models. Therefore, we reject the null hypothesis H3-0. 

4.4 Discussion 

We have identified five outstanding findings from the answer sheets, interviews, and 
observational study.  

1) Higher Aspect Quantification and Inconsistency Detection. First, aspects with 
higher quantification [10] harmed inconsistency detection (RQ1) and the model inter-
pretation (RQ3) by developers. We observed that when an aspect had six crosscutting 
relationships and, therefore, affected multiple join points (11, in this case), the sub-
jects spend more time on performing global reasoning. The analysis of several aspect 
effects in the structural diagrams made developers often to neglect the analysis of 
behavioral interactions at each specific join point in the behavioral diagrams. Accord-
ing to the interviewees, this effect distracts away developers from observing possible 
inconsistencies between the structural and behavioral views. We observed, for exam-
ple, that the inconsistency detection rate in OO models was 71 percent higher than in 
AO models when the latter were composed of aspects with high quantification; in 
these circumstances, the mean in OO models was 0.65 compared to 0.38 in AO mod-
els. We noticed that 20 subjects explicitly reported that they felt distracted by the 
presence of high density of crosscutting relationships among the model elements. 

2) Overlapping Information about Crosscutting Relationships. Conversely, we ob-
served that the subjects tended to detect more quickly inconsistencies in AO models 
when the scope of aspect pointcuts was narrow. In these cases, developers invested 
effort in only confronting structural and behavioral information about the crosscutting 
relations. According to the subjects, they could observe inconsistencies more quickly 
in AO models because structural diagrams often express the type of an advice (i.e. 
before, after or around), which is also a behavioral information that is present in the 
sequence diagram. Then, they could easily identify inconsistencies between: (i) the 
types of advices in the class diagram, and (ii) when a particular message was being 
advised by the aspect in the sequence diagram. 

3) Crosscutting Relationships and Diverging Mental Models of the “Big Picture.” 
Data analysis suggests that uniform interpretation of AO models by different develop-
ers is harder to achieve than in OO models. The subjects had difficulties to create a 
“big picture” view from the conflicting class and sequence diagrams. This view 
represents a “mental model” reflecting how software developers perceive the prob-
lem, think about it, and solve it by producing the expected code from the diagrams. 
This understanding shapes the actions of the developers and defines the approach to 
guide the design realization in the code. In particular, the developers apparently had 
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diverging mental models when the model inconsistencies were sourced in the cross-
cutting relationships. In these cases, developers came up with very different solutions 
for realizing crosscutting relationships in the code. They provided different answers 
on which and when the advice should affect the base model elements. Consequently, 
the communication from designers to programmers seems to be more sensitive to 
inconsistencies in aspect-oriented models.  

4) The Level of Model Detail Matters. Developers usually consider the sequence 
diagrams as the basis for the design implementation. Note that in this case, the devel-
opers do not report the presence of inconsistency. This can be explained for some 
reasons. First, sequence diagrams are less abstract than class diagrams. This leads 
developers to rely on the behavioral diagrams than structural diagrams. Second, se-
quence diagrams are closer to the final implementation; hence, developers become 
confident that the information present on it is the correct one compared with the class 
diagram. As a result, it means that when models are used to guide the implementation 
of design decisions, inconsistencies in behavioral diagrams have a superior detrimen-
tal effect than those in class diagrams.  

5) Identifying Fewer Inconsistencies in Less Time. Developers identify fewer in-
consistencies in AO models than in OO models. However, they spend less effort to 
detect it in AO models. During the interviews, it was possible to observe that the main 
reason why developers stop in AOM and go ahead in OOM is that inconsistencies in 
AOM cause more severe doubts than in OOM. Hence, developers do not feel com-
fortable with using their experience to overcome the inconsistency problems given the 
problem at hand. Note that the subjects identify fewer inconsistencies in AOM not 
because they spent less time, but because it is seen as a “wicked problem.” Thus, the 
developers may be more afraid of dealing with problems in AO models rather than 
OO models. Finally, the results suggest that developers might insert more defects into 
code by using AO models. This can be motivated for two reasons: (1) low inconsis-
tency detection, and (2) high disagreement on design interpretations.  

5 Threats to Validity 

Internal Validity. Inferences between our independent variable and the dependent 
variables are internally valid if a causal relation involving these two variables is dem-
onstrated [5]. Our study met the internal validity because: (1) the temporal precedence 
criterion was met; (2) the covariation was observed, i.e. the dependent variables 
varied accordingly when the independent changed; and (3) there is no clear extra 
cause for the detected covariation. Our study satisfied all these three requirements for 
internal validity. 

External Validity. It refers to the validity of the obtained results in other broader con-
texts [5]. Thus, we analyzed whether the causal relationships investigated during this 
study could be held over variations in people, treatments, and other settings. Some 
characteristics that strongly contributed to this were identified. First, the subjects 
used: (1) a practical AOM technique to perform the tasks; and (2) the design models 
were fragments of real-world models. Second, the reported controlled experiment was 
rigorously performed, in particular, when compared with controlled experiments pre-
viously reported [3]. 
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Construct Validity. It concerns the degree to which inferences are warranted from the 
observed cause and effect operations included in our study to the constructs that these 
instances might represent. All variables of this study were quantified using a suite of 
effort metrics or indicators that were previously defined and independently validated 
in experiments of inconsistency detection [2][3]. Moreover, the concept of effort used 
throughout our study is well known in the literature [8] and its quantification method 
was reused from previous work [2][3]. Therefore, we are confident that the quantifi-
cation method used is correct, and the quantification was accurately performed. 

Statistical Conclusion Validity. Experimental guidelines were followed to eliminate 
this threat [5]: (1) the assumptions of the statistical tests (paired t-test and Wilcoxon) 
were not violated; (2) collected datasets were normally distributed; (3) the homogenei-
ty of the subjects’ background was assured; (4) the quantification method was properly 
applied; and (5) statistic methods were used. The Kolmogorov-Smirnov and Shapiro-
Wilk tests [1] were used to check how likely the collected sample was normally 
distributed. 

6 Related Work 

Aspect-oriented modeling is a very active research field [7][17]. However, there is 
little related work focusing on the quantitative and qualitative assessment of AOM. 
The current AOM literature does highlight the importance of performing empirical 
studies [8]. However, none of them empirically investigate the research topics ad-
dressed in our research questions. Research has been mainly carried out in two areas: 
(1) defining new AOM techniques [7][17], and (2) proposing new weaving mechan-
isms [13]. Several authors have proposed new modeling languages, focusing on the 
definition of constructs, such as <<aspect>> and <<crosscut>>. These constructs 
represent concepts of aspect-orientation as UML-based extensions [7][17][18][19][20]. 
For example, Clarke and Baniassad [7] make use of UML templates to specify aspect 
models. On the other hand, the chief motivation of some works is to provide a syste-
matic method for weaving aspect and base models (e.g. [12][13]). For example, Klein 
and colleagues [13] present a semantic-based aspect weaving algorithm for hierarchical 
message sequence charts (HMSC). They use a set of transformations to weave an ini-
tial HMSC and a behavioral aspect expressed with scenarios. Moreover, the algorithm 
takes into account the compositional semantics of HMSCs.  

Empirical studies of AOM (such as [6]) have not been conducted, in particular, in the 
context of modeling inconsistencies (or defects). Only the literature on OO modeling 
does highlight that empirical studies have been done on identifying defects in design 
models [2][3]. Lange and Chadron [3] investigate the effects of defects in UML models. 
The two central contributions were: (1) the description of the effects of undetected de-
fects in the interpretation of UML models, and (2) the finding that developers usually 
detect more certain kinds of defects than others. In conclusion, there are two critical 
gaps in the current understanding about AOM: (1) the lack of practical knowledge about 
the developers’ effort to localize inconsistencies, and (2) the lack of empirical evidence 
about the detection rate and misinterpretations when understanding AO models. 
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7 Concluding Remarks 

This paper reports an empirical investigation about the impact of AOM on the incon-
sistency detection rate, the effort to detect inconsistencies, and the misinterpretation 
rate. We observed that developers detected fewer inconsistencies in AO models than 
OO models. The reason is that they got more distracted by the global reasoning moti-
vated by the presence of crosscut relations and overlooked the negative effects of 
existing model inconsistencies. According to the subjects, a complex crosscutting 
collaboration between modules led developers to unconsciously make more implicit 
assumptions about the correct design decisions. As a consequence, aspects with high-
er quantification were the cause of a lower detection rate of inconsistencies. 

Second, developers spent less effort using AO models to detect each inconsistency 
than in OO models. This was mainly due to a higher degree of overlapping information 
in structural and behavioral views of AOM. Third, the software developers presented a 
superior rate of misinterpretation in AO models, mostly thanks to the additional num-
ber of modeling concepts (e.g., crosscut relationships and aspects). They also had to 
examine all join points affected by the aspects. This extra analysis increased the degree 
of disagreement by developers while interpreting AO models and producing the code. 
It is important to highlight that all the aforementioned findings were independent of 
inconsistencies being assessed.  
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Abstract. Precise modeling with UML and OCL traditionally focuses
on structural model features like class invariants. OCL also allows the
developer to handle behavioral aspects in form of operation pre- and
postconditions. However, behavioral UML models like statecharts have
rarely been integrated into UML and OCL modeling tools. This pa-
per discusses an approach that combines precise structure and behav-
ior modeling: Class diagrams together with class invariants restrict the
model structure and protocol state machines constrain the model behav-
ior. Protocol state machines can take advantage of OCL in form of OCL
state invariants and OCL guards and postconditions for state transitions.
Protocol state machines can cover complete object lifecycles in contrast
to operation pre- and postconditions which only affect single operation
calls. The paper reports on the chosen UML language features and their
implementation in a UML and OCL validation and verification tool.

Keywords: Structure modeling, Behavior modeling, UML, OCL, Pro-
tocol state machine, State invariant, Guard, Transition postcondition.

1 Introduction

Executable UML [23] is designed to specify a system at a high level of abstrac-
tion, independent from specific programming languages and decisions about the
implementation. Executable UML follows the ideas of the Shlaer-Mellor method-
ology, which separated concerns about the structure [34] and the behavior [33] of
a system to be developed. It is defined as a profile of the Unified Modeling Lan-
guage (UML) [26]. Executable UML models are testable, and can be compiled
into less abstract programming languages to target a specific implementation.
Executable UML supports model-driven development (MDD) through specifi-
cation of platform-independent models. The approach proposed in this paper
follows these ideas.

When using Executable UML, a system is decomposed into multiple model-
ing sub-languages: A class diagram defines the system structure in terms of the
classes and associations; a state machine defines the states, events, and state
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transitions for a class instance; an action language defines the actions or opera-
tions that perform processing on model elements; the system behavior is deter-
mined by the state machines and the operations realized in the action language.

Our tool USE (UML-based Specification Environment) supports the devel-
opment of class diagrams by validating OCL class invariants and operation
pre- and postconditions [7,8,19]. Recently, the tool was extended with an action
language [3] which is based on the Object Constraint Language (OCL) [27,36].
The present contribution explains our support for state machines in order to
complete the description of behavior. Within our tool, we integrate class dia-
gram validation with UML protocol machine validation on the basis of OCL
state invariants and OCL guards and postconditions for transitions. In contrast
to Executable UML, our approach extends OCL in order to express actions
and operation implementations, but does not need to define a separate action
language.

The need for integrating structure and behavior modeling in the OCL context
arose from monitoring running Java applications in terms of UML class diagrams
and OCL constraints and our state machine approach. In [12] we describe the
monitoring of a non-trivial Java application with constraints. Other applications
of our state machine implementation include middle-sized example models.

The rest of this paper is organized as follows. Section 2 introduces with a
running example the main state machine features which we employ on the type
level (at design time). Section 3 puts the state machine features which we handle
in the context of UML and our implementation. In Sect. 4, model validation of
state machines in connection with class diagrams is discussed on the instance
level (at runtime). Section 5 connects our contribution with related work, before
we conclude in Sect. 6.

2 Structure and Behavior at Design Time by Example

Our running example describes a digital support system for a library. The struc-
tural system requirements are shown in form of a UML class diagram in the top of
Fig. 1. The system supports the administration of users, book copies, and books
represented by respective classes and appropriate attributes. Two associations
can establish object connections: the association Borrows between the classes
User and Copy is meant to express that a User object has currently borrowed a
Copy object, and the association BelongsTo between the classes Copy and Book

expresses that a Copy object is an exemplar of a particular Book object. Further
properties are specified by restricting multiplicities, role names (in the example,
class names with lower first letter) and invariants (e.g., uniqueness requirements
for the attributes name, signature, and title, as well as a range restriction
for the attribute year). All classes possess operations for initializing objects.
The association Borrows can be manipulated from both participating classes
through the operations borrow and return. In order to support easy recogni-
tion of operation names, the first letter of the respective class has been added
to these names (borrowU, returnU, borrowC, returnC). The return operations
also modify the attribute numReturns.
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Fig. 1. Example System Requirements for Structure and Behavior (Design Time)
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The behavioral system requirements are shown in the bottom of Fig. 1 as
UML protocol state machines possessing states and transitions. For every class,
the valid object lifecycles are depicted, which restrict the order of creation events
and operation calls. As a central means to make the model precise, OCL is used
in various places: States are described by state names and state invariants in
form of boolean OCL expressions; transitions include (a) the triggering create
or call event, (b) a guard in form of a boolean OCL expression asserting that
the transition only takes places when the guard holds, and (c) a postcondition
in form of a boolean OCL expression asserting that the transition only takes
place in the case that after the transition the postcondition holds. Traditionally,
the notion guard is used in connection with state machines; however, because of
the symmetric behavior of the guard and postcondition, the guard may also be
called transition precondition.

The state invariants may optionally be shown in the protocol state machine
diagrams, however, we have suppressed them here. For example for the class
Book, the two proper, non-pseudo states possess the following state invariants.

postnatal [title.isUndefined and authSeq->isUndefined and

year.isUndefined and copy->isEmpty()]

blocked [title.isDefined and authSeq->isDefined and year.isDefined]

In state postnatal (after create), all attributes must be undefined and the
book must not be linked to any copy. In state blocked (after a call to the initial-
ization operation init), all attributes are defined, but note that no statement
about the linked copies is made, because there may or may not be copies for that
book in the library (either copy->notEmpty() or copy->isEmpty() may hold).

The transitions are either labeled with the create event which brings the
respective object into life or with an event which calls an operation of the object.
The protocol state machine for the class Book asserts a finite lifecycle demanding
that after object creation only the operation init may be called once. The
state machine for class Copy guarantees that after creation and initialization,
the borrowC and returnC operations switch between the states available and
borrowed. The state machine for the class User is the only one employing OCL
for transition guards and postconditions. But please be aware of the fact that all
states are accompanied by OCL state invariants. Both operations, borrowU and
returnU in class User are allowed in state living, however, OCL restrictions
via transition guards and postconditions apply. The guard (precondition) for
borrowU guarantees that a user cannot borrow two copies of the same book,
for fairness reasons. And the guard asserts that only available, not borrowed
copies can be handled with the operation borrowU. The postcondition of borrowU
checks that the copy, which was available before the transition took place, is
now unavailable. Conversely, the guard for returnU asserts that the copy to be
returned belongs to the current user and is indeed a copy in state borrowed.
The postcondition checks that the parameter copy is indeed available after
the returnU call. Note that these simple example restrictions do not guarantee
unproblematic behavior in all possible implementations. The state invariants,
guards, and postconditions have been chosen for demonstration purposes.
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An implementation on the modeling level of the operations can be realized in
our language SOIL (Simple OCL-based Imperative Language) [3]. Such an imple-
mentation is indispensable for animating and validating the model. SOIL allows
the developer to make system state manipulations with attribute assignments,
object and link creation and destruction, and control flow using conditionals,
loops, and operation calls. As an example, we show implementations for the
operations of the classes User and Copy.

class User -- pre- and postconditions not shown

operations

init(aName:String,anAddress:String)

begin self.name := aName;

self.address := anAddress; end

borrowU(aCopy:Copy)

begin aCopy.borrowC(self); end

returnU(aCopy:Copy)

begin aCopy.returnC(); end

end

class Copy

operations

init(aSignature:String, aBook:Book)

begin self.signature := aSignature; self.numReturns := 0;

insert (self, aBook) into BelongsTo; end

borrowC(aUser:User)

begin insert(aUser, self) into Borrows; end

returnC()

begin delete(self.user, self) from Borrows;

self.numReturns := self.numReturns+1; end

end

These operation implementations allow the developer to build up simple or
complex test states and scenarios with call sequences easily. Consequently, model
properties like consistency or the reachability of protocol states can be checked
with scenarios constructed with SOIL statements. The SOIL command sequence
in the upper right side of the forthcoming Fig. 3 is an example for such a test
scenario. The validity of model properties formulated in OCL as class invariants,
operation pre- and postconditions, state invariants, and transition pre- and post-
conditions is checked against these scenarios and by this also against the SOIL
implementation given for the operations. When writing down a particular test
scenario, the developer will have expectations on particular (class or state) in-
variants and (operation and transition) pre- and postconditions. These informal
expectations are formally checked by the tool USE, and the validation results
give detailed feedback to the developer about the possible discrepancy between
her expectations and the actual facts: What you write down doesn’t mean exactly
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what you think it means. And when it does, it doesn’t have the consequences you
expected. [15, p. XIII]

3 Behavior Modeling with Protocol State Machines

3.1 Protocol State Machines in UML

The UML defines two different kinds of state machines: Behavioral state ma-
chines and protocol state machines [26, p. 535]. As the name suggests, the former
can model the behavior of a model element by specifying actions which are linked
to state transitions, whereas the latter focus on the specification of correct usage
protocols, leaving out concrete actions associated with transitions [26, p. 547].
These protocols can be specified for any model element of type Classifier [26, p.
544]. The metamodel for state machines provided by the UML allows to model
highly structured state machines composed of, for example, composite states,
multiple regions and substate machines. At the current stage, our approach sup-
ports only a well-defined subset of these features leaving out mainly concepts
to structure state machines, but allowing nearly the same expressiveness. Issues
arising from the high structuring possibilities can for example be found in [21].
Next we describe the protocol state machine language as implemented in our
work. Starting with the syntactical and semantical rules defined in the UML, we
continue by showing the current features supported in our approach and how
they are interpreted at runtime.

As other languages for (finite) state machines the core part of the state ma-
chines defined by the UML are states and transitions. The UML distinguishes
between concrete and pseudo-states [26, p. 536, 549, 559]. A state machine in-
stance cannot have a pseudo-state as its current state after a transition has been
completed. Pseudo-states are only traversed during the execution of a transition.
One example of such pseudo-states are choice points for a transition. Both kinds
of states are derived from the metatype Vertex for which directed transitions are
defined. Behavioral state machines consist of transitions which need a source and
target vertex. In addition, transitions can specify a trigger (e.g., a call event), a
guard and an effect, i. e., a behavior [26, p. 536].

As we will see, several parts of state machines can be enriched with additional
boolean OCL expressions in order to add additional constraints. States can be
enriched with a OCL state invariant which characterizes the state in more detail.
The state invariant for a given state must be true, if a state machine is in this
state. An OCL guard of a transition must be true to be able to execute this
transition. For example, this allows to separate two outgoing transitions from
one state with the same trigger. In protocol state machines it is also allowed
to specify a boolean OCL expression which describes the system state after a
protocol transition has been taken. This expression is called a postcondition of
the protocol transition.

The initial pseudo-state together with a single outgoing transition marks a
concrete state as the default state of the state machine. The transition from
the initial state to the default state can only define a behavior and no trigger
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or guard [26, p. 550]. Furthermore, the initial state, as all other pseudo-states,
cannot specify a state invariant, whereas concrete states can.

Transitions inside a protocol state machine are defined by the metaclass Proto-
colTransition [26, p. 546]. This class extends the transition class of the behavioral
state machine and makes some extensions and restrictions. The main restriction
for protocol transitions is that they cannot specify an effect, because they specify
the usage of a protocol of a class and not its behavior. An effect of a transition
is instead specified in a declarative way by means of a postcondition which can-
not be specified for ordinary transitions. The trigger of a protocol transition is
usually an operation call, but it can also be an event.

When a protocol state machine defines at least one transition, which refers
to an operation, a call to this operation is only valid, if there exists a currently
valid transition for this call event. If an operation of the owning class is not
referred by a protocol state machine, a call to this operation is valid for any
state of the state machine [26, p. 549]. The specification of events other than call
events inside a protocol state machine defines requirements for the environment
using the owning class, stating that the event can only be sent to an instance
of the owning class under the current conditions specified by the protocol state
machine [26, p. 549]. An additional constraint specified for a transition is usually
called a guard, but for protocol transitions the naming is aligned to the area of
operations, calling this constraint a precondition.

3.2 Supported Concepts for Behavior Validation

Our approach supports protocol state machines which allows to specify valid call
sequences for lifecycles of an instance. A protocol state machine is defined in the
context of a class. The concrete syntax of such definitions is shown below.

class A

attributes

...

operations

...

statemachines

psm ALife -- psm: Protocol State Machine

states

s_i:initial

s_k [ state_invariant_k ]

...

s_n:final

transitions

s_src -> { [ pre_cond ] call_event [ post_cond ] } s_trg

...

end

end
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First, more than one state machine (in the following we use the term state
machine to refer to protocol state machines) can be specified for a class. Beside
a name, each state machine defines two sections: states and transitions. The
state section contains the definition of the pseudo- and the concrete states. A
state machine must define exactly one pseudo-state of type initial acting as the
entry point of the state machine. As already mentioned, the initial state cannot
define any information except a name for the state. Concrete states are defined
by their names and an optional state invariant expressed as a boolean OCL
expression in the context of the owning class. State invariants will be discussed
in detail during the description of the runtime behavior of state machines. Beside
the concrete states and the initial pseudo-state, multiple final states can be
defined.

The transition section specifies the structure of valid call sequences to the
owning class. The textual syntax is aligned to the graphical representation
in the state machine diagrams. For transitions, the source (s src) and target
state (s trg) separated by an arrow (->) are mandatory. Except for the outgo-
ing transition from the initial state, a call event is also mandatory. These call
events refer to an operation of the owning class. The call event for the outgoing
transition of the initial state can either be left out or must be named create

because a newly created object in our approach is immediately initialized with
instances of all defined state machines for its class. The call event can be sur-
rounded by a pre- and postcondition given as a boolean OCL expression. Like
pre- and postconditions for operations they can access the context object (the
instance receiving the call event) and the parameter values of the call event. The
postcondition can additionally make use of the OCL @pre keyword to access the
values which were valid when the call event was triggered.

When a USE model containing state machines is loaded, static checks are
made. These include checking the uniqueness of state names inside a single state
machine and the well-formedness of transitions, i.e., checking that state names
and transitions do refer to existing states and operations.

3.3 Protocol State Machines at Runtime

To validate a specified model, our approach allows the developer to instantiate
it and observe its behavior. The instantiation can be done in several ways, e.g.,
by manually manipulating the system state using the graphical user interface or
shell commands or by specifying statements in SOIL [3]. If an object of a class is
created, which contains state machines1, it is linked to the corresponding state
machine instances. These state machine instances are initialized with the default
state, i.e., the state reached by the outgoing transition of the initial state, as their
current state.

If an operation is called on an object, all state machines, which specify a
transition referring to the operation call, are checked for enabled transitions. A

1 In the following we refer to objects of classes with defined state machines when using
the word object.
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transition is called enabled, if it is an outgoing transition leaving the current state
of a considered state machine instance, if it refers to the called operation and if it
has a currently valid precondition [26, p. 584]. If at least one enabled transition
for each state machine under consideration exists, the operation call is valid.
The transition to take is determined after the operation has been executed. This
is done by evaluating for each previously enabled transition the postcondition
and the state invariant of the target state. For each considered state machine
instance there must be exactly one transition fulfilling both conditions. By us-
ing this mechanism, we (currently) disregard non-deterministic state machines
and executions which are however generally allowed in UML. Otherwise, the
operation execution is invalid. The concrete error situation is reported to the
user stating that either there exists no valid transition or multiple transitions
are currently valid. When a state machine instance is currently in an unstable
state, i.e., it is executing a transition, all nested operation call events need to be
ignored. Otherwise, a call to another operation on the same object by a called
operation could for example change the current state making the previously en-
abled transition invalid. The modeler can turn on a notification mechanism for
such situations.

The explained runtime behavior of state machines lead to valid call sequences
respecting state invariants, transition pre- and postconditions, if the state of an
object is only modified by operations specified by protocol state machines. How-
ever, as we described earlier, a protocol state machine can leave out operations,
making them callable at any time. Because these unconsidered operations could
also modify the state of an object, it is not guaranteed that a state invariant
stays valid while a state machine instance remains in a certain state. Therefore,
our approach is able to validate state invariants after any change to the system
state, e.g., attribute assignments or link creations. A violation of state invariants
is immediately reported to the user, who can then react to the error.

Another unique feature of our approach is the possibility to determine the
current state of the state machines by the specified state invariants [11]. For
this, the validation of transitions and state invariants can be suppressed. After a
system state is constructed without the validation of state machines, the user can
invoke the state determination command. The command tries to determine the
current state for each state machine instance by evaluating its state invariants.
If exactly one state invariant of a state machine instance evaluates to true, the
state of this instance is modified. This can, for example, be used, if a given
system state needs to be constructed without the execution of operations and
afterwards an operation call sequence has to be validated. An application of this
mechanism is the USE monitor [10,12] which allows to connect to a running
Java application and to retrieve a snapshot of the current application state.
When connecting to the application, not all information about previously called
operations is available, and therefore the current states must be calculated to
obtain the valid state machine configuration.
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Fig. 2. Example Scenario for Structure and Behavior (Runtime)
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4 Structure and Behavior at Runtime by Example

This section will explain how to apply the proposed concepts for the example.
Whereas Fig. 1 pictures structure and behavior of the library system on a type
level (design time), Fig. 2 displays structure and behavior of one system test
scenario on the instance level (runtime). The object diagram in the lower right
represents the objects, their attribute values and links after the SOIL command
sequence in the upper right part of Fig. 3 has been executed. In the left of Fig. 2,
the upper two state machine instances show the current protocol state for the
Copy objects dbs42 and dbs52, respectively. Also in the left, the lower two state
machine instances display the current protocol state for the User objects ada and
bob in dark grey. Please note, that the state of both Copy objects and the state of
both User objects are different. The state sequence which the Copy object dbs52

Fig. 3. Sequence Diagram and SOIL Commands for Example Scenario
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went through was postnatal, available, borrowed and again available. We
can conclude this from the executed operation sequence and from the attribute
value 1 for attribute numReturns. In the shown operation sequence, all OCL
restrictions have been checked and no violation occurs: all class invariants, state
invariants and transition pre- and postconditions have been evaluated to true.
Please note, that full OCL support in our approach means that we can relate
OCL queries concerning structure with behavioral descriptions, for example, the
OCL query in Fig. 2 checks relevant Copy properties and these can be compared
with the current protocol state and the value of the state invariants.

This scenario can be extended by further operation calls. For example, the
User object ada could try to borrow the Copy object dbs43. In this situation,
the guard for the borrowU call on the transition from living to living would
prevent the transition to take place: User ada has already borrowed another
copy of the Book object date. On the USE shell, a message will inform about
the violation and the fact that the transition should not and will not occur. The
following message will be shown.

!ada.borrowU(dbs43)

>> Error: No valid transition available in protocol state machine

>> ‘User::UserLife [current state: living]’ for operation call

>> User::ada.borrowU(dbs43) due to failing transition guard.

Analogous error messages would be displayed on the shell, if the transition
postcondition or the state invariant of the next state would be violated. Summa-
rizing we can say that taking a transition may be aborted due to four possible
reasons:

– a failing transition guard (precondition),
– a failing transition postcondition,
– a failing state invariant in the resulting state, and
– non-deterministic transitions, e.g., multiple transitions for the same trigger.

In Fig. 4, another example explains the usage of state invariants and the state
determination option. For a TrafficLight class with three boolean attributes
representing the red, yellow, and green bulbs, a protocol state machine allows
the traffic light to step through four phases, where each phase is represented by
a single state and a state invariant in form of an OCL expression characterizing
the signal in terms of the bulbs.2 The object diagram shows four test traffic
lights equipped with randomly determined attribute values for the bulbs, not all
representing valid signal configurations. The attribute values have been modified
not by operations, but with direct attribute assignments.

In the log window at the bottom, the result of executing the state determina-
tion command is given. This command aims to bring the state machine instances
into the state corresponding to their state invariants, if possible. The command

2 The phases are the phases used in Germany, whereas in other countries, e.g., in Italy,
the phases are different.
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Fig. 4. Example for Usage of State Invariants and State Determination Option

can be issued through an entry in the ‘State’ menu. For two traffic lights (sth
and est), a valid state fitting one of the four state invariants could not be found;
the other state machine instances are moved into a state determined by a state
invariant. The displayed state machine instance in the middle belongs to the
TrafficLight object wst and shows that the attribute values (wst.red=true
and wst.ylw=true and wst.grn=false) fit to the OCL state invariant expres-
sion (self.red and self.ylw and not(self.grn)) belonging to the current
state redYlw shown in dark grey. As our approach supports OCL during all
development phases, the complete system state can be inspected with OCL ex-
pressions at any point in time. The OCL query expression in the upper right
retrieves all present traffic light objects which currently show both red and grn.
The state determination together with OCL querying allows to check positive
and negative test cases with respect to structure (objects and attributes) and
behavior (operations and state machines).
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5 Related Work

Specifying behavior in OCL. OCL not only allows for specifying structural
model features but also constraints on the behavior of objects by means
of pre- and postconditions. In order that pre- and postconditions can be
interpreted unambiguously, a detailed semantics of operation specifications is
needed. The approach in [14] addresses this. However, according to [16], pre-
and postconditions describe static aspects of the system, as they compare
states of a system, which are static entities. Therefore in [16,17] the so-
called action clause is introduced to the Object Constraint Language and is
provided with a semantics.

Semantics of State Machines. In our approach we use UML protocol state
machines to constrain the model behavior. The structure and the semantics
of protocol state machines are discussed in [28]. The authors present an ap-
proach which applies protocol state machines to produce class contracts. The
semantics of behavioral state machines is discussed in [20]. The authors apply
the semantics for validity proofs of refinement transformations on behavior
state machines. A formal semantics for the integration of UML statecharts
into OCL, which makes it possible to formulate expressions over states in
UML statecharts is presented in [5]. However the authors refer to an older
UML version, whereby postconditions of protocol state machine transitions
are not handled. The dynamic semantics of state machines is discussed in [2].

Usage of State Machines. Different approaches for the usage of state ma-
chines in the software testing context exist. Model-based testing (MBT)
tools often use UML state machines as a basis for automatic test case gen-
eration. The approach in [38] makes it possible to automatically generate
state machine diagrams from use cases. This approach is also implemented
in a tool and evaluated in different case studies. The approach in [31] ap-
plies behavioral state machines for modeling reactive systems and automatic
generation of test cases. Based on this, the input-output conformance of
the systems is tested. The presented test approach is implemented by the
so-called TEAGER tool suite. In [37], the authors report on an industrial
cooperation for model-based testing applying UML state machines with a
German rail engineering company. Based on a given UML state machine this
approach makes it possible to automatically generate unit tests. The use of
UML state machines for requirements validation is described in [25]. The
authors apply Formal Concept Analysis (FCA) in analyzing the association
between a set of test scenarios with a set of transitions specified in a UML
state machine model. The authors of [35] use protocol state machines in the
field of network security. They introduce Veritas, a tool which uses applica-
tions network traces to automatically generate protocol state machines. The
generated state machines are able to represent incomplete knowledge about
a protocol and are labeled as probabilistic protocol state machines (P-PSM).
K-statecharts are an extension of UML statecharts which allow the use of
knowledge-logic formulae in the statechart transition guard and are used for
runtime verification of system behavior [4].
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Tools. In [32] a tool set which supports static and dynamic validation of UML
models is presented. The tool mOdCL is based on Maude, an executable
formal specification language and is able to validate invariants and pre- and
postconditions during the execution of a system [29]. In contrast to our ap-
proach and like the tool set presented in [32], mOdCL leaves out handling
and runtime validation of protocol state machines. In [29], the authors report
on the experiences with the development of a tool for dynamic enforcement
of OCL constraints. Applying aspect-oriented programming (AOP), ocl2j
automatically instruments OCL constraints in Java programs. In [24] a pro-
totype of a tool being able to check the conformance of components within
the UML extension for real-time (UML-RT) to the respective protocol state
machines, which specify the legal communication between components, is
described. Rhapsody is a verification environment for UML models. The
tool implements an own semantics of statecharts, as discussed in [13]. The
tool TABU allows for verification of reactive systems behavior [9]. For this
purpose the behavior is modeled by state machines and automatically trans-
formed into the used formal specification SMV (Symbolic Model Verifier).
Additionally a number of CASE tools suchs as [6] allow for modeling stat-
echarts, but are not able to validate state machines at runtime. In contrast
to our approach, [1] and [22] don’t provide full OCL support. Epsilon [18]
is a platform which allows for model validation. However handling for state
machines is not integrated.

Our contribution profits from these related works. It is however the only one
which combines state machine validation with full OCL support for structural
modeling and validation.

6 Conclusion

We have made a proposal for integrated structure and behavior modeling and
validation. Full OCL support for (class and state) invariants and (operation and
transition) pre- and postconditions guarantees that the underlying graphical
models become precise. We combine descriptive requirements with an OCL-like
imperative language. The models are validated and verified by test scenarios.

We plan to extend the supported UML state machine features, in particular,
we will care for structuring mechanism like nested states. A number of improve-
ments on the user interface can be realized, for example, an optional indication of
protocol state machine states on object lifelines in sequence diagrams. Features
of the behavior models like state reachability and other dynamic properties like
liveness could be supported in a (semi-)automatic way. Consistency, redundancy
and other relationships between the structural and behavioral model features
should be investigated. Methodological questions about the usage of (class and
state) invariants, and (operation and transition) pre- and postconditions must
be discussed. Last but not least, larger case studies must give further feedback
about the applicability and efficiency of the approach.
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Abstract. Domain feature models concisely express commonality and
variability among variants of a software product line. For supporting
separation of concerns, e.g., due to legal restrictions, technical consid-
erations and business requirements, multi-view approaches restrict the
configuration choices on feature models for different stakeholders. How-
ever, recent approaches lack a formalization for precise, yet flexible spec-
ifications of views that ensure every derivable configuration perspective
to obey feature model semantics. Here, we introduce a novel approach
for preconfiguring feature models to create multi-perspectives. Such cus-
tomized perspectives result from composition of various concern-relevant
views. A structured view model is used to organize features in view
groups, wherein a feature may be contained in multiple views. We pro-
vide formalizations for view composition and guaranteed consistency of
perspectives w.r.t. feature model semantics. Thereupon, an efficient algo-
rithm to verify consistency for entire multi-perspectives is provided. We
present an implementation and evaluate our concepts by means of various
experiments.

Keywords: Software Product Lines, Feature Models, Preconfiguration,
Customization, Automated View Composition.

1 Introduction

In software product line (SPL) engineering, the variability and commonality
among product variants of the same domain are expressed in a domain feature
model [15,28,36]. It organizes features in a hierarchical structure as well as de-
pendencies and constraints between them. In general, the entire domain feature
model is used to derive product variants. However, there are various case scenar-
ios which require the variant space defined by the domain feature model to be
further restricted. Reasons for those preconfigurations are driven by business or
legal concerns, e.g., to enable a variable pricing strategy for offering features as
packages to various stakeholders [25]. Other concerns may be of technical nature,
e.g., to restrict the overall variant space to a representative subset for efficiently
testing complete SPLs.
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Fig. 1. Perspectives are created by joining multiple views on a domain feature model

It seems promising to express these concerns by grouping features in a sep-
arate model orthogonally to the domain feature model. Prior the derivation
of a product by a specific stakeholder, concern-related groups are selected and
the domain feature model is filtered accordingly to ensure that restricted fea-
tures are not available for selection. Those groups are perceived as hierarchi-
cally organized views crosscutting the feature model structure. According to
the ISO/IEC/IEEE 42010:2011, Systems and software engineering standard1,
“a view is a representation of the whole system from the perspective of a related
set of concerns”. In other words, a view shows only features that belong to con-
cerns of a stakeholder. Multiple approaches to create views on feature models
exist [3,20,13,27]. Though, these approaches focus on the multi-dimensional sep-
aration of concerns (MDSoC) and a particular view is not intended to derive a
complete product variant, but rather to allow for specific configuration decisions
only. But, to the best of our knowledge, there are no approaches that aggregate
and integrate views to tailor and customize the variant space and result in a
semantical refinement of the feature model.

To tackle these challenges, we propose multi-perspectives on feature mod-
els. Therefore, in a perspective we aggregate multiple views to refine the variant
space of the original domain feature model, as shown in Fig. 1. We define further
requirements to guarantee consistency of any potential perspective and introduce
viewpoints to explicitly define allowed view combinations. Every viewpoint re-
quires to incorporate a feature model perspective that states a specialization, i.e.,
a refinement of the original feature model semantics. A domain feature model
and a view model are unified in a multi-perspective model, which imposes a
conservative extension to the domain feature model. Ensuring multi-perspective
model consistency is, in general, hard to maintain due to its crosscutting na-
ture w.r.t. the feature model and the potential overlappings of view groups in a
view model. Therefore, besides a comprehensive brute force approach, we also
provide an incremental heuristic for efficiently verifying the consistency of multi-
perspective models. Furthermore, our concepts support customization on feature
model level in the way that stakeholder-specific features added to the domain
feature model are restricted to that particular stakeholder’s perspective.

1 http://www.iso-architecture.org/ieee-1471/

http://www.iso-architecture.org/ieee-1471/
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The structure of this paper is as follows. We review feature models with group
cardinalities in Sect. 2. In Sect. 3, we describe requirements for modeling pre-
configurations and customizations of feature models by means of an illustrative
example and describe how they are addressed in our multi-perspective approach.
In Sect. 4, we formalize our concepts of multi-perspectives on feature models, we
outline consistency requirements and provide an efficient algorithm for their ver-
ification. In Sect. 5, we present an implementation of the concepts, and provide
an evaluation concerning efficient consistency verification. Finally, we present
related work in Sect. 6 and conclude in Sect. 7 2.

2 Feature Models with Group Cardinalities

We first review some basic notions concerning syntax and semantics of feature
models with group cardinalities. A multitude of feature modeling variants exists
in the literature [10]. Here, we refer to the approach introduced in the feature
oriented domain analysis (FODA) study [22]. Feature models organize features in
a tree structure. Different kinds of edges represent different hierarchical decom-
position relations between a parent feature and groups of child features. These
concepts are graphically represented in feature diagrams as shown for instance in
Fig. 2, where we use the notation according to Czarnecki and Eisenecker [15]. For
a feature diagram language to be conceptional complete, i.e., fully expressive, fur-
ther constraints are to be provided, i.e., at least requires and exclude edges [32].
Those constraints are often represented as additional propositional formulas over
features, arbitrarily crosscutting the feature tree [11]. Further constructs for en-
hancing feature models are mentioned in the literature, e.g., abstract features,
feature cardinalities, feature attributes and feature references which are out of
scope of this paper. We consider the two notions feature model and feature dia-
gram as synonyms in the following and introduce an abstract syntax for feature
models with group cardinalities.

Definition 1 (Feature Model). A feature model is a 4-tuple (F,≺, λ, Φ),
where F is a finite set of feature nodes, ≺⊆ F × F is a decomposition relation
on F , λ : P(F ) ⇀ N0 × N0 is a partial cardinality function assigning intervals
to feature groups, and Φ is a set of propositional formulas over F .

A well-formed feature model FM must further satisfy the following rules (cf.
[33]): (1) relation ≺ forms a rooted tree on F , (2) in feature groups F ′ ∈ dom(λ),
except the singleton group Fr solely containing the root feature, all features have
the same parent node under ≺, (3) domain dom(λ) of partial function λ fully
partitions F , feature groups are non-empty, i.e, ∅ �∈ dom(λ), and (4) cardinalities
λ(F ′) = (k, l) of feature groups F ′ ⊆ F define reasonable intervals for child
features, i.e, k ≤ l and l ≤ |F′| holds.

Cardinalities define the four common decomposition types for feature groups
F ′ ∈ dom(λ), where n = |F ′|, as follows: λ(F ′) = (n, n) for mandatory groups,

2 A detailed version of our concepts and proofs can be found in [33].
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λ(F ′) = (0, n) for optional groups, λ(F ′) = (1, 1) for alternative groups and
λ(F ′) = (1, n) for or groups (cf. Fig. 2). For the group Fr of the root feature,
we assume λ(Fr) = (1, 1). Propositional formulas φ ∈ Φ are boolean formulas
φ ∈ B(F ) over feature names in F expressing cross-tree constraints. In particular,
according to Heymans et al. [19], we can restrict Φ to solely contain binary require
constraints leading from feature f to feature f ′ to be implications φrq = f → f ′

and binary exclude constraints, i.e., implications φex = f → f ′. The set Φ is
interpreted as the conjunction

∧
φ∈Φ φ of all constraints. By FM(F ) we refer to

the set of all well-formed feature models over features F .
The semantics of a feature model FM defines the variant space, i.e., the set

of valid product configurations. A product configuration is a subset Fpc ⊆ F of
features selected for a concrete product variant. Hence, the semantical evaluation
function

[[·]] : FM(F )→ P(P(F ))

maps feature models FM ∈ FM(F ) over features F into the domain of sets of
valid product configurations obeying the decomposition types and constraints,
i.e., [[FM]] ∈ P(P(F )). The semantical evaluation function defines the maximum
set of valid product configurations such that

[[FM]] ={Fpc ∈ P(F ) | fr ∈ Fpc ∧
(f ∈ Fpc ∧ f ≺ F ′ ∧ λ(F ′) = (k, l)⇒ k ≤ |{f ′ ∈ F ′ ∩ Fpc}| ≤ l) ∧

(f ′′ ∈ Fpc ∧ f ′′′ ≺ f ′′ ⇒ f ′′′ ∈ Fpc) ∧ Fpc |=
∧
φ∈Φ

φ}

where f ≺ F ′ :⇔ ∀f ′ ∈ F ′ : f ≺ f ′. Thus, validity of configurations Fpc ∈
P(F ) requires (1) that the root node fr is selected, (2) satisfaction of group
cardinalities concerning features f ′ in groups F ′ decomposing selected nodes f ,
(3) justification of a selected feature f ′′ by means of the presences of its parent
feature f ′′′, and (4) satisfaction of all global constraints in Φ on Fpc. A feature
model FM is satisfiable, if [[FM]] �= ∅ (cf. [19]). We assume any given feature
model under consideration to be satisfiable in the following.

3 Model-Based Multi-perspectives on Feature Models

In this section, we introduce our modeling concepts and practices for multi-
perspective SPL engineering. We use a case study to derive requirements for
modeling tailorings and customizations as conservative extensions of feature
models by means of implicit preconfigurations. Therefore, viewpoints are in-
troduced to integrate sets of views, each restricting a feature model to subsets
of features, e.g., dedicated to particular business concerns relevant for a group
of stakeholders. Feature model preconfigurations, i.e., perspectives, then result
from the aggregation of those views related to a viewpoint under consideration.
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3.1 Illustrative Example: Document Management System

Our case study describes an SPL for a server-side document management sys-
tem (DMS) that provides methods to store, search and retrieve documents. The
DMS domain feature model consisting of 23 features is shown on the left of
Fig. 2. The root feature DocumentManagementSystem represents the document
management application. The DMS supports four DocumentTypes organized in
an or group. The optional OCR feature is specialized to PDFOCR and/or ImageOCR,
each requiring the according document type. The Indexing feature has File-
NameIndex as a mandatory feature, whereas GeneralIndex and MetaDataIndex

(with three further specializations) are alternative features. The Search feature
provides a FileNameSearch, GeneralSearch and MetaDataSearch and further
TitleSearch, ContentSearch and AuthorSearch.

Due to business concerns, a feature model is to be tailored to a restricted view
on the complete configuration space prior deriving customized DMS products. A
view model is used to associate features and business concerns. As indicated on
the right of Fig. 2, different stakeholder concerns are separated into view groups
denoted as circles, e.g., Basic vs. Premium members. To each view group, a par-
ticular set of relevant features is assigned. This is highlighted by equal hatchings
in Fig. 2, e.g., feature TextType is selectable for any stakeholder of the Core

group, whereas the OCR features are dedicated to Gold members. The hierarchy
among groups reflects specializations of concerns from parent groups to child
groups. A particular viewpoint is then chosen by a stakeholder (e.g., Viewpoint
SilverUser) to aggregate the corresponding view groups (e.g., Silver, Premium
and Core) and create a perspective on the feature model, which contains only
features assigned to the implicitly selected view groups.

In the following, we collect the requirements for preconfigurations on feature
models and describe how we address them in our modeling framework for multi-
perspective SPL engineering. We give a concise formalization of the framework
in Sect. 3.

Fig. 2. Feature model and view model of the document management system example



Multi-perspectives on Feature Models 257

3.2 Multi-perspective SPL Engineering

In SPL engineering, we distinguish the processes of domain engineering and
application engineering [15,28,36]. We describe, how to extend these processes
to support a model-based approach for preconfigurations and customizations of
domain feature models. In addition to modeling commonality and variability
among products of an SPL in a domain feature model, we propose to specify
multiple perspectives for integrating different stakeholder concerns already in
the domain engineering process.

From the case scenarios described above, we already obtained some require-
ments, a multi-perspective approach has to satisfy. We give a detailed overview
on these requirements and explain concretely how they are addressed in our
approach. First of all, we propose the notion of perspectives.

Requirement 1. A perspective on a domain feature model is a virtual view
resulting from the aggregation of multiple views, where each view is dedicated to
a stakeholder’s concern.

Perspectives are specializations of feature models [16]. The intuition is that a
perspective allows to derive a set of products being a valid subset of the original
domain feature model. In particular, perspectives assemble multiple concerns,
i.e., subsets of domain features relevant to particular stakeholders into precon-
figured feature models as shown in Fig. 1. For modeling complex relationships
between concerns, feature model views are to be organized in groups in the view
model. For instance, the Premium group encapsulates those concerns of the DMS
dedicated to Premium customizers. A hierarchy on the set of groups in the view
model allows for step-wise refinement of perspectives by adopting the principles
of inheritance. In the DMS, the Core group has the Premium and Basic group as
direct subgroups, thus both inherit the concerns of the Core group. The Premium
group is further refined by the Silver and Gold group, whereas Customized re-
fines the Basic group. In addition, crosscutting concerns are expressed in terms
of multiple inheritance: the customized group may inherit concerns from Pre-

mium groups, as well as from Basic as both are direct predecessors within the
group hierarchy. Hence, we propose the introduction of a view model that spec-
ifies those various kinds of relationships between stakeholder’s concerns.

Requirement 2. A view model specifies relationships among stakeholder’s con-
cerns by hierarchical view refinements and multiple inheritance.

However, some groups in a view model may not be allowed to aggregate perspec-
tives from its assembled views. Hence, a distinction between concrete and partial
group views is required. Therefore, we propose a viewpoint concept. Nuseibeh et
al. use this concept to describe a concrete perspective on a system [17,26]. In our
approach we use viewpoints for explicitly denoting collections of related group
views being permitted to form a valid perspective accessible to stakeholders. The
view model structure implies that a group referenced by a viewpoint and all its
predecessor groups are aggregated in the perspective.

Requirement 3. A viewpoint specifies sets of views to build a valid perspective.
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After a view model has been created and features are assigned to groups of the
view model, viewpoints are identified to create perspectives in the application
engineering process. In the view model of the DMS example, two viewpoints
are defined, each denoted by an eye-like symbol and a dashed line that encloses
the set of included view groups, e.g., viewpoint SpecialUser includes groups
Customized, Basic, Premium, and Core. As a consequence, a perspective solely
aggregated for views of the groups Basic and Premium is invalid in that view
model. For concise modeling of multiple perspectives on feature models, two
special constructs in the view model are valuable: a core group and singleton
groups. The core group builds the unique top element of the view group hierar-
chy thus collecting all concerns common to each stakeholder by subsuming every
viewpoint. In the DMS example, the Core group refers to concerns common to
every stakeholder, i.e., core features that are mandatory to every product con-
figuration, e.g., DocumentType. Singleton groups are dedicated to one particular
viewpoint, therefore denoting customizations for particular stakeholders. For in-
stance, the UnicodeTextType feature is exclusively dedicated to stakeholders in
the Customized group. Hence, we constitute the following requirement.

Requirement 4. A unique core group collects those concerns common to all
stakeholders and singleton groups define customizations on feature model level.

For a seamless integration of the multi-perspective approach into existing SPL
workflows, we propose the modeling and derivation of perspectives as a con-
servative extension to feature models. Therefore, we separate the view model
from the original domain feature model and use an additional multi-perspective
model to integrate both. Such a model combines the feature model with a view
model as shown in Fig. 2 so that both can be created independently. Hence,
multi-perspective models define a flexible n : m mapping between (stakeholder)
view groups and feature model views. For instance, the DMS feature ImageType
is assigned to the view groups Basic and Gold and is therefore included in both
corresponding views.

However, the presence of such complex mappings complicates the verification
whether all potential perspectives on a feature model, that are induced by design
decisions during domain engineering, constitute meaningful, i.e., feature model
semantics preserving preconfigurations.

Requirement 5. All perspectives derivable from a multi-perspective model pre-
serve feature model semantics by imposing refinements of the configuration space.

In Sect. 4, we provide a formalization of the multi-perspective model that
includes all requirements outlined above. Thereupon, constructive criteria for
multi-perspective model consistency are developed, and an efficient heuristic al-
gorithm for their verification is provided. We conclude this section by discussing
some engineering practices and modeling patterns for creating meaningful
preconfigurations:

– Core Features that are mandatory for all product variants [10], e.g., Docu-
mentType, are to be included in the core group together with all features that
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are not explicitly assigned to other view model groups. Those core features
are available per default in every perspective.

– Optional, Replaced and Excluded Features. Features that should not be con-
tained in all perspectives, features that exclude each other in all perspectives,
and even features to be excluded from any perspective can be specified by
declaring them optional features in the feature model. Similar to abstract
features [16], this can be also used to hide entire subtrees such as OCR.

– Hierarchical Restrictions. Even though feature models and view models are
orthogonal, we propose hierarchies on group views to some extent correspond
to feature tree hierarchies to keep the overall consistency graspable.

– Customizations. Stakeholders often request customized and not yet available
features. Those features will be exclusively accessible to the particular stake-
holder. Our multi-perspective approach supports such SPL customizations
on feature model level that avoids feature model pollutions. Therefore, sin-
gleton groups provide stakeholder-specific viewpoints for creating customized
perspectives, where even replacements of features by customized ones can be
modeled.

In application engineering, valid perspectives create preconfigurations on the
domain feature model before product variants are derived. Therefore, the stake-
holder chooses a viewpoint by selecting groups from the view model reflecting
his concerns. As the view model is hierarchically structured, all ancestor groups
of the stakeholder-specific group including the core group are contained in the
viewpoint, thus deriving valid perspectives from a viewpoint constitutes an au-
tomated task.

4 Formalization of Multi-perspectives on Feature Models

Views select subsets of configuration parameters to restrict the access to a feature
model. Formally, a view projects from a feature model FM ∈ FM(F ) to a subset
of features F ′ ⊆ F and related constraints.

Definition 2 (Feature Model View). A view of feature model FM ∈ FM(F )
is a pair (FV , ΦV ) consisting of a subset FV ⊆ F of selectable features, and a
subset ΦV ⊆ Φ of constraints such that φV ∈ B(FV ) for each φV ∈ ΦV .

By VFM, we refer to the set of all views of a feature model FM. In general, a view
VFM ∈ VFM contains an arbitrary selection of features FV ⊆ F and corresponding
constraints φV ∈ ΦV . In Fig. 2, six views are highlighted via different hatchings
marking features selected into the same view. Note that feature ImageType is
projected into two views as it is assigned to two view groups in the view model.

Views are associated with perspectives by interpreting them as variability-
reduced feature models, i.e., a partial tree of the original feature tree. For the
sake of simplicity, we assume FM(FV ) ⊆ FM(F ), where FV ⊆ F , i.e., FM(F )
also contains feature models on subsets FV of F . Formally, a perspective FMV ∈
FM(F ) for a view VFM ∈ VFM defines a projection function

pFM : VFM ⇀ FM(F ), where pFM(VFM) = (FV ,≺V , λV , ΦV )
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such that (1) ≺V ⊆ FV ×FV ⊆≺ denotes the restriction of ≺ onto FV , and (2)
λV is reduced to FV as follows

– if F ′ ∈ dom(λ) and F ′ ∩ FV �= ∅, then F ′ ∩ FV ∈ dom(λV ) and
– if λ(F ′) = (k, l), then λV (F

′ ∩ FV ) = (k, l− | F ′ \ {FV ∩ F ′} |).

Function pFM is partial as views VFM ∈ VFM exist, whose projection applica-
tions yield a syntactically ill-formed feature model pFM(VFM) �∈ FM(F ). Fur-
thermore, even if pFM(VFM) ∈ FM(F ) holds, the perspective pFM(VFM) is not
necessarily semantically refining FM, i.e., [[pFM(VFM)]] �⊆ [[FM]]. Therefore, we
call a view VFM ∈ FM(F ) if FM-consistent

1. pFM(VFM) ∈ FM(F ),
2. [[pFM(VFM)]] ⊆ [[FM]] and
3. pFM(VFM) is satisfiable.

Property 1. holds, if the feature selection preserves the tree structure of FM and
obeys feature group constraints. For property 2., constraints are to be consid-
ered. For each constraint φ ∈ Φ \ Φv and F ′ ⊆ F to be the subset of features
appearing in φ, we require F ′ ∩Fv = ∅. We weaken this property as we focus on
feature models with binary constraints. Thus, feature selections must solely sup-
port feature implications to be satisfiable, as exclude constraints are either fully
supported, or they cannot be invalidated in a view, because one of the features
is not present.

Lemma 1. A view VFM ∈ VFM on a satisfiable FM is FM-consistent if

– fr ∈ FV ,
– f ∈ FV and f ′ ≺ f , then f ′ ∈ FV ,
– f ∈ FV and f ≺ F ′ with λ(F ′) = (k, l), then |F ′ ∩ FV | ≥ k and
– f ∈ FV and f → f ′ ∈ Φ, then f ′ ∈ FV , thus f → f ′ ∈ ΦV .

By Vc
FM ⊆ VFM we refer to the subset of FM-consistent views on feature model

FM. Views VFM �∈ Vc
FM are partial views. In Fig. 2, the core view marked with

solid grey hatchings is FM-consistent as it satisfies all conditions of Lemma 1,
whereas the remaining views are not, but rather refine the core view by individ-
ual features for particular concerns. As stated in Req. 1, we consider perspectives
to result from integrating multiple, potentially inconsistent views into an aggre-
gated FM -consistent view (Req. 5). For aggregating multiple views, we introduce
a view composition operator

⊕ : VFM × VFM → VFM, where VFM ⊕ V ′
FM = V ′′

FM = (FV ∪ FV ′ , ΦV ′′)

such that ΦV ′′ ⊆ Φ and φ ∈ ΦV ′′ :⇔ φ ∈ B(FV ′′).

Lemma 2. The view composition operator is commutative and associative.

Due to the crosscutting constraints in Φ, feature model semantics is not compo-
sitional [4]. Hence, view composition does not commute with FM semantics

[[pFM(VFM ⊕ VFM′)]] �= [[pFM(VFM)]] ∪ [[pFM(V ′
FM)]].
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In particular, from ΦV ′′ �= ΦV ∧ ΦV ′ , it follows that constraints φ ∈ ΦFV ′′ ∩ ΦF

with φ �∈ ΦFV ∪ ΦFV ′ may exist. Fortunately, view composition is closed under
FM-consistency.

Proposition 1 (Closedness of FM-consistent View Composition). For
FM-consistent views VFM, V ′

FM ∈ Vc
FM, it holds that VFM ⊕ V ′

FM ∈ Vc
FM.

Proof. Well-formed tree structures and group constraints are preserved as both
views are FM-consistent for feature model FM and composition is monotone on
F . For constraints φ = f → f ′ with f, f ′ ∈ FV ′′ , φ ∈ ΦV ′′ is guaranteed as φ
is either contained in V and/or V ′. Otherwise, one view must have contained f
without f ′ which contradicts the FM-consistency assumption.

The opposite direction of Prop. 1 does not hold. For instance, when aggregating
all views in Fig 2, the result is indeed FM-consistent. We use view composition to
derive stakeholder-specific feature model perspectives. The aggregation of those
perspectives depends on the organization of their viewpoints in a view model.

4.1 View Models

Multi-view approaches partition feature models for separation of concerns rel-
evant to different stakeholders. But, as concerns are potentially interrelated,
we suppose views to be hierarchically organized in groups. Various (potentially
partial) views are aggregated into well-defined viewpoints to derive tailored fea-
ture model preconfigurations. For capturing the relationships between views and
viewpoints, we introduce a view model.

Definition 3 (View Model). A view model is a pair (VP, G), where VP =
{vp1, vp2, . . . , vpm} is a finite set of viewpoints and G = {g1, g2, . . . , gn} is a
finite set of view model groups, i.e., a collection of predicates gi ⊆ VP over
viewpoints.

Predicates gi ∈ G indicate the corresponding subset gi ⊆ VP of viewpoints to
be members of that group, thus sharing the concerns dedicated to that group.
The subsets introduce an implicit hierarchy relation <G⊆ G×G on groups (cf.
Req. 2), where g <G g′ :⇔ g ⊂ g′, thus defining a predecessor relation via strict
inclusion of viewpoint sets. Relation <G is a strict partial order as we allow
groups with equal predicates gi = gj to be distinguished in G by their indices i
and j. Hence, two groups gi and gj are either related under <G or incomparable,
i.e., either (1) disjoint or (2) overlapping (including set equality). We define an
overlapping group relation !G ⊆ G×G

gi !G gj :⇔ i �= j ∧ gi ∩ gj �= ∅ ∧ gi �<G gj ∧ gj �<G gi

being irreflexive, symmetrical and non-transitive. For well-formed view models,
we require <G to be upwards closed in G, i.e., there exists a unique core group
gcore ∈ G with gcore = VP, thus g <G gcore for each g ∈ G (cf. Req. 4). We use
the following notations
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– a group g′ ∈ G is a direct predecessor of g ∈ G, if g <G g′ and there is no
g′′ ∈ G such that g <G g′′ <G g′,

– a group g ∈ G is most specific for a viewpoint vp ∈ VP, if vp ∈ G, and there
is no g′ ∈ G with vp ∈ G and g′ <G g.

The core group has no predecessors. Due to overlappings of groups, a view model
VM allows any other group to have multiple direct predecessors and viewpoints
to have multiple most specific groups (cf. Req. 2). We further distinguish ab-
stract and concrete groups. Group g ∈ G is concrete, if it is most specific to at
least one viewpoint vp ∈ VP, otherwise it is abstract (cf. Req. 3). In the graphi-
cal representation of the view model in Fig 2, circles denote groups and a lattice
structure is used to visualize the multiple inheritance hierarchy on groups. For
instance, Silver <G Premium <G Core holds, whereas Silver and Gold are
unrelated under <G. The viewpoints SilverUser and SpecialUser are denoted
by eye-like symbols and dashed lines mark the groups the viewpoint is part of.
Therefore, Premium!G Basic holds, because SpecialUser ∈ Premium∩ Basic.
For singleton groups g ∈ G, where g = {vpi}, used to assign exclusive proper-
ties to viewpoints vp ∈ VP, we also require uniqueness in G. For instance, the
singleton group Customized restricts the availability of the customization fea-
ture UnicodeTextType. Each viewpoint in a view model aggregates its assigned
and inherited views to build a perspective. The set of valid perspectives on the
feature model are specified in a multi-perspective model.

4.2 Multi-perspective Models

The integration of feature model views and view models in a multi-perspective
model imposes multiple perspectives, one for each viewpoint.

Definition 4 (Multi-Perspective Model). A multi-perspective model is a
triple (FM,VM, σ), where FM ∈ FM(F ) is a feature model, VM = (VP, G) is
a view model, and σ : G→ VFM is view mapping function.

We require every feature of feature model FM to be mapped to at least one
view, i.e., for each f ∈ F , there is some g ∈ G with σ(g) = (Fg , Φg) such that
f ∈ FG. The mapping σ in Fig. 2 is denoted by similar hatchings of features and
groups. Thus, the Core group maps to solid gray features and group Customized

maps to the customization feature UnicodeTextType. For accessing a feature
model perspective, a stakeholder chooses a viewpoint according to its concerns.
Viewpoints vp ∈ VP refer to aggregated views Vvp by joining all views mapped
to groups of that viewpoint

Vvp = σ(gcore)⊕ σ(g1)⊕ σ(g2) · · · ⊕ σ(gk), where vp ∈ gi, 1 ≤ i ≤ k

By VMP ⊆ VFM, we denote the set of all views of any viewpoint in a multi-
perspective model MP on FM. The restrictions of feature models to views VMP

define multiple perspectives FMvp = p(Vvp). All potential perspectives must pre-
serve the original feature model semantics, i.e., being FM-consistent (cf. Req. 5).
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4.3 Consistency of Multi-perspective Models

Despite multi-views, multi-perspectives on feature models do not require all
views to obey consistency properties, but only those being non-partial, i.e., vis-
ible to a viewpoint (cf. Req. 3). A multi-perspective model is consistent if all
derivable perspectives are projected from FM-consistent views.

Lemma 3. The multi-perspective model MP = (FM,VM, σ) is consistent, if
VMP ⊆ VC

FM.

The perspectives of both viewpoints in Fig. 2 are consistent as both are built
from FM-consistent views. However, if, e.g., AuthorIndex is removed from group
Silver, the perspective of viewpoint SilverUser becomes inconsistent as Au-
thorSearch requires AuthorIndex. Note that OCR and related sub features are
excluded from any preconfigured feature model, as currently no viewpoint is
defined that includes the corresponding Gold group.

A brute force algorithm for the verification of MP consistency works as fol-
lows (cf. [33]): (1) iterate over all viewpoints, (2) iterate over all groups of the
viewpoint, (3) compose all views of the groups, (4) check satisfiability and FM-
consistency of the composed perspective. Our experiments have shown that this
algorithm works well for models of limited size w.r.t. the number of features
and groups, but it does not scale for more complex models with numerous view-
points [33]. In addition, FM-consistency includes to verify satisfiability which
is presumably NP-complete [8]. Because of inclusions and overlappings in the
group hierarchy, many redundant checks are performed due to commonality be-
tween viewpoints contained in non-disjoint groups. To check large-scale models,
we propose a more conservative criterion imposing a sufficient, but not neces-
sary requirement, that is verifiable in an efficient, incremental way by iterating
over groups instead of viewpoints. We interpret view models VM = (VP, G) as
lattices (Gc,→) with concrete groups Gc ⊆ G as nodes and edges g → g′ leading
from g to g′ if g′ <∗

G g without concrete groups between g′ and g. Starting from
the core group, Algorithm 1 checks satisfiability only once for the core group,
and then incrementally checks for every edge g → g′ the preservation of the
conditions of Lemma 1 by considering sets of features added via partial views of
abstract groups passed from g to g′ (denoted by Fg→g′ ) and those added via g.
Thus, a traversal with complexity equivalent to breath-first-search on (Gc,→) is
performed, where each segment g → g′ is checked based on previous steps.

Theorem 1 (Multi-Perspective Model Consistency). If MP passes Algo-
rithm 1 successfully, then MP is consistent.

Proof (cf. [33]). First, the algorithm always terminates because (Gc,→) is a
finite, directed acyclic graph. The incremental traversal ensures concrete views
aggregated from views of groups via hierarchical inclusions to preserve FM-
consistency, if all its predecessors under <G are FM-consistent. Prop. 1 ensures
views arbitrarily composed for groups g !G g′ to preserve FM-consistency, even
though not explicitly checked.
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Algorithm 1 Incremental Heuristic for Multi-Perspective Consistency Check

Input: FM, (Gc,→), σ
Require: gcore ∈ Gc

∀g ∈ Gc : g.F = σ(g) {feature sets mapped and aggregated to groups}
∀g ∈ Gc : g.cons = true {flag for group views FM-consistency}
gcore.cons := check(gcore.F, FM) {consistency checks, cf. Lemma 1}
∀g ∈ Gc : g.done = false {predecessor nodes of node completely checked}
gcore.done := true
for all g ∈ Gc where g.done = true do

for all g′ ∈ Gc where g → g′ do
g′.F := g′.F ∪ g.F ∪ Fg→g′ {add features from predecessors between g and g′}
g′.cons := check(g′.F, FM) ∧ g′.cons {check consistency preservation}
if ∀g′′ ∈ Gc where g′′ → g′ : g′′.done = true then

g′done := true {all predecessors of g′ checked}
end if

end for
Gc := Gc \ g {check of g done}

end for
return true if ∀g ∈ Gc : g.cons = true

The opposite direction of Theorem 1 does not hold as the algorithm may produce
false negatives, i.e., reporting models to be inconsistent, even though all potential
viewpoints have consistent views after aggregation of all overlapping views. To
avoid false negatives, we further combine the check procedure of the heuristic
with an explicit call of the exhaustive verification of groups presumably being
inconsistent. This way, the number of explicit satisfiability checks is drastically
reduced compared to the brute force algorithm (cf. Sect. 5).

5 Implementation and Evaluation of Multi-perspectives

We implemented our multi-perspective approach in a tool called Conper [34] as
an extension of the FeatureMapper environment [18]. Further information, the
source code, examples, and screen casts on how to use the tool are provided
online3. The implementation contains a multi-perspective editor to create view
models and viewpoints together with multi-perspective mappings, and to per-
form consistency checks. The algorithms of Sect. 4.3 are integrated in the editor
to verify multi-perspective model consistency. A perspective can be created on
each consistent viewpoint, which is then used as preconfigured input for the
variant editor of the FeatureMapper.

To evaluate the performance of both consistency check algorithms, we used 12
consistent feature models with varying numbers of features, cross-tree constraints
(CTCs) and different cross-tree constraint ratio (CTCR). Two further feature
models are created using the FeatureMapper. From the software product line
online tools (SPLOT) [2] repository, we chose 5 manually created and 5 generated

3 https://github.com/multi-perspectives/cluster/

https://github.com/multi-perspectives/cluster/
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Fig. 3. Comparing the consistency check algorithms

feature models with up to 10, 000 features. The Choco constraint satisfaction
problem (CSP) solver [1] is used to check the satisfiability of our feature models
(cf. [9,24,23]). In addition, we use randomly generated multi-perspective models.
Based on the 12 feature models explained above, we generated group models
with a maximum height of 5, a maximum number of child-groups per group of
3, a maximum number of groups assigned to a viewpoint of 3, and a maximum
number of assigned features to groups of 5. The measurements are performed on
a laptop with an Intel Core i5-2520M CPU with 2.5GHz, 8GB RAM and on a
Windows 7 SP1 64-bit operating system.

Fig. 5 (a) shows the influence of the number of viewpoints on the performance
of the consistency check, whereas the time on the x-axis is displayed logarith-
mically. The measurements were performed on multi-perspective models with a
varying size of viewpoints combined with varying feature models. The results
show that for higher number of viewpoints, the consistency checks took more
time, and the heuristical algorithm performs much better. In Fig. 5 (b), we show
the influence of the feature model size, i.e., the respective number of features
on the performance of the consistency algorithm, where the time on the x-axis
is displayed logarithmically. We see a significant performance increase for the
heuristic algorithm compared to the brute force approach as expensive satisfia-
bility checks are performed infrequently by the heuristic algorithm. Only in the
worst case only, i.e., if all viewpoints are inconsistent, the performance of the
heuristic converges to that of the brute force approach. Summarizing, our perfor-
mance evaluation confirms, that the incremental consistency check is applicable
for large feature models.

6 Related Work

Various authors propose to use feature model views in configuration processes
[3,6,20,14,16,21,31,37]. They address MDSoC, where each view restricts the fea-
tures visible to a stakeholder. Each stakeholder configures parts of the feature
model in his view until the entire variability is bound. The authors of [21] use
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perspectives to address such a stakeholder’s view. Acher et al. [5] use feature
model slicing to create views similar to the previous approaches. Clarke et al.
provide a formal framework for feature model views to reason about compati-
bility and reconciliation of separated views [13], thus addressing the integration
of multiple SPLs. Another approach that addresses MDSoC is the concept of
multi-dimensional hyperspaces [27]. They group all concerns of stakeholders in
multiple dimensions, each encapsulating one concern. Relating hyperspaces to
feature modeling, a hyperslice states a view on a feature model. In contrast to
these approaches, we integrate multiple views in perspectives to restrict the vari-
ant space of a feature model, where we explicitly define which views form a valid
perspective using viewpoints. Closely related to our work are approaches that
compose views to create integrated views on multiple domain feature models of
independent SPLs [4,7,12,30,35,29]. In these approaches, the set of derivable vari-
ants of the resulting feature model will contain all variants of the constituents,
whereas in our approach, we create a perspective by composing views of the
same feature model such that variants derivable from a perspective are subsets
of the variants of the feature model. Furthermore, Zaid et al. [38] present a multi-
perspective approach for multi-product lines. The authors state, that a feature
belonging to one perspective may be related to features in other perspectives.
This corresponds to our definition of views. In contrast, we consider perspectives
as semantic refinements on feature models.

7 Conclusion

We developed an approach that extends SPL engineering with multi-perspectives
on feature models. Our approach especially supports the customization on fea-
ture model level. We provided a formalization and implementation of the con-
cepts and presented an efficient algorithm to check consistency properties and
applied it to various case studies for evaluation purposes. Our experiences with
case studies have shown perspectives to be a promising concept for tailoring
the variant space of a domain feature model for various stakeholders’ concerns
(cf. [33]). We will use our concepts in model-based SPL testing to organize dif-
ferent testing concerns to derive reduced representative variant spaces under
test. Furthermore, we plan to adapt the approach in a dynamic SPL to create
customized, adaptable reconfiguration spaces for evolvable systems.
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den Brand, M., Gašević, D., Gray, J. (eds.) SLE 2009. LNCS, vol. 5969, pp. 62–81.
Springer, Heidelberg (2010)

5. Acher, M., Collet, P., Lahire, P., France, R.: Slicing feature models. In: Proceedings
of ASE 2011 (2011)

6. Acher, M., Collet, P., Lahire, P., France, R.: Separation of Concerns in Feature
Modeling: Support and Applications. In: Proceedings of AOSD 2012 (2012)

7. Aydin, E.A., Oguztuzun, H., Dogru, A.H., Karatas, A.S.: Merging multi-view fea-
ture models by local rules. In: Proceedings of SERA 2011 (2011)

8. Batory, D.S.: Feature Models, Grammars, and Propositional Formulas. In: Obbink,
H., Pohl, K. (eds.) SPLC 2005. LNCS, vol. 3714, pp. 7–20. Springer, Heidelberg
(2005)

9. Benavides, D., Segura, S., Mart́ın-Arroyo, P.T., Cortés, A.R.: Using Java CSP
Solvers in the Automated Analyses of Feature Models. In: Lämmel, R., Saraiva, J.,
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Abstract. Combinatorial interaction testing is an approach for testing
product lines. A set of products to test can be set up from the cover-
ing array generated from a feature model. The products occurring in a
partial covering array, however, may not focus on the important feature
interactions nor resemble any actual product in the market. Knowledge
about which interactions are prevalent in the market can be modeled by
assigning weights to sub-product lines. Such models enable a covering
array generator to select important interactions to cover first for a par-
tial covering array, enable it to construct products resembling those in
the market and enable it to suggest simple changes to an existing set of
products to test for incremental adaption to market changes. We report
experiences from the application of weighted combinatorial interaction
testing for test product selection on an industrial product line, TOMRA’s
Reverse Vending Machines.

Keywords: Product Lines, Software, Hardware, Testing, Combinatorial
Interaction Testing, Evolution.

1 Introduction

A product line is a collection of systems with a considerable amount of software
or hardware components in common [14]. The commonality and differences be-
tween the systems are usually modeled as a feature model [12]. Testing product
lines is a challenge since the number of possible configurations generally grows
exponentially with the number of features in the feature model. Yet, one has
to ensure that any valid product will function correctly. There is no consensus
yet on how to efficiently test product lines, but there are a number of suggested
approaches [7].

A first level of product line testing is testing the software or hardware com-
ponents in isolation to ensure that they function correctly on their own, a tech-
nique seen in industry [9]. Still there may be errors in the interaction between
the features. Combinatorial interaction testing [4] is a promising approach for
performing interaction testing between the features of a product line.
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Based on this, we decided to try out combinatorial interaction testing on
TOMRA’s product line of reverse vending machines. Reverse vending machines
handle the return of deposit beverage containers at retail stores such as super-
markets, convenience stores and gas stations. The feature model for the part of
their product line we study has 68 features that potentially combine to 435,808
different configurations.

At TOMRA Verilab they are responsible for testing these machines. They
already have a set of test products and were interested in applying new theory
and techniques from product line testing research to understand the quality of
their current test process and to improve it.

We found that their existing test lab covered a high percentage of the possible
simple feature interactions. But, when we generated a new test lab from scratch
of the same size as the current test lab, we encountered a problem. Even though
the generated machines were valid machines that could be constructed, and even
though they did test more of the simple interactions between features with the
same number of products, they neither resembled any realistic machine that
would be found in the market nor did any subset of products cover the most
prevalent interactions.

A solution to these problems was to partition the machines in the market into
sub-product lines, partially configured feature models; and to assign weights on
them reflecting the number of products that are instances of this particular sub-
product line. Modeling weights and sub-product lines proved to be a simple and
intuitive way to capture relevant domain-knowledge in a feature model. It is
close to the way the domain experts reason about the market and what is most
important to be verified.

By generating covering arrays by prioritizing interactions according to their
weight, we generated products that resemble the products in the market and that
covered as many simple interactions as possible. This caused fewer interactions to
be covered, but those interactions that were covered were more relevant according
to the market situation.

The weighted sub-product line models also gave us an unexpected benefit. It
enabled us to set up an evolution process for the test lab to incrementally adapt
it to a continually changing market situation.

In addition to the application to TOMRA’s product line, we briefly show how
the technique can be used on the Eclipse IDE1 software product line.

The generation, analysis and evolution based on weighted sub-product line
models have been implemented in a fully functional tool freely available as open
source on the paper’s resource website2. The generation of covering arrays in
the tool is done using the ICPL algorithm, an algorithm we have developed to
generate covering arrays from large feature models [10,11].

1 The Eclipse IDE is provided by the Eclipse Foundation and is independent from the
TOMRA case.

2 http://heim.ifi.uio.no/martifag/models2012/ . Two example models, covering
arrays and weighted sub-product line models are also available on this website.

http://heim.ifi.uio.no/martifag/models2012/
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This paper is structured as follows. In Section 2 we cover relevant background
information and related work. In Section 3 we introduce models of weighted
sub-product lines that enable covering array generation algorithms to select and
evolve collections of products to test. In Section 4 we present the models and ex-
periences from applying the techniques to an industrial product line at TOMRA
and in Section 5 briefly describe the applicability to testing Eclipse IDEs. The
paper ends with the conclusion, Section 6.

2 Background and Related Work

2.1 Product Lines

As stated in the introduction, a product line is a collection of systems with a
considerable amount of hardware or software in common. The primary motiva-
tion for structuring one’s systems as a product line is to allow customers to have
a system tailored for their purpose and needs, while still avoiding redundancy of
hardware or code. It is not uncommon for customers to have conflicting require-
ments. In that case, it is not even possible to ship one system for all customers.
In the case of hardware, it would be uneconomical to ship unused components.

The Eclipse IDE products [2] can be seen as a software product line. Today, the
Eclipse project lists 12 products on their download page3. The configurations of
these products are shown in Table 1a4. These products share many components,
but all components are not offered together as one single product. The reason
is that the download would be unnecessary large, since, for example, a C++
systems programmer usually does not need to use the PHP-related features. It
would also bloat the system by giving the user many unnecessary alternatives
when, for example, creating a new project. Some products contain early devel-
oper releases of some components, such as Eclipse for modeling. Including these
would compromise the stability for the other products. Thus, it should be clear
why offering specialized products for different use cases is good.

One way to model the commonalities and differences in a product line is using
a feature model [12]. A feature model sets up the commonalities and differences
of a product line in a tree such that configuring the product line proceeds from
the root of the tree. Please refer to an example of a feature model for a subset
of Eclipse in Figure 1.

Proceeding from the root, configuring the product line consists of making a
decision for each node in the tree. Each node represents a feature of the product
line. The nature of this decision is modeled as a decoration on the edges going
from a node to another. For example, in Figure 1, a filled circle means that the
feature is mandatory, and an empty circle means that it is optional. A filled semi-
circle on the outgoing edges means that at least one of the features underneath
must be selected. An empty semi-circle means that one and only one must be

3 http://eclipse.org/downloads/ as of 2012-03-09.
4 The original version of this table was found at
http://www.eclipse.org/downloads/compare.php, 2012-03-28.

http://eclipse.org/downloads/
http://www.eclipse.org/downloads/compare.php
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Fig. 1. Feature model for a significant part of the Eclipse IDE product line supported
by the Eclipse Project

selected. In addition, constraints not effectively modeled on the tree are written
underneath the model as propositional constraints; for example, when GMF is
selected, it implies that GEF must also be selected.

The parts that can be different in the products of a product line are usually
called its variability. One particular product in the product line is called a variant
and is specified by a configuration of the feature model. A configuration consists
of specifying whether each feature is included or not.

2.2 Product Line Testing

Testing a product line poses a number of new challenges compared to testing
single systems. It has to be ensured that each possible configuration of the prod-
uct line functions correctly. One way to verify a product line is through testing,
but testing is done on a running system. The product line is simply a collec-
tion of many products. The number of possible configurations generally grows
exponentially with the number of features in the feature model. For the feature
model in Figure 1, the number of possible configurations is 1,900,544, and this
is a relatively simple product line.

There is no single recommended approach available today for testing product
lines efficiently [7], but there are many suggestions. Some of the more promising
suggestions are combinatorial interaction testing [4], discussed below; reusable
component testing, which we have seen in industry [9], but which does not test
for interaction faults in the product line; a technique called ScenTED, where
the idea is to express the commonalities and differences on the UML model of
the product line and then derive concrete test cases by analyzing it [15]; and
incremental testing, where the idea is to automatically adapt a test case from
one product to the next using the specification of similarities and differences
between the products [16].

2.3 Combinatorial Interaction Testing for Product Lines

Combinatorial interaction testing [4] is one of the most promising approaches.
The benefits of this approach is that it deals directly with the feature model to
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derive a small subset of products which can then be tested using single system
testing techniques, of which there are many good ones [3]. The idea is to select
a small subset of products where the interaction faults are most likely to occur.
For example, we can select the subset of all possible products where each pair
of features is present. This includes the cases where both features are present;
when one is present and when none of the two are present. Table 1b shows the
12 products that must be tested to ensure that every interaction between two
features in the running example functions correctly, a 2-wise covering array. Each
row represents one feature and every column one product. ’X’ means that the
feature is included for the product, ’-’ means that the feature is not included.
Some features are included for every product because they are mandatory, and
some pairs are not covered since they are invalid according to the feature model.

Table 1. Eclipse IDE Products, Instances of the Feature Model in Figure 1

(a) Eclipse IDE Products

Feature\Product 1 2 3 4 5 6 7 8 9 101112
EclipseIDE XXXXXXXXXX X X
RCP Platform XXXXXXXXXX X X
CVS XXXXXXXXXX X X
EGit - - XXXX - - - - - -
EMF XX - - - XX - - - - -
GEF XX - - - XX - - - - -
JDT XX - - XXX - X - - X
Mylyn XXXXXXXXXX X -
Tools XXXXXXXX - - X -
WebTools - X - - - - X - - - X -
LinuxTools - - XX - - - X - - - -
JavaEETools - X - - - - X - - - - -
XMLTools XX - - X - XX - - - -
RSE - XXX - - XX - - - -
EclipseLink - X - - - - X - - X - -
PDE - X - - XXX - X - - X
Datatools - X - - - - X - - - - -
CDT - - XX - - - X - - - -
BIRT - - - - - - X - - - - -
GMF - - - - - X - - - - - -
PTP - - - - - - - X - - - -
MDT - - - - - X - - - - - -
Scout - - - - - - - - X - - -
Jubula - - - - - - - - - X - -
RAP - - - - X - - - - - - -
WindowBuilder X - - - - - - - - - - -
Maven X - - - - - - - - - - -

(b) Complete 2-wise Covering Array

Feature\Product 1 2 3 4 5 6 7 8 9 101112
EclipseIDE XXXXXXXXXX X X
RCP Platform XXXXXXXXXX X X
CVS XX - - X - - X - X - -
EGit XXX - - - XX - - - -
EMF XXX - X - - XX - X X
GEF XX - - X - XXX - X -
JDT X - XXX - - XX - - -
Mylyn - XXX - - - X - - - -
Tools XXXXXXXXX - - -
WebTools X - XX - - X - X - - -
LinuxTools X - X - - XX - X - - -
JavaEETools X - - X - X - - X - - -
XMLTools - XX - X - X - X - - -
RSE - XX - - X - X - X - -
EclipseLink - XX - - X - XX - - -
PDE X - - XX - - XX - - -
Datatools XX - - X - - XX - - X
CDT X - X - XX - - - - - -
BIRT X - - - X - - XX - - -
GMF XX - - X - - - X - X -
PTP - - X - XXX - - - - -
MDT X - XX - - XX - - - -
Scout - - - XX - - XX - - -
Jubula - - XX - X - XX - - -
RAP X - X - - X - X - - - -
WindowBuilder - XX - X - - XXX - -
Maven X - X - X - - - X - - -

2-wise covering arrays are a special case of t-wise covering arrays where t = 2.
1-wise coverage means that every feature is at least included and excluded in
at least one product. 3-wise coverage means that every combination of three
features are present, etc. For our running example, 2, 12 and 37 products are
sufficient to achieve 1, 2 and 3-wise coverage, respectively.

An important motivation for combinatorial interaction testing is a paper by
Kuhn et al. 2004 [13]. They indicated empirically that most bugs are found for
6-wise coverage, and that for 1-wise one is likely to find on average around 50%,
for 2-wise on average around 70%, and for 3-wise around 95%, etc. Kuhn et al.
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2004 result, however is not about combinations of features, but about combina-
tions of program input. A recent study by Garvin and Cohen 2011 [8] checked
whether Kuhn et al. 2004’s result also holds for feature interaction faults. They
investigated 250 faults of two real-world, open source systems. Of these faults
28 were found to be configuration dependent and three to be true interaction
faults. In addition, they conclude that exercising feature interactions traverses
more of the product line’s behavior. This indicates that Kuhn et al. 2004’s result
is also applicable for feature interaction faults.

There are three main stages in the application of combinatorial interaction
testing to a product line. First, the feature model of the system must be made.
Second, the t-wise subset of products must be generated. We have developed
an algorithm that can generate such arrays from large features models [11].
These products must then be generated or physically built. Last, a single system
testing technique must be selected and applied to each product in this covering
array.

3 Weighted Combinatorial Interaction Testing

As explained earlier, in order to successfully apply combinatorial interaction
testing at TOMRA, we had to extend the technique by developing and us-
ing weighted sub-product line models. In this section, we describe the mod-
els and how they are used on a simple example, before discussing the more
complex details and evaluations for the application at TOMRA in the next
section.

Ordinary Combinatorial Interaction Testing. Figure 2a shows a simple
feature model with 6 features. When applying ordinary combinatorial interac-
tion testing, we would, for example, generate a 2-wise covering array (as in
Table 2b), build the products and test them individually. That way, we know
that all interactions between pairs of features have been tested.

Table 2. A Simple Example

(a) Feature
Model

(b) Complete 2-wise
covering array

1 2 3 4 5 6

R X X X X X X
A X X X X - -
B - X - X - X
C - X - X X -
D X - - X - -
E X X - - - -

(c) Weighted
Sub-product
lines

1 2
#Weight 100 10
R X X
A - ?
B X X
C ? X
D - ?
E - ?
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Initial Problems. At this stage of the application of combinatorial interaction
testing at TOMRA we faced a few problems:

– There were no ways to select a subset of the products to test that included
the most important interactions. One could of course select a subset that
covered as many interactions as possible, but it might not include some
important interactions.

– The covering array generation algorithm generates a different result each
time it is run. Since there are many equally good products, why not select
the ones that look like some of the larger classes of sold products?

A Solution. These experiences revealed to us that an assumption of ordinary
combinatorial interaction testing, that all interactions are equal, is not entirely
the case in practice.

For TOMRA, there were certain market segments where the products are
similar. It is important for TOMRA that a product containing the commonalities
of these segments are tested. Thus, we decided: Let us model the products in
each market segment as a sub-product line, and assign a weight to it according
to how many products of that kind are in the market.

This will enable us to assign weights to each interaction in the sub-product
line. These weights can then be used by a covering array generator to select the
interactions with the most weight to cover first. This would cause the results to
be similar each time the covering array algorithm is run and the first products
produced would contain the most important interactions.

Weighted Sub-product Lines. For our simple example, there are two ma-
jor market segments, modeled in Table 2c. These two sub-product lines are as
follows: The first has R and B included and A, D and E excluded. The feature
C is optional within this segment. The second segment has features R, B and
C included while A, D and E are optional within this segment. Now, in this
second example, the limitations imposed on the products by the feature model
in Figure 2a still apply, of course. So, even though A, D and E are marked with
a question mark, the products with A excluded also has D and E excluded. The
first segment have 100 instances in the market while the second segment has
only 10.

Now, what about legal products that are not in any market segment? For
this example, a product with R included and B excluded is not found in the
market. As we experienced at TORMA, the reason that they are not found is
that they do not make sense even though they are structurally valid. This is
valuable domain knowledge, and is of great value to a covering array generator:
It enables it not to focus on the interactions that are of no practical importance.

Algorithms. An example should clarify how the covering array generation al-
gorithm can use the weighted sub-product line models. This example uses 1-wise
covering arrays since an example with 2-wise covering arrays would fill up several
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pages due to the combinatorial explosion of interactions. This is not a problem
for modern computers to deal with however.

We will use the terminology from a previous paper of ours [11]: An assignment
is a pair with a feature name and a boolean. A t-set is a set of t assignments.
A configuration is a set of assignments in which all features of the product
line are given an assignment. The universe to cover is the set of all valid t-
sets, Ut. Thus, a t-wise covering array is a set of configurations, Ct, such that
∀e ∈ Ut, ∃c ∈ Ct : e ⊆ c. A t-set can be written as for example {(F1, X), (F2,−)},
a 2-set with F1 included and F2 excluded.

For our simple example, the following 11 t-sets need to be in a product
to achieve 1-wise coverage: {{(R,X)}, {(A,X)}, {(A,−)}, {(B,X)}, {(B,−)}, {(C,X)},
{(C,−)}, {(D,X)}, {(D,−)}, {(E,X)}, {(E,−)}}. Note that the assignment with R ex-
cluded is not present since in feature modeling the root must always be included.

Now, we can assign weights to each t-set. In Table 2c, whenever a t-set is
present in a sub-product line, the weight is added to the t-set. If there is a
question-mark, half the weight is given to each assignment. For example (A,X)

gets 5 because it is not present in the first sub-product line and only as an option
in the second. One t-set is not present in any sub-product line and therefore
gets the weight zero: { ({(R,X)}, 110), ({(A,X)}, 5), ({(A,−)}, 105), ({(B,X)}, 110), ({(B,−)},
0), ({(C,X)}, 60), ({(C,−)}, 50), ({(D,X)}, 5), ({(D,−)}, 105), ({(E,X)}, 5), ({(E,−)}, 105)}.

These t-sets can now be ordered according to their weights: { ({(R,X)}, 110),
({(B,X)}, 110), ({(A,−)}, 105), ({(E,−)}, 105), ({(D,−)}, 105), ({(C,X)}, 60), ({(C,−)}, 50),
({(A,X)}, 5), ({(D,X)}, 5), ({(E,X)}, 5), ({(B,−)}, 0)}.

Now, the circumstances warrants two kinds of coverages. The ordinary type
of coverage is t-set coverage. The goal of combinatorial interaction testing is to
cover as many simple interactions as possible, and ultimately a t-set coverage of
100%, that is, cover all t-sets. Since we have introduced weights for each t-set,
talking about weight coverage makes sense. The goal of weight coverage is then
to cover the most weight possible, and ultimately cover all the t-sets with weight,
that is, achieve 100% weight coverage.

Just as t-set coverage is found by taking the number of covered t-sets and
dividing it by the total number of valid t-sets, |Ut|, similarly weight coverage is
found by taking the covered weight divided by the total weight.

The total weight of our example is the sum of all the weights of all the t-sets:
660. Now, if we were to generate a single product to test from the weighted t-sets,
we would get the following: {{(R,X)}, {(A,−)}, {(B,X)}, {(C,X)}, {(D,−)}, {(E,−)}}.
The weight covered by this product is the sum of all weights of the covered
t-sets: 595. Thus, the weight coverage of this single product is 595/660 ≈ 90%.
This number can be contrasted with the t-set coverage of this product which
is 6/11 ≈ 55%. The high weight coverage indicates to us that we have most of
the important t-sets (given the current market situation) are in the product.
Any valid product would, however, give the same t-set coverage, but only that
product would give such a high weight coverage.

Note that 100% weight coverage can mean that we have less than 100% t-
set coverage since some t-sets can have zero weight. To ensure that 100% weight
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coverage means 100% t-set coverage, include a sub-product line with all question
marks and a non-zero weight.

Evolution of Test Products. A goal of testing is to gain confidence in the
products that are sold to or used by the customers. Weights on sub-product lines
can be set up to reflect the market situation, but could also include expected
sales. When the market situation or the expectations change, the weights and
the sub-product lines can change. This does not mean that the test lab or the
feature model is changed. It will, however, mean that the weight coverage of the
products that are currently being tested changes.

A simple algorithm can suggest simple changes to a set of test products. By
calculating the coverage of the current test products, and then the new coverage
given 1, 2 or 3 (or even more) changes of it, a list of possible changes can
be made5. If the best changes are applied to the lab incrementally, the test
products can evolve over time to converge on the current market situation, even
if it changes during the evolution.

A special case of this is the introduction of a new feature in the feature model.
The expected sales of this new feature can be added to the weighted sub-product
line models. Including it for at least one of the products in the set of test products
will probably be the best way to increase weight coverage. Thus, this decision is
automated by our approach.

Sub-Product Lines, Related Work. Czarnecki et al. 2004 [5] introduced the
idea of staged configuration. The stages are the production of a new sub-product
line from a previous one. The difference between their work and ours is that we
apply sub-product lines to modeling the market situation for use in testing, while
they use it during product line development.

Their ideas are further developed in Czarnecki et al. 2005 [6]. Our view is
similar to theirs in that the sub-product lines are specializations of the complete
feature model to certain market segments. It is on the basis of these specializa-
tions that domain experts do their daily work.

Batory 2005 [1] integrates the idea of staged configurations with the formaliza-
tion of feature models as propositional constraints. He formalizes feature models
as propositional formulas. In his work, a sub-product line is a propositional
formula where some variables, representing features, set to ’true’ for included,
some set to ’false’ for excluded, and the unset features set to ’unknown’. The
’unknown’ classification is the same as the questions-marks in our sub-product
line models.

4 Industrial Application: TOMRA

In this section, we report from an industrial application of our technique at
TOMRA Verilab.
5 An implementation of this algorithm is available on the paper’s resource website. It
supports searching for 1–3 changes for improving 1–3 wise coverage.
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About TOMRA Verilab. TOMRA Verilab is the part of TOMRA that is
responsible for testing TOMRA’s reverse vending machines (RVMs). Reverse
vending machines handle the return of deposit beverage containers at retail
stores such as supermarkets, convenience stores and gas stations. In Norway,
customers are required by law to pay an amount for each container they buy
which is given back to them if they decide to return the container.

RVMs. The RVMs are delivered all over the world and the market is expanding.
However, individual market requirements and the needs of TOMRA’s customers
within the different markets can very significantly. TOMRA’s reverse vending
portfolio therefore offers a high degree of flexibility in terms of how a specific
installation is configured.

Figure 2 shows a part of the feature model for TOMRA RVMs. The feature
model has 68 features, and a huge number of possible configurations (435,808,
to be exact). Variation can include such things as the quality of the display
used (e.g. black and white, color, touch-screen interface), the type of storing
and sorting facilities the system has, as well as different container recognition
technologies utilized for identifying container security marks, material and other
characteristics.

Test Lab. In order to test the RVMs, TOMRA Verilab has set up a test lab
of machines configured by hand to ensure the quality of the machines in the
market. Parts of these product configurations are shown in Table 3. These prod-
ucts are both automatically and manually tested. The software is partly tested
automatically by installing and running test suites on the machines. The manual
tests are run by, for example, inserting bottles of various kinds in various ways,
orders and magnitudes.

Sub-Product Lines and Weights. As discussed earlier, the results produced
by ordinary covering array generation was not suited for TOMRA for various
reasons. To solve these, we modelled the weighted sub-product lines as partly
shown in Table 4.

Existing Coverages. The first experiment was to measure the t-set and weight
coverage of the existing test lab, shown in part in Table 3. Recall that coverage is
measured by taking the covered valid t-sets and then dividing either their number
or their weight by the total number or t-sets or the total weight, respectively.

Figure 3a shows the 1–3-wise, t-set and weight coverage for the existing test
lab. The weight coverage is consistently higher for the weight coverage than for
the t-set coverage. This is consistent with the fact that the developers paid at-
tention to the market situation when designing the test lab manually. It also
suggests that weighted sub-product line models are a guide to test product se-
lection for TOMRA Verilab.
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Table 3. Part of TOMRA’s Actual Test Lab

Feature\Product 1 2 3 4 5 6 7 8 9 101112
RVM XXXXXXXXXX X X
CrateUnit X - X - - - XXX - - X

...
BottleUnit XXXXXXXXXX X X
Display XXXXXXXXXX X X
Display2line - - X - - - - - - - - -
DisplayBW XX - XX - - - - - - -
DisplayColor - - - - - XXXXX X -
DisplayTouch - - - - - - - - - - - X
Scale - XXXXXXXXX X X
Metal XX - XXXXXXX X X
Barcode XX - XXXXXXX X X
BMS - - - - X - - - - - - -
SecurityMarkReader - X - X - - X - - - X X
SMR1 - X - - - - - - - - - -
SMR2 - - - X - - X - - - X X
Printer XXXXXXXXXX X X
Printer1 XXXXXXXXXX X X
Product group XXXXXXXXXX X X
FrontEnd XXX - - - XXX - - X

...
Backroom XXX - - - XXX - - X
Backroom details XXX - - - XXX - - X
OP - - - - - - - X - - - -
LPA - X - - - - - - - - - -

...
SoftDrop - - - - - - - - - - - -

...
RaiserBord X - X - - - - XX - - -

...

Generated Coverages. The second experiment was to generate a partial cov-
ering array from scratch using both t-set and weight coverage and compare them
to each other. The results are shown in Figure 3b. We can see that for 1–3-wise
covering arrays, the weighted covering arrays are consistently smaller than t-set-
based covering arrays. This suggests that either it would have been beneficial to
used weighted covering array generation from the start, or that the current test
lab is outdated with respect to the current market situation.

Suggesting Improvements. The third experiment was to find small modifi-
cations that can be done on the existing test lab at TOMRA to increase the
weight coverage. Some such suggestions are shown in Table 5.

The search for improvements is done by flipping a set of assignments and,
if the new configuration is valid, recalculating the new weight coverage. If the
coverage is better than the original one, the changes and the new coverage are
recorded.

In Table 5, we have recorded some suggestions for improving the 2-wise weight
coverage of the existing test lab. The original 2-wise weight coverage was 95.8%
(Table 3). We can achieve an increase of 0.2 pp by excluding feature Metal for
product 11, an increase of 0.7 pp by including feature SoftDrop and excluding
feature RaiserBord for product 1. Finally, we achieve an increase of 0.8 pp by
excluding Metal, including SoftDrop and excluding RaiserBord for product 1.
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Table 4. Part of TOMRA’s Sub-Product Lines and Their Weights

Feature\Product 1 2 3 4 5 6 7 8 9 10 11121314 15 16 17 18 19
#Weight 4784781140500503333257512058 1 818152510015001225125
RVM X X X X X X X X X X X X X X X X X X X
CrateUnit - X ? X X - X - X ? ? ? - X - - - - -

...
BottleUnit X X X X X X X X X X X X X X X X X X X
Display X X X X X X X X X X X X X X X X X X X
Display2line - - - - - - - - - - - - X X - - - - -
DisplayBW ? ? ? ? ? - - - - - - - - - - ? ? ? -
DisplayColor ? ? ? ? ? X X ? ? ? ? ? - - X ? ? ? X
DisplayTouch - - - - - - - ? ? ? ? ? - - - - - - -
Scale ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
Metal ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?
Barcode ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? X
BMS - - - - - - - - - - - - - - - ? - - -
SecurityMarkReader ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? X
SMR1 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? -
SMR2 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? X
Printer X X X X X X X X X X X X X X X X X X X
Printer1 X X X X X X X X X X X X X X X X X X X
Product group X X X X X X X X X X X X X X X X X X X
FrontEnd X X X X X X X X X X X X X X - - - - -

...
Backroom X X X X X X X X X X X X X X - - - - -
Backroom details X X X X X X X X X X X X X X - - - - -
OP ? ? - - - ? ? ? ? - - - ? ? - - - - -
LPA - - X - - ? ? - - X - - ? ? - - - - -

...
SoftDrop ? ? - - - ? ? ? ? - - - ? ? - ? ? ? -

...
RaiserBord ? ? - - - ? ? ? ? - - - ? ? - - - - -

...

Generating the suggestions on our machine6 took 49s, 141s and 1,090s
for an improvement in 2-wise covering of 1, 2 and 3 suggestions of changes
respectively.

The next set of runs (4–6) is on an improved version of the original test lab.
We chose to apply suggestion 1, to exclude feature Metal for product 11, and
got a new test lab of 2-wise weight coverage of 96.0%. The improvements can be
read in the same way as the previous set of suggestions.

The next set of runs (7–9) is on another improved version of the original
test lab. We chose to apply suggestion 2 to the original lab, to include feature
SoftDrop and exclude feature RaiserBord for product 1, and got a new test
lab of 2-wise weight coverage of 96.5%.

Finally, we applied suggestions 1 and 2 to the original test lab to get a coverage
of 96.3%. This produces suggestions 10–12.

The best coverage was achieved by changing four features by applying sug-
gestions 2 and 9 to get a new weight coverage of 97.2%, up 1.4pp from 95.8%.

6 Its specifications: Intel Q9300 CPU @2.53GHz and 8 GiB, 400MHz RAM. Each
execution ran in parallel in 4 threads, as the computer had 4 logical processors.
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Fig. 3. Results of Two Experiments

Table 5. Simple changes to TOMRA’s test lab, Table 3, that produce higher coverage
of the product line, Figure 2, based on the current market situation, Table 4

Change Suggestion New Coverage Product Feature 1 Set Feature 2 Set Feature 3 Set
Starting from the lab machines with coverage 95.8%
1 96.0% 11 Metal -
2 96.5% 1 SoftDrop X RaiserBord -
3 96.6% 1 Metal - SoftDrop X RaiserBord -
Starting from lab machines with suggestion 1, with coverage 96.0%
4 96.3% 10 Barcode -
5 96.7% 1 SoftDrop X RaiserBord -
6 96.9% 1 Barcode - SoftDrop X RaiserBord -
Starting from lab machines with suggestion 2, with coverage 96.5%
7 96.7% 11 Metal -
8 97.0% 11 Metal - Scale -
9 97.2% 10 Metal - Scale - Barcode -
Starting from lab machines with suggestion 1 and 4, with coverage 96.3%
10 96.5% 11 Scale -
11 97.0% 1 SoftDrop X RaiserBord -
12 96.5% 3 Scale - SoftDrop X RaiserBord -

5 Applicability to the Eclipse IDEs

As an indication of the generality of our approach, we did an experiment to see
if it also made sense for the product line of Eclipse IDEs. The Eclipse IDE can
be seen as a product line; it was introduced in Section 2. The actual products
offered on the Eclipse website was shown in Table 1a.

One source of information about what the users of the Eclipse IDE have is
the download statistics reported on the Eclipse project’s download pages7. These
can be used as weights8. The weights can be assigned to the product configura-
tions themselves, which were previously shown in Table 1a. Table 6 shows the
downloads as weights linked to each of the Eclipse products in Table 1a. In this
table we can clearly see that some products are more downloaded than others.

7 http://eclipse.org/downloads/ as of 2012-03-09.
8 A better source of weights and sub-product lines is the data aquired by the Eclipse
Usage Data Collector (UDC) that ”[...] collects information about how individuals
are using the Eclipse platform,” available online at eclipse.org/org/usagedata/.

http://eclipse.org/downloads/
eclipse.org/org/usagedata/
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Table 6. Eclipse IDE Product Configurations and Their Downloads as of 2012-03-09

Product Name Weight Product Name Weight
1 Java 282,220 7 Reporting 33,813
2 JavaEE 856,493 8 Parallel 10,441
3 C/C++ 58,720 9 Scout 1,130
4 C/C++ Linux 58,720 10 Testers 8,953
5 RCP/RAP 16,610 11 JavaScript 35,750
6 Modeling 22,060 12 Classic 651,616

By generating a 2-wise covering array using the feature model in Figure 1 with
the weights from Table 6 on the product configurations in Table 1a, we found
that just 4 products give more that 95% weight coverage. This clearly shows
that our approach is most likely applicable outside the scope of the TOMRA
industrial case.

6 Conclusion

In this paper we showed how an additional type of model was needed in order
to effectively apply combinatorial interaction testing to an industrial product
line. The new model captures relevant domain knowledge in a form that is close
to the way domain experts reason about their domain and enables additional
benefits to be derived from combinatorial interaction testing:

– Cover the interactions found in the market or planned to be in future prod-
ucts first.

– Generate products that both cover many simple interactions and resemble
products found in the market.

– Incrementally evolve the test products for the continually changing market
situation.

– Covering array generation is more deterministic.

We described our experiences of applying this to a product line of industrial size
and complexity, the TOMRA RVMs.

The algorithms that implement these features in addition to the ordinary
combinatorial interaction testing features are available on the paper’s resource
website as free and open source software.

Acknowledgments. The work presented here has been developed within the
VERDE project ITEA 2 - ip8020. VERDE is a project within the ITEA 2 -
Eureka framework.
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Abstract. With continued increase in business dynamics, it is becoming increa-
singly harder to deliver purpose-specific business systems in the ever-shrinking 
window of opportunity. Code-centric software product line engineering (SPLE) 
techniques show unacceptable responsiveness as business applications are sub-
jected to changes along multiple dimensions that continue to evolve simulta-
neously. Through clear separation of functional concerns from technology, 
model-driven approaches enable easy delivery of the same functionality into 
multiple technology platforms. However, business systems for same functional 
intent tend to have similar but non-identical functionality. This makes a strong 
case for bringing in SPLE ideas i.e., what can change where and when, to mod-
els. We propose an abstraction that aims to address composition, variability and 
resolution in a unified manner; describe its model-based realization; and outline 
the key enablers necessary for raising business application product lines. Early 
experience of our approach and issues that remain to be addressed for industry 
acceptance are highlighted. 

Keywords: software product lines, model driven engineering. 

1 Introduction 

We are in the business of developing business-critical software systems, typically for 
large enterprises. These systems are characterized by low algorithmic complexity, 
database intensive operation, large size, and distributed architecture. The large size of 
a typical business application leads to large development team that needs to work in a 
coordinated manner. Choice of distributed architecture paradigm necessitates multiple 
technologies to be managed effectively, and moreover, many times the customer has 
non-negotiable technology platform preferences. Being business critical in nature, the 
solution needs to be delivered quickly and is expected to be in use for a long time. 
Given the increased business and technology dynamics, the latter poses a significant 
architectural challenge. Our experience is no two solutions, even for the same busi-
ness intent such as straight-through-processing of trade orders, back-office automa-
tion of a bank, automation of insurance policies administration etc, are identical [22]. 
Though there exists a significant overlap across functional requirements for a given 
business intent, the variations are manifold too. Moreover, our management expects 
delivery of subsequent solutions for the same business intent to be significantly faster, 
better and cheaper. 
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We have witnessed that business applications tend to vary along three dimensions: 

− Functionality dimension which can be further divided into Business rules and 
Business logic sub-dimensions 

− Business process dimension which can be further divided into Process tasks, 
Organizational policies, and Organizational structure sub-dimensions 

− Solution architecture dimension which can be further divided into Design deci-
sions, Technology platform, and Implementation architecture sub-dimensions 

Each [sub]dimension can be seen as a set of multiple choice questions. Arriving at the 
desired implementation is essentially the task of selecting suitable answers for the 
relevant questions, identifying / implementing the code fragments, and stitching them 
together in a consistent manner. Some dimensions tend to vary more frequently over 
time than others. For instance, changes along the Technology platform dimension are 
more rapid than changes along the Business logic dimension. A given set of choices 
along Functionality dimension are needed to be delivered with a different set of 
choices along Business process and Solution architecture dimensions. There is a natu-
ral interplay between the set of choices wherein a choice along a dimension eliminates 
(or forces) a set of choices along other dimensions. For instance, choice of 'rural India' 
geography for a banking system may force 'hosted services platform' choice of Im-
plementation architecture; Choice of Java programming language and Oracle database 
as persistent store may force 'Object relational mapping' choice for design strategy 
etc. We witnessed that a choice along a dimension can impact multiple program loca-
tions (i.e. scattering) and choices along a set of dimensions can impact the same pro-
gram location (i.e. tangling). For instance, choices for a set of strategies such as con-
currency of a database table row (corresponding to a persistent object), object-
relational mapping, and preserving audit trail all impact the create() method imple-
mentation for a persistent class. And object-relational mapping strategy impacts 
definitions of all classes in the hierarchy. 

Based on these observations, we claim the following to be the key tenets towards 
raising business application product lines: 

T1 - Generative development whereby application specification is kept indepen-
dent of technology platform concerns thus enabling application developers to focus 
solely on specifying functionality in a manner that is intuitive and closer to the prob-
lem domain.  

T2 - Generation of code generators whereby technical architects can specify the 
desired [set of] code generator[s] as a hierarchical composition wherefrom code gene-
rator generator delivers implementation of the desired [set of] code generator[s]. 
Moreover, elements of the hierarchical composition can be seen as reusable artefacts. 

T3 – The key issue in supporting product lines is to specify what can change where 
and when. This enables specification of a product line as a cross-product of a set non-
changing artefacts and a set of variation artefacts for each placeholder in a non-
changing artifact. A resolution mechanism is required to project out meaningful 
members of the cross-product such that each member is a valid product. This calls for 
an abstraction that can address composition, variability and resolution in a unified man-
ner. Since business applications are typically implemented conforming to a layered 
architecture wherein an architectural layer encapsulates a specific [set of] concern[s],  
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Fig. 1. Architecting for configuration and extension 

the abstraction should be amenable for use within and across the architectural layers. 
Moreover, this abstraction may need to be used at different levels of granularity, for 
instance, at Class level, Module level, and Application level. Also, there is a temporal 
dimension of variability that needs to be addressed. For instance, is the variability 
fixed/bound /determined at application design time or installation time or run-time? 

A model-driven development approach can help in separation of technology concerns 
from functionality, and automatic derivation of suitable implementation therefrom thus 
addressing tenet T1[19]. Applying model-driven techniques to specify model-based 
code generators as a hierarchical composition of parameterized model-to-text transfor-
mation templates makes it possible to generate the desired implementation therefrom 
thus addressing T2[20]. This further enables a set of cohesive model-based code genera-
tors to be visualized as a product line. In this paper, we present: i) the core abstraction 
required for addressing tenet T3, ii) its realization in terms of a set of meta models, iii) 
an architecture to support composition and variability management of business applica-
tions, and iv) a method for managed evolution of the product line. Rest of the paper is 
organized as follows – Section 2 describes the core solution addressing tenet T3. Sec-
tion 3 illustrates the proposed solution through a pragmatic example. Related work is 
described in section 4. Early experience and unaddressed challenges are highlighted in 
Section 5 with section 6 concluding. 

2 Proposed Solution 

2.1 Architecting Business Applications for Configuration and Extension 

Idea is to visualize the system under consideration as a set of composable Variable 
Units each having a set of well-defined Variation Points (VPs) as shown in Fig. 1. 
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The variation points of a variable unit denote the places where changes are expected 
to occur thus reflecting current level of understanding of the domain. A Variation (V) 
denotes what can change at a variation point so as to cater to a specific Situation. A 
situation helps to describe the context, i.e. when a specific change can occur. Addition 
of a new variation enriches system configurability i.e. ability to address more situa-
tions. Also, the variation being added can have variation points of its own thus intro-
ducing new paths for extension and configuration. Thus, the system begins to take the 
shape of a product line wherein a member corresponds to a set of variable units and 
variations such that all variation points are bound to variations, and the variations are 
consistent among themselves. Some situations may require application designer to 
take a relook at a variable unit whereby new variation points can be introduced or old 
variation points discarded.  

2.2 A Model-Driven Architecture for Managing Variability and Configuration 

Figure 2 depicts a model-driven architecture for managing variability and configuration. 
Key components of the architecture are: i) a generic Base Metamodel (BM) that enables 
specification of any domain model, in our case, model of business application pertaining 
to any business vertical such as Banking, Financial Services, Insurance, etc. ii) a generic 
Variability Metamodel that helps to specify a priori known variability in domain-
independent manner, iii) a Target Metamodel (TM) that enables specification of the 
resolved domain model i.e. situation-specific model, and iv) a configuration engine that 
resolves variability and delivers the base model with each variation point plugged with 
the desired variation. 

 

Fig. 2. Overview of Variability Modeling and Configuration Approach 
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Variability Metamodel (VM) describes variability of a domain model (base model) 
using two metamodels namely, variability realization metamodel (VRM), and varia-
bility specification metamodel (VSM).  VRM describes the concrete variability of a 
variable unit in terms of Variation Points (VP) and Variations (V). VSM describes 
variability in abstract form such as features [10, 17] and their consistent configura-
tions each describing an a priori known situation. We also provide for specification of 
semantics of a variation point, i.e. how a variation point is to be interpreted for a giv-
en variation. Resolution Semantic Metamodel (RSM) describes such semantic inter-
pretations. In addition, a declarative constraint specification language is used for spe-
cifying constraints on variability model. 

In our realization of business application product line, BM and TM are MOF [28] 
describable metamodels and VM is aligned with MOF standards. For instance, we use 
operational Query View Transformations (QVT) [30] as a RSM and OCL [27] as 
constraint specification language. This unification, i.e. all metamodels are MOF-
describable, helps in specifying relationships between different meta models, for in-
stance, between VRM and BM, between VRM and VSM etc.  The steps for modeling 
variability and a process for resolving variability are summarized below: 

A) The concrete variability specification begins with highlighting or annotating 
the base model. This results in instantiating the VRM with appropriate refer-
ences (i.e., <<refers>>), to the base model. This separates out the base 
model and variability realization model.  

B) The abstract variability specification begins with the variability specification 
model (similar to feature tree specification).  Steps A and B may be carried out 
in parallel, and once completed, appropriate bindings (i.e., <<binds>>) are 
provided from the realization model to the specification model. In addition, a 
set of valid configurations can be specified on variability specification model.  

C) Once steps A and B are complete (along with bindings, configurations, and ref-
erence), the configuration or materialization process can begin. In this step, the 
semantic specification (QVT rules) is defined using the product line specifica-
tion model1 and a valid configuration (shown as parameter in Fig 2) as input. 
The semantic transformation rules (QVT rules) generate the target resolved 
model as output.  

2.3 A Generic Variability Metamodel  

Fig 3 depicts the variability metamodel whose key elements are described below: 

Variation Point: A Variation Point (VP) is a placeholder in the VRM where variations 
can be plugged in. A VP is derived from the variability class reference (VClassRef), 
which is an instance of the MOF class. Also, VPs refers to base model elements via a 
reference handler. It is assumed that any base model element is an instance of the MOF 
class. A VP must have a variation point type (VPType) that captures the behavior of 
the variation point. In other words, VPType determines how the variation point will be 
 

                                                           
1 Dotted line in Figure 2 showing VRM, BM, VSM along with corresponding bindings and 

references. 
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Fig. 3. Variability Metamodel 

handled by resolution semantics. The metamodel does not make explicit definition of 
VPType, instead the semantics is specified using QVT transformation rules.  

Variation: Variations can be considered as individual parts that can be plugged into a 
variation point (with type safety). Variations are the second key component of VRM. 
Similar to VPs, variations are also derived from VClassRef and conform to MOF 
class. Constraint expressions on variation points and variations can be defined using 
OCL. Similar to VP, variations also refer to base model elements via a reference 
handler. 

vXfm: Variability transformation or vXfm signifies transformation applied on a va-
riability class reference (i.e., variations points and variations). They capture the reso-
lution semantics of VM and are expressed in QVT. The QVT rules are used to resolve 
a target model from unresolved product line input specification.  

Feature: A primary constituent of the VSM is a feature or vSpec tree. The top of the 
tree is denoted by a Root that facilitates in the composition of the tree. A feature tree 
can be composed of external references, i.e., external feature tree or external configu-
rations (i.e., pre-configured). A feature is an abstract representation and is realized via 
bindings to concrete concepts like variation points and variations. 

Configuration and Resolution: A variability configuration is a set of all valid reso-
lutions from a variability specification tree (i.e., feature tree) whereas variability reso-
lution is the process of resolving a single feature (VP) to a distinct choice (variation) 
from a set of possible choices (variations). A configuration can be either partial (unre-
solved resolutions) or complete when all resolutions are resolved. 
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Configurable Unit: A configurable unit is a reusable entity that can be composed of 
other configurable units. It refers to a composite Variable Unit (of Base Model) via a 
reference handler. A CU can be either preconfigured when it contains valid configura-
tions (i.e. a CU without any feature tree) or a CU can be partially configured/ uncon-
figured when it contains a set of valid configurations and a feature tree. A CU also 
guides in the composition of vXfms (resolution semantics). This is shown in Fig 3 by 
the xfmComposition association. 

2.4 Variability and Multi-dimensional Separation of Concerns 

We make use of modeling and model-based code generation techniques to enable 
multi-dimensional separation of concerns to the extent possible. The use of high level 
specification languages enables separation of functional concerns (i.e. Business func-
tionality and Business process dimensions) from technical concerns (i.e. Solution 
architecture dimension). Moreover, separating business functionality concern from 
business process concern enables multiple orchestrations of a given set of application 
services.  

Business Functionality: Business functionality is implemented in a layered architec-
ture comprising of three architectural layers – user interface, application functionality 
and database. A user interacts with an application through its user interface. The user 
feeds in information through forms to be processed either for querying and / or com-
putations and / or updates to the application state, and browses over the information 
returned. Forms are implemented in the desired graphical user interface platform such 
as Struts-JSP, Flex-PHP, Winforms-ASP etc using standard graphical user interface 
primitives such as windows, controls, buttons, event handling logic etc. Window is a 
unit of interaction between the user and the application, and is composed of controls 
and buttons. A control accepts or presents data in a specific format. The user can per-
form a specific task by clicking on a button. A task identifies an application service, 
i.e. query or computation or update to application state, being exposed by Application 
functionality layer. The functionality is modeled using classes, attributes, methods 
and associations between classes. Class is set of attributes and methods implementing 
cohesive business functionality. Some methods are application services. Some classes 
need to be persisted using, typically, RDBMSs. The database layer provides persis-
tence for application objects using RDBMS tables, primary key and query based 
access to these tables, and an object oriented view of these accesses to the application 
layer. 

Fig. 4 shows unified meta model, architectural layer specific meta models as views 
of the unified meta model, and associations spanning across the architectural layer 
models. The architectural layer specific metamodels are the Base Models, and all ele-
ments of these metamodels such as Class, Property, Key, and Button are the Base  
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Fig. 4. Unified meta model for business functionality 

Model Element of variability metamodel described in Fig. 3. By establishing refer-
ences (i.e., <<refers>>) to the desired base model elements (i.e. instance of class, 
property, etc) variation points (VP) and variations (V) can be made explicit. Thus, 
each architectural layer specification is extended to model a priori known variability. 
Additionally, architectural layer specific feature model specifies valid combinations 
of variations possible within the architectural layer. Thus, we allow modeling of a set 
of well-formed variants for each architectural layer. Since business functionality is 
composition of various architectural layers, variations in architectural layers lead to 
variations in business functionality. Business functionality level feature model speci-
fies valid combinations of architectural layer variants. This composition is achieved 
through the composable configurable units (refer Fig.3 and Metamodel description).   

Business Process: Business process dimension comprises of operational tasks, orga-
nizational structure, and organizational policies concerns. At present, organizational 
policies are not modeled explicitly but get encoded through specification of the other 
two concerns. Organizational structure concerns are typically externalized through 
workflow specification. Industry practice is to use BPMN 2.0 [29] and EPC [33] to 
model business processes. We have come up with a MOF describable business 
process metamodel that conforms to BPMN 2.0 standard. We enable variability in 
business processes to be made explicit through Activity, Event and Gateway model 
elements as Base Model Elements. Details can be found in [4, 21].  

Solution Architecture: Solution architecture dimension comprises of Design 
decisions (D), Architecture (A) and Technology platform (T) concerns. Solution 
architect is faced with multiple choices along these dimensions in order to arrive at 
the most appropriate solution architecture for the specific situation. These choices get  
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Fig. 5. Variability resolution across multiple level of granularity 

encoded in the implementation of the code generators [19, 20]. As a result, 
retargetting the same functional specification into different solution architecture 
entails implementation of a fresh set of code generators. Instead, we devised a way of 
model-based generation of model-based code generators [3, 20]. As a result, known 
solution architecture strategies are externalized into a repository of building blocks. A 
building block encapsulates contribution of a given choice along D / A / T dimension 
to the eventual implementation i.e. solution architecture [20].  Thus, supporting new 
solution architecture is either novel composition of existing building blocks or addi-
tion of a new building block.  We unify variability description and resolution by 
using VSM and VRM (described in section 3 B) with building block metamodel  
described in [3 and 20]. 

2.5 Variability and Multiple Levels of Granularity 

As discussed earlier, variability in business applications needs to be managed along 
multiple dimensions where each dimension comprises of multiple concerns or sub-
dimensions thus leading to hierarchical decomposition structure. We showed how to 
enhance a concern-specific metamodel so as to make concern-specific variability 
explicit and to specify valid variations for a concern-specific model. Hierarchical 
decomposition structure demands variability resolution mechanism at n+1th level such 
that it specifies valid compositions of variants at nth level. The configurable unit of 
metamodel depicted in Fig 3 addresses this need with Expr being the expression 
language for describing influence of selecting choice of a concern onto other concerns.  

For example, business applications demonstrate variability at different levels of 
granularity as shown in Fig. 5. Variations in Operations and Properties lead to varia-
tions in Class. Variations in Fields and Event code lead to variations in Screen. Varia-
tions in Class lead to variations in sComponent (i.e. server functionality). Variations 
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in Screens lead to variations in gComponent (i.e. client functionality). Variations in 
sComponents and gComponents lead to variations in Application. The features at 
level n+1 are answers to the questions their parent features at level n correspond to. 
Dependence between features helps impart further well-formedness to the variations 
across multiple levels of granularity. Input to the configuration engine is a transform 
of the feature diagram shown in Fig. 5 to a series of multiple choice questions.   

2.6 Variability Resolution at Various Phases of Application Development 

The proposed approach helps visualize a business application product line wherein 
application is specified in terms of a set of MOF describable base metamodels, and a 
code generators product line wherein code generator is specified in terms of building 
block metamodel. The proposed generic variability metamodel is capable of specify-
ing variability along multiple dimensions of separation of concerns namely, business 
functionality and solution architecture.  A purpose-specific business application can 
be derived through application of two operators namely, resolution and code genera-
tion, to the product line specification. Order of application of the two operators results 
in three ways of variability resolution namely, at application design-time, at applica-
tion installation time, and at application run time.   

Design-time resolution involves resolution of variability in business functionality 
first followed by the resolution of variability in solution architecture next. The latter 
leads to code generator specifications for the given situation. The resolved business 
functionality specifications are then transformed using the desired code generators to 
deliver the desired business application implementation. Installation-time resolution 
involves resolution of solution architecture variability first. The resultant code genera-
tor specifications are used to transform business functionality product line specifica-
tions into implementation and metadata encoding the unresolved variability. Applica-
tion installer makes use of the metadata to resolve functional variability at installation 
time. Run-time resolution differs from Installation-time resolution in that the metadata 
is used for resolving application variability at application run-time. Run-time resolu-
tion demands multi-tenant architecture and relies on metadata interpretation. 

3 Illustrative Example 

We illustrate the proposed approach with a very small subset of functionality from 
banking domain.  UML class model is the base model used. All as-yet-known varia-
tions are modeled. We show how the variability is resolved to derive a situation-
specific UML class model. Only two classes namely, Customer and Address, are 
modeled due to space constraint. 

The customer class has properties customer name, uid (universal identification no.) 
and dob (date of birth), address and an operation called getCustomerCreditHistory. 
Typically, the customer identification number and the address differ with operational 
context. For example, a customer located in US is identified by a 10 digit numeric SSN  
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Fig. 6. Defining Variability Realization Model (VRM) 

(social security number) and an address field is described by a ZIP code, whereas a 
customer in India is identified by a PAN number (Personal Account Number) and an 
address  represented by a PIN code. The operation getCustomerCreditHistory of a 
customer can also differ in different contexts – US-based banks use Credit Bureau 
Report to determine credit history whereas Indian Banks use CIBIL agency. Thus the 
following variability requirements emerge:  

1. For US Customer: unique identification number is SSN based, address is 
ZIP code based, and getCustomerCreditHistory is based on Credit Bureau 
Report. 

2. For Indian Customer: PAN based unique identification number, PIN code 
based address, and getCustomerCreditHistory is based on CIBIL. 

Fig 6.a depicts Customer and Address class model for the banking product line. The 
class model, i.e. base model, captures the common as well as the entire variability 
requirements as an instance of UML metamodel. For example, the common properties 
of a Customer class are name and dob, while the variable properties are uid, pan num-
ber and ssn. Operation getCustomerCreditHistory is the only variable operation of 
Customer class, and it maps onto two variations, getUSCreditHistory and getIndian-
CreditHistory. The address property of Customer class refers to the Address class that 
has its own variability requirements as shown in Fig 6.a.  

The process of realizing variability from a given unresolved base model, as described 
in section 3.B, is illustrated in Figures 6-9. It begins with highlighting or marking the 
variation points, variations and the relationship between variation points and variations 
in the unresolved base model. Fig 6.b shows: i) the variation points of Customer  
class (i.e. uid, address, and getCreditHistory) and Address class (i.e. postalCode) hig-
hlighted in red colour, ii) the variations in Customer class (i.e. pan_Number, 
ssn_Number, getUSCreditHistory, getIndianCreditHistory) and Address (i.e. pinCode,  
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Fig. 7. Underlying variability realization model and resolution semantic model 

zipCode) in blue colour, and iii) relationships between variation points and variations 
shown by special multi-tail arrows where the head points to VP and the tail points to 
variations. Fig 6.c depicts constraint C1 which specifies choice of variation ssn_Number 
leads to the choice of variation getUSCreditHistory. Fig 6.d shows specification of se-
mantic interpretation for the variation point using QVT. 

Fig 7 shows the variability realization model along with its appropriate references to 
the base model. As stated earlier, VRM is independent of the base (meta-) model and 
refers to the base model elements via reference handlers (dotted red and blue lines). C1 
is a constraint defined in the realization model.  In addition, Fig 7 also shows the se-
mantics model that defines how the VPs would be handled by corresponding variation 
point types (VPTypes) and QVT rules.  The model depicted in Fig 7 describes the 
model of solution space of the variability requirements for the banking product. 

 

Fig. 8. Defining Variability Specification (VSM) 



 Towards Business Application Product Lines 297 

The process of defining variability specification, (see Fig 8) starts with identifying 
configurable units or CUs. In our example the two CUs are the Customer CU and the 
Address CU (Fig 8.a). Note that Customer CU contains Address CU via the external 
reference as shown in Fig 8.a. Fig 8.b describes the complete variability specification 
for the Customer feature along with various constraints. Configuration criteria for speci-
fying a US Customer or an Indian Customer are depicted in Fig 8.c. Once the variability 
specification model is defined, bindings from the abstract specification model to con-
crete realization model must be accomplished. The binding process is illustrated in Fig 9 
that shows how VPs and variations from the realization model are bound to various 
choices or features in the feature tree. Once all the above steps are completed, the confi-
guration process can derive a purpose specific base model by applying appropriate 
M2M transformations on the input product line specification.  This completes demon-
stration of: a) how variability and consistent choices (configuration) can be specified in 
an intuitive manner, b) how variability definitions of variable units can be composed to 
derive a larger unit using configurable unit, and c) how semantics of variability resolu-
tion can be specified using model transformation specification language.    

 

 

Fig. 9. Complete Variability Model (VM) 

4 Related Work 

There are several approaches addressing variability management of software product 
lines with varying degree of success. They can be classified into two broad categories 
– code centric and model-driven. Code-centric approaches visualize product line as a 
set of common and situation-specific variable code fragments such that situation-
specific implementation can be derived by composing the valid set of variation  
fragments with the common code fragments. This is aligned with the intuition de-
scribed in sub-section 3.A. Early techniques used #ifdef directive to make variations 
explicit and relied on pre-processors for composition. Though simple to specify and 
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implement, these techniques could not even guarantee that resultant composed code 
will compile. Also, use of pre-processors eliminated resolution of variability at run-
time. Advanced modularization and composition techniques such as Aspect/J [18], 
Hyper/J [32], AHEAD [5], Mixin [7], Jiazzi [24], Scala[26],  ClassBoxes [1], Com-
position Filters [14], Caesar [25], and Framed Aspects [23] fare better in comparison 
though with some limitations still. For example, Aspect/J can compose cross-cutting 
concerns at design time and runtime as long as the composition lies within the fixed 
join-point model supported. On the other hand, ClassBoxes provide support for defin-
ing new composition semantics but do not support composition of class 
fields/attributes. Apart from these specific limitations, being tied to a specific pro-
gramming  language severely hampers efficacy, even applicability, of code centric 
approaches for addressing variability along multiple dimensions of separation of con-
cerns. This is so because one programming language might not be the best suited for 
specifying all dimensions of concerns.  

Though around for a while, model-centric approach is not common for managing 
software product lines. Most common use is of feature models for describing (rather, 
documenting) product lines, typically from end-user perspective [5, 10, 17]. However, 
traceability from features to product line implementation is missing which leads to 
inadequate support for variability resolution. In congruence with our approach, other 
model-centric approaches to product lines exist [2, 15, 16]. They also use a set of 
meta models to specify the common part, the variations, and the concrete as well as 
abstract variability specification. Like our approach, they too depend on model trans-
formation techniques to handle resolution requirements. However, our approach dif-
fers with them in three key aspects.  

1. Describing concrete variability specification: Most of the existing approaches use 
Base Model extension mechanism (using stereotype) to describe concrete variabil-
ity. For instance, a proposal for modeling variability in software families with 
UML using the standardized extension-mechanisms of UML (using stereotype) is 
presented in [8]. On the similar line, the extension of base metamodel using UML 
stereotype is presented in [15, 16, 22]. Whereas, we use a generic variability me-
tamodel with MOF meta-meta level unification to establish interoperability with 
any MOF describable metamodel. This approach also conforms to the OMG’s RfP 
for Common Variability Language [31] and [9].     

2. Describing abstract variability specification: In congruence with other approaches, 
our metamodel is based on existing feature modeling technique. Our VSM is 
aligned with a specification described in [10]. We unify the key concepts of varia-
bility specification metamodel with variability realization metamodel to establish 
bindings between them, which is similar to a concise representation of variability 
specification for different kinds of models as presented in [12]. However applying 
variability at various levels of granularity and along different dimensions are 
unique to our proposed approach. 

3. Resolution semantics and approach: Existing resolution approaches [13, 16] are 
based on model transformation techniques but they are based on pre-defined M2M 
transformation rules. Instead, our approach uses the concept of transformation 
based semantic composition. This enables customized semantics for each variation 
point to be composed by any M2M transformation language like QVT.  
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5 Early Experience and Evaluation 

We are in the final step of realizing our objective. The core infrastructure namely, 
meta models, model processors, method etc are in place. The central idea is vetted by 
raising model-based code generators product line [20]. A near real-life example in 
Banking domain is also implemented to illustrate all the concepts in a laboratory set-
ting. We are about to start with a real-life product-line implementation through re-
structuring and refactoring of a set of existing purpose-specific solutions. Completion 
of this exercise will give better feedback on robustness and usability of the proposed 
approach. 

Still, early experience tells that models, through better separation of  multi-
dimensional concerns, clearly provide a better handle than code for implementing 
business application product lines. Separation of solution architecture from business 
functionality concerns enables business domain experts to focus solely on specifying 
the variations in business functionality and technology architects to focus solely on 
specifying the variations in technology platform, design strategies and architecture. 
Independent resolution of variability along multiple dimensions and model-based 
generation of model-based generators enable application variability resolution at de-
sign-time or installation-time or run-time. The Variation Points also double up as 
extension points for introduction of as-yet-unforeseen changes. And unforeseeable 
changes are a reality for business applications.  

Though early signs are encouraging, several significant issues remain to be ad-
dressed: 

− Multi-level resolution seems to suffice but is posing usability challenge even for 
the small application we implemented. In the least, more intuitive GUI seems a 
must for resolving variability. 

− Business-critical applications need to evolve with time through extension and 
mutation. The proposed variability model is adequate to address extension i.e. add 
as-yet-unseen variant part or add as-yet-uncalled-for common part. But, mutation 
would need refactoring of common part to add a new variation point, and com-
mensurate fusion of a set of variant parts etc. Intuitive refactoring support is es-
sential. 

− Maintenance / evolution effort far exceeds the development effort for a successful 
business application [6]. Precise computation of impact of a change and optimal 
testing (i.e. what to test when) is a must.  

− Effective management of a product line demands coordination of multiple stake-
holders such as Domain experts, Solution architects, Developers, Testers, Product 
line managers etc across the various SDLC phases. Should there be a feature model 
for every stakeholder? But a stakeholder might be interested in a set of [sub] di-
mensions leading to overlap of feature models and feature dependency. It calls for a 
method (and the relevant tooling) to help what to do when and by whom. There is a 
need to build further on the proposed multi-level resolution model and [11]. 

− Definition of a new mutual fund offering or an insurance policy or a financial 
product varies from the existing ones in a well-defined manner even though the 
variations need to be introduced at many places. A declarative mechanism aided 
by suitable [de]composition architecture is missing. 
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6 Conclusion 

To raise business application product lines, we argued, the need for: i) use of models 
and model-driven techniques to implement SPLE concepts, ii) an abstraction that 
addresses composition, variability and resolution in a unified manner, iii) a mechan-
ism to resolve variability at several levels of granularity, and iv) abstraction and me-
thod support to address unforeseeable changes. We presented a model-driven solution 
that addresses these needs and shared early experience with the solution in practice. 
We also outlined some of the significant issues that need to be overcome for ready 
adoption of the proposed solution by industry practice. 
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Abstract. UML specification is verbal and imprecise, the exact mean-
ing of many class diagram constructs and their interaction is still obscure.
There are major problems with the inter-association constraints subsets,
union, redefinition, association specialization, association-class special-
ization. Although their standard semantics is ambiguous and their inter-
action unclear, the UML meta-model intensively uses these constraints.
The paper investigates the semantic implications of the above

inter-association constraints, their interaction with other constraints,
and implied correctness problems. Based on this study, we present a
comparative analysis of these constraints, that includes characterization,
and refers to complexity factors, and usefulness aspect. This analysis
yields recommendations concerning the semantics and usefulness of the
constraints. In addition, we present modeling guidelines for users. To
the best of our knowledge, this is the first all inclusive analysis of the
inter-association constraints in UML2.

1 Introduction

UML 2 [1] introduces several new constraints, property subsetting, property union
and property redefinition for inter-property relationships, and widely uses them
in the definition of its meta-model. The new constraints add up to the previous
constraints association specialization and association-class hierarchies, to form
the set of inter-association constraints. These constraints are important due to
their role in the meta-model, in defining new modeling languages [2] and in real
domains such as configuration management.

Inter-association constraints present a computational complexity problem. Ar-
tale et al. [3] shows that reasoning about consistency of class diagrams with
inter-association constraints is an ExpTime problem. Dropping the complete,
association-class hierarchy and association specialization constraints decreases
the complexity to NP.
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The semantics of inter-association constraints as described in the meta-model
is ambiguous, their inter-relationships are obscure, and some constraints have
contradictory interpretations. The subsetting, redefinition, association special-
ization and union have been studied in [2, 4–11]. These works try to settle
various semantic issues, but did not reach a semantic agreement. An over-
all consideration of all constraints, including association-class hierarchy, is still
missing.

This paper presents an observable-based approach for investigating the inter-
association constraints in UML2. The observables are properties of the con-
straints, for which there is a general agreement among the researchers. We
study possible interpretations of the inter-association constraints, following three
criteria: (1) preservation of observables; (2) minimizing contradiction with the
meta-model; (3) consistency with the selected semantics of other UML con-
straints. In addition, the paper investigates the semantic implications of the
inter-association constraints, their interaction with other constraints, and im-
plied correctness problems. The results of the investigation have been added to
our ongoing anti-pattern catalog of class diagram correctness patterns [12], and
for extending the FiniteSat [13] tool to apply to these constraints.

Based on this study, we present a comparative analysis of these constraints,
referring to complexity factors, and usefulness aspect. This analysis yields rec-
ommendations for standard semantics, and modeling guidelines. To the best
of our knowledge, this is the first all inclusive analysis of the inter-association
constraints in UML2.

Section 2 formally defines the UML class diagram model. Sections 3-5 study
the inter-association constraints, subsetting, redefinition, association speciali-
sation and association class hierarchy respectively; Section 7 presents a com-
parative analysis of these constraints; Section 8 presents recommendations and
Section 9 concludes the paper. Due to space limitation, we omit the union
constraint from this paper.

2 Background

A class diagram is a structural abstraction of a real world phenomenon. The
model consists of basic elements, descriptors and constraints. This section defines
the abstract syntax and the semantics of the class diagram without the inter-
association constraints. Our definitions follow the works of [2, 14]. We use a
property oriented abstract syntax, since it enables a better formulation of the
semantics of inter-association constraints. Inter-association constraints will be
addressed separately in the latter sections.

Abstract Syntax. A class diagram is a tuple 〈C,P ,A, props, propsac, source,
target, Constraint〉 where
– C is a set of class symbols.
– P is a set of property symbols (sometimes called association ends). Prop-

erty symbols denote mappings derived from their associations. Ordering and
uniquness constraints are not discussed in this paper [15].
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– A is a set of association symbols.
– props : A → P × P is a 1:1 assignment of different properties to association

symbols. For an association a, props(a) �= 〈p, p〉. For a property p, there is
a unique a ∈ A, such that props(a) = (p, ∗) or props(a) = (∗, p), where * is
a wild card. We write assoc(p) or assoc(p1, p2) for the association of p or of
(p1, p2), and props1(a), props2(a) for the two properties of a.

– source : P → C and target : P → C are 1:1 mappings of properties to
classes such that for an association a with props(a) = (p1, p2), target(p1) =
source(p2) and target(p2) = source(p1). In Figure 1, target(p1) =
source(p2) = A and source(p1) = target(p2) = B.

Fig. 1. Visualization of a binary association

– AC is a set of association-class symbols.
– assocAC : AC → A is a 1:1 assignment of association symbols to association

class symbols. For an association class C, pairsC is a mapping between
objects of C to object-pairs of assocAC(C).

– Constraint is a set of constraints as follows:
1. Multiplicity constraints on properties: mul : P → (N ∪ {0})× (N ∪ {∗})

assigns multiplicity constraints to property symbols. For simplicity we
use a compact symbolic representation, where association a in Fig-
ure 1 is denoted a(p1 : A[ m1, n1], p2 : B[ m2, n2]). The functions
minMul : P → {N ∪ {0}} and maxMul : P → {N ∪ {∗}} give the mini-
mum and maximum multiplicities assigned to a property, respectively.

2. Aggregation and Composition: Two unary relationships on the set of
property symbols denoted by pa and pc respectively. Visually, composi-
tion is shown by a filled diamond adornment on the composite association
end while aggregation is shown as an open diamond.

3. Class-hierarchy: A non-circular binary relationship ≺ on the set of class
symbols: ≺ ⊆ C×C. Henceforth we use the notation C2 ≺ C1, where C1

is the superclass and C2 is the subclass (also called direct-descendant).
The weak version of ≺ is denoted #, which is “≺ or equal“. The reflexive
transitive closure of ≺ is called the descendant relation, and denoted ≺∗.
Its irreflexive version is denoted ≺+. .

4. Generalization-set (GS ) constraints: GS is an (n + 1)-ary relationship
on C, for n ≥ 2. An element 〈C,C1, . . . , Cn〉 in GS must satisfy: For
i, j = 1..n, i �= j, (1) C �= Ci; (2) Ci �= Cj ; (3) Ci ≺ C. C is called
the superclass and the Ci-s are called the subclasses. Elements of GS
maybe associated with a constraint const ∈ {〈disjoint〉, 〈overlapping 〉,
〈complete〉, 〈incomplete〉, 〈disjoint, complete〉, 〈disjoint, incomplete〉,
〈overlapping, complete〉, 〈overlapping, incomplete〉}. We use the sym-
bolic representation GS(C,C1, . . . , Cn; const) for GS constraints. Note
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that an unconstrained GS is redundant, as it specifies only class
hierarchy constraints.

Semantics: The standard set theoretic semantics of class diagrams associates
a class diagram with instances I, that have a semantic domain and an exten-
sion mapping, that associates syntactic symbols with elements over the semantic
domain. For a symbol x, xI is its denotation in I.

Symbol denotation:
– Class: For a class C, CI , the extension of C in I, is a set of elements in the

semantic domain. The elements of class extensions are called objects.
– Property: For a property p, pI is a multi-valued function from its source

class to its target class: pI : source(p)I → target(p)I .
– Association: For an association a, aI , the extension of a in I, is a binary

relationship on the extensions of the classes of a. If props(a) = (p1, p2), then
pI1 and pI2 are restricted to be inverse functions of each other: pI1 = (pI2)

−1.
The association denotes all object pairs that are related by its properties:
aI = {(e, e′) | e ∈ target(p1)

I
, e′ ∈ target(p2)

I
, e′ ∈ pI2(e)}. The elements

of association extensions are called links.
– Association class: For an association-class C, CI is a set of elements in I

and pairsC
I : CI → (assocAC(C))

I
is a 1:1 and onto mapping. Furthermore,

an object e ∈ CI is mapped to at most a single pair of objects in an
association.

The semantics of the constraints with respect to an instance I:

1. Multiplicity constraints on properties: For a property p, pI is restricted
by the multiplicity constraints. For every e ∈ source(p)

I
, minMul(p) ≤

|pI(e)| ≤ maxMul(p). The upper bound is ignored if maxMul(p) = ∗.
2. Aggregation: An aggregation denotes two constraints:

– Irreflexivity: For e ∈ source(pa)I , paI(e) �= e;
– Transitivity on the aggregation relation.

Together, these constraints imply antisymmetry:

For aggregation properties pa1 , . . . , p
a
n, such that

target(pai ) = source(pai+1), i = 1, n− 1, if e ∈
source(pa1)

I , then pan
I(pn−1

aI(. . . (pa1
I(e)))) �= e.

3. A composition is an aggregation with two additional constraints:
– A composition property pc is not multi-valued;
– multi-composition constraint:

For composite properties pc1, pc2 such that
source(pc1) = source(pc2), if e ∈ source(pc1)

I , then pc1(e) = pc2(e).
4. Class-hierarchy constraints: Class hierarchy constraints denote subset re-

lations between the extensions of the involved classes. That is, for C1 ≺ C2,
C1

I ⊆ C2
I .

5. GS constraints have the following meaning:
(a) disjoint: CI

i ∩ CI
j = ∅, ∀i, j

(b) overlapping: For some i, j, it might be CI
i ∩ CI

j �= ∅
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(c) complete: CI =
n⋃

i=1

CI
i

(d) incomplete:
n⋃

i=1

CI
i ⊆ CI

A legal instance of a class diagram is an instance that satisfies all constraints.
A class diagram is consistent or satisfiable if it has a legal instance with non-
empty class extensions, and is finitely satisfiable if it has a finite non-empty
instance [13, 14, 16–20].

3 Subsetting Constraint

Subsetting is a basic inter-association constraint, quite popular in the UML
meta-model. It is defined between two properties (association ends), constrain-
ing one to be a sub-mapping of the other. Figure 2 includes two subsetting
constraints: The presentation property subsets the paper property, and the pre-
senter property subsets the author property. The constraints state that a paper
presented by an author must be a paper of the author, and the presenter of an
accepted paper is also the author of that paper.

Fig. 2. A class diagram with subsetting constraints (Based on [21])

Subsetting is syntactically denoted by a binary relation on the set of prop-
erty symbols: ≺ ⊆ P × P . p1 ≺ p2, stands for “p1 subsets p2”. p1 is
termed the subsetting property, and p2 is termed the subsetted end. In Fig-
ure 2, presentation ≺ paper and presenter ≺ author. The UML specifica-
tion imposes the following constraints on p1 ≺ p2: source(p1) ≺∗ source(p2),
target(p1) ≺∗ target(p2) and maxMul(p1) ≤ maxMul(p2).

Subsetting is the only inter-association constraint for which there is an over-
all agreement about its semantics. For p1, p2 ∈ P , p1 ≺ p2 states that p1
is a sub-mapping of p2, i.e., for a legal instance I, e ∈ source(p1)

I implies
p1

I(e) ⊆ p2
I(e).

Semantic properties of the subsetting constraint: Let p1, p2 ∈ P , p1 ≺ p2,
and I a legal instance. Then:

1. Symmetry: [2, 5] p−1
1 ≺ p−1

2 .
2. Association inclusion: [5] assoc(p1)

I ⊆ assoc(p2)
I . Furthermore, the

meta-model [1] states that subsetting implies association specialization (see
section 5).

3. [5]: If minMul(p1) > minMul(p2), there exist an object e ∈ source(p2)
I

such that |pI2(e)| ≥ minMul(p1).
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3.1 Interaction with Other Constraints

The interaction of the subsetting constraint with other constraints can cause
various correctness problems. Below, we analyze some problems, and point the
reader to our catalog [12] for other problems.

A finite satisfiability problem due to conflicts with multiplicity constraints: Con-
sider Figure 3. In every legal instance I, for e ∈ CI , |bI3(e)| = 2, and also bI3(e) ⊆
bI1(e). But, the multiplicity constraints on association r dictate |AI | = |BI |,
implying that either I is an infinite instance or |bI1(e)| = 1. Therefore, the dia-
gram does not have a finite non-empty legal instance, implying that the diagram
is not finitely satisfiable1. This example shows how the surrounding context of
properties can affect the correctness of the diagram. For other conflicts of sub-
setting with multiplicity constraints, such as in presence of qualifier constraints,
consult [12].

A B

C D

1

a1

q 1..2

b1

1 a2

r

1b2

1

a3 {subsets a1}
s 2

b3 {subsets b1}

Fig. 3. A finite satisfiability problem due to interaction between subsetting and mul-
tiplicity constraints

Correctness problems due to conflicts with aggregation/composition constraints:
Aggregation/Composition constraints are frequently used in the metamodel and
in conceptual modeling. We analyze here only consistency problems caused by
interaction with subsetting. For more finite satisfiability problems consult [12].

Figure 4a presents a consistency problem due to composition cycles (noticed
by [2]): In every legal instance I, for e ∈ BI

1 , p
c
1
I(qc2

I(e)) = e. Figure 4b has the
same consistency problem, but the composition cycle is caused indirectly, due
to interaction with the subsetting constraints.

Claim 1 generalizes the result of [2] for indirect composition cycles.

Claim 1. Let p, q, r ∈ P, where r ≺∗ p and r−1 ≺∗ q. Then, p and q are not
both composition properties.

Proof. (Sketched) Assume by contradiction that both p and q are composi-
tion properties (denoted, for clarity pc, qc). Let I be a legal instance and e ∈
source(r)I , such that pcI(e) �= ∅. Then, rI(e) = pcI(e), and r−1I(rI(e)) =

qcI(rI(e)) (due to subsetting and composition), imply r−1I(rI(e)) = e. There-
fore, qcI(pcI(e)) = e, i.e., a composition cycle. Consequently, at most one of p
or q can be a composition property.

1 A different way to describe this problem is noting that the r, q association cycle im-
plies that the maximum multiplicity 2 on b1 is not realized in any legal finite instance,
i.e., the multiplicity constraint on b1 is not tight. But, tightening maxMul(b1) to be
1 creates a consistency problem in finite legal instances.
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(a) (b)

Fig. 4. Consistency problems due to subsetting and (indirect) composition cycles

Induced constraints, due to interaction with disjoint GS constraints: The subset-
ting constraint affects disjoint GS constraints on parallel hierarchies, as demon-
strated in Figure 5. The subsetting constraints induce a disjoint constraint on
GS(A,A1.A2), and therefore the diagram is incomplete. In order to see that,
let I be a legal instance, and assume that there exists e ∈ AI

1 ∩ AI
2. Then,

|pI1(e)| = 1, |pI2(e)| = 1 and pI1(e) ∩ pI2(e) = ∅. The subsetting constraints imply
(pI1(e) ∪ pI2(e)) ⊆ pI(e), which further implies |pI(e)| ≥ 2, in contradiction to
the maximum multiplicity constraint on p. Therefore, AI

1 and AI
1 are disjoint in

any legal instance. Claim 2 generalizes the result.

Fig. 5. Interaction of subsetting with disjoint constraint

Claim 2. Assume that a class diagram includes a GS constraint
GS(B,B1 . . . , Bn; disjoint), and properties pi ≺ p such that target(pi) ≺∗ Bi,
for i = 1, n. Then, if for every i, j, i �= j, minMul(pi) + minMul(pj) >
maxMul(p), the class diagram entails the induced GS constraint
GS(source(p), source(p1), . . . , source(pn); disjoint).

Proof. Assume by contradiction that there exists a legal instance I with an
object e such that for some i �= j, e ∈ source(pi)

I ∩ source(pj)
I . Then,

since target(pi)
I and target(pj)

I are disjoint, |pIi (e) ∪ pIj (e)| ≥ minMul(pi) +

minMul(pj) > maxMul(p). But, pIi (e) ∪ pIj (e) ⊆ pI(e), implying |pI(e)| >
maxMul(p), in contradiction to the multiplicity constraint. A special case of
this claim involves properties pi for which minMul(pi) = maxMul(p).

4 Property Redefinition Constraint

Property redefinition, like subsetting, is a constraint that is imposed between
properties, and is frequently used in the meta-model. It can refer to several
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(a)

GraduateStudent

Student

GraduateCourse

Course-register
1..*

{redefines register}

-gregister
4

(b)

Fig. 6. Class diagrams with redefinition constraints

property characteristics like name, time, visibility, multiplicity, type [1, 22], of
which we discuss only type and multiplicity constraints.

Figure 6 demonstrates type and multiplicity redefinition constraints. In Fig-
ure 6a, property tacourse redefines the multiplicity constraint of property course.
It restricts a teaching assistant to teach exactly one course, although Academic
employees can teach up to three courses. In Figure 6b, property gregister rede-
fines the type and multiplicity of property register. It restricts a graduate student
to register to exactly four graduate courses instead of to any number of general
courses.

Redefinition is syntactically denoted by a binary relation on the set of property
symbols: �⊆ P × P . p1 � p2, stands for “p1 redefines p2”. p1 is termed the
redefining property and p2 is termed the redefined property. In Figure 6a, tacourse
� course.

The UML specification imposes the following constraints on p1 � p2:
source(p1)
≺+ source(p2), target(p1) ≺∗ target(p2), minMul(p1) ≥ minMul(p2) and
maxMul(p1) ≤ maxMul(p2). In addition, since the class hierarchy relation is
acyclic (constraint 2 in [1, p. 52]), redefinition is also acyclic.

The semantics of redefinition, as explained in the metamodel [1, 23], is unclear
and contains contradictory statements. Three different interpretations have been
discussed in the literature [2, 4, 7–10], with no single agreement. We consider each
separately, and then present criteria for selecting one. Let p1, p2 ∈ P , p1 � p2.
The interpretations are:

1. Single association (refinement) semantics: [5, 9, 24] p2 values on
source(p1) are restricted to be in target(p1), i.e., for a legal instance I,
e ∈ source(p1)

I implies p2
I(e) ∈ target(p1)

I and minMul(p1) ≤ |p2I(e)| ≤
maxMul(p1). The redefining association aassoc(p1) is ignored, and is not
treated as an independent association.

2. Overriding (covariant) semantics: [2, 7] The redefined property p2 is
not defined on source(p1), i.e., for a legal instance I, pI2 : source(p2)

I −
source(p1)

I → target(p2)
I .

3. Subsetting semantics: [6, 8, 10] The redefined property p2 is restricted
to be the redefining property p2 on source(p1), i.e., for a legal instance I,
e ∈ source(p1)

I implies p2
I(e) = p1

I(e). According to this interpretation,
redefinition strengths the subsetting constraint with additional constraints.

In order to recommend a semantics for adoption, we single out observables of
redefinition, i.e., characteristics that are agreed by most interpretations. Our
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criteria for semantics selection involve (1) preservation of observables; (2) min-
imizing contradiction with the meta-model; (3) consistency with the selected
semantics of other UML constraints.

Redefinition Observables: Let p1 � p2, and let I be a legal instance. The
following two properties seem to characterize most texts that discuss redefinition:

1. Type redefinition: For object e ∈ source(p1)
I , p2

I(e) ∈ target(p1)
I .

2. Multiplicity redefinition: For object e ∈ source(p1)
I , maxMul(p1) ≤

|p2I(e)| ≤ maxMul(p1)

The single association semantics satisfies the observables. Therefore, we consider
the other two criteria. We suggest to reject this semantics since it ignores the
redefining association, practically treating it as removed. The problem is that
the meta-model [1], states that redefinition entail association specialization, im-
plying that the redefining association has a role in the diagram. Besides, this
semantics ignores the p−1

1 property, including its possible associated constraints,
like multiplicity, qualifier, composition and subsetting constraints.

The overriding semantics does not satisfy the observables. Besides, under this
semantics, subsetting and redefinition contradict each other. But, the combina-
tion of redefinition and subsetting on the same property occurs in the meta-model
(e.g., Figure 12.21 on [1, p. 307]). In addition, covariant subtyping is problematic
since a client of source(p2), when actually holding an object from source(p1),
expects the p2 property to be applicable [4, 25].

The subsetting semantics satisfies the observable, and is consistent with the
UML meta-model and with other inter-relationship constraints. In particular,
it entails subsetting. Therefore, we suggest adopting it as the semantics of the
redefinition constraint.
note: Unlike subsetting, redefinition is not necessarily symmetric. That is, of p
has a redefinition constraints, then p−1 is not necessarily a redefinition property.

5 Association Specialisation

Association is a classifier, and therefore can be specialized by another associa-
tion. Like class hierarchy, association specialization appears in early versions of
UML, with an inclusion semantics. Figure 7 show an association specialization
between the special authorization and the authorization associations. It enforces
an external user with a special authorization access to some wireless network, to
have a regular user authorization to the same network. Association specialization
is cognitively complex, and is not frequently used.

User

ExternalUser

Wireless

InnerUser
SpechialAuthorization

Authorization

Fig. 7. Association Specialisation
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Association specialization is syntactically denoted by a binary relation on the
set of association symbols: ≺⊆ A × A. a1 ≺ a2 stands for “a1 specializes a2”.
a1 is the super-association and a2 is the sub-association. The UML specification
constrains association specialization to be acyclic and requires hierarchy among
the involved classes. That is, for a1 ≺ a2, with props(ai) = (p′i, p

′′
i ), i = 1, 2,

source(p′1) ≺∗ source(p′2) and source(p′1) ≺∗ source(p′2). This causes the prop-
erties of the associations to be covariant, which is problematic for subtyping. In
addition, see below for problems of property correspondence.

Although association specialization is an earlier concept, its semantics is still
unsettled. The UML specification includes two references to its semantics. In
one place, association specialization is given a generalization semantics, which
implies an inclusion relation between the instances of the involved associations.
In another place, it is given a specialization semantics which implies intentional
relationship between the related associations.

Observable of Association Specialisation: Let a1 ≺ a2 and let I be a legal
instance. Then, aI1 ⊆ aI2.

The inclusion observable reveals an inherent problem in the syntactic specifi-
cation of association specialization: It neglects the correspondence between the
properties of the association. Therefore, it does not provide sufficient informa-
tion as to the order of the objects in included pairs. Figure 8 presents two legal
instance diagrams for the class diagram in Figure 8a. In both instances, sp1 is a
manager and sp2 is a special. The difference is that in Figure 8b, sp1 is a grantor
and sp2 is a grantee, while in Figure 8c sp1 is a grantee and sp2 is a grantor.
The problem is that the association specialization syntax is lacking – it does not
specify correspondences between the properties of the sub-association and the
super-association. We return to this point after the discussion of the semantics.

Fig. 8. An association hierarchy between two reflexive assiciations

Four possible interpretations for association specialization appear in the lit-
erature:

1. Inclusion semantics: [3, 21] Association specialization is interpreted as the
inclusion observable.

2. Covariant semantics: [26, 27] This approach considers association special-
ization as redefinition on the two properties of the sub-association, with the
overriding (covariant) semantics.
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3. Redefinition semantics [22, 28, 29]: Association specialization is equiva-
lent to redefinition constraints on both properties of the sub-association.

4. Subsetting semantics: [6, 8, 10] Association specialization is equivalent to
subsetting constraints on the properties of the sub-association.

The inclusion semantics has the property correspondence problem. The covariant
semantics relies on a redefinition semantics that does not satisfy the observables
of redefinition, and therefore also does not satisfy the observable of association
specialization. The redefinition semantics implies that association specialization
entails subsetting. But, since the meta-model specifies that subsetting entails
association specialization [1], the conclusion is that association specialization is
equivalent to subsetting, which is the third and most popular semantics.

In order to fully specify the subsetting semantics of association specializa-
tion, the syntax should be strengthened to include specification of property cor-
respondence as subsetting constraints. For example: specialAuthorization ≺
authorization with manager ≺ grantor and sp ≺ grantee.

Association hierarchies with generalization set constraints: The metamodel al-
lows defining GS constraints with association specializations. Generalization set
constraints over association specialization or association class hierarchies have
been used in the translation of description logic into UML [18].

The syntax is similar to the syntax of the generalization set above classes:
GS(a, a1, . . . , an; const), ai ≺ a where const is one of the GS constraints defined
for classes. The semantics of GS constraints over associations is similar to that of
GSs over classes. While association specialization without GS constraint can be
replaced by subsetting constraints, GS constraints require the explicit presence
of association specialization.

The interaction of association specialization with association GS constraints
and with other constraints yields correctness and quality problems that are
analyzed in [12].

6 Association-Class Hierarchy

Association class is defined in [1] as a sub-class of the classifiers Association and
Class, and therefore it can be specialized by another association class. Associ-
ation classes appear frequently in the translation of description logics to class
diagrams, but in other domains its usage is rare. Syntactically, it is a binary
relation on the set of association class symbols: ≺⊆ AC ×AC.

The semantics of association-class hierarchy has received little attention in the
literature and its definition in the metamodel is unclear. Its intuitive semantics is
a mixture of the semantics of class generalization and association specialization,
and can be interpreted in different ways. Three criteria, from which we derive
the observables, seem to characterize association-class hierarchy:

1. Class generalization: The sub-association-class denotes a subset of the
super-association-class denotation.

2. Association specialization: The sub-association is a specialization of the
super-association.
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Fig. 9. Association class hierarchy

3. Association class: The association-class nature of the association-classes
is not violated.

Observables of association-class hierarchy:

1. No-double-pair: An object of the sub-association-class C does not identify
(through the pairsC mapping) two different pairs, one in the sub-association
and one in the super-association (as demonstrated in Figure 10a).

2. No-double-object: A pair of objects in the sub-association is not iden-
tified by two different objects of the sub-association-class and the super-
association-class (as demonstrated in Figure 10b).

3. Association subsetting: The sub-association satisfies subsetting con-
straints with respect to the super-association. Note, that this observable
implies that property correspondence between the sub and super associa-
tions is settled, and the sub-association inherits the multiplicity constraints
of the super-association2.

(a) An object identifis 2 pairs (b) 2 objects identify a pair (c) Recommended

Fig. 10. Instances of Figure 9 according to three possible interpretations

Possible interpretations for association-class hierarchy can be considered:

1. Class-hierarchy semantics: The hierarchy constraint affects only the as-
sociated classes, with no reference to the association of the association-class.

2. Class-hierarchy + subsetting semantics: The class hierarchy constraint
is strengthened with subsetting between the involved associations.

3. Class-hierarchy + subsetting + single-mapping semantics: The class
hierarchy and subsetting constraints are strengthened by a requirement for
a single pair identification for objects in the sub-association-class: For asso-
ciation classes C1 ≺ Cc, and a legal instance I, (pairsIC2

)/CI
1
= pairsIC1

.

2 Some versions of the USE system [30] do not satisfy this observable.
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The class-hierarchy semantics does not satisfy the no-double-pair observable,
and the subsetting observables. The class-hierarchy + Subsetting semantics does
not satisfy the no-double-object observable. The class-hierarchy + subsetting +
single-mapping semantics satisfies all three observables (Figure 10c demonstrates
this semantics), and therefore is recommended as most appropriate.

Interaction with other constraints is omitted, for lack of space.

7 Comparative analysis of Inter-association Constraints

Characterization: Syntax and Semantics. Subsetting and redefinition are
constraints between properties, association specialization is a constraint be-
tween associations and association-class hierarchy is a constraint between the
associated-classes. The semantic characterization covers several aspects:

1. Expressive power: Subsetting and association specialization are equiva-
lent; redefinition entails subsetting and association-class hierarchy entails
association specialization.

2. Symmetry: Subsetting is symmetric with respect to the association on
which it is imposed, while redefinition is not.

3. Semantics variation status: Subsetting has an overall agreement about its
semantics. The semantics of redefinition is still controversial. There is dis-
agreement between the three interpretations, termed “single association”,
“covariant” and “subsetting”. We have shown that the first two are not
consistent with the meta-model. The semantics that we recommend for as-
sociation specialization, i.e., subsetting, is widely accepted, although its in-
tentional aspect is still unclear. The semantics of association-class hierarchies
is hardly addressed.

Complexity Factors
Inter-association constraints raise several complexity issues with respect to model
evaluation and modeling activity. Cognitive complexity is a modeling activity
factor that refers to the mental burden that people (e.g. analysts, designers, de-
velopers, etc.) experience when building, validating, verifying or using models
[31, 32]. Design problems and structural complexity are model evaluation fac-
tors. Design problems refer to correctness and quality of models, and structural
complexity refers to the inter-relationships between model elements [31, 32].

Design Problems. All inter-association constraints cause correctness and qual-
ity problems due to their complex interaction with other constraints. The com-
plex interaction can be local or global, and involves the associated classes, which
are already constrained among themselves.

Structural and Cognitive Complexity. Structural and cognitive complexity
[31] are widely recognized as factors that affect model understandability. Struc-
tural complexity affects cognitive complexity, which reduces understandability
[32]. Empirical studies show that class diagram complexity is an indication for
cognitive complexity and external quality attributes such as maintainability and
modifiability [33]. For example, deep class hierarchies decrease understandability.
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The effect of inter-association constraints on the structural properties of class
diagrams has been not studied yet. We hypothesize that they increase cognitive
complexity and reduce model understandability, for the following reasons:

1. Global inter-relationships: The association ends that are involved in a
constraint can appear in a far distance from each other (high hierarchy depth
in association class/association specialization). This occurs frequently in the
meta-model, where finding a subsetted property might require high naviga-
tion skills through multiple meta-model diagrams.

2. Induced constraints: The amount of induced constraints due to interac-
tion with other constraints is quite high. Identification of induced constraints
requires understanding of indirect relationships between constraints, some-
times within a large scope (e.g. identifying indirect composition cycles).

Visual Aspect. The visual representation of model element affects its cog-
nitive complexity. Good visual representations enjoy the cognitive effectiveness
property, i.e., the ability to directly clarify cognitive to visual translations [34].

– Subsetting and Redefinition: Their visual notations of are textual, and
do not rely on efficient cognitive processes [34]. Their major problem is that
their notations have a global scope, that might be the entire class diagram.
Besides, the syntax {subsets x} or {redefines x} does not indicate which
class is related to property x. additional issues are that subsetting and re-
definition notations do not show the relationship between the super and
sub-associations, and subsetting does not reflect its symmetric nature.

– Association Specialization and Association-Class Hierarchy: The vi-
sual notation of association specialization and of association-class hierarchy
is intuitive because it directly specifies the involved associations. Its visual
notation indicates its semantic properties of the constraint: transitivity, ir-
reflexivity, and asymmetry[34, 35]. The visual notation, however, does not
show the subsetting relationship between the association ends, which in-
creases clarity but creates redundancy. In complex structures, association
specialization might create edge crossings, that decreases understandability.

Usefulness. Subsetting, union, and redefinition are frequently used by the
meta-model, in that frequency order. Association specialization and association-
class hierarchy are not used. Description logics use association specialization and
association-class hierarchy in translations to UML.

8 Recommendations and Guidelines for Using
Inter-association Constraints

Semantics Decisions

1. Redefinition: We suggest strengthening the meta-model to include the en-
tailment relationship between the redefinition and subsetting constraints,
and the symmetry of subsetting. Furthermore, the meta-model can be sim-
plified, by removing combined specification of subsetting and redefinition.
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2. Association-class hierarchy and Association specialization: We rec-
ommend (1) enforcing specification of subsetting constraints; (2) modifying
the meta-model so that association specialization do not entail class hierar-
chy between the associated classes.

3. Visual decisions: We suggest updating the visual representation of sub-
setting and redefinition to include information about the classes. A possible
representation is {subsets C.p}, where C = source(p).

Modeling Guidelines and Recommendations

1. Overuse of inter-association constraints, as in the meta-model, increases
structure complexity, cognitive complexity, and the number of induced con-
straints and correctness problems.

2. (a) Since subsetting is symmetric, define subsetting on both properties of
an association, unless there is a redefinition constraint. This can decrease
ambiguity, where a reader may conclude that one property includes more
constraints than the other.
(b) In case of redefinition on both properties of an association, subsetting is
redundant since redefinition entails subsetting. Combining it with subsetting
can confuse.
(c) If only one property of an association includes a redefinition constraint,
adding subsetting on the other property may increase understandability.

3. Avoid subsetting/redefinition of properties in far distance. This can help in
discovering the design problems caused by these constraints. We recommend
defining subsetting/redefinition constraints on a property in an ascending
order according to their distance in the hierarchy of the associated classes.

4. Involving inter-association constraints with GS constraints is a potential of
design problems.

5. Association-class hierarchy and association specialization: The semantics of
association-class hierarchy is not intuitive, while association specialization
is equivalent to subsetting. Both constraints require subsetting constraints
and their visual notation in complex hierarchy structures is obscure.
Therefore, we recommend using these constraints only if they are part of GS
constraints (on classes or on associations).

9 Conclusion and Future Work

We presented a coherent approach for choosing the semantics of inter-association
constraints in UML2, with a maximum compatibility with the Meta-Model, and
based on common observables. The paper addressed correctness problems that
result from these constraints which we added to our catalog [12]. The paper pre-
sented a comparative analysis of these constraints, semantics recommendations
and modeling guidelines.

The inter-association constraints contribute markedly to the complexity of
class diagram constraints. Modelers cannot be expected to master the complex
interactions among constraints. Therefore, the well-formedness rules should be
automated and embedded in model-level IDEs. Another research direction in-
volves the study of metrics for model complexity.
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Abstract. This paper presents a general denotational formalism called
the Coroutine Model of Computation for control-oriented computational
models. This formalism characterizes atomic elements with control be-
havior as Continuation Actors, giving them a static semantics with a
functional interface. Coroutine Models are then defined as networks of
Continuation Actors, representing a set of control locations between
which control traverses during execution. This paper gives both a strict
and non-strict denotational semantics for Coroutine Models in terms of
compositions of Continuation Actors and their interfaces. In the strict
form, the traversal of control locations forms a control path producing
output values, whereas in the non-strict form, execution traverses a tree
of potential control locations producing partial information about out-
put values. Furthermore, the given non-strict form of these semantics is
claimed to have useful monotonicity properties.

1 Introduction

Let a control-oriented model describe a system characterized by a network of
control locations traversed sequentially during execution. At each location vis-
ited during execution, an action may be performed that produces outputs or
manipulates the state of the system. However, at each location there is also a
determination of how the traversal through the network of locations will sub-
sequently progress. This determination can depend on both the inputs to the
system, as well as its state, and is often represented as a conditional or guard. In
some control-oriented models this determination can also include the possibility
of the model either suspending or terminating its thread of control in the context
of a larger model or execution environment.

Examples of control-oriented models include traditional imperative program-
ming models, control flow graphs, and automata-based models such as state
machines or labeled transition systems. Languages such as Esterel [4], Reactive
C [5], and StateCharts [10] are also control-oriented in this sense. In the case of
Esterel or Reactive C, the control locations correspond to individual imperative
statements in the language, with the traversal of these locations corresponding
to the control flow of the language. In StateCharts control locations are simply
states with traversal governed by the guards of transitions. These three examples
have the additional feature of suspending and resuming control over a series of
reactions, as defined by Boussinot [4]. In the Ptolemy II environment, Modal
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Models [14] give a hierarchical layer of control-oriented behavior to heteroge-
neous models. Modal Models are guarded state machines where at each state
there is an associated actor, known as a refinement, that is fired when the model
is in that state.

Although this characterization of control-oriented behavior is very general,
it stands in contrast with Dataflow models where the behavior of a system is
structured in terms of the movement of data rather than control. Counterexam-
ples then include Kahn Process Networks [11], Dataflow as described by Lee and
Matsikoudis [12], and Stream models such as those of Broy et al. [6]. However, it
can be the case that a control-oriented model can participate in a heterogeneous
system where a dataflow actor is internally control-oriented or a control-oriented
model contains control locations at which a dataflow process represents the as-
sociated action taken, as can be the case in Modal Models for instance. Addi-
tionally, it must be emphasized that the monotonicity discussed in this paper is
not the same as that of stream functions addressed in papers such as [6].

When these control-oriented models represent isolated models of computation,
the formal treatment of their meaning in terms of operational semantics provides
a clear way to reason about them, and gives a way to determine how to correctly
implement them. However, particularly in the context of heterogeneous models,
it is difficult to reason about compositional properties of these models given there
is no clear general way to compose operational semantics such as those given by
Boussinot and de Simone for Esterel [4], Berry for Constructive Esterel [3], and
Andre for SyncCharts [1]. Since these languages are all both control-oriented and
synchronous, a motivating kind of heterogeneity arises when these languages are
decomposed into control-oriented fragments in synchronous compositions, as well
as in systems with dataflow components, as was mentioned above.

In the case of SyncCharts, these two components are the control-oriented State
Transition Graphs, which are similar to StateCharts [10], and synchronous com-
positions of Macrostates [1]. While in the operational semantics given by Andre
[1] these two components are entangled, a denotational semantics would allow
each of these parts to be treated separately, and the full model to arise out of
their heterogeneous composition. Such a denotational formalism for synchronous
composition exists in the Synchronous Reactive (SR) model of computation given
by Edwards [8]. In this model, the semantics of a step in execution is given by
the least fixed point of the function derived from composing the functional rep-
resentations of each component in the model. So long as these components can
be represented as monotonic functions, this least fixed point is guaranteed to
uniquely exist.

Using the SR model to express synchronous composition, one should be able
to achieve a model similar to that of SyncCharts or Constructive Esterel as
a heterogeneous, hierarchical composition of control-oriented models and SR
models. But, reasoning about this composition requires a general denotational
semantics for control-oriented models. In particular, with this kind of semantics
the conditions can be determined under which such a model is monotonic. Having
such a denotational semantics for control-oriented models facilitates the analysis
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of other compositional properties of these models as well. Like the SR model,
there are other models of computation that can similarly be described in a
compositional way, as is done by Tripakis et al. [16]. With the semantics given
in this paper, meaningful compositions can be formed between control-oriented
models and these other models.

1.1 Contributions

In order to reason about control-oriented models in a compositional manner,
this paper presents the Coroutine Model of Computation, a general denotation
formalism for control-oriented models. This model consists of atomic elements
called Continuation Actors, and defines Coroutine Models as networks of these
Continuation Actors. A Coroutine Model composes Continuation Actors to form
itself a Continuation Actor. Taking influence from the idea of stars and Reactive
Cells from Andre’s SyncCharts [1,2], the decisions to take control transitions
in Coroutine Models are treated as part of the individual Continuation Actors
in the network. This choice avoids having to settle on a particular language
and semantics for transition guards and actions, and leads to a simple composi-
tional semantics for Coroutine Models, defined in terms of the behavior of their
constituting Continuation Actors.

Moreover, a meaning is given to non-strict Continuation Actors, which can
make partial control decisions given partial inputs. Correspondingly, a non-strict
dynamic semantics is defined for Coroutine Models containing these non-strict
Continuation Actors. Further, it is argued that these semantics, in fact, form
monotonic functions when the constituting Continuation Actors of a model are
monotonic. Thus, Coroutine Models can be meaningfully put into synchronous
compositions such as the that of SR models. What we give here is an abstract
semantics [13] for concurrent composition of sequential processes. Our semantics
focuses on the control behavior, and hence complements a semantic that focuses
on concurrency, such as SR [8] or KPN [11].

2 Continuation Actor

A Continuation Actor describes a process that has a set of programmatic entry
locations starting from which execution can be entered, concluding by either
terminating, suspending, or exiting with an exit label. A Continuation Actor
exiting represents the control leaving the Continuation Actor and moving to some
external location referred to by the exit label. A Continuation Actor terminating
represents the end of control flow, whereas a continuation suspending denotes a
pause taken in control flow, yielding control to a containing model or an execution
environment. A suspended Continuation Actor can be resumed, which can be
thought of as entering with a special, relative entry location that is set internally
to the location at which the Continuation Actor was last suspended. Finally,
continuations can be initialized, which too can be thought of as a special entry
location.
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2.1 Continuation Actor Semantics

Formally, a Continuation Actor C is defined by the tuple

C = (I, O, S, s0, L, G, enter, fire, postfire) (1)

similar to an Actor in Modular Actor Interface semantics [16]. The first three
types represent the input I, output O, and state S of the Continuation Actor,
with the initial state s0 ∈ S. The subsequent two components, L and G, are finite
sets containing entry locations and exit labels. Together, these six components
specify the static semantics of the Continuation Actor. With the addition of
special elements to L and G, entry and exit control actions for C are defined as
follows

L = L+ initializeu + resumeu (2)

G = G + terminateu + suspendu (3)

where Tu is the singleton type containing T and + is a disjoint union. Actions
initialize and resume in L denote the initialization and resumption of a Continu-
ation Actor, whereas actions in L denote entrance of a Continuation Actor at the
corresponding location. Similarly, terminate and suspend denote the result of a
Continuation Actor terminating and suspending. Actions in G denote exiting a
Continuation Actor via the corresponding exit labels.

The last three components form the interface of a Continuation Actor, and
define its dynamic semantics. They have the following types:

enter : S× I× L→ G (4)

fire : S× I× L→ O (5)

postfire : S× I× L→ S (6)

The fire and postfire function are similar to those in [16] and [14], only differ-
ing in their additional input of an entry action. The fire function specifies the
outputs produced by the Continuation Actor with the given state, input, and
entry action. The postfire likewise specifies the change in state consequent the
execution from a given entry. The enter function specifies the control behavior
of the Continuation Actor, and is the extension of the interface beyond that of an
Actor [16]. In particular, this function specifies the concluding control decision
made by the execution in the form of an exit action.

The role these interface functions play in execution depends on the model of
computation in which the Continuation Actor is contained. In the case of an SR
model, for instance, a typical execution is constituted of a series of discrete steps.
In each step n, there will be several iterations, indexed by k, computing a least
fixed point of the relation determined by the contained elements. A Continuation
Actor would, in a particular state sn ∈ S, be entered and fired for each iteration
with a particular entry action lkn and input value ikn, producing a exit action gkn
and output value okn. The Continuation Actor would then be postfired at the
end of the step updating its internal state from sn to sn+1 in terms of the final
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values for the input and entry action, denoted iMn and lMn . Such an execution
would fulfill the relations

gkn = enter(sn, i
k
n, l

k
n) (7)

okn = fire(sn, i
k
n, l

k
n) (8)

sn+1 = postfire(sn, i
M
n , lMn ) (9)

Note that the state is not superscripted by an iterative step since it is main-
tained over iterations of a fixed point computation. Later, the semantics of the
particular case of a Coroutine Model will be described in detail.

2.2 Non-strict Continuation Actors

In certain models of computation, input and output values can be partially
known during execution. Examples of this include Synchronous Reactive models
[8] and models in synchronous languages such as Constructive Esterel [3] and
SyncCharts [1]. The input and output types of components in these models
are extended to represent this partial information by being lifted into pointed
Complete Partial Orders (pCPOs), which are partially ordered sets containing
a bottom element ⊥ and the least upper bound of each chain.

In the case where partial information simply means that a variable may either
be known to have a particular value or not known, the corresponding pCPO often
used is constructed by adjoining a bottom element to the set of values associated
with the type of the variable. In this case, all particular values are incomparable
in the order, and all greater than the adjoined bottom element. This pCPO is
known as a flat CPO. For tuples of variables, which often characterize input and
output spaces, the corresponding pCPOs are typically the pointwise products
of the flat CPOs for each constituting variable. Nevertheless, for generality it is
not assumed that any of these particular pCPOs is used.

Given that the spaces I and O are lifted into pCPOs a Continuation Actor
can be specified on these lifted types. Consequently, the fire function can be
defined so that partial information about the outputs can be determined from
partial information about the inputs. A function is known as strict if it maps
all input values that are not maximal in the input pCPO to bottom. A function
is otherwise non-strict, and intuitively can be understood as able to determine
some information about the output without total information about the input.
Non-strict functions play an important role in models of computation such SR
[8] where constructive methods are used to iteratively determine consistent val-
uations of input and output variables which can have cyclic dependencies. Note
that the state here is not lifted into a pCPO, and thus the postfire function
has no non-strict version analogous to that of fire. The enter function can
similarly extended to operate over partial information about inputs producing
partial information about exit actions in G. These partial control choices can be
represented as sets of possible exit actions given the partial information about
the input. Hence the enter function in such a Continuation Actor has a lifted
codomain of type 2G.
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If this representation of partial information about control actions, 2G, is or-
dered by reverse-inclusion, where

a ≤ b = a ⊇ b

a pCPO is formed with ⊥ being the whole set G. The motivation behind this
ordering is that a strict increase in this order corresponds to making more specific
control decisions, with the singleton elements representing a unique and thus
total decision. Monotonicity of the enter function, as required in certain domains
with constructive semantics, therefore corresponds to the requirement that

∀ s ∈ S, l ∈ L • a ≤ b ⇒ enter(s, a, l) ⊇ enter(s, b, l)

Intuitively, this monotonicity property means that as more is known about the
input, the control choices at the least do not become less known, and may become
more known. In particular, for the enter function this means that as more is
known about the input additional control choices can never be added, and some
may be removed potentially narrowing down the control behavior to a single
choice.

2.3 Counter Example

An example of a Continuation Actor is a Counter that increments an internal
state sc each time it is resumed, and subsequently suspends. This Counter also
has a threshold stored in an internal state st, which can be set by an input it. If
the Counter is resumed and sc ≥ st, instead of suspending the Counter exits
with exit label gt. Let this Counter also have an output oc that is set to the
current count during each execution. In order to set the value of the threshold
st to input it, suppose there is also an explicit entry location lt at which st is
set before performing the resume action. Assume that it, sc, st, and oc are all
natural numbers (of type N).

This Counter can defined formally as follows. Let the static semantics be

Counter = (

I︷︸︸︷
N︸︷︷︸
it

,

O︷︸︸︷
N︸︷︷︸
oc

,

S︷ ︸︸ ︷
L× N× N︸ ︷︷ ︸
(sl, sc, st)

,

s0︷ ︸︸ ︷
(l0, 0, 0),

L︷ ︸︸ ︷
{lt, l0, l1},

G︷︸︸︷
{gt})

The state here is a triple (sl, sc, st) ∈ L × N× N, where sl ∈ L holds the entry
location to resume at after a suspension, sc ∈ N is the current counter value, and
st ∈ N is the current threshold value. In addition to the entry location lt, which
sets the threshold, there are two internal entry locations l0 and l1. sl is set to l0
initially, and in this state the counter is reset under a resumption, but upon the
completion of any entry sl is set by the postfire function to l1, indicating that
the Counter is counting when it is resumed. The interface functions are then
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enter((sl, sc, st), it, l) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
suspend l = l0 or initialize

enter((sl, sc, st), it, sl) l = resume

if sc ≥ st then gt else suspend l = l1

enter((sl, sc, it), it, lr) l = lt

fire((sl, sc, st), it, l) =

⎧⎪⎨
⎪⎩
0 l = l0 or initialize

fire((sl, sc, st), i, sl) l = resume

sc + 1 l = l1 or lt

postfire((sl, sc, st), it, l) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(l1, 0, st) l = l0 or initialize

postfire((sl, sc, st), it, sl) l = resume

(l1, sc + 1, st) l = l1

postfire((sl, sc, it), it, lr) l = lt

Note that here there is a difference between internal location l1 and entry ac-
tion resume, and likewise between l0 and initialize , and that these cannot be
conflated. If the Counter were entered with resume in its initial state, it would
be map to l0 rather than l1. Although initialize is always the same case as
l0, initialize is maintained as separate as a matter of satisfying the interface
obligation of providing such an entry action.

2.4 State Example

Another example of a Continuation Actor would be one that represents a state
in a state machine, where the state evaluates outgoing guard expressions as part
of its enter function and performs corresponding transition actions as part of its
fire function. Let this formulation of a state, called StateCA, be parameterized
by a finite set of transitions T and a default action qdef . Each transition τk ∈ T is
defined by the tuple τk = (pk, qk, gk), where pk : I→ 2 are transition predicates,
qk : I→ O are transition actions (qdef is of the same type), and gk are exit labels,
referring to the remote destination of control upon taking the corresponding
transition. Let πp, πq, and πg be the projection functions for these components.

Given these parameters, characterizing the local behavior of the state, such a
StateCA A can be given the following static semantics:

A(T , qdef ) = (I, O,

S︷︸︸︷
1 ,

s0︷︸︸︷
u ,

L︷︸︸︷
∅ ,

G︷ ︸︸ ︷
{πg(τ) | τ ∈ T })

Here, there are no explicit entry locations and the exit labels for A are the
locations πg(τk) corresponding to each transition τk. There is only one state,
denoted u. In addition to the given transitions let the set of transitions be
adjoined with an additional default transition defined

τdef = (∀ τ ∈ T • ¬πp(τ), qdef , suspend)

to form T ′. This predicate of this default transition is true if those of all other
transitions are false, the action is the given default action, and instead of an exit
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label the third component denotes suspension. Assume that there also exists a
function chooseT ′ of type I → T ′ that, given an input, chooses a transition τ
for which the predicate πp(τ)(i) is true.1 If none are true, let it return default
transition. The interface functions for A are simply:

enter(s, i, l) = πg(chooseT ′(i))

fire(s, i, l) = πq(chooseT ′(i))(i)

postfire(s, i, l) = u

3 The Coroutine Model of Computation

Models in the Coroutine Model of Computation describe networks of Continu-
ation Actors, connected to each other such that the exit labels of one Contin-
uation Actor refer to entry locations of another. The referent can either be an
explicit entry location, the initialize action, or the resume action on a target
Continuation Actor. Given this structure, when one Continuation Actor in the
network exits, control can proceed to another Continuation Actor following these
connections. Furthermore, when a Continuation Actor suspends or terminates
during execution the containing Coroutine Model does as well. An execution of a
Coroutine Model is thus a sequence of executions of the contained Continuation
Actors forming a control path through the structure and terminating with ei-
ther suspension or termination. The Coroutine Model is also given its own entry
locations and exit labels that can connect internally to the respective exit labels
and entry locations of its contained Continuation Actors.

In this manner, a Coroutine Model can also be entered by entering one of its
entry locations, as well as be resumed by resuming the Continuation Actor in
which the execution of the model had been previously suspended. The model
can also be initialized by initializing a particular initial Continuation Actor. It
can exit with one of its exit labels, and also suspend or terminate if one of its
contained Continuation Actors does. It follows that a Coroutine Model is itself a
Continuation Actor. This compositionality property allows for Coroutine Models
to form hierarchies, and likewise for specified Continuation Actors to be built
out of other Continuation Actors.

3.1 Coroutine Models

Formally, a Coroutine Model M is described by the following tuple

M =(Q, q0, mI, mO, ⊕, κ, η) (10)

Here, Q is a finite set of Continuation Actors that constitute the model, and
q0 ∈ Q is an initial Continuation Actor. The two components mI and mO map

1 This allows for the possibility that the predicates are not mutually exclusive in which
case choose determines a means to select a unique transition.
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between the inputs and outputs of the whole model and those specific inputs
and outputs of particular Continuation Actors in Q.

Let IM and OM be the input and output types of M. The input and output
maps then have the following types:

mI : Π q ∈ Q • IM → Iq (11)

mO : Π q ∈ Q • Oq → OM (12)

where the operator Π here denotes a dependent type product, and the types
Iq and Oq denote the input and output types for Continuation Actor q. By
composition with mI and mO, the input and output types of each Continuation
Actor are made identical. The binary operator ⊕ : OM ×OM → OM is then
used to combine the mapped output values produced by different Continuation
Actors.

Let two sets of internal entry locations and exit labels be defined for the model

L = Σ q ∈ Q • Lq (13)

G = Σ q ∈ Q • Gq (14)

where the operator Σ here denotes a dependent type sum. In other words, mem-
bers of L are of the form (q, x) where q ∈ Q and x ∈ Lq, and likewise for G with
respect to Gq. Let the finite sets LM and GM be the entry locations and exit
labels of the model, distinct from their internal counterparts.

The functions κ and η give the structure to the model. The former maps loca-
tions in LM to internal locations in L. The latter maps each exit labels of each
Continuation Actor to either entry actions of another, including to the initialize
and resume special locations, or to exit labels in GM. They can therefore be
given the following types:

κ : LM → L (15)

η : G → L+ GM (16)

When the conclusion of the execution of q is to exit with exit label g, and
(q′, k) = η(q, g), control proceeds with entry action k performed on Continuation
Actor q′. When instead η(q, g) ∈ GM, control exits the model.

The state space of modelM is constructed from a product of the state spaces
of the Continuation Actors in Q along with the internal entry location cor-
responding to the entry action to be taken when the model resumes from a
suspension. That is

SM = L ×
∏
q∈Q

Sq (17)

Correspondingly, the initial state of M is

s0M = ((q0, initialize), s0 q1 , . . . , s0 qn), where qk ∈ Q, 1 ≤ k ≤ n (18)

so that calling resume on model in its initial state has the effect of initializing q0.
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The above, in total, give the static semantics for Coroutine Model M as a
Continuation Actor:

CM = (IM, OM, SM, s0M, LM, GM) (19)

3.2 Strict Dynamic Semantics

For a Coroutine Model M, specified as in (19), enter, fire, and postfire func-
tions can be defined compositionally, in terms of the specifications and corre-
sponding interfaces of the contained Continuation Actors in Q. The definitions
of these functions constitute a denotational dynamic semantics for Coroutine
Models as Continuation Actors.

In order to describe the traversal of control in the model, the interface func-
tions are augmented using the input and output maps to functions that have
types corresponding to the model:

enterU (s, i, (q, l)) = (q, enterq(sq, mI(q, i), l)) (20)

fireU (s, i, (q, l)) = mO(q, fireq(sq, mI(q, i), l)) (21)

postfireU (s, i, (q, l)) = rq(s, postfireq(sq, mI(q, i), l)) (22)

where the function rq(s, v) replaces the element in s corresponding to q with
value v.

The process of traversing a control path through the model, following exit
labels of Continuation Actors to entry locations of subsequent Continuation
Actors, ultimately reaching suspension, termination, or the exiting of the model,
is described by the enterU function in conjunction with the structural map η.
In order to put these two pieces together, first it should be noted that the type
of enterU function is

enterU : SM × IM × L → G + Z (23)

where Z = Q× (suspendu + terminateu)

When the image of enterU is in G, control then can continue to another Continu-
ation Actor determined by η, whereas if the image is in Z the control ends in the
model with a suspension or termination. To connect this with η, an augmented
version of the function is defined as follows:

ν : G +Q× {terminate, suspend} → L+ GM + Z (24)

ν(g) =

{
η(g) g ∈ G
g g ∈ Z

(25)

This function can then be composed with enterU to form the traversal function,
which describes the control traversal through the model:

ε : S × IM × L → L+ GM + Z (26)

ε(s, i) = ν ◦ enterU (s, i) (27)
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Since L is in both the domain and codomain of ε, it can be iterated over, starting
with an initial location l0, forming a series

(l0, ε(s, i)(l0), ε(s, i)
2(l0), . . . )

possibly ending with a terminating value in either GM or Z. This series generated
by ε is the control path of the model for state s and input i, generated by
location l0.

2

In addition to defining the traversal function with η, the map κ can be
augmented to handle the whole set of entry actions LM. To this end, let this
augmentation be defined

θ : SM × LM → L (28)

θ(s, h) =

⎧⎪⎨
⎪⎩
(q0, initialize) h ∈ initializeu

(sL, resume) h ∈ resumeu

κ(h) h ∈ LM

(29)

enter(s, i, h) = e(s, i, θ(s, h)) (30)

e(s, i, l) =

⎧⎪⎨
⎪⎩
z, where (q, z) = l l ∈ Z
l l ∈ GM
e(s, i, ε(s, i, l)) l ∈ L

(31)

fire(s, i, h) = f(s, i, θ(s, h), 0⊕) (32)

f(s, i, l, o) =

{
o l ∈ Z + GM
f(s, i, ε(s, i, l), o⊕ fireU (s, i, l)) l ∈ L (33)

postfire(s, i, h) = p(s, i, θ(s, h)) (34)

p(s, i, l) =

⎧⎪⎨
⎪⎩
rL(s, l) l ∈ Z
rL(s, (q0, initialize)) l ∈ GM
p(postfireU (s, i, l), i, ε(s, i, l)) l ∈ L

(35)

Fig. 1. Strict dynamic semantics for Coroutine Models

The enter, fire, and postfire functions for a coroutine model can then be re-
cursively defined as in figure 1, where the functions e, f , and p are the recursive
kernels of the respective enter, fire, and postfire. Here, the enter function sim-
ply follows the control path of the traversal function. The fire function makes

2 If this path has no terminating value, it is possible that iterating ε can diverge.
Depending on the context, this can either be left as a possibility or restricted in
some fashion as for instance is done in Esterel loop constructs in [3].
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the same traversal, but accumulates outputs from the firing of each Continua-
tion Actor with ⊕. The postfire function similarly traverse the control path,
updating the state of each Continuation Actor along the path.

It should be noted that the state update over the traversal is independent
from the traversal itself and the firings, hence it represents a set of changes
that are only committed to after the traversal and output values are established.
Nevertheless, if the model is suspended and resumed, the state changes take effect
when it is resumed. Amongst these state changes is certainly, in particular, the
change in the location at which to resume.

3.3 Non-strict Semantics

In a Coroutine Model where the constituting Continuation Actors are defined
over pCPOs, representing partial information about inputs, outputs, and control
decisions, a non-strict semantics can be given. Rather than determining a single
control path through the Continuation Actors, given partial input information
several control actions may be possible at each Continuation Actor, thereby
generating instead a tree of control paths. If the enter function of each Contin-
uation Actor is monotonic, then as the input information becomes more specific
the control choices at each Continuation Actor in the tree become no greater,
and possibly fewer, thereby pruning the control tree (or at least making it no
larger).

Given the enter function for a Continuation Actor defined over pCPOs has
a codomain of 2Gq , the correspondingly lifted version of enterU is defined:

enterU (s, i, (q, l)) = {(q, g) | g ∈ enterq(sq, mI(q, i), l)} (36)

The fireU function on the other hand has essentially the same definition. Given
this change in enterU , the function η can also be lifted:

ν̃(G) = {η(g) | g ∈ G ∩ G} ∪ (G ∩ (GM + ZM)) (37)

Combining these two parts, a non-strict traversal function ε̂ can then be defined

ε̂ : S × IM × L → 2L+GM+Z (38)

ε̂(s, i) = ν̃ ◦ e(s, i) (39)

Hence, for a given state and input, ε̂ maps a location to a set of successor
locations potentially including terminal locations in GM or Z. A control tree
is thereby generated. If iterated over, ε̂ generates a tree of entry locations with
terminations or suspensions as leaves. It is worth noting that the codomain of
ε̂ can also be expressed as 2L × 2GM × 2Z , and thus the image of ε̂ can always
be decomposed into these three sets denoting the possible control choices within
each of their respective categories.

Non-strict versions of the enter and fire functions for the coroutine model
can then be defined in terms of their kernels e and f as in figure 2. The form
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e(s, i, l) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

{z}, where (q, z) = l l ∈ Z
{l} l ∈ GM⋃
l′∈ε̂(s, i, l)

e(s, i, l′) l ∈ L
(40)

f(s, i, l, o) =

⎧⎪⎨
⎪⎩

o l ∈ Z + GM�
l′∈ε̂(s, i, l)

f(s, i, l′, o⊕ fireU (s, i, l)) l ∈ L (41)

Fig. 2. Nonstrict dynamic semantics for Coroutine Models

of both definitions is similar, in that the control tree in each is traversed re-
cursively building a collection of results for all control paths. These results are
then combined by an operation to form the greatest consistent conclusion that
can drawn across all of them. In the non-strict enter, the sets of final control
decisions for each path are combined with a union to conservatively give a set
of all reachable control decisions for the model. In the fire function, an output
is computed along each path, and the outputs for all paths are combined with a
greatest lower bound. The resulting partial output consists of only the consistent
information across all possible paths.

Given this non-strict characterization of Coroutine Model semantics, Corou-
tine Models can be given a clear denotational meaning in the context of fixed-
point semantics. Synchronous compositions of Coroutine Models can therefore
be constructed within semantics such as those of SR [8]. Important in such syn-
chronous models is the property of monotonicity, which can be reasoned about
in a clear way with the above denotational semantics. In order to perform this
kind of domain-theoretic reasoning about the above semantic equations it must
be determined that these equations have clear domain-theoretic solutions. In
fact, this is the case, and the following can be proven:

Theorem 1. Given a non-strict Coroutine Model M, if the input IM and out-
put OM types of the model are finite-height pCPOs and operator ⊕ is mono-
tonic, then the above recursive equations characterizing the kernel functions e
and f have unique least fixed-point solutions in the partial order of functions with
codomains 2G and OM , respectively.

Since solutions to the equations for the recursive kernels exist, then it can further
be asked if under the right conditions enter and fire are monotonic functions
from IM to 2G and OM , respectively. In fact these functions are monotonic, and
more specifically continuous, under the conditions described in the following
theorem:

Theorem 2. Given a non-strict Coroutine ModelM, if the input IM and output
OM types of the model are finite-height pCPOs and operator ⊕ is monotonic,
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and if for each q ∈ Q the functions enterq and fireq are monotonic in terms
of Iq, and the mapping functions mI and mO are monotonic, then the non-strict
kernels e and f are continuous in terms of IM.

It follows that enter and fire defined in terms of these non-strict kernels are
both continuous, and thus monotonic as well. The proof of this fact involves
noting that the union operator is the greatest lower bound under the order of
reverse inclusion. Both definitions then are formally similar and can be altered
in simple ways to get the same general formula for both. This general formula,
taking the greatest lower bound of every branch formed by the traversal, can
be shown to be monotonic because an increase in the codomain of the traversal
function, ordered by reverse inclusion, corresponds to there being fewer branches,
and thus fewer possible control paths. Furthermore, the greatest lower bound of
a set of decreasing size always corresponds to the value of this bound remaining
equal or increasing. That is

A � B ⇔ A ⊇ B ⇒
�

A �
�

B (42)

The proof follows from working out the details of this general relationship. The
most important consequence of this theorem is that, under the above conditions,
monotonicity is compositional for Coroutine Models.3

4 Related Work

The semantics of the component-based model 42 defined by Maraninchi [15] also
gives an atomic interface description for components that includes control along
with data, but the aims of the control dimension are very different. The control
ports of a component in 42 receive tokens from a model controller, whereas
the entry locations and exit labels of Continuation Actors are meant to form
a network of control relationships. Since the control behavior of a 42 model is
specified by its controller, which can be any imperative program, 42 by itself does
not constitute any particular dynamic semantics. Moreover, there is no particular
way in the interface semantics of 42 to handle non-strict control decisions.

A denotational semantics for Stateflow is given by Hamon [9] in which states
are represented as continuations. However, the denotations given are functional
programs relevant particularly in the context of understanding compilation.
Since these functional programs act on both data and continuation environ-
ments, there is no clear way give this formalism a non-strict interpretation or
compose it with other models that do not involve its environments. Although Ha-
mon’s semantics provide a backtracking mechanism, partial information cannot
be combined from several potential paths as it can in the non-strict semantics
given here. Finally, Hamon’s model treats transition guards and actions as a
part of the semantics of the execution. Here, in contrast, the role of guards and

3 The full proof of the above two theorems is available in the appendix of:
http://chess.eecs.berkeley.edu/pubs/902.html.

http://chess.eecs.berkeley.edu/pubs/902.html
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transition actions are considered to be part of the Continuation Actors. The
semantics of Coroutine Models is thereby considerably simpler and applicable
to a wider set of cases where different guard languages or other mechanisms are
used to determine control transitions.

Another denotational formalism for state machines is given by Broy, et al.
[7] as part of a general denotational semantics for UML. Although the deno-
tational nature of this formalism lends itself to reasoning about composition,
the formalism requires a complex state mechanism involving a frame stack and
an event-driven model of behavior. The state machine semantics given does not
provide a mean to articulate sequences of immediate transitions within a compu-
tational step, as opposed to transitions that happen in separate steps. Moreover,
no investigation is made in this work of how to deal with non-strict state ma-
chines. One should note that the monotonicity properties discussed by Broy, et
al., are not with respect to the state machines themselves being non-strict, in
the manner this paper discusses, but instead regarding the causal properties of
the event passing system cast into the formulation of streams.

5 Conclusion

The Coroutine Model of Computation defined here provides a general denota-
tional model for representing control-oriented behavior, capable of use in hier-
archical and heterogeneous systems. Both a strict and a non-strict denotational
semantics have been given for Coroutine models allowing the compositional anal-
ysis between these models, and models with other semantics, to be expressed in
functional terms. In particular, the non-strict semantics enable such models to
be used in synchronous compositions with clear conditions for monotonicity.
Coroutine Models also fit the definition of a Director given by Tripakis et al.[16]
as a function from the interfaces of the constituting actors and structure of the
model to an actor representation of the composite model. Given this language,
many control-oriented models can be expressed in its terms by defining a set of
constituting Continuation Actors and potentially making small modifications to
the model semantics. Some preliminary work has thus far been done for fully
modeling the semantics of SyncCharts [1] in terms of Coroutine Models. Work
has also been done to implement the Coroutine Model of Computation in the
Ptolemy II environment, where it can be used to develop and test executable
heterogeneous models.
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Abstract. The behavior of open reactive systems is best described in an
assume-guarantee style specification: a system guarantees certain
prescribed behavior provided that its environment follows certain given
assumptions. Scenario-based modeling languages, such as variants of
message sequence charts, have been used to specify reactive systems
behavior in a visual, modular, intuitive way. However, none have yet
provided full support for assume-guarantee style specifications.
In this paper we present assume-guarantee scenarios, which extend

live sequence charts (lsc) — a visual, expressive, scenario-based lan-
guage — syntax and semantics, with an explicit distinction between sys-
tem and environment entities and with support not only for safety and
liveness system guarantees but also for safety and liveness environment
assumptions. Moreover, the semantics is defined using a reduction to
gr(1), a fragment of ltl that enables game-based, symbolic, efficient
synthesis of a correct-by-construction controller.

1 Introduction

It has long been recognized that the behavior of open reactive systems [11],
discrete event systems that interact with their environment over time, and of
other systems, is best specified using an assume-guarantee style specification:
a system guarantees certain prescribed behavior provided that its environment
follows certain given assumptions (see, e.g., [14, 20]). Environment assumptions
may be related to the laws of physics (when interacting with the physical world)
or to knowledge about the behavior of external systems (when interacting with
other systems). They are crucial in many application domains, because some
system requirements may only be realizable under assumptions about behaviors
the environment will never or will always eventually exhibit. Scenario-based
languages, however, which have been used to specify reactive systems behavior
in a visual, modular, intuitive way, have not yet provided full support for the
assume-guarantee paradigm.
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One such language is live sequence charts (lsc) [5, 8], a visual language for
scenario-based modeling, which extends classical sequence diagrams with a dis-
tinction between mandatory-universal behavior (hot elements) and provisional-
existential behavior (cold elements). While lsc allows one to specify possible
and mandatory scenarios that a system should follow, and negative scenarios
that a system should never allow, its current syntax and semantics do not allow
one to condition the realization of these system guarantees on the fulfilment of
certain behaviors of the environment. In other words, it does not support envi-
ronment assumptions. This limits the expressive power of the language and its
applicability to specifying real-world systems.

In this paper we present assume-guarantee scenarios, an extension of the lsc

language with support for environment assumptions. We define the syntax and
semantics of the extended language, allowing one to express safety assumptions,
that is, what the environment is assumed never to do, and liveness assumptions,
what the environment is assumed to always eventually do. The extension does
not add external constructs to the language. Rather, it is defined by embedding
assumptions implicitly in the lscs, in keeping with the scenario-based nature of
the language, just like safety and liveness system guarantees are specified in lscs
implicitly in the scenarios, using the distinction between hot and cold elements.

Moreover, we formulate the semantics of the extended language in gr(1), a
fragment of linear temporal logic (ltl). The gr(1) formulation allows us to build
on the game-based, symbolic, efficient synthesis algorithm of [26] and generate
a correct-by-construction, executable controller. Assuming the environment ad-
heres to the assumptions, the generated controller behavior meets the guarantees.

We have implemented our ideas using Jtlv APIs [28] and integrated them
into PlayGo [9]. We extended PlayGo’s visual editor to support the extended
language syntax, and implemented both the reduction to the gr(1) fragment
and the solution of the gr(1) synthesis. The resulting controller is realized in a
standalone, generated executable Java application.

We discuss related work below. Sect. 2 recalls the lsc language and presents a
semi-formal overview of the assume-guarantee extension using examples. Sect. 3
recalls the gr(1) fragment of ltl, which we use as the target for the definition of
the semantics of the extended language. Sect. 4 presents our main contribution:
the semantics of assume-guarantee scenarios, formulated in gr(1) form. Sect. 5
presents a running example, and the second contribution of our work: synthesis
of assume-guarantee scenarios. Sect. 6 describes our implementation and Sect. 7
concludes with a discussion and future work directions.

1.1 Related Work

Several scenario-based specification languages have been suggested in the liter-
ature, each with a different semantics. We discuss some of these here, focusing
on the distinction between system and environment and on the ability to specify
assumptions and guarantees.

Haugen et al. [13] present STAIRS, a requirements specification method-
ology based on UML2.0, where the semantics of interactions is given using
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interaction obligations. STAIRS does not distinguish between system and en-
vironment controlled objects. Thus, one may interpret its semantics to include
only system guarantees and no environment assumptions.

Knapp and Wuttke [15] use UML2.0 interactions as a specification in a model-
checking setup. They interpret a sequence diagram as an observer of the message
exchanges and state changes in a system. Again, no distinction is made between
system and environment entities / controlled messages and thus the work can
be viewed as checking system guarantees, with no environment assumptions.

Whittle and Schumann [30] generate a statechart from a set of scenarios an-
notated with OCL constraints. The construction distinguishes messages sent by
the user from messages sent by the system, and thus may be viewed as relying
on implicit assumptions. However, these are only safety assumptions.

Krueger et al. [17] consider a translation of an MSC specification into a stat-
echart. In the process, scenarios are projected onto each of the components par-
ticipating in them. This may be viewed as considering each component alone to
be a system and the other components as its environment. However, an explicit
distinction between assumptions and guarantees is not discussed.

Additional scenario-based specification languages, such as VTS [1] and PST [2]
do not explicitly distinguish between system controlled and environment con-
trolled events, and thus do not support assumptions.

Greenyer [6] presents a translation of timed and untimed modal sequence
diagrams [8] specifications into UPPAAL-TIGA [3], for the purpose of synthesis.
Environment assumptions are supported through the use of assumption MSDs,
scenarios explicitly tagged as specifying assumptions. In contrast, we chose to
integrate assumptions into the same scenarios, so that a single scenario can
specify a combination of system guarantees and environment assumptions. We
believe this provides more flexibility. To the best of our knowledge, [6] is the
only previous work that supports liveness and safety assumptions in the context
of scenario-based specifications and synthesis.

Finally, Kugler et al. and Harel and Segall [12,18] present controller synthesis
from lsc. These works, however, consider ‘classic’ lscs, where the semantics ig-
nores the temperature of environment controlled events, and thus do not support
environment assumptions.

2 An Overview of Assume-Guarantee Scenarios

We start off with background about classic lsc and then demonstrate the con-
tribution of the assume-guarantee extension through a presentation of a small
example, a scenario-based specification of a vending machine. Part of the speci-
fication is presented here. Additional lscs are presented in Sect. 5. The overview
is semi-formal. Required formal definitions are given in the following sections.

2.1 Background on LSC

Live sequence charts (lsc) [5,8] is a scenario-based specification language, which
extends classical message sequence charts (msc) mainly with a universal inter-
pretation and a distinction between mandatory and possible behavior. We give
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Fig. 1. Three scenarios from the vending machine specification. Note the distinction
between system entities (panel, cashier, dispenser) and environment entities (user,
heater). Also note the distinction between hot and cold elements, the hot environ-
ment controlled message reachMax in lsc PrepareTeaOK and the hot false condition
on the user lifeline in lsc NoInsertCoinUntilServeTea (see Sect. 2).

a short, simplified overview of the language, with an emphasis on the parts most
relevant to our present work. Detailed descriptions are available in [5, 8].

An lsc consists of lifelines, messages, and conditions. A lifeline represents
an interacting entity, controlled either by the system under development or by
its environment (other systems, users etc.). A message represents a call between
one entity and another. A message is a system message if it is sent from a lifeline
controlled by the system, and is an environment message otherwise (if it is sent
from a lifeline controlled by the environment). The lsc defines a partial order
on its messages, induced by the vertical ordering of messages sent and received
along the lifelines.

As an example, Fig. 1 (top left) shows the lsc InsertCoins. This lsc has
one environment lifeline (controlled by the user) and two system lifelines, rep-
resenting the system’s panel and cashier. The first message insertCoin is an
environment message and the second message incCoins is a system message.

The current state of an lsc is represented by a system cut , marking the
progress of events along the lsc’s lifelines. The minimal cut represents the state
where the chart is closed. A cut induces a set of enabled and violating messages
and conditions: a message is enabled in a cut of a chart if it appears immediately
after the cut in the partial order defined by the chart; a message is violating in
a cut of a chart if it appears in the chart, but is not enabled in the cut.
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Messages have a hot or a cold temperature (red line or blue line syntax): a
hot enabled message must eventually occur, while a cold enabled message may
or may not eventually occur. A cut is hot if at least one of its enabled system
messages is hot, and is cold otherwise. When an enabled message occurs, the
chart progresses to the next cut. When a violating message occurs, progress
depends on the temperature of the cut: if the cut was cold, the chart closes
gracefully (the cut is set to be the minimal cut); if the cut was hot, this is a
violation of the requirements and thus should have never occurred. In the lsc

InsertCoins the first message is cold and the second message is hot.
Conditions have a hot or a cold temperature too and they are evaluated as

soon as they are enabled. A hot enabled condition must be evaluated to true,
while a cold enabled condition may or may not be evaluated to true. When a
condition (hot or cold) is evaluated to true, the chart progresses to the next cut.
When a condition is evaluated to false, progress depends on its temperature:
if the condition was cold, the chart closes gracefully (the cut is set to be the
minimal cut); if the condition was hot, this is a violation of the requirements
and thus should have never occurred.

System messages can be marked as either execution (solid line) or monitoring
(dashed line). All environment messages are marked as monitoring. A chart is
active if its current cut has an enabled (system) message for execution. In the
lsc InsertCoins the first message is marked for monitoring while the second is
marked for execution. The cut after the first message is sent is active.

The semantics of a single lsc uses the partial order on messages and conditions
defined by the chart, adds a universal interpretation, and relates to the hot
(mandatory) and cold (optional) elements in it. Messages that do not appear in
a chart are not constrained by the chart to occur or not to occur at any time,
including in between the occurrence of messages that do appear in it.

For example, the semantics of the chart InsertCoins specifies the basic sce-
nario of coin insertion: whenever the user inserts a coin (the user sends an
insertCoin message) to the panel, the panel should eventually send incCoins

message to the cashier (this increases the cashier’s coins property). Implicitly,
this also means that after insertCoin is sent, the system message incCoins

must come before another insertCoin message is sent by the environment.

2.2 LSCs with Environment Assumptions

InsertCoin is a classic lsc: it specifies a system guarantee. What is impossible
to specify in classic lsc are assumptions on the behavior of the environment.
This is possible in the extended language. We give two examples below.

lsc PrepareTeaOK (Fig. 1 (top right)) describes the use case where the user
asks the system to prepare tea and the number of coins inserted is exactly 3.
Whenever the user sends a prepareTea message, the cold condition coins==3

is evaluated. If it is false, the scenario exits gracefully. If it is true, the chart
continues: the system’s panel must eventually send its own lockPanel message
and then ask the heater (controlled by the environment) to heat the water. This
is followed by an assumption that the heater will eventually send a reachMax
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message back to the system’s panel (note that reachMax is a hot message con-
trolled by the environment). When a reachMax message is eventually received,
the panel should eventually send a makeTea message to the dispenser.

lsc NoInsertCoinUntilServeTea (Fig. 1 (bottom left)) involves the user, the
panel, and the dispenser. It specifies that whenever the user sends a prepareTea

message to the panel, the usermust not send aninsertCoinmessage unless the dis-
penser has sent its own serveTeamessage. Note that if the user sends insertCoin
after she sends prepareTea and before the dispenser has sent the serveTeames-
sage, then the lscwould reach a hot false condition on the user’s lifeline, that is,
this would constitute a violation of the assumption (when the serveTeamessage is
sent, the chart closes gracefully because it reaches a cold false condition).

These two lscs demonstrate the power of assume-guarantee scenarios in com-
bining system guarantees and environment assumptions within a scenario-based
specification setup.

3 Generalized Reactive Specification

We recall the definition of the class of generalized reactive of rank 1 specifications
(gr(1)) [4, 26], a fragment of ltl, which we use as the target for the definition
of the semantics of assume-guarantee scenarios.

Linear temporal logic (ltl) [21,27] extends propositional logic with operators
that describe variables valuations along infinite computation paths. Given a finite
set of atomic propositions P , ltl formulae are constructed as ϕ ::= p | ¬ϕ | ϕ∨
ϕ | Xϕ | ϕUϕ, where Xϕ is the next temporal operator, roughly meaning
that ϕ is true in the next step in the computation, ϕUψ is the until operator,
roughly meaning that in any sequence of future steps ϕ is true until ψ is true.
We use the usual abbreviations of the Boolean connectives ∧, → and ↔ and
the usual definitions for true and false. Additional future temporal operators,
F (eventually) and G (globally), are defined as abbreviations to trueUϕ and

¬F¬ϕ, respectively.

Definition 1 (The Class of Generalized Reactivity of Rank 1). Let V =
{v1, . . . , vn} be a finite set of Boolean variables, X ⊆ V be a set of input variables,
and Y = V \ X be a set of output variables. The class of generalized reactive of
rank 1 specifications (gr(1)) is defined to be ltl formulae of the form

ψ :
(
ϕe
a ∧ ϕe

t ∧ ϕe
g

)
−→

(
ϕs
a ∧ ϕs

t ∧ ϕs
g

)
(1)

where:

(i) ϕe
a and ϕs

a are Boolean formulae which characterize the initial values that
are assumed by the environment, and guaranteed by the system, respectively.

(ii) ϕe
t and ϕs

t are formulae of the form
∧

i∈I
GBi where each Bi is a Boolean

formula that is a combination of variables from X ∪ Y and expressions of
the form Xv where v ∈ X and v ∈ X ∪ Y, respectively. Intuitively, ϕe

t

characterizes possible input to the controller, and ϕs
t characterizes possible

transition of the controller.
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(iii) ϕe
g and ϕs

g are formulae of the form
∧

i∈I
GFBi where each Bi is a Boolean

formula. The formula ϕe
g characterizes liveness assumptions on the envi-

ronment input, and the formula ϕs
g characterizes liveness guarantees on the

controller.

Open systems are systems that interact with their environment, that is, receive
some inputs and react to them. For such systems specifications are usually par-
titioned into assumptions and guarantees. The intended meaning is that if all
assumptions hold then all guarantees should hold as well. That is, if the envi-
ronment behaves as expected then the system will behave as expected as well.
In the next section we present the semantics for assume-guarantee scenarios.

4 Assume-Guarantee Scenarios: Semantics

We are now ready to present our main contribution, i.e., an ltl-based semantics
for a specification consisting of a set of assume-guarantee scenarios. We form the
semantics within the gr(1) fragment.

4.1 Formal Settings

To model lsc behavior, we present formal settings similar to those presented
in [7, 12, 19]. Given a set of lscs, L = {L1, . . . ,Ln}, we define Ms(L) (resp.
Me(L)) to be the set of messages that the system (resp. environment) can send
in the charts. The sets of system and environment messages are disjoint, i.e.,
Ms(L) ∩Me(L) = ∅. We define a formal model using the following variables:

• me is an input environment message variable over the domain of all possible
messages that the environment can send in L, and an additional no-op value
for doing nothing. Intuitively, to every messagem ∈Me(L)∪{“no-op”} sent
by the environment, the synthesized strategy will “know” how to react.

• ms is an output system message variable over the domain of all possible
messages that the system can send in L, and an additional no-op value for
doing nothing. Intuitively, in every state, the synthesized strategy entails
which system message m ∈Ms(L) ∪ {“no-op”} should be sent.

• l1, . . . , ln is a set of output cut variables . Each li encodes a cut-automaton for
Li. The domain of li, which we denote byDom(li), consists of all possible cuts
in Li, including a minimal cut of the chart (denoted by the value min). We
add two unique sink values vios and vio

e, to represent hot-violation of the
system guarantees and environment assumptions, respectively. The variable
li maintains where the execution is at the moment along each lifeline in Li.

1

Each Li semantics is captured by the transitions of the cut-automaton that
update its corresponding li variable according to the taken steps. The minimal
cut value min indicates that the chart is currently closed. If a message is not a
part of the chart then the cut-automaton can perform an idle step. The value

1 Note that there are other ways to encode a cut (e.g., a variable per lifeline per lsc).
Our formal settings is independent of any one specific encoding.
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vio
s captures the fact that the system performed a hot violation, and the chart

can no longer be satisfied. On the other hand, the value vio
e indicates that the

environment did not fulfil its assumptions, and the chart is vacantly satisfied.
We denote by ρLi the transition of the cut-automaton for Li.

4.2 Superstep Requirements

Formally, a superstep is a series of messages sent by the system, encapsulated
between two messages sent by the environment. When assumptions are not in-
cluded in the semantics, as in the closed lscs synthesis handled in [12, 18], an
artificial technical step is needed in order to enforce the superstep semantics.
This exposes the internals of gr(1) and requires to deal with the mechanics of
the game structure. Thus, it ties the solution to the gr(1) synthesis algorithm.

When assumptions are allowed, as in our open scenarios, a more natural and
elegant way to describe the superstep semantics is available. Rather than working
with the internals of the gr(1) game structure, we define the superstep semantics
using two guarantees and two assumptions: G.1, G.2, A.1, and A.2 (see below).
Thus, our approach defines a standalone ltl semantics that is independent of the
mechanics of the synthesis algorithm (it could be solved with any ltl synthesis
solution given that it is expressive enough to cover our specification).

First, we require the system to perform only a finite number of messages and
give the environment a fair chance to communicate its messages.

Guarantee 1 (superstep: system fair turn): The system always stops send-
ing messages eventually.

GF (ms = no-op) (G.1)

We also require the system to perform a message only if the environment is not
sending a message.

Guarantee 2 (superstep: system safe turn): If the environment sent a mes-
sage (i.e. me is different from no-op) then the system cannot send a message.

GX (me �= no-op→ ms = no-op) (G.2)

Next, we require the environment to send one message at a time, allowing the
system a fair chance to react to each message sent by the environment.

Assumption 1 (superstep: alternating turn): If the environment sent a
message in the last step (i.e. me is different from no-op) then the environment
cannot send a message in the next step.

G
(
me �= no-op→X (me = no-op)

)
(A.1)

Finally, we require the environment to send a message only when the system is
ready to receive one, allowing the system a fair chance to finish its (guaranteed
to be) finite number of steps.

Assumption 2 (superstep: environment fair turn): If the system sent a
message in the last step (i.e. ms is different from no-op) then the environment
cannot send a message in the next step.

G
(
ms �= no-op→X (me = no-op)

)
(A.2)
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Note that the superstep requirements are fixed; they are not part of the
application-specific semantics of the lsc specification. That is, the superstep
requirements model our settings, whereas the additional requirements for the
system (Subsect. 4.3) and for the environment (Subsect. 4.4, described below)
model the application-specific semantics of the given lsc specification.

4.3 System Requirements

Given a set of lscs L = {L1, . . . ,Ln}, the application-specific system’s semantics
is defined using three guarantees: G.3, G.4, and G.5 (see below). To identify
stable states in Li, we define Acti ⊆ Dom(li) to be the subset of active cuts
from the domain of all cuts in the cut-automaton, i.e., cuts that contain an
executable message that the system should perform.

First, we require the system to guarantee that each chart starts from its min-
imal cut.

Guarantee 3 (system: initial state): For every lsc Li ∈ L, the system starts
from a state in which the cut variable li is set to the minimal cut.∧n

i=1 (li = min) (G.3)

Second, we require the system to guarantee that each chart follows its transi-
tional semantics as discussed in Subsect. 4.1.

Guarantee 4 (system: transition): For every lsc Li ∈ L, the system con-
tinuously preserves the transitions of the cut-automaton of Li.∧n

i=1
GρLi (G.4)

Finally, we require the system to guarantee to infinitely often visit a stable state,
i.e., that infinitely often all charts visit inactive cuts in which there are no exe-
cutable messages to be performed by the system.

Guarantee 5 (system: stable state): The system always eventually reaches
a state where every Li ∈ L is not active.

GF
∧n

i=1 (li /∈ Acti) (G.5)

4.4 Environment Requirements

Given a set of lscs L = {L1, . . . ,Ln}, the application-specific environment’s
semantics is given using three assumptions. Assumptions A.3, A.4 characterize
liveness requirements, and A.5 characterizes safety requirements (see below). To
identify states in which the system is waiting for messages from the environment
in Li, we define Expi ⊆ Dom(li) to be the subset of expecting cuts from the do-
main of all cuts in the cut-automaton, i.e., cuts that contain executable message
to perform by the environment.

Furthermore, given a cut c ∈ Dom(li) we define Ee(c) to be the set of hot en-
vironment messages enabled in cut c (i.e., if c ∈ Dom(li)\Expi, then Ee(c) = ∅).
Intuitively, in cut c the system assumes that the environment messages Ee(c) are
bound to happen eventually. On the other hand, the semantics of cold environ-
ment messages do not require any assumption, and are treated just like cold
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system messages (that is, a violation of a cold environment cut closes the chart
gracefully and is not considered a violation of the requirements).

First, we require the environment to comply with a restricting (safety) prop-
erty stating that if the system is in an expecting cut, then the next message
sent by the environment is either no-op or one of the messages from the set of
enabled hot environment messages. That is, the environment must focus on the
hot messages at hand.

Assumption 3 (environment: active environment): For every lsc Li ∈ L
and every expecting cut c ∈ Expi, if in the last step the system was in cut c,
then in the next step the environment sends either no-op message, or a message
from the set of hot enabled environment messages.

∧n
i=1

∧
c∈Expi

G
(
li = c→X (me ∈ {Ee(c) ∪ no-op})

)
(A.3)

Note that the requirement needs a rather loose restriction on the next step
message since there could be cases where there are more than one possible hot
environment message that is enabled. In such cases we would like to consider all
possible combinations in which the environment meets its assumptions.

On the other hand, we require the environment to comply with the liveness
property that states that when the system is in an expecting cut, then each
enabled hot environment message must eventually be sent.

Assumption 4 (environment: fair environment): For every lsc Li ∈ L,
every expecting cut c ∈ Expi, and every hot enabled environment message m ∈
Ee(c), the environment always eventually either sends message m, or the system
is not in cut c.∧n

i=1

∧
c∈Expi

∧
m∈Ee(c)

GF (li = c→ (me = m)) (A.4)

The transition system semantics makes sure that if two hot environment mes-
sages are enabled in an expecting cut, and the first is being sent, then the follow-
ing cut is also an expecting cut, which still awaits for the second hot environment
message to be sent. Furthermore, unless the chart is closed, the execution cannot
return to the previous expecting cut, thus the second hot environment message
is bound to eventually be sent.

Note that from the system’s perspective, the expecting cut is cold, that is, the
system is allowed to violate it. However, as long as the system does not violate
the expecting cut, the left side of the implication in both assumptions A.3 and
A.4 hold, and the environment must follow in a way that would satisfy the right
sides of these implications.

Finally, we would like to support explicit environment safety assumptions. The
transition semantics makes sure that whenever a cut reaches a hot environment
violation caused by an environment condition, li is set to the sink value vio

e.
Even though variable li is a system output (that the environment cannot control
directly), the guarantee of the transition semantics to indicate a hot environment
violation, enables the environment to reason in its strategy all possible future
violations of its assumptions.
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Formally, we require the environment to avoid letting the system reach (in
the future) the sink value that indicates a hot environment violation.

Assumption 5 (environment: safe environment): For every lsc Li ∈ L,
the environment is never allowed to reach a hot environment violation.∧n

i=1
G (li �= vio

e) (A.5)

4.5 Summary

The combination of all the above ltl assumptions and guarantees (A.1–5 and
G.1–5), consists of a semantics for an lsc specification. We formalize it in a
gr(1) form, as shown in Equ. (2).

en
v
ir
o
n
m
en
t

A.3
∧n

i=1

∧
c∈Expi

G
(
li = c→X (me ∈ {Ee(c) ∪ no-op})

) ∧
A.4

∧n
i=1

∧
c∈Expi

∧
m∈Ee(c)

GF (li = c→ (me = m))
∧

A.5
∧n

i=1
G (li �= vio

e)
∧

su
p
er
st
ep

A.1 G
(
me �= no-op→X (me = no-op)

) ∧
A.2 G

(
ms �= no-op→X (me = no-op)

)
implies

G.1 GF (ms = no-op)
∧

G.2 GX (me �= no-op→ ms = no-op)
∧

sy
st
em

G.3
∧n

i=1 (li = min)
∧

G.4
∧n

i=1
GρLi

∧
G.5 GF

∧n
i=1 (li /∈ Acti)

(2)

5 Assume-Guarantee Scenarios: Synthesis

The formulation of the semantics in the gr(1) form allows us to take advantage
the game-based, symbolic, efficient synthesis algorithm of [26] and generate a
correct-by-construction, executable controller from a specification consisting of
a set of assume-guarantee scenarios. Below we motivate the need for synthesis,
in comparison with weaker forms of execution. We then give an overview of the
synthesis algorithm.

5.1 Running Example

As a running example we use a scenario-based specification of a vending ma-
chine. The specification consists of six lscs, the three lscs presented earlier
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Fig. 2. Three additional lscs from the vending machine specification (see Sect. 5)

in Fig. 1 and discussed in Sect. 2, namely InsertCoins, PrepareTeaOK, and
NoInsertCoinUntilServeTea, and three additional lscs, as shown in Fig. 2.

lsc LockPanel (Fig. 2 (left)) describes the implementation of the panel’s
locking mechanism. Whenever the lockPanel message is sent, the panel should
eventually lock itself by setting its enabled property to false, and then eventually
unlock itself by setting the enabled property to true.

lsc MakeTea (Fig. 2 (middle)) describes the behavior the system should follow
whenever the panel sends the dispenser a makeTea message. In this case, the
dispenser should send a self message to serveTea, an abstraction of a different
scenario that entails the proper way to serve the tea. The chart continues to
specify that after serveTea, the cashier’s coins property must be exactly 3 (it
is a hot condition), and be followed by a decCoins(3)message that will consume
3 coins (decrease the coins property by 3).

lsc RetrieveCoins (Fig. 2 (right)) enables a cancellation functionality. If the
user sends a retrieveCoinsmessage to the panel and the panel is enabled (note,
a cold condition), then the system must send the user a takeCoins message
(give back the coins to the user) and follow with a setCoins(0) message that
sets the cashier’s coins property to 0. Furthermore, the chart also specifies that
during the process of cancellation, the dispenser cannot send a serveTeamessage
(sending this message would make the hot false condition on the right hand
side of the chart enabled, and thus result in a hot violation of the requirements).

Finally, the specification includes initial values for two properties: coins is
set to 0 and enabled is set to true.

5.2 Why Do We Need Assume-Guarantee Synthesis?

lsc specifications are underspecified, since the language allows various kinds of
non-determinism. Thus, a special mechanism is needed in order to execute an
lsc specification. This execution mechanism is generically termed play-out [10].
The core of the play-out process is a strategy mechanism that is responsible for
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choosing the next method to execute. The choice is based on the specification
and the current state of the system. Different kinds of play-out mechanisms may
be defined. Each may be viewed as a different operational semantics for lsc.
However, only synthesis can guarantee deadlock free execution (if one exists,
see Subsect. 5.3), where if the environment behavior satisfies the assumptions
then the system behavior would satisfy the guarantees. To motivate the need
for assume-guarantee synthesis, we demonstrate the weaknesses of previously
suggested play-out mechanisms below.

A naive operational semantics, termed play-out in [10], chooses a single system
message that is enabled in some active lsc and that does not violate the current
cut in all active lscs, and executes it. Naive play-out does not guarantee that
no violations will eventually occur (or rather that at each step there will be
an enabled message that is not violating). Violations might happen since naive
play-out makes its choices locally, without considering their future consequences.

For example, in the vending machine, after the user inserts a coin, the system
must increase the coins property (lsc InsertCoins). After three coin insertions
and sending prepareTea, the cold condition coins==3 in PrepareTeaOK will
hold and naive play-out would send a lockPanel message and a heat message
to the Heater. Moreover, to follow lsc LockPanel, and since naive play-out does
not consider future executions, it will immediately execute setEnabled(false)
and setEnabled(true). Now, if the user chooses to send retrieveCoins, the
panel is enabled, the coins property will be set to zero, and so after reachMax is
sent and makeTea is sent, a hot violation will be unavoidable in lsc MakeTea.

A better operational semantics for direct execution of scenario-based speci-
fications is smart play-out (spo) [7]. spo can reason about possible violations
within a single superstep. It guarantees to lead the system to a state where no
lsc is active (a stable state), in preparation for the next environment message
(if such a superstep exists).

However, looking only one superstep ahead is insufficient. For example, con-
sider our vending machine specification, when prepareTea message is sent,
smart play-out would fail to see the consequences of completing the superstep in
LockPanel, since the violation is bound to occur only after two more supersteps
(after the user will send retrieveCoins and the heater will send reachMax).

Both operational semantics presented above are rather weak and may in fact
be viewed as unsound, as they may result in (partial) executions that cannot be
extended to ones that satisfy the semantics of the lsc specification.

A stronger operational semantics for direct execution of scenario-based spec-
ifications is the synthesis presented in [12, 18], which we term closed synthesis.
Closed synthesis reasons about the ongoing interaction between the environ-
ment and the system, and guarantees that in every state that the execution
may reach, there exists a superstep that leads the system to a stable state.
However, closed synthesis does not support environment assumptions. Thus,
in our example, it will not be able to rely on the assumption induced by lsc

NoInsertCoinUntilServeTea and thus would conclude that a controller can-
not be synthesized: without this assumption a controller cannot be synthesized
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because the user may insert a coin while the heater heats the water, and thus
force the system to serve tea when coins > 3, which would violate the hot
condition in lsc MakeTea.

This discussion shows that assume-guarantee synthesis is indeed required.

5.3 Assume-Guarantee Scenarios Synthesis

The solution we use for synthesis requires a winning strategy. Given a gr(1)

specification, computing a winning strategy for the system is done by solving a
Streett game [29] where the system tries to either satisfy all its guarantees, or
constantly falsify one of the environment’s assumptions. We do this following the
symbolic fixpoint algorithms described in [4, 26]. Roughly, the algorithm starts
from the set of all states and iterates ‘backwards’ by removing states from which
the system is unable to force the execution to either reach all of the system’s
liveness guarantees, or constantly violate one of the environment’s assumptions
(each set of states where the assumption is constantly violated is computed using
another nested fixpoint).

The fixpoint is reached when no additional states can be removed. If to every
environment initial choice there exists a system initial choice in the fixpoint set,
then the specification is realizable. A controller that implements the system’s
winning strategy can be constructed from the intermediate values of the fixpoint
computation (see [4,26]). If the specification is realizable, then the construction
of such a controller constitutes a solution to the synthesis problem.2

Going back to our example, assume-guarantee synthesis generates a controller
that meets the specification. Specifically, it avoids the problems encountered by
naive and smart play-out by sending the setEnabled(false) message but not
sending the setEnabled(true)message until after the heater has sent reachMax
(as it has to eventually). It also relies on the assumption that after prepareTea is
sent, the user will not send an insertCoin message to the panel until serveTea
is sent (as specified in lsc NoInsertCoinUntilServeTea).

6 Implementation

We have implemented our ideas using Jtlv APIs [28] and integrated them into
PlayGo [9]. PlayGo is an eclipse-based IDE built around the language of lsc
and the play-in/play-out approach [10]. It includes a compiler that translates
lscs (given in a UML compliant form, using a profile, see [8]) into AspectJ
code (based on [22, 23]), and provides means for visualization, exploration, and
debugging of lsc executions. Jtlv is a Java-based framework for the develop-
ment of formal verification algorithms, implemented as an Eclipse plug-in. The
framework provides editors and developer-friendly high-level APIs.

We extended PlayGo’s visual editor to support the extended language syntax,
and implemented the reduction to the gr(1) game setup. The synthesis algorithm

2 If the specification is unrealizable, then the synthesis computation fails. We have
work in progress on addressing this case [24].
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itself is implemented using Jtlv. Finally, the resulting controller, as computed
by the algorithm, is not only statically presented to the engineer. Rather, we
translate it back and represent it using a play-out strategy, by generating the
Java code PlayGo can use to guide the execution of the system.

7 Conclusion and Future Work

We have presented an extension of live sequence charts that supports envi-
ronment assumptions. The semantics of the extended language is given in the
form of a gr(1) formula, and thus enables the efficient synthesis of a correct-
by-construction controller. The work is implemented and demonstrated with
running examples.

In a related work in progress [24] we deal with the debugging of unrealizable
scenario-based specifications (with or without assumptions). When a specifica-
tion is unrealizable, we reverse the roles of the system and the environment and
compute a counter strategy [16,25]. The counter strategy serves as a formal proof
that shows how an adverse environment can adhere to the assumptions (if any)
while forcing any system to fail in fulfilling its guarantees.

In Sect. 4 we have defined a global stability guarantee G.5. An alternative,
weaker semantics, could have used a local stability guarantee:

∧n
i=1

GF
(
li /∈

Acti
)
. Note that this semantics may induce a more complex synthesis solution,

but which is still of course within the gr(1) fragment. Moreover, the global vari-
ant implies the local one. Although we have chosen to present the global stability
guarantee, we believe that the local one may be useful in some contexts and may
perhaps be more in line with the breakup of the specification into scenarios. We
leave the choice between the two alternative semantics open for discussion.

Finally, one may consider an alternative, tighter semantics for lsc, using the
stronger gr(k) form (see Chap. 4. of [21]), which handles formulae consisting of
k conjunctions of gr(1) implications. gr(k) is more expressive than gr(1) (in
fact gr(k) is as expressive as ltl), however solving it is computationally harder
(exponential in k, [25]). gr(1) can serve as an efficient precondition to the more
locally aware formulation of gr(k).

In the context of scenario-based specifications, the essence of the difference
between gr(1) and gr(k) is in the question of whether all assumptions should be
grouped together into a single conjunct on the left side of the gr(1) implication,
or whether each scenario should induce its own local implication between as-
sumptions and guarantees. It is not clear whether the gr(k) semantics captures
the idea of scenario-based specifications better than the gr(1) semantics. We
leave the formal definition of the alternative gr(k) semantics and its evaluation
against the gr(1) semantics for future work.
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Abstract. In this paper, we investigate model-driven engineering, re-
porting on an exploratory case-study conducted at a large automotive
company. The study consisted of interviews with 20 engineers and man-
agers working in different roles. We found that, in the context of a large
organization, contextual forces dominate the cognitive issues of using
model-driven technology. The four forces we identified that are likely in-
dependent of the particular abstractions chosen as the basis of software
development are the need for diffing in software product lines, the needs
for problem-specific languages and types, the need for live modeling in ex-
ploratory activities, and the need for point-to-point traceability between
artifacts. We also identified triggers of accidental complexity, which we
refer to as points of friction introduced by languages and tools. Examples
of the friction points identified are insufficient support for model diffing,
point-to-point traceability, and model changes at runtime.

1 Introduction

Model-driven engineering (MDE) is the primary use of, often visual, models for
software engineering. Although technical approaches of model-driven engineer-
ing are well-documented, there is a paucity of information about how humans
interact with and adapt to the technology.

In this paper, we investigate the human aspects, reporting on an exploratory
qualitative study conducted at General Motors, a large automotive company
who makes extensive use of model-driven engineering.

Our study involved interviews with 20 engineers and managers. These inter-
views took an individual-out perspective, that is from the perspective of engi-
neers to their context, focusing on how an individual is applying and grappling
with model-driven technology to complete assigned goals. We analyzed the in-
terviews to identify triggers of complexity that may arise when working with
software models and how those triggers compare to those found in more tradi-
tional forms of source-based development.

We look at triggers of complexity in terms of forces and points of friction. The
forces are likely independent of the particular abstractions chosen as the basis
of software development and thus should be considered in the design of any
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new abstractions. Our notion of forces is similar to Brooks’s notion of essential
complexity from his “No Silver Bullet” essay [1]; they transcend the modeling
technologies used. Related to each force we also identified points of friction,
which are akin to Brooks’s notion of accidental complexity; namely complexity
introduced by languages and tools.

Through our study, we identified four forces and five points of friction that
affect the use of model-driven engineering at the industrial site we studied, which
may provide insight into model-driven engineering in general. They are as follows:

– Teams are typically working on multiple versions of the same software model
(force), yet engineers lack proper tooling to identify and share diffs (friction).

– Domain experts use a rich set of visual and formal languages to invent novel
algorithms (force), yet they lack tool support to define their own little visual
languages (friction) or pluggable ad-hoc type systems (friction).

– Inventing novel algorithms for vehicle control is an exploratory activity
(force), while the needs of early prototyping are well addressed by in-silico
simulations, testing on actual vehicles, which occurs later in the process,
suffers from lacking tool support for model changes at runtime (friction).

– Requirements documents and software models need be kept consistent across
development iterations (force), yet engineers lack proper tooling to track
point-to-point correspondences between corresponding artifacts (friction).

We believe that the forces and frictions we have identified through this empir-
ical study can help software engineering researchers understand the context in
which model-driven software engineering occurs in practice and that the friction
points we identified can influence new modeling languages and tools. The specific
results of this study can also help those adopting model-driven engineering to
understand cognitive issues that may impact the use of MDE.

This paper makes four contributions:

– it introduces the notion of forces and points of friction in tooling to describe
the impact of technical issues in the use of model-driven engineering,

– it identifies and presents four forces that may significantly impact the use of
model-driven engineering,

– it identifies and presents five points of friction in existing language and tool
support for model-driven engineering,

– it provides points of comparison with source code development to help tease
apart essential and accidental complexity.

The remainder of this paper is structured as follows. Section 2 discusses method-
ology of our field study, Section 3 presents the software development process at
the organization we studied, Section 4 presents the findings of our study, enumer-
ated as contextual forces and points of frictions, Section 5 discusses our findings
in the general context of model-based design, Section 6 presents related work,
and Section 7 concludes with concluding remarks.
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2 Methodology

To enable the gathering of detailed, rich and contextual information about model-
driven engineering, we chose a qualitative study approach.We visited the industry
of interest (GeneralMotors) on two separate occasions, collecting data constructed
through semi-structured in-depth interviewing. We interviewed 12 engineers and
8 managers. Overall, the engineers we interviewed came from four different teams
from different company departments. All teams were global, that is spread across
sites in India andAmerica, howeverwe interviewed people from the American sites
only. The 12 engineers selected for interviews were sampled from several roles how-
ever their profiles are similar, that is they all work with the same process and use
the same modeling technology. Each interview was 90–120minutes long, recorded
on tape and transcribed for encoding by one of the authors of this paper.

In a first visit, we interviewed 10 participants from both management and
technical roles to familiarize ourselves with the software process used in the
automotive industry. Based on what we learned from the first interviews, in our
second visit, we interviewed an additional 10 participants, all of them working
with software models but in different roles. The interviews were semi-structured,
following an exploratory case-study approach where open ended questions are
asked in order to identify research hypothesis for future studies [2]. We asked
participants to describe their work, how their work fits into the process of the
organization, with whom they interact on a weekly basis, and which artifacts are
the input and which are the output of their work. We also asked to see current
or recent examples of artifacts on which they were working.

We transcribed the 12 interviews with engineers (4 from the first visit and
8 from the second visit). We encoded the transcripts and from this encoding,
we distilled the contextual forces and points of friction presented in this paper.
We encoded the interviews by tagging sentences with hashtags as if they were
tweets. We then used a series of tag clouds to identify patterns in the data,
merging and splitting tags as we saw need. We did two passes over the tags, a
first one to identify all forces and frictions that shape the work of the participants,
and a second pass to identify forces and frictions that might provide the basis
for general hypotheses on model-driven engineering, ruling out those that are
specific to the organization under study.

The data presented in this paper is largely from the in-depth interviews with
12 engineers. These engineers worked in the following roles: 2 domain experts, 7
software modelers, and 3 testing engineers. The participants had an average of
12.5±8 years of professional experience with software engineering and an average
of 4.5 ± 4 years of professional experience with modeling; their backgrounds
were electronic engineering (9 mentions), mechanical engineering (4 mentions),
computer engineering (3 mentions), and software engineering (1 mention). There
are more than 12 mentions as some engineers had two degrees.

Threats to Validity: We selected all participants from the same organization,
whose common context and corporate culture may bias the results. We were for-
tunate however to interview participants from four global teams and a wide va-
riety of roles, providing us with multiple views on the cognitive issues of working
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Fig. 1. Software development process: the doodle shows all stages of an iterative six
week release. From left to right, the stages of the process are: REQ) requirements col-
lection, ALGO) algorithm design, MODEL) in-silico simulations; SWENG) software
model development; CODEGEN) code-generation; UNIT) unit testing; INTGN) inte-
gration on embedded chips; READY) readiness testing; REGRES) regression testing;
REL) internal release; CAL) calibration on actual vehicles.

with modeling technology. Although a study at one organization is not sufficient
to make broad generalizations, this initial data can provide at least one prac-
tical reference point of context that is otherwise often absent in language and
tool design. This practical reference point can provide a basis for more specific
hypotheses to study in future empirical work in this area.

3 Modeling at General Motors

To enable interpretation of our qualitative study results, we provide an overview
of the software development process at General Motors. We begin by describ-
ing the overall software development process used, followed by a more in-depth
description of the various roles involved with software development and the
artifacts produced and consumed during the process.

3.1 Process Overview

Figure 1 shows the software development process commonly used in the automo-
tive industry. While the figure depicts a sequential flow from requirements to de-
ployed software on the vehicle, the actual process happens in iterative releases of
six weeks with different stages of the process running in parallel on subsequent re-
leases. Development begins with requirements collection, which typically happens
outside the software development team (REQ in Figure 1). The requirements are
consumed by domain experts of the team who perform algorithm design (ALGO),
which includes running tests of developed models on in-silico simulated vehicles.
Software modelers consume developed algorithms (either requirements or model
patch) to produce software models from which code can be generated in an auto-
mated step (CODEGEN); code generation is 100% automated, a special team of
“language designers” maintains the rules used for code generation. Test engineers
use the results of algorithm design and generated code to perform unit tests; these
engineers work primarily with source code. Integration engineers take care of inte-
grating produced software to embedded chips. Test engineers take the results and
perform readiness (READY) and regression tests (REGRESS). Every six weeks,
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teams downstream in the process receive new software that is calibrated on the
car (CAL). This step involves calibrating the parameters of the typically generic
features developed in the software to a specific car model.

Each team following this process typically owns a single feature and the models
that describe that feature. The models for a single feature are reused for different
versions (world region, national legislation, car model and year) of a particular
car. As described above, special teams do exist that provide the other teams
with infrastructure and code-generation rules.

3.2 Roles

A software development team responsible for a feature consists of about a dozen
people working in different roles and possibly different countries. Through our
interviews we learned about four different roles.

Domain Experts are responsible for maintaining requirements documenta-
tion and inventing novel algorithms. In the former responsibility, domain experts
work more distinctly from software modelers. In the latter responsibility, domain
experts work closely with software modelers, including drafting changes to models
on which the software modelers work. The algorithms that the domain experts are
designing are not somuch computational algorithms but rather involve the physics
of a vehicle. Most domain experts thus have a strong background in electrical or
mechanical engineering, but typically no formal education in software engineering.

Software Modelers implement and maintain models as specified by domain
experts. Software modelers are responsible for three to four models and are in
close collaboration with the domain experts who own the corresponding require-
ments documentation. Software modelers use the MatLab Simulink1 or IBM
Rhapsody2 tools; we describe more about these tools in the next section. When
the models compile, they are passed on to integration engineers for integration
into a release. Most software modelers have a background in mechanical or elec-
trical engineering, some have a minor in computer or software engineering, but
this is the exception rather than a rule.

Test Engineers perform delta and regression testing of releases and are
responsible for root cause analysis of an incoming anomaly report (i.e., bug re-
ports). Test engineers typically work with generated sources rather than models.
Test engineers are exposed to all artifacts in the process and tend to have the
broadest knowledge of a team’s feature. New hires are often first assigned a test
engineering role before moving on to a software engineering role. The professional
background of test engineers is the same as for software modelers.

Code-generation engineers belong to a special team that owns and main-
tains the rules used to automatically generate source code from the software
models. These experts also publish modeling guidelines and naming conven-
tions. Even though not formally established by the process, software modelers
are often in close contact with code generation engineers, providing them with
feedback and getting help when they struggle with code-generation issues.

1 http://www.mathworks.com/products/simulink
2 http://www.ibm.com/software/awdtools/rhapsody

http://www.mathworks.com/products/simulink
http://www.ibm.com/software/awdtools/rhapsody
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Fig. 2. Sketch of a Simulink model: from left to right we see model layers of increasing
nesting level, starting with the entry function down to implementation logic

3.3 Artifacts

Requirements and software models are the main representations used in the
software development process. We describe these two artifact types and highlight
four kind of secondary artifact types that are relevant to our results.

Requirements Documents are specifying features and owned by a team.
These documents are maintained by the domain experts. The requirements docu-
ments that we saw are loosely structured MSWord documents, typically contain-
ing a mixture of natural language text, pseudo-code and figures. Figures within
these documents often use problem-specific visual languages and are createdman-
ually. In maintenance teams, requirements documents are changed first and drive
subsequent changes to software models. In innovative teams, domain experts ex-
plore the solution space by drafting changes to the software models themselves
and requirements documents are updated once the algorithms stabilize.

Software Models are created by software modelers with either Matlab
Simulink or IBM Rational Rhapsody. While the two are interchangeable in the
process and used by the same roles, they are technically quite different:

– Matlab Simulink is a model-based design tool focused on the design of con-
trol flows. Simulink models are written in a low-level visual language which
resembles the visuals of circuit diagrams. Code generation with Simulink is
automated but cannot be customized.

– IBM Rhapsody is a model-driven engineering tool. The structure of Rhap-
sody models is specified using UML class diagrams, where engineers can
choose between visual and non-visual representations, and behavior is speci-
fied using either blocks of C-code or state machine diagrams. Code generation
with Rhapsody is automated and highly customizable.

Figure 2 shows a sketch of a typical Simulink model that implements part of a
feature. A typical model consists of about 100,000 blocks and a dozen nested lay-
ers. From left to right, we see model layers of increasing nesting level: 1) the top
most layer of the model, which is structured according to the modeling guidelines
with “the function” on top and other diagnostics function on the bottom; 2) the
second layer, zooming into the function, showing 96 input signals and 45 output
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Table 1. List of observed frictions by participant numbers. Roles are X) domain expert,
S) software modeler, and T) test engineer; an asterisk indicates that their team focused
on inventing novel algorithms rather than on maintenance of stable technology.

Sec Friction P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

4.1 Insufficient model diffing • • • • • • • • • • • •
4.2 Need for Visual DSLs • • •
4.2 Hungarian notation as types • • • •
4.3 Need for exploratory programming • • • •
4.4 Lack of P2P traceability • • • • • • • • • • • •

Role S S S T* S S T T S* X* X* S*

signals; 3) One of many layers that serves to convert the unit and magnitude of
input signals, typically each of those layers corresponds to a paragraph in the
requirements document; 4) about a dozen layers deeper, program logic such as
conditionals and loops are laid-out as a graphical circuit with each major block
corresponding to a paragraph in the requirements document; 5) further down
inside one of the blocks with program logic, basic arithmetic operations, such
as addition and division of numbers, are modeled using the visual language of
circuits rather than using mathematical notation.

Auto-Generated Source Code is often defined as a secondary artifact
type; however, this code serves as the primary artifacts used by test engineers
and sometimes, for diffing and change tracking, by software modelers.

Code-Generation Rules are used for automated code generation. These
rules are maintained by a special team of code-generation engineers.

Model Patches are used by domain experts when they invent novel algo-
rithms to exchange their model prototypes with the software modelers. These
patches are not a formally defined part of the software development process
and thus are ad-hoc artifacts. Model patches take many forms, such as Excel
spreadsheets with annotated screenshots of a model.

Tests ensure that software models are implementing a feature as specified
in the requirements documents. Within a team all tests are owned by the test
engineers. Many tests require manual manipulation on a workbench, that is a
partial vehicle in the testing lab, while other tests are fully automated and run
in an in-silico simulation of the vehicle and its environment.

4 Results — Forces and Frictions

From our analysis of the interview data, we identified four forces and five points
of friction. Using Brooks’s terminology, forces are indicators of innate complexity
while frictions introduce accidental complexity [1].

Table 1 documents the observed frictions by participant number. As we dis-
tilled the forces and frictions from the encoded interview data, we tried to iden-
tify those triggers of complexity that are not specific to the organization that
we studied. We focused on those that are more general and thus might form the
basis for more specific hypotheses in future research work.
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4.1 Force: Need for Diffing in Software Product Lines

Engineers in a team are often working on different versions of the same artifact.
Thus, engineers need to identify the changes in a model and, possibly, share
those changes with engineers in other roles. Working with multiple versions is a
result of business needs and thus a contextual force, independent of the primary
abstraction used for software representation, i.e., models or code.

Internal releases happen every six weeks, however, the length of a full iteration
might be longer. It is common for multiple engineers, in the same team, to work on
different releases of the samemodel. In particular, we learned that domain experts
typically use previous releases to prototype the changes that are supposed to drive
future releases. Thus, domain experts need to exchange those prototypes as model
patches with the software modelers. Also, test engineers reported that they need
to learn about the most recent changes to a model under test.

Friction: Insufficient Support for Model Diffing (12/12 interviews). En-
gineers use version control to keep track of different versions and revisions of
the same model. However, they experience friction when merging and handling
comparison of these versions.

Although there are commercially available third-party tools that offer diffing
capabilities for modeling, the engineers we interviewed described that they are
limited in their scalability and in their usability. Engineers described the ex-
perience of using these tools as “going blind” (P10) and leading them to make
mistakes. Engineers seem to prefer a linear reading path of textual diffing in
order to make it easier for them to “not miss a change” (P9). Model-based ap-
proaches which highlight the changes in the spatial and possibly nested visual
representation do not provide that kind of linear reading path.

We learned about several different strategies that engineers use to work around
the lack of model diffing:

– When coming back to their own work, or keeping track of changes for code re-
views, software modelers adopted a habit of documenting all model changes
with comments. One example is the unique identifier of the current work
ticket used as a marker, such that a search for this marker returns all model
changes. This approach is the same as the approach adopted to handle miss-
ing point-to-point traceability, which is discussed in Subsection 4.4.

– When comparing versions for regression testing and root cause analysis, test
engineers use textual diffing tools on the auto-generated code, which puts
them at risk to misinterpret the modeler’s intention of a feature.

– When inventing algorithms and prototyping on their own branch of a model,
domain experts often use screenshots to communicate their changes back to
the software modeler who owns the model. They take screenshots where
the changes before and after, marked them in red, and share them in a
PowerPoint slide deck as an ad-hoc model patch which is either emailed or
attached to a change ticket.
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The engineering needs for model diffing are similar to those found in traditional
source code development. We did not hear in the interviews that an increased
level of abstraction in representation (that is modeling rather than code) leads
to an increased need for semantic diffing. Our observations suggest that end
users would like to have more scalable and usable syntactic diffing rather than
semantic diffing. As reported by the engineers who are falling back to textual
diffing of auto-generated source, syntactic diffing is in their words “more than
good enough” (P7) for most use cases; in particular when diffing is needed to
track the changes from one version to another.

4.2 Force: Need for Problem-Specific Expressibility

Domain experts use a rich set of visual and formal languages to invent and design
their algorithms. The requirements documents that we encountered in our study
made use of a rich and diverse visual language to describe the desired behavior
of algorithms. Some of these languages are by virtue of the domain expert’s
training as mechanical or electrical engineers, whereas others of those languages
are a result of the domain expert’s struggle to find the best way to explore the
problem and solution spaces of their inventions.

We found that the modeling tools in our study, while providing the specialized
teamofcode-generationengineerswithpowerful abstractions,donotempower end-
users, that is domain experts and software modelers, to define their own problem-
specific “little languages” [3]. We highlight two major points of friction related to
insufficient expressibility that we identified: visual languages and ad-hoc types.

Friction: Lack of Problem-Specific Visual “Little Languages” (3/12
interviews). Domain experts often need to prototype their innovations in a soft-
ware model, yet the visual language of modeling tools limits their ability to
express themselves. The notations that domain expert use to talk and think
about their algorithms are those found in mechanical and electrical engineering.

For example, a domain expert might be prototyping a novel clutch control.
In the requirements documents, the domain experts might describe the behavior
of two dependent variables as a graph with two signals in time, quote: “there
are pictures in here of how I want the data to behave, and when I am done I
want to see this [on the oscilloscope] on a car.” (P10) Yet, when the domain
expert uses software models to explore the solution space of the novel algorithm,
he has to constantly translate back and forth between his mental model and
the programing constructs. The domain expert cannot just draw a graph of the
expected behavior and have appropriate code generated.

Support for domain-specific modeling might alleviate this point of friction,
please refer to the discussion in Subsection 5.3 for more information.

Friction: Hungarian Notation Used as Ad-hoc Types (4/12 interviews).
We also found that some teams used Hungarian notation to denote physical
unit and magnitude of signal names in the Simulink models. Hungarian notation
was popular in software engineering before the introduction of type systems. It
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is a naming convention where variable names were prefixed with abbreviations
indicating the type of a variable, e.g., szName for a variable storing a username
as zero-terminated string.

The software engineers described to us how they use Hungarian notation to de-
note the physical type andmagnitude of signals in their models. For example, they
use a prefix to indicate that a signal is temperature in degree Celsius and that it
is a fixed-point number with base 10 and radix 2. The printed list of all prefixes
used in the system fills four pages and they keep them close to the keyboard, to
have them always ready when working with the models. Engineers use these pre-
fixes to make sure that values are properly converted and normalized before use.
However, these coding conventions are only manually, not automatically, verified.

Support for problem-specific type systems in modeling technology, as for ex-
ample pluggable types [4], might alleviate this point of friction.

4.3 Force: Inventing Novel Algorithms as an Exploratory Activity

Developing algorithms for vehicle control is an exploratory activity. While the
needs of early prototyping are well addressed by in-silico simulations, this is not
the case for later stages where novel algorithms are tested on actual vehicles. As
engineers are testing software “on the car,” during a test drive on the proving
grounds, they often encounter the need for updates to the software system. This
need has been reported by domain experts and software engineers in those teams
who work on inventing novel algorithms.

Friction: Long Build-Cycles Prevent Live Modeling (4/12 interviews).
The build process of the model-driven tool chain may take up to several hours.
As a result, when working “on the car,” as soon as the need for a software
change arises the test drive has to be interrupted and rescheduled for another
day. Engineers reported that build times with an older C-based tool chain had
been in the half-hour range and thus within a tolerance interval where it had
been possible to continue the test drive on the same day. Ideally though, when
working ”on the car” engineers should be able to apply model changes at runtime
and continue their test drive instantly.

This point of friction might be alleviated by an abstraction which does away
with compile-build-deploy cycles, such that changes to the software can be ap-
plied at runtime. Technologies that allow a form of hot-swapping of quickly-
generated code from models might be a means to address exploratory adaptation
of software at runtime. Such technologies would not be limited by the processing
power of target hardware (embedded control units) since while working “on the
car” those chips are stubbed by more powerful hardware anyway.

4.4 Force: Need for Traceability in Incremental Release Cycles

A major theme that appeared throughout the interviews was the need for trace-
ability between specification documents and software artifacts. Requirements
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documents, software models and tests are all essentially different representa-
tions of the same information, which need be kept consistent as those artifacts
are independently updated with each release cycle.

While the content management system used in the organization provides en-
gineers with document-to-document traceability, for many tasks point-to-point
traceability is required. Engineers need to be able to quickly navigate from a
visual block in the software model to the corresponding paragraph in the re-
quirements document, or the corresponding test, or even the auto-generated
sources, and vice versa. While this need is essentially representation indepen-
dent, the introduction of software models as an additional layer of abstraction
exponentially increases the traceability needs of engineers.

Friction: Lack of Point-to-Point Traceability (12/12 interviews). Cur-
rently, engineers establish traceability by relying on naming conventions. All
interviewed engineers mentioned the use of markers as a work-around for miss-
ing point-to-point traceability. We found that engineers have adopted a habit of
using change ticket identifiers as markers to establish point-to-point traceability
through manual search. This is similar to one of the habits adopted to tracking
changes between model versions as discussed in Subsection 4.1.

While this workaround establishes limited point-to-point traceability, the ap-
proach is inefficient and fragile. If engineers forget to mark one of the docu-
ments with the unique identifier, traceability is broken. In addition, while names
contained in software artifacts are verified by code generation or compilation,
names contained in specification documents often contain spelling errors or use
old names that predate a renaming refactoring. Spelling differences make it hard,
if not impossible, to navigate these traceability links using keyword search.

5 Discussion

In this section, we discuss our observations in the context of model-driven engi-
neering and provide points of comparison with source code development to help
tear apart essential and accidental complexity.

5.1 On the Terminology of “Model”

In our interviews, we found that the terms “model” and “modeling” were used
ambiguously. Engineers generally did not refer to their work as “modeling” but
used the terms “auto-coding” and “hand-coding.” These terms were used to dif-
ferentiate between working with tools which include a step of code generation
versus writing C-level code manually. Engineers used the term “model” ambigu-
ously to refer to software models, as well as the plant models used for the in-silico
simulation of vehicles. Engineers also used the term “simulation” ambiguously
to refer to running the in-silico simulation of the plant models, as well as to
running software models from within the modeling tools as opposed to running
the auto-generated sources.
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Webelieve the terminologywe observed ismixingmodel-based design (MBD, an
approach in system engineering for disentangling the development of control soft-
ware and corresponding vehicles, using in-silicomodeling while vehicles are not yet
available) and model-driven engineering (MDE). The ambiguous use of terminol-
ogy can be explained if we look at model-driven engineering as a division of labour
between a few specialized language designers and many modelers. After all, the
software engineers do not have to understand the full complexity of modeling, this
is up to the specialized code-generation engineers. However, we found that points
of friction in modeling tools, in particular the insufficient support of model diffing,
may break the abstraction and nevertheless expose engineers to these complexities.

5.2 On Visual Models and Linear Reading Paths

During our interviews we learned about heated controversy around modeling
among engineers, and whether hand-coding is superior to code generation. While
some of the critique was targeted at the long build cycles of the modeling tool-
chain (see Subsection 4.3), much of it was concerned with the visual representa-
tion of models and its lack of abstraction such as scopes and subroutines.

Without the linear order of text lines, which is superimposed upon source
code, visual programming as found in models has no linear reading path and
can possibly stretch in all directions, left, right, top, bottom, and even down
to the next nesting level. While modeling guidelines try to alleviate this by
imposing a flow from top-left to bottom-right, engineers struggle with reading
visual models as to make sure they are not missing a part of their work to-be-
done. Engineers expressed difficulties with reading order both when navigating
(see Subsection 4.4) and changing (see Subsection 4.1) models.

For example, when doing readiness testing, all changes in the current release
need be covered with tests and no single change must be missed. One participant
gave an account of a case where they printed a whole model, put all layers up
on a huge wall and worked together on the wall-sized printout to make sure they
“can walk through the complete model and don’t miss a block” (P7).

Another engineer showed us how she uses a numbering scheme to reduce the
spatial complexity of her visual models down to linear reading path, quote: “this
is just [a] little help for myself, we don’t have to do this, I add numbers to each
blocks, like 7 and 8 and 9, and then 8.1 and 8.2 and deeper down 8.3.1.6, so
I can read the model from top to bottom.” (P12) The same motivation, that is
introducing linear reading paths, was brought forward by engineers when they
described their practices of sharing model patches as PowerPoint decks and or
when motivating their preference of textual diffing tools.

Related to this point, when offered an alternative to visual programming
engineers seem to prefer non-visual representations. The Rhapsody tool offers
engineers an alternative to visual programming which is editing the class dia-
grams through a tree view and property dialogs. Engineers seemed to prefer this
option over visual modeling of UML class diagrams and they even reported that,
to their best knowledge, the visual representation of class diagrams is not used
by other engineers either.
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5.3 On Problem-Specific Needs of Modelers

While model-driven engineering at GM provides the specialized team of code-
generation engineers with powerful abstraction to capture domain-specific archi-
tectures, it does not empower its end-users, i.e., domain experts and software
engineers, to express their own problem-specific languages and type systems.

In general, the visual language of domain experts seems to be much richer
and broader than the languages provided by modeling tools. In particular, there
seems to be a need for problem-specific “little languages” that can be defined
on the fly. Currently, domain experts are unable to create new abstractions that
would allow them to achieve productivity gains in algorithm innovation. Neither
Simulink, which is largely a visual representation of common coding patterns, nor
Rhapsody, by virtual of its limitation to the UML standard’s visual languages,
offer the ability to define the kind of rich visual languages that we learned about
from the domain expert’s requirements documents.

Visual programming in Simulink traces its ancestry to circuit diagrams and
aims at expressing low-level programming constructs such as conditionals and
mathematical operators with the visual language of circuit diagrams. Mathemat-
ical operations and conditionals are each represented as single blocks. While this
language is visual, it does not seem be an actual abstraction from source code.
Even worse, as we learned through our interviews, the level of abstraction seems
to be lower than high-level source code. For example, engineers reported that
they struggle to introduce abstraction such as nested scopes of variable visibility,
enumerators, or refactoring duplicated code into a new method.

Compared to source-based high-level languages, we found that, while model-
driven engineering increases the abstraction level of program compilation, it does
achieve the same increase in abstraction for program representation. Model-
driven engineering provides specialists with the power to build a domain-specific
global architecture by customizing the program compilation through code-gen-
eration rules. Yet, the “end-users” of model-driven engineering, that is domain
experts and software engineers, are left without the power to create their own
APIs to address local problem-specific needs in a formal manner.

We are aware that our observations with regard to visual languages and the
lack of domain-specific modeling are tied to the technology used in the setting
under study, in particular Simulink’s visual language and Rhapsody’s use of
UML. Our findings reflect the state of practice in one organization and are
not necessarily representative of the latest state-of-the art in research or even
other industries. In particular, domain-specific modeling (DSM) might alleviate
the frictions discussed in this subsection [5]. In domain specific modeling the
domain experts are empowered to specify the code generation such that modeling
concepts map directly to domain concepts rather than computer technology
concepts, thus overcoming the limitations of Simulink and UML.

6 Related Work

In this section we discuss related work, namely empirical studies of MDE. For
a discussion of the state-of-the-art in, e.g., model diffing or other technologies
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related to the frictions presented in this paper, readers are advised to refer to
recent proceedings of the MODELS conference and its workshops.

Although model-driven engineering claims many potential benefits, it has
largely developed without the support of empirical data. There are few reports
of empirical evaluations of modeling in the literature. Even fewer discuss human
factors and cognitive issues of model-driven engineering, since most empirical
studies has been focused technological aspect of MDE or UML in particular.

In parallel to our study, Aranda et.al. investigated the organizational conse-
quences of adopting MDE at the same organization [6]. They interviewed the
same participants as our second visit, but while we investigated cognitive is-
sues of technology, driven largely from an individual’s perspective, they looked
into organizational forms, patterns, and processes of MDE adoption. They found
that switching to MDE may disrupt organizational structure, creating morale
and power problems. They conclude that the cultural and institutional infras-
tructure of MDE is underdeveloped and until MDE becomes better established,
transitioning organizations need to exert additional adoption efforts.

Most recently Hutchinson et.al. presented their results of a qualitative user
study, consisting of semi-structured interviews with 20 engineers in 20 different
organizations [7,8]. They identified lessons learned, in particular the importance
of complex organizational, managerial and social factors, as opposed to simple
technical factors, in the relative success, or failure, of MDE. As an example of
organizational change management, the successful deployment of model driven
engineering appears to require: a progressive and iterative approach; transparent
organizational commitment and motivation; integration with existing organiza-
tional processes and a clear business focus.

Mohagheghi and Dehlen presented a study on the impact of MDE on produc-
tivity and software quality [9]. Their methodology was a meta-analysis of the
literature, selecting 25 papers published in quality conferences and venues be-
tween 2000 and 2007. Almost all these papers were experience reports from single
projects and most of the papers present results anecdotally. Software processes
were reported as being of integral importance in successfully applying MDE,
and the importance of suitable tools was reported as of crucial importance. The
meta-study also looked for evidence that MDE improves software quality, but
the evidence was anecdotal. In conclusion, they suggested that there is a need for
more empirical studies evaluating MDE before sufficient data will be available
to prove the benefits of its use.

Forward and Lethbridge conducted a survey of 117 engineers to find prac-
titioners’ opinions and attitudes towards MDE [10]. In accordance with our
findings, the study concludes that model-driven techniques may benefit from
features that, synchronize code and models, better traceability between models
and code, better modeling capabilities and expressibility the reduce the need
for external artifacts. Alas, the survey provides little data on the participant’s
context, size of their organizations and their adoption-level of MDE. As it seems,
only 32% of the participants reported that they generate all or some code from
the models. Dobing and Parson discussed the survey to discover commonly-held
perceptions which may not hold true in practice [11]. Anda et.al. reported on
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disadvantages of adopting modeling practices, such as the difficultly of integrat-
ing legacy code and models, but found anecdotal advantages of improved trace-
ability [12]. Afonso et.al. wrote about a case study where developers migrate
from code-centric to model-centric practices [13].

7 Conclusion

When technologies are introduced, it is often hard to separate myth from reality.
To investigate the benefits and challenges of model-driven engineering we per-
formed a field study about the use of model-based design in a large automotive
company. We showed how, for one large organization, model-driven engineering
is shaped by contextual forces, which seem to be independent of the abstraction
chosen to help develop the system. Through this study, which involved inter-
views with 20 engineers and managers, we identified four forces and five points
of friction (as itemized in the introduction). We differentiate between forces that
are contextual and external to software modeling technologies and as frictions,
which are accidental issues caused by current tooling on software modeling.

As we worked with the data, the contextual forces affecting individuals us-
ing modeling became clear. While architectural complexity is well hidden from
software engineers, they are still exposed to substantial innate complexity (con-
textual forces) and often even new accidental complexity (points of frictions in
modeling tools). In particular, the representational abstraction of visual mod-
eling languages does not seem to be as broad and rich as the problem-specific
visual and formal languages of the domain experts.

We identified three concluding themes that span across many of the identified
forces and points of friction, which might be of interest for tool builder and
language designers in their future work. They are as follows:

– Engineers seem to prefer the linear reading paths of textual representations
over the spatial representation of nested visual models. Both when navigating
and changing models as well as when using model diffing. They describe their
experience as “going blind” and struggling “to not miss anything.”

– While the MDE tools under study provide specialized code-generation engi-
neers with powerful abstraction, they do not similarly empower its end-users,
i.e., domain experts and software engineers, to express their own problem-
specific languages and type systems.

– The needs of engineers who are inventing novel algorithms differ from those
of engineers who are working on more mature features. Invention is an ex-
ploratory activity and its needs, such as instant model changes as runtime,
seem not to be well addressed by current modeling tool-chains.
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Abstract. Software development has improved greatly over the past decades 
with the introduction of new programming languages and tools. However, 
software development in the context of industrial robotics is dominated by 
practices that require attention to low-level accidental complexities related to 
the solution space of a particular domain. Most vendor-specific robotics 
platforms force the developer to be concerned with many low-level 
implementation details, which presents a maintenance challenge in the context 
of making engineering changes to the robotics solution. Additionally, satisfying 
the timing requirements across the platforms of multiple robot vendors 
represents an additional challenge. We introduce our work using Domain-
Specific Modeling to support the control of industrial robots using models that 
are at a higher level of abstraction than traditional robot programming 
languages. Our modeling approach assists robotics developers to plan the 
schedule, validate timing requirements, optimize robot control, handle 
engineering changes, and support multiple platforms. 

Keywords: Domain-Specific Modeling, Robotics, Software Maintenance, 
Digital Factory, Digital Master. 

1 Challenges in Industrial Robotics 

Industrial robots have been applied widely in various domains to perform different 
tasks [4][9], such as welding robots used in the automobile industry, or assembly 
robots used in manufacturing factories. Robots are often controlled and programmed 
using textual and imperative robot programming languages that are customized 
environments from each robot vendor. Even with the implementation of a digital 
factory (i.e., a virtual representation of the manufacturing process and facility), most 
robotics languages are domain-specific languages designed by specific robot vendors 
(e.g., the KUKA [14] robot programming language, and RAPID [16] from ABB [15]), 
they are still at a low-level of abstraction. This requires a great deal of knowledge 
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about implementation and configuration details (e.g., the coordinates of the movement 
destination, the speed and acceleration of the movement, the ports to write and read 
data), which presents a host of challenges in robotics software development and 
maintenance. Based on our 20+ years of automotive industry experience, the 
following paragraphs describe what we have observed as the key challenges in 
supporting engineering changes in industrial robotics software (in particular, in an 
automotive factory context using digital factory methodologies). 
 

Challenge 1 – The Complexity of Adapting Engineering Changes Across 
Robotics Software Solutions. Similar to other types of software development, 
software evolution is also inevitable in robotics development. For instance, working 
on different types of products and work tasks, robots need to be modified frequently 
with different hardware parameters, environment configurations, and more 
importantly a different sequence of actions needed to address a new requirement on 
the assembly line. Changing and evolving the robot programs to adapt to new 
requirements is challenging, particularly when performing the changes on large-scale 
heterogeneous robotics systems. To make an engineering change across a specific cell 
of an assembly line, robotics programmers need to search through a collection of 
robot programs manually, locate the correct location of low-level configuration 
information, and make the correct modification corresponding to the new 
requirement. 
 

Challenge 2 – The Difficulty of Satisfying Timing Requirements and Optimizing 
Action Schedules for Cycle Time Optimization. The correct timing and scheduling 
configuration on a robotics system plays an essential role in multi-robot coordination. 
Consider the category of welding robots as an example, where each robot must finish 
its own task on time and ensure the robot next to it has the needed parts within a 
certain time target. Failure to meet a task deadline in the prescribed time will either 
cause unnecessary delays or trigger collision conflicts among different robots. In 
order to minimize the duration of completing a certain task, an optimized schedule for 
each robot is required to avoid unnecessary delays. However, due to a lack of native 
support for time in most robot programming languages, satisfying the correct timing 
requirements in robotics development has become a tedious, time-consuming and 
error-prone task that requires much manual tweaking and refined intuition in order to 
elaborate a successful implementation. The most commonly used approach in practice 
is to plan the schedule manually, and then hand it to robot developers who then 
implement the schedule plan manually. There are several current well-known 
automotive factories that still use standard spreadsheets for determining such timing 
considerations. Developers must write robot programs based on the timing 
requirements, and test the program in an ad hoc manner to obtain various timing 
measurements during commissioning. If the measurement indicates the violation of 
specific timing requirements, changes must be made either to the schedule or the 
robot programs. This process iterates until all the timing requirements are satisfied. 
This type of scenario, based on manual and iterative refinements, is ripe for 
application of model-driven techniques. 
 

Challenge 3 – The Challenge of Supporting Multiple Platforms. With multiple 
robot manufactures throughout a manufacturing facility, it is often necessary to swap 
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out robots from different vendors at different stations in a manufacturing cell. 
However, if each vendor uses a different robot programming language, the same task 
will have to be programmed multiple times in different languages. This requires much 
redundancy and maintenance of multiple programs for the same task – a situation that 
is fertile for creating software failures. A desired capability is to be able to describe 
the intellectual property associated with a robot task at a level that can be maintained 
and preserved across current vendors. Such a capability would also protect against 
obsolescence and allow integration of future robot platforms that may later emerge. 

We have designed a modeling, planning, and code generation tool suite that 
addresses the needs of these three challenges. This tool, called Automax, serves as the 
future input to our existing robotics optimization solution (called Robmax) that is 
currently deployed on over 3,000 industrial robots in “Body in White”1 shops at 
manufacturing facilities in the USA and Europe. The main objectives of our work 
described in this paper are: 1) to raise the level of abstraction in robotics 
programming and hide the low-level implementation details. This is done by 
capturing key domain concepts and constructing code frameworks and libraries, in 
order to facilitate multiple types of engineering changes on the manufacturing line; 2) 
to combine timing and scheduling information for robot programs, and provide timing 
analysis to ease the process of satisfying timing requirements; 3) to build a common 
representation for expressing robot control, from which automatic generation to 
specific vendor platforms is possible. 

An overview of the proposed solution will be given in Section 2, followed by the 
illustration of each key component in the solution from Section 3 to Section 5. Section 
6 summarizes the related work and Section 7 offers concluding remarks. 

2 Automax Overview 

Our solution to address the key challenges presented in Section 1 is to use Domain-
Specific Modeling (DSM) [3] to support robotics development. Raising the level of 
abstraction from programming languages to modeling languages has been shown to 
be an effective approach to attack the increasing complexity of software systems [1]. 
Domain-Specific Modeling Languages (DSMLs) [2] assist domain experts in focusing 
on the level of abstraction relevant to their problem space by providing notations and 
constructs tailored specifically to that domain, while removing the accidental 
concerns of a specific solution space. DSMLs help to represent the solution of the 
problem domain and reduce miscommunication between stakeholders by providing 
common abstractions and notations. 

Figure 1 is an overview of our solution. The core part of the solution is a graphical 
DSML defined by a metamodel specifically for the industrial robotics domain. Our 
modeling language captures the key configurations for robots, all types of actions an 
industrial automotive manufacturing robot can perform, as well as the scheduling and 
timing information. Compared with traditional robot programming languages (e.g., 
KUKA), this DSML is at a higher level of abstraction by hiding many low-level 
                                                           
1  Body In White refers to a phase of automotive manufacturing when the metal body of the car 

has been welded together, just before the addition of attached structures (e.g., doors) and 
prior to painting. 
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implementation details and extracting patterned program code fragments as abstract 
model concepts, so that users can specify the robot models using direct domain 
concepts. 

Instead of creating models using the DSML manually from scratch, users can start 
with the planning of the robot system timing requirements in the planner, followed by 
generating the base robot model automatically. On the other hand, with the existing 
robot control code, Automax’s future vision supports reverse engineering of the 
source code to generate the models as well as the timing information in the planner. 
Users can then operate on the models directly and make necessary changes. The 
actual implementation code can be generated automatically from the models for 
different platforms. 

 

 

Fig. 1. Overview of the Automax solution 

With models as the first-class entities to program robots, any engineering changes 
can be realized by modifying the robot models and re-generating the code, which is an 
alternative to changing the code manually across multiple robot programs at a lower 
level of abstraction. Additionally, because the timing and scheduling information has 
been incorporated into the robot models, the model provides a direct input to the 
scheduler, so that the timing can be estimated and validated. Moreover, the robot 
models are platform-independent, which enables multiple code generators for 
different robotics vendor platforms. 

Being different from the traditional top-down model-driven code generation 
framework from models to code, Automax connects system planning and analysis, 
system models, and implementation code together, and supports an iterative 
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development process from planning to models, models to code, and code back to 
analysis and planning. The goal is to enable users to create models rapidly with 
integrated timing requirements, directly generate implementation code and measure 
the performance, and more seamlessly make engineering changes on models and  
re-generate code. 

Our solution with Automax has been implemented as a modeling tool in Eclipse 
using multiple Eclipse Modeling Projects [17], which provides a unified set of 
modeling frameworks, tooling, and standards implementations on the evolution and 
promotion of model-driven development technologies within the Eclipse community. 
Automax provides a schedule planner, robot modeling editor, code generator, and a 
number of tools to facilitate the timing and scheduling design, validation, and 
optimization. The next sections will present the main components of our Automax 
solution. 

3 Using Models to Facilitate Engineering Changes 

The engineering changes in robotics may emerge from the need for a new group of 
robots to collaborate with each other, a new sequence of actions to perform, or a new 
set of configuration parameters for each robot. The main challenge of handling these 
changes comes from locating the correct parts of the source code and making the 
needed changes. To raise the level of abstraction, we analyzed the source code of 
existing robot programs currently in use within an automotive assembly line and 
identified the key concepts and relationships in the robotics domain through a manual 
reverse-engineering process (i.e., identify the functions or statement blocks in the 
source code and extract them as unique and reusable modeling concepts). A DSML 
was defined using these concepts. Figure 2 shows the core part of the metamodel used 
to define the Automax DSML, with the model attributes and some extra data types 
elided. A robotics configuration can include multiple robots. Each robot can perform 
various types of sequential actions, such as moving, welding, opening/closing 
grippers, checking pivot equipment and halting. Corresponding attributes are 
available for direct configuration for each action. The Composite command pattern 
can be used to include a group of actions. Special configurations (e.g., movement 
configuration, tooling configuration) are available for separate definition and shared 
by the action commands. Advanced flow control mechanisms such as repetition and 
decision-making are not defined in the metamodel for the purpose of hiding the low-
level programming details. 

Figure 3 shows an excerpt of a robot model instance. Users can construct a group 
of robots, configure the actions and parameters in the editor, and specify the sequence 
of actions using arrows. Based on this DSML, any engineering changes defined in the 
Digital Master of the product can be implemented by modifying the model instances 
to adopt the changes in the manufacturing process. For example, a group of robots can 
be changed by directly adding or removing robots; the actions for each robot can be 
updated by editing the action command model elements; the attribute editor allows  
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of Figure 6, where the Palette represents the visualized domain concepts available 
from the Automax metamodel definition). From this model, robot code can be 
generated within seconds, from what previously would take several weeks. From our 
experience, this new capability allows the exploration of the design alternatives in a 
way that is very productive (within seconds) and accurate (the maturity of the code 
generators produces code that is always more reliable than human-generated code), 
allowing engineers the flexibility to understand design tradeoffs in a manner that is 
currently not possible due to the time needed for manual adaptation. 

 

 

Fig. 6. The integration of planning and high-level robot control in Automax 

The basic implementation of this tool is based on the Eclipse Modeling 
environment. The metamodel is defined using EMF [13][18] and the editing 
environment is generated using GMF [19]. Building and maintaining a modeling tool 
with GMF is not an easy task, which requires six individual models that are highly 
dependent on each other and all need to be in sync with each other. Instead of creating 
these models manually one by one, we use the Eugenia tool [20], which considerably 
sped up the creation of the graphical DSML editors. The Eugenia tool essentially 
reduces development and maintenance effort down to one model plus some optional, 
separate customization information. 

4 Incorporating Timing Requirements to Optimize Schedules 

The separation of timing and scheduling information from the traditional robot control 
programs in process planning makes it difficult to satisfy and validate timing 
requirements. The traditional robotics development requires a timing plan on paper 
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(or in Excel) and then a program that meets the timing requirements. Traditional 
robotics development may involve many iterations to test the performance of the 
completed programs, validate the timing requirements and make necessary changes. 
Using DSMLs, it is possible to specify multiple views or multiple aspects for a certain 
domain, which enables us to define the timing and scheduling information together 
with the robot configurations in the model to better analyze the timing status. In 
Automax, users begin configuring robots with a schedule plan in a customized editor, 
as shown in Figure 7. In the planner, a sequence of tasks is defined with the 
information about the involved robots, start time, end time, and prerequisite tasks. 
This planner serves as the high-level description about the tasks to be accomplished 
and the desired timing requirements. The scheduling information is part of the DSML 
(i.e., the timing attributes in some of the action command) and thus saved as part of 
the robot model. 

 

 

Fig. 7. The schedule plan editor 

From a complete plan, users can generate an initial model automatically that 
contains all the needed robots and the high-level actions. The actions have been 
ordered correctly based on the prerequisite actions defined in the planner. From this 
initial model, users can fill each high-level action (i.e., the composite action which 
includes a set of atomic actions) with the specific action commands needed. The 
transformation from the schedule model to robot model is an endogenous model 
transformation, which means we start with creating the schedule model elements, and 
then the tool will enrich the model with the robot information. The transformed model 
can always be edited in the schedule planner directly, and the information will always 
be synchronized. The model excerpt shown in Figure 3 has the fully configured action 
commands based on the generated model from the planner. With a complete robot 
model, the total duration of each high-level action can be estimated based on the 
included atomic actions through a computation engine. By comparing the estimated 
time and the planned schedule, users can determine directly if the current action 
configuration can satisfy the timing requirements, as shown in Figure 8. Each blue bar 
in the figure represents a task to finish with its start and end time. The inner green bar 
reflects the estimated duration based on the current actions included. The chart can be 
shown during editing time, so that users can modify the plan or change the actions 
during a schedule violation or optimization. 

Besides the timing analysis, special features have been implemented to optimize the 
schedule in regards to cycle time. For instance, in manufacturing process development,  
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movement is the most typical and frequent action that a robot performs. A sequence of 
movement steps is always needed to reach a desired location. Without an optimized 
sequence, it may cause unnecessary delays. Thus, a feature has been implemented in 
Automax to identify all the movement steps in a robot automatically, and re-order the 
sequence of these steps using a shortest path algorithm. Because the location 
configuration is captured in the model elements, this type of optimization can be done on 
models directly, which we have observed to be easier than realizing the same 
optimization on robot code through parsing and program transformation processes. The 
timing planner editor, analysis viewer, and optimizer are realized as Eclipse plug-ins to 
the Automax environment. Models are the direct artifacts to be operated by the plug-ins, 
and provide a convenient programming and exchange interface. 

 

 

Fig. 8. The chart showing the current timing status 

With the implementation of the timing planner and optimization features, benefits 
can be seen from using models to do robotics development. However, the large 
amount of legacy code has already been used in production, which cannot be directly 
applied in the Automax modeling environment. In order to support the legacy robot 
code, we are further enhancing the tool to enable reverse engineering of the existing 
KUKA robot code. As the first version, a subset of the KUKA grammar has been 
specified in Xtext [21], which considers KUKA as a textual DSL. The grammar is 
also mapped to the Automax metamodel, so that with the generated text editor using 
Xtext, the legacy robot code can be parsed and converted into Automax models 
directly, as shown in Figure 9. From the models, users can perform the typical model 
editing operations, analyze the timing, apply optimizations, and then re-generate a 
new version of the code. Changes can also be made directly to code, which can be 
reverse engineered again and injected back into models. 
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a) Original manually created robot code for a particular welding task 

 

b) Corresponding Automax model representation 

Fig. 9. Converting robot code to an Automax model 

5 Applying Diverse Code Generators to Support Multiple 
Platforms 

The robot model only contains platform-independent information, so it can be used to 
generate code for different implementation platforms (i.e., different robot vendors). 
When designing a code generator, a preferred practice is to design a domain 
framework, which contains common functionality so that a minimum amount of code 
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needs to be generated from the models [8]. Thus, we identified the code framework 
used in several robotics languages (e.g., environment initialization, PLC and tool 
communication working environment clean up), which are fixed and used in many 
robotics tasks. The generated code realizes the specific sequence of actions and the 
configuration of each action. A separation of the generated code from the code 
framework reduces the complexity of code generation specification, which we believe 
leads to a more maintainable architecture. 

6 Related Works 

Angerer et al. introduced an Object-Oriented (OO) framework for modeling industrial 
robotics applications to improve robotics development and maintenance [5]. By 
analyzing the existing low-level and imperative robot programming languages, a set 
of robotics APIs were designed across 70 classes, which covers the concepts to model 
geometric relations (e.g., Frame, SpatialObject, PhysicalObject), device and control 
(e.g., Device, Joint, Manipulator), and commands (e.g., Action, Trigger). These APIs 
can be integrated with the traditional OO programming languages and executed 
through a special library to map the APIs to the original low-level code [6]. The main 
benefit of having an OO robotics framework is that developers can utilize OO design 
and use OO programming languages to improve the robotics development and 
maintenance process. However, when moving the traditional robotics language to an 
OO language, it becomes a general-purpose language (with domain concepts 
summarized as APIs); thus, this solution is not at the same level of abstraction as our 
Automax modeling solution. Furthermore, the timing requirements and multiple 
platform support have not been considered in their approach. 

Robmann et al. presented another robotics development approach from a different 
direction [7]. The context of their approach is the existence of an online (real 
execution) and an offline (simulation) robot system. They designed a new system 
called “ProDemo” to improve the setup (i.e., configuration and programming) of both 
systems. There are two main components in ProDemo: 1) Modeling by demonstration 
provides a new approach to build 3D models for the simulation. Users teach the 
robots about certain behaviors by directly demonstrating the process. 2) A visual 
programming robot control language can be used to program the control flow of 
robots, which enables users to program the robot in a graphical and more intuitive 
way. However, this system only focuses on the control specification of robots, 
without considering the timing and scheduling requirements. Additionally, the visual 
programming language is in fact at the same level of abstraction as the traditional 
textual robot language. It only changes the concrete syntax, without raising the level 
of abstraction by hiding the low-level implementation details. 

There are many usage examples of DSMLs in different domains to improve 
software development. For instance, a similar modeling approach has been applied to 
create a time-triggered system for electrical cars that support different communication 
protocols (e.g., Flexray, CAN bus) [10]. In the area of high-performance computing, 
Jacob et al. designed and implemented a modeling framework called PPmodel to 
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assist programmers in separating the core computation from the details of a specific 
parallel architecture, identifying and retargeting the parallel section of a program to 
execute in a different platform [11]. Another example is the application of model-
driven engineering and a supporting tool infrastructure for the industrial process 
control domain, done by Lukman et al. [12]. The work described in this paper 
distinguishes itself from the following aspects: 1) it focuses on the robotics domain; 
2) non-functional requirements (i.e., timing and scheduling requirements) have been 
integrated with domain concepts and reflected in the generated code; 3) performance 
analysis and optimization can be made to models during editing time; 4) the same 
metamodel is mapped to both the textual and the graphical DSL so that the two 
formats can be interchanged with each other; 5) an iterative development approach 
and reverse engineering are both supported in our framework. 

7 Conclusions and Future Work 

In this paper, we presented the concept of applying DSM to the robotics domain to 
handle the challenges of industrial robotics development. Our solution is based on a 
high-level DSML designed specifically for configuring robots so that users can model 
the robot control using direct domain concepts, and generate code for different 
platforms automatically. The code generation enables users to only change models to 
adapt engineering changes, without manually evolving the implementation. We also 
integrated the timing and scheduling requirements into the modeling language, which 
eases the schedule planning, validates the timing requirements, and optimizes the 
schedule. Our Robmax framework for process optimization system is used in 
automobile factories in Europe and North America. The new Automax modeling suite 
serves as the input to Robmax and has demonstrated improved advantages over 
traditional robot programming in terms of the its ability to facilitate engineering 
changes that crosscut much of the boundaries of the lower level robotics code.  
Figure 10 shows the integration point for Automax and Robmax. 

One of the main research directions in the future is to extend the grammar used in 
the reverse engineering so that it can support the complete integration of legacy code 
from past robot programs. Currently, our solution supports a subset of the KUKA 
robot programming grammar that is related with the data-centric configurations. The 
challenge of supporting the full grammar is how to map every detail of the language 
to the metamodel. Although it is possible to extend the metamodel to fit the complete 
language, it will inevitably lower the level of abstraction and undermine the benefits 
of using DSMLs. Thus, the ideal situation would be to have the capability of parsing 
all the legacy code, but generating a model that conforms to a metamodel that is still 
at a higher-level of abstraction without covering each language detail used in the 
legacy code. On the other hand, the optimization and analysis are currently dependent 
on the metamodel definition and implemented as separate plug-ins. This dependency 
brings about problems with metamodel changes. Therefore, it would be very useful to 
investigate how to integrate the semantics of optimization and analysis into the 
metamodel and then automatically generate these functions based on the metamodel. 
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Fig. 10. Automax interaction with Robmax (a highly successful automation efficiency solution 
already deployed across 3,000 robots in Europe and North America) 
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Abstract. Model management is critical for large software-intensive
system development as it ensures the consistency and correctness of the
models that are separately developed but interrelated. It is especially
crucial when the models are acquired from different sources and evolve
frequently. Traditional approaches to model management in vehicle con-
trol software development rely on information examination guarded by a
rigorous development process, which requires a high-level of knowledge
and may be less effective than is desirable. To address this issue, we in-
vestigate the applicability of the macromodel concept – a formal method
for the specification of model relationships – to model management of
vehicle control system development. Through studying some represen-
tative relationships, we build a macromodel based management method
and demonstrate its effectiveness using the flow diagrams in a functional
architecture model from industry.

1 Introduction

Model-based technologies have been adopted increasingly in the development of
vehicle control systems to facilitate the activities of design, analysis, implemen-
tation, integration, and validation. The key concept that enables model-based
technologies is the adoption of models for expressing all artifacts in the de-
velopment process. In development of complex vehicle control systems, models
represent the design of different system elements and properties, and are created,
manipulated, and maintained by multiple designers, design groups, and organi-
zations, each of which may work on and is responsible for activities in a specific
engineering discipline. To ensure the system functional correctness of final prod-
ucts, these resultant models must be consistent. Such consistency means that the
functions represented by these models integrally yield the correct system-level
behaviours, which in turn requires that the involved teams in the development,
including customers, designers, developers, project managers, etc., communicate
unambiguously and collaborate closely. Given that people working in vehicle
control system development typically have different technical backgrounds and
expertise, sometimes working in different geographical locations, unambiguous
communication and close collaboration through traditional approaches based
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on natural language (e.g. project documentation and face-to-face meetings) is
extremely challenging, if not impossible, in practice.

The use of models often introduces accidental complexities because models in
a large collection are usually related and need to be collectively managed. To
this end, the discipline of model management provides a set of techniques to ad-
dress the management need. In current industry practices, model management
is done in an informal manner, as a process activity with assistance of develop-
ment tools. The model relations are typically captured informally as the relations
among process steps and communications among development teams. As an ex-
ample, some control development team may define control algorithms as control
models in Simulink/Stateflow while its software counterpart defines the software
design as a UML model using IBM Rhapsody. Engineers are assigned ownership
of these models and are responsible for the consistency of related models fol-
lowing a change management process with assistance of a change management
tool. Although effective, this practice has been experiencing issues with tracing
the root cause of an error in final product because the responsible engineer may
not have sufficient information to reason about the model relationships. This is
especially true for “refinement” or “derivation” type relationships that must pre-
serve some modeling properties but allow significant representation and semantic
alterations to the original model.

To address such model management challenges, we have explored the use
of the macromodel concept to build the model management methodology for
specifying and managing related models [9]. A macromodel models a collection
of related models, with their relationships formally captured as mappings and
constraints. With a macromodel defined, any change made to a model in the
collection can be checked formally using techniques such as logic inference rules
and constraint satisfaction to determine the existence of inconsistency. Therefore,
model management using macromodels can detect, and repair automatically if
allowed, inconsistencies between models through formal expressions of model
relationships.

In this paper, we present the results of an initial case study in the application
of macromodels for model management in an industrial model-based vehicle con-
trol system development process. The focus of the project is on the identification,
formalization, and use of model relationships to help detect model inconsisten-
cies and facilitate model evolution. As the initial step of this exercise, we limit
our scope to a subset of models used in software development.

The rest of the report is organized as follows. Section 2 presents background
on the use of macromodels for model management, including approaches, for-
malization methods, and relations among different types of models. Here we set
out the methodology that we apply to the case study that structures the remain-
der of the paper. Section 3 discusses the identification of the focus area for the
case study. Section 4 describes the formalization of the model relationships used.
Section 5 reports on the results of creating macromodels for the relationships of
flow diagrams defined in functional architecture models. Section 6 describes the
results of checking for relationship inconsistencies. Section 7 discusses related
work and Section 8 reports on conclusions and next steps.
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Fig. 1. A relationship between a sequence diagram and an object diagram

2 Background

A significant portion of model management activity deals with the management
(creating, maintaining, organizing, repairing, evolving, etc.) of model relation-
ships. To this end, the model relationship management is a centerpiece of many
model management approaches.

Following a general definition that models say things about their “subject of
study” [10], two models are said to be “related” (semantically) when what one
expresses imposes some constraints on what the other one is able to express.
For example, a design model for a system should be related to its requirements
model by a “satisfies” relationship (i.e. the design should satisfy the require-
ments). When these constraints are violated, the models are considered to be
inconsistent. Conceptually, the relationship between two (or more) models can be
expressed as a special kind of model that defines the mappings relating the model
elements. These relationships can be classified into types and can be formally
defined using metamodels. Each type of relationship captures certain constraints
that need to hold between models. As an example, Figure 1 shows an objectsOf
relationship used in a generic vehicle control system.

The relationship of type objectOf is defined between a UML sequence diagram
and an object diagram to express how the modeling elements in the sequence
diagram containing types Lifelines and Messages are mapped to the mod-
eling elements in the object diagram containing types Objects and Links. As
defined in the relationship, each object/lifeline instance in the sequence dia-
gram is mapped to an object instance in the object diagram that represents the
same object (via the identity relation id). Similarly, each message instance in the
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sequence diagram is mapped to the association link instance in the object
diagram over which the message is sent (via the relation sentOver).

In addition, the mapping is constrained in a way that both id and sentOver

are functions, and must be consistent in terms of the endpoint objects of a mes-
sage being the same as the endpoint objects of the link that it is mapped to. The
mapping shown in Figure 1 satisfies these constraints, so it is a well-formed ob-
jectsOf instance. As development proceeds, if either diagram Lock Notification

or Vehicle Monitoring is changed, the constraints of the objectOf relationship
must continue to hold – failing to do so yields an inconsistency that must be
corrected by modifying the diagrams. Defining various relationship types such as
objectsOf allows the instances of these types to formally model the relationships
between models at different abstraction levels: at the detail level, a relationship
type defines how the elements of the models are related and the constraints that
must hold between them; at the aggregate level, the modeled relationship can be
used to express how the models are related as a whole and to convey information
about how a collection of models is structured.

The aggregate-level model expressed using model types and their relation-
ships is called a macromodel [9]. With all relationships of interest being formally
and explicitly modeled, we can thus use them to specify meaningful macromod-
els. Figure 2 shows an example of the relationships between some UML mod-
els and diagrams of the hypothetical vehicle control system. Here, the model
Vehicle Control Design captures the vehicle control design, and a collection of
diagrams called Vehicle Monitoring Diagrams models the design details of the
monitoring functionality.

The diagrams in this collection belong to the base model Vehicle Control

Design. The relationship is indicated by the link theModel. Within this col-
lection are the object diagram Vehicle Monitoring from Figure 1 along with
several sequence diagrams that hold the objectsOf relationship to this object
diagram. Specifically, these sequence diagrams include Lock Notification from
Figure 1, Emergency Notification, and Engine Malfunction Notification.
The last one is further decomposed into the two sequence diagrams Sensor

Misread and Power Drop.
Two other relationships are defined in this macromodel fragment:

ODRelatedTo and deployedOn. ODRelatedTo is a function that takes a model
as its input, extracts the set of objects and links related to this argument from
the base model, and constructs an object diagram. In this case, the macromodel
specifies that the object diagram Vehicle Monitoring is a result of applying
ODRelatedTo(Monitor) to Vehicle Control Design. The relationship deploy-
edOn defines how a UML design is deployed on an architecture (also in UML)
and is used here to relate Vehicle Control Design and Vehicle Architecture.

The macromodel represents the intended interrelations among the models
and diagrams. As the development of the vehicle control system proceeds and as
the design artifacts evolve, we expect the relationships expressed in the macro-
model to be maintained. Thus, the macromodel provides a new type of specifica-
tion in which the intentions of the modelers are expressed as constraints at the
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Fig. 2. A partial macromodel of a vehicle control system specification

macroscopic level regarding what models must exist and what relationships must
hold between these models [8]. Since these constraints are formalized using the
metamodels of the relationship types and can be encoded to support machine
analysis and processing, automation of model management activities, such as
consistency checking and change propagation, becomes possible.

2.1 Macromodeling Methodology

A typical application of the macromodel based model management technique
described above in general software development involves steps of the following
methodology:

1. Identify and define the relationship types that are required for relating model
types using metamodels.

2. Create an initial macromodel to specify the required models and their in-
tended relationships.

3. Apply the macromodel to support the comprehension of the models and
model management activities such as checking conformance of models with
the intended relationships.

4. Evolve both the macromodel and the constituent models and relationships
as the development process advances.

In remainder of this paper, we report on a case study applying steps (1)-(3) of
this methodology to the vehicle control software development process. Step (4)
is left as future work.

3 Case Study Preparation

In this section we describe the process used to identify the focus area for the
case study.
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The software development process is a part of the integral vehicle control
system development process. In this process, the overall high-level control sys-
tem requirements are specified according to the business needs, and are used
for both downstream design and later system verification. Following the de-
velopment process, the main dimension of decomposition is along the system
functional architecture, which contains the Domains and their constituent Sub-
sytems. For functional development, the output of each phase is specified as the
requirements models, design models, software implementation, and test for the
function. Design models are further divided into algorithm design and software
design models.

The set of different kinds of models yield more than 70 relationship types.
In this case study, concentrating on an early phase of a project for long-term
adoption of model management, we selected a subset of these relationships to
formalize them. The following criteria were used in the selection:

– Feasibility of formalization: The relationship must be sufficiently precise and
the knowledge about the relationship must be available.

– Impact: Different relationships deliver different value to the development,
and thus require us to consider the trade-offs when making a selection.

– Relevance to consistency checking: The focus of the model management in
this research is consistency checking and repair. As such, the selected rela-
tionships should be relevant to this objective.

– Theoretical significance: As the first application of the macromodel con-
cept to model management in vehicle control software development, theoret-
ical exploration and study is critical to ensure the macromodel provides a
proper foundation to address the model management needs in the automotive
domain.

– Representativeness: The selected relationships should represent a broad set
of model management scenarios where the relationships are maintained.

Based on these considerations, it was concluded that relationships between flow
diagrams are a good candidate for this investigation with sufficient data (mod-
els and metamodels) to apply model management with macromodels. Flow dia-
grams (FD) are used to represent high-level system design using a set of system
elements, the communication flows between these elements, and the flow items
passed along the communication flows. Figure 3 shows an example flow diagram.
The input to the case study was a fragment of an industrial vehicle product line
UML model covering 3 domains and 7 subsystems. Two types of flow diagrams
are used in this fragment:

– Functional Architecture Diagram (FAD). An FAD is a context diagram used
at the architecture stage to identify interfaces and show the communications
between domains and subsystems. The elements are Domain and Subsystem,
both specialize Package. Only one-level containment exists: Domains contain
Subsystems. The flow diagram in Figure 3 is a FAD.

– Component Diagram (CpD). A CpD is used at the design stage to show
the flow of signals between components and interfaces. The elements are
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Monitoring
«Domain»

Safety
«Domain»

«flow»

Timing, Temperature

«flow»

Timing, Temperature

EngineControl
«Domain»

«flow»

Temperature, SpeedEvent, FailureEvent

«flow»

Temperature, SpeedEvent, FailureEvent

InfoDisplay 

Fig. 3. An example flow diagram

Components and Interfaces. The classifiers conveyed across a flow are
Signals. An information flow can only occur between two components or
between a component and an interface. No element containment exists in a
CpD.

Multiple types of relationships are defined among the flow diagrams and the
specific relationships of interest are defined in the next section.

4 Formalization of Flow Diagram Relationships

In this section we describe the application of step (1) of the methodology in
Section 2.1 and describe the relationship types used with flow diagrams and
their formalization.

The top of Figure 4 shows the flow diagram metamodel (FD), which is a seg-
ment of a domain-specific profile derived fromUML2 specification [7]. In thismeta-
model, modeling element NamedElement is an abstract class representing any iden-
tifiable UML elements. A NamedElementmay contain other modeling elements via
the ownedElement relationship. The InformationFlow type is defined to connect
a source and a target NamedElement and can convey concrete elements, such as
classes, objects, signals, etc., as well as abstract elements of type InformationItem
representing other elements via the represented relationship.

Our observations of the flow diagrams used in this case study led us to identify
several flow diagram relationship types. We first describe these as generic flow
diagram relationships and then specialize them to versions that apply to FAD
and CpD flow diagrams.

FD Submodel Relationship. SubFD(D′:FD, D:FD). Submodel relationships
exist among flow diagrams. One flow diagram D′ can be a submodel of another
flow diagram D when all modeling elements in D′ are also in D.

FD Refinement Relationship. RefineFD(Con:FD, Abs:FD). Flow diagram
refinement deals with relative level of detail in different flow diagrams: a flow
diagram with more modeling details, called the concrete one and denoted by Con,
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FD
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InformationFlow
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Classifier
-represented
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ComponentInterface
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*
{subsets ownedElement}

Class

«stereotype»
Signal

Fig. 4. Metamodel for flow diagram: FD and specializations FAD and CpD that
extend it.

refines a flow diagram with fewer details, called the abstract one and denoted by
Abs. To formally define the refinement relationship, we first define the concept
of the relative level of detail between elements, between information flows, and
between the conveyed classifiers. Specifically, the level of detail is defined as
ordering relations:
– Element detail: e1 # e2 ⇐⇒ TC(ownedElement(e1, e2)). Element e1 is

more detailed than e2 if they are connected by a sequence of zero or more
ownedElement relationships. Here, TC(ownedElement(., .)) is the “transitive
closure” of ownedElement.

– Flow detail: f1 # f2 ⇐⇒ source(f1) # source(f2)∧target(f1) # target(f2).
Information flow f1 is more detailed than flow f2 if its endpoints are more
detailed.

– Classifier detail: c1 # c2 ⇐⇒ (c1 = c2) ∨ (InformationItem(c2) ∧
TC(represented(c2, c1))). For classifiers conveyed on a flow, only informa-
tion items can be used to increase the level of detail via the represented

relationship.

The detail ordering definition is used to determine when information is at the
same level of detail, or are siblings :

sibling(x, y) ⇐⇒ ∃a · x # a ∧ y # a ∧ (¬∃a′ · x # a′ ∧ y # a′ ∧ a′ ≺ a)
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According to this definition, x and y are siblings iff they have a common ancestor
and there is no other common ancestor in between — i.e., they must have a
common parent. We now state the three conditions for Con to be a flow diagram
refinement of Abs:

1. Con should only contain information that refines some information in Abs:
∀x ∈ Con∃y ∈ Abs · x # y

2. Con refines Abs completely at a given level of detail:
∀x ∈ Con, x′ ∈ Base · sibling(x, x′)⇒ x′ ∈ Con

3. Con refines all of Abs:
∀y ∈ Abs∃x ∈ Con · x # y

Note that these conditions are defined generically so they can be applied to
elements, flows or conveyed classifiers. In condition (2), Base refers to the UML
model that Con and Abs are diagrams of.

FD Submodel Refinement Relationship. SubRefineFD(Con:FD,Abs:FD).
We will say that Con is a submodel refinement of Abs when Con is a submodel
of a refinement of Abs. Thus, SubRefineFD is a composition of SubFD and Re-
fineRD. Formally,

SubRefineFD(Con,Abs) ⇐⇒ ∃m : FD·SubFD(Con,m)∧RefineFD(m,Abs)

FD Extractor Transformations. Extractor transformations generate dia-
grams from the base model. Two extractor transformations related directly to
FDs are:

– FDfor(E : NamedElement) : FD which generates the FD that shows the
element E and all its neighbouring elements connected to E by information
flows at the same level of detail.

– FDin(E : NamedElement) : FD which generates the FD that shows the
elements within E (i.e. related to E by the ownedElement relationship) and
the information flows between these elements.

Specialization of Flow Diagram Relationships. The lower part of Fig-
ure 4 shows the metamodels of the specialized flow diagrams used in the vehi-
cle control software development process. For FAD ’s, the elements are Domain

and Subsystem, and both specialize Package. Only one-level containment ex-
ists: Domains contain Subsystems. For CpD ’s the elements are Components and
Inter-faces. The conveyed classifier is Signals. An information flow can only
occur between two components or between a component and an interface. No
element containment exists in a CpD.

FD relationships are specialized correspondingly as follows. The submodel
relationship SubFD is specialized to SubFAD and SubCpD by restricting the
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Table 1. Summary of flow diagrams in the ACCFCA subsystem

Name Type Description
SITM FAD Driving Management domain context

ACCFCA FAD Adaptive Control subsystem context
ACCB CpD Adaptive Control Algorithm component
ACCC CpD Adaptive Control Communication component
ACCP CpD Adaptive Control Interface component

ACCMV CpD Adaptive Control component for motion
GS CpD Hardware Interface component

models to FAD and CpD, respectively. The RefineFD is specialized to Refine-
FAD for FAD and RefineCpD2FAD to express the refinement from an FAD to
a CpD. Since SubRefineFD is a composition of SubFD and RefineFD, its spe-
cializations are derived from the specializations of its components. For example,
SubRefineFAD is the composition of SubFAD and RefineFAD. The extractors
FDfor and FDin are also specialized to FADfor, FADin, CpDfor and CpDin in
the natural way.

5 Macromodel Definition

In this section we describe the application of step (2) of the methodology in
Section 2.1 and describe the development of the macromodels used for the case
study model fragment.

In all, we defined 7 macromodels – one per subsystem in the case study model
fragment. This level of decomposition seemed appropriate since the model con-
tent is decomposed at the subsystem level and subsystems are taken to represent
independent units of functionality that interact with other subsystems through
well defined interfaces. In total, the 7 macromodels referenced 14 FAD’s and 12
CpD’s. Of these 3 FAD’s were referenced from multiple macromodels since they
represented domain level information that was common to several subsystems.

In order to more clearly describe the result of producing a macromodel for a
subsystem we illustrate with an example advanced adaptive control function, the
ACCFCA subsystem, in a driving management domain SITM . Table 1 summarizes
the diagrams used in ACCFCA subsystem.

Figure 5 shows the macromodel for the relationships of these diagrams. The
dashed directed link labeled “theModel” specifies that FlowDiagramforACCFCA

represents a set of submodels of base model ProductLine : UML. The other dashed
directed links show extractor transformations, while the solid arrows show other
relationships. The extractor transformations start at the boundary of the box(es),
indicating the extraction of a submodel from the base model. The CpD diagrams
∗ACCFCA_Components and ∗M2 are not realized (indicated by the “*” prefix), so
they are not actually created but are implicitly present because they are neces-
sary to understand the relationships between the ACCFCA diagrams. Specifically,
∗ACCFCA_Components represents the complete component diagram for the sub-
system ACCFCA (i.e., CpDin(ACCFCA)) and this is decomposed into three CpD
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Fig. 5. The macromodel for ACCFCA flow diagram relationships

Table 2. The identified constraints among the flow diagrams of ACCFCA

Id Constraint
1 *ACCFCA_Components = ∪{*M2 , ACCC, GS}
2 *ACCFCA_Components = CpDin(ProductLine, ACCFCA)
3 *M2 = ∪{ACCB, ACCMV, ACCP}
4 *M2 = CpDfor(ProductLine, SITM_ACCFCA)
5 ACCC = CpDfor(ProductLine, SITM_ACCFCA_CE)
6 GS = CpDfor(ProductLine, SITM_ACCFCA_GS)
7 RefineFAD2CpD(*ACCFCA_Components, ACCFCA : FAD)
8 ACCFCA : FAD = FADfor(ProductLine, ACCFCA)
9 SubRefineFAD(ACCFCA : FAD, SITM : FAD)
10 SITM : FAD = FADfor(ProductLine, SITM)

diagrams – one for each component in ACCFCA. However, the CpD for compo-
nent SITM_ACCFCA is not realized (represented here as ∗M2) and is decomposed
into three CpDs. The macromodel in Figure 5 graphically asserts ten constraints
that must hold between the flow diagrams in ACCFCA. These are summarized in
textual form in Table 2.

Generalized Macromodel. Macromodels are not only for visualizing the re-
lationships between specific models but also for expressing general patterns
of relationships that could be used for methodological constraints. This prop-
erty enables the macromodel being used to define modeling standards and a
way to enforce that the development teams follow them when creating models.
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Fig. 6. A generalized macromodel for subsystem diagrams

Furthermore, a tool may be implemented to automatically check the conformance
to these standards.

Figure 6 shows a hypothetical macromodel defining the standard way to
express the collection of diagrams associated with any subsystem. Here, the
diagrams have parameters (i.e., theSubsytem and theDomain) and can be in-
stantiated to produce a macromodel for a particular subsystem by assigning
values to these parameters. Since the macromodel technique is not currently be-
ing used in development, we inferred this generalized macromodel by comparing
the macromodels for the different subsystems in the case study model fragment.
An interesting observation is that the macromodel in Figure 6 could be con-
sidered as the undocumented standard regarding subsystem diagrams, and the
macromodel technique can be used to make such standards explicit.

6 Conformance Checking

In this section we describe the application of step (3) of the methodology in
Section 2.1 and apply the relationship definitions and macromodels from
Sections 4 and 5, respectively, to do consistency checking. Specifically, we de-
scribe the results of checking conformance of the actual relationships in the case
study model fragment to the intended relationships and generalized macromodel.

The conformance checking was done by implementing the relationship types
in Section 4 using a Visual Basic (VB) script. VB was chosen as the imple-
mentation platform because it natively integrated with Rhapsody and provides
programmatic access to the model contents.

Table 3 shows the results of checking conformance of the ACCFCA example with
the constraints listed in Table 2. Constraint 2 is violated because a component
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exists in the model that does not appear in any diagram. That is, constraints 1
and 2 together imply that CpDin(ProductLine, ACCFCA) = ∪{*M2 , ACCC, GS}
and since by its definition, CpDin(ProductLine, ACCFCA) contains all compo-
nents in subsystem ACCFCA and ∪{*M2 , ACCC, GS} contains all the components in
the component diagrams for ACCFCA, these two sets of components should be the
same but they are not. A similar violation occurs for constraint 4 (in conjunction
with constraint 3) but here an additional flow is found that does not appear in
any component diagram. On closer examination, there is also a similarly named
flow SITM_ACCFCA_rsp_0 that differs only with an additional suffix “_0” in the
diagram. This may suggest that there are cases where an element is duplicated
during modeling and then forgotten. The conformance checks help identify the
discrepancies that when repaired, will improve the quality of the model for these
cases.

Finally, we notice that constraint 7 cannot be checked because of insufficient
information in the model. In particular, in the diagram ACCFCA, the “represented”
relationship was not used to link the information items conveyed by the flows
of the FAD to the signals conveyed by the flows of the CpDs. One possible
reason why this problem has not been previously identified may be that while
CpDs are used in code generation, the content of FADs are not - thus, there is
less incentive to maintain the links between these diagrams. Nevertheless, since
FADs are used as part of design reviews, the lack of linkage between these levels
may result in incorrect conclusions in these reviews. Thus, this gap may indicate
a more serious systemic problem in the modeling process.

Table 4 summarizes the results of conformance checking over all 7 subsystems
in the case study fragment. The relationships considered are taken from the
generalized macromodel in Figure 6 since these are found in the macromodels
of all subsystems. Of the 35 instances of intended relationships, 13 (37%) were
found to be conformant, 14 (40%) were found to be non-conformant and 8 (23%)
could not be determined for various reasons. These results suggest that the use
of macromodels can provide value in uncovering model defects and improving
model quality.

Conformance to Generalized Macromodel. In addition to conformance to
the relationships within a macromodel, we can check the conformance of a partic-
ular macromodel to the general macromodel. As an example, if the macromodel
for ACCFCA in Figure 5 is assumed to be an instance of the generalized macro-
model in Figure 6, we can check its degree of conformance to this standard.
In this case, the ACCFCA flow diagram model is conformant except the context
instances of FAD type have different names. Note that the decomposition of
*ACCFCA_Components is not a case of non-conformance because the generalized
macromodel does not prohibit the further decomposition of a model.

Assuming that a generalized macromodel is used as a standard in a devel-
opment process, the above naming bug may be caught by using an automated
conformance check. The generalized macromodel could alternatively be used as
a template to guide modeling in a top-down fashion so that the the collection of
diagrams is guaranteed to be “correct-by-construction”.
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Table 3. The results of ACCFCA diagrams conformance checks

Id Conformance to Constraint
1 Conformant (by definition, since *ACCFCA_Components is a derived diagram)
2 !Non-Conformant - CpDin(ProductLine, ACCFCA) contains the component

“SITM_READ_GS” but this is not found in *ACCFCA_Components (i.e., it is not
in any component diagram)

3 Conformant (by definition, since *M2 is a derived diagram)
4 !Non-Conformant - CpDfor(ProductLine, SITM_ACCFCA) contains the flow

named “SITM_ACCFCA_rsp_0” with source SITM_ACCFCA that does not ap-
pear in *M2 (i.e., it is not in a component a diagram for SITM_ACCFCA)

5 Conformant
6 Conformant
7 Unable to verify conformance to insufficient information
8 Conformant
9 Conformant
10 Conformant

Table 4. Aggregate results of conformance checking for each of the 7 subsystem in the
case study model fragment for the 5 relationships from the generalized macromodel.
Columns are: number conformant (# Conf), number non-conformant (# NConf) and
number that could not be determined (# Unk). Here s = theSubsystem and d =
theDomain.

Constraint # Conf # NConf # Unk
RefineFAD2CpD((s)Components, (s)SubsystemContext) 1 4 2
(s)SubsystemContext = FADfor(ProductLine, s) 4 3 0
SubRefineFAD((s)SubsystemContext, (d)DomainContext) 7 0 0
(d)DomainContext = FADfor(ProductLine, d) 1 6 0
(s)Components = CpDin(ProductLine, s) 0 1 6

In the 7 macromodels, 3 cases of non-conformance were detected and in each
case these were naming inconsistencies.

7 Related Work

Existing work on dealing with multiple interrelated models has been done in a
number of different areas. The ViewPoints framework [6] was an influential early
approach to multiview modeling. The macromodeling approach differs from this
work in being more formal and declarative rather than procedural. Furthermore
it treat relationships as first class entities and provide support for typing of
relationships.

More recently, configurable modeling environments have emerged such as
the Generic Modeling Environment (GME) [5]. None of these approaches pro-
vide general support for expressing model relationships or their types; hence,
they have limited support for defining and expressing interrelated collections of
models. Furthermore, the focus of these approaches is on the detail level
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(i.e. the content of particular models) rather than at the aggregate level as with
macromodels.

Process modeling approaches like the Software Process Engineering Meta-
model (SPEM) [4] are complementary to the notion of a macromodel. With
process modeling, the main focus is to define how activities produce or consume
models and which process actors perform these activities. A macromodel adds
to this the ability to define how the content of models must be related and thus
adds correctness conditions to the process definition.

The term “megamodel” as representing models and their relationships at the
aggregate level emerged first in the work of Favre [3] and also later as part
of the Atlas Model Management Architecture (AMMA) [2]. Macromodels bear
similarity to these two kinds of megamodels, but the intent and use is quite
different - to express the modeler’s intentions in a development process.

Finally, the work on model traceability also deals with defining relationships
between models and their elements (e.g., [1]); however, this work does not have a
clear approach to defining the semantics of these relationships. Thus, the macro-
modeling framework can provide a way to advance the work in this area.

8 Conclusion and Future Work

In this report, we present a model management approach using formal rela-
tionships and its application to vehicle control software development. With this
technique, the types of relationships used to relate models are first identified,
then formalized using metamodels, and finally used in macromodels to specify
the interrelationships between the models of interest in development. The model
relationships specified in such a way provides a basis for automatic consistency
checking when the models are altered and evolving, which consequently improves
the model and product quality.

As the first phase, this research has analyzed different relationship types used
in the vehicle control software development in order to determine representative
relationship types. Based on the analysis results, the refinement relationships
between the flow diagrams of the functional architecture context diagrams and
the component diagrams have been selected for the exercise. The refinement and
submodel relationship types, along with their constraints, have been modeled
using macromodels and applied to 7 subsystems across 3 vehicle domains.

The results of applying our model management technique to the vehicle soft-
ware development process has shown the value of the technique in several ways.
First, some inconsistencies within the example models have been detected. Ad-
dressing them will improve quality of the models. Second, the relationship for-
malization process has uncovered some gaps in the information within the UML
model that could indicate a systemic problem in the modeling process. Finally,
we have revealed an undocumented convention that has been (mostly) followed
in multiple subsystems. This convention has then been formalized as a general-
ized macromodel and has been presented as a standard for modelers to follow
when expressing the FADs and CpDs.
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The future work of this research will build on the currently-obtained results
in two ways. First, we will extend testing of the formalization in order to assess
the robustness. Second, we will develop and test automatic repairs of identified
inconsistencies. We hope that this research will ultimately lead to new tools that
support formal and automatic model management.
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Abstract. Declarative specification languages with constraints are used
in model-driven engineering to specify formal semantics, define model
transformations, and describe domain constraints. While these languages
support concise specifications, they are nevertheless prone to difficult se-
mantic errors. In this paper we present a type-theoretic approach to
the static detection of specification errors. Our approach infers approx-
imations of satisfying assignments and represents them via a canonical
regular type system. Type inference is experimentally efficient and type
judgments are comprehensible by the user.

1 Introduction

Declarative specification languages with constraints are used in model-driven
engineering to specify formal semantics [1,2,3], define model transformations
[4,5,6], and describe domain constraints. While these languages support concise
specifications, they are nevertheless prone to difficult semantic errors: A con-
straint may be unsatisfiable; it may be satisfiable for unintended values; or it
may improperly trigger a rewrite rule, transformation step, or constraint viola-
tion. Standard type-theoretic approaches to early error-detection do not detect
these kinds of errors, because they do not infer which values satisfy constraints.

In this paper we present a type system and type inference algorithm for assign-
ing semantic types to variables occurring within constraints. Inferred types de-
note sets of values over-approximating the satisfying assignments. For instance,
if the inferred type of a variable is the empty set, then the constraint is certainly
unsatisfiable. However, if the inferred type is non-empty, then our approach
produces a canonical description of the possible satisfying assignments. These
canonical types are in practice small. Therefore, inferred types can be examined
by the user and carry important information even in the absence of errors. To
our knowledge, this is the first semantic type system to take this approach. It
has been implemented in the formula language and we present experimental
results.

The paper is structured as follows: Section 2 motivates the use of semantic
types by a small example. We summarize basic notation in Section 3. Section 4
introduces canonical regular gypes, which form the foundations of our approach.
Section 5 generalizes regular types to incorporate constraints over interpreted
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Predicate Pred ::= true | false | Rexp | ( Pred ) | B1 Pred | Pred B2 Pred
Rel. Expr. Rexp ::= ( Rexp ) | Aexp R2 Aexp
Arith. Expr. Aexp ::= Aatom | ( Aexp ) | A1 Aexp | Aexp A2 Aexp
Arith. Atom Aatom ::= var | int
Bin. Rel. Op. R2 ::= == | != | < | > | <= | >=
Un. Arith. Op. A1 ::= + | –
Bin. Arith. Op. A2 ::= + | – | * | / | %
Un. Bool. Op. B1 ::= !
Bin. Bool. Op. B2 ::= && | ||

Fig. 1. A BNF grammar for several kinds of expressions

functions. Section 6 presents type inference via a saturation algorithm, and we
provide experimental results in Section 7. We end with related work and conclu-
sions in sections 8 and 9.

2 A Motivating Example

We begin with a motivating example showing how errors can arise in model trans-
formations, formal specifications, and domain constraints. They are generic, so
we attempt to describe them in a language neutral manner. Figure 1 shows a
BNF grammar for expressions found in C-like languages: Integer arithmetic ex-
pressions (Aexp) can combined with relational operators (R1, R2) into relational
expressions (Rexp); these can be further combined with Boolean operators (B1,
B2) to form predicates (Pred). Suppose a modeling language for state machines
allows transitions to be guarded by constraints written in the Object Constraint
Language (OCL). OCL has slightly different expressions permitting the special
constant null to appear as arithmetic and Boolean atoms:

AatomOCL ::= null | int PredOCL ::= null | true | . . .

One typical task of a model transformer or code generator is to translate from
the abstract syntax of one domain specific language (DSL) to the abstract syn-
tax of another DSL. For instance, a model transformation can transform a state
machine into a C program. In doing so, it will not operate on the string repre-
sentations of transition guards, but instead on abstract syntax trees (ASTs) or
abstract syntax graphs (ASGs) produced after parsing the input model. Prac-
tically all model transformation languages operate on structured data, and our
type system shall take advantage of this fact. Here is an example of a model
transformation rule (in pseudocode) where patterns in the rule range over ASTs
/ ASGs:

FIND: A transition t s.t. src(t) = sa, dst(t) = sb, and guard(t) = gOCL.
CREATE: If(current == id(sa) && gOCL) { current = id(sb); }.
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This rule transforms guarded transitions into snippets of C ASTs. It also contains
an error, because not every OCL predicate is a well-formed C predicate. For
example, the malformed C AST if(1 + null == null){ . . . } can be obtained from
a legal input model. This error can be statically detected by inferring types for
the find and create portions of the rule. In the find portion a type τ is inferred
for gOCL denoting all ASTs that might trigger the rule if substituted for gOCL.
In the create portion a type τ ′ is inferred for gOCL denoting all well-formed
C predicate ASTs. If τ is not a subtype of τ ′, then there is some value that
could trigger the rule and create a malformed AST. Here, subtype means subset
inclusion of denoted values. In our experience, it is very easy to create these
types of errors when transforming between complex abstract syntaxes.

The previous example can be phrased using constraints over algebraic data
types (ADTs). The problem of inferring types is equivalent to approximating the
satisfying assignments of these constraints. However, specifications often contain
other kinds of constraints than just constraints over ADTs. Consider the problem
of specifying the semantics of OCL expressions. Then such a formal specification
might contain (in pseudocode) an axiom:

FORALL: AST e in AexpOCL, IF: e = Add(v1, v2) and k = v1 + v2,
THEN: eval(e) = k.

Here AexpOCL denotes the set of OCL integer arithmetic ASTs. The first con-
straint is an ADT constraint requiring e to be a syntax tree constructed from
values v1 and v2 by applying the Add operator. This constraint uses the data
constructor Add instead of the string ‘+’ to indicate the structure of the ex-
pression. The second constraint involves the operator + defined by the theory
of arithmetic. This operator takes two reals and computes their arithmetic sum.
When these constraints are satisfied it may be concluded that eval(e) = k. A
full specification of OCL would contain many such statements to inductively
define the evaluation of arithmetic expressions with the help of the theory of
arithmetic.

In the above axiom there is a subtle interaction between the two constraints
that can be a source of error. The Add operator is a function Add : AexpOCL ×
AexpOCL → AexpOCL. The + operator is a function + : R × R → R. The values
for the variables vi must be in the domain of both operators, which is the set
of integers: AexpOCL ∩R = Z. Therefore, while this axiom is satisfiable for some
values, it never defines the evaluation of OCL addition for null values. Though
this specification would not generate a type error, type inference would assign
the type Integer to variables. The user could inspect the inferred type to quickly
learn that null will never be handled by this axiom. The appropriate coarse of
action would be to add a new axiom defining OCL addition on null values.

FORALL: AST e in AexpOCL, IF: e = Add(null, v) or e = Add(v, null),
THEN: eval(e) = null.
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Declarative specifications are also used to write domain constraints, which are
constraints on models that should never be violated. For instance, suppose
state machines must be deterministic, then there must never be two transitions
starting from the same state leading to different starts guarded by overlapping
intervals:

NEVER: Transitions t and t′ s.t. guard(t) �= guard(t′), src(t) = src(t′),
guard(t) = LessEq(e, k), and guard(t′) = LessEq(e, k)

There is a mistake in this constraint. The final constraint should have been
written guard(t′) = LessEq(e, k′). Without this correction the constraint is
unsatisfiable because it implies that guard(t) = guard(t′). In fact, our type sys-
tem will catch this error, because during type inference new equalities can be
learned. The equality guard(t) = guard(t′) will be learned, which is inconsistent
with the constraint guard(t) �= guard(t′).

In summary, declarative specifications with constraints are used for many
purposes in MDE. They are prone to bugs that are both difficult to find and fix
and are outside the scope of existing type inference schemes. We now proceed
to formalize the type system and develop type inference.

3 Notation

Terms. A term t is either a constant c, a variable x, or an n-ary function
symbol f applied to n terms f(t1, . . . , tn). We also write t for a vector of terms
(t1, . . . , tn) and f(t) for an f -application. The ith component of t is t(i). We
write t′ � t if t′ is a subterm of t, and t[x] for a term with variables x as sub-
terms. The term t[t′\t′′] is formed by simultaneous replacement of every subterm
t′ with t′′.

Signatures. A signature Σ is a set of constants, variables, and function sym-
bols. A Σ-term is a term built from the symbols of Σ.

Models. A model M of Σ-terms over universe U is a family of functions, one
for each symbol of Σ. The interpretation of a variable x is a constant xM : U .
The interpretation of an n-ary symbol f is a function fM : Un → U . An
interpretation M models a first-order formula ϕ, written M |= ϕ, if ϕM is
a tautology. We write ϕ |= ψ if every model of ϕ is also a model of ψ.

4 Canonical Regular Types

All the examples in Section 2 relied on tree-structured data that we loosely called
ASTs. In this section we review a formalization of tree-structured data using alge-
braic data types (ADTs). We employ a unique variant of ADTs, called canonical
regular types, were type expressions have canonical forms. Later, canonicity shall
be used to present the results of type inference in a concise and comprehensible
form. ADTs begin with data constructors.
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Definition 1 (Data Constructors). Let U be a universe, then a set of data
constructors is described by a signature:

Σcon
def
= 〈C, f1, . . . , fk〉,

where C ⊆ U is a (possibly infinite) set of constants, and each fi : U
n → U is

an n-ary data constructor. The only equalities satisfied by data constructors are
the trivial equalities: ∀x. fi(x) = fi(x).

Applying data constructors to elements of U returns new tree-structured data.
U provides a labeling for these trees, but its details can be ignored because every
Σcon-term identifies a unique element of the universe. For example:

Add(1, Add(2, 3)) �= Add(Add(1, 2), 3)),

for Σcon
def
= 〈U,Z, Add〉. In summary, data constructors exploit the inherent

tree-structure of terms to formalize ASTs.
ADTs extend data constructors with types denoting subsets of trees. The

expressive power of types depends on the formalism. Regular types are highly
expressive; they can precisely denote recursively enumerable sets of trees. In or-
der to define types, users provide a set of type names and a set of type equations.
The denotation of user types it the smallest solution to the system of equations.

Definition 2 (Regular Type System). Given a set of data constructors, then a
regular type system is a structure:

Σreg
def
= 〈Σcon, B, T,⊥,∩,∪, E, ��〉,

where B is a set of base types, T is a set of user types, ⊥ ∈ B is the empty type,
and ∩ / ∪ are type intersection / union. E is a set of type equations and �� is
the type denotation function; it is the least function satisfying Figure 2. In the
text to follow let α range over user types and β range over base types.

Sets of trees are denoted by type terms. A type term τ is a term built from data
constants / constructors, base types / user types, or the operators ∩ / ∪. Let
τ(Σreg) be the set of all type terms; an example is:

f(f(Natural)) ∪ g(1, Integer)

where Natural and Integer are base types denoting the sets of natural numbers

and integers. For example, �Natural� def
= {0, 1, 2, . . .}. Applying a constructor f

to type terms τ yields a type term f(τ ) denoting all the trees with root f and

children conforming to τ . For example, �f(Natural)� def
= {f(0), f(1), . . .}. Then

the operators ∩ / ∪ denote the mathematical intersections / unions of types.
The subtyping relation is a semantic one; τ ′ <: τ iff �τ ′� ⊆ �τ�:
1 <: 1 ∪ 2 <: Natural <: Integer. f(1) <: f(1) ∪ f(2) <: f(1 ∪ 2) <: f(Natural).
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� � : τ (Σreg)→ 2U

�⊥�def= ∅. �τ1 ∪ τ2� def
= �τ1� ∪ �τ2�.

�c� def
= {c}, for c ∈ C �τ1 ∩ τ2� def

= �τ1� ∩ �τ2�.
�β�def= {c1, c2, . . .}, for β ∈ B − {⊥}. �f(τ )� def

= {f(t) |t ∈ �τ �}.
�τ �def= �τ (1)� × . . .× �τ (n)�. �α� = �τ�, if α ∼∼ τ ∈ E.

Base types are closed under ∩ and τ ′ <: τ
def
= �τ ′� ⊆ �τ�.

Fig. 2. Semantics of regular type systems

4.1 Type Equations and Uniformity

Type equations allow users to define the shapes of ASTs and to assign names to
sets of ASTs. A type equation is a pair α ∼∼ τ for α ∈ T . For example:

αVar ∼∼ Var(String). αNot ∼∼ Not(αPred). αAnd ∼∼ And(αPred, αPred).
αState ∼∼ State(Integer). αTrans ∼∼ Trans(αState, αPred, αState).

αPred ∼∼ true ∪ false ∪ αVar ∪ αNot ∪ αAnd.

The solution to this system of equations assigns to the type name αPred all the
well-formed Boolean predicate ASTs comprised of true, false, variables, Not, and
And operations. Similary, αState denotes all integer-labeled State terms and αTrans

denotes all transitions with well-formed guard predicates. Notice that each data
constructor is paired with a type equation. The intent of these equations is to
express the valid uses of the data constructors.

Definition 3 (Uniform Regular Type Systems). A type system Σreg with equa-
tions E is a uniform regular type system if:

1. For every f ∈ Σcon there is exactly one type equation αf ∼∼ f(τ ) in E.
2. If αf ∼∼ f(τ ) ∈ E, then every τ (i) does not contain data constructors.
3. For all other equations α ∼∼ τ then τ does not contain any data constructors.

The previous example is a uniform regular type system. Uniformity is important
because it implies that all type terms have canonical forms. In other words, all
semantically equivalent type terms are reducible to a unique type term.

Theorem 1 (Canonical Forms). If Σreg is a uniform regular type system, then
there exists a function can : τ(Σreg)→ τ(Σreg) satisfying:

1. �can(τ)� = �τ�.
2. can(τ) = can(τ ′)⇔ �τ� = �τ ′�.
The term can(τ) is called the canonical form of τ . Proved in [7].
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In summary, type terms denote precise sets of trees and subtyping is via subset
inclusion. This is in contrast to other type systems where subtyping is based on
the syntax of type terms. Type inference may generate large type terms, but
these will be simplified by computing canonical forms. Consider this type term:

(αPred ∪ true) ∩[
And(Not(true), αPred) ∪ And(Not(false),Boolean)∪

And(Not(false), αVar ∪ αNot ∪ αAnd)

]
Its canonical form is simply And(Not(Boolean), αPred).

4.2 A Preview of Type Inference

Consider once again the model transformation rule:

FIND: A transition t s.t. src(t) = sa, dst(t) = sb, and guard(t) = gOCL.
CREATE: If(current == id(sa) && gOCL) { current = id(sb); }.

This rule can now be formally stated using constraints over ADTs.

FIND: t ∼∼ Trans(sa, gOCL, sb), sa ∼∼ State(i), sb ∼∼ State(j), and t : αTrans.
CREATE: If(And(Eq(Var(“current”), i), gOCL), Set(Var(“current”), j)).

The constraints are satisfied for some substitutions of the variables by elements
of U . The type constraint t : αTrans requires t to be assigned to an element of
�αTrans�. For example:

gOCL �→ true, i �→ 1, j �→ 2,
sa �→ State(1), sb �→ State(2), t �→ Trans(State(1), true, State(2)).

The goal of type inference is to deduce a variable-wise over-approximation of the
satisfying assignments using regular types. Our type inference would infer the
following types for the find portion of the rule:

gOCL : αPred-OCL, i, j : Integer, sa, sb : αState, t : αTrans.

Note that type judgments are expressed as implied type constraints. This infer-
ence can be used to check if the create portion of the rule is a subtype of valid
C ASTs.

5 Constraints with Interpreted Functions

The previous example illustrated a special case where specifications only con-
tain data constructors, equalities, and type constraints. Clearly, these kinds of
specifications fit well with regular types. Suppose variables x are judged to have
types τ and that y ∼∼ f(x) appears as a constraint. Then type judgments can be
propagated through data constructors yielding the judgment y : f(τ ). However,
specifications can contain other kinds of constraints and functions. For example:
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o : Un →� U
γo
↑ : τ (Σreg)

n → τ (Σreg)
γo
↓ : τ (Σreg)→ τ (Σreg)

n

(l1) γo
↑(⊥) = ⊥ and γo

↓(⊥) = ⊥. (g1) τ ′ <: τ ⇒ γo
↑(τ

′) <: γo
↑(τ ).

(l2) o(�τ �) ⊆ �γo
↑(τ )�. (g2) τ ′ <: τ ⇒ γo

↓(τ
′) <: γo

↓(τ ).
(l3) o−1(�τ�) ⊆ �γo

↓(τ )�. (g3) γo
↑(τ ) <: τ

′ ⇔ τ <: γo
↓(τ

′).

where o(�τ �) and o−1(�τ�) are the image and inverse image of o.

Fig. 3. Galois approximations of functions

t ∼∼ Trans(sa, g, sb), sa ∼∼ State(i), sb ∼∼ State(j), and i− j ≥ 0

The subtraction function is not a data constructor; neither can the ≥ relation be
described in terms of equality or type constraints. Instead, the interpretations of
− and ≥ are fixed by the theory of arithmetic. For this reason, we refer to them
as interpreted functions. In this section we develop a method to reason about
the effects of interpreted functions on regular types.

Let o : Un →� U be an n-ary interpreted partial function, i.e. it satisfies equal-
ities other than the trivial equality ∀x. o(x) = o(x). An interpreted function
with image { true, false } is called an interpreted relation. We handle interpreted
functions using two type-level approximations for propagating type information:

γo
↑ : τ(Σreg)

n → τ(Σreg). γo
↓ : τ(Σreg)→ τ(Σreg)

n.

The upward approximation γo
↑ propagates type information from inside to out-

side of applications. Suppose k ∼∼ i − j and i : PosInteger, j : NegInteger. Then
the upward approximation of − determines that k : PosInteger by computing

γ−
↑ (PosInteger,NegInteger)

def
= PosInteger. The downward approximation propa-

gates type information from outside to inside of applications. Given k : PosInteger

then γ−
↓ (PosInteger)

def
= (Real,Real). The downward approximation indicates

that i and j must be reals, but it cannot constrain the argument types further.
The Lifting Axioms (l1)-(l3) in Figure 3 formalize the relationship between
interpreted functions and approximations.

The approximations must be chosen so they always converge on a most pre-
cise type. A well-known approach for constructing converging approximations
is via Galois Connections. The Galois axioms (g1)-(g3) in Figure 3 state the
additional requirements. Axioms (g1) and (g2) require approximations to be
monotone w.r.t. subtyping. Axiom (g3) is the key: The upward and downward
approximations are always compatible, but the upward approximation can be

more precise. Consider these two derivations, where �(� def
= U denotes all possi-

ble values; initially it is known that i : PosInteger, j : NegInteger and k ∼∼ i− j:
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Table 1. Galois Approximation rules for +

γ+
↑ τ1 τ2 λτ1, τ2. γ+

↓ τ λτ.

0 ⊥ � ⊥ ⊥ (⊥,⊥)
1 � ⊥ ⊥ � (Real,Real)
2 0 � τ2 ∩ Real
3 � 0 τ1 ∩ Real
4 c1 c2 c1 + c2
5 PosInteger PosInteger PosInteger
6 NegInteger NegInteger NegInteger
7 Natural PosInteger PosInteger
...

...
...

...
N - 1 Integer Integer Integer
N Real Real Real

(1) k : (
by γ−

↓
=⇒ i : Real, j : Real

by γ−
↑

=⇒ k : PosInteger.

(2) from initial
by γ−

↑
=⇒ k : PosInteger

by γ−
↓

=⇒ i : Real, j : Real.

The first derivation assumes the most general type for k, and then applies the
downward approximation to conclude that i and j are reals. However, they are
already known to be subtypes of Real, so their most precise type does not change.
Next, the upward approximation lowers the type of k from ( to PosInteger. The
second derivation applies γ−

↑ before γ−
↓ . In the end, both derivations agree on

the must precise types for the variables.
Galois approximations are a natural way to extend interpreted functions and

relations into the regular type system. Regular types already incorporate precise
Galois approximations.

Theorem 2 (Galois Approximations of Data Constructors). For any data con-

structor f , then γf
↑ , γ

f
↓ are Galois Approximations of f . The approximations are

precise, i.e. ⊆ can be replaced with = in Axioms (L2)-(L3) and γf
↓ (γ

f
↑ (τ )) = τ

holds. The approximations are defined to be:

γf
↑ (τ )

def
= f(τ ). γf

↓ (f(τ ))
def
= τ . γf

↓ (β)
def
= γf

↓ (c)
def
= γf

↓ (g(τ
′)) def

= ⊥.

In all other cases τ can expressed as a union type τ
def
= τ1 ∪ . . . ∪ τn. For union

types let γf
↓ (τ)

def
= γf

↓ (τ1) ∪ . . . ∪ γf
↓ (τn).

We shall make use of the extra precision for data constructors by handling them
specially during type inference.

5.1 Approximations by Tables

Unlike data constructors, interpreted functions do not come with built-in ap-
proximations. However, Galois Approximations provide a modular mechanism
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to soundly integrate new operators into the type system, and to make trade-offs
between the precision and speed of type inference. One convenient method of
defining Galois Approximations is by tables, as shown in Table 1. Each table
contains a sequence of rows (τ i, λi) where λi is a function from type terms to
type terms. It defines upward / downward approximations as follows:

γo
↑(τ )

def
= λk(τ ), for k

def
= min{ i | τ <: τ i }.

γo
↓(τ)

def
= λk(τ), for k

def
= min{ i | τ <: τi }.

To compute the upward (or downward) approximation for τ , find the smallest
row k of which τ is a subtype and then compute λk(τ ). In our implementation
of formula the type system is parameterized by approximation tables making
it easy to introduce new approximations. Note that row 4 is a schema for a
an infinite number of rows, one for each possible pair of constants c1, c2. These
shorthands are also supported in formula.

6 Type Inference

The input to the type inference algorithm is a set of constraints C understood as
a conjunction (minterm) together with a regular type system Σreg. A constraint
is either an equality, disequality, a type constraint, or the application of an
interpreted relation r, such as t < t′.

Constraint ϕ ::= t ∼∼ t′ | t �∼∼ t′ | t : τ | r(t).

Type inference on constraints with disjunctions, which are not minterms, can
be be accomplished by first converting the constraints into disjunctive normal
form and then applying type inference algorithm to each minterm. If a variable
appears in multiple minterms then its final type is the union of its inferred types
in each minterm. For the remainder we focus only on minterms. Furthermore, we
will consider minterms of the form C ∧J , where J is a finite conjunction of can-
onized type constraints t : can(τ) and C is a conjunction of the other constraints
(equalities, disequalities, and interpreted relations). Note that whenever a data
constructor f is applied there is an implicit type constraint that the result is a
member of αf .

We now present our type inference procedure. Figure 4 gives saturation rules
for inferring the types of subterms in C ∧J . The procedure is modulo a decision
procedure for satisfiability of the conjunction C. formula uses a combination
of congruence closure [8] and Z3 [9] to check satisfiability of constraints that
combine ADTs and arithmetic. We use this as a black box and concentrate
on the rules for saturating with respect to type judgments. Initially all terms
occurring in C ∧ J are assigned the most permissive type (. We also enforce
that data constructors respect the type equations of Σreg. Equality constraints
force two terms to have the same type. If x : τ , y : τ ′ and x ∼∼ y is deduced,
then x, y : can(τ ∩ τ ′) is concluded. Using the canonizer on the (∩) rule ensures
that only a finite number of new types are introduced. On the other hand, if
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Init C ∧ J =⇒ C ∧ J ∧ t : � If t is a term in C.
Data C ∧ J =⇒ C ∧ J ∧ f(t) : f(τ ) If f(t) is a term in C and E contains αf ∼∼ f(τ ).
Const C ∧ J =⇒ C ∧ J ∧ c : c If c is a datatype constant in C or J
Eq C ∧ J =⇒ C ∧ t ∼∼ tg ∧ J If (t : tg) ∈ J
(∩) C ∧ J =⇒ C ∧ J ∧ t : can(τ ∩ τ ′) If (t : τ ), (t′ : τ ′) ∈ J and C |= t ∼∼ t′

(⇑f ) C ∧ J =⇒ C ∧ J ∧ f(t) : f(τ ) If (t : τ ) ∈ J , f(t) occurs in J or C
(⇓f ) C ∧ J =⇒ C ∧ J ∧ t : τ If (f(t) : f(τ )) ∈ J
(⇑o) C ∧ J =⇒ C ∧ J ∧ o(t) : γo

↑(τ ) If (t : τ ) ∈ J , o(t) occurs in J or C
(⇓o) C ∧ J =⇒ C ∧ J ∧ t : γo

↓(τ ) If (o(t) : τ ) ∈ J
Unsat C ∧ J =⇒ Unsat If C is unsatisfiable or t : ⊥ is in J .

Fig. 4. Saturation Rules for Type Inference

the type of a term t is a type expression tg that has only one value (in other
words, tg is a ground expression built from constructors and constants), then the
term is necessarily equal to the constant tg, that is t ∼∼ tg. The (⇑) and (⇓) rules
propagate type information from inside to outside of applications and vice versa.
The (⇑o)/(⇓o) rules use the Galois approximations to propagate types. We can
assume that the types produced by the Galois approxiations are canonical.

It follows by inspection of the rules that our procedure infers only valid
consequences:

Lemma 3 (Soundness). Each rule preserves satisfiability of C ∧ J .

Lemma 4 (Termination). Assuming C has a decidable theory, then saturating
C ∧ J with respect to the rules in Figure 4 terminates.

Proof. First we observe that the saturation rules only create judgments for ex-
isting terms in C ∧ J . So there is only a finite set of terms t that are used in
judgments t : τ in J . The set of canonical types used in judgments is also finite
because each judgment creates a descending chain of smaller, that is more con-
strained types. There is only a finite set of base types, so this process terminates.

Thus, we have established that the proposed saturation procedure is an effective
approach for type checking constraints in combination with regular types. But
we can also establish a tighter relation between regular types and constraints in
some cases. To formulate this property let us define the notion of Best Type.

Definition 4 (Best Type). Given a constraint C ∧ J over variables x, the best
type is a judgment x : τ , such that for every variable xi with judgment xi : τi,
and every value t ∈ �τi�, there is a model M for which M |= C ∧ J ∧ xi ∼∼ t.

Saturation with respect to Figure 4 produces best types in a very useful case:

Theorem 5 (Best types for Data Constructors). Suppose that C contains only
equality and type constraints over data constructors, then saturation computes
the best type (or reports that C is unsatisfiable).
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Table 2. Top row: Canonization times for random type expressions. Bottom row: Type
inference times for LP rules generated by a Markov process.
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Proof. (Sketch) The theory of Data Constructors is decidable by applying unifi-
cation with respect to all equalities. The most general unifier produces the set of
equalities that must hold in all models. Theorem 2 ensured that γf

↓ (γ
f
↑ (τ )) = τ ,

so the saturation rules do not introduce any approximations with respect to the
Data Constructor theory.

We presented saturation rules that used tables to resolve type constraints for
interpreted functions. This is the basis of type checking in formula, which fur-
thermore also propagates constraints from type judgments over basic constraints.
For example t : PosInteger produces the constraints +t, ∼∼ t ∧ t > 0.

7 Experimental Results

Type inference using Canoical Regular Types and Galois Approximations has
been implemented in our formal specification language formula. In theory,
computing canonical forms may take exponential time. In practice, type infer-
ence is rarely slow, so we developed several benchmarks to stress-test our algo-
rithms on unusually large type terms and rules. We evaluated our benchmarks
using two representative type systems. The first type system, called constrained
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Table 3. Average compression factors for non-canonical terms of various sizes. Bigger
numbers indicate more compression and smaller canonical forms. Gray lines indicate
the absolute distances of medians from means (skew).
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declarations, came from a typical formula program. There were around 20 dis-
tinct data constructors, type equations contained many union types, and there
were strong type constraints on constructor arguments. The second type system,
called unconstrained declarations, was atypically unconstrained having only the
type equations:

E
def
= {αfi

∼∼ fi((,() | i = 1 . . . 8}. (1)

These equations permitted type expressions with arbitrary nestings of fi
applications. We expected longer times for canonization of random type terms
over unconstrained declarations because there were more non-equivalent type
expressions.

We developed two benchmarks and ran each against the two type systems.
The Random Type Terms benchmark consisted of generating 1200 random type
terms and measuring the time to canonize each term. This benchmark was purely
to measure the impact of canonization, which is called many times during type
inference. Random type terms had a maximum constructor depth of 12 and were
guaranteed not to be trivially empty. Terms were biased towards union types,
since unions can lead to an exponential increase in the size of canonical forms.
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These random type terms do not occur in typical programs. In the results tables
term size means the number of subterms.

The Markov Rules benchmark generated random specification rules through a
Markov process and measured the time of type inference for the entire rule. The
goal of this benchmark was to test type inference on large rules. formula rules
are based on logic programming and have the structure:

f(t) :− f1(t1), . . . , fn(tn), r1(t
′
1), . . . , rm(t′m).

where fi(ti) and rj(t
′
j) are constructor applications and constraints. The Markov

process for generating these rules was based on key program features we mea-
sured from actual logic programs: The rules of an average program perform
shallow matchings on terms (an average term depth of 1.5). The average rule
has many “don’t care” variables; the average ratio of variable occurrences to
distinct variables in a rule is also around 1.5. Both of these features impact the
type expressions that will be encountered in an average program. We generated
100 rules for each n = 2k and 1 ≤ k ≤ 10.

Table 2 shows the times measured for the combinations of benchmarks and
type systems. The results show that canonization scales for complex type terms
and for large program fragments respecting observed structure. The average
canonization and type inference times for constrained and unconstrained decla-
rations were similar, though constrained declarations exhibited more variance in
run-times.

To test the quality of inferred types, we examined the size of non-canonical
forms and their canonical forms after each benchmark. Define the compression

factor of a non-canoical term τ to be 1 − size(can(τ))
size(τ) . Factors near 1 indicate

concise canonical forms that are much smaller than their non-canonical counter-
parts. Table 3 shows the compression factors for non-canonical terms as a func-
tion of term size across the various benchmarks. Each plot summarizes around
106 non-canonical terms (canonical terms are not included in these statistics).
Note that small terms of size less than five are excluded from the plots, since
they appear as noise. In general, the theoretical blow-up of canonical forms is
not observed. Instead canonical forms are concise in practice and inferred types
can be read by users.

8 Related Work

Regular types have a long history in programming, particularly logic program-
ming (LP) [10], and are non-trivial to implement [11]. However, these approaches
do not handle interpreted functions, nor do they produce predictable and com-
prehensible types. Historically, regular types are used to approximate the out-
comes of untyped logic programs for static analysis [12] via abstract interpre-
tation approaches [13]. State-of-the-art implementations use non-deterministic
tree automata (NDTAs) for representing regular types and optimized automata
algorithms for manipulating them [11,14]. The key algorithms for subtype test-
ing are automata product, complement, and emptiness testing [15]. We uses an
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approach based on canonical forms [7], which has the advantage that type in-
ference produces predictable and comprehensible type terms as opposed to tree
automata. In the other direction, generalizations include feature algebras [16],
extensions with arrow types [17], and refinement types [18]. Though we do not
know of effective algorithms for deciding properties.

Regular types (without interpreted functions) exist in some other languages.
The work of [19] has been influential on type declarations in LP languages. The
authors showed that regular types are a subclass of logic programs and can be
viewed as syntactic sugar over untyped logic programs. This is the approach
taken by Ciao-Prolog [20], which is one of the few extant LP languages support-
ing regular types. The LP language NU-Prolog supports first-class type equa-
tions [10]. More recently, regular types have received much attention for statically
verifying XML transformations. The languages XDuce [11] and CDuce [14] use
regular types to prove that XML transformations always produced well-formed
XML trees. Our earlier example of transforming between between expression
languages is an exemplar.

9 Conclusions

We presented an approach to static error detection in declarative languages with
constraints. Our approach has the unique property that satisfying assignments
are summarized with type judgments, which are intended to be comprehensible
by the user. Experimentally, our type judgments a small and can be computed
quickly. Furthermore, canonicity ensures the user observes the same type terms
whenever type inference infers semantically identical types. This is in contrast to
other regular type systems where inference constructs complex tree-automata.
Currently, every formula specification passes through type inference during
compilation, and we have found it to be a crucial tool to catch difficult specifi-
cation errors.

Future work includes experimenting with more precise Galois Approximations.
We believe the interval-style approximations familiar in abstract interpretation
schemes would be particularly useful [21]. On the language side, we would also
like better ways to identify which constraints are responsible for type errors
or which constraints are responsible for an unexpectedly small inferred types.
Because type inference is a saturation procedure over many constraints, it is not
necessarily obvious how the constraints interact to result in the final inferred
types.
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6. Horváth, Á., Varró, D.: CSP(M): Constraint Satisfaction Problem over Models. In:
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Abstract. Languages like UML and OCL are used to precisely model
systems. Complex UML and OCL models therefore represent a crucial
part of model-driven development, as they formally specify the main sys-
tem properties. Consequently, creating complete and correct models is a
critical concern. For this purpose, we provide a lightweight model valida-
tion method based on efficient SAT solving techniques. In this paper, we
present a transformation from UML class diagram and OCL concepts
into relational logic. Relational logic in turn represents the source for
advanced SAT-based model instance finders like Kodkod. This paper fo-
cuses on a natural transformation approach which aims to exploit the
features of relational logic as directly as possible through straitening the
handling of main UML and OCL features. This approach allows us to
explicitly benefit from the efficient handling of relational logic in Kodkod
and to interpret found results backwards in terms of UML and OCL.

1 Introduction

Creating complete and correct models is a critical concern. Modeling languages
like UML [24] and OCL [30] allow for precisely specifying systems which often
result in complex models. The analysis of formulated system properties thus
requires tool support. Lightweight model validation approaches allow for agile
analysis, since they allow modelers to automatically perform multiple validation
tasks at any stage of development. The advantage of lightweight approaches,
in contrast to interactive verification approaches, is (a) their applicability, as
users do not need be familiar with fields like logical deduction, and (b) their
immediateness regarding the feedback. As a consequence, those approaches must
be efficient.

We analyze properties of UML class models annotated with OCL constraints
by analyzing model instances [9], since the existence or non-existence of in-
stances with specific properties allows direct conclusions about the model itself.
For efficiently searching model instances, we apply SAT-based techniques [2],
i. e., solvers for Boolean satisfiability. This approach requires the connection of
UML and OCL with Boolean logic resulting in a bidirectional transformation.
However, we make use of an intermediate language, relational logic, which is
automatically and efficiently handled by the sophisticated model instance finder

R.B. France et al. (Eds.): MODELS 2012, LNCS 7590, pp. 415–431, 2012.
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Kodkod [28]. Kodkod transforms relational models into SAT formulas and trans-
lates solutions fulfilling the SAT formulas back into relational instances.

In this paper, we present the transformation of UML and OCL models into
relational models, as well as the backward translation from relational instances
into UML model instances. We pursue a natural transformation approach which
aims to exploit the features of relational logic as directly as possible through
straitening the handling of main UML and OCL features. This approach allows
us to explicitly benefit from the efficient handling of relational logic in Kodkod.
While explaining the transformation, we focus on important modeling aspects
and concepts which have not been concerned or adequately treated in other UML
and OCL model validation approaches based on relational logic [1,27], e. g., n-ary
associations and association classes at the UML side, as well as the undefined
value and essential operations like collect and navigation via n-ary associations
and association classes at the OCL side. This transformation approach is sup-
ported by a tool classified as a model validator which processes a class diagram
and OCL invariants as well as information (in form of partial object diagrams
and properties like the minimum and maximum number of objects and links, or
attribute value domains) determining the search space, that is, the set of model
instances to be examined. The transformation is fully automated with respect to
both directions, from UML and OCL to relational logic, and back from relational
solutions to UML (object diagrams) (for an overview see [15]).

The rest of the paper is structured as follows: Section 2 introduces relevant
concepts of relational logic and Kodkod. The main Sect. 3 presents the bidi-
rectional transformation. In Sect. 3.1 we consider the transformation of UML
class diagrams into relational models, while Sect. 3.2 discusses the backward
translation. The configuration of search spaces is shortly sketched in Sect. 3.3.
Section 3.4 covers the OCL part of the transformation. Related work is discussed
in Sect. 4 before we conclude with Sect. 5.

2 Background: Relational Logic and Kodkod

Relational logic [10] is based on flat n-ary relations, i. e., sets of tuples of atomic
values (atoms). The evaluation result of a relational formula thus depends on
concrete instances of relations. Atoms are constants with no specific semantics or
inner structure. The individual meaning of an atom emerges from its occurrence
in specific relations. However, it is possible to assign a specific semantics to
a subset of the available atoms by mapping them to integer values. Thereby,
integer calculations are enabled. Relations can express three kinds of values:

Atomic Values: An atomic value is represented by a unary relation includ-
ing exactly one tuple with one component holding the respective atom. For
example, the integer value 3 and an atom symbolizing the name Ada are
realized by the relational values [[3]] and [[Ada]].

Sets of Atoms: A set of atomic values yields a unary relation with possibly
more than one tuple or no tuple, in the case of an empty set. The set of atoms



From UML and OCL to Relational Logic and Back 417

{Ada,Bob,Cyd}, for example, results in the relational value [[Ada],[Bob],
[Cyd]]. The atoms Ada, Bob and Cyd do not have a specific meaning, unless
they are put into a context, e. g., if we declare a unary relation fNames, we
consider all tuples within instances of this relation as individual first names.

Sets of Relationships between Atoms: Atomic values are often semantic-
ally related to other atomic values. This fact can be described with n-ary
relations in which tuples hold sequences of atoms. Each position in a n-ary
tuple has a specific meaning. Consider, for example, persons who have a
name and possibly younger siblings. In order to relate a person to a name
and her younger siblings, we can declare two binary relations fName and
ySiblings, and determine that the first position of the tuples in both rela-
tions yields a person atom and the second position yields a name or another
person atom, respectively. Possible instances could be fName=[[p1,Ada],

[p2,Cyd],[p3,Bob], [p4,Dan]] and ySiblings=[[p1,p3],[p1,p4]].

Relational logic provides: (a) relational operations like the relational join, prod-
uct and transitive closure, as well as multiplicity predicates like ‘some’ and ‘lone’,
(b) set comprehension, (c) set operations like union and subset, (d) Boolean op-
erations like conjunction and implication, (e) quantifiers of first order logic-like
existential and universal quantifiers, and (f) integer operations like addition and
comparison predicates. The relational join (expressed by a dot .) is a central
operation, since it allows for extracting and merging the information provided
by relation instances. A join is performed in the context of two relational values
x and y which may be of different arity. The evaluation result of the expres-
sion x.y is equal to {(x1, . . . , xn−1, y2, . . . , ym)|(x1, . . . , xn) ∈ x ∧ (y1, . . . , ym) ∈
y ∧ xn = y1}. An example for information extraction with a join is the determi-
nation of a person name based on the mentioned relation fName. The expression
[[p1]].fName results in the name related to the person atom p1, i. e., in our
example [[Ada]]. Another example illustrates the merging of two binary rela-
tions which in our case results in a set of tuples relating persons to the names
of their younger siblings: ySiblings.fName=[[p1,Bob],[p1,Dan]].

Kodkod is a tool which provides an interface to defining relational models and
to efficiently finding relational instances fulfilling given relational formulas [28].
A relational model consists of three parts (we will see examples in later sections):

Declarations: A relation declaration determines the name and arity of a rela-
tion for which Kodkod searches a valid instance.

Bounds: Kodkod is a finite model instance finder, i. e., the universe of atoms
available for constructing relational values is finite. A relational model in-
cludes (a) an a priori, fully determined universe of atoms, and (b) bounds
for each declared relation which generally restrict the sets of possible tuples
based on available atoms. In this way, a concrete search space is defined.

Constraints: Relational constraints, i. e., formulas, can further restrict the valid
instances of the declared relations.

Our approach translates a UML and OCL model into a relational model handled
by Kodkod. Results in form of relational model instances presented by Kodkod
will be translated back into instances of the UML and OCL model.
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3 A Bidirectional Transformation

The aim of translating UML and OCL models into relational models is an effi-
cient search for UML and OCL model instances which fulfill specific user-defined
properties. The transformation of UML class diagram and OCL concepts into
relational logic is based on three key requirements:

– The transformation of a UML class diagram results in a set of relations. In-
stances of these relations must structurally allow for representing all possible
instances of the corresponding UML class diagram.

– Each valid instance of the relational model must represent a valid instance of
the corresponding UML class diagram respecting the given UML and OCL
constraints. The same must apply for invalid instances.

– The relational model must be formulated as simply as possible, enabling the
most efficient processing by the model instance finder (Kodkod).

UML and OCL offer concepts like collections (i. e., sets, bags, ordered sets, se-
quences, and nested collections) and a three valued logic which are fundamentally
different from concepts of relational logic (e. g., solely flat sets and a two-valued
logic). For that reason, the first two requirements which concern the complete-
ness and correctness of the translation conflict with the third requirement con-
cerning efficiency. We tackle two different approaches to transforming UML and
OCL into relational logic, one giving weight to the first two aspects, the other
focussing on the third aspect:

Extrinsic Relational Approach: This approach aims to transform UML and
OCL concepts as completely as possible into relational logic enabling, for
example, the translation of all kinds of (possibly nested) collections, strings
and the associated operations. Furthermore, the three valued-logic of OCL is
simulated at the relational level. This virtual abuse of relational logic leads
to complex relational structures (involving high-arity relations), large search
spaces, and hence to losses in efficiency (for details of the extrinsic approach
see [14]).

Intrinsic Relational Approach: The intrinsic approach aims to make use of
structures directly supported by relational logic, i. e., atomic values, sets of
atomic values, and sets of relationships between atomic values (cf. Sect. 2),
as well as relational formulas with two truth-values instead of three (as
in OCL). On the one hand, this approach naturally results in manageable
relational models which can be efficiently processed. On the other hand, it
induces several restrictions to the supported UML and OCL features.

In this paper, we present the intrinsic transformation approach and discuss the
advantages and disadvantages, practical implications for validation and feasible
alternatives. The intrinsic approach has been successfully applied, for example,
in the context of role-based access control (RBAC) revealing that the imposed
restrictions do not hinder the validation of reasonable models [17].
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Fig. 1. Example UML Class Diagram

3.1 From UML Class Diagrams to Relational Models

In this section, we focus on the transformation of central UML class diagram
features which are frequently used for modeling structural aspects of systems
into relational model concepts, i. e., relations and relational constraints. The
transformation is illustrated with the help of the example class diagram shown
in Fig. 1 which has been designed for explanation purposes covering interesting
aspects. It describes persons with a name and a set of email addresses. If em-
ployable, persons can have at most one job. A company has a name and defines
a minimum salary for its employees. A person can be hired by at most one em-
ployee in the context of a specific company. In order to explain both, a binary
association and a binary association class, we aim to consider Job as an ordinary
association (neglecting the grey part), on the one hand, and to consider Job as
an association class (involving the grey part), on the other hand. The association
class adds a salary to each job.

Basic Types. The transformation t uniformly handles the values of the UML
basic types Boolean, Integer, Real, and String as atomic values. Consequently,
basic types result in unary relations whose instances hold the distinctive sets
of available basic values, typing the atoms accordingly. Basic type values are
needed in the context of UML attribute values, as we will see later.

Boolean
t−→ unary relation Boolean=[[true],[false]]. The resulting

Boolean relation yields a constant instance holding the Boolean values true

and false.
Integer

t−→ unary relation Integer of structure [[i1],. . .,[inint]].
Example instance: [[-2],[0],[1],[1000],[1100],[1200],[2000]]. The
integer relation can be variably instantiated, i. e., Kodkod searches an adequate
instance. Each integer atom whose name represents an integer literal is bijec-
tively mapped to a corresponding integer value which can be used for calculations
within a relational formula. For instance, the atom 1 is mapped to the value 1.
Relational logic provides the respective mapping operations (int and Int). In
order to store calculation results in relations, the respective integer values must
have an atomic counterpart within the integer relation, e. g., if the result of 1+2
should be stored as a UML attribute value, the atom 3 must be available.
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Real
t−→ unary relation Real of structure [[r1],. . . ,[rnReal

]].
Example instance: [[3.14],[2.71],[1.23]]. The Real relation is analogously
defined to the integer relation, but Real atoms cannot be mapped to processable
Real values in relational logic. Thus, Real atoms do not have further meaning
except for their comparability, e. g., we can infer that [[3.14]] does not equal
[[1.23]], but we cannot determine their precedence or apply Real operations.

String
t−→ unary relation String of structure [[s1],. . . ,[snstring]].

Example instance: [[Ada],[Bob],[Apple],[IBM]]. Relational logic does not di-
rectly support String values with an inner structure, i. e., consisting of sequences
of characters. The intrinsic approach handles strings analogously to Real values.

Undef
t−→ unary relation Undef=[[Undef]]. Primitive values may be unde-

fined. Hence, we need a unary singleton relation holding the undefined value.

Classes and Enumerations. Classes are translated into unary relations with
variable instances; enumerations yield unary relations with constant instances:

Class c
t−→ unary relation c of structure [[obj 1],. . .,[obj nc

]], where an atom
obj i (with 1 ≤ i ≤ nc) represents an object identifier.

Example translation: Class Person
t−→ Person.

Example instance: [[ada],[bob],[cyd]].

Enum e={lit1,. . .,litne}
t−→ unary relation e=[[lit1],. . .,[litne]].

Example translation: Enum Colors={r,g,b} t−→ Colors=[[r],[g],[b]].

Associations and Association Classes. The intrinsic transformation fully
supports n-ary associations and association classes with multiplicities. An n-ary
association has n association ends, where association end i (with 1 ≤ i ≤ n) is of
type class ci, i. e., a navigation to this end results in objects of ci. For translating
associations into relational logic we determine a specific order of the association
ends in such a way that end i is mapped to tuple position i. Hence, we obtain
the following transformation for n-ary associations:

n-ary Association a
t−→ n-ary relation a of structure [[obj 11,. . .,obj 1n],. . .,

[objm1,. . .,objmn]], where obj ij describes the object occurring in the ith link
at the jth association end, plus typing and multiplicity constraints.
Example translation: Association Hiring with association end order: hiringE,

hiredE, company
t−→ Hiring plus constraints shown below.

Example instance: [[ada,bob,apple]]. n-ary associations result in n typing
constraints requiring each association end, i. e., each tuple position, to hold ob-
jects of the related class, i. e., atoms of the respective class relation. The universe
relation univ provided by relational logic including all existing atoms allows us
to navigate to the desired tuple positions by cutting off the unneeded tuple posi-
tions. Consider the following typing constraints for association relation Hiring:

(Hiring.univ).univ in Person the hiring employee (first position) is a person

(univ.Hiring).univ in Person the hired employee (second position) is a person

univ.(univ.Hiring) in Company a person is hired for a company (third position)
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Furthermore, each association end yielding a constraining multiplicity differing
from 0..* results in a multiplicity constraint. Consider for example the constraint
for association end hiringE which demands that each pair of objects belonging
to the opposite association ends hiredE and company is connected to at most
one object of association end hiringE:

all c2:Person, c3:Company | #((Hiring.c3).c2)<=1

If the lower bound of a multiplicity is greater than 0, the constraint is extended
accordingly. Generally we see that the absence of a link is indicated by the
absence of a corresponding tuple in the association relation. In this way, the
navigation to an association end directly results in set values. Objects not linked
to another object do not occur in the set. If no object is connected, the navigation
results in an empty set. Binary associations are an exception to this rule if an
association end is single-valued, i. e., if it yields the multiplicity 1 or 0..1. In
this case, a navigation to this end results in exactly one object. Multiplicity 0..1
allows this object to be undefined. Thus, the absence of a link is expressed by
tuples having the Undef atom at the respective position. That is, in contrast to
general association relations the absence of a link is not indicated by the absence
of the respective tuple, but by the explicit occurrence of the undefined value:

Binary association a
t−→ binary relation a of structure [[obj 11,obj 12],. . .,

[objm1,objm2]], where obj ij may be undefined, if association end j yields mul-
tiplicity 0..1, plus special relational constraints for typing and multiplicities.
Example translation: Association Job with association end order: employee, em-

ployer (dismissing the grey association class part)
t−→ Job.

Example instance: [[ada,ibm],[bob,ibm],[cyd,Undef]]. Constraints:

Job.univ in Person the employee is a person

univ.Job in Company+Undef the employer is a defined company or undefined

all c1:Person|#(c1.Job)=1 a person is connected to one atom via relation Job

all c2:Company|#(Job.c2)>=1 a company is connected to at least one person

If we respect the grey part in Fig. 1, we obtain an association class. Association
classes yield two relations. One relation represents the class perspective following
the same translation rules as relations for ordinary classes. In every respect,
the class relations of association classes can be handled like class relations of
ordinary classes. The relation representing the association part is translated
analogously to ordinary associations, except for an additional column at the
first tuple position holding the participating association class objects:

n-ary Association class ac
t−→ unary relation ac of structure [[ac obj 1],. . .,

[ac objm]], n+1-ary relation ac assoc of structure [[ac obj 1,obj 11,. . .,obj 1n]
,. . .,[ac objm,objm1,. . .,objmn]], plus typing and multiplicity constraints.
Example translation: Association class Job with association end order: job (im-

plicit), employee, employer (respecting the grey part)
t−→ Job, Job assoc.

Example instance of Job: [[job1],[job2]]. Example instance of Job assoc:
[[job1,ada,ibm],[job2,bob,ibm],[Undef,cyd,Undef]]. As ordinary associ-
ation ends, association class ends are typed:

(Job_assoc.univ).univ in Job+Undef
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Furthermore, the association class end requires two multiplicity constraints for
ensuring that (a) each permutation of objects corresponding to the opposite ends
is connected to at most one association class object, and (b) each association
class object is connected to exactly one permutation of defined objects:

(a) all c2:Person, c3:Company|#((Job_assoc.c3).c2)<=1

(b) all c1:Job | #(c1.Job_assoc)=1 && (c1.Job_assoc) in (Person->Company)

Analogously to binary associations, binary association classes need a special
handling if single-valued association ends are involved. In the case of an object-
valued association end like employer, the opposite end (i. e., employee in our
example) is always related to one object which may be undefined:

(c) all c2:Person | #(c2.(univ.Job_assoc))=1

In the case of set-valued association ends like employee with multiplicity 1..*,
the opposite end (employer) is never linked to an undefined association class
object because, in this case, the navigation to the association class end results
in a set of objects (i. e., one or more jobs in our example):

(d) all c3:Company|!(Undef in ((Job_assoc.c3).univ)) && #(Job_assoc.c3)>=1

Attributes. Independent from their types, UML attributes are always trans-
lated into binary relations. Attribute relations relate objects with attribute val-
ues. If an attribute is not defined, the respective objects are related to the
undefined value. In the case of set-valued attributes, we use the special atom
Undef Set to indicate the absence of a defined set. This way, we can distinguish
between undefined set values (object related to Undef Set), defined set values
including the undefined value (object related to Undef) and an empty sets (the
corresponding object does not participate in the attribute relation instance). Re-
garding this detail, the translation of attributes and binary associations differ.

Attribute Class::attr
t−→ binary relation Class attr of structure [[obj 1,

val11],. . .,[obj 1,val1n1],. . . ,[objm,valm1],. . .,[objm,valmnm]], where ni is
the number of atoms representing the attribute value related to obj i (1 ≤ i ≤ m),
plus typing and multiplicity constraints. Basic, object and enumeration type at-
tributes require ni = 1 for all i. Set type attributes allow any positive value
including 0 for ni, also ni and nj (1 ≤ j ≤ m and i �= j) may differ.
Example translation: Attribute Person::name, Person::eMailAddrs, Job::salary
t−→ Person name, Person eMailAddrs, Job salary.

Example instance (Person name): [[ada,Ada],[bob,Bob],[cyd,Undef]].
Example instance (Person eMailAddrs):
[[ada,ada@apple.com],[ada,ada@gmail.com],[cyd,Undef Set]].
Example instance (Job salary): [[job1,2000],[job2,1200]].

Attribute relations are constrained by formulas for determining the attribute
domain, type and multiplicity. The attribute domain is always a class relation.
The undefined value is not involved at the domain side. However, the undefined
value always participates in the attributes type definition. Let us consider the
constraints for the basic type attribute relation Person name:
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Person_name.univ in Person the domain is Person

univ.Person_name in String+Undef the type is String including Undef

all c:Person | #(c.Person_name)=1 the attribute relates a person to one atom

Set-valued attributes yield different constraints:

Person_eMailAddrs.univ in Person the domain is Person

univ.Person_eMailAddrs in the type is a set of String values in-

String+Undef+Undef_Set cluding undefined values

all c:Person | an undefined set is not accompanied

Undef_Set in c.Person_eMailAddrs => by other values

#(c.Person_eMailAddrs)=1

3.2 From Relational Instances to Class Diagram Instances

In this section, we consider the straightforward backward translation of a valid
relational model instance provided by Kodkod into instances of UML class di-
agram concepts. We illustrate the transformation with the help of instances of
relations resulting from the example class diagram shown in Fig. 1 including the
grey association class part:

Boolean=[[true],[false]], Integer=[[1000],[1100],[1200],[2000]],

String=[[Ada],[Bob],[Apple],[IBM]], Undef=[[Undef]],

Person=[[ada],[bob],[cyd]], Company=[[apple],[ibm]],

Job=[[job1],[job2]], Hiring=[[ada,bob,apple]],

Job assoc=[[job1,ada,apple],[job2,bob,apple],[Undef,cyd,Undef]],

Person name=[[ada,Ada],[bob,Bob],[cyd,Undef]],

Person employable=[[ada,true],[bob,true],[cyd,false]],

Person eMailAddrs=[[ada,ada@apple.com],[ada@gmail.com],[cyd,Undef Set]],

Company name=[[apple,Apple],[ibm,IBM]],

Job minSalary=[[apple,1000],[ibm,1100]],

Job salary=[[job1,2000],[job2,1200]]

These relation instances directly result in the class diagram instance visualized
in the object diagram shown in Fig. 2.

3.3 User-Defined Search Space Configuration

For searching valid instances of relational models, Kodkod requires a restricted
search space, i. e., a predetermined universe of atoms and bounds to the de-
clared relations. Upper bounds determine the set of all possible tuples for each
relation. Lower bounds, instead, declare sets of tuples which must occur in a
valid instance, i. e., a partial solution. A comfortable way for specifying par-
tial solutions is the translation of a partial user-defined object diagram into the
lower bounds of the concerned relations. This forward translation can be done
analogously to the backward translation illustrated in Sect. 3.2.

Since the search space directly influences the search efficiency of Kodkod, the
aim is to minimize the upper bounds. Respective optimizations are in particular
possible in the context of partial solutions, since the existence of specific tuples in
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Fig. 2. Translation Result from Relation Instances to Class Diagram Instances

the lower bounds often preclude the existence of other tuples in a valid instance.
Those tuples can be removed from the upper bounds, e. g., if a partial solution
assigns the name Ada to object ada, the upper bounds of relation Person name

can be filtered with respect to tuples assigning other names to this object.
The search space configuration can be extended by relational constraints

which, for example, determine the minimum and maximum numbers of de-
fined links of a specific association, or attribute values of a specific attribute.
Those properties cannot be configured by bounds, as they do not concern specific
tuples.

An implementation of the considered transformation should provide means
for easy configurations while hiding the particularities of relational logic, e. g.,
allowing the user to determine the minimum and maximum number of objects,
forbidding specific links, or defining ranges of available attribute values.

3.4 From OCL Constraints to Relational Constraints

Class diagrams can be annotated with OCL invariants which constrain the set of
valid class diagram instances. OCL invariants, representing Boolean OCL expres-
sions, are transformed into relational formulas. Additionally, in our validation
approach user-defined validation tasks specifying properties the searched model
instance must fulfill are made available in form of temporary OCL constraints. In
this section, we consider the translation of individual interesting and important
OCL operations. The transformation of operations not discussed in this section
can be inspected in [13].

Boolean Operations. The intrinsic transformation approach makes use of the
two-valued relational logic. Consequently, Boolean OCL expressions result in
relational formulas, in contrast to non-Boolean OCL expressions which result in
relational expressions, i. e., relation instances. For example, consider the Boolean
operation xor which is the only Boolean operation with no direct counterpart in
relational logic:
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expr1 xor expr2
t−→ (

t−→
expr1 && !

t−→
expr2) || (!

t−→
expr1 &&

t−→
expr 2), with

t−→
e de-

noting the transformation result of OCL expression e into a relational expression
or formula, respectively.

Since the Boolean values of relational formulas cannot be stored in relations,
we define two relational operations (a) for mapping Boolean atoms (true and
false which can occur as Boolean attribute values or as Boolean literals in
OCL expressions) to relational truth values, and (b) for mapping relational truth
values into atomic values:

(a) expr2formula(e):Formula = e=[[true]]

(b) formula2expr(f):Expression = f => [[true]] else [[false]] (if-then-else)

Operation (a) reveals that the three-valued logic of OCL is encoded into two-
valued relational logic by mapping the undefined value to the value false. This
realization can influence the validity of OCL invariants. Consider, for example,
the OCL constraint expr1 and expr2 implies expr3 which would evaluate to Unde-
fined, and thus would be violated, if expr1 evaluates to Undefined and the other
expressions to false. The corresponding relational constraint, however, would be
fulfilled. This disadvantage can be avoided by explicitly treating possible un-
defined values within a constraint, e. g., by applying explicit case distinctions
and the OCL operation oclIsUndefined. As a consequence, the modeler has to
be aware of situations in which an OCL expression can be undefined (which is
anyway a preferable modeling style).

Integer, OclAny and Other Operations. Except for the explicit handling
of the undefined value, integer operations are directly translated into their coun-
terparts provided by relational logic. OclAny operations like equality, inequality
or oclIsUndefined result in Boolean values, hence, requiring the application of
the expression, formula mapping operations discussed before. However, their
transformation is also straightforward. The distinct operations and statements
allInstances, let, if-then-else, and the access of attribute values also yield plain
relational constructs. For details see [13].

Set Operations. In the majority of cases, OCL set operations like union, in-
cluding, includes, forAll or exists can be directly transformed into equivalent
relational logic expressions or formulas, respectively. In this subsection, we con-
sider the prominent set operation collect which, on the one hand, is often used for
comfortably collecting specific (possibly calculated) values, on the other hand,
is not handled in other works on translating OCL into relational logic. Further-
more, collect is implicitly applied for navigating a UML class diagram using the
dot shortcut which we will consider later.

src->collect(v | body(v)) t−→
t−→

src=[[Undef Set]] => [[Undef Set]] else

rflattenUndef(rcollect(v,
t−→
src,

t−→
body(v))),

where body(v) represents an arbitrary OCL expression in which variable v may
occur, rflattenUndef and rcollect are relational operations which we have
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defined for transforming the OCL collect. The case distinction ensures that an
undefined source collection (src) again results in an undefined collection.

The operation rcollect requires three arguments; a variable v, the trans-
lated source expression, and the translated body expression in which v may
occur. First, this operation creates a binary relation via comprehension which
relates each element of the source collection to the evaluation result of the respec-
tive body expression. For instance, the OCL expression Set{1,2,3}->collect(i|i*i)
would yield the intermediate relation [[1,1],[2,4],[3,9]]. The transforma-
tion respects the fact that the result of collect must be flattened. If the body ex-
pression, results in a set of values, each element of the source collection is related
to each element of this set via an individual tuple, i. e., the result is automati-
cally flattened. After that, the first tuple position is cut off to obtain the desired
evaluation result, e. g., with respect to the current example [[1],[4],[9]]:

rcollect(v,
t−→

src,

t−→
body(v)) = univ.{v:

t−→
src, res:

t−→
body(v) | true}

The body of a collect expression can result in collection values which are
implicitly flattened in the context of the OCL collect, e. g., the expression
Set{Undefined,Set{1}}->collect(i|i) evaluates to Bag{Undefined,1} of type
Bag(Integer), while the source collection is of type Set(Set(Integer)). That is,
undefined set-valued body expressions evaluate to an undefined value in the
flattened result. For this reason, we need the operation rflattenUndef which
checks if undefined collections (expressed by the atom Undef Set) occur, and
transforms them into Undef representing undefined single-values:

rflattenUndef(e) = Undef Set in e => (e-Undef Set)+Undef else e

Please note that the relational representation of collect always results in sets of
values, while its OCL counterpart either results in bags or sequences, possibly
yielding duplicate values and specific orders. The intrinsic approach thus restricts
the expressiveness of collect. However, in many circumstances, not a specific
order or the number of duplicate values is crucial, but the collection of distinct
values. Let us consider this fact with the help of two concrete OCL invariants
based on the class diagram shown in Fig. 1:

context c:Company

inv MinimumSalaryMaintained: c.job.salary->min() > c.minSalary

inv HiringPersonEmployed:

c.hiringE->notEmpty() implies c.hiringE.employer->asSet()=Set{c}

The first invariant ensures in the context of a company the lowest paid job to
yield a salary higher than the minimum salary determined by the company. The
expression c.job.salary implicitly applies a collect via the dot shortcut, collecting
all salaries for each job. The aim is to obtain the lowest salary. The number of
employees yielding the lowest salary is irrelevant. The other invariant ensures
that persons can only hire employees for their own company. Again, the only pur-
pose of expression c.hiringE.employer->asSet is to collect the distinct employers
of persons who hire for company c. Consequently, despite the restrictions, the
intrinsical approach supports a large variety of practical models.



From UML and OCL to Relational Logic and Back 427

Navigation. Our transformation approach allows for navigating arbitrary re-
flexive and non-reflexive n-ary associations and association classes. We consider
the general OCL navigation expression expr.role representing the navigation via
association assoc from the evaluation result of expr (which yields a defined or
undefined object), i. e., from association end i, to the role at association end j.
For keeping the translation clear, we introduce the auxiliary operations univ r

and univ l which represent multiple applications of universe joins from the right
or the left side, respectively:

univ r(e, n) = if n > 0 then univ r(e, n− 1).univ else e

univ l(e, n) = if n > 0 then univ.univ l(e, n− 1) else e

Example: univ r(e, 3) = e.univ.univ.univ

expr.role (via n-ary association assoc from association end i to end j)
t−→

t−→
expr=[[Undef]] => [[uv]] else

if i < j then univ r(univ l(
t−→

expr.univ l(assoc, i− 1), j − i− 1), n− j)

else univ l(univ r(univ r(assoc, n− i).
t−→

expr , i− j − 1), j − 1),
where uv is equal to Undef Set if association end j is set-valued, and uv is equal
to Undef if end j is object-valued.

Let us consider some example navigation expressions based on association
Hiring and association class Job shown in Fig. 1:

apple.hiringE (from association end 3 to end 1)
t−→ (Hiring.[[apple]]).univ.

apple.hiredE (from end 3 to end 2)
t−→ univ.(Hiring.[[apple]]).

bob.company[hiredE]1 (from end 2 to end 3)
t−→ [[bob]].(univ.Hiring).

ada.job (from end 2 to end 1)
t−→ (Job assoc.univ).[[ada]]

As we have mentioned before, the dot shortcut, i. e., an implicit collect, pro-
vided by OCL allows us to easily collect objects while navigating through a class
diagram, i. e., via more than association. Consider, for instance, the expression
apple.hiringE.employer including an ordinary navigation starting from an ob-
ject (apple), as well as an implicit collect based on the navigation result which
further navigates to association end employer. This shortcut expression is equiv-
alent to apple.hiringE->collect(p|p.employer). A (complete) transformation of
this expression is shown at the end of this section.

Our transformation approach allows us to differentiate between three distinc-
tive cases which is required by OCL. (a) If expr within expr.hiringE.employer is
undefined, the whole expression results in an undefined set. (b) If expr.hiringE
results in a defined set including at least one unemployed person, the whole short-
cut expression results in a set including the undefined value. (c) If expr.hiringE
results in an empty set, the whole expression results in an empty set. These
meaningful cases cannot be expressed by approaches like [1] due to language
restrictions with respect to Alloy.

1 Since the association is reflexive, i. e., persons can participate in Hiring links in dif-
ferent roles, the association end from which the navigation starts must be determined
within brackets if ambiguous.
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rflattenUndef(rcollect(p,

t−→
apple.hiringE ,

t−→
p.employer)) =

t−→
apple.hiringE=[[Undef Set]] => [[Undef Set]] else

(Undef Set in univ.{p:
t−→

apple.hiringE, res:

t−→
p.employer | true} =>

((univ.{p:
t−→

apple.hiringE, res:

t−→
p.employer | true})-Undef Set)+Undef

else univ.{p:
t−→

apple.hiringE , res:

t−→
p.employer | true}), with

t−→
apple.hiringE =

[[apple]]=[[Undef]] => [[Undef Set]] else (Hiring.[[apple]]).univ, and
t−→

p.employer = p=[[Undef]] => [[Undef]] else p.(univ.Job assoc)

4 Related Work

While there are many important approaches in the field of UML and OCL model
validation, in particular for information system validation [20], there is currently
only one work following our approach to directly translating UML models into
pure relational models [27]. The approach focuses on automatic resolution of
model inconsistencies by translating basic class diagram concepts into relations
and formulas. OCL as a whole and important UML features like n-ary asso-
ciations, association classes, and undefined values have not yet been explicitly
concerned.

OCLexec [12,11] makes use of Kodkod in order to generate Java method
bodies by animating OCL operations constrained by OCL postconditions and
invariants. In this approach, OCL expressions are translated into arithmetic ex-
pressions with bounded quantifiers and uninterpreted functions, i. e., pure integer
expressions. The efficient mechanisms of Kodkod [28] are applied to transform
those expressions into SAT problems. However, this approach has a loose connec-
tion to our work, since the authors of OCLexec ‘do not make use of higher-level
features of Kodkod such as encoding of relations’. Thus, our transformation of
UML and OCL concepts into relations and relational formulas is fundamentally
different from the transformation result of OCLexec.

Our work is related to approaches which translate UML and OCL into the
specification language Alloy [10] which is also based on relational logic. The
so-called Alloy Analyzer transforms Alloy specifications into relational models
supported by Kodkod. However, the modeling concepts provided by Alloy, e. g.,
signatures and fields, purposefully restrict the structure of specification com-
ponents. That is, on the one hand, structures of Alloy specifications result in
specific relational structures, but, on the other hand, not all relational struc-
tures supported by Kodkod can be modeled with Alloy. Consequently, several
aspects of UML and OCL like the adequate handling of undefined values are
not supported by Alloy, and thus are not directly realizable by approaches like
UML2Alloy [1].
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While UML2Alloy is an elaborated tool for validating UML and OCL mod-
els, it does not handle UML concepts like n-ary associations and association
classes, or OCL operations like collect. The authors of CD2Alloy [18] pursue a
deep embedding by defining class diagram constructs as new concepts within
Alloy, enabling, for example, the comparison of two class diagrams. The work
discussed in [19] aims to check the consistency between class and object diagrams
by explicitly modeling object diagram concepts in Alloy. A backward transfor-
mation from original Alloy specifications into UML and OCL models is presented
in [8]. The authors in [4] translate conceptual models described in OntoUML for
validation purposes into Alloy.

Kodkod has been successfully applied in different fields, e. g., for executing
declarative specifications in case of runtime exceptions in Java programs [25], rea-
soning about memory models [29], or generating counterexamples for
Isabelle/HOL a proof assistant for higher-order logic (Nitpick) [3].

There are many other works concerning the validation of UML and OCL
models which do not base on Alloy or Kodkod. For instance, a direct translation
of UML and OCL concepts into SAT has been addressed in [26]. However, a
direct translation cannot benefit from existing translation mechanisms like the
sophisticated symmetry detection and breaking scheme which enables an effi-
cient handling of partial solutions, or the detection and exploitation of redun-
dant structures in formulas which are implemented in Kodkod. A translation of
specific UML and OCL features into constraint satisfaction problems (CSP) is
done in [6]. Answer set programming (ASP) [21], the constructive query contain-
ment (CQC) method [22], or rewriting-based techniques [23,7] are applied for
analyzing static and dynamic model aspects. The named approaches differ from
more interactive approaches like [5] involving verification by theorem proving.

5 Conclusion

In this paper we have presented the details of a bidirectional transformation from
UML and OCL into relational logic and back, while focussing on the essential
concepts of UML models and central OCL operations. Our so-called intrinsic
approach implies restrictions at the UML and OCL side, but, on the one hand,
enables the direct use of relational constructs, and, on the other hand, does still
support a large variety of practically useful models.

Future work will comprise the finalization of our extrinsic approach which
has been developed parallel to the current intrinsic approach. We will discuss a
detailed comparison of (a) the intrinsic and extrinsic approach, and (b) our ap-
proaches and other relational and non-relational UML and OCL model validation
approaches. A comparison will consider the supported UML and OCL features
based on the OCL benchmark [16] as well as the efficiency with respect to models
of different scale and purpose. Furthermore, the transformation will be extended
regarding dynamic aspects, e. g., involving OCL pre- and postconditions, UML
state machines, and sequence diagrams, and the mechanisms for specifying and
optimizing the search space of model instances will be consolidated.
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Paige, R.F. (eds.) ECMFA 2011. LNCS, vol. 6698, pp. 69–84. Springer, Heidelberg
(2011)

28. Torlak, E., Jackson, D.: Kodkod: A Relational Model Finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007)

29. Torlak, E., Vaziri, M., Dolby, J.: MemSAT: checking axiomatic specifications of
memory models. In: Zorn, B.G., Aiken, A. (eds.) PLDI, pp. 341–350. ACM (2010)

30. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models
Ready for MDA. The Addison-Wesley Object Technology Series. Addison-Wesley
(2003)



On Verifying ATL Transformations
Using ‘off-the-shelf’ SMT Solvers

Fabian Büttner1, Marina Egea2, and Jordi Cabot1

1 AtlanMod Research Group, INRIA / Ecole des Mines de Nantes
{fabian.buettner,jordi.cabot}@inria.fr

2 Atos, Madrid
marina.egea@atosresearch.eu

Abstract. MDE is a software development process where models constitute
pivotal elements of the software to be built. If models are well-specified, trans-
formations can be employed for various purposes, e.g., to produce final code.
However, transformations are only meaningful when they are ‘correct’: they must
produce valid models from valid input models. A valid model has conformance
to its meta-model and fulfils its constraints, usually written in OCL. In this paper,
we propose a novel methodology to perform automatic, unbounded verification
of ATL transformations. Its main component is a novel first-order semantics for
ATL transformations, based on the interpretation of the corresponding rules and
their execution semantics as first-order predicates. Although, our semantics is not
complete, it does cover a significant subset of the ATL language. Using this se-
mantics, transformation correctness can be automatically verified with respect to
non-trivial OCL pre- and postconditions by using SMT solvers, e.g. Z3 and Yices.

1 Introduction

In Model-Driven Engineering (MDE), models constitute pivotal elements of the soft-
ware to be built. When they are sufficiently well specified, model transformations can
be employed for different purposes, e.g., to produce actual code. However, it is essential
that such transformations are correct if they are to play their key role. Otherwise, errors
introduced by transformations will be propagated and may produce more errors in the
subsequent MDE steps. Thus, well-founded and, at the same time, practical verification
methods and tools are important to guarantee this correctness.

Our work focuses on checking partial correctness of declarative, rule-based transfor-
mations between constrained metamodels. More specifically, we regard the ATL trans-
formation language [17] and MOF [22] style metamodels that employ OCL constraints
to precisely describe their domain. These ingredients are very popular due to their
sophisticated tool support, and because OCL is employed in almost all OMG specifica-
tions. Several notions of correctness apply to such model transformations, like termina-
tion or confluence (see, e.g., [19,14]). In this paper, we are interested in a Hoare-style
notion of partial correctness, i.e., in the correctness of a transformation with respect to
certain sets of pre- and postconditions. In other words, we are interested in whether the
output model produced by an ATL transformation for any valid input model is valid,

R.B. France et al. (Eds.): MODELS 2012, LNCS 7590, pp. 432–448, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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too. A valid model is one that has conformance to its metamodel and fulfils its con-
straints, usually written in OCL [21], that is, the OMG standard constraint language for
models. We present a novel approach that targets automatic and unbounded verification
of this property for ATL transformations. Our aim is to provide a ‘push button’ technol-
ogy that can be applied regularly in model transformation development by developers
lacking of a formal background.

The key components of our approach are a novel first order semantics for a declara-
tive subset of ATL, based on the interpretation of ATL rules as first-order functions
and predicates, and the use of automatic decision procedures for Satisfiability Modulo
Theories problems in SMT solvers. Such solvers, e.g. Z3 [12,28] and Yices [13,27],
have been significantly improved in the past years and can automatically and efficiently
decide several important fragments of first-order logic (FOL). Our approach combines
the advantages of formal verification (in the sense that we aim to provide formal proofs)
and automatic verification (in the sense that we do not require the transformation devel-
oper to operate, for example, interactive theorem provers). To our knowledge, we are
the first ones in proposing a first order semantics for a declarative subset of ATL which,
in particular, allows the automatic unbounded verification of transformations between
metamodels that may be constrained using OCL (more precisely, the subset of OCL
that is considered in [11]).

In addition to the running example that we use in this paper, we have made also avail-
able at [8], for the interested reader, the formalization, according to our FOL semantics,
of a larger and more complex example. In this example we illustrate how we deal with
type inheritance hierarchies and more complex and overlapping input patterns that have
to be resolved by type checking and filtering conditions resolution. Also, we deal with
more complex bindings statements in the output patterns for this transformation. This
example was borrowed from [5].

Organization. In Sect. 2 we present our running example. Sect. 3 and Sect. 4 describe
our FOL formalization for metamodels and ATL rules. In Sect. 5 we formalize our
Hoare-style notion of partial correctness and how it can be checked using SMT solvers.
We discuss related work in Sect. 6, and we conclude and outline future work in Sect. 7.

2 Running Example

Figure 1 depicts the ER and REL metamodels that are (resp.) the source and target meta-
models for the ER2REL transformation, which is depicted in Fig. 2. In the ER metamodel,
a schema may have entities and relationships (relships), both may contain attributes,
and attributes may be keys; in the REL metamodel, a schema may have relations, which
may have again attributes.1 We only provide here an informal description of ER2REL,
its precise semantics is discussed later in Sect. 4. Additional information on ATL can
be found at [17,3]. In a nutshell, the ER2REL transformation takes an instance of the
ER metamodel as input and produces an instance of the REL metamodel following the
transformation in Fig. 2. This transformation is described by matched rules, which are

1 For simplicity, we refer to the metamodel elements as schemas, entities, relationships, etc.,
instead of using schema type, entity type, etc..
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Fig. 1. ER and REL metamodels

module ER2REL; create OUT : REL from IN : ER;

rule S2S { from s : ER!ERSchema to t : REL!RELSchema (name <- s.name) }

rule E2R { from s : ER!Entity
to t : REL!Relation (name<-s.name, schema<-s.schema) }

rule R2R { from s : ER!Relship
to t : REL!Relation (name <-s.name, schema<-s.schema) }

rule EA2A { from att : ER!ERAttribute, ent : ER!Entity (att.entity=ent)
to t : REL!RELAttribute

(name<-att.name, isKey<-att.isKey, relation<-ent ) }

rule RA2A { from att : ER!ERAttribute, rs : ER!Relship (att.relship=rs)
to t : REL!RELAttribute

(name<-att.name, isKey<-att.isKey, relation<-rs) }

rule RA2AK { from att : ER!ERAttribute, rse : ER!RelshipEnd
(att.entity=rse.entity and att.isKey=true)

to t : REL!RELAttribute
(name<-att.name, isKey<-att.isKey, relation<-rse.relship)}

Fig. 2. The ATL transformation ER2REL

the workhorse of ATL. Matched rules define a pattern of input types and possibly a filter
expression (the from-clause). Each rule is applied to each matching set of objects in the
input model to create the objects in the target model that are described in the to-clause,
assigning values to their properties (typically) based on the input objects’ properties.

The first rule in Fig. 2, S2S, maps ER schemas to REL schemas, the second rule
E2R maps each entity to a relation, and the third rule R2R maps each relationship to
a relation. The remaining three rules generate attributes for the relations. Both, en-
tity and relationship attributes are mapped to relation attributes (rules EA2A and RA2A).
Furthermore, the key attributes of the participating entities are mapped to relation at-
tributes as well (rule RA2AK). Notice that in the property assignment, a so-called implicit
resolution step is needed to resolve source objects to target objects: For example the
binding schema<-s.schema in E2R and R2R ‘silently’ replaces the ERschema value of
s.schema by the RELSchema object that is created for s.schema by S2S. Fig. 3 shows
a list with the OCL constraints for the source and target metamodels. The constraints
require the expected uniqueness of names within their scopes (e.g., for the entities in
a schema), and the existence of key attributes in entities and relations. In addition to
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the constraints in Fig. 3, multiplicity constraints are encoded as OCL constraints for
both metamodels, too. For every lower bound different from 0 and each upper bound
different from * we add one OCL constraint named 〈qualified rolename〉.lo (for lower)
resp. 〈qualified rolename〉.up (for upper). E.g., the constraint Entity::schema.lo is
context Entity inv: self.schema->size()>=1, and the constraint for the upper
bound is Entity::schema.up is context Entity inv: self.schema->size()<=1.

context ERSchema inv pre1: −− unique schema names
ERSchema.allInstances()->forall(s1,s2| s1<>s2 implies s1.name<>s2.name)

context ERSchema inv pre2: −− relship names are unique in schema
self.relships->forAll(r1,r2 | r1<>r2 implies r1.name<>r2.name)

context ERSchema inv pre3: −− en t i t y names are unique in schema
self.entities->forAll(e1,e2 | e1<>e2 implies e1.name<>e2.name)

context ERSchema inv pre4: −− dis jo in t en t i t y and relship names
self.relships->forAll(r | self.entities->forAll(e | r.name<>e.name))

context EREntity inv pre5: −− at t r names are unique in en t i t y
self.attrs->forAll(a1,a2 | a1.name=a2.name implies a1=a2)

context ERRelship inv pre6: −− a t t r names are unique in relship
self.attrs->forAll(a1,a2 | a1.name = a2.name implies a1=a2)

context Entity inv pre7: −− e n t i t i e s have a key
self.attrs->exists(a | a.isKey)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
context RELSchema inv post1: −− unique schema names
RELSchema.allInstances()->forall(s1,s2| s1<>s2 implies s1.name<>s2.name)

context RELSchema inv post2: −− relat ion names are unique in schema
relations->forall(r1,r2| r1<>r2 implies r1.name<>r2.name)

context Relation inv post3: −− a t t r ibu te names unique in relat ion
self.attrs->forAll(a1,a2 | a1.name=a2.name implies a1=a2)

context Relation inv post4: −− relat ions have a key
self.attrs->exists(a | a.isKey)

Fig. 3. OCL constraints for ER and REL

Problem Statement. A developer who is designing a model transformation typically
wonders the following question several times during the designing process: Do the con-
straints imposed on the source model plus the transformation specification guarantee
that these other constraints are fulfilled by the target models? When the answer to this
question is ‘yes’ for certain properties, we would say that the transformation which
is being designed is correct with respect to the given sets of pre and postconditions.
Namely, in our view, a model transformation is correct if and only if executing it us-
ing a constrained-valid input model as argument always results on a constrained-valid
output model, where a constrained-valid input model is a model that satisfies the model
transformation’s preconditions and a constrained-valid output model is a model that
satisfies the model transformation’s postconditions. Notice that the ATL model trans-
formations that we consider here are always executed to populate target models which
are initially empty. For our approach to be practical, we are implementing a tool that au-
tomatically maps ATL matched rules to first order logic files and employs the Z3 solver
to check whether the implications between pre and postconditions hold. A tool that
automatically maps the OCL constrained metamodels to FOL is already implemented.
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We can read each row in Table 2 (left hand side) as follows: For each input model
which satisfies the named preconditions, the respective postcondition will hold for the
output model. These implications were proven automatically to hold for the ER2REL
transformation by Z3 and Yices.2 Moreover, the SMT solvers can also determine the
minimal set of preconditions that are required to prove a given postcondition. The table
shows that every target postcondition of the REL metamodel can be inferred except post3
– for which Z3 can find a counter example even if all preconditions are assumed, e.g.
an input model containing reflexive relationships on the source side. In the following
sections, we will explain our FOL semantics for ATL matched rules that allow these
implications to be automatically proven by the SMT solvers.

Table 1. Implications that hold for ER2REL (and that can be proven automatically using Z3 and
Yices∗ using our translation into first-order logic). (QI=Quantifier Instantiations). (Class names
abbreviations: E = Entity, RS = Relship, RSE = RelshipEnd, RE= Relation, RA = RELAttribute).

Proofs found automatically by Z3 and Yices∗

Preconditions Postcondition Unsat core QI (C) QI (U) QI (P)
total = 69

pre1 post1 4 22 18 22
E::schema.lo, RS::schema.lo R::schema.lo 9 186 30 60
E::schema.up, RS::schema.up R::schema.up 9 310 118 200
pre2, pre3, pre4, post2 16 10274 888 423
E::schema.lo+up, RS::schema.lo+up
RSE:relship.lo RA::relation.lo 11 359 50 105
RSE::relship.lo+up RA::relation.up 11 2864 72 247
pre4, RSE::type.lo, RS::ends.lo post4 14 493 141 235

3 Mapping Metamodels and OCL Constraints to First Order
Logic

Since ATL transformations are always defined from a source to a target metamodel, we
will first explain how we map metamodels’ elements to first order logic. We had already
used this first order formalization in [11].

– Type-predicates: Metamodels’ classes are mapped to unary boolean functions. E.g.,
the class ERSchema is mapped to a unary boolean functionERSchema: int→ bool;

– Objects variables are mapped to integer variables, e.g, an object variable cl of type
Entity is mapped to an integer variable cl, such that Entity(cl) holds;

– Attribute-functions: Attributes are mapped to either boolean or integer functions,
e.g., the attribute name is mapped to a function name: int→ int;3

2 We put a ‘∗’ to Yices in the table since it requires to assume some previously proven postcon-
ditions as lemmas in order to find a proof for R::schema.lo and RA::relation.lo

3 We do not considered attributes’ values of type object or collection. Also, strings are currently
treated as Integers. Thus, no string-specific operations are supported. The reason is that there
are no such theories and decision procedures available yet for SMT solvers (although this is
ongoing work).
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– Association-predicates: Association-ends of a given association, e.g. erschema are
mapped to binary boolean functions, e.g., erschema: int int→ bool.

Notice that we assume that a function �.	 exists to generates unique function symbols
for metamodel elements, and that metamodel elements are uniquely named (without
losing generality). Next, we outline how we can ensure disjointness of types in the type
system, and how to consider inheritance relationships, that were not covered before in
our approach. Our extension includes formulas

– to ensure that those type-predicates mapping classes that are not subclasses in any
inheritance relationship are pairwise disjointly interpreted. I.e., if c and c′ are dis-
joint classes, we include a formula ∀(x) ¬(�c	(x) ∧ �c′	(x)) to ensure that their
corresponding predicates are disjointly interpreted;

– to map class inheritance relationships. Namely, for each direct subclass rela-
tions between c′ and c, i.e., c′ is a (direct) subclass of c, we include a formula
∀(x)(�c′	(x) ⇒ �c	(x)). For each abstract superclass c, the following formula
would also be included: ∀(x)(�c	(x)⇒

∨
1≤h≤k�ch	(x)) for all ch subclass of c.

Notice that we need to add these axioms explicitly because we do not use sorted logic
as, e.g., [25]. In the case of inheritance, only for the immediate subtypes below a super-
class in different branches of the tree, the formulas to guarantee the pairwise disjoint
interpretation of these types are included.

Remark 1. Neither superclass attributes nor associations ends are specified explicitly
for the subclasses, but they are mapped and used according to how they are specified in
the metamodel for the superclass. We do not consider multiple inheritance relationships.

From OCL to First-Order Logic. As we mentioned before, this work focuses on the cor-
rectness of transformations defined between OCL constrained metamodels. We use our
previous work [11] to translate OCL constraints into FOL. The operators that are listed
in the examples below are those covered in [11]. 4 Our mapping is both simple, in the
sense that the resulting FOL formulas closely mirror the original OCL constraints; and
practical, in the sense that, using this mapping we can also employ automated theorem
provers and/or SMT solvers (e.g., Z3 and Yices) to automatically perform unsatisfiabil-
ity checks on non-trivial sets of OCL constraints. In a nutshell, our mapping is defined
recursively over the structure of OCL expressions. Attributes, classes and association
ends that may be part of OCL expressions are mapped as we explained for metamodel
elements.

– Boolean-expressions are translated to formulas, which essentially mirror the log-
ical structure of the OCL expressions, e.g., for the operations or, and, implies,
not, isEmpty(), notEmpty(), includes, excludes, <, >, ≤, ≥, =, �=;

– Integer-expressions are basically copied, e.g. +, −, ∗; currently, we do not cover
String-expressions.

4 Our mapping is not yet complete but it does cover a sufficiently significant subset of the OCL
language.
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– Collection-expressions are translated to fresh predicates that augment the specifi-
cation signature and whose meaning is defined by additional formulas generated by
the mapping. E.g. to map select, reject, collect, forAll, exists, including
or excluding operations.

Example 1. Mapping precondition 1 using our previous translation from OCL to FOL.
Precondition 1 in the example presented in Sect. 2 is:

inv pre1:
ERSchema.allInstances()->forall(x,y| x<>y implies x.name<>y.name)

It is mapped to:

∀(x)(ERSchema(x)⇒ ∀(y)(ERSchema(y)⇒ ((x �= y)⇒ (name(x) �= name(y)))))

4 First-Order Semantics for ATL Transformations

There are two things that need to be considered in order to understand the meaning of
a model-to-model transformation and how it works. One is the language in which it is
specified, the other is how the transformation definition is executed by a transformation
engine. Therefore, to be able to reason about pre- and postconditions that may hold for
an ATL transformation, our first order interpretation of ATL transformations is captur-
ing in addition to the definition of the rules, how the ATL engine executes them. For the
work presented here, we assume that the ATL transformation parses and type checks
correctly regarding the source and target metamodels, and that its execution does not
end in abortion or error, i.e., a valid output model is produced from any valid input
model. Currently, we only regard matched rules, in a slightly restricted form that allows
only one output pattern element per rule and three kinds of bindings, as it is captured in
Fig. 4. But our mapping can be extended to deal with more than one output pattern ele-
ments and to cover OCL collection expressions that can be used on the right-hand side
of binding statements. Lazy rules will be included (with some restrictions), in future
work. Matched rules’ patterns (up to name uniqueness) always compose ATL trans-
formations that are terminating and confluent [18]. Furthermore, we only support the
subset of OCL that is supported in [11]. In particular, we do not support recursively de-
fined OCL operations that would be the only source of non-termination. Last, we do not
allow that both ends of an association are used as target of bindings at the same time,
because ATL does not guarantee confluence in this case. The structure of ATL matched
rules was briefly explained in Sect. 2. Fig. 4 shows the pattern of matched rules that our
mapping currently supports.

The object variables and the OCL expression appearing in the from-clause is called
the rule’s source pattern. The object variable and the binding statements appearing in
the to-clause are called the rule’s target pattern. Recall that the oclexp in the source
pattern is a boolean filtering condition (if there is not filtering condition, it is assumed
to be true). The expressions bindstmi are binding statements and sj and o are object
variables of types tj (of the source metamodel) and t′ (of the target metamodel), resp..
The properties attname′j , assocend′k or assocend′l are (resp.) attribute’s names and
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association ends that belong to t′ objects according to the target metamodel definition.
Analogously, attnamerk and assocendfp are attribute’s names and association ends
that belong to tr and tf objects (resp.) according to the source metamodel definition.
Moreover, attributes must be of integer or boolean types and their type must conform
when they are bound by a rule, e.g. attname′j ← sr.attnamerk . We assume that
the function �.	 introduced in Sect. 3 also produces unique function symbols for ATL
rules. These functions are declared with the arity that corresponds to the rules they
mirror. Next we give a closer look on how the ATL engine executes these rules. We take
advantage of this description to explain how the properties of the execution semantics
of ATL rules are captured by our formalization in first order logic. As expected the ATL
engine interprets ATL rules oriented from source to target.

rule rlname

from s1 : t1, . . . , sn : tn (oclexp)

to o : t′ (bindstm1, . . . , bindstmm)

where each bindstmi can have one of the following shapes:

shape I: attname′j ← sr.attnamerk ,

shape II: assocend′l ← sf .assocendfp

shape III: assocend′k ← sv

Fig. 4. ATL matched rule’s pattern currently supported by our mapping

1. Objects in the target metamodel exists only if they have been created by an ATL
rule since the ATL transformations that we consider are always initially executed on
an empty target model. Namely, the ATL transformation considered as an operation
from a source to a target model is surjective on rules’ target object variables’ types.
When an object type can be generated by the execution of more than one rule of an
ATL transformation, then a disjunction considering all these possibilities is made in
the consequent of the assertion. E.g., if an object o of type t′ can be created by any of
the rules rlname1 of input parameters s11 : t11, . . . , s1v1 : t1v1 and filtering expression
oclexp1, rlname2 of input parameters s21 : t21, . . . , s2v2 : t2v2 and filtering expression
oclexp2, . . . , and rlnamek of input parameters sk1 : tk1, . . . , skvk : tkvk and filtering
expression oclexpk, formulas shaped as shown in Fig. 5, pattern (i), are generated. This
type of formulas is inserted for each target object type of rules in the transformation.5

Corresponding formulas instantiated for the ER2REL example presented in Sect. 2 are
shown in Figs. 7, 9, 10, assertions (i).

2. A rule’s source pattern is matched (taking into account the filtering condition)
against the elements of the source model (see assertion pattern (ii) in Fig. 6). Elements
in the target model are created by the execution of at most one rule using a tuple of input
objects that cannot be matched by two different rules (see assertion pattern (iii) in Fig.
6). Namely, an ATL transformation from source to target is executed as a function and,
in addition, it is globally injective. To ensure that a target object can only be produced

5 The function ocl2fol represents the mapping from OCL to first order logic defined in [11] and
described in Sect. 3. It will produce a conjunction of boolean formulas when applied to an
OCL boolean expression.
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(i) ∀(o) (�t′	(o))⇒ ∃(s11, . . . , s1v1) (�t11	(s11) ∧ . . . ∧ �t1v1	(s1v1) ∧ ocl2fol(oclexp1) ∧
(�rlname1	(s11, . . . , s1v1) = o)) ∨
∃(s21, . . . , s2v2) (�t21	(s21) ∧ . . . ∧ �t2v2	(s2v2) ∧ ocl2fol(oclexp2) ∧
(�rlname2	(s21, . . . , s2v2) = o)) ∨
. . . . . . . . . . . .

∃(sk1, . . . , skvk) (�tk1	(sk1) ∧ . . . ∧ �tkvk	(skvk) ∧ ocl2fol(oclexpk) ∧
(�rlnamek	(sk1, . . . , skvk) = o))

Fig. 5. Formulas to capture that ATL transformations are surjective on target object variables’
types

by one rule on a fixed tuple of arguments, we introduce a function creation. It assigns
to each target object the rule identifier (which is a constant defined exactly for this
purpose) and the input object pattern that created it. In order to have an homogeneous
signature of this function, we assume the maximum input pattern arity u (plus 1 to
insert the rule identifier). For rules with a lesser arity v < u, the tuple is completed with
arbitrary object variables that appear existentially quantified. This definition, shown in
Fig. 6, represents a simple way for ensuring global injectivity for the transformation.
These type of formulas are also inserted for every ATL rule in the transformation. These
formulas instantiated for the ER2REL example presented in Sect. 2 are shown in Figs. 7,
9, 10, assertions (ii)-(iii).

(ii) ∀(s1, . . . , sn)(�t1	(s1) ∧ . . . ∧ �tn	(sn) ∧ ocl2fol(oclexp))⇒
∃(o) (�t′	(o) ∧ (�rlname	(s1, . . . , sn) = o))

(iii) ∀(s1, . . . , sn, o)(�t1	(s1) ∧ . . . ∧ �tn	(sn) ∧ ocl2fol(oclexp) ∧
(�rlname	(s1, . . . , sn) = o))⇒
∃(y1, . . . , yd)(�creation	(o) = 〈idrlname, s1, . . . , sn, y1, . . . , yd〉), with d=(u-1)-n

Fig. 6. Formulas to capture the rules’ source patterns’ matching and rule’s inyectivity

3. The bindings of the target patterns are performed straight-forwardly for attribute’s
values (binding pattern shape I in Fig. 4) of primitive types. However, an implicit reso-
lution strategy is applied by the ATL engine to resolve source objects to target objects.
This mechanism is in place for shapes II and III of the binding statements given in Fig.
4). Recall that the transformations we assume as our subject of study can be successfully
executed. In particular, this means that all the bindings declared in the target model are
well defined, i.e., can be performed. To mirror the binding mechanism, auxiliar func-
tions are defined. There will be as many of these functions as different rules’ arities
are in the transformation. Fig. 8 illustrates how they are used, but we do not further
explain here how they are defined for space reasons). Let us just say that we represent
these functions with the symbol resolveu, where u is the arity of the rules it is based on.
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(i) ∀(s)(RELSchema(s)⇒ ∃(p)(ERSchema(p) ∧ (S2S(p) = s)),

(ii) ∀(p)(ERSchema(p)⇒ ∃(s) (RELSchema(s) ∧ (S2S(p) = s)),

(iii)∀(p, s)(ERSchema(p) ∧RELSchema(s) ∧ (S2S(p) = s))⇒
∃(y)(creation(s) = 〈idS2S, p, y〉),

(SI) ∀(p, s)(ERSchema(p) ∧ RELSchema(s) ∧ (S2S(p) = s))⇒
(name(s) = name(p))

Fig. 7. Formulas (i), (ii) and (iii) for the rule S2S

(Shape I)

∀(s1, . . . , sn, o)(�t1	(s1) ∧ . . . ∧ �tn	(sn) ∧ ocl2fol(oclexp) ∧ (�rlname	(s1, . . . , sn) = o))

⇒ (�attname′j	(o) = �attnamerk	(sr))
(Shape II)

∀(s1, . . . , sn, o)(�t1	(s1) ∧ . . . ∧ �tn	(sn) ∧ ocl2fol(oclexp) ∧ (�rlname	(s1, . . . , sn) = o))

⇒ ∀(w)(�type(assocendfp)	(w) ∧ �assocendfp	(sf , w))⇒
∃(w′)(�type(assocend′l)	(w′) ∧ �assocend′l	(o, w′) ∧ resolve1(w,w′))

∀(w′)(�type(assocend′l)	(w′) ∧ �assocend′l	(o, w′))

⇒ ∃(w)(�type(assocendfp)	(w) ∧ �assocendfp	(sf , w) ∧ resolve1(w,w′))

(Shape III)

∀(s1, . . . , sn, o)(�t1	(s1) ∧ . . . ∧ �tn	(sn) ∧ ocl2fol(oclexp) ∧ �rlname	(s1, . . . , sn) = o)

⇒ ∃(w′)(�type(assocend′k)	(w′) ∧ �assocend′k	(o, w′) ∧ resolve1(sv, w
′)) ∧

∀(w′)((�type(assocend′k)	(w′) ∧ �assocend′k	(o, w′))⇒ resolve1(sv, w
′)))

Fig. 8. Formulas for the bindings of the rules

It is defined as boolean function with u+1 arity, and it helps to distinguish which is the
rule resolving source to target objects. For the ATL transformation presented in Fig. 2,
the function resolve1 defined as it is shown in Fig. 11 is used to resolve the binding
patterns erschema←er.relschema of the rules E2R and R2R, and the binding patterns
relation←ent of the rule EA2A, relation←rs and relation←rse.relship of the
rules RA2A and RA2AK (resp.).

Formulas mapping binding statements are inserted on-demand for every ATL rule in
the transformation. We formalized the mapping of binding statements of shape I-III in
Fig. 8. Although we do not provide in this paper the definition of the function type over
the metamodel (and it is used in the definition shown in Fig. 8), notice that it simply
returns the type of the association end it is applied to. These formulas instantiated for
the ER2REL example presented in Sect. 2 are shown in Fig. 7, 9, 10, assertions headed
by (SI) to (SIII) for (Shape I) to (Shape III).
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(i) ∀(t)(Relation(t)⇒
∃(e)(Entity(e) ∧ (E2R(e) = t)) ∨ ∃(rh)(Relship(rh) ∧ (R2R(rh) = t)),

(ii) ∀(e)(Entity(e)⇒ ∃(t) (Relation(t) ∧ (E2R(e) = t)),

(iii) ∀(t, e)(Entity(e) ∧ Relation(t) ∧ (E2R(e) = t))⇒
∃(y)(creation(t) = 〈idE2R, e, y〉),

(SI) ∀(e, t)(Entity(e) ∧ Relation(t) ∧ (E2R(e) = t))⇒
(name(e) = name(t)),

(SII) ∀(e, t) (Entity(e) ∧ Relation(t) ∧ (E2R(e) = t))⇒
(∀(p) (ERSchema(p) ∧ erschema(e, p))⇒

∃(s) (RELSchema(s) ∧ relschema(t, s) ∧ resolve1(p, s))) ∧
(∀(s) (RELSchema(s) ∧ relschema(t, s))⇒

∃(p) (ERSchema(p) ∧ erschema(e, p) ∧ resolve1(p, s)))

Fig. 9. Formulas (i), (ii) and (iii) for the rule E2R. Map of its binding statements of shape I-II.

5 Verifying Model Transformations

In this section we formalize the Hoare-style notion of correctness (i.e. Hoare triples)
that we use to verify ATL model transformations. 6 In particular, Def. 1 follows stan-
dard Hoare logic in that it deals only with partial correctness, while termination would
need to be proven separately. Notice however that the matched rules’ patterns consid-
ered in this work (up to name uniqueness) always compose ATL transformations that
are terminating and confluent since this type of rules do not contain any possible source
of non-termination. Namely, they do not contain recursive calls, neither recursively de-
fined OCL helper operations. This claim is further supported and explained in [18]. In
addition, notice that for the ATL rules that we consider in this work, only two condi-
tions can get an execution aborted: (a) Two rules match the same tuple of objects; (b)
A binding of shape III (Fig. 4) cannot be resolved because the required object was not
matched by any rule’s source pattern. Neither (a) nor (b) happen in our examples.

Assuming that ocl2fol represents our mapping from OCL to first-order logic [11]
described in Sect. 3, and that atl2fol is the mapping from ATL to first-order logic that
we partially described in Sect. 4, we are able to formalize our notion of ATL model
transformations correctness in Def. 1 in two alternative shapes. The former definition
of correctness is usually more convenient for using theorem provers to prove postcondi-
tions and the latter definition of correctness allows us to reduce the problem of checking
the correctness of an ATL model transformation to the problem of checking the unsatis-
fiability of a set of first-order sentences, which can be checked using an SMT solver. In
fact, all correctness checks shown in Table 2 were automatically proven by Z3 and
Yices, two modern SMT solvers. However, let us remark again that Yices required
some postconditions previously proven as lemmas to find a proof for postconditions

6 Let us recall, informally, that these triples, i.e. {Φ} Q {Ψ}, with {Φ} and {Ψ} being formulas
in first order logic, mean that if {Φ} holds before the execution of Q and, if Q terminates, then
{Ψ} will hold upon termination.
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(i) ∀(t) (RELAttribute(t)⇒
∃(at, e) (ERAttribute(at) ∧ Entity(e) ∧ entity(at, e) ∧ (EA2A(e, at) = t)) ∨
∃(at, rh) (ERAttribute(at) ∧ Relship(rh) ∧ relship(at, rh) ∧ (RA2A(rh, at) = t)) ∨
∃(at, rhe, e) (ERAttribute(at) ∧ RelshipEnd(rhe) ∧ Entity(e) ∧ entity(at, e)∧
type(rhe, e) ∧ (isKey(at) = true) ∧ (RA2AK(rhe, at) = t)),

(ii) ∀(e, at)(Entity(e) ∧ ERAttribute(at) ∧ entity(at, e))⇒
∃(t)(RELAttribute(t) ∧ (EA2A(e, at) = t)),

(iii) ∀(e, at, t)(Entity(e) ∧ ERAttribute(at) ∧ RELAttribute(t) ∧ (EA2A(e, at) = t))⇒
(creation(t) = 〈idEA2A, e, at〉),

(SI) ∀(e, at, t)(Entity(e) ∧ ERAttribute(at) ∧ RELAttribute(t) ∧ (EA2A(e, at) = t))⇒
(name(at) = name(t)),

(SIII) ∀(e, at, t)(Entity(e) ∧ ERAttribute(at) ∧ RELAttribute(t) ∧ (EA2A(e, at) = t))⇒
∃(w′) (Relation(w′) ∧ relation(t, w′) ∧ resolve1(e, w

′))) ∧
∀(w′) (Relation(w′) ∧ relation(t, w′)⇒ resolve1(e,w

′)))

Fig. 10. Formulas (i), (ii) and (iii) for the rule EA2A, taking into account that RELAttributes can
also be created by the rules RA2A and RA2AK. Map of its binding statements of shape I and III

resolve1(x, y) =
def. ((ERSchema(x) ∧ RELSchema(y) ∧ (S2S(x) = y)) ∨

(EREntity(x) ∧ RELRelation(y) ∧ (E2R(x) = y)) ∨
(ERRelship(x) ∧ RELRelation(y) ∧ (R2R(x) = y)))

Fig. 11. Definition of the auxiliar function resolve1

R::Schema.lo and RA::relation.lo, whereas the decision procedures of Z3 were
able to fully handle these cases without further help (we further discuss this generality
aspect below).

Definition 1. Let Q = {r1, . . . , rn} be an ATL model transformation composed of matched
rules (and free from OCL recursive helper operators). Then, Q is correct with respect to pre-
conditions {ς1 . . . ςl} and postconditions {τ1, . . . , τw} if and only if, upon termination of Q, for
every τi, i = 1, . . . , w, the following formula always hold:(

l∧
j=1

ocl2fol(ςj)

)
∧
(

n∧
j=1

atl2fol(rj)

)
⇒ ocl2fol(τi) (1)

or, equivalently, the following formula is unsatisfiable(
l∧

j=1

ocl2fol(ςj)

)
∧
(

n∧
j=1

atl2fol(rj)

)
∧ ¬(ocl2fol(τi)) (2)

The correctness of our approach obviously depends on the correctness of the mappings
from OCL to FOL and from ATL to FOL, that is, on whether they correctly capture
the semantics of OCL constraints and of ATL rules and rules’ execution. These are
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certainly two challenging theoretical problems, whose solutions will require, first of all,
well-defined, commonly accepted, formal semantics for OCL and ATL: none of these
are currently available. Still notice that our translation yields very intuitive formulas for
anyone familiar with ATL, and so they are suited for validation by humans against the
expected behaviour of ATL.

Automatic verification of transformation correctness. For the ER2REL example pre-
sented in Sect. 2, all implications summarized in Table 2 were automatically (and di-
rectly) proven by Z3 and (partly by) Yices in less than 1 second (in a standard 2.2 Ghz
office laptop running Windows 7). Similarly, for the more complex example that we bor-
rowed from [5], all postconditions that we required were proven automatically in less
than a minute using Z3. Actually, they were proven in less than 10 seconds when pre-
viously proven postconditions (multiplicity constraints in the target metamodel) were
used as lemmas. The preconditions that are required to find a proof can be automatically
determined by the solvers as the unsatisfiable cores. The column ‘unsat core’ in Table
2 shows for the ER2REL example the number of assertions (from the FOL specification
that contains the ATL semantics and the mapped OCL constraints used as precondi-
tions) that are required to prove a postcondition. The other columns show the number
of quantifier instantiations required to perform the proof. These numbers are directly
correlated to the numbers of ground terms created by Z3 by instantiating the universally
quantified variables in our formulas. QI(C) is the number of instantiations when all as-
sertions are enabled, QI(U) is the number of instantiation when we only leave active the
assertions that belong to the unsatisfiable core (others are ‘disabled’). Finally, QI(P) is
the number of instantiations made when all assertions for the transformation semantics
are considered together with only the required preconditions. The relation between the
three columns shows that the solver benefits from reduced precondition sets. In total,
the specification of the ER2REL example in FOL (accounting pre-conditions and ATL
semantics assertions) consists of 69 formulas.

Z3 can also work as a counter example finder but, in general, its algorithms seem to
be slower for that goal. We performed several experiments to test the efficiency of Z3
for counter example finding. For instance, since we knew that post3 for ER2REL did not
hold from the assumed preconditions, we ask Z3 to find a counter example, however,
Z3 took more than 2 hours for such task when we did not specify a maximum model
extent. Nevertheless, we think that tools specially dedicated to finite model finding such
as Alloy are better suited to perform exactly that task in less time. Our experience [9]
leads us in this direction also, and we consider a matter of future work tailoring our
semantics for these tools. They would provide the required complement to SMT solvers,
for the satisfiable case.

Generality of our approach. Both examples (ER2REL and the one borrowed from [5])
can be automatically verified using Z3 and (partly) Yices (the interested reader can find
the files containing the formalization of both examples ready to feed Z3 and Yices at
[8]). But, as FOL is not decidable we cannot claim full generality for our approach.
However, we expect our FOL mapping for ATL matched rules to fall in the scope of
what can be solved by the model-based quantifier instantiation (MBQI) decision proce-
dure of Z3 [15] that is refutationally complete for quantified formulas of uninterpreted
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and ‘almost uninterpreted’ functions. Yet, which part of the OCL language is decidable
needs to be investigated.

6 Related Work

Several works address automated verification of model-to-model transformations for
the same Hoare-style notion of partial correctness. Nevertheless, as it happens with any
other modelization process, there are several possible translations from a given source
language, e.g. from ATL, both to different formalisms and following different strategies
depending on the correctness properties that we want to verify and the desired proper-
ties of the verification procedure itself (complete, automatic, etc.). Next, we will distin-
guish two groups of related works: 1) automatic unbounded verification approaches; 2)
automatic bounded verification approaches.

In the first group, [16] type checks transformations with respect to a schema (i.e., a
metamodel) by using the MONA solver. Only the typing of the graph can be checked in
this approach. Other properties, e.g., the uniqueness of names, cannot be expressed in
this approach while they can be checked using OCL. In [2], they propose novel deduc-
tion rules to be used for automatically deriving properties of model transformations. On
the contrary, we do not propose new deduction rules but rely on the deduction systems
implemented in the SMT solvers. In [24], unbounded model checking is used to check
first-order linear temporal properties for graph transformation systems. Standard OCL
does not capture temporal properties (nor does our mapping). In the same vein, [20]
map transformations into the DSLTrans language, and pattern-based properties into a
model-checking problem (using Prolog). To our knowledge, there is no approach in this
group dealing with ATL or with a constraint language similar to OCL.

In the second group, [26], provides a rewriting logic semantics for ATL, and uses
Maude to simulate and verify transformations. In the same logic, [7] formalizes QVT-
like transformations. [1,4] translate pattern-based model-transformations into the rela-
tional logic of Alloy. In [6] they extend a verification technique capable of checking
statically that graph based refactoring rule applications preserve consistency with re-
gards to graph constraints by automatically performing counterexample finding. The
consistency notion used in [6] is analogous to the partial correctness notion that we use
in this paper when applied to ‘in-place’ transformations. The same notion is used also in
[23] for the verification of graph programs. Finally, we have also translated ATL trans-
formations into corresponding transformation models to capture its execution semantics
by OCL constraints, and we have used Alloy to find counterexamples [9]. Notice that
the generated transformation models, which have a nice intuitive interpretation as a
trace model, could be further translated to FOL using [11]. However, the translation
obtained is not adequate for SMT solvers since the resulting FOL assertions are overly
complex for efficient e-pattern matching (neither Yices nor Z3 could perform any of
the proofs in our examples using the resulting specification of this approach). In this
sense, our works complement each other, i.e., [9] is well-suited for bounded counter ex-
ample finding, whereas the approach presented in this paper can provide proofs for the
unsatisfiable cases. In [10], we showed how TGG and QVT-R transformations can be
translated into OCL-based transformation models, yielding a different kind of models
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than [9] due to the different execution semantics. We expect that a direct first-order se-
mantics for QVT-R is also required in order to employ SMT solvers for verifying these
transformations following the approach presented in this paper.

7 Conclusions and Future Work

We summarize our contributions in this paper as follows: (i) We provide a novel (and
the only, so far) first-order semantics for a declarative subset of ATL; (ii) we propose
an automatic, unbounded approach to formally verify a Hoare style notion of partial
correctness for ATL transformations with respect to OCL pre- and postconditions; (iii)
we have successfully used SMT solvers to perform that verification, i.e., to automati-
cally prove constraints that will always hold on target models. Our approach is suited
for ‘black box’ application by non-formal developers, because we do not require inter-
action with a theorem prover. For our approach to be practical, we are implementing a
tool that automatically maps ATL matched rules to first order logic files and employs
the Z3 solver to check whether the implications between pre and postconditions hold.
A tool that automatically maps to FOL the OCL constrained metamodels is already
implemented.

Our work complements those on bounded verification of model transformations (e.g.,
using SAT-based tools such as Alloy). Whereas bounded approaches are generally more
efficient (and complete within the bounds) in finding counterexamples, our approach
provides evidence in the cases when no counterexample could be found by the bounded
approach. Furthermore, SMT solvers provide the information about which are the as-
sertions producing unsatisfiability, i.e., ‘what implies what’, since they can extract the
unsatisfiable core. This is particularly useful in terms of guaranteeing which precon-
ditions imply which postconditions. For both the example presented in this paper and
the larger one provided on-line, all assertions of interest could be proven in less than a
few seconds. We expect our FOL mapping for ATL matched rules to fall in the scope
of what can be handled by the model-based quantifier instantiation (MBQI) decision
procedure of Z3 [15] that is refutationally complete for quantified formulas of uninter-
preted and ‘almost uninterpreted’ functions (presuming that the OCL constraints of the
metamodels fall into the same fragment). Yet, even if the generated first-order speci-
fication falls into a fragment for which the SMT decision procedure is refutationally
complete, termination is not guaranteed for the case when a counterexample exists. Fi-
nally, we must say that most of the work in all examples that we considered so far, could
be done by the incomplete (but more efficient) standard e-pattern matching procedure.
In future work we will also generalize our translation to consider broader rule patterns,
in particular, to deal with more than one output pattern elements and to cover OCL col-
lection expressions that can be used on the right-hand side of binding statements. Lazy
rules (in a restricted way) will be also considered.
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Abstract. MDE is being applied to the development of increasingly
complex systems that require larger model transformations. Given that
the specification of such transformations is an error-prone task,
techniques to guarantee their quality must be provided. Testing is a
well-known technique for finding errors in programs. In this sense, adop-
tion of testing techniques in the model transformation domain would
be helpful to improve their quality. So far, testing of model transforma-
tions has focused on black-box testing techniques. Instead, in this paper
we provide a white-box test model generation approach for ATL model
transformations.

1 Introduction

Model-Driven Engineering (MDE) is a software engineering paradigm where
models play a fundamental role. They are used to specify, simulate, test, ver-
ify and generate code for the application to be built. Most of these activities
are model manipulations, thus, model transformation becomes a crucial activ-
ity. Nevertheless, writing model transformations is a complex and error-prone
task, specially when using MDE to develop complex systems that usually involve
chains of large transformations. Therefore, having mechanisms to make model
transformations more reliable has become a matter of utmost importance.

Among the possible strategies to improve the quality of model transforma-
tions, several testing techniques for model transformations have been recently
proposed (see [4] for a recent survey). So far, most of the techniques follow
a black-box approach (i.e. transformations are regarded as a black-box so the
generation of test input models does not take into account the internals of the
transformation) while only a few attempt partial white-box testing strategies
(but oriented towards the coverage of the input metamodel and not that of the
transformation).

In this sense, the contribution of this paper is to define a new white-box
testing mechanism to generate test input models out of ATL model transfor-
mations. Our goal is to optimize the generation of the tests by maximizing the
coverage of the internal transformation structure. We have chosen ATL [14] as
target transformation language due to its popularity (both in academia and in-
dustry). However, many of the ideas presented herein could be applied to other
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transformation languages following the rule-based paradigm in which the OCL
is broadly used such as the QVT transformation language family. Our approach
can be used in isolation or could be integrated with black-box testing techniques
to provide an hybrid test transformation framework.

This paper is structured as follows: Section 2 provides some background on
model transformation testing and motivates our approach. Section 3 describes
at a high level the foundations of our approach and introduces the running
example used throughout the paper. Section 4 goes into detail on how to analyze
an ATL transformation to extract the information needed to generate the test
input models. Section 5 describes the generation of test input models using the
information extracted in Section 4. Finally, Section 6 reviews the related work,
and some conclusions and further work are drawn in Section 7.

2 Background and Motivation

Software testing, also known as program testing, can be viewed as the destructive
process of trying to find the errors (whose presence is assumed) in a program
or piece of software, of course, with the intent of establishing some degree of
confidence that the program does what it is expected to do [19]. A common
methodology to test a piece of software generally comprises a number of well
known steps, namely the creation of input test cases, running the software with
the test cases, and finally, using an oracle to analyze the results yielded to
determine whether errors came up or not. An oracle is any program, process
or body of data that specifies the expected outcome for a set of test cases as
applied to a tested object [5] and it can be as simple as a manual inspection or
as complex as a separate piece of software.

It is generally accepted that the more input tests are created and the more
time is spent running the software, the higher is the probability of finding errors
and therefore end up with a more reliable software. However, since finding all the
errors presented in a piece of software is impossible [5], and the number of test
cases that can be created to test a piece of software can be potentially infinite,
it is necessary to establish some strategy to carry out testing in an effective
way. Two of the most prevalent strategies are black-box testing and white-box
testing. The main difference betweeen them is that in black-box testing only the
program specification is taken into account at the time of designing test cases,
whereas in white-box testing test cases are created out of the analysis of program
internals. Mixed strategies combining both approaches are usually encouraged,
though, in order the get a better testing experience.

The methodology to test a model transformation is essentially the same as
for software testing and, therefore the same conclusions can be applied. How-
ever, compared to program testing, model transformation testing must face an
additional challenge [3]: the complex nature of model transformation inputs and
outputs. Models can be large structures and must conform to a meta-model
(possibly extended with OCL well-formedness rules) thus making even harder
the generation of test models and the analysis of the results. Fig. 1 shows what
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Fig. 1. Mixed approach to model transformation testing

a mixed strategy to test model transformations looks like, in which black-box
testing approaches derive test cases from the transformation specification and
white-box approaches do it out of its implementation.

So far, the generation of input test models by means of black-box techniques
has become more popular since, unlike white-box approaches, they do not need
to deal with the technology or transformation language employed in the imple-
mentation of the model transformation. In relation to this, our motivations to
present a white-box testing approach are twofold: On the one hand, our ap-
proach could be combined with black-box approaches to facilitate the creation
of mixed testing strategies. On the other hand, at the time of implementing a
model transformation, a formal specification is not always available, thus making
difficult or even impossible the application of black-box approaches to generate
input test models. In these scenarios, white-box testing techniques can be of
special relevance.

3 ATLTest: Test Input Models for ATL Transformations

3.1 Overall Picture

ATLTest is a white-box test generation approach for ATL transformations. In
traditional white-box testing, test generation is a 2-step process in which, typi-
cally a control flow graph or a data flow graph is generated in the first place, out
of an analysis of the source code, and then, a set of test cases is obtained from
traversing the graph a specific number of times, usually determined by some cov-
erage criteria, like for example decision coverage. Although essentially the same,
compared to traditional white-box approaches, the test generation process in
ATLTest exhibits some differences, basically due to the mixed declarative and
imperative model transformation language constructs of ATL and the complex
nature of model transformation inputs.
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Fig. 2. ATLTest: Overall picture

More specifically, the test generation process in ATLTest, depicted in Fig.
2, consists of three separate steps. In the first one, the ATL transformation is
analyzed and a graph abstracting the relevant information for the test generation
phase is produced. This graph, called “dependency graph”, plays the same role
in ATLTest that control flow graphs or data flow graphs play in other traditional
approaches, although it is substantially different in nature. For now it suffices
to say that the dependency graph represents groups of interrelated conditions
expressed in the OCL, that must be hold (totally or partially) by the test input
models.

Once the analysis of the ATL transformation is done, the second step is to
traverse the dependency graph a number of times which, as for traditional ap-
proaches, is determined by some coverage criteria. Traversing the dependency
graph implies setting truth values for the different conditions in the graph and,
therefore, each traversal will yield a set of constraints that symbolizes a family
of relevant test cases for the transformation (i.e. the constraints characterize the
structure/values of possible sample input models corresponding to that test case).

In the last step, the actual test cases (i.e. the test input models to be used
when executing the transformation) are created by computing models conform-
ing to the source metamodel and satisfying the constraints for the test case.
This computation can be performed using any of the SAT-based or CSP-based
solvers available. In particular, we use EMFtoCSP1 [12] to generate the input
test models. EMFtoCSP is an Eclipse2-integrated tool for the automatic veri-
fication of UML models and EMF models annotated with OCL constraints by
means of reexpressing them as a constraint satisfaction problem. In the context
of model transformation testing, EMFtoCSP will generate solutions (i.e. sample
models) that satisfy both the source metamodel and the additional OCL expres-
sions resulting from the graph traversal. A single sample model suffices to cover
the corresponding test case.

In the next sections we will describe in more detail the foundations and ra-
tionale behind ATLTest.
1 http://code.google.com/a/eclipselabs.org/p/emftocsp/
2 http://www.eclipse.org/

http://code.google.com/a/eclipselabs.org/p/emftocsp/
http://www.eclipse.org/
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3.2 Running Example

To illustrate our approach we will be using as a running example the following
transformation that converts publications into books (see Fig. 3). In a nutshell,
the model transformation contains two rules (Publication2Book and PubSec-
tion2Chapter) to respectively transform “Publication” and “PubSection” input
elements into “Book” and “Chapter” output elements. Those elements are only
transformed if the respective flags “isBook” and “isChapter” are activated.

Fig. 3. Source (left) and target (right) metamodels for the running example

module Publication2Book;

create OUT : Book from IN : Publication;

rule Publication2Book {

from p: Publication!Publication (p.isBook)

to b: Book!Book (

title<-p.title,

isMultiVolume<-p.sections->select(s| s.isChapter)->

size()>25 and p.sections->select(s| s.isTOC)->size()>2,

chapters<-p.sections->select(s| s.isChapter),

nPages<-p.sections->collect(s| s.nPages)->sum() )

}

rule PubSection2Chapter {

from ps: Publication!PubSection (ps.isChapter)

to c: Book!Chapter ( title<-ps.title )

}

4 Dependency Graph Generation

The ATL language includes a variety of constructs (matched rules, lazy rules,
helpers, etc) but in most of them OCL plays a key role. Therefore any white-box
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testing approach for ATL must devote a special attention to the OCL expressions
appearing in the transformation.

In fact, OCL expressions are at the heart of the mechanism to create the
dependency graph. In a nutshell, the majority of nodes and arcs are generated out
of the analysis of certain OCL expressions found in the rules and helpers making
up the ATL transformation, thus forming the building blocks of the dependency
graph. The analysis of the rules and helpers containing those OCL expressions
extends and interconnects those building blocks. The process is described in
more detail in the following subsections.

4.1 Analysis of OCL Expressions

OCL expressions have a clear impact on the number and structure of interesting
input models to use as tests for the model transformation. To ensure the coverage
of the model transformation we should make sure that the test models evaluate
to a different result the several OCL expressions in the transformation.

Let’s consider the OCL expression p.sections->select(s|s.isChapter)

extracted from the running example. The expression is part of a binding in the
first rule, aimed at generating as many “Chapter” elements in the output model
as “PubSection” elements with the flag “isChapter” set to “True” are present in
the input model. Clearly, when looking at this expression we immediately think
of different situations that should be tested, e.g. “What happens if there are no
“PubSection” elements in the input model?” or “What happens if none of the
“PubSection” elements are flagged as chapters?”. Therefore, input models that
test each situation (i.e. an input model with no “PubSections”, a model with
“PubSections”, a model with “PubSections” in which none of them is flagged as
a chapter,...) should be generated by our method.

Each question above can be characterized by means of a boolean OCL expres-
sion (for the former example PubSection::allInstances()->notEmpty() and
PubSection::allInstances()->select(s|s.ischapter)->notEmpty() could
be those expressions). Each expression would constitute a node in the depen-
dency graph (meaning that the generated tests may include the condition in the
node depending on how the graph is traversed as explained in the next section).
It is also worth noting that it does not make much sense to check the second
condition if the first one does not hold (we cannot create at the same time a
model with no “PubSection” elements and a non-empty list of “PubSection” el-
ements, some of them flagged as chapters), which means that the two conditions
are somehow interrelated. This interrelation is the reason why we call the graph,
dependency graph. There is a dependency between the two conditions, expressed
as an arc between the two nodes. Obviously, these arcs play a key role in the
traversal of the graph during the test generation phase.

In the rest of the section we generalize this discussion to arbitrary OCL expres-
sions. We have identified three different big groups of OCL expressions relevant
to the process sketched above, namely, expressions in the context of collections
(Table 1), iterative operations (Table 2) and boolean expressions (Table 3). Each
row in the tables show how the dependency graph is extended when finding an
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expression of that type in an ATL construct. The dependency graph is expressed
as two ordered sets that contain the nodes (V) and the arcs (E) in the order
they are created, where nodes are described with an OCL expression, and arcs
are expressed as “(x,y)”, “x” and “y” being the positions of the source and
target nodes in the corresponding set. In this regard, “last” is used to make ref-
erence to the last position in a set, and in the case of complex OCL expressions,
“Gx(V )” and “Gx(E)” make reference to the respective sets of nodes and arcs
obtained from the analysis of the source expression “x”. Similar for “Gbody(V )”
and “Gbody(E)” in table 2.

One important remark is that, in order to be considered for analysis, all these
OCL expressions must reference at least one element of the input metamodel,
since these are the most relevant for test generation. The identification of the
OCL expressions suitable for analysis can be done by traversing the abstract
syntax tree of the OCL expressions in the ATL transformation.

To finish this subsection, we illustrate how to create nodes 3, 4, 5, 6 and 7 of
the dependency graph in Fig. 6 by applying the information in the tables to the
following expression from the running example:

isMultiVolume<-p.sections->select(s| s.isChapter)->size() > 25

and p.sections->select(s| s.isTOC)->size() > 2 (exp1)

To begin with, the OCL expression at the right of “<-”, matches entry 10 in table
3 using “and” as “Op”. According to this entry, the 2-step process depicted in
Fig. 4 must be carried out. That is, subexpressions at the left and at the right
of “and” must be analyzed, thus yielding several nodes and arcs, and then some
of those nodes are merged. Finally all the nodes are interconnected.

Fig. 4. Actions to carry out when applying entry 10 in table 3 to the running example

The expression at the left of “and” in (exp1) is

p.sections->select(s| s.isChapter)->size() > 25 (exp2)

that matches entry 11 in table 3 where “CompOp” is “>” and “LitValue” is
“25”. Fig. 5 illustrates the process to be carried out when instructions in this
entry are followed. The subexpression on the left side is analyzed in the first
place, this way yielding nodes 3 and 4, and then, the node “t1” is created.
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Table 1. Nodes and arcs generated out of OCL operations in the context of a collection

OCL Expression G=(V,E)

1 Objc.[nav|nav → notEmpty()] V = {C :: allInstances()→
select(c|c.nav → notEmpty())→ notEmpty()}

2 C :: allInstances()[→ notEmpty()] V = {C :: allInstances()→ notEmpty()}
3 Objc.nav → isEmpty() V = {C :: allInstances()→

select(c|c.nav → isEmpty())→ notEmpty()}
4 C :: allInstances()→ isEmpty() V = {C :: allInstances()→ isEmpty()}
5 c → isEmpty() V = {c → isEmpty()} ∪Gc(V ),

E = {(Gc(V )[last], 1)} ∪Gc(E)

6 c → notEmpty() V = {c → notEmpty()} ∪Gc(V ),
E = {(Gc(V )[last], 1)} ∪Gc(E)

7 c → [size()|last()|sum()| V = Gc(V ),
append(o)|flatten()|first()| E = Gc(E)
including(o)|prepend(o)]

8 c → [includes(o)|count(o)| V = {c → includes(o)} ∪Gc(V ),
indexOf(o)|excluding(o)] E = {(Gc(V )[last], 1)} ∪Gc(E)

9 c → excludes(o) V = {c → excludes(o)} ∪Gc(V ),
E = {(Gc(V )[last], 1)} ∪Gc(E)

10 c → includesAll(cl) V = {c → includesAll(cl)} ∪Gc(V ) ∪Gcl(V ),
E = {(Gc(V )[last], Gcl(V )[1]),
(Gcl(V )[last], 1)}∪ Gc(E) ∪Gcl(E)

11 c → excludesAll(cl) V = {c → excludesAll(cl)} ∪Gc(V ) ∪Gcl(V )
E = {(Gc(V )[last], Gcl(V )[1]),
(Gcl(V )[last], 1)}∪ Gc(E) ∪Gcl(E)

12 c → union(cl) V = Gc(V ) ∪Gcl(V ),
E = {(Gc(V )[last], Gcl(V )[1])}∪
Gc(E) ∪Gcl(E)

13 c → [insertAt(n, o)|at(n)] V = {c → size() ≥ n} ∪Gc(V )
E = {(Gc(V )[last], 1)} ∪Gc(E)

14 c → subSequence(l, u) V = {c → size() ≥ u} ∪Gc(V )
E = {(Gc(V )[last], 1)} ∪Gc(E)

15 c → [intersection(cl)| V = {c → includesAll(cl) or
symetricDifference(cl)] cl → includesAll(c)} ∪Gc(V ) ∪Gcl(V ),

E = {(Gc(V )[last], Gcl(V )[1]),
(Gcl(V )[last], 1)}∪ Gc(E) ∪Gcl(E)

Now let’s see in detail how nodes 3 and 4 are generated. The expression on
the left of (exp2) is

p.sections->select(s| s.isChapter)->size() (exp3)

that matches entry 7 in table 1. According to this entry, it is necessary to analyze
the source collection of (exp3), that is:

p.sections->select(s| s.isChapter) (exp4)

It matches entry 6 in table 2. This entry indicates that (exp4) has the form
c->select(body) and therefore “c” and “body” expressions must be analyzed.
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Table 2. Generation of nodes and arcs out of OCL iterative operations

OCL Expression G=(V,E)

1 c → exists(body) V = {c → exists(body)} ∪Gc(V ) ∪Gbody(V ),
E = {(Gc(V )[last], Gbody(V )[1]), (Gbody(V )[last], 1)}
∪ Gc(E) ∪Gbody(E)

2 c → forAll(body) V = {c → forAll(body)} ∪Gc(V ) ∪Gbody(V ),
E = {(Gc(V )[last], Gbody(V )[1]), (Gbody(V )[last], 1)}
∪ Gc(E) ∪Gbody(E)

3 c → isUnique(body) V = {c → isUnique(body)} ∪Gc(V ) ∪Gbody(V ),
E = {(Gc(V )[last], Gbody(V )[1]), (Gbody(V )[last], 1)}
∪ Gc(E) ∪Gbody(E)

4 c → one(body) V = {c → one(body)} ∪Gc(V ) ∪Gbody(V ),
E = {(Gc(V )[last], Gbody(V )[1]), (Gbody(V )[last], 1)}
∪ Gc(E) ∪Gbody(E)

5 c → [collect(body)| V = Gc(V ),
sortedBy(body)] E = Gc(E)

6 c → [reject(body)| V = Gc(V ) ∪Gbody(V ),
any(body)|select(body)] E = {(Gc(V )[last], Gbody(V )[1])} ∪Gc(E) ∪Gbody(E)

Fig. 5. Actions to carry out when applying entry 11 in table 3 to the running example

In (exp4), “c” is p.sections and “body” is s.isChapter. They match respec-
tively entry 1 in table 1 and entry 2 in table 3. This way, we finally obtain nodes
3 and 4 that can be seen in Fig. 6. It is important to remember that the creation
of nodes 3 and 4 is just the first step in the analysis of (exp2), as exposed in
Fig. 5. Now it is time to complete the analysis of this expression by creating the
node “t1”. This node is made up by the following OCL expression:

p.sections->select(s| s.isChapter)->size() > 25 (t1)

It is the time to remember that the analysis of (exp2) is just the analysis of the
left subexpression of (exp1). As can be seen in Fig. 4 the analysis of (exp1) con-
tinues with the analysis of its right subexpression. We omit a detailed description
of this analysis, though, since it is very similar to the one just described. It suf-
fices to say that the analysis of the right subexpression of (exp1) yields nodes 5
and 6 that can be seen in Fig. 6, as well as node “t2”, made up by the following
OCL expression:

p.sections->select(s| s.isTOC)->size() > 2 (t2)

Finally, applying last step shown in Fig. 4, node 7 is created out of the union of
nodes “t1” and “t2”, expressed in terms of the “allInstances()” operator, and the
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Table 3. Generation of nodes and arcs out of boolean OCL operations

Boolean OCL Expression G=(V,E)

1 [True|False] V = ∅, E = ∅
2 [not]ObjA.boolAttr V = {A :: allInstances()→

select(a|[not]a.boolAttr)→ notEmpty()}
3 ObjA.[attr|nav].oclIsUndefined() V = {A :: allInstances()→

select(a|a.[attr|nav].oclIsUndefined())→
notEmpty()}

4 expr.oclIsUndefined() V = {expr → oclIsUndefined()} ∪Gexpr(V ),
E = {(Gexpr(V )[last], 1)} ∪Gexpr(E)

5 expr.oclIsKindOf(t) V = {expr → oclIsKindOf(t)} ∪Gexpr(V ),
E = {(Gexpr(V )[last], 1)} ∪Gexpr(E)

6 expr.oclIsTypeOf(t) V = {expr → oclIsTypeOf(t)} ∪Gexpr(V ),
E = {(Gexpr(V )[last], 1)} ∪Gexpr(E)

7 ObjA.attr CompOp LitV alue V = {A :: allInstances()→ select(a|
a.attr CompOp LitV alue)→ notEmpty()}

8 ObjA.attr Op ObjB .attr V = {A :: allInstances()→ select(a|
B :: allInstances()→ exists(b|
a.attr CompOp b.attr))→ notEmpty()}

9 ObjA.attr Op ObjB .attr V = {A :: allInstances()→
Op ... Op ObjN .attr select(a|B :: allInstances()→ exists(b|... →

exists(n|a.attr Op b.attr Op ... Op n.attr)...))
→ notEmpty()}

10 expr1 Op expr2 V = {Gexpr1(V )[last] Op Gexpr2(V )[last]}∪
{Gexpr1(V )[1], ... , Gexpr1(V )[last− 1]}∪
{Gexpr2(V )[1], ... , Gexpr2(V )[last− 1]},
E = {(Gexpr1(V )[last− 1], Gexpr2(V )[1]),
(Gexpr2(V )[last], 1)}∪
{Gexpr1(E)[1], ... , Gexpr1(E)[last− 1]}∪
{Gexpr2(E)[1], ... , Gexpr2(E)[last− 1]}

11 expr CompOp LitV alue V = {expr CompOp LitV alue} ∪Gexpr(V ),
E = {(Gexpr(V )[last], 1)} ∪Gexpr(E)

different nodes created during the process are interconnected. The final result
can be seen in Fig. 6.

The analysis of the rest of OCL expressions in the sample model transforma-
tion can be carried out in the same way.

4.2 Analysis of Rules and Helpers

As we have seen, the analysis of OCL expressions yields the building blocks
of the dependency graph. In this subsection we cover the analysis of rules and
helpers, coarse-grained elements of ATL transformations.

There are different types of rules in ATL, namely, matched rules, lazy rules
and called rules. The first two are declarative rules while the last one is an
imperative type of rule.
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Fig. 6. Dependency graph of the example, made up by two connected components

The analysis of a declarative rule focuses on the from section of the rule, that
indicates the conditions that trigger the rule, the to section of the rule, that
describes how elements of the target model are created, and the optional do
section of the rule, used to enable the specification of imperative statements.

The analysis of the from section produces a node with the OCL expression
in_type::allInstances()->notEmpty(), where “in type” refers to the model
element that will be matched by the rule. Optionally, this section can include
a boolean OCL expression, as a filter to limit the “in type” elements that can
trigger the rule. When present, this filter is analyzed according to the instructions
of subsection 4.1 and, in this case, the node created in the first place is connected
to the first node rendered by the filter analysis.

Returning to the running example, the analysis of the from section of the rule
“Publication2Book”, that includes the condition p.isBook, produces nodes 1
and 2 in Fig. 6. Analogously, the from section of the rule “PubSection2Chapter”
generates nodes 11 and 12 that made up the second connected component of the
dependency graph.

The to section of a declarative rule is, essentially, a collection of bindings
describing how elements of the target metamodel are created. Each binding has
the form feature-name <- exp, being “exp” an OCL expression. The result of
analyzing this section is a number of interconnected nodes, obtained from the
analysis of each “exp” element as explained in subsection 4.1. Finally, the first
node in each of the groups of nodes rendered is connected to the last node in
the group of nodes obtained from the analysis of the from section of the rule.

The do section of a declarative rule allows the specification of imperative
statements. This section is analyzed by looking for OCL expressions suitable for
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analysis. When found, those expressions are analyzed according to the directions
of subsection 4.1. This approach is also applied at the time of analyzing called
rules.

To finish the description of the dependency graph generation process, one word
about ATL helpers. Helpers can be viewed as the ATL equivalent to methods
and can be called from different points in an ATL transformation. Each helper
has a body, specified as an OCL expression. If during the analysis of the elements
described above and in subsection 4.1, a call to a helper is found, then its body
is analyzed like any other OCL expression and the rendered nodes are included
as resulting from the analysis of the element where the call was found.

One last remark that is worth mentioning is that depending on the complexity
of the ATL transformation under analysis (number of rules, presence of imper-
ative sections, etc.), the resulting dependency graph can be made up by more
than one connected component.

5 Test Input Models Generation

Once the dependency graph is created, the next step consists in traversing it a
number of times, each time determining the set of constraints a new test case
must fulfill. The process is directed by a coverage criterion, which eventually
determines the number of traversals, and consequently, the number of test cases
to be generated.

In white-box testing, coverage criteria help designers to select the structural
elements of the software (model transformations in this case) that will be the
focus of the testing and to determine the desired intensity of the testing efforts.
The coverage criteria drive the creation of the tests to make sure the tests cover
the selected parts of the transformation and do it enough to gain the desired
confidence on their correctness. The fact that a test suite covers an element
means that it exists at least one test case that exercises that element. This is
known as coverage analysis.

Branches in the program logic are elements typically selected as object of cov-
erage analysis in white-box testing. There are a number of classical white-box
coverage criteria that follow this approach, like for example, “condition cover-
age” or “multiple-condition coverage” [19]. Both focus on making sure that all
branches in the program are covered, but they differ on how they exercise con-
ditional branches where the condition is not atomic. In the case of “condition
coverage”, complete coverage is achieved by simply ensuring that the test cases
exercise each branch with all possible outcomes at least once (i.e. for a boolean
branch, the test suite must include a test case where the branch evaluates to
“False” and one where it evaluates to “True”). However, “multi-condition cover-
age” requires the test suite to include a test case for each individual combination
of truth values of the subconditions conforming the branch condition.

These and other similar criteria can be easily adapted to our approach. Since
in the dependency graph each node contains a boolean expression, condition
coverage and multi-condition coverage can be applied by considering each node
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as a branch, with the particularity that every time the condition in the node
evaluates to “False” the traversal of the actual connected component ends and
goes on with the next one. In other case, a neighbour node is visited and the
traversal continues.

This way, the application of the two coverage criteria consists on traversing the
dependency graph a number of times, each time asigning either different output
values to each OCL expression (condition coverage), or different combinations of
truth values to each component of a complex OCL expression (multi-condition
coverage). After “n” traversals, “n” sets of constraints to characterize “n” test
cases will have been obtained.

Eventually, once the sets of constraints have been obtained, the execution of
EMFtoCSP over each set will yield the set of input models to test the model
transformation3.

Retaking our example, we are going to show what the results of one traversal
of the graph shown in Fig. 6 would be in every approach. Let’s suppose that
the sequence of truth values assigned to the nodes of the first connected com-
ponent is <1,True>, <2,True>, <3,True>, <4,True>, <5,True>, <6,True>,
and then, in the case of “condition coverage” node 7 is set to <7,True>, and in
the case of “multi-condition coverage” is set to <7,(False,True)>. In the second
connected component, the expressions will be set as <11,True>, <12,True>, for
both approaches.

Applying “condition coverage”, the constraints obtained are:

Publication::allInstances()->notEmpty()=true

Publication::allInstances()->select(p|p.isBook)->notEmpty()=true

Publication::allInstances()->select(p|p.sections->notEmpty())

->notEmpty()=true

PubSection::allInstances()->select(s|s.isChapter)->notEmpty()=true

Publication::allInstances()->select(p|p.sections->notEmpty())

->notEmpty()=true

PubSection::allInstances()->select(s|s.isTOC)->notEmpty()=true

Publication::allInstances()->select(p|p.sections->

select(s|s.isChapter)->size()>25)->notEmpty() and

Publication::allInstances()->select(p|p.sections->

select(s|s.isTOC)->size()>2)->notEmpty()=true

PubSection::allInstances()->notEmpty()=true

PubSection::allInstances()->select(s|s.isChapter)->notEmpty()=true

Running EMFtoCSP over the input metamodel constrained with the expressions
above yields the model that can be seen in Figure 7 a).

3 Some assignments can cause contradictory sets of OCL expressions (e.g. if the same
subexpressions are used in two connected components and they are assigned different
truth values in the same iteration). In those situations, EMFtoCSP will return an
empty result and the test case will be discarded.
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Fig. 7. Results of the example

For “multi-condition coverage”, only the expression of node 7 changes:

Publication::allInstances()->select(p|p.sections->

select(s|s.isChapter)->size()> 25)->notEmpty()=false and

Publication::allInstances()->select(p|p.sections->

select(s|s.isTOC)->size()>2)->notEmpty()=true

Running again EMFtoCSP, we obtain the model of Figure 7 b).

6 Related Work

One of the most important tasks when testing a model transformation is the
creation of an adequate set of test input models. Currently, the majority of
approaches facing this challenge are based on black-box techniques [11, 9, 10,
16, 21, 22, 3, 6, 20, 8, 13].

As far as we know only two white-box approaches for transformation testing
have been proposed [9, 15]. Both address the identification of the relevant parts
of the input metamodel to be exercised by the tests: by looking at the transfor-
mation definition they detect the subset of the metamodel (and possible relevant
values for the metamodel attributes) that is accessed during the transformation
and thus focus the generation of tests on that subset. In our case, the coverage
of the input metamodel is derived from the test cases generated when address-
ing the coverage of the model transformation internal structure. This analysis of
the internal transformation structure also guarantees that our tests exercise all
branches in the transformation, this way maximizing their effectiveness.

White-box techniques can also be used in coverage analysis, to measure the
quality of the generated test models. Regarding this, [17] proposes a number
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of white-box coverage measures for ATL transformations, namely rule coverage,
instruction coverage and decision coverage, that are used to check how a number
of test cases cover ATL transformations. This could be useful to check the quality
of the tests generated with our approach, especially for model transformations
where the designer may want to limit the number of tests generated.

It is worth noting that the generation of test cases out of OCL expressions is
not exclusive of model transformation testing, on the contrary, it is also an im-
portant method for the verification and validation of UML/OCL specifications.
Regarding this, [7] and [2] propose approaches to generate test data from OCL
specifications, based on the utilisation of Higher-Order Logic and constraint solv-
ing techniques, respectively. Another approach based on the utilisation of con-
straint solving techniques is proposed in [1] to generate test cases out of UML
specifications, although in this case only a limited subset of the OCL is sup-
ported. Finally, [23] proposes an approach to evaluate the quality of test cases
generated from OCL expressions based on the utilization of several coverage
criteria.

7 Conclusions and Future Work

We have presented ATLTest, a white-box testing approach for the generation
of test input models for ATL transformations. Our approach tries to optimize
the effectiveness of the generated tests by maximizing the coverage of the in-
ternal structure of the model transformation under analysis. ATLTest could be
combined with black-box testing techniques to create mixed test generation ap-
proaches. In ATLTest, each test case is characterized by a set of OCL expressions
that define the possible structure of the test input models for that test case. Sam-
ple test models satisfying the OCL constraints are created automatically using
the EMFtoCSP tool.

As further work, we plan to extend our to approach to cover other transfor-
mation languages like QVT. We would also like to study complexity metrics like
cyclomatic complexity [18] to establish a limit on the number of test cases that
need to be created, something that can be specially useful when testing large
transformations. Finally, ATLTest is a first step in the development of a full
model transformation testing framework called ATLUnit, where different test
cases generation approaches could be combined.
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15. Küster, J.M., Abd-El-Razik, M.: Validation of Model Transformations – First Ex-
periences Using a White Box Approach. In: Kühne, T. (ed.) MoDELS 2006. LNCS,
vol. 4364, pp. 193–204. Springer, Heidelberg (2007)

16. Lamari, M.: Towards an automated test generation for the verification of model
transformations. In: SAC, pp. 998–1005. ACM (2007)

17. Mc Quillan, J.A., Power, J.F.: White-box coverage criteria for model transforma-
tions. Department of Computer Science. National University of Ireland (July 2009)

18. McCabe, T.J.: A complexity measure. IEEE Trans. Software Eng. 2(4), 308–320
(1976)

19. Myers, G.J.: The Art of Software Testing, 2nd edn. John Wiley & Sons, Inc. (2004)
20. Sen, S., Baudry, B., Mottu, J.M.: On combining multi-formalism knowledge to se-

lect models for model transformation testing. In: ICST, pp. 328–337. IEEE Com-
puter Society (2008)

21. Sen, S., Baudry, B., Mottu, J.M.: Automatic Model Generation Strategies for
Model Transformation Testing. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563,
pp. 148–164. Springer, Heidelberg (2009)

22. Wang, J., Kim, S.K., Carrington, D.A.: Automatic generation of test models for
model transformations. In: Australian Software Engineering Conference, pp. 432–
440. IEEE Computer Society (2008)

23. Weißleder, S., Schlingloff, B.H.: Quality of automatically generated test cases based
on ocl expressions. In: ICST, pp. 517–520. IEEE Computer Society (2008)



Empirical Evaluation on FBD Model-Based Test

Coverage Criteria Using Mutation Analysis

Donghwan Shin, Eunkyoung Jee, and Doo-Hwan Bae

Dept. of Computer Science, KAIST, Daejeon, Republic of Korea
{donghwan,ekjee,bae}@se.kaist.ac.kr

Abstract. Function Block Diagram (FBD), one of the PLC program-
ming languages, is a graphical modeling language which has been increas-
ingly used to implement safety-critical software such as nuclear reactor
protection software. With increased importance of structural testing for
FBD models, FBD model-based test coverage criteria have been intro-
duced. In this paper, we empirically evaluate the fault detection effective-
ness of the FBD coverage criteria using mutation analysis. We produce
1800 test suites satisfying the FBD criteria and generate more than 600
mutants automatically for the target industrial FBD models. Then we
evaluate mutant detection of the test suites to assess the fault detection
effectiveness of the coverage criteria. Based on the experimental results,
we analyze strengths and weaknesses of the FBD coverage criteria, and
suggest possible improvements for the test coverage criteria.

Keywords: Function block diagram, mutation analysis, test coverage
criteria.

1 Introduction

Function Block Diagram (FBD) is a graphical modeling language for Programm-
able Logic Controller (PLC) programs [1]. Recently, FBD has been used to imple-
ment safety-critical system software such as nuclear reactor protection software
[2]. For such safety-critical software, structural testing is demanded by regulation
authorities such as Nuclear Regulatory Commission (NRC) [3].

With the growing importance of structural testing for FBD models, Jee et al.
[4] have developed three FBD model-based test coverage criteria: Basic Cover-
age (BC), Input Condition Coverage (ICC), and Complex Condition Coverage
(CCC) criteria. The proposed test coverage criteria are useful in the aspects of
reflecting data flow-centric characteristics of FBD and giving testers intuitive
structural coverage concepts. However, evaluation for the coverage criteria in
terms of fault detection has not been done and important questions remain:
How effective is each of the three test coverage criteria in fault detection? What
types of faults are more likely detected by those criteria?, and so on. Answers
to these questions would bring important outcomes on the validity of the FBD
coverage criteria and therefore, on the model-based testing for FBD models.

To investigate test coverage criteria in terms of fault detection, we need to
prepare experiments with many faults. Mutation analysis measures the fault
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detection ability of a test suite by seeding artificial defects,mutants, into a model.
If a test suite kills a mutant, it means that the mutant is detected by the test
suite. Since defects are made by simple variants of a model, operators to be used
to make the variants are called mutation operators. Mutation analysis provides
a well-defined fault-seeding process and gives potentially large number of faults
which increase the statistical significance of results [5]. Mutation analysis has
been widely used to compare and evaluate the fault detection effectiveness of
test suites or test coverage criteria in many studies [5–7].

In this paper, we evaluate three FBD model-based test coverage criteria in
terms of the fault detection effectiveness using mutation analysis. We automat-
ically generate many variants (mutants) from the original target FBD models
and generate test suites with respect to the three coverage criteria. By investi-
gating in which situation the faults are detected and which test suites trigger
such detections, we evaluate the fault detection effectiveness of the coverage cri-
teria. We analyze strengths and weaknesses of the coverage criteria and suggest
possible improvements based on the experiment results.

The remainder of the paper is organized as follows: Section 2 presents related
work for the mutation analysis and coverage criteria assessment. Section 3 ex-
plains basic concepts of FBD and definitions for the FBD model-based coverage
criteria. Section 4 describes research questions and experimental strategies. Sec-
tion 5 reports the results of the experiment followed by analysis and discussion.
We conclude the paper at Section 6.

2 Related Work

Evaluation on the fault detection effectiveness of test coverage criteria has been
studied in many literatures [5, 8, 9].

Andrews et al. [5] assessed and compared Block, Decision, C-Use, and P-Use
coverage criteria using mutation analysis. They investigated the relative cost,
fault detection effectiveness and cost-effectiveness of each of the four criteria
using mutation analysis. The fault detection effectiveness was measured by mu-
tant detection ratio and the cost was measured by test suite size. They randomly
extracted and generated test suites from the test pool for the four coverage cri-
teria with 45-95% coverage levels. Although the paper is similar to our work in
the aspect of the evaluation of coverage criteria using mutation analysis, they
experimented on the code coverage whereas our work is on the model-based test
coverage. In test suite generation, we purpose achieving 100% coverage level us-
ing a constraint solver. They reported the relationship among fault detection,
test suite size, and coverage criteria. However, they didn’t analyze strengths and
weaknesses for each criterion as we do.

Hutchins et al. [8] conducted experiments to investigate the effectiveness of
Def-Use (DU) coverage and Decision coverage. The fault detection effectiveness
was measured by the ratio of test suites which detect faults. They generated
test suites with the aid of a test script generation tool and manually seeded
a number of faults in seven small programs. In our work, mutation operators
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are used to automatically generate faults. While they reported the relationship
among coverage, test suite size, and fault detection, they did not investigate
strengths and weaknesses of the coverage criteria. Moreover, they were based on
the source code whereas we are based on the FBD models.

Li et al. [9] reported the experimental comparison of edge-pair coverage, all-use
coverage, prime path coverage, and mutation coverage, in terms of effectiveness
and efficiency. The effectiveness was measured by the number of faults detected
by test suites and the efficiency was measured by the ratio of the number of
test cases over the number of found faults. Total 88 faults were seeded by hand.
They manually generated all the test suites from the same collection of values
to reduce the “test value noise”, i.e., the noise of different values satisfying the
same test requirement. They purposed achieving 100% coverage level for all the
subject criteria. We used a constraint solver to achieve 100% coverage level and
mutation operators to analyze the fault detection effectiveness of the model-
based coverage criteria systematically and statistically.

While various coverage criteria have been investigated, most studies are based
on the code level or the control-flow-graph based coverage criteria. There also
have been many studies on model-based coverage criteria[10–13]. Among them,
most relevant one to our research is structural test coverage criteria for Lustre
models. Lakehal and Parissis [13] defined structural test coverage criteria for
Lustre which is a synchronous data-flow modeling language. They compared
the proposed test coverage criteria with other existing test coverage criteria
qualitatively, but didn’t provide quantitative evaluation for the coverage criteria.

To the best of our knowledge, there has been no previous work for evaluation
of FBD model-based coverage criteria using mutation analysis.

3 FBD Model-Based Coverage Criteria

We summarize basic concepts and definitions for the FBD model test coverage
criteria pertinent to this work. Formal definitions and detailed descriptions for
the FBD test coverage criteria are presented in [4].

3.1 Function Block Diagram and Basic Concepts

The main characteristics of PLC models are indefinite and cyclic execution. A
PLC program reads inputs, computes internal values, and generates outputs in
each scan cycle [14]. Because of such characteristics, PLC is suitable for contin-
uous system environments.

FBD is one of standard PLC modeling languages. FBD is featured in its
graphical notations and expressiveness for high degree of data-flows among the
components. Figure 1 shows an FBD model example. FBD models consist of
data flow signals and processing elements. An FBDmodel is considered a directed
graph which consists of multiple inputs and outputs. In Figure 1, the FBD model
consists of 6 blocks and 13 edges. It has 7 input edges and one output edge.

A d-path in an FBD model is defined as a finite sequence 〈e1, e2, ..., en〉 of
edges. For example, one of d-path with length 5 in Figure 1 is p5 = 〈f X , GE3,
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GE3

LE4

AND5 OR6

OR7

Fig. 1. A small FBD model for calculating th X trip

AND5, OR6, th X Trip〉. The number of d-paths in an FBD model is finite
because FBD models have no internal feedback loops.

A d-path condition (DPC) is defined for each d-path. DPC for a d-path p
is a condition under which the input of p influences the output of p along the
d-path. If DPC(p) is true by an input test data vector t = (v1, v2, ..., vn) for
inputs i1, i2, ...., in (i.e., |DPC(p)|t = true), it means that t is an effective input
to make the input edge of p influence the output edge of p. In other words,
an input value vector which makes DPC(p) true is considered to cover the d-
path p. We can deal with only “meaningful” input values, which influence to the
concerned output, through DPCs. DPCs are composed of conjunction of function
conditions (FCs) and function block conditions (FBCs) along the corresponding
d-path. DPCs are represented by logical formulas including Boolean and non-
Boolean variables. For example, DPC(p5) is conjunction of four FCs as follows:
DPC(p5) = DPC(〈f X,GE3, AND5, OR6, th X Trip〉) = FC(f X,GE3) ∧
FC(GE3, AND5)∧FC(AND5, OR6)∧FC(OR6, th X Trip). Each FC or FBC
in DPC formula is replaced by corresponding logical formulas until including only
input or internal variables of the FBD model. The detailed information of FCs
and FBCs is described in [4].

3.2 Structural Test Coverage Criteria for FBD Models

Three different coverage criteria for FBD models have been defined based on the
DPC concept. They are Basic Coverage (BC), Input Condition Coverage (ICC),
and Complex Condition Coverage (CCC). Let DP be the set of all d-paths from
input edges to output edges.

Definition 1 (Basic Coverage). A set of test data T satisfies the basic cov-
erage criterion if and only if ∀p ∈ DP , ∃t ∈ T |DPC(p)|t = true.

BC criterion requires covering every d-path at least once. All DPCs for all the
d-paths are test requirements for achieving BC.

Definition 2 (Input Condition Coverage). A set of test data T satisfies
the input condition coverage criterion if and only if ∀p ∈ DP , ∃t ∈ T |in(p) ∧
DPC(p)|t = true and ∃t′ ∈ T |¬in(p) ∧ DPC(p)|t′ = true where in(p) is a
Boolean input edge of the d-path p.
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To satisfy the ICC criterion, both true and false values for every Boolean input
edge should be considered in addition to satisfying all DPCs. When there is an
output edge in a target FBD model, if α is the number of d-paths stating with
a Boolean input and β is the number of d-paths starting with a non-Boolean
input, then the number of test requirements for ICC is ((α+β) + (α× 2)) while
the number of test requirements for BC is (α+ β). Every test set satisfying the
ICC criterion also satisfies the BC criterion, i.e., ICC subsumes BC.

Definition 3 (Complex Condition Coverage). A set of test data T satisfies
the complex condition coverage criterion if and only if ∀p ∈ DP , ∃t ∈ T |ei ∧
DPC(p)|t = true and ∃t′ ∈ T |¬ei ∧ DPC(p)|t′ = true where ei is a Boolean
edge in the d-path p of length n and 1 ≤ i ≤ n.

The CCC criterion is strongest among the three FBD model-based test coverage
criteria. This criterion requires covering not only every d-path as BC but also
every Boolean edges with both true and false values. The CCC criterion sub-
sumes BC and ICC criteria by definition because input edges are included in all
edges of FBD models.

4 Evaluation Strategy with Mutation Analysis

In order to evaluate the FBD model-based test coverage criteria, we investigate
two main research questions:

· Q1: How effective is each of the three test coverage criteria in fault detection?
· Q2: What types of faults are likely to be found by the coverage criteria?

To answer these questions, we designed our experiments as described in Fig-
ure 2. We used industrial FBD models in our experiments. For each subject
model, we generated a number of test suites satisfying the FBD model-based
test coverage criteria using an automated tool, FBDTester. Jee [15] developed
FBDTester to automatically generate test suites satisfying the FBD coverage
criteria. Meanwhile, we also generated a number of mutants by applying mu-
tation operators to the subject models. We defined FBD mutation operators
and developed FBDMutantGenerator for generating mutants automatically. We
simulated the mutants, i.e., FBD models including faults, with the test suites
using FBDMutantSimulator which is an automatic execution tool for mutants
with test suites. Finally, FBDMutantSimulator reported mutant kill information
for each coverage criterion.

4.1 Subject Models

We conducted experiments using a preliminary version of the real-world indus-
trial FBD models which have been developed to implement Bistable Processor
(BP) of Reactor Protection System (RPS) in Korea Nuclear Instrumentation and
Control System R&D Center (KNICS) project [2]. Originally 18 trip logic mod-
ules and two monitoring logic modules were implemented in the FBD models for
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Fig. 2. Evaluation strategy overview

the BP system. Each trip logic decides whether trip (reactor stop) should occur
or not by observing input signals such as pressure, temperature, and volume.
Monitoring logic checks liveness of the system.

Among 18 trip modules and two monitoring modules, we classified them in
five groups according to model size and structural complexity and selected five
representative FBD models from each group. The selected modules are Fix-
Rising (FR), Heart-Beat (HB), Manual-Rate-Calculation (MRC), Manual-Rate-
Falling (MRF), and Trip-Decision (TD). The other modules are similar to the
selected subject modules. For example, one of unselected module Fix-Falling is
the same as Fix-Rising except using a LT block instead of a GT block.

Table 1 shows the number of blocks, inputs, outputs, and d-paths of each
model. Table 1 also shows the number of feasible test requirements (TRs) with
respect to BC, ICC, and CCC, for each model. In our experiments, we consider
feasible test requirements only.

Table 1. Size information for five subject models

HB MRF FR MRC TD

Blocks 38 26 26 15 7
Inputs 12 11 10 13 8
Outputs 4 4 4 2 2
d-paths 118 235 142 113 16

TRs for BC 110 215 142 113 16
TRs for ICC 110 273 182 165 32
TRs for CCC 1028 1675 958 553 124

4.2 Test Suite Generation

We generated a number of test suites with the aim of achieving 100% coverage
level for each of three FBD coverage criteria. Such test suites are referred to
C-suites for a coverage criterion C. For example, a test suite achieving 100%
coverage for BC is called BC-suite. Coverage level is the number of satisfied test
requirements over the total test requirements.
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Since test requirements for FBD models were composed of complex proposi-
tional formulas, pure-random test data generation was not scalable for achieving
over 95% coverage level. We generated test suites using FBDTester [15], an au-
tomatic test data generation tool for FBD models with respect to the BC, ICC,
and CCC criteria. In FBDTester, an SMT (Satisfiability Modulo Theories) solver
[16] is used to generate test cases since finding a test case satisfying test require-
ments is considered an SMT problem. FBDTester is designed to generate a test
suite satisfying given test requirements maximally.

Preliminary studies [5, 8, 9] indicated that generally a number of randomly
generated test suites are needed to gain unbiased fault detection effectiveness.
Ideally, a test suite satisfying a criterion would assure a specific level of fault
detection regardless of the methods used in generating test suites. However, in
reality, two test suites satisfying the same coverage criterion with same coverage
level may differ widely in their fault detection effectiveness. For meaningful ex-
periments without this noise, we generated 100 independent test suites per each
subject model and statistically analyzed the results.

We generated test suites using guided-random methods because, as noted
above, pure-random generation method was not suitable for achieving high level
of coverage. In order to introduce randomness in test suite generation and gener-
ate many test suites, we slightly modified FBDTester, which originally generated
a test suite for a test coverage criterion, to be able to generate various test suites
for the same set of test requirements. By shuffling the given test requirements,
the SMT solver could generate a number of different test suites while all the
generated test suites have the same coverage level for the same test coverage cri-
terion. With this guided-random approach, we successfully generated a number
of test suites satisfying 100% coverage level per each test coverage criterion.

Table 2. The average test suite size, and the number of generated mutants for the
subject modules

HB MRF FR MRC TD

BC-suite 5.22 5.04 5.00 6.00 1.00
ICC-suite 5.30 6.04 6.00 6.00 2.00
CCC-suite 8.06 13.18 9.00 11.28 2.00

Mutants 190 102 102 51 36

Table 2 summarizes the average number of the generated test cases for each
subject model according to each criterion. For example, BC-suites for the FR
module have about five test cases and CCC-suites for the TD module have
about two test cases in average. Table 2 also shows the number of the generated
mutants which will be explained in Section 4.3.

4.3 Mutant Generation

Mutation Analysis. Given a test suite SM for a model M , let T (M) be the
total number of mutants for the model M and K(SM ) be the number of mutants
killed by SM . Then the mutant score is defined as follows:
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mutant score =
K(SM )

T (M)
× 100 (1)

We measured mutant scores for each test suite and deduced the fault detection
effectiveness of the test suite from the mutant score. Maximum mutant score is
100 which means 100% mutants are detected. The fault detection effectiveness
of a coverage criterion C can be evaluated by the fault detection effectiveness of
the C-suites.

Mutation Operators. The general principle underlying mutation analysis is
that the faults used by mutation testing represent the mistakes that programmers
often make [7]. Since there have been no previous studies on mutation operators
for FBD models, we defined FBD mutation operators by reflecting frequently
occurring FBD faults surveyed in [17].

Computational complexity is one of issues in mutation analysis. To success-
fully reduce the number of mutants without significant loss of the fault detection
effectiveness, we adopted selective mutation concept. Offutt et al. [18] suggested
five selective mutation operators achieving 99.5 mutation score. The five selected
mutation operators were ABS(Absolute Value Insertion), AOR(Arithmetic Op-
erator Replacement), LCR(Logical Connector Replacement), ROR(Relational
Operator Replacement), and UOI(Unary Operator Insertion). These operators
have been widely accepted [5, 7].

By considering FBD-specific faults and selective mutation operators, we de-
fined five representative mutation operators for FBD as follows:

– CVR(Constant Value Replacement): replace a integer constant C with (C−
2), (C − 1), (C + 1), or (C + 2).

– IID(Inverter Insertion or Deletion): negate a boolean edge.
– ABR(Arithmetic Block Replacement): replace an arithmetic block with an-

other block from the same class.
– CBR(Comparison Block Replacement): replace a comparison block with an-

other block from the same class.
– LBR(Logical Block Replacement): replace a logical block with another block

from the same class.

These five mutation operators are related to FBD fault classes. For example,
faults on constant values are related to the CVR mutation operator. The IID
operator represents faults on the inverter. A small bubble connected to the out-
put of the AND BOOL block in Figure 1 is an inverter. The ABR, CBR, and
LBR mutation operators are related to faults on arithmetic(addition, subtrac-
tion, exponential, etc.), comparison(less than or equal to, less than, equal to,
etc.), and logical(and, or, exclusive-or, etc.) blocks, respectively.

To generate mutants for a subject FBD model, each of five mutation operators
was applied to each block or each edge of the model whenever possible. The
number of mutants in our experiments is summarized in Table 2. We manually
eliminated equivalent mutants. In each execution of the given test suites, we
carefully investigated the remaining mutants and confirmed that there were no
test cases to be able to kill the remaining mutants.
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We reflected real FBD faults described in [17] in our definition of mutation
operators for FBD models. Although we borrowed similar mutation operators
for program code [18], we modified them to be applicable to FBD models, and
our five mutation operators can simulate the majority of real FBD faults.

5 Analysis Results

Each of 100 test suites for BC, ICC, and CCC reports a mutant score. Table 3
shows minimum, average, and maximum mutant scores for each module and cov-
erage criterion. The rightmost column shows minimum, average, and maximum
scores for the corresponding model when considering three coverage criteria in
total. Figure 3 demonstrates the mutant score distributions for each model. In
Figure 3, x-axis represents the FBD coverage criteria, y-axis represents mutant
scores, and a box-plot displays degree of spread and skewness in the data by
using five statistics: minimum, lower quartile, median, upper quartile, and max-
imum. For example, the MRC module has considerable spread of mutant scores
and is skewed to upper-side for the three FBD coverage criteria while the TD
module has uniform distributions for the three criteria.

Table 3. Summary of mutant scores of test suites achieving each of three FBD coverage
criteria

FBD Mutant score (minimum/average/maximum)
Module BC ICC CCC Total

MRF 68.6/84.2/93.1 71.6/75.9/89.2 74.5/91.1/97.1 68.6/83.7/97.1
FR 62.7/66.0/80.4 64.7/69.1/76.5 72.5/86.0/94.1 62.7/73.7/94.1
HB 53.6/58.7/65.8 55.3/59.0/66.8 72.6/75.6/80.0 55.3/64.5/80.0
MRC 35.3/54.7/75.6 33.3/50.4/72.5 41.2/58.5/76.5 33.3/54.5/76.5
TD 16.7/16.7/16.7 33.3/33.3/33.3 33.3/33.3/33.3 16.7/27.8/33.3

Total 16.7/56.1/93.1 33.3/57.5/89.2 33.3/68.9/97.1 16.7/60.8/97.1

Fig. 3. Experimental results: mutant score distributions
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From the experimental results, we not only confirmed expected behaviors and
strengths of the FBD model-based coverage criteria, but also found weaknesses
of the FBD model-based test coverage criteria in the aspect of the fault detection
effectiveness. In the following subsections, we address our research questions with
detailed analysis of the result.

5.1 Assessing Fault Detection Effectiveness of BC, ICC, and CCC

We investigated the fault detection effectiveness of each of the three test coverage
criteria with respect to the research question Q1. Figure 4 shows the total mutant
scores of four subject models1 with respect to the three coverage criteria.

For the BC criterion, the maximum mutant score is 93.1. It means a BC-
suite detects at most 93.1% of faults in an FBD model. The minimum score
35.3 indicates that at least 35.3% of faults in an FBD model are detected with
the BC criterion. The lower quartile 58.9 and the upper quartile 71.6 means the
spread of BC-suites in the aspect of the fault detection effectiveness. The average
mutant score 64.7 indicates the average fault detection effectiveness of the BC
criterion. For the ICC criterion, at most 89.2% and at least 33.3% of faults are
detected by ICC-suites. Average mutant score is 68.6. The lower quartile and
the upper quartile are 58.8 and 73.5, respectively. Mutant scores for the CCC
criterion ranges from 41.2 to 97.1. The lower quartile and the upper quartile are
74.7 and 89.2, respectively. The average mutant score for CCC is 81.2.

In summary, at least 35.3%, 33.3%, and 41.2% of faults could be detected by
BC-suites, ICC-suites, and CCC-suites, respectively. Note that a C-suite is a set
of almost minimal number of test cases achieving 100% coverage level of the test
coverage criterion C. With these BC-suite, ICC-suite, and CCC-suite, we can
expect at most 93.1%, 89.2%, and 97.1% of fault detection, respectively.

Fig. 4. Total mutant scores of subject models for each criterion

1 Because TD reports exceptionally poor mutant scores and uniform distribution, we
consider this as an outlier and discuss it in Section 5.3.
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One interesting issue is that ICC-suites shows lower mutant scores than BC-
suites in some cases although the ICC criterion subsumes the BC criterion.
Specific FBD model structures and use of specific test case generation methods
may cause this situation. We have a plan to conduct further experiments related
to this issues.

5.2 Fault Detection Strength and Weakness

This section addresses research question Q2: what types of faults are likely to
be found by the coverage criteria? As noted in Section 4.3, we defined five FBD
mutation operators which are relevant to faults frequently occurring in FBD
models. We analyzed what types of faults can or cannot be found by the test
suites achieving each of criteria. We classified all the mutants into four types as
follows:

– Type1: mutants neither killed by the minimum-score-suite nor the maximum-
score-suite

– Type2: mutants killed by only the minimum-score-suite
– Type3: mutants killed by only the maximum-score-suite
– Type4: mutants killed by both the minimum-score-suite and the maximum-

score-suite

Each type has meaningful implication. For example, type1 mutants indicate weak
points of a criterion while type4 mutants indicate guaranteed fault detection
effectiveness of a criterion. Mutants of type2 and type3 demonstrate possible
variations in the fault detection effectiveness. In other words, mutants of type2,
type3, and type4 indicate potential fault detection effectiveness.

Figure 5 represents distribution of different types of mutants killed by CCC-
suites. We only show the result for CCC-suites since BC-suites and ICC-suites
have similar characteristics to CCC-suites in the fault detection effectiveness for
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different kinds of faults. We can see that IID (negated Boolean edge) has 3.6%
type1 mutants and this is the least portion among five mutant operators. It means
that CCC-suites can detect 96.4% of faults like IID mutants. On the other hand,
LBR (replaced logical blocks) and CBR (replaced comparison blocks) have 18.5%
and 17.5% type1 mutants, respectively. These results show that CCC-suites are
rather weaker in detecting LBR and CBR faults than in detecting IID faults.

The reason why IID mutants are most well detected is because the FBD
coverage criteria focus on Boolean edges by definition. Note that CCC is designed
to cover all Boolean edges with true and false values. Since FBD models are
generally composed of many Boolean edges, focusing on testing the Boolean
edges is worthwhile. Highly guaranteed detection of faults related to Boolean-
edges is considered one of key strengths of the FBD coverage criteria.

However, LBR andCBRmutants are less covered by the FBD coverage criteria.
To clearly evaluate the CCC criterion with respect to LBR and CBR mutants, we
conducted an additional experiment with a unit FBD model. The unit model has
one OR4 block (logical block) which has four Boolean inputs and one output edge.
We denote a test case tc for an FBD model with n inputs and m outputs as tc :=
〈input1, input2, ..., inputn〉 → 〈output1, ..., outputm〉. To achieve 100% coverage
level for the CCC criterion, we need just two test cases: 〈true, true, true, true〉 →
〈true〉 and 〈false, false, false, false〉 → 〈false〉. These two test cases cannot
properly cover OR4 block since AND4 block shows the same behavior as the OR4
block with the two test cases. This problem occurs similarly for the comparison
blocks. For example, two test cases 〈−1, 0〉 → 〈true〉 and 〈0, 0〉 → 〈false〉 can be
generated for the LT(Less Than) block as well as for the NE(Not Equal) block.
These two test cases cannot distinguish the LT and NE blocks.

We can generalize the above problem. For a given FBD block A, let T (A) be
the set of all valid and executable test cases for A. Let us assume that another
FBD block B is replaceable with A syntactically. If we generate a test suite for
A by the elements of T (A) ∩ T (B), then the test suite cannot distinguish A
and B, i.e., the test suite cannot detect faults such as replaced blocks. Since
the replacement by a similar comparison or logical block is one of frequently
occurring faults in FBD models, it would be worthwhile to generate test cases
which are guaranteed to detect this kind of faults. To solve this problem, a test
suite needs to have at least one test case from a set of (T (A)∪ T (B))− (T (A)∩
T (B)). Based on this idea, research on defining stronger FBD model-based test
coverage criteria is ongoing. Variations for non-Boolean edges as well as Boolean
edges need to be considered in defining stronger FBD model-based coverage
criteria to improve the fault detection effectiveness.

5.3 Discussion

Cost-Effectiveness. We investigated cost-effectiveness2 of the threeFBDmodel-
based test coverage criteria. While CCC-suites show better mutant scores than
BC-suites and ICC-suites for all the subject models, we need to consider that the

2 We focus on the cost of test suite generation since test generation with respect to
coverage criteria is the dominant time-consuming process in FBD testing.
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number of test requirements (TRs) for CCC is much higher than ones for BC and
ICC. We used the number of TRs as a measurement for the cost of test suite gen-
eration and the maximum mutant score as a measurement for the effectiveness of
the FBD model-based coverage criteria.

Table 4 summarizes normalized cost-effectiveness values for the subject mod-
els. For example, the value 0.74 of ICC for FR means that ICC-suites kill 74%
of mutants with the same cost of BC-suites. As shown in the rightmost column,
in average, ICC-suites and CCC-suites can detect only 83% and 18% of faults
with the same cost of BC-suite.

Table 4. Relative cost-effectiveness of subject models for each criteria

Coverage FR HB MRC MRF TD Average

BC 1.00 1.00 1.00 1.00 1.00 1.00
ICC 0.74 1.02 0.65 0.75 1.00 0.83
CCC 0.17 0.13 0.20 0.13 0.26 0.18

FBD Unit Size and Fault Detection Effectiveness. As shown in Table 3
and Figure 3, the TD module shows abnormally poor mutant scores. One of the
reason is that the TD model is much smaller than others. In Table 1, we can
find that the number of d-paths for TD is far fewer than other models; thus, the
number of test requirements is also smaller than others. When test requirements
are too simple or straightforward to satisfy, the generated test cases have lack
of variations as explained in Section 5.2.

This issue is related to unit size of FBD models in testing. When a unit FBD
model size is very small, it would be better to merge the small unit model with
an adjacent model for testing in order to obtain better fault detection. When
we conducted an additional experiment in which we merged FR and TD into a
unit model FRTD, maximum mutant scores for FRTD were 74.6, 85.5 and 92.0
for BC, ICC, and CCC, respectively. Most of mutants in TD were killed when
testing with FRTD.

Threats to Validity. Careful identification for threats of validity is important
since there is no perfect experiment and analysis in empirical evaluations. We
discuss three types of threats to validity of our experiments: internal, external
and construct validity of our experiments.

One threat to internal validity is due to the mutation operators we use. We
mentioned this issue in the last paragraph of Section 4.3, and also we have a plan
to define more comprehensive mutation operators specific to FBD models. Nev-
ertheless, the analysis result for strengths and weaknesses of the FBD coverage
criteria with respect to the selected mutation operators remains still valid.

External validity is related to specific tools such as FBDTester and the SMT
solver in test suites generation. While we generate each test case to meet the test
criterion, there is different strategy to generate test cases without any knowledge
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of the test criterion at the first phase. In that case, the test coverage criteria is
used as stopping or selecting rule after the test case generation phase. Depending
on the test case generation strategy, the fault detection effectiveness of the test
coverage criteria could be vary.

Construct validity is related to measurements and measured properties. The
fault detection effectiveness is deduced from mutant scores of test suites. Since
we purposed achieving 100% coverage level of each of coverage criteria, the fault
detection effectiveness of a criterion can be inferred from a number of indepen-
dent test suites satisfying the coverage criterion.

6 Conclusion

This paper reports empirical evaluations for the three FBD model-based test cov-
erage criteria by mutation analysis in terms of the fault detection effectiveness.
Our analysis results demonstrated that the FBD coverage criteria are effective
to detect at most 93.1%, 89.2%, and 97.1% of faults with the BC, ICC, and
CCC criterion, respectively. Especially, the FBD coverage criteria were shown
to be highly effective to detect faults when the target FBD models have many
Boolean edges.

We also found that the FBD coverage criteria are rather weak to discover
specific types of faults such as replaced logical or relational blocks. These findings
provides useful information to improve the existing test coverage criteria and
testing strategies. Research on developing more sophisticated and strong test
coverage criteria for FBD models is ongoing.

We defined mutation operators for FBD models and presented a mutation
analysis approach to evaluate model-based test coverage criteria. Our evaluation
strategy for model-based test coverage criteria can be extended to other modeling
languages such as Lustre and UML.

In model-driven development environment, FBD models are transformed into
executable C code automatically by a case tool. We have a plan to compare
the FBD model coverage criteria with the existing code coverage criteria in our
future work.
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Abstract. Powerful theoretical frameworks exist for model validation
and verification, yet their use in concrete projects is limited. This is
partially due to the fact that the results of model verification and sim-
ulation are difficult to exploit. This paper reports on a model driven
approach that supports the user during the error diagnosis phases, by
allowing customizable simulation trace visualization. Our thesis is that
we can use models to significantly improve the information visualiza-
tion during the diagnosis phase. This thesis is supported by Metaviz
- a model-driven framework for simulation trace visualization. Metaviz
uses the IFx-OMEGA model validation platform and a state-of-the-art
information visualization reference model together with a well-defined
development process guiding the user into building custom visualiza-
tions,essentially by defining model transformations. This approach has
the potential to improve the practical usage of modeling techniques and
to increase the usability and attractiveness of model validation tools.

Keywords: Software visualization, trace exploration, embedded sys-
tems, model based validation, model dynamic analysis.

1 Introduction

Important efforts were deployed by research and industry in order to develop
powerful verification and validation techniques for the design models used in
the early phases of development of real-time embedded systems (RTES) [7,1]. In
spite of the fact that a lot of interesting results were obtained, formal verification
and validation are used on a very few concrete projects. This is partially due
to the fact that the results of the formal verification are difficult to exploit
Our thesis is that we can use models to significantly improve the information
visualization during the diagnosis phase. To support this thesis, we have built
Metaviz - a model-driven framework for simulation trace visualization. Metaviz
aims to support the user during the error diagnosis phases, by allowing flexible
simulation trace visualization. It is built on top of IFx-OMEGA [34] a simulation
and verification toolbox for UML and SysML RTES models.

The goal of the simulation step in the validation process of a System Under
Diagnosis (SUD) model is either the interactive detection of design errors, or
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the understanding of the nature of errors detected by automatic verification.
Therefore, the purpose of performing interactive simulation is diagnosis, which
is essentially a cognitive task: the user has to understand the overall behaviour
of the system using a scenario exploring interface, and to discover errors in the
scenario.

For the type of complex RTES design models that are targeted by IFx-
OMEGA, it turns out that the diagnosis generally involves examining multiple
non-contiguous steps of a scenario, and multiple entities in the system (blocks,
ports, message queues, etc.). While supporting some simple forms of view cus-
tomization, the traditional simulation interface cannot define visualizations com-
puted from different steps in the simulation scenario, and thus it is hard for a user
to infer the cause of an inter-process communication error from the simulation
of an error scenario.

It is a commonly accepted fact that the human working memory is limited to
a few items [42], while dealing with a simulation trace usually implies watching
values and relationships of tens or hundreds of elements at multiple steps in
the trace. Therefore, what we need is a way to boost the user perception and
cognition so that it can gather the right information for finding an error pattern.
This kind of problem is addressed by many works in the field of information
visualization [46]. The synergy between research in information visualization
and software visualization is a promising research area [23] that we exploit in our
approach, by defining new visualization facilities. As Larkin and Simsons [29],
we believe that using a well designed visualization framework can make the
exploration of the simulation traces more effective.

This paper illustrates a new application domain of modelling techniques: the
visualisation customization. We apply it to simulation trace visualisation in order
to assist the error detection during model validation and verification. The work
was triggered by feed-backs we received from industrial partners on the use of
traditional model validation and verification frameworks.

The rest of this paper is organized as follows: section 2 overviews the simu-
lation and diagnosis features used in validation tools and the diagnosis process
using them. Section 3 presents an extension to this process that includes the
creation of customized visualisations. Section 4 presents Metaviz – the model-
driven implementation of our approach, that is evaluated in Section 5 using the
SysML model of the Solar Generation System (SGS) of the Automated Transfer
Vehicle (ATV), designed by Astrium Space Transportation. Section 6 overviews
related work.

2 Model Simulation and Diagnosis: Process, Toolset,
Limits

In this section we present an overview of the simulation and diagnosis features
currently used in our tools, which are representative of what is available in other
model simulation and validation tools. We also outline some of the limits of
currently used approaches, which motivate our work.
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Fig. 1. The IFx validation process. The activity Interactive Simulation is refined in
the new validation process to cover visualisation.

IFx-OMEGA1 is a simulation and verification (model-checking) toolbox for
UML and SysML RTES models [34]. The toolset relies on the automatic trans-
lation of models into a lower-level language (named IFx) based on asynchronous
communicating extended timed automata, and on the use of the extensive toolset
available for this language [12]. Figure 1 shows the validation workflow. The ac-
tivity Interactive Simulation is empty in a classical setting, as it corresponds to
our current contribution that will be detailed in Section 3.

The validation acts on a UML or SysML model, which is first translated to
an IFx model, and then compiled2 to an executable program that will be used
for automatic verification and interactive simulation.

The interactive simulator offers the possibility to store simulation scenarios (as
XML) and replay them later. Additional simulation scenarios are generated for
each error detected by automatic verification. The simulation interface allows
the user to fire any of the enabled transitions in each step of the trace and
to analyse the current state of the System Under Diagnostic (SUD) (variable
values, message queues, state machine configurations, etc.). The interface offers
a set of customizable tree-based views of the model state and the trace steps
(transitions) and a set of user controls for interacting with these views. The
state views can reflect the structure of the system and its components either
at the IFx level (timed automata) or in terms of the UML/SysML concepts
(objects/blocks, ports, etc.).

The IFx validation approach has been applied to several industry-grade mod-
els such as Ariane-5 [36], MARS [37] and SGS [19], and has proven to be very
effective in discovering design issues. The issues are generally related to the
1 http://www.irit.fr/ifx
2 In some cases, the model can be first simplified using automatic abstraction tech-

niques as shown in Figure 1.

http://www.irit.fr/ifx
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distributed, concurrent and timed nature of the systems, and very often relate
to undesired message processing patterns such as an unexpected message order.
Nevertheless, neither IFx, nor any other simulation tool known to us, propose
any kind of advanced visualization of the error scenario being played. Effective
information exploration always relies on some form of overview of the analysed
data [32], yet no tool supports this for simulation scenarios.

Another limitation of currently used model simulators is that the visualiza-
tions are ad hoc, i.e. not based on a visualization reference model [38] Conse-
quently, any visualization customization (data, visual structures or view cus-
tomization [16]) is a challenging task. Any extension of the tool, to allow new
kinds of visualization needs significant coding.

Our aim is to define an approach based on a flexible reference model that will
guarantee a clear separation between the simulation trace domain and the visu-
alization concerns. This model should enable a clear building and customization
process for simulation trace visualizations. The new diagnosis platform architec-
ture should offer extensible facilities for simulation trace visualizations. In the
following section we present our approach to build a new visualization facility
for simulation trace visualizations. The new tool facility should be integrated in
the workflow; for this purpose, we have refined the current validation process,
depicted in Figure 1, by refining the process step Interactive Simulation.

3 Diagnosis Process Assisted by Visualizations

The IFx-OMEGA tool set is used for validating UML design models, using the
validation process illustrated in Figure 1. One of the main steps of this process
is the Interactive Simulation, where the user extracts error scenarios while
interacting with the Interactive Simulation Interface. To assist the user in this
task, we have refined this step with a diagnosis process built around visualization
concepts. The goal of this diagnosis process is to detect simulation errors and give
insight into their reasons. For this purpose we provide the user with enhanced
visualization of the simulation traces. In this work, we do not focus on an error
taxonomy, but rather on an effective framework for building a visualization tool
to support a trace exploration and analysis techniques.

The description of the different visualization stages given by Ware in [43] is
the starting point for refining the interactive stimulation step. Ware describes 4
steps in designing visualizations: (i) The first step is the collection and storage of
the data followed by (ii) a pre-processing step that transform the raw data into
understandable data. (iii) This derived data is then displayed to (iv) enable the
user to perform a perceptual tasks on it. To be effective, this high-level process
needs to be refined, such it has been done by Ed Chi [18]. We believe that an
efficient visualization tool should be designed based on a good understanding of
the end user task. Moreover the visualization design should be primarily focused
on the user task to be supported [32,11,45]. In this spirit, the visualisation design
we use is composed of the following steps as shown in Figure 1 in the refinement
of the Interactive Simulation activity.
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1. User Task Analysis: In this context, the user task is to diagnose a certain
type of errors in the IF specifications, such as message processing errors. We
base our user task definitions on existing task taxonomies such as [39] and
[44]. In this step one should analyse why the user task cannot be satisfied
using the current means. In our setting, as we have discussed in Section 2,
the visualizations cannot be customised.

2. Strategy Definition: The goal of this activity is to improve the user per-
formance using external cognition. We can take into account the human per-
ception system and study how the error scenarios that we want to diagnose
should be presented to the user (see Section 5).

3. Visualization Selection that would amplify user cognition [8] and would
support user performance improvement strategy which was defined. In this
step we choose a suitable technique to support visualization, taxonomies
such as [17,8] can be used. The execution of the selected technique leads to
an Analytical Abstraction. If no existing technique is found satisfactory, new
visualization techniques can be defined.

4. Define the Analytical Abstraction Spatial Mapping and find which
variables of the Analytical Abstraction to map into spatial position in the
visual structure. In fact, space is perceptually dominant [30], thus we have
to identify first which data variables should be mapped to a given spatial
position.

5. Visualization Tuning step covers all the tuning such as mapping of the
variables, not considered in the previous step, to other visual coding (marks,
connections, temporal encoding, etc.). It also covers user controls to enable
interaction with the produced visualization and attention-reactive features
to better manage user attention [45] (e.g. color highlighting). Although very
important in the user data manipulation process this step is not covered by
the current work.

4 MetaViz: Supporting the Simulation Process

To support the extended process introduced in the previous section, we have
developed a model-based software architecture framework: Metaviz.

Metaviz assists the user from choosing a visualization technique to completing
the visual mapping of the analytical abstractions. We did not find any effective
formalisation of the first two steps, which are by nature highly informal. There-
fore, corresponding to these steps, we assist the user solely with guidelines.

In order to build the Metaviz framework we have mapped the Data State
Model [25] components to MDE concepts4. We use Metaviz metamodels and
model to model transformations to represent Data Stages and Transformation
Operators respectively.

The Data State Reference Model (DSRM). Various data-oriented visual-
ization taxonomies exist. Some of them categorise the visualization techniques
based on the visualised domain data. Others, such as the one proposed by Maletic
et al. [32], are task-oriented. While these categorisations give a wide and clear
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Fig. 2. The Metaviz architecture derived from the DSRM [17]

vision of the visualization design space, they are not refined enough to promote
software decoupling and reuse in the implementation process. Another taxon-
omy, proposed by H. Chi [17], focuses not only on the data types manipulated
through the visualization pipeline but also on the visual processing operators.
The Data State Reference Model proposed here is based on (i) a set of Data
Stages that gather the data structures and (ii) visual Transformation Operators.

Using a data state model, the user can build the visualization pipeline in
a flexible manner, as it is possible to clearly see the intermediate results of
the different transformation operators and to easily plan the future stages and
transformations. Moreover, in an MDA [33] spirit this separation of concern
enables the reuse of stages and operators.

Metaviz components are designed following the data state model stages and
operators. Figure 2 shows the Metaviz architecture and the mapping of its com-
ponents to the data state model. In this mapping, we have decoupled domain and
visualization assets, thus encouraging data structure and transformation reuse.

The major strength of the Metaviz architecture is the separation of the differ-
ent visualization pipeline concerns, that is made possible by the use of the data
state model. To achieve the separation of concerns, the use of a model driven
approach was a perfect choice.

The Data Stages were implemented by Ecore metamodels [4] and the Data
Operator Transformations were implemented using the ATL [27,2] declarative
programming style to make the visualization pipeline mappings explicit in the
transformation rules.

The use of Ecore and its XMI serialization facility offers an opening point
towards the use of different modeling tools. The Metaviz framework is composed
of several metamodels and transformations corresponding respectively to the
DSRM stages and operators. The model transformations are implementing the
within and non-within stage transformation Operators.
Value Metamodel gathers the simulation trace raw data that we want to ex-
plore by the visualisation. For this we have defined a scenario metamodel to



486 E.A. Aboussoror, I. Ober, and I. Ober

inject [28] the XML-based simulation traces generated from the IFx automatic
validation process or stored manually by the user during the interactive sim-
ulation. This metamodel gathers concepts such as fired transitions, processes,
messages, etc. This metamodel can be reused or easily replaced by other de-
scriptions [9,22] without breaking the visualization pipeline.
Value Stage transformations manipulate the scenario model elements and
do not derive new data types. This transformation is implemented using OCL
queries on the stage model elements. To execute those operators we have used
the ATL superimposition technique [40] and a predicate-based query approach
for filtering the relevant data.
Data Transformation are a set of ATL Transformations that transform the
Scenario models into analytical abstractions. Any analytical technique that gives
an insight into the trace data is categorized as a data transformation. For further
reuse, these transformation library can be organized based on a categorisation
of the existing exploration techniques, such as for instance the categories pro-
posed by Andrienko et al. [11] : see the whole, simplify and abstract, Look for
recognisable etc.
Analytical Abstraction Metamodels are defined or chosen among the ex-
isting techniques to extract meaningful information from the traces regarding
relevant user task. Some widely used abstractions are communication graphs,
inter-process communication patterns, event statistics. This metamodeling layer
makes the capitalisation and reuse of the data analysis techniques possible. The
visualization approaches often merge this layer with the visualization abstrac-
tion in the implementation phases. However we have explicitly separated this
layer to enable the reuse of different analysis techniques. This layer gathers a set
of ready to use trace analysis techniques. Up to now we have implemented an
inter-process communication graph and a trace summarizing technique.
Visualization Transformation Operators produce visualizable content,
mostly tree-based or graph-based structures, from analytical abstractions.
Visualization Abstraction Metamodels are preparing data for a set of vi-
sualization tools. It is the last step before the end-user visualization interface.
A typed-node link graph is one of the mostly used abstraction in this step. A
hierarchy of nodes or a more elaborated abstraction could also be used in this
stage. Bull gives an overview of some widely used abstractions in [14]. The ad-
vantage of using those visual abstractions is that a set of visualization tools can
share the same set of visualization abstractions.
Visual Mapping Transformation is the last transformation step to produce
the visualization end product. It is usually implemented using geometric tools
and layout techniques.
View Metamodels are tool specific. they gather data that is optimised for a
specific visualization tool. In section 5 we will enrich this metamodeling layer
with metamodels for Graphviz [6] and Zest [3]. The concept of View used in Chi’s
taxonomy should be refined using different models according to a tool specific
criteria to enable effective implementation and reuse. Consequently we have two
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Fig. 3. IFx-OMEGA User Interface enhanced with Metaviz features

types of metamodels in this layer: a tool-independent and a tool-specific model.
A well defined visualization process and supporting framework are step forward
to enable effective diagnostic of real-time and embedded system models. But
they are not enough to make the users adopting the validation tool. Metaviz
has to be seamlessly integrated to the IFx-OMEGA platform and the different
user roles have to be clearly defined. For this purpose we have implemented the
new simulation interface on top of the Eclipse platform. The figure 3 gives an
overview of this new interface 3.

5 Evaluation

To illustrate our visualization framework we build a new graph-based visualiza-
tion and we customize an existing one using a trace summarizing technique. For
this, we execute the extended Diagnosis Process 3 on an industrial case study.

The Solar Generation Subsystem (SGS) [19] is a software part of the ATV
(Automated Transfer Vehicle) program, a spacecraft developed by Astrium Space
Transportation for ESA (European Space Agency). The ATV aims at supply-
ing the International Space Station (ISS). The purpose of SGS is to provide
functional chains to realise the solar arrays deployment and their rotation.

3 A video demonstration is available at: http://www.irit.fr/~El-Arbi.Aboussoror/
metaviz.html

http://www.irit.fr/~El-Arbi.Aboussoror/metaviz.html
http://www.irit.fr/~El-Arbi.Aboussoror/metaviz.html
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5.1 Building a Visualization

The complexity of the SGS model leads to an important amount of data that
needs to be analysed during the diagnostic phase. Part of the diagnostic is done
by feeding back verification results at OMEGA level, as it was reported in
previous work [35] still this is not enough. The kind of visualization field en-
gineers use (e.g. message communication graph), cannot be found directly at
OMEGA/UML, it has to be created by combining information from the model
and from the error scenarios. A simulation scenario of the SGS model is an XML
file of tens of thousands lines. The listing 1.1 give a small excerpt of this file.
name="u2i__default_constructor_TS_SGS_F01_EXECUTE_SGS_COMMANDS" no="0" /></by>
</IfEvent> <IfEvent kind="INFORMAL" value="−−create sub−component
TS_SGS_F012_EXECUTE_SGS_AP−−"> <by><pid
name="u2i__default_constructor_TS_SGS_F01_EXECUTE_SGS_COMMANDS" no="0" /></by>
</IfEvent> <IfEvent kind="IMPORT" value=""> <by><pid
name="u2i__default_constructor_TS_SGS_F01_EXECUTE_SGS_COMMANDS" no="0" /></by>
</IfEvent>

Listing 1.1. SGS scenario excerpt

Obviously, the user cannot answer questions about the participation of a process
to a trace and the messages it exchanges with certain processes from this kind of
trace. One of the information that is useful to trace during diagnostic concerns
the concrete communication occurred during the execution. For this, we create
a communication diagram visualization that explores the simulation scenarios of
SGS.

The first step, corresponding to the Overview task in Shneiderman’s taxon-
omy [39], is to explore the simulation traces stored by the IFx toolset user. With
the classic interfaces the user can play the entire scenario step by step, but he can
not see the whole scenario communication trace in a visual form. Since the hu-
man working memory restricts the amount of information one can reason about,
an effective visualization should take into account this limitation and provide
features that augment user cognition by external means [45]. Thus, encoding
simulation trace needs to take into account the reader (OMEGA designer) and
use UML-like constructs. The reader decoding tasks should not take too much
effort, in order to let the user focus on understanding the system behaviour
encoded in the visualization [26].

Visualizing a huge set of objects with inter-communication relationships can
be performed by extracting a communication graph (a simplified UML commu-
nication diagram). This enables the user to grasp the process types and the
exchanged messages. A communication graph is a set of nodes representing pro-
cess types and a set of relating edges representing a message passing between
two processes. In the SGS case study verification, the communication diagram
was instrumental in reasoning about the system and in achieving the verifica-
tion goals [19]. It was used to detect clusters of objects for which abstractions
could be defined and used to solve the state space explosion problem. Following
the diagnosis process, we have created a visualization that is precisely charac-
terised in figure 4. This table shows the stages and operators alongside with their
implementation components.
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Fig. 4. Characterization of the visualization technique

The visualization produced by executing this transformation chain is rendered
on 2 different tools, namely Graphviz [6] and GEF/Zest [3]. An overview of the
Zest view rendering is shown at the right of the figure 5

Fig. 5. Filtering a simulation trace

5.2 Customizing a Visualization

Message Type Filtering. After exploring an error scenario the user may need
to understand why an error is occurring in a certain scenario. It is a Focus type
of task. We need to construct a visualization that helps in exploring inter-process
communication for a restricted set of message types. To build this new visual-
ization we have customised the previous view by adding a filtering operator.
This operator will filter in the scenario model the messages based on their types.
Since a customization is a variation of the base behaviour we have used the
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superimposition feature of ATL to perform this filtering operations. The ATL
code (a predicate on the trace messages) is given in listing 1.2. One can notice
that this customization needs only few lines of code. The end product of exe-
cuting the visualization pipeline is rendered on a Zest view, see figure 5 on the
left. In this figure we can see the result of executing the following within-stage
transformation:
helper context Scenario!Message def : messagePred(): Boolean=

Set{’SGS_AP_SET_REMOVE_SB’, ’SGS_DEPLOY_WING_STATUS’}
−>includes(self.signalType)

;
Listing 1.2. ATL helper for message filtering

Trace Summarizing. To move forward in abstracting the information obtained
from the error trace and illustrate the ability of Metaviz to implement more elab-
orated trace visualizations, we use summarising techniques such as [24]. These
techniques were originally defined for the static analysing of the the call graph,
but we have adapted them to build inter-process communication dynamic traces.
The new customization is implemented as an ATL superimposition module. The
ATL helpers in listing 1.3 were written to enable this customization.
helper context Scenario!Message def: messagePred(): Boolean=

self.from.processPred() and self.to.processPred();
helper context Scenario!Pid def: processPred(): Boolean=

self.forwardingMetric() < thisModule.threshold;
helper context Scenario!Pid def: forwardingMetric(): Real=

let N : Integer = thisModule.allProcessSize in
(self.fanin()/N)∗(N/(self.fanout()+1)).log()/N.log();

Listing 1.3. ATL helpers for trace summarizing

The forwardingMetric helper computes for each process p in the trace, a metric
based on the set of processes that send messages to p (the fanin helper) and the
set of processes that receive messages from p. For more details on the metric
used in this helper the reader is referred to [24].

Using an appropriate threshold value, we can filter the set of processes that
are performing only message forwarding. Once again, building this trace sum-
marizing visualization, only needs a few lines of ATL code. The trace summary
is rendered on a Graphviz view in figure 6. The main processes that collaborate
in the SGS model are shown in a manner that highlights the structure, which is
obviously more useful than the raw XML file 1.1. The user would confront these
results to the original model and see how those processes are communicating to
execute the system main functionalities.

Evaluating the Process. The use of verification and validation techniques
remains marginal in the industry. Therefore, we have not been able to evaluate
Metaviz by deploying it to a large set of users and questioning them on its
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Fig. 6. Trace Summarizing

effectiveness and user-friendliness. The feed-backs we had from the industrial
partners we worked with in originally validating SGS were very positive and
encouraging, still we feel that we need a more objective evaluation basis.

To evaluate the Metaviz creation and customization approach we have com-
pared it to an ad-hoc visualization implementation, as used in the validation
of SGS, and that proved very useful for handling complexity. Several tax-
onomies [32,44] can successfully be used to evaluate the two approaches. Bull [14]
offers a more complete and yet practical evaluation method. It consists of func-
tional requirements and a set of design recommendations. Before performing
the comparison it is important to notice the importance of defining the target
audience [32] for the visualizations. We are tageting the IFx-OMEGA platform
users. They are expected to be familiar with MDE techniques especially UML
modelling with the OMEGA profile.

The figure 7 refers to the use of Metaviz versus the use of a command line ad-
hoc implementation of the communication graph visualization. The comparison
uses the evaluation approach above-mentioned.

One of the big drawbacks of the ad-hoc implementation is the use of UNIX
command line utilities (e.g. sed) that target users are rarely familiar with. That
makes the visualization building process difficult to understand or to customize.
Adding automatically user controls to the generated visualization is not feasible,
unless the viewer (Graphviz) is changed, but then the code is not more working.

The code necessary for this ad hoc visualization is given in listing1.4

cat o.aut | grep −v ’""’ | grep −v u2i__default | grep −v u2i__init | sed ’s/^.∗<<//g’
| sed ’s/!.∗}{/{/g’ | sed ’s/>>.∗//g’ | sort −u | sed ’s/}//g’ | awk ’
BEGIN { print "digraph LTS {"; print " node [shape = circle];"; }
END { print "}"; }
/des.∗/ { next; } // { split($1,a1,"_"); split($2,a2,"_");
print "\"" a1[length(a1)] "\"" " −> " "\"" a2[length(a2)] "\"" ";" ; }
’ | dot −Tepdf > net.pdf

Listing 1.4. Ad-hoc visualization builder

In contrast, Metaviz uses ATL, a largely used model transformation engine, and
targets a model driven viewer [3]. It is also seamlessly integrated to the new
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IFx-OMEGA Eclipse-based interface. The specification of the visualization
pipeline is explicit thanks to the declarative style used to write the transfor-
mations.

Fig. 7. Ad hoc and Metaviz implementation comparison

6 Related Work

In this section we overview related approaches on execution trace visualisation. A
lot of effort is invested in program comprehension through the dynamic analysis
of execution trace visualization. A tremendous number of approaches focus on
the visualization techniques, making the tool implementation an ad-hoc exercise.
Few rely on a well defined reference model. [20,25,41,21,31].

In the Eclipse implementation of De Pauw’s tool, TPTP [5], only some com-
ponents are model-based (e.g. the metamodel of the trace) but the tool relies on
ad-hoc architecture which make the reuse or customization of the visualization
difficult. Chi has proposed the DSRM and has implemented his tool around this
model but the implementation was tailored to the spreadsheet visualizations and
was not intended to be extended easily by new stages. Walker et al. [41] use mod-
els for stages and a mapping language for describing explicitly some operators,
but the mapping language does not cover the whole visualization process.Thus,
most of the contribution implementations make the comprehension and the reuse
of the tool challenging.

Only three approaches offer a flexible Model Driven approach for customizing
the visualizations [14,31,13]. Bull in [14] has taken similar approach to build his
tool around a Visualization Reference Model (VRM) [15]. This Model Driven
Visualization approach is suitable for visualization that do not involve complex
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analytical abstractions. To implement complex transformations like execution
trace summarising techniques [24], this approach needs to be refined to take into
account a categorization of the operators, since the VRM is a high level data-
oriented model and does not cover the whole visualization pipeline. Another
similar approach is the Portolan Framework [31], but like MDV, it uses a gener-
ative approach for rendering the views, consequently a latency is introduced in
the visualization prototyping loop. In contrast Metaviz promotes an interpretive
approach to render the models at runtime and produce the visualizations. Fi-
nally, Buckl’s approach [13] is tidily coupled to the Enterprise Architecture field
and does not enable reusing the framework in visualizing simulation traces.

7 Conclusion

Previous work on verification and validation [36,37,19], performed in the context
of the real-time systems specification and validation tool set IFx-OMEGA [34],
as well as interactions with practitioners, convinced us about the need for mean-
ingful, flexible and effective visualisations. In this paper we present Metaviz: our
approach to support the user during the validation phase in performing model
diagnosis.

Based on the Data State Reference Model [17], we extend the diagnosis
process for IFx-OMEGA. The new diagnosis process includes the definition of
a set of simulation trace visualizations that effectively help the user during the
interactive simulation process .

Metaviz relies heavily on a model-driven implementation of the Data State
Reference Model, in terms of a chain of re-usable model transformations and
meta-models libraries, leading to customized visualisations. By defining new vi-
sualizations (e.g. message graph), the engineers would use these newly created
visualizations instead of having to dig into large models (system level, class level,
state machine level) and error scenarios etc. . .

We illustrate the effectiveness of Metaviz by applying it the validation of
the industrial case study SGS [19]. It is impossible to perform a large scale
evaluation of an approach that makes model based validation and verification
more accessible, since the validation and verification are themselves marginally
used by the industry. Therefore, our evaluation is done on a case study that
was subject to verification and validation at Astrium, and we show how our
visualisations helps the verification.

This work opens the way to several future research directions such as using
Metaviz to implement new visualizations and an automatic mechanism for inter-
process communication error pattern recognition using techniques such as [10].
Moreover, we intend to enhance the tool support, for instance by managing the
visualization modelling artefacts (e.g. dedicated explorer for the stages and the
operators) or by adding user controls to the visualizations. On another direction,
we intend to enrich our work by coupling it with the goal-oriented verification
engine existing in the framework.
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Abstract. Product configuration in families of Integrated Control Sys-
tems (ICSs) involves resolving thousands of configurable parameters and
is, therefore, time-consuming and error-prone. Typically, these systems
consist of highly similar components that need to be configured similarly.
For large-scale systems, a considerable portion of the configuration data
can be reused, based on such similarities, during the configuration of each
individual product. In this paper, we propose a model-based approach to
automate the reuse of configuration data based on the similarities within
an ICS product. Our approach enables configuration engineers to manip-
ulate the reuse of configuration data, and ensures the consistency of the
reused data. Evaluation of the approach, using a number of configured
products from an industry partner, shows that more than 60% of con-
figuration data can be automatically reused using our similarity-based
approach, thereby reducing configuration effort.

Keywords: Product configuration, Internal similarities, Model-based
software engineering, UML/OCL, Feature Modeling.

1 Introduction

Modern society is increasingly dependent on embedded software systems such as
Integrated Control Systems (ICSs). Examples of ICSs include industrial robots,
process plants, and oil and gas production platforms. Many ICS producers ap-
ply product-line engineering to develop the software embedded in their systems.
They typically build a generic software, specifying a large number of interdepen-
dent configurable parameters, that need to be configured for each product accord-
ing to the product’s hardware architecture [6]. To configure the generic software,
engineers manually assign values to tens of thousands of configurable parame-
ters, while accounting for the constraints and dependencies between them. This
makes software configuration time-consuming, error-prone, and challenging.

In the literature, the area of product configuration is still rather immature
[22] and largely concentrates only on resolving high-level variabilities in feature
models [19] and their extensions [10,11]. Feature models, however, are not easily
amenable to capturing complex architectural variabilities and dependencies in
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embedded systems. Consequently, existing configuration approaches do not fo-
cus on configuration challenges in highly-configurable embedded systems, where
large numbers of configurable components need to be configured and cloned.

In a previous study [6], we identified characteristics of ICS families, and their
configuration challenges. Our studies show that ICSs, like many other embed-
ded systems, bear a high degree of structural similarity within their hardware
architectures to fulfill several product requirements, related for example to the
environment, safety, and cost efficiency. Structural similarities in hardware af-
fect software design and configuration, i.e., similar patterns of configuration are
repeated throughout the software configuration.

In this paper, we devise a model-based approach to automatically infer con-
figuration decisions based on the internal structural similarities of a product and
previously made decisions. Our solution (1) includes a similarity modeling ap-
proach for capturing structural similarities in terms of architectural elements in
an ICS family model, (2) applies feature models in practice to provide user-level
representations of structural similarities so as to enable controlling the required
amount of configuration reuse through feature selection, and (3) enables reduc-
ing configuration effort in large-scale, highly-configurable ICSs based on struc-
tural similarities. We build on our previous work, where we proposed a modeling
methodology [5,6], called SimPL, for modeling families of ICSs, and a model-
based configuration approach [4] that uses finite domains constraint solving to
automate and interactively guide consistent configuration of such systems.

We motivate the work and formulate the problem in Section 2, by explaining
the current practice in configuration reuse. We analyze the related work in Section
3. An overview of our model-based solution is given in Section 4. An example ICS
family illustrating the main aspects of the SimPL methodology is presented in Sec-
tion 5. We explain our similaritymodeling approach in Section 6. The use of feature
selection to control configuration reuse, and constraint propagation to automate
configuration reuse are presented in Sections 7 and 8. We evaluate the effectiveness
of our approach in Section 9. Finally, we conclude the paper in Section 10.

2 Configuration Reuse: Practice and Problem Definition

Figure 1 shows a simplified model of a fragment of a subsea production system
produced by our industry partner. As shown in the figure, products are com-
posed of mechanical, electrical, and software components. Our industry partner,
similar to most companies producing ICSs, has a generic product that is config-
ured to meet the needs of different customers. For example, different customers
may require products with different numbers of subsea Xmas trees. A Xmas
tree in a subsea production system provides mechanical, electrical, and software
components for controlling and monitoring a subsea well.

Configuration in the ICSs domain is typically performed in a top-down manner
where the configuration engineer starts from the higher-level components and
determines the type and the number of their constituent (sub)components. Some
components are invariant across different products, and some have parameters
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(i.e., configurable parameters) whose values differ from one product to another.
The latter group, known as configurable components, may need to be further
decomposed and configured. In the rest of this paper, whenever clear from the
context, we use configuration to refer either to the configuration process or to
the description of a configured artifact.

Subsea production systems, and in general ICSs, are typically large-scale
systems with thousands of components and tens of thousands of configurable
parameters. Usually, in these systems, a high degree of similarity is required

«HwComponent»
xt1: XmasTree

«ICSystem»
toySps: SubseaProdSystem

«artifact»
semAppA: SemApplication

s1: Sensor s2: Sensor v1: Valve

«communication path»
controls/monitors

«HwComputingResource»
semA: SubseaElectronicModule

Fig. 1. Fragment of a simpli-
fied subsea production system

among different configurable components to fulfill
certain product requirements such as environmen-
tal, safety, or cost efficiency. For example, to re-
duce the costs of design and production, it may be
required that all the Xmas trees in a product con-
tain the same number and types of devices, thus
requiring all the controller software units (SemAp-
plications) to be configured similarly.

Similarity, in this context, is defined as a
relationship between two or more configurable
components. Two configurable components are
similar if a subset of their configurable parame-
ters have identical values. Such configurable com-
ponents are not themselves identical, as some of
their configurable parameters may have different
values. The similarity that exists in such systems enables the reuse of config-
uration data: instead of configuring every configurable parameter separately,
configurable parameters with identical values can be configured all at once. The
large number of configurable parameters and the high degree of similarity lead
to the potential for a high degree of configuration reuse. This can considerably
reduce the configuration effort, which we define to be proportional to the number
of manual configuration decisions.

Configuration is currently done in our industry partner using an in-house
tool with primitive support for configuration reuse through a copy and paste
mechanism. The existing support for the reuse of configuration data at our in-
dustry partner has the following limitations: (1) It does not provide the user
with sufficient control over the configuration reuse. The user can only select one
subcomponent and duplicate its whole configuration. As a result, it is sometimes
necessary to modify the values of some configurable parameters in the duplicated
subcomponents. (2) It does not automatically enforce the reuse of configuration
data. The configuration engineer has to derive, based on her own knowledge and
experience, a configuration reuse plan that specifies what data should be reused
and how. The configuration tool cannot help following the configuration reuse
plan. (3) Changes in the configuration data are not automatically propagated to
the copies, therefore resulting in inconsistencies.

In our previous work [5,4], we proposed a model-based configuration approach
that ensures the consistency of a, possibly partial, product during the configuration
process. In this paper, we build on our previous work to propose an approach for
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modeling structural similarities in ICSs to automatically reuse configuration data
while preventing all the above-mentioned limitations.

3 Related Work

Feature models [19,10] have been most commonly studied in the literature (e.g.,
[20,16,9]) for specification and model-based analysis of product families. How-
ever, few industrial applications (i.e., [13,15,23,25]) of feature models have been
reported according to the findings of a preliminary review presented in [18]. An-
other group of approaches, which address architecture-level variability modeling
(e.g., [24,27,17,21]), are studied and evaluated in our previous work [5,6]. Struc-
tural similarities within individual products, and modeling solutions to capture
them are, however, missing from these approaches and applications.

Practical challenges in the configuration of highly-configurable systems have
been studied, and large numbers of configurable parameters and their implicit
interdependencies have been categorized as one major source of configuration
errors [12]. Moreover, results from a systematic literature review [22] confirm
that automation is one of the most important requirements for configuration
and product derivation support. Related work on automated verification and
guidance during configuration is presented in our previous work [4]. To the best
of our knowledge, however, there is no work in the literature focusing on the
automated reuse of configuration data, or on the similarity-based approaches to
improve or automate configuration. In this paper, we address this gap by propos-
ing a model-based approach to the automated reuse of configuration data based
on structural similarities in large-scale, highly-configurable embedded systems.

4 Overview of Our Approach

Figure 2 shows an overview of our reuse-oriented configuration approach, which
is a model-based approach to the automated reuse of configuration data based
on the similarities that exist within a particular product. This approach is an
extension to our previous work (the upper part in Figure 2) on automated,
model-based configuration, which has two major steps. In the first step, we build
a configurable and generic model for an ICS family (the Product-family modeling
step). In the second step, the Guided configuration step, we interactively guide
users to generate specifications of particular products complying with the generic
model built in the first step.

As shown in the lower part of Figure 2, in our reuse-oriented configuration ap-
proach, we have extended both the modeling step and the configuration step of
the original configuration approach. Therefore, the reuse-oriented configuration
approach has four major steps. In the first step, the Product-family modeling
step, a configurable and generic model of an ICS family is created by following
the SimPL methodology [5,6]. In the second step, the Similarity modeling step,
possible structural similarities that may exist in some particular products are
modeled and organized in a similarity model. In the third step, the Similarity
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Fig. 2. An overview of our reuse-oriented configuration approach

configuration step, the similarity model is used to generate similarity specifica-
tions of particular products. Finally, in the Guided configuration step, we use
our existing automated configuration approach [4] to interactively guide users to
generate specifications of particular products that comply both with the generic
SimPL model of the product family and with the similarity specifications of the
products generated in the previous step.

Step 1: Product-Family Modeling
During the product-family modeling step, we provide domain experts with a
modeling methodology, called SimPL [5,6], to manually create a product-family
model describing an ICS family. The SimPL methodology enables the domain
experts to create, from textual specifications and tacit domain knowledge, archi-
tecture models of ICS families that encompass, among other things, information
about variabilities and consistency rules. We briefly describe and illustrate the
SimPL methodology in Section 5. Note that our reuse-oriented extension has no
impact on the product-family modeling step. This step is performed exactly as
it is done in our original configuration approach.

Step 2: Similarity Modeling
During the similarity modeling step, domain experts follow the similarity model-
ing approach presented in this paper to manually create similarity models from
textual specifications and their own domain knowledge. A similarity model ex-
presses the structural similarities in two levels of abstraction. In the lower level of
abstraction, OCL is used to express the similarity in terms of the model elements
in the SimPL model of the product family. Each OCL constraint in this level
specifies one similarity rule. In the higher level of abstraction, a feature model
[19] is used to provide a user-level representation of the similarity rules. This fea-
ture model captures the variability that exists among individual products with
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respect to the applicability of the similarity rules. We describe and illustrate our
approach to similarity modeling in Section 6.

Step 3: Similarity Configuration
During the similarity configuration step, configuration engineers use the feature
models created in the previous step to select, for each product, the applicable
similarity rules according to the needs of that particular product. The result of
this step is a similarity specification, which is a collection of OCL constraints
each representing one applicable similarity rule. Using feature models as the
user-level representation of similarity rules, configuration engineers can generate
similarity specifications without requiring to know OCL or the SimPL method-
ology. In addition, by organizing the similarity rules (that can result in the reuse
of configuration data) and their variabilities in a feature model, we provide con-
figuration engineers with a suitable mechanism to gain control over the reuse of
configuration data. This way, we address the first limitation of the existing sup-
port for configuration reuse as discussed in Section 2. Similarity configuration is
illustrated in Section 7.

Step 4: Guided Configuration
During the guided configuration step, configuration engineers create full or par-
tial product specifications by resolving variabilities in a product-family model.
Inputs to the guided configuration step are the generic model of the product
family and the similarity specification of the product. We use these two inputs
to ensure the consistency of the product specification during the entire config-
uration process. For this purpose, we use a finite domains constraint solver to
validate each user decision, and to identify the impacts of each decision. As an
impact of a user decision, the constraint solver may infer the values of one or
more configurable parameters. We refer to this as the reuse of configuration data.

The main idea in this work is to use the similarity rules in the similarity
specifications to trigger the inference capability of the constraint solver to auto-
matically enforce the reuse of configuration data. Moreover, to keep the product
specification consistent with respect to the similarity rules, whenever the value of
a configurable parameter is changed the new value is automatically propagated
to replace the related inferred values. Therefore, using our extended configura-
tion approach, we address the second and third limitations discussed in Section
2. Note that, in this work, we have extended our original guided configuration
step only by adding to it one extra input, which is the similarity specification.
However, this simple extension automatically results in the automated similarity-
based reuse of configuration data. This is described in details together with a
brief description of our original guided configuration step in Section 8. Our orig-
inal guided configuration step is described in details in [4].

5 A Subsea Product-Family Model

The SimPL methodology organizes a product-family model into two views: a
system design view, and a variability view. The system design view presents both
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hardware and software entities of the system and their relationships using UML
classes [1]. The variability view, on the other hand, captures the set of system
variabilities using a collection of configuration units. Each configuration unit is
related to exactly one class in the system design view and defines a number
of configurable features. Each configurable feature describes a variability in the
value, type, or cardinality of a property in the corresponding class. In addition
to the two views described above, each SimPL model has a repository of OCL
expressions [2]. These OCL expressions specify constraints among the values,
types, or cardinalities of different properties of different classes. We call these
OCL constraints universal consistency rules, as they are part of the product-
family commonalities and must hold for all the products in the family.

Figure 3 shows a fragment of the SimPL model for a simplified subsea pro-
duction system1, SubseaProdSystem. In a subsea production system, the main
computation resources are the Subsea Electronic Modules (SEMs), which provide
electronics, execution platforms, and the software required for controlling subsea
devices. SEMs and Devices are contained by XmasTrees. Devices controlled by
each SEM are connected to the electronic boards of that SEM. Software deployed
on a SEM, referred to as SemAPP, is responsible for controlling and monitor-
ing the devices connected to that SEM. SemAPP is composed of a number of
DeviceControllers, which is a software class responsible for communicating with,
and controlling or monitoring a particular device. The system design view in
Figure 3 represents the elements and the relationships discussed above.

System 
Design View

Variability View

Fig. 3. A fragment of the SimPL model for the subsea production system

The variability view in the SimPL methodology is a collection of template
packages, each representing one configuration unit. The upper part in Figure 3
shows a fragment of the variability view for the subsea production system. Due
to the lack of space we have shown only two template packages in the figure. As
shown in the figure, the package SystemConfigurationUnit represents the config-
uration unit related to the class SubseaProdSystem in the system design view.

1 This example is a sanitized fragment of a subsea production case study [6].
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Template parameters of this package specify the configurable features of the
subsea production system, which are: the number of XmasTrees, and SEM ap-
plications (semApps).

A number of universal consistency rules are defined for the subsea production
system in Figure 3. Below are OCL expressions for two of these consistency rules.

context Connection inv PinRange
self.pinIndex >= 0 and self.sem.eBoards->asSequence()->

at(self.ebIndex+1).numOfPins > self.pinIndex
context Connection inv BoardIndRange
self.ebIndex >= 0 and self.ebIndex < self.sem.eBoards->size()

The first constraint states that the value of the pinIndex of each device-to-SEM
connection must be valid, i.e., the pinIndex of a connection between a device
and a SEM cannot exceed the number of pins of the electronic board through
which the device is connected to its SEM. The second constraint specifies the
valid range for the ebIndex of each device-to-SEM connection, i.e., the ebIndex
of a connection between a device and a SEM cannot exceed the number of the
electronic boards on its SEM.

Product specifications are created from family models by instantiating the
classes associated to configuration units, and assigning values to the configurable
parameters (i.e., instances of configurable features) of those instances.

6 Similarity Modeling

As mentioned in Section 4, in the similarity modeling step, we create similarity
models that specify the similarity rules in two levels of abstraction. In this sec-
tion, we first define and exemplify2 the similarity rules. Then we explain how
OCL can be used to model similarity rules in terms of the model elements in
the SimPL model of the product family. Then we explain how feature mod-
els are used to provide a user-level representation of similarity rules and their
variabilities. Finally, we explain the refactoring of similarity models.

6.1 Similarity Rules

A similarity rule specifies a relationship between two or more configuration unit
instances within a particular product. Two configuration unit instances are sim-
ilar if a subset of their configurable parameters have equal or identical values.
For example, a similarity rule named XtTypeSimilarity specifies that all the Xmas
trees (Figure 3) in a subsea product must be of the same type. Here, Xmas trees
2 Examples in this section focus on describing hardware similarities, as the SimPL

model in Figure 3 mostly contains hardware classes. However, in practice, similarity
rules are mainly defined in terms of software classes, as they are intended to be
used for reusing software configuration decisions. Note that, software similarities in
a product family are, in general, very similar to its hardware similarities.
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are the configuration units that are required to be similar. Types of the Xmas
trees, which can either be production or injection, are the configurable parameters
that are required to be identical for the similarity rule to hold.

Every similarity rule has two parts: a scope, and a similarity relation. The
scope of a similarity rule determines the configuration unit instances that must
be similar. For example, the scope of the similarity rule XtTypeSimilarity is the
set of all Xmas trees in the product. The similarity relation in a similarity rule
specifies how the similarity is achieved. It is normally composed of one or more
equality relationships. Each relationship relates the values of different instances
of a particular configurable feature, each belonging to a configuration unit in-
stance in the scope of the similarity rule. For example, in XtTypeSimilarity, the
similarity relation is composed of a single equality relationship that relates the
values of the configurable parameter type of all the Xmas trees in the product.

It is possible to have several similarity rules with the same scope, but express-
ing different aspects of similarity. For example, in addition to XtTypeSimilarity,
we can have another similarity rule among all the Xmas trees in the product,
named XtSemNumSimilarity, expressing that all of the Xmas trees must have the
same number of SEMs.

6.2 Architecture Level Modeling of Similarity Rules Using OCL

Configuration in our automated, model-based approach is performed by resolving
variabilities through assigning values to configurable parameters [4]. To enable
the reuse of such configuration decisions based on the similarities within a prod-
uct, we express the similarity rules in terms of the configurable features and
other model elements in the SimPL model of a product family. For this purpose,
we use OCL, as it is the standard language for expressing constraints on the
elements in UML class diagrams.

Each OCL expression is written in the context of an instance of a specific
type [2]. In an OCL expression representing a similarity rule, the context must be
the instance that contains all the configuration unit instances that form the scope
of the similarity rule. For example, to model the similarity rule XtTypeSimilarity,
we use an OCL invariant written in the context of the class SubseaProdSystem.
This class is the topmost class in the SimPL model (Figure 3), and contains all
the instances of XmasTree3. Each equality relationship in the similarity relation
of a similarity rule becomes a boolean subexpression in the corresponding OCL
invariant. The following is the OCL invariant expressing XtTypeSimilarity.

context SubseaProdSystem inv XtTypeSimilarityInv
self.xTs->forAll(x | x.type = WellType::PRODUCTION) or
self.xTs->forAll(x | x.type = WellType::INJECTION )

The scope of a similarity rule does not always contain all the instances of a
configuration unit. In general, for modeling the scope of a similarity rule more
3 In the SimPL methodology, each product contains only one instance of the topmost

class [5,6]. In a product specification created from the SimPL model in Figure 3, the
only instance of the class SubseaProdSystem contains all the XmasTree instances.
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expressive OCL constructs such as implication- or selection-statements are re-
quired. The following is an example. This similarity rule specifies that all the
production Xmas trees must have two SEM instances. Here, the scope of the
similarity rule is the set of all Xmas trees that are of type production (speci-
fied using the selection-statement), and the number of SEMs is the configurable
feature that must have the same value for all such Xmas trees.

context SubseaProdSystem inv ProductionXtTwoSemSimilarityInv
self.xTs->select(x | x.type = WellType::PRODUCTION)

->forAll(x | x.sEMs->size() = 2)

We use OCL and -statements to specify similarity relations that are composed
of two or more equality relationships. SemDesignSimilarityInv is an example.

context SubseaProdSystem inv SemDesignSimilarityInv
SEM.allInstances()->forAll(s, t | s.eBoards->size() = t.eBoards->size())
and
SEM.allInstances()->forAll(s, t |

s.eBoards->forAll(e1 | t.eBoards->exists(e2 | e2 = e1)))

6.3 User-Level Modeling of Similarity Rules Using Feature Models

As mentioned in Section 4, we use feature models [19] to provide a user-level
representation of the similarity rules. We call these feature models similarity
feature models. A similarity feature model captures the variabilities that exist
among individual products with respect to the applicability of the similarity
rules. A similarity feature model is part of a product-family specification, and is
created only once for that product family.

Figure 4 shows a fragment of the similarity feature model for the product
family shown in Figure 3. To create a similarity feature model, we follow the
existing feature modeling methodologies [3] and organize features into a tree.

SubseaFieldSimilarity

XtSimilarity

XtTypeSimilarityXtSemNumSimilarity

SemDesignSimilarty

Fig. 4. A fragment of the similarity
feature model for the subsea produc-
tion systems family

Each leaf feature in the tree represents a
similarity rule and is associated with an
OCL expression. For example, XtTypeSim-
ilarity is a leaf feature associated with the
OCL invariant XtTypeSimilarityInv. Non-
leaf features (e.g., XtSimilarity) are used to
group related similarity rules, or other non-
leaf features. In Figure 4, XtSimilarity is a
non-leaf or-feature that groups two leaf fea-
tures XtTypeSimilarity and XtSemNumSimilarity. An or-feature specifies that one
or more of its subfeatures can be selected. Both XtTypeSimilarity and XtSemNum-
Similarity are optional features and therefore introduce variabilities that should
be resolved during similarity configuration.

Different types of dependencies, such as imply and exclude, may exist among
similarity rules. Using feature models to organize similarity rules allows model-
ing these dependencies among the features representing the similarity rules. This
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makes OCL constraints simpler and independent from each other, thus easier to
maintain. In general, all similarity rules must be consistent with the universal
consistency rules in the SimPL model (This consistency can be checked, for
example, using the approaches in [8] and [14]). Similarity rules are, in fact, com-
plementary to the universal consistency rules, but must not be contradictory to

SubseaFieldSimilarity

XtSimilarity

RefactoredXtTypeSimilarityXtSemNumSimilarity

SemDesignSimilarty

AllInjectionAllProduction

ProductionXtTwoSemSimilarity

Fig. 5. Dependencies between similarity rules
are modeled as dependencies between features

them. However, similarity rules
can be contradictory to each
other. If two similarity rules are
contradictory, an exclude or al-
ternative relationship is necessary
between the features representing
them to avoid any inconsistency
in the products. Figure 5 shows
an example. The similarity fea-
ture model in this figure is achieved by refactoring (Section 6.4) the similarity
feature model in Figure 4. AllInjection (AllProduction) is a similarity rule that
specifies that all Xmas trees must be of type injection (production). The OCL
constraints associated with AllInjection and AllProduction are contradictory and
cannot be true simultaneously. To ensure that these two similarity rules are
never selected simultaneously, the features representing them are grouped in
an alternative-feature (RefactoredXtTypeSimilarity). In addition, the similarity
feature model in Figure 5 shows an exclude relationship between the features
AllInjection and ProductionXtTwoSemSimilarity, as selecting AllInjection makes
ProductionXtTwoSemSimilarity void.

6.4 Refactoring Similarity Models

Creating similarity models is an incremental process, which may involve refac-
toring course-grained similarity rules into more fine-grained ones. Refactoring
a similarity rule is done in both the architecture (i.e., OCL expressions) and
the feature levels. Refactoring similarity models is, in particular, useful when
product families evolve [7,26] and new requirements are introduced.

Consider the OCL invariant XtSimilarity in Figure 6-(a). XtSimilarity represents
a similarity rule that requires all the Xmas trees in the susbea field to be of the
same type (i.e., all production or all injection), and that all the Xmas trees have
the same number of SEMs. This rule is associated with a single feature in the
similarity feature model.

Figure 6-(b) shows the similarity feature model and OCL constraints resulting
from refactoring XtSimilarity. This refactoring is done to fulfill the needs of a
new product that requires all the Xmas trees in the field to have the same
number of SEMs, but does not require all the Xmas trees to be of the same
type. The refactoring shown in Figure 6 has decomposed XtSimilarity into two
finer-grained similarity rules that can be selected independently during similarity
configuration. To fulfill the needs of the new product, one must select the features
XtSimilarity and XtSemNumSimilarity and leave XtTypeSimilarity unselected.
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In general, if the OCL constraint expressing a similarity rule is a conjunction
of subexpressions each expressing an equality relation on a different configurable
feature, then it is a good modeling practice to refactor the similarity model by
decomposing that similarity rule so that each subexpression becomes an inde-
pendent similarity rule. To reflect this refactoring step in the similarity feature
model, we make the feature corresponding to the original similarity rule a non-
leaf or-feature and add to that a number of optional subfeatures each associated
with one of the OCL subexpressions. In Figure 6-(b), the two OCL expressions
associated with features XtTypeSimilarity and XtSemNumSimilarity are in fact the
two subexpressions of the OCL constraint in Figure 6-(a).

XtSimilarity

XtSemNumSimilarity XtTypeSimilarity

context SubseaProdSystem inv XtSimilarityInv
(self.xTs->forAll(x | x.type = WellType::PRODUCTION) or 
self.xTs->forAll(x | x.type = WellType::INJECTION)) and
self.xTs->forAll(x1, x2 | x1.sEMs->size() = x2.sEMs->size())

XtSimilarity

context SubseaProdSystem inv XtTypeSimilarityInv
self.xTs->forAll(x |
     x.type = WellType::PRODUCTION) or 
self.xTs->forAll(x |
     x.type = WellType::INJECTION)

context SubseaProdSystem inv XtSemSimilarityInv
self.xTs->forAll(x1, x2 | 
     x1.sEMs->size() = x2.sEMs->size())

(a) Coarse-grained similarity rule.

(b) Refactored finer-grained similarity rules.

Fig. 6. Refactoring of a similarity rule

As shown in Figure 5, XtTypeSimilarity can be refactored by decomposing its
associated OCL constraint into two finer-grained OCL constraints, one (i.e., All-
Production) expressing that all the Xmas trees must be of type production, the
other (i.e., AllInjection) expressing that all Xmas trees must be of type injection.
This refactoring allows configuration engineers to identify the type of the Xmas
trees during the similarity configuration; while, without this refactoring, config-
uration engineers must make this choice during the guided configuration step.
Note that in both cases the total number of configuration decisions to be made
are equal. Whether refactoring XtTypeSimilarity or not depends on the require-
ments of the product family (e.g., presence of ProductionXtTwoSemSimilarity).

7 Similarity Configuration

SubseaFieldSimilarity

XtSimilarity

RefactoredXtTypeSimilarityXtSemNumSimilarity

SemDesignSimilarty

AllInjectionAllProduction

ProductionXtTwoSemSimilarity✓

✓

Fig. 7. Similarity feature model configured for
a particular product

Optional features in the sim-
ilarity feature model represent
variability points that should
be resolved during the similar-
ity configuration step to gen-
erate similarity specifications.
Configuration engineers resolve
these variabilities by selecting
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features in the similarity feature model according to the needs of a particu-
lar product. For example, Figure 7 shows the similarity feature model in Figure
5 configured for a product that requires all the Xmas trees to have the same
number of SEMs.

Features that are selected during similarity configuration represent the sim-
ilarity rules that must hold within the product under configuration. OCL con-
straints associated to the selected features are used to automatically generate
the similarity specification of the product. For example, the similarity specifica-
tion for the product mentioned above, will contain one OCL constraint, which is
XtSemNumSimilarityInv that is the OCL constraint associated with XtSemNum-
Similarity as shown in Figure 6.

8 Configuration Reuse through Constraint Propagation

Our original model-based configuration approach, presented in details in [4], gets
as input a SimPL model, which is composed of a set of UML class diagrams and
a set of OCL constraints. From these inputs, it creates a constraints system and
uses a finite domains constraint solver to validate user decisions, to ensure the
consistency of the configured product, and to automatically infer values.

Originally, OCL constraints that are fed to the configuration engine specify
universal consistency rules. As mentioned in Section 4, we extend our original
approach by adding to it one more input: the similarity specification of a product.
In the reuse-oriented configuration approach, OCL constraints in the similarity
specification are merged with the OCL constraints of the universal consistency
rules, and are used by the configuration engine to create the constraints system.

Bringing the similarity rules – which express equality relationships among
configurable parameters – in the constraints system forces the configuration en-
gine to infer new values whenever a value is assigned to a configurable parameter
involved in a similarity rule. For example, as a result of selecting XtTypeSimilar-
ity, when the configuration engineer sets the type of one Xmas tree to production,
the type of all other Xmas trees will be automatically set to production.

In general, OCL constraints representing similarity rules are expected to re-
sult in high numbers of inferences and a high ratio of reuse of configuration
data. Using the similarity feature model and by configuring it (through selecting
features), configuration engineers can control the degree of configuration reuse
for each product. Note that some of the universal consistency rules may, as well,
result in the reuse of configuration data. Table 1 compares universal consistency
rules and similarity rules.

Table 1. A comparison between universal consistency rules and similarity rules
Applies to Modeled in Specifies Impact on reuse

Universal consistency
rule All products OCL All types of relation-

ships May result in reuse

Similarity rule A subset of products OCL Equality relation-
ships

Results in reuse if
selected
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In addition to inferring values and reusing configuration decisions, using simi-
larity rules, value changes will be automatically propagated into similar parts of
the configuration. This allows keeping the configuration consistent after chang-
ing the value of a configurable parameter and without requiring extra effort. For
example, as a result of selecting XtSemNumSimilarity, whenever the configuration
engineer adds a new SEM to one of the Xmas trees (i.e., changes the number of
SEMs in the Xmas tree) the inference engine automatically adds a new SEM to
all other Xmas trees in the field.

9 Evaluation

To empirically evaluate our approach, we investigated two complete subsea prod-
ucts of our industry partner. These products, detailed in Table 2, are represen-
tative considering their size, types of components, and similarity specifications.

Table 2. An overview of the two investigated products
* # XmasTrees # SEMs # Devices # Configurable parameters **

Product_1 9 18 (9 twin SEMs) 2360 29796
Product_2 14 28 (14 twin SEMs) 5072 56124
* The two products are very dissimilar with respect to their internal similarities and each represent
one of two main types of subsea fields (scattered and clustered subsea fields).
** Total number of configurable parameters that need to be configured to create the software
specification for the product.

Similarity Modeling. Generic software of the product family investigated in
this case study contains 36 configuration units, which in total have 264 config-
urable features. To create a similarity feature model, we thoroughly studied both
products and identified the similarities within each product. The resulting simi-
larity feature model is a tree of depth four, with a total of 200 features, including
81 leaf features representing the similarity rules. These similarity rules have, in
total, 423 equality relations that are defined in terms of classes and configurable
features in the generic software model.

Similarity-Based Reuse. To create software products, we started by select-
ing the required similarity rules using the similarity feature model. The total
number of selected similarity rules, and equality relations are reported, for each
product, in Table 3. Among these similarity rules 12 are common between the
two products, resulting in 110 equality relations in common. This relatively low
number of common similarity rules reflects the fact that the chosen products are
very dissimilar with respect to their internal similarities.

Table 3. Summary of similarity rules, and automated reuse in the two products
# Similarity rules # Eq. Relation # Auto. decisions Reuse rate

Product_1 52 263 19289 0.647
Product_2 41 270 46801 0.834

To identify the effectiveness of our approach, we introduce a measure called
reuse rate, which provides an insight into the percentage of the decisions that
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can be automatically inferred based on the applied similarity rules and the pre-
viously provided configuration decisions. The fourth column in Table 3 gives,
for each product, the number of such decisions. Reuse rate, for each product,
is calculated by dividing the number of automated decisions by the number of
configurable parameters (last column in Table 2). As shown in the fifth col-
umn in Table 3, reuse rates for product_1 and product_2 are 0.647 and 0.834,
respectively. It means that, for example in product_2, 83.4% of configuration
decisions can be automatically made by the configuration tool using the similar-
ity rules, and the user has to manually configure only 16.6% of the parameters.
Given the very large number of configurable parameters, this result is of practi-
cal significance. In particular, assuming automated configuration decisions have
similar complexity to manual ones, our results show that such an automation
can save more than 60% of the configuration effort in large-scale systems. Note
that the 60% gain is calculated with respect to cases where no support for reuse
is provided, not compared to the current situation at our industry partner where
primitive support for reuse is provided through copy-and-paste mechanism.

Discussion. Modeling, in general, is manual and time consuming. This applies
to our similarity modeling approach too. However, the effort that is put into
creating similarity models is paid back because, (1) only one similarity model
is created for each product family and is used during the configuration of all
products, and (2) as our evaluation shows, a great portion of the configuration
data can be automatically derived using similarity models, reducing the config-
uration effort. When the number of configurable parameters is very large–often
in the thousands, as in many ICSs, the benefit of such similarity models can be
substantial. This has shown to be clearly the case in our industrial case studies.

Hardware similarities that are the basis for automated reuse in our approach
are present in many embedded software systems as well as distributed networked
systems. Therefore, we expect our results to generalize to those domains, as well
as to other ICSs with highly-symmetric hardware architectures.

10 Conclusion

This paper focuses on the automated similarity-based reuse of configuration data
in families of integrated control systems (ICS). Individual ICS products, like
many other embedded software systems, usually bear a high degree of similar-
ity within their hardware structures, which results in internal similarities within
their software configurations. In this paper, we propose an approach to model
such internal similarities. As opposed to the commonalities in a product family
that capture similarities among different products, internal similarities capture
similarities among different parts of an individual product. In our similarity
modeling approach, to enable automated reuse, we model internal similarities
in terms of the elements in the generic model of the product family as a set of
similarity rules using OCL. We use feature models to provide a user-level repre-
sentation of similarity rules and the variabilities they introduce. We evaluated
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the effectiveness of our approach using two product configurations from our in-
dustry partner. Our results show that an automated similarity-based approach to
configuration reuse can save more than 60% of configuration decisions, and con-
sequently, can reduce configuration effort. In future, we will conduct experiments
with human subjects, to further evaluate the applicability of our approach.
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Abstract. Fault tolerance is very important for complex component-based 
software systems, but its configuration is complicated and challenging. In this 
paper, we propose a model driven approach to semi-automatic configuration of 
fault tolerance solutions. At design time, a set of reusable fault tolerance solu-
tions are modeled as architecture styles, with the key properties verified by 
model checking. At runtime, the runtime software architecture of the target sys-
tem is automatically constructed by the code generated from the given architec-
tural meta-model. Then, the impact of each component on the system reliability 
is automatically analyzed to recommend which components should be consi-
dered in the fault tolerance configuration. Finally, after which components are 
guaranteed by what fault tolerance solution is decided by the system administra-
tion, the architecture model is automatically changed by merging with the  
selected fault tolerance styles and finally, these changes are automatically  
propagated to the target system. This approach is evaluated on Java enterprise 
systems. 

Keywords: fault tolerance, component-based system, dynamic configuration, 
mode driven approach, software architecture. 

1 Introduction  

Fault tolerance is well studied and practiced in the past decades. For different types of 
systems or different sources of faults, we need different fault tolerance solutions [15]. 
For example, if the fault is caused by temporary race between the current re-quests, 
only re-issuing the requests will significantly decrease the rate of fault response. Al-
ternatively, if the fault is caused by an accumulated reason, such as the memory leak, 
rebooting the system or a part of it is usually necessary. Such fault tolerance solutions 
consist of different mechanisms for detecting the faults, buffering the requests, re-
booting the components, recovering the responses, etc.  

In today’s popular component-based systems, fault tolerance solutions themselves 
also become more componentized, that is, fault tolerance mechanisms are  
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implemented as a set of reusable components by the component framework and can 
be configured to guarantee or ignore the given system components.  

However, it is not easy to properly reuse the fault-tolerance solutions in complex 
component-based systems. The challenge is twofold. One is how to specify the reusable 
fault tolerance solutions on a specific platform. From the structural aspect, the specifica-
tion should make clear the types of components required by the solution, the property of 
each component, and the relation between these components. The difficulty here is how 
to ensure the automated deployment, and in the meantime make the specification easy to 
understand. From the behavioral aspect, the specification should make clear the proper 
context for each solution, i.e., what type of faults the solution fits for, and the effect after 
deploying the solution. The difficulty here is how to classify the faults and how to verify 
the effect before really deploying the solution. Having the proper specification of fault-
tolerant solutions, the second challenge is how to deploy them automatically. The first 
problem here is how to assist the system administrators choosing the part of the system 
to deploy the solution, and the proper solution to deploy. After choosing the solution, 
the remaining problem is how to automatically deploy and configure the reusable fault 
tolerance mechanism according to the solution. 

In this paper, we present a model driven approach to specification and semi-
automatic configuration of fault tolerance solutions for component-based systems, on 
the software architecture level. Based on our initial idea of supporting fault tolerance 
at software architecture level with the help of middleware [6], and an existing frame-
work named SM@RT [2] [24] to support runtime model, we provide a systematic and 
automated framework with the help of runtime models, called SM@RT. The whole 
approach is divided into two phases. In the specification phase, the experts of the 
given system or platform define the fault tolerance mechanisms implemented by the 
system, in the form of a specific kind of components named fault tolerance facilities. 
Based on the components, the experts specify the reusable fault tolerance solutions as 
partial architectures composed by some of the existing facilities. The experts also list 
the fault tolerance properties satisfied by each of the solutions, as a reference indicat-
ing what kind of faults is proper to be fixed by this solution. In this phase, our  
framework provides the code generation support to wrap low-level fault tolerance 
mechanisms as reusable facilities, the meta-model to construct the partial architecture, 
and the model checking support to verify if the solution satisfies the declared fault 
tolerance properties. In the configuration phase, our framework helps the system ad-
ministrators to semi-automatically deploy the proper fault tolerance solutions on the 
system. Specifically, our framework first reflects the system as runtime software ar-
chitecture, and then uses this runtime architecture to calculate the key component that 
has the maximal influence to the global system reliability. With these two pieces of 
information as references, the administrator evaluates the type of faults, and chooses 
the proper solution. Finally, our framework automatically deploys the solution to the 
system, by merging the current architecture with the partial architecture specified by 
the solution, and then calculating and executing the required changes between the 
original and the result architecture. 

The main contributions of this paper can be summarized as follows. Firstly, we 
analyze the component’s impact on system reliability, and recommend key  
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component(s). Secondly, we realize the model merging of runtime software architec-
ture with fault tolerance style automatically. Thirdly, a systematic and semi-
automated configuration framework is proposed, which is used to configure the fault 
tolerance solutions into component-based systems. 

The rest of this paper is organized as follows: section 2 gives an overview of our 
approach and a motivating example of fault tolerance for an EJB component. Section 
3 describes the concept of FTS (fault tolerance style) and the verification of FTS by 
model checking. Section 4 describes the details of analyzing the key component(s), 
selecting FTS, configuring RSA (runtime software architecture) with FTS, and propa-
gating RSA changes to the target system. Section 5 shows how to use the approach to 
solve the problem in the motivating example. Section 6 shows the related work, and 
section 7 shows the discussion and future work on our approach. 

2 Approach Overview 

In this section, we first illustrate the fault-tolerance solutions on a real component-
based system. Based on this example, we give a brief overview of the complete  
approach for modeling and configuring the fault tolerance solutions. 

2.1 Illustrative Example 

ECperf [12] is an EJB benchmark application, which simulates the process of manu-
facturing, supply chain management, and order/inventory in business problems. 
Create-a-New-Order is a typical scenario in ECperf, i.e. a customer lists all products, 
adds some to a shopping cart, and creates a new order. We use a Software Architec-
ture (SA) model to depict the relations among EJBs in this scenario in Fig.1 (NFTUnit 
is none-fault-tolerant component). We assume these EJBs are black boxes. The struc-
tural model of ECperf comes from runtime information analysis, with the monitoring 
support provided by SM@RT. 

 

Fig. 1. The SA of ECperf in the scenario of Create-a-New-Order 
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ECperf cannot tolerate any faults originally, but it needs to be fault tolerable, espe-
cially for ItemBmpEJB, which is a frequently used bean-managed persistent EJB in 
the Create-a-New-Order scenario. The availability of ItemBmpEJB may be imperiled 
by database faults. These faults are permanent – they do not disappear unless the da-
tabase or the connections are recovered, unlike transient faults, which may disappear 
in a nondeterministic manner even when no recovery operation is performed. In addi-
tion, these faults are activated only under certain circumstances like heavy-load or 
heavy communication traffic. So the first fault-tolerance requirement is to make 
ItemBmpEJB capable of tolerating environment-dependent and non-transient (EDNT) 
faults. 

2.2 Approach Overview 

For the above example, the Ecperf is without any fault tolerance function. Our ap-
proach for fault tolerance configuration has four steps as follows: 

(1) Locating the key component(s). Component is the basic unit of component based 
system, and the key component is the one whose reliability matters the most to 
the reliability of the whole system. In this paper, we use a scenario-based reliabil-
ity analysis approach to analyze the reliability of the system and locate the key 
component. 

(2) Selecting suitable FTS. To alleviate the difficulty in the selection of the fault-
tolerance mechanisms, these mechanisms are abstracted as FTS at first. Then the 
required fault-tolerance capabilities are specified as fault-tolerance properties, 
and the satisfactions of the required properties for candidate FTSs are verified by 
model checking [6]. The system administrator just needs to input the fault toler-
ance capabilities which need to be satisfied. 

(3) Configuring RSA with FTS. In this step, we perform fault tolerance by model 
merging at the architecture level. The two models which are merged are RSA and 
FTS. The components in RSA which need to be configured are analyzed in step 1. 
And the suitable FTS is chosen in step 2. 

 

Fig. 2. Model driven configuration of fault tolerance solution 
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(4) Propagating the RSA changes to the target system. After step 3, we have per-
formed fault tolerance at architecture level.  For the sake of realizing fault toler-
ance, we use SM@RT [2][24] to propagate the change to the target system. 
SM@RT provides a domain-specific modeling language and a code generator to 
support model-based runtime system management. Figure 2 shows the whole 
process of our approach. 

3 Solution Modeling 

3.1 The Concept of Fault-Tolerance Styles 

The primary activities of different fault-tolerance mechanisms are similar. They con-
trol the messages passed in, and monitor or control a component’s states. An architec-
tural style is a set of constraints on coordinated architectural elements and relation-
ships among them. The constraints restrict the role and the feature of architectural 
elements and the allowed relationships among those elements in a SA that conforms 
to that style [21]. Entities in a fault-tolerance mechanism are modeled as components, 
interactions among the entities are modeled as connectors, and constraints in a me-
chanism are modeled as an FTS, from the point of view of architectural style. The 
architecture of a fault-tolerant application is a Fault-Tolerance Software Architecture 
(FTSA), which conforms to an FTS and tolerates a kind of fault. 

3.2 Modeling Solutions as Fault-Tolerant Styles 

We use a UML profile for both SA and FT [20, 25] and made necessary extensions to 
specify FTSs and FTSAs. There are three kinds of components in this UML profile: 
«NFTUnit», «FTUnit» and «FTFaci» components. «NFTUnit» components are busi-
ness components without fault-tolerant capability. «FTUnit» components are business 
components with fault-tolerant capability either by its internal design or by applying a 
set of «FTFaci» components to an «NFTUnit» component. We define a stereotype 
«FTFaci» for well-designed and reliable components, which provide FT services for 
«NFTUnit» components. An «NFTUnit» component and its attached «FTFaci» compo-
nents, which interact with each other in a specific manner, form a composite «FTUnit» 
component. There are two kinds of connectors: «FTInfo» and «FTCmd» connectors. 
«FTInfo» connectors are responsible for conveying a component’s states to another. 
«FTCmd» connectors are responsible for changing an «NFTUnit» component’s states. 

Based on the profile, we model fault-tolerant mechanisms as FTSs. Each mechan-
ism’s structure is modeled in UML2.0 component diagram. Micro-reboot mechanism 
[7] is an illustrative mechanism to be modeled as FTS. A Micro-reboot style consists 
of four «FTFaci» components (ExceptionCatcher, Reissuer, FTMgr, and BufferRedi-
rector) and an «FTCmd» Reboot connector for an «NFTUnit» component (Fig. 3). 
The ExceptionCatcher catches all unexpected exceptions in the «NFTUnit» compo-
nent. After the caught exceptions are analyzed and the failed component is identified, 
the failed component is rebooted. Meanwhile, the BufferRedirector blocks incoming 
requests for the component during recovery. When the failed component is success-
fully recovered, the BufferRedirector re-issues the blocked requests and the normal 
process is resumed.   
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Fig. 3. The component diagram of Micro-reboot style 

3.3 Validation of Solutions 

In this section, we abstract both fault-tolerant capability requirements and fault as-
sumptions on components as fault-tolerant properties. And then we translate a FTS’s 
behavioral models in the UML sequence diagram, the properties, and the constraints 
into verification models, and use model checking to verify the FTS’s satisfaction of 
the properties and the constraints.  

Table 1. Fault assumption and generic fault-tolerant capabilities 

Type Property Name & Description 
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Transient fault assumption (P1): When a component is providing services and a tran-
sient fault is activated in it then, its states will be resumed if a fault-tolerant mechanism was 
applied. Transient faults are nondeterministic and are also called “Heisenbugs”. 

Environment-dependent and non-transient (EDNT) fault assumption (P2): When a 
component is providing services and an EDNT fault is activated in it then, its states will be 
resumed if a fault-tolerant mechanism was applied. EDNT faults are deterministic and acti-
vated only on a specific environment. 

 Environment-independent and non-transient fault assumption (EINT) (P3): When a 
component is providing services and an EINT fault is activated in it then, its states will be 
resumed if a fault-tolerant mechanism was applied. EINT faults are deterministic and are 
independent of specific environment. 
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 Fault containment (P4): If an error is detected in a component, other components would 
not be aware of the situation. 

Fault isolation (P5): When a failed component is being recovered, no new incoming re-
quests can invoke the component. 

Fault propagation (P6): If an un-maskable fault is activated in a component, and it can-
not be recovered successfully, the client, who issues the request and activates the fault, would 
receive an error response. 

Coordinated error recovery (P7): If a global error, which affects more than one compo-
nent, happened, the error can be recovered. 

 

Fault-Tolerant Properties  
Fault assumption assumes the characters of faults in a component or an application. 
Only when an FTS can deal with a certain kind of fault, it is meaningful to discuss the 
FTS’s other capabilities. Properties P1 to P3 shown in Table 1 denote three fault as-
sumptions. These three properties form a dimension of selecting FTSs. Then fault 
containment, fault isolation, fault propagation, and recovery coordination are four 
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generic fault-tolerant capabilities. They are shown in Table 1 as P4 to P7 and form 
another dimension of the selection.  

For fear of error propagation, P4 stipulates that the source of a failure should be 
masked. P5 stipulates that new incoming requests cannot arrive at a failed component. 
Because not all errors can be masked, property P6 states that if a failed component 
cannot be recovered, the error should be allowed to propagate to others to trigger a 
global recovery process. This is important for some faults that can be tolerated by 
coordinated recovery among several dependent components.  P7 means that both of 
the failed component and the components which depend on it need to be recovered. 

It should be noted that the above fault-tolerant properties only cover some impor-
tant and typical ones, and they are distilled from a study of FT. Other properties, such 
as those presented in Yuan et al.’s study [22], can also be appended to the table. 

Verification of FTS  
We verify the FTS by translating the intuitive behavior description into the formal 
specification in Promela, and then evaluate the formal on by the model checker SPIN. 

We predefine a set of templates to automatically translate the extended UML2.0 
sequence diagrams into Promela. The automatic translation of standard elements in 
UML2.0 sequence diagram has been addressed in related literature [23]. Interaction 
elements in UML2.0 sequence diagram, such as timeline and message dispatch, are 
mapped to basic block or elements in Promela, such as process (proctype) and chan-
nel (chan element). Structured control operators in UML2.0 sequence diagrams, such 
as conditional execution and loop execution, are mapped to control-flow constructs in 
Promela, such as the selection statement (if…fi) and loop statement (do…od). And 
the details are illustrated in our previous work [6]. 

3.4 Solutions Provided by Java Application Server 

Using the specification mechanism, we summarized four FT solutions on a concrete 
system type, the Java Application Server. These solutions are widely used in the JEE 
systems, and the reusable facilities constituting them are able to implement based on 
the JEE techniques. An experiment implementation of all these facilities on the JBoss 
application server can be found in our previous work [9]. And the four solutions are 
listed as follows: 

• Simple retry style: send the failed request again. 
• N-copy programming style: send a request to several instances of a component, 

avoiding the failure of a few instances. 
• Micro reboot style: initialize the failed component and recover it to original state. 
• Retry block style: send the request to a component instance. If the return result is 

an error, modify the request, restore the environment state and resend the request. 
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4 Solution Configuration 

4.1 Construct Runtime Software Architecture 

As our fault-tolerant approach is performed at the architecture level, we need to do the 
following steps to get the runtime system information: 

1. Define the meta architectural model of the target system. 
2. Define the access model of the target system. 
3. Generate the code and instantiate the RSA. 

The meta-model of the target system defines the structure of RSA, including property, 
class, and association between classes. The access model defines the methods which 
used to get the runtime system information. The method get() is used to get the sys-
tem information and set() is used to modify the system properties. In this paper, we 
use SM@RT to define the access model, generate the synchronization code, and in-
stantiate the RSA. 

4.2 Analyze Component’s Reliability Impact 

In this section, a scenario based reliability analysis approach is described, and then we 
introduce a SBRA-based algorithm to find out the key components which have the 
crucial influence to the system. 

Scenario-Based Reliability Analysis Approach  
SBRA is a reliability analysis technique for component-based software, which was 
proposed by Sherif Yacoub et al. in [4]. Using scenarios of component interactions, 
they construct a probabilistic model named Component-Dependency Graph (CDG). 
Based on CDG, a reliability analysis algorithm is developed to analyze the reliability 
of the system as a function of reliabilities of its architectural constituents. 

A CDG is defined as follows: 

CDG=<N,E,s,t> 
N={n},which is a set of nodes in the graph; E={e},which is a set of directed edges 

in the graph; s and t are the start and termination nodes.  
n=<NCi, RCi, ECi>   n∈N, models a component  Ci, NCi is the name of compo-
nent Ci, RCi is the reliability of component Ci, and ECi is the average execution time 
of the component Ci. 
e=<Tij, RTij, PTij>  e∈E, models the control flow transfer from one component to 
another. Tij is the transition name from node ni to nj, denoted < ni, nj >, RTij is the 
transition’s reliability, and PTij is the transition’s execution probability. Fig. 4 shows 
the CDG of a system consisting of four components. 

A CDG is an input parameter of SBRA, and the other input is AEappl, which is the 
average execution time of the application. SBRA is shown in Fig.5. The output is 
Rappl, the reliability of the application.  
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Fig. 4. A sample CDG 

Fig. 5. SBRA Fig. 6. Select Key Components  

SBRA-based Algorithm for Selecting Key Components 
The reliability of an application is affected by several attributes in SBRA, such as the 
reliability and use frequency of each component, which means some components 
have a stronger influence on the reliability of the whole system than others. The fre-
quency of each component depends on the scenarios. Several techniques have been 
proposed to estimate the reliability of software components, such as fault injection, 
testing, and retrospective analysis. In order to discover the key components, we value 
the reliability of components statically and run the SBRA-based algorithm in Fig.6. 

In the above algorithm, SBRA() returns the reliability of the whole system, which is 
calculated from the CDG. We assume the reliability of each component is 0.8 at first. 

Parameters  
Consumes CDG, AEappl 
Produces  
   componentList <componentName, Rappl> 
Initialization: 
     Rappl=0; 
     for each components RCi=0.8; 
Algorithm: 
for each component <Ci,RCi,ECi> 
       RCi=RCi+0.2;    
       Rappl=SBRA(); 
       componentList.add(<Ci,Rappl>); 
   RCi=0.8; 
for <Ci,Rappl> in  componentList 
       sorted by Rappl decending; 

Parameters  
Consumes CDG, AEappl 
Produces   Rappl 
Initialization: 
    Rappl=0;Time=0;Rtemp=1; 
Algorithm 
Push tuple<C1, RC1, EC1>, Time, Rtemp 
While Stack not EMPTY do 
     Pop <Ci, RCi, ECi>, Time, Rtemp 
      if   Time>AEappl or Ci=t; 
             Rappl+=Rtemp; 
     else  
         <Cj,RCj,ECj> ∈children(Ci) 
         push(<Cj,RCj,ECj>,Time+=ECi, 
         Rtemp=Rtemp*RCi*RTij*PTij) 
     end 
end while 
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Before invoking SBRA each time, the current component’s reliability is improved  
to 1. So the value of Rappl is the reliability of the system after the current component’s 
reliability improved. That means the component with the maximum value of Rappl is 
the key component. 

4.3 Select Proper Solutions 

Given a specific application, a set of requirements on fault-tolerant capabilities, and a 
set of candidate FTSs, it is critical to select the most suitable one for concerned com-
ponents in the application to meet the requirements. We assist the system administra-
tors in selecting the proper solutions by providing them the following to guidance: 
fault assumptions and fault-tolerant capabilities.  

 

Fig. 7. The satisfaction of properties for Simple retry style, N-copy programming style, Micro-
reboot style, and Retry blocks style. (√: preserve; ×: do not preserve). Fault assumptions 
form a dimension; other fault-tolerant properties form another dimension.  

In model checking process, Spin simulates a FTS’s behavior and traverses all its 
states combinations. A component’s states are defined and stored in variables. These 
states are initialized at the beginning, and re-assigned by fault simulation function and 
state transit rules. When Spin control flow arrives at an assertion, it checks the truth or 
not of the assertion. It either confirms that the properties hold or reports that they are 
violated. A false assertion means the style does not preserve the property represented 
by the assertion, and a counter-example is provided. Otherwise, the above verification 
process continues. When all assertions are true, it means the FTS satisfies all the con-
cerned properties. The result in Fig.7 shows four fault-tolerant styles’ satisfaction to 
fault-tolerant properties. 

4.4 Configure RSA with Fault-Tolerant Styles 

The fault-tolerant styles define the topological structure and behavior restriction of 
fault-tolerant components and the business components. For the sake of implementa-
tion of fault tolerance at the architecture level, we just need to merge the RSA with a 
suitable FTS. And the change can be propagated to the system by the modification on 
middleware. This process is accomplished automatically, which avoids configuration 
errors and reduces the burden of system architects. The inputs of this kind of configu-
ration are components which need to be configured, a selected FTS and the RSA of 
the application. The output is a fault-tolerant runtime software architecture. 
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The key of the configuration process is the automatic composition of RSA with 
FTS. In this paper, it is achieved based on Model Merging or Model Composition 
[18] [19]. Model Merging is a special kind of model transformation, and the function 
of Model Merging is merging two models MA and MB, conforming to meta-model 
MMA and MMB, respectively, and the result is MC, conforming to meta-model 
MMC [19]. MA is called Receiving Model, MB is called Merged Model, and the 
merging process is to merge the elements in MB into MA, and produce a Resulting 
Model MC. In general, there are two phases in Model Merging: comparison and 
merging. In the first phase, it needs to determine the match relationship automatically 
between the elements in Receiving Model and the elements in Merged Model. The 
second step, merging, adds the elements in Merged Model to the Receiving Model 
automatically in light of the match relation. 

 

Fig. 8. The merging of RSA with FTS and the QVT implementation 

In this paper, the Merged Model is FTS, and the Receiving Model is RSA. The Re-
sulting Model is fault-tolerant runtime software architecture. The process is illustrated 
in Fig.8, and we use QVT (Query/View/Transformation) to implement the merging, 
which is a standard set of languages for model transformation defined by the Object 
Management Group. 

4.5 Propagate RSA Changes to the Target System 

For the sake of getting the real system with fault tolerant, we realized the following 
steps: firstly, we provide fault-tolerant sandboxes for application components.  
And then, encapsulate the operations which are used to add (remove) a component or 
a connection between two components. Thirdly, we use QVT to realize model  
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comparison [11], which is used to compare the original RSA with FTSA. And the 
comparison result will guide the modification of the target system. 

5 Evaluations 

In this section, we use the approach to configure ECperf with fault-tolerant solutions. 

5.1 Select Key Components on ECperf 

We obtain the CDG of ECperf via runtime information analysis, with the monitoring 
support provided by a reflective JEE Application Server (AS), which is shown in 
Fig.9. After executing the SBRA, the result is shown in Fig.10, the component name 
as the abscissa, and the ordinate is the reliability of the system after the reliability of 
the corresponding component improved. 

Figure 10 shows that there are 3 key components: ItemEnt, OrderSes, and Orde-
rEnt. The reliability of the application will be maximized, if the reliability of these 
three components is improved. The component ItemEnt is invoked 403 times in the 
process of creating a new order, while others are invoked no more than 10 times. And 
ItemEnt is invoked by OrderEnt, which is invoked by OrderSes. There is a strong 
dependence between them. So it is easy to understand the three components are key 
components. The QVT code of SBRA can be downloaded from our google code 
project[3]. 

 

 

Fig. 9. The CDG of ECperf Fig. 10. The reliability of system 

5.2 Select FTS for the Key Component 

ECperf runs on a sequential execution environment (JEE AS), so N-Copy Program-
ming style cannot be used because they require concurrent execution support.  Then 
the remaining candidates include Retry Blocks style, Simple Retry style, and Micro-
reboot style. There are no more ECperf-specific characters help to select or exclude 
one of the above candidates. To select a proper FTS from existing ones, we select the 
most suitable FTS by applying the procedure presented in 4.3. 
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The fault assumption of the three components is EDNT. And we need the FTS to 
satisfy the property P4-P7. The result is shown in Fig.7. And Micro-reboot style is the 
winner because it fits the EDNT fault assumption and supports all the properties, but 
the other three styles cannot. 

5.3 Merge Ecperf with FTS 

In section 5.2, the set of key components is acquired, and SETkey-comp={ItemEnt, Or-
derSes, OrderEnt }. In section 5.3, we find out that the micro-reboot style is suitable. 
Each element of the SETkey-comp corresponds to the component “server” in FTS. As 
there are three components that need to be configured, the merging process has three 
steps. And the match relationship is shown in Fig.11. 

 

Fig. 11. The match relationship of RSA and FTS 

 

Fig. 12. The software architecture after first merging  

The first step is to configure ItemEnt with micro-reboot style. In this process, 
“ItemEnt” corresponds to the “server”, and “OrderEnt” corresponds to the “client”. 
And the invocation between OrderEnt and ItemEnt disappeared. The result is shown 
in fig 12. The next two steps are similar. And we implement the model merging by 
QVT, the source code can be downloaded in our google code project [3]; 

We create three different versions of fault-tolerant ECperf by modifying its origi-
nal SA. Each version conforms to one of the above three FTS. We also perform a set 
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of comparative experiments to validate the practical correctness of the selection. In 
the experiments, micro-reboot mechanisms and simple retry mechanism are attached 
to the components as external utility mechanisms, with the supports of SM@RT. We 
periodically inject Java exceptions into ItemBmpEJB to simulate EDNT faults. As a 
result, the rates of successful submitted orders using Micro-reboot and Simple Retry 
are 87.3% and 50.7%, respectively, compare to 45.4% with no FT (Fig.13). It is clear 
that Micro-reboot style works better than Simple Retry style. The experimental result 
is consistent with the model checking result. It should also be minded that the fault 
tolerance induces performance penalty. When no exceptions are injected into the ex-
periments, the response time is 19.12s with no FT, and 21.71s with micro-reboot 
(Fig.13), which increases 13.49% of response time on average. 

 

Fig. 13. The comparison success rate and response time 

5.4 Discussion 

From the evaluations of ECperf, we can see that the whole configuration process is 
more automatic than our previous work [6, 9], system advocates just need to specify 
the fault-tolerant properties that the target system needs to satisfy. In this section, we 
have a discussion after the experiment. 

FTS Specification. We have described four fault tolerance solutions in this paper, 
and abstracted them into FTS: micro-reboot style, simple retry style, N-copy pro-
gramming style, and retry block style. There are still some other solutions (such as 
Recovery Blocks style, N-Version Programming style, etc.), and we can leave them as 
future work.  

Key Component Recommendation. In this paper, we use SBRA to estimate the 
reliability of the whole system, and recommend key components. And the analysis 
result is tallied with the actual situation. We choose SBRA mainly because it is a 
typical method for component-based system with a "CDG" model, which is more in 
favor of the analysis at architecture level. Some other component-based algorithms, 
such as the K. Goseva-Popstojanova’s approach [27], can be integrated into our 
framework, by specifying the process in QVT. 
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Configuration Framework. For a complex component-based software system, the 
fault tolerance configuration process is complicated and challenging as follows: the 
components which need configuration are indeterminate; the fault-tolerant solutions 
are undefined; and the configuration process is without a guide. In this paper, we 
successfully handle these problems at architecture level: we abstract the target system 
into SA, which helps to identify the key component; we abstract the fault tolerance 
solution into FTS, which helps to check the fault tolerance properties and the selec-
tion of solutions; and the configuration process is under the model merging’s guid-
ance. In common cases, users only need to choose the FTS and target component, 
based on our recommendation. No future configuration or coding work is required. If 
users want to define their own FTS, integrate other analysis algorithms, etc., they just 
use the MOF standard languages to define their extension work at the model level. 

6 Related Work 

In the area of Architecting Fault-Tolerant Systems [1], components (computing enti-
ties), connectors (communication entities), and configuration (topology of compo-
nents and connectors) have been used to model fault-tolerant software as FTSA. Pre-
vious work in the area mainly focuses on how to model a specific fault-tolerant me-
chanism [10, 13, 14, 25, 26], for example, exception handling-based mechanism [14, 
26]. A few studies consider the reasoning or analysis on an FTS. Yuan et al. [26] spe-
cify a Generic Fault-Tolerant Software Architecture (GFTSA), which obeys idealized 
Fault-Tolerant Component style, in formal language Object-Z, and performs manual 
formal proofs to demonstrate fault-tolerant properties the GFTSA preserves. The au-
thors also present a template to automate the customization process when using the 
style. Sözer et al. [25] specify the structure of a local recovery style in an UML pro-
file, and perform performance overhead and availability analysis. In contrast, we  
uniformly model and analysis various mechanisms that can be used for third-party 
components as fault-tolerant styles. 

The study of Architecting Fault-Tolerant Systems aims to achieve better fault-
tolerant software by including FT in earlier development phase to bridge the gap  
between the requirement to build dependable software systems and the implementa-
tion to deal with failures in the software. As one of the important fault-tolerance  
mechanisms, exception handling is widely used in the study of architecting fault-
tolerant software systems. A notable study is the CORRECT project [8] in Luxem-
bourg, which introduces the Coordinated Atomic Actions (CAAs) mechanism in SA 
specification phase. The resulting SA specification with fault-tolerance notations is  
transformed into CAAs model automatically and further, transformed to an imple-
mentation framework. The output of such approach is a skeleton code that satisfies 
the functional and fault-tolerant requirements. It is based on model-driven techniques, 
and separates the function design from the fault-tolerant design of the system in the 
model layer. However, it only supports a specific fault-tolerant technology without 
any others. The approach in this paper abstracts the fault-tolerant technologies as 
FTS, and identifies the components which need to be configured automatically, which 
means the assemblers just need to input the properties which need to be satisfied. 
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7 Conclusion and Future Work 

This paper proposes a model driven configuration of fault tolerance solution for com-
ponent-based system. It needs to be polished in the future. At one side, the approach 
just provides an enablement to satisfy the fault-tolerant capabilities in the situation of 
a fault assumption. What capabilities should be satisfied and the type of fault assump-
tion are given by developers. Therefore, how to facilitate the use of the enablement is 
critical for practice. For example, a powerful exception analysis support can alleviate 
the burden of developers in identifying which type of fault assumption the fault be-
longs to. The fault detection mechanisms help to decide what kind of fault-tolerant 
capabilities should be satisfied. On the other side, the fault-tolerant configuration may 
be more general and efficient. However, since the number of popular middleware in a 
period is relatively few, we argue that making a concrete middleware more powerful 
on exception handling is more important. This study is being carried out now, with 
the help of our Runtime Software Architecture [5][24]. 
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Abstract. Product line engineering relies on heterogeneous models and
artifacts to define and implement the product line’s reusable assets. The
complexity and heterogeneity of product line artifacts as well as their
interdependencies make it hard to maintain consistency during develop-
ment and evolution, regardless of the modeling approaches used. Engi-
neers thus need support for detecting and resolving inconsistencies within
and between the various artifacts. In this paper we present a framework
for checking and maintaining consistency of arbitrary product line arti-
facts. Our approach is flexible and extensible regarding the supported
artifact types and the definition of constraints. We discuss tool support
developed for the DOPLER product line tool suite. We report the re-
sults of applying the approach to sales support applications of industrial
product lines.

Keywords: Model-based product lines, consistency checking,
sales support.

1 Introduction and Motivation

Software product line engineering (SPLE) [14, 17] is based on reusing heteroge-
neous artifacts such as software components, documents [19], or test cases [17] to
increase the productivity of development and to improve product quality. Vari-
ability models are used in SPLE to define the commonalities and variability of
the different products that can be derived from the product line (PL) [4]. Re-
gardless of the variability modeling approach used, the size of the PL models as
well as the heterogeneity of the involved artifacts represent major challenges in
real-world PLs. Consistency needs to be ensured between heterogeneous artifacts
such as source code, components, documents, or business calculations [13].
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Our case studies with several industrial partners [6] showed that engineers
in practice encounter significant challenges when maintaining the consistency of
PL models and their corresponding artifacts. We thus developed an approach for
maintaining consistency between variability models and parts of the underlying
code base of a PL [23]. The approach is based on the transformation of source
code into a model-based representation. An incremental checker [7] is then used
to perform consistency checks between the code artifacts and the PL model.
However, our approach was limited to variability models and their underlying
code base. This is insufficient for industrial development environments which
require multiple heterogeneous models and artifacts such as business calculation
models [13] or documents [19] to define the PL and to maintain already derived
products [11]. Additional challenges stem from the fact that these artifacts are
typically managed and maintained by different people in distinct lifecycle stages.

This paper describes a framework for checking consistency of multiple, het-
erogeneous models and artifacts in SPLE. The generic framework addresses the
limitations of our formerly developed approach described in an experience pa-
per [23]. We report results of applying the approach in the area of sales support
systems for product configuration in the domain of industrial automation. Our
work has been performed using the DOPLER (Decision-Oriented Product Line
Engineering for effective Reuse) tool suite [6].

The remainder of this paper is structured as follows: Section 2 discusses re-
lated work. Section 3 describes the architecture of the implemented consistency
checking framework and the steps necessary for applying the framework. Sec-
tion 4 describes the application of the approach for maintaining and evolving
sales support applications. Section 5 discusses key results and lessons learned.
Section 6 concludes the paper with a summary and an outlook on future work.

2 Related Work

We discuss existing generic approaches for consistency checking; consistency
checking approaches for specific artifact types; as well as consistency checking
in PLs.

Generic consistency checking. These approaches address general consistency is-
sues which are independent of the actual domain of the models. General purpose
constraints ensure consistency between different artifacts in terms of contain-
ing or referencing elements. Nentwich et al. [16] present a consistency checking
approach for arbitrary distributed software engineering documents encoded in
XML. Their xlinkit approach uses XPath for checking constraints between arti-
facts. Constraints are defined in a rule language using XML syntax. The approach
relies on an incremental checking strategy. Changes to XML documents are dis-
covered by a diffing algorithm. Egyed [7, 10] presents an incremental approach
for evaluating consistency rules after changes to arbitrary models. The approach
is based on observing the behavior of consistency rules during their evaluation to
identify the model elements that need to be checked after a change. The approach
is evaluated using different types of UML diagrams. More recently, this approach
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has been implemented in the Rational Software Modeler tool [20]. Blanc et al. [2]
focus on structural inconsistencies between different models in large-scale indus-
trial software systems. Similar to Egyed et al. they use an event-driven approach
which enables incremental evaluation of constraints. Consistency constraints are
defined in Prolog and translated into Prolog queries for evaluation. Numerous
constraint languages have been developed to ease the definition of consistency
checks and their evaluation. Examples include OCL1, the Xpand Check lan-
guage2 or Xtend 23.

Consistency checking of specific artifacts types. Numerous approaches exist for
dealing with inconsistencies in specific modeling situations. For example, Tsio-
lakis and Ehrig [22] present an approach for checking consistency between class
and sequence diagrams based on a common graph structure. Van der Straeten
et al. [21] use a description logic to detect inconsistencies between sequence and
state chart diagrams. Campbell et al. [3] use a model checker to evaluate incon-
sistencies within and across UML diagrams. Zisman and Kozlenkov [25] use a
knowledge base and express consistency rules using patterns and axioms.

Consistency checking of variability models. Consistency checking is also receiving
a lot of attention in the area of product line engineering. Approaches for PL
evolution try to avoid the deviation from PL models up to the point where key
properties no longer hold [12]. Several papers address the issue of consistency
between models and code in PLs. For instance, Murta et al. [15] present an
approach for ensuring consistency of architectural models and the corresponding
implementation during evolution. The approach supports arbitrary evolution
policies and is based on recording changes in a configuration management system.
Several approaches exist to address consistency of PL models. Czarnecki et al. [5]
present a feature-based approach using model templates. Constraints are defined
in OCL. The approach is limited to UML models and feature models and does
not provide extensibility for arbitrary artifacts which may be also part of a SPL.
Consistency in SPLE also needs to address product derivation. For this purpose,
Elsner et al. [8] present an incremental approach for checking consistency during
derivation in multi product line environments.

3 A Generic Consistency Checking Framework

Maintaining and evolving PL models and their related artifacts is an extensive
and error prone task. Therefore, the framework aims at continuously checking
the consistency of models and artifacts that are stored in a PL workspace. The
framework tracks changes to the workspace and triggers arbitrary user-defined
consistency checks. The modeler is informed instantly and receives feedback
about emerging constraint violations. Our incremental framework is based on
1 Object Management Group OMG. Object Constraint Language, Version 2.2.

formal/2010-02-01, February 2010.
2 http://www.eclipse.org/modeling/m2t/?project=xpand
3 http://www.eclipse.org/Xtext/#xtend2

http://www.eclipse.org/modeling/m2t/?project=xpand
http://www.eclipse.org/Xtext/#xtend2
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existing work by Egyed [7]. We already implemented this approach in the con-
text of product line engineering in earlier work [23]. However, the initial imple-
mentation was limited regarding the types and number of models and artifacts.

3.1 Framework Architecture

The framework depicted in Figure 1 can deal with heterogeneous models and
arbitrary artifacts and is based on the Eclipse4 platform.

Error Viewer

Error ManagerConstraint 
Manager

Scope Database
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Fig. 1. Generic Consistency Checking framework architecture

The Workspace contains arbitrary models and artifacts required for a PL.
For instance, a PL workspace might contain a variability model defining config-
uration options, source code, documents, or test cases.

Extensions are used to adapt the framework to specific artifacts and con-
straints. An Artifact Facade needs to be implemented for each artifact type.
The use of the facade design pattern [9] allows a single access point and unified
access to models and artifacts for querying specific elements or attributes which
are relevant when evaluating constraints. The approach relies on profiling and
change tracking of artifacts and models [7]. Read access on elements and at-
tributes through the facades is tracked by the framework to enable incremental
consistency checking. Our model profiler tracks all read-access operations per-
formed when evaluating the constraints. This enables incremental consistency
checking as only the affected constraints (=those which accessed the changed
elements) need to be evaluated after changes to models or documents. A Change
Notifier informs the framework about changes on artifacts to trigger constraint
evaluations. Such a notification mechanism needs to be provided for all mod-
els and artifacts to be included in the consistency checking framework. Existing
observer implementations on models or artifacts may be reused to enable the
tracking of model element changes. The DOPLER tool suite provides a generic
4 The Eclipse Foundation. http://www.eclipse.org

http://www.eclipse.org
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change tracking mechanism for variability models which is also used to deter-
mine change histories, to notify other tools, and to track evolution. Arbitrary
Constraints can be defined that implement consistency checks. A constraint re-
turns evaluation results regarding consistency of specific artifacts when executed
by the framework. Concrete constraint definitions extend a base constraint pro-
vided by the framework which defines the data types of validation results and
error messages. Despite the variety of different constraint languages available,
our framework approach relies on the definition of constraints in Java. We in-
tentionally decided not to use constraint programming languages or solvers for
constraint evaluation. This allows a more flexible constraint definition and allows
both modelers and domain experts to implement constraints.

The Consistency Framework is based on the following key components:
The Constraint Manager controls the instantiation of available constraints which
are provided through the Eclipse extension mechanism. Constraints are typically
instantiated multiple times, more precisely, constraints are instantiated for ev-
ery artifact instance they refer to. During initial evaluation of the constraint,
the framework tracks all elements which are accessed by the constraint imple-
mentation. This information is preserved in the Scope Database to allow instant
and incremental re-evaluation after changing an artifact. Each time the change
notifier informs about an artifact change (e.g., after an engineer changes a vari-
ability model) the constraint manager triggers re-evaluation. The framework
queries the scope database to retrieve the constraint instances that need to be
re-evaluated. The evaluation results are provided to an Error Manager which
feeds consistency change information into the Error Viewer. Depending on the
type of inconsistencies and the implemented constraints, different severity lev-
els can be defined (e.g., compilation errors or warnings). The framework allows
mapping the severity levels to constraint classes or single evaluation results. Fur-
thermore, the framework enables developers to define specific error messages and
manual fixing instructions.

3.2 Applying the Framework

Four activities are necessary to tailor the framework to a specific PL development
environment:

Identification of artifacts and dependencies. All artifacts relevant for consistency
checking need to be identified. For instance, apart from variability models, ar-
tifacts such as product specifications, calculations, and configuration files may
be part of a PL. These artifacts typically comprise various dependencies to the
variability model or have dependencies to other artifacts.

Instrumentation of artifacts. The framework requires the implementation of ex-
tensions for the required artifact types. A specific artifact facade needs to be
developed for each artifact type which converts the elements contained in an ar-
tifact into a unique and artifact independent representation. The ArtifactIden-
tifier enables the internal handling and assignment of artifacts and contained
elements to constraints. Furthermore, read access on the identified artifacts is
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delegated to the facade to ensure that read notifications are provided to the
consistency framework. A change notifier needs to be implemented to inform the
framework about changes on artifacts and contained elements. Existing model
or workspace observers may be reused or extended.

Development of consistency constraints. Possible inconsistencies between the in-
volved artifacts and models can be identified based on the identified depen-
dencies. Each inconsistency is implemented as a dedicated and self-contained
constraint class. Each of these constraint implementations can be evaluated in-
dependently thus enabling incremental checking after the constraint has been
instantiated.

Definition of error reporting categories and error messages. The resulting error
messages as well as evaluation results of each constraint are customizable to
support flexible and adaptable constraint definitions. This enables grouping of
evaluation results by severity or by different artifact types (e.g., artifact specific
error types or general PL validation types).

4 Application Examples: Sales Support Solutions for
Industrial Product Lines

Siemens VAI – the world’s leading company in engineering and plant-building for
the iron, steel, and aluminium industries – has been developing PL models for a
series of industrial PLs to assist sales staff with sales support applications pro-
viding business related information such as break-even or return on investment
calculations during product configuration. The applications also allow creating
product-specific artifacts such as sales documents or specifications [13, 19]. The
sales support applications and their underlying models were developed using the
DOPLER tool suite [6,24] for variability modeling [6] and product derivation [18].

Table 1 provides an overview of the different PLs, the involved artifact types
and the number of elements contained in the different artifacts. We will use the
ECS PL – a fully automatic end-to-end solution for electrode control in electric
furnaces – as a running example to discuss the numbers provided in Table 1. We
focus on the description of extensions and constraints required for the different
artifacts involved in these sales applications. We do not evaluate performance
and memory consumption which was already part of earlier work [23].

4.1 Models and Artifacts

The following models, artifacts and dependencies are of interest for the sales
support applications:

Variability models in the DOPLER approach contain decisions and assets.
Decisions represent configuration choices that need to be made when deriving a
customer-specific product from a PL. Decisions represent the differences between
PL members. They are defined by a question that is asked to the user during
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Table 1. Sales support product lines with number of formulae (F), configuration de-
cisions (D), variation points in documents (VP) and references between the different
artifacts (R).

Product Line Description #D #F #VP #R

1: ChatterReduction Integrated mechatronic solution for eliminating 3rd

octave chatter in tandem mills.
71 7 32 47

2: BeamBlank Continuous casting of near-net-shape beam blanks. 39 17 – 29

3: Zinc coating application Control system guaranteeing quality of zinc coating
thickness.

22 3 16 22

4: Roller Roller configuration and upgrading in continuous
casting machines.

43 11 – 21

5: LVL Technology package for automation, motors and
drives for minimizing shape defects through
controlled deformation of products.

44 23 – 43

6: MLP A fully integrated system for accelerated cooling and
direct quench in plate production.

45 23 50 94

7: MPD Market Price Derivation calculation tool. 20 53 – 21

8: PROFLAT A technology package for optimized product profile,
flatness and mill productivity.

39 15 28 55

9: ECS Electrode control system for electric arc furnaces. 114 15 69 95

10: Oscillation Automated system for adjustment of oscillation
parameters for improved surface quality in steel
production.

47 16 46 74

11: SoftReduction Automated system for optimized internal cast
product quality with dynamic soft reduction.

24 11 23 36

12: WidthChange Automated system for dynamic and remote mold
width adjustment via hydraulic drives for higher
plant productivity.

21 7 19 26

13: Welding Automated welding system for continuous casting
lines.

28 8 27 42

14: RollLubrication Technology package for roll friction and rolling for
reduction in rolling mill stands.

42 16 34 58

15: PlantQuality-
Attributes

Customer Service tool regarding plant quality
attributes.

118 121 – 108

Median 43 15 23 43

product derivation. Answering a question sets the value of a decision. The ECS
variability model, for instance, contains 114 configuration decisions (D).

Assets represent the reusable core artifacts of the PL like system components
or documents. Assets can depend on each other functionally (e.g., one component
requires another component) or structurally (e.g., a component is part of a sub-
system). DOPLER allows modeling assets at arbitrary granularity and with
user-defined attributes and dependencies. Users can create domain-specific meta-
models to define the types of assets, attributes, and dependencies.

Calculation models comprise an arbitrary number of formulae and define con-
stants, formula groups and diverse additional attributes. Furthermore, a calcu-
lation model contains mappings to the variability model for accessing decision
values or asset attribute values. Formulae are specified in a DSL based on the
Java language [13]. This allows the definition of calculations containing basic
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arithmetic operations and enables the extension of the defined DSL by imple-
menting custom functions. In the ECS sales process different business values are
needed. The ECS calculation model stores calculations regarding the saved CO2

emission, total price of included spare parts and break-even calculations. In total
the ECS calculation model comprises 15 different formulae (F).

Document templates provide the basis for creating product specific documents.
The templates contain markups to indicate variable parts. Generators provided for
a specific PL use these document markups for either substituting document parts
or inserting decision values and calculation results into the document based on a
configured product [19]. The templates necessary for generating ECS documents
including price lists, calculation results and product information contain 69 varia-
tion points (VP) representing the variable parts of the document template.

The discussed ECS PL artifacts contain 95 cross-references (R), e.g., document
templates referring to formulae stored in the calculation model or formulae using
configuration decisions stored in the variability model.

4.2 Applying the Framework

Identification of artifacts and dependencies. Figure 2 provides an overview of
the involved artifacts and their dependencies. All 15 PLs contain variability
models and separate calculation models with numerous dependencies. Document
templates for generating product specific documents are used in 10 PLs. The
comprised markups refer to variability model elements and calculation model
elements.

Instrumentation of artifacts. Existing DOPLER variability models and calcu-
lation models provide a standardized API for accessing the contained model
elements. Moreover, change notifications are provided via model observers. To
enable the handling of document templates within the framework each document
is transformed into a model-based representation upon initialization, to extract
and analyze the contained markups. Furthermore, file monitors are needed to ob-
serve and propagate document changes. The code example shown in Listing 1.1

Calculation
model

Variability
model

Document
template

Formula
Markup

Constant

Decision

Asset

refers to

Fig. 2. Models and artifacts and their dependencies
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provides an overview of a facade implementation for a calculation model. The
facade implementation provides methods to convert calculation model elements
into artifact independent representations, to initially evaluate the constraint,
and to access the calculation model elements (e.g., formulae). Furthermore, fa-
cades track and forward the accessed model elements to the consistency checking
framework for profiling.

Listing 1.1. Example program code of a facade implementation for a calculation
model.

public class CalculationModelFacade
extends AbstractProfilerFacade implements IFacade<CalculationModel>
//This method transforms a given calculation model object into the
//unified representation of an artifact identifier

public ArtifactIdentifier toArtifactIdentifier(Object o){
if(Object instanceof IFormula){

return new ArtifactIdentifier(((IFormula)o).getModel().getUniqueId(),
((IFormula)o).getUniqueId())

}
...

}
//This method converts a given artifact identifier into the real object
//contained in a calculation model (e.g., a formula or a constant)

public Object fromArtifactIdentifier(ArtifactIdentifier ai){
ICalculationModel m = ModelProvider.get(a1.getArtifactId());
return m.getElement(ai.getElementId());

}
//This method handles the initialization of a calculation model by
//passing all relevant elements to the consistency checker

public boolean processArtifact(CalculationModel artifact, IFile file) {
ArtifactStore.addArtifact(artifact,file);
//Process constants and formulae of the model
for (IFormula f : artifact.getFormulas()) {

Checker.addElement(toArtifactIdentifier(f), IFormula.class);
}
for (IConstant c : artifact.getConstants()) {

Checker.addElement(toArtifactIdentifier(c), IConstant.class);
}

}
//This method wraps the access to a certain formula
//and notifies the consistency checker

public IFormula getFormula(String formulaName, ArtifactIdentifier
baseArtifact, IConstraint caller) {

ICalculationModel model = ModelProvider.get(baseArtifact.getId());
notifyAccess(baseArtifact,formulaName, caller);
return model.getFormula(formulaName);

}
...
}

Development of consistency constraints. Models can either have intra-inconsis-
tencies (e.g., a referenced constant is not present in the calculation model) or
inter-inconsistencies (e.g., a referenced decision in the calculation model is not
present in the related variability model). Document markups contain references
to decisions or assets defined in a variability model, as well as dependencies to
formulae or constants specified in a calculation model. The code example shown
in Listing 1.2 depicts a sample implementation of a single constraint which en-
sures the validity of a formula term defined in a calculation model. The constraint
is instantiated multiple times, once for each formula contained in a calculation
model. The example ensures the consistency of formula terms by verifying that
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the term only contains references to decisions or asset attributes in a related
variability model, defined constants, double or integer values, or other formula
results. By using the provided facade implementation and the available calcula-
tion model API, a new constraint can be added to the development environment
by writing less than 50 lines of Java code in most cases.

Listing 1.2. Example program code of a constraint implementation.

public class FormulaConsistencyConstraint extends AbstractConstraint
//This constraint ensures that a term of a formula is valid

public ValidationResult evaluate(){
IFormula toCheck = Facade.fromArtifactIdentifier(this.id);

//check every element of the formula
for(Element e: toCheck.getElements()){

switch(e.getType()){
case DECISION_REFERENCE: checkDecisionReference(e);break;
case ASSET_REFERENCE: checkAssetReference(e);break;
case CONSTANT: checkConstant(e);break;
case PRIMITIVE: checkValidPrimitive(e);break;
case FORMULA: checkValidFormula(e);break;

}
}

}

//check if the Decision exists in the related Variability model
private void checkDecisionReference(Element e) {

IDecision target = Facade.getElement(e);
if(target!=null){//The decision exists

setValidationResult(ValidationResult.CONSISTENT);
}else{ //The decision does not exists

addError(ErrorSeverity.ERROR, "The formula is inconsistent! " + e + "
could not be resolved!");

setValidationResult(ValidationResult.INCONSISTENT);
}

}
...
}

Definition of error reporting categories and error messages. Each artifact can
provide its own error category to ease error tracking. Furthermore, depending
on the constraint, a severity level can be defined, providing a fine-grained dis-
tinction between fatal errors, simple warnings or modeling guideline violations.
Error categories and severity levels are defined declaratively in XML and can be
applied to an artifact type or to a specific single constraint. Listing 1.3 provides
an example of a simple error category mapping to the constraint described in
Listing 1.2. In this example, the class FormulaConsistencyConstraint is mapped
to the artifact type Formula meaning that the constraint is applied to every
element of this type provided to the consistency checker. Furthermore, severity
defines the level of inconsistency the evaluation result of this constraint can pro-
duce. The framework offers three levels of severity (info, warning and error) but
constraints may define their own severity levels. The marker id is primary used
for visualization purpose to ease grouping of related inconsistencies.



Applying a Consistency Checking Framework 541

Listing 1.3. Declarative binding of constraint classes to specific artifact types and
error types.

<constraint class= "FormulaConsistencyConstraint">
<artifactType artifactType= "Formula">
</artifactType>
<marker id= "CALCULATIONMODEL.ERROR">
<severity= "ERROR">
</marker>

</constraint>

4.3 Consistency Checking in the DOPLER IDE

A major goal when developing our incremental checker was to increase usability
by providing immediate feedback to modelers about the detected inconsistencies
as part of the DOPLER development environment. The framework is therefore
seamlessly integrated in the Eclipse-based DOPLER tool suite. Figure 3 pro-
vides an overview of the DOPLER tool suite showing the Workspace with PL
artifacts, the Variability Model Editor and the Calculation Model Editor. Identi-
fied inconsistencies are presented in the Error Viewer. The Document Template
represents a product specific document and contains markups.

A modeler can define decisions and their attributes in the Variability Model Edi-
tor and formulae or constants in theCalculationModelEditor.Markups aredirectly
defined within a Document Template which is supported by a Visual Basic appli-
cation. In the Calculation Model Editor, the modeler can define calculations and
simply add or remove relations to decisions or asset attributes via drag and drop.
Manipulating components in the editors has an immediate effect. For instance, af-
ter removing or renaming a decision which is referenced in the corresponding cal-
culation model, all involved constraints are re-evaluated automatically. Feedback
about detected inconsistencies is provided immediately in the Error Viewer. The
error messages are grouped into artifact-related error categories.

5 Lessons Learned

The identification of potential inconsistencies is crucial for successful mainte-
nance and evolution of a PL. We summarize lessons learned of applying the
generic consistency checking framework to 15 different PLs in the domain of
industrial automation.

Ensure flexibility with respect to different artifact types. Product lines evolve over
time and it is important that a consistency checking framework ensures flexibility
regarding new artifact types and new constraints. Our solution is easily extensi-
ble with new artifact types by implementing a facade class for accessing specific
artifact elements. Arbitrary constraints can be defined using facade implemen-
tations for different artifact types. No changes to the artifact implementations
are necessary if proper APIs for reading artifact elements and observing changes
are provided.

Provide immediate feedback to ease modeling. Modelers should be instantly aware
of erroneous changes to artifacts. Inconsistencies can be caused by different types
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Fig. 3. The generic consistency checking framework assists PL engineers modeling the
sales support applications in the DOPLER IDE. The integrated Consistency Checker
identifies inconsistencies and presents them in the Error Viewer.

of artifacts which might be maintained by different engineers. Instant feedback
about inconsistencies to artifacts maintained by other engineers increases aware-
ness regarding the impact of changes and eases fixing inconsistencies in multi-
user workspaces.

Tolerate inconsistencies. Inconsistencies between artifacts can be temporary and
may be the result of intermediate modeling steps that will be resolved by sub-
sequent actions. Our framework tolerates inconsistencies and does not prevent
users from entering inconsistent input [1]. Inconsistencies are displayed in a sep-
arate view and do not interfere with the actual modeling tasks. They may be
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ignored or resolved one by one. Checking may also be turned off at any time if
desired. Especially inconsistencies between different artifact types maintained by
different engineers require support for sequential maintenance. Our consistency
checking framework is able to evaluate each constraint instance independently
and thus work can continue even if inconsistencies are not fixed immediately. For
example, an inconsistency between a calculation model and a variability model
may be introduced by a change to the variability model reflecting PL asset
changes. After the modeler finishes variability model adaptations, the changes
including inconsistencies to the calculation model are committed to the reposi-
tory. Another engineer in charge of the calculation model is informed about the
newly introduced inconsistencies and can fix them.

Analyze artifact dependencies as starting point for defining constraints. Poten-
tial inconsistencies can be identified by thoroughly analyzing the dependencies
among artifacts. Defining consistency constraints requires domain knowledge
and high coverage can only be achieved by involving experts familiar with the
models and artifacts. We carried out several workshops with domain experts and
engineers to identify inconsistencies and to subsequently define constraints.

Choose right level of granularity to ensure high performance. Artifact instrumen-
tation at different levels of granularity has huge impact on the performance of
consistency checking. For example, if changes or read access can only be ob-
served at model level, all constraint instances related to all model elements have
to be re-evaluated each time the model changes, no matter what constraints
are affected by a change. Observing fine-grained changes (e.g., attribute values
of model elements) enables incremental checking and re-evaluation of affected
constraints only. The performance of the consistency checking framework may
be drastically reduced when proprietary file formats and artifacts needed to
be checked for which no proper API and fine-grained change notifications are
available.

Carefully design error messages. Error messages need to be clearly understand-
able by domain experts and PL engineers. As inconsistencies arise between dif-
ferent artifact types a clear separation must be possible, e.g., according to a
modelers responsibility. Our framework allows a structured presentation of in-
consistencies depending on the error category and importance. This allows mod-
elers to fix emerging inconsistencies instantly if desired.

6 Conclusions and Future Work

We presented a generic framework to check consistency between multiple het-
erogeneous artifacts in SPLE. Our approach is based on an incremental strat-
egy [7] and uses artifact-specific facades to provide support for various artifact
types. The framework is easily extensible with new artifact types and additional
constraints. A set of predefined extensions is designed to be implemented for
each desired artifact type. We reported results and experiences of applying the
framework when developing Siemens VAI sales support solutions for 15 different
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industrial PLs. Our approach supports modelers to ensure consistency between
variability models, calculation models, and document templates required in these
PLs.

Our emphasis so far was to support modelers during domain engineering by
ensuring immediate feedback about detected inconsistencies while defining vari-
ability and maintaining the PL. However, ensuring consistency during application
engineering remains a big challenge. In future work we will augment the pre-
sented consistency checking framework with runtime consistency checks. We will
extend the framework to provide feedback on global constraints affecting also
the derived products. Furthermore, we will refine our solution regarding repair
suggestions for automated fixing of inconsistencies.

References

1. Balzer, R.: Tolerating inconsistency. In: Proceedings of the 13th International Con-
ference on Software Engineering, pp. 158–165. IEEE Computer Society Press (1991)

2. Blanc, X., Mounier, I., Mougenot, A., Mens, T.: Detecting model inconsistency
through operation-based model construction. In: Proceedings of the 30th Interna-
tional Conference on Software Engineering, pp. 511–520. ACM (2008)

3. Campbell, L.A., Cheng, B.H.C., McUmber, W.E., Stirewalt, K.: Automatically
detecting and visualising errors in UML diagrams. Requirements Engineering 7(4),
264–287 (2002)

4. Czarnecki, K., Grünbacher, P., Rabiser, R., Schmid, K., Wasowski, A.: Cool fea-
tures and tough decisions: A comparison of variability modeling approaches. In:
International Workshop on Variability Modelling of Software-Intensive Systems,
pp. 173–182. ACM (2012)

5. Czarnecki, K., Pietroszek, K.: Verifying feature-based model templates against
well-formedness OCL constraints. In: Proceedings of the 5th International Con-
ference on Generative Programming and Component Engineering, pp. 211–220.
ACM (2006)

6. Dhungana, D., Grünbacher, P., Rabiser, R.: The DOPLER meta-tool for decision-
oriented variability modeling: a multiple case study. Automated Software Engi-
neering 18(1), 77–114 (2011)

7. Egyed, A.: Instant consistency checking for the UML. In: Proceedings of the 28th
International Conference on Software Engineering, pp. 381–390. ACM (2006)

8. Elsner, C., Lohmann, D., Schröder-Preikschat, W.: Fixing configuration inconsis-
tencies across file type boundaries. In: Euromicro Conference on Software Engi-
neering and Advanced Applications, pp. 116–123 (2011)

9. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: elements of
reusable object-oriented software. Addison-Wesley, Boston (1995)

10. Groher, I., Reder, A., Egyed, A.: Incremental Consistency Checking of Dynamic
Constraints. In: Rosenblum, D.S., Taentzer, G. (eds.) FASE 2010. LNCS, vol. 6013,
pp. 203–217. Springer, Heidelberg (2010)

11. Heider, W., Rabiser, R., Grünbacher, P.: Facilitating the evolution of products
in product line engineering by capturing and replaying configuration decisions.
International Journal on Software Tools for Technology Transfer (2012)

12. Johnson, S., Bosch, J.: Quantifying software product line ageing. In: Proceedings
of the Workshop on Software Product Lines at ICSE 2000, pp. 27–30. ACM (2000)



Applying a Consistency Checking Framework 545

13. Lettner, D., Vierhauser, M., Rabiser, R., Grn̈ubacher, P.: Supporting end users
with business calculations in product configuration. In: Proceedings of the of the
16th International Software Product Line Conference, Salvador, Brazil (2012)

14. van der Linden, F.J., Schmid, K., Rommes, E.: Software Product Lines in Action:
The Best Industrial Practice in Product Line Engineering. Springer (2007)

15. Murta, L.G.P., van der Hoek, A., Werner, C.M.L.: ArchTrace: Policy-based sup-
port for managing evolving architecture-to-implementation traceability links. In:
Proceedings of the International Conference on Automated Software Engineering,
pp. 135–144 (2006)

16. Nentwich, C., Emmerich, W., Finkelstein, A., Ellmer, E.: Flexible consistency
checking. ACM Transactions on Software Engineering Methodology 12(1), 28–63
(2003)

17. Pohl, K., Böckle, G., van der Linden, F.J.: Software Product Line Engineering:
Foundations, Principles and Techniques. Springer-Verlag New York, Inc., Secaucus
(2005)

18. Rabiser, R., Grünbacher, P., Dhungana, D.: Supporting product derivation by
adapting and augmenting variability models. In: Proceedings of the 11th Interna-
tional Software Product Lines Conference, pp. 141–150. IEEE Computer Society
(2007)

19. Rabiser, R., Heider, W., Elsner, C., Lehofer, M., Grünbacher, P., Schwanninger,
C.: A Flexible Approach for Generating Product-Specific Documents in Product
Lines. In: Bosch, J., Lee, J. (eds.) SPLC 2010. LNCS, vol. 6287, pp. 47–61. Springer,
Heidelberg (2010)

20. Reder, A., Egyed, A.: Model/Analyzer: a tool for detecting, visualizing and fixing
design errors in UML. In: Proceedings of the IEEE/ACM International Conference
on Automated Software Engineering, pp. 347–348. ACM, New York (2010)

21. Straeten, R.V.D., Mens, T., Simmonds, J., Jonckers, V.: Using description logic
to maintain consistency between UML models. In: Proceedings of the 6th Interna-
tional UML Conference, pp. 326–340 (2003)

22. Tsiolakis, A., Ehrig, H.: Consistency analysis of UML class and sequence diagrams
using attributed graph grammars. In: Proceedings of Graph Transformation and
Graph Grammars, Berlin, Germany, pp. 77–86 (2000)

23. Vierhauser, M., Grünbacher, P., Egyed, A., Rabiser, R., Heider, W.: Flexible and
scalable consistency checking on product line variability models. In: Pecheur, C.,
Andrews, J., Nitto, E.D. (eds.) Proceedings of the 25th IEEE/ACM International
Conference on Automated Software Engineering, pp. 63–72. ACM (2010)

24. Vierhauser, M., Holl, G., Rabiser, R., Grünbacher, P., Lehofer, M., Stürmer, U.:
A deployment infrastructure for product line models and tools. In: Proceedings
of the 15th International Software Product Line Conference, pp. 287–294. IEEE
Computer Society (2011)

25. Zisman, A., Kozlenkov, A.: Knowledge base approach to consistency management
of UML specification. In: Proceedings of the International Conference on Auto-
mated Software Engineering, pp. 359–363 (2001)



Generation of Operational Transformation Rules
from Examples of Model Transformations

Hajer Saada1, Xavier Dolques2, Marianne Huchard1,
Clémentine Nebut1, and Houari Sahraoui3

1 LIRMM, Université de Montpellier 2 et CNRS, Montpellier, France
first.last@lirmm.fr

2 INRIA, Centre Inria Rennes - Bretagne Atlantique,
Campus universitaire de Beaulieu, 35042 Rennes, France

xavier.dolques@inria.fr
3 DIRO, Université de Montréal, Canada

sahraouh@iro.umontreal.ca

Abstract. Model transformation by example (MTBE) aims at defining
a model transformation according to a set of examples of this transforma-
tion. Examples are given in the form of pairs, each having an input model
and its corresponding output transformed model, with the transforma-
tion traces. The transformation rules are then automatically extracted
from the examples. In this paper, we propose a two-step approach to gen-
erate the transformation rules. In a first step, transformation patterns
are learned from the examples through a classification of the model el-
ements of the examples, and a classification of the transformation links
using Formal Concept Analysis. In a second step, those transformation
patterns are analyzed in order to select the more pertinent ones and
to transform them into operational transformation rules written for the
Jess rule engine. The generated rules are then executed on examples to
evaluate their relevance through classical precision/recall measures.

1 Introduction

Model Transformation is a key component of Model Driven Engineering (MDE).
In model-driven development, the involved models are processed by programs as
a matter of priority (rather than by hand). To ease the development of such pro-
grams handling models, several languages were introduced, e.g. graph transfor-
mation languages such as VIATRA [4], declarative or semi-declarative languages
like ATL [3], or object-oriented and imperative languages such as Kermeta [25].

Implementing a model transformation requires two distinct skills: model-
driven engineering skills (in particular, metamodeling and model-transformation
environments), and domain-specific skills, i.e., good knowledge about the spec-
ification of the transformation: the input domain, the output domain, and the
transformation rules by themselves. While the first skills are possessed by model-
driven engineering experts, the second ones are specific to domain experts. Ex-
perience shows that domain experts more easily give transformation examples
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than complete and consistent transformation rules [16]. In this context, Model
Transformation By Example (MTBE) [28] has emerged as a convenient way to
let domain experts design transformations by giving an initial set of examples.
An example consists of an input model, the corresponding transformed model,
and fine-grained mappings between the constructs of both models. From those
examples, an MTBE approach learns transformation rules. When those rules are
operational, i.e., they are written in a rule language disposing of a rule engine,
they form the model transformation.

In this context, we present a Model Transformation By Example approach
that goes from examples down to operational transformation rules. The learning
mechanism used is based on Relational Concept Analysis (RCA) [12], a variant
of Formal Concept Analysis [10]. It results in a hierarchy of non-operational rules
called transformation patterns. Such transformation patterns are analyzed and
filtered to derive the more relevant ones. The selected transformation patterns
are then transformed into concrete and operational transformation rules that
can be processed by the Jess rule engine [5]. The learning of the transformation
patterns is a previous work from the authors [8], in this paper we introduce the
filtering of the obtained transformation patterns, and we explain how to obtain
operational rules from the transformation patterns. Finally, since the obtained
rules are operational, experiments have been carried out on a case study in order
to measure the relevance of the generated rules.

The remainder of this paper is structured as follows. We start by introducing
the problem and describing our two-step approach in Section 2. Then, in Sec-
tion 3, we briefly explain how RCA is used to extract information from examples
and to generate transformation patterns. In this section, details are also given
on how the obtained transformation patterns are filtered and refined. Section 4
describes the mapping of the transformation patterns into Jess rules. We present
an evaluation of the approach and a discussion about the obtained results in Sec-
tion 5. Section 6 presents the related work. Section 7 concludes the paper and
describes future work.

2 Overview of the Rules Generation and Execution

Model-Transformation By Example (MTBE) consists in learning transformation
programs/rules from examples. Usually, an example is composed of a source
model, the corresponding transformed model, and transformation links between
those two models. To illustrate MTBE, let us consider the well-known case of
transforming UML class diagrams into relational schemas, used, among others,
in [19]. For this transformation, examples are given in the form of: an input
UML model (such as the one given in Figure 1), the corresponding transformed
relational model (such as the one given in Figure 2), and transformation links
making explicit from which elements of the UML model, the elements of the re-
lational model stem from. For instance, a transformation link is given to specify
that class Client is mapped into table Client. A transformation link is equiv-
alent to a link of an execution trace of the expected transformation, i.e two
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Fig. 1. Example for the UML2R transformation: input model

Fig. 2. Example for the UML2R transformation: transformed model

elements are related by a transformation link if the information contained in the
first element is necessary to build the second one.

An MTBE process analyzes the examples and learns from them transforma-
tion rules such as a class is transformed into a table, or a UML property linked to
a class (i.e., an attribute and not a role) is transformed into a column of a table.
This process should produce operational rules, i.e., rules that can be directly
executed by a rule engine to transform any source model into a target model.

Fig. 3. A two-step approach for MTBE

We propose to generate the operational rules in a two-step approach, as il-
lustrated in Figure 3. The first step is the analysis of examples, that learns
transformation patterns using Relational Concept Analysis. This step is sup-
ported by the Bercamote tool, that has been introduced in [8]. Each obtained
transformation pattern describes a premise in the form of an input model pattern
(based on the input metamodel), and a conclusion, in the form of the output
model pattern (based on the output metamodel) that should be obtained after
the execution of the transformation. The transformation patterns are ordered in
a hierarchy. This hierarchy is analyzed to select the more relevant patterns, and
sometimes to select in a transformation pattern the more pertinent fragment. We
here target model-to-model transformations in which both models represent the
same data but in different languages or using different structural constraints e.g.
a transformation applying design patterns to enforce good structural modeling
practices in a language. On the contrary, our MTBE approach is not well-suited
to learn transformations in which new values are computed e.g. we cannot learn
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a renaming policy that forces to use lowercase for attributes names. Widening
the scope of the transformations that can be learned is possible but would impact
on the complexity of the results and the efficiency of the approach.

The main contribution on this paper deals with the second step, that makes
the patterns operational. This is done by transforming them into rules that can
be executed by a rule engine. To make the transformation patterns operational,
we have transformed them into Jess rules and executed them using the Jess Rule
engine. This step is detailed in Section 4.

3 A By-Example Approach to Obtain Transformation
Patterns

As stated in Section 2, a key step in our MTBE approach consists in generating
transformation patterns. Such patterns describe how a source model element is
transformed into a target model element, within a given source context and a
given target context. This step has been presented in [8], and is summarized in
the beginning of this section, whereas the end of this section is dedicated to the
filtering of the obtained transformation patterns.

3.1 Obtaining the Transformation Patterns

To derive patterns from examples, a data analysis method is used, namely Formal
Concept Analysis (FCA) [10] and its extension to relational data, the Relational
Concept Analysis (RCA) [12]. Both Formal and Relational Concept Analysis,
also used for data mining problems, group entities described by characteristics
into concepts, ordered in a lattice structure. While FCA produces a single clas-
sification, RCA computes several connected classifications.

Source and target model elements are classified using their metaclasses and
relations. The transformation link classification relies on model element classifi-
cations and groups links that have similarities in their source and target ends:
similar elements in similar contexts. From the transformation link classification,
we derive a transformation pattern hierarchy, i.e., a lattice of patterns, where
patterns are organized by inclusion. Fig. 4 shows an excerpt of the obtained
pattern hierarchy for the transformation of UML class diagrams into relational
models. It contains two transformation patterns (in the two inner boxes). The
transformation pattern in the bottom box is more specific than the one in the
top box, which is indicated by the inclusion edge between the two boxes. The
patterns are automatically named by our tool, they have a prefix beginning by
TPatt for transformation pattern, then we find the number of the pattern, and
finally the number of the concept representing the pattern, as generated by our
RCA/FCA algorithms.

In each concept representing a transformation pattern, we have two types
in two ellipses connected by a bold edge. The source ellipse of the bold edge
represents the type Ts of the element to transform by the pattern. It can be seen
as the main type of the premise. For instance, in Concept TPatt_2-Concept_57,
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we see that the pattern aims at transforming properties. This main type of the
premise is linked, with non-bold edges, to the environment that an element
of type Ts must have in order to be transformed by the pattern. Those edges
are named according to the relation-role names between the type Ts and its
environment in the metamodel. Those edges also have a cardinality defining
the cardinality of the environment. Such an environment corresponds to the
rest of the premise. For instance, in Concept TPatt_2-Concept_57, Property is
linked to a Class with an edge named property and with a cardinality [1..*].
This means that the premise corresponds to a property, and that this property
is linked to a class. The target ellipse of the bold edge represents the main
type Tt of the conclusion of the pattern, i.e., a Ts will be transformed into
a Tt (with a specific environment). For example, in the transformation pattern
TPatt_2-Concept_57, the conclusion corresponds to a column, linked to a table,
linked, in turn, to a primary key.

The transformation pattern TPatt_2-Concept_57 has been deduced from
a set of transformation links that were grouped together because they link a
property (connected to a class) to a column (connected to a table, itself con-
nected to a primary key). This pattern is included in the pattern of sub-concept
TPatt_5-Concept_70. This latter is more specialized because in addition to link
the table to a primary key, it also links it to a foreign key.

3.2 Patterns Lattice Simplification

After obtaining the lattice of transformation patterns, we select in this lattice
the useful/relevant patterns or pattern fragments.

TPatt_0 - Concept_25

TPatt_1 - Concept_60

TPatt_2 - Concept_57

Property
Classproperty [1..*]

Column Table
column [1..*]

PKey
pkey [1..*]

TPatt_5 - Concept_70

Property Class
property [1..*]

Column Table
column [1..*]

FKeyfkey [1..*]

PKey
pkey [1..*]

Column
column [1..*]

Table
column [1..*]

PKey
pkey [1..*]

TPatt_15 - Concep

Fig. 4. An excerpt of the obtained hierarchy for the example UML class diagrams to
relational models
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In the lattice of Figure 4, for instance, concepts TPatt_0-Concept_25 and
TPatt_1-Concept_60 are empty. They do not contain information about the
transformation. They are present in the lattice to link other concepts (repre-
senting patterns) not shown in this excerpt. In the final transformation, those
empty patterns are automatically removed from the lattice. When an empty
concept is removed, we connect all its children with all its parents to keep the
order structure.

After the lattice pruning, the remaining patterns are analyzed for simpli-
fication purpose. We noticed that some patterns contain a deep premise or
conclusion, i.e., a long chain of linked objects. After observing many patterns
of this type for many transformation problems, we found that after a certain
depth, the linked elements are not useful. For instance, if we look at the pattern
TPatt_5-Concept_70 in Figure 4, the important information is that a prop-
erty linked to a class must be transformed into a column linked to a table. The
other elements are details specific to some examples, that are not relevant to
the transformation. Starting from this observation, we implemented a simpli-
fication heuristic that prunes the premises and conclusions after the first level
(key element and its immediate neighbors).

After pruning the patterns according to the depth heuristic, some patterns
could become identical. This is the case of patterns TPatt_2-Concept_57 and
TPatt_5-Concept_70. For both, only Property_Class and Column_Table are
kept respectively in the premise and conclusion. For redundant patterns, just the
top ranked in the lattice is preserved, and all others are automatically removed.
For removed concepts, their children are linked to their parents.

4 From Transformation Patterns to Operational Rules

This section describes the mapping of transformation patterns into operational
rules that can be executed using a rule engine. The rule engine used in our
project is the Java Expert System Shell (Jess) [13]. In sub-section 4.1, this
engine is introduced. Then, in sub-section 4.2, the transformation of patterns
into Jess rules is detailed.

4.1 Jess

Jess is a rule engine integrated in the Java platform. Java code can be referred by
Jess code [5]. With Jess, we can create Java objects, implement Java interfaces,
and call Java objects from its Java scripting environment. Despite this, Jess is
mainly a declarative language.

A Jess program is usually composed of facts and rules. Facts encode
data, while rules, activated by pattern matching, encode behavior. [13]. A rule
contains conditions, called left-hand-side (LHS), and actions, called right-hand-
side (RHS). When the condition part is satisfied, the action part is executed.
Conditions mainly test the presence of facts, whereas actions produce facts. Syn-
tactically, a Jess rule is written as follows:
IF< (fact1)(fact2)...(factN) > THEN <(action1)(action2)...(actionM)>



552 H. Saada et al.

The following example describes a very simple Jess rule which displays the
name of each person who has a name.

1 ( defrule welcome
2 ( Person ( f i r s tname ?name ) )
3 =>
4 ( p r i n tou t t " Hello " ?name " !!!" c r l f )
5 )

The conditions in LHS and facts conform to a template. A template in Jess
is similar to a class in Java. It defines a fact type. A template has a name and
a set of slots. A fact, i.e. a template instance, has specific values for these slots.
The example below shows the declaration of Person template:

1 (deftemplate Person ( s lot f i r s tname ) )

This example declares a template named Person with a property firstname.
To instantiate a person fact, we use the command assert :

1 ( assert ( Person ( f i r s tname Peter ) ) )

4.2 Patterns to Jess Rules Transformation

In our context of model transformation, facts are model elements and templates
are element types defined in the metamodel. A UML class diagram metamodel
defines a set of templates such as Class, Attribute, and Association. A specific
UML class diagram is described using facts that are instances of these templates
such as, Class Employee, Class Position, and Association has_position.
Fact Class Employee means that the model contains an element “Employee”
which is an instance of the type “Class” in the metamodel.

Figure 5 illustrates the steps to follow in order to obtain operational rules
from transformation patterns. The transformation process consists of three steps:
Meta-model2Templates, Model2Fact, and TransformationPatterns2JessRules.

Meta-models2Templates. Step 1 consists in generating templates from the
meta-models. Each metaclass of the metamodel is transformed into a template
with the same name. Each meta-attribute is also transformed into a slot keeping
the same name. The type of the slot is the type of the meta-attribute. To facil-
itate the description of relations between the metaclasses, each meta-reference
is also transformed into a template. Such a template has two slots respectively
containing the name of the source element and the target element of the meta-
reference. We suppose that the name of each element is its identifier.

Concretely, since we work with the EMF framework, this step corresponds to
the following transformations:
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Fig. 5. Transformation Process

– each EClass is transformed into a template with the same name,
– each EAttribute is transformed into a slot with the same name and whose

type is the EDataType of the EAttribute,
– each EReference is transformed into a template.

Figure 6 shows the transformation of a partial view of the relational schema
meta-model. As indicated by the arrows, the EClasses table and column are
transformed into templates. The EAttribute name is also converted to slot in
each template. The EReference between table and column is transformed to a
template which contains two slots containing the names of source and target
elements of the Ereference.

Models2Facts. Step 2 aims at transforming models into facts. A model is
an instantiation of its meta-model. Accordingly, each instance of a meta-class
present in the model is transformed into a fact the same name. The instances of
meta-attributes are transformed into slot values of the corresponding template.
Each instance of meta-reference between two instances of meta-classes is also
transformed into a fact which contains the names of relation elements.

A simple transformation example is presented in Figure 7. The three instances
of metaclasses (the table and the two columns) are transformed into three facts.
The two instances of meta-relations (from table to column) are transformed into
the two facts instantiating the template RelTabCol.
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Fig. 6. Transformation of an extract of relational meta-model to Jess

TransformationPatterns2JessRules. Step 3 consists in the actual rule gen-
eration from transformation patterns. As it can be seen in Figure 8, there is
a similarity between transformation-pattern structure and Jess-rule structure.
Both of them are composed of two main parts. The premise of a pattern is
equivalent to the LHS of a rule. Both describe the situation to find to fire the
rule or to apply the transformation pattern. Similarly, the conclusion is equiva-
lent to the RHS. Both are the action to perform or the conclusion to reach when
the first part is satisfied.

The premise is a description of a set of source elements. These elements are
linked together. Consequently, each element in the premise is transformed into
a Jess condition corresponding to the test of the presence of a fact. As the
premise elements are not named, we generate a slot name for each element.
When more than one element is involved, conditions corresponding to relations
are also generated. As relations do not have names, we named it by concatenating
the three first letters of the relation elements names.

The conclusion of a transformation pattern is a description of a set of target
elements together with their relations. It it similar to the premise. Consequently,
each element in the conclusion is transformed into a Jess fact assertion. Names
and relations between facts are also generated.

Figure 8 shows the transformation into a Jess rule of an example of transfor-
mation pattern. The premise of the transformation pattern is a class linked to a
property. The corresponding Jess rule has for LHS four conditions, respectively
checking: the existence of a class i, the existence of a property j, the existence
of a relation from class to property, and that the existing relation links i to
j. The conclusion of the transformation pattern is a table linked to a column.
The corresponding RHS of the generated Jess rule contains three fact assertions,
respectively stating: a table i, a column j, and a relation from i to j.
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Fig. 7. Transformation of a partial view of relational schema model to Jess

5 Case Study

This section illustrates the rule generation process using a case study. It also
reports on the efficiency of our approach through classical precision/recall mea-
sures. Like for testing, we compare the target models produced by our executable
rules with the expected models. Precision and recall show to what extent the
inferred rules perform the correct transformations.

Our case study concerns the transformation of class diagrams into relational
schemas. The rule generation is performed starting from a set of 30 examples
of class diagrams and their corresponding relational schemas. Some of them
were taken from [16], the others were collected from different sources on the
Internet. We ensured by manual inspection that all the examples conform to
valid transformations.

To take the best from the examples, a 3-fold cross validation was performed,
i.e., 30 examples divided into three groups of 10. For each fold, two groups (20
examples) were used for generating the rules, and the remaining third group
was used for testing them. Each fold used a different group for testing. Testing
consists in executing the generated rules on the source models of the testing
examples and in comparing the obtained target models with those provided in
the examples. This comparison allows calculating the precision (Equation 1) and
the recall (Equation 2) measures.
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Fig. 8. Example of the transformation of a pattern into Jess

We calculate precision and recall separately for each type T of fact (table,
column, etc.).

P (T ) =
number of T with correct transformation

total number of initial T
(1)

R(T ) =
number of T with correct transformation

total number of generated T
(2)

Table 1 shows precision and recall averages (on all fact types) of the 10 gener-
ated transformations for the 3-folds. The precision and recall averages are higher
than 0.70 in all cases. Some models were perfectly transformed (precision=1 and
recall=1). For the others, the precision and recall could be better than the ones
calculated automatically. This is due to the case of elements which have more
than one transformation possibility. For example, if we have a generalization
between two classes, we can transform it into a simple table which contains the
attributes of general and specific classes. The second transformation method is
to transform it into two tables. So, in the case of generalization, two rules are
applied and this decreases the precision and the recall. The same problem ex-
ists for the aggregation which has also two transformation possibilities (1 or 2
tables).
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Table 1. Result of 3-fold cross validation

Examples Fold1
Precision Average Recall Average

1 1 1
2 0.77 0.75
3 0.70 0.75
4 0.94 0.75
5 1 1
6 1 0.77
7 0.88 0.77
8 1 0.77
9 0.90 0.77
10 0.90 0.85

Examples Fold2
Precision Average Recall Average

1 0.78 0.79
2 0.90 0.75
3 0.85 0.77
4 0.77 0.79
5 1 0.80
6 1 0.77
7 0.85 0.77
8 0.85 0.80
9 1 0.75
10 1 0.80

Examples Fold3
Precision Average Recall Average

1 0.80 0.75
2 1 1
3 1 0.85
4 1 0.80
5 0.77 0.75
6 1 0.77
7 1 1
8 1 0.80
9 0.85 0.77
10 0.88 0.80

Discussion

The study presented in this section is a first evaluation of our approach. This
evaluation is a proof-of-concept to check if RCA-based derivation and pattern-to-
rule mapping are effective. In this context, the obtained results are very satisfac-
tory. They show that the proposed approach allows to find most of the expected
transformation rules and that these rules are executable on actual models.

To help us improving the rule generation process, additional experiments have
to be conducted, in particular to study the two following issues:

– First, we used a small number of examples, based on small meta-models.
Larger meta-models and more numerous examples have to be considered in
the future to draw a better portrait on the strengths and weaknesses of the
approach.

– Second, we measured the correctness of the obtained model transformation
by comparing elements of the produced and expected models without consid-
ering their relations. A better and comprehensive correctness measure should
be defined in the future.
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6 Related Work

Writing model transformations requires time and specific skills: the transforma-
tion developer needs to master the transformation language and both transfor-
mation source and target meta-models. To our best knowledge, two main tracks
have been explored to assist the process of developing a model transformation:
using only source and target meta-models linked by the transformation, or using
transformation examples.

A first approach is based on meta-model alignment and is inspired by research
on ontology alignment and schema alignment. Transformation patterns are then
deduced from this alignment. Lopes et al. [22,21] define a two-step process: the
alignment algorithm samt4mde computes alignments using a similarity met-
ric on elements with the same type (classes, enumerations, etc.), then the tool
mt4mde generates a model transformation skeleton in ATL language [14]. Del
Fabro et Valduriez [6] generate a transformation as a post-processing of a weav-
ing model. This weaving model is built using a similarity metric between the
elements and propagating similarities thanks to the Similarity Flooding algo-
rithm [23]. Falleri et al. [9] study several configurations for applying Similarity
Flooding algorithm in the context of meta-model alignment with the aim of
determining which configurations work best. Kappel et al. [15] transpose their
meta-models into ontologies and apply Coma++ tool [1]. Alignments on on-
tologies are brought back to the meta-models.

Meta-model alignment is especially relevant when the source and target meta-
models are semantically and structurally closed, e.g. when the transformation
aims at migrating models from one meta-model version to another, but is ineffi-
cient on complex cases. When it can be applied, meta-model alignment reduces
significantly the time of the development. Other approaches (MTBE for Model
Transformation Based Example) take advantage of transformation examples to
learn transformations in more complex cases. One of their strengths is that
transformation examples, written in the concrete syntax, are easier to manip-
ulate than meta-models and their creation can be deferred to domain experts
who don’t need any programming skill.

The MTBE approach has been initiated by Varró [28]. An alignment between
representative source and target example models is manually created. Trans-
formation links are annotated by the transformation rule they illustrate (e.g.
ClassToEntity). Transformation rules are derived from the transformation links
and refined by the developer. Rules are validated on new source and target ex-
ample models. If they are not satisfactory, the process iterates. The proposal of
[28] was extended in [2], by using inductive logics programming (ILP [24]) to de-
rive the transformation rules. ILP is a machine learning technique which derives
a logic program from existing knowledge (source and target models), positive
examples (pairs of model elements connected by transformation links) and nega-
tive examples (pairs of model elements that are not connected by transformation
links). Considering only the immediate neighbors of each transformation-link
end, the ILP engine infers an hypothesis for each transformation rule.

Wimmer et al. [29] propose a similar work but derive ATL transformation rules
from examples written in concrete syntax by taking advantage of the constraints
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explicitly applied by the transformation from the concrete syntax of a language
to its abstract syntax. The main advantage of this solution is to be able to use
the concrete syntax to define models and transformation links. However, model
editors need to be written in a way that permits to extract constraints and to
edit transformation links.

Contributions [2] and [29] generate abstract rules and not executable ones.
Although abstract rules could be individually correct, they are not a full-edged
transformation program. These rules represent fragments of knowledge and must
be arranged in a non-trivial way to perform the actual transformation (execution
control). Furthermore, concrete rule languages and engines have their own con-
straints, which make the implementation of abstract rules not straightforward.
In this paper, we produce executable rules and test them on real cases.

The work of Garcia-Magarino et al. [11] is also considered as a variant of
MTBE approaches. In their approach, the authors generate transformation rules
from meta-models which satisfy some developer constraints.

Another MTBE approach [7,8] uses an extension of the anchorPrompt ap-
proach [26] to assist the transformation link discovery, and Relational Concept
Analysis to derive commonalities between the source and target meta-models,
models and transformation links. Compared to the ILP-based proposal, the
RCA-based approach does not use annotations on transformation links and
proposes a set of transformation patterns organized in a lattice. However, the
transformation patterns cannot be directly executed, and this paper proposes to
translate them into JESS rules to provide consistency checking and executability.

Model Transformation By Demonstration (MTBD) [20,27], is a similar ap-
proach to MTBE. Through direct editing of the source model, users are asked
to demonstrate how the model transformation should be done. The recorded
actions are then generalized to produce transformation patterns.

Another track in MTBE consists in using the analogy to perform transfor-
mations using examples [17,18,19]. The provided examples are decomposed into
transformation blocks linking fragments of source models to fragments of target
models. When a new source model has to be transformed, its elements are com-
pared to those in the example source fragments to select the similar ones. Blocks
corresponding to the selected fragments, coming from different examples, are
composed to propose a suitable transformation. Fragment selection and com-
position are performed through a meta-heuristic algorithm. Compared to the
above-mentioned approaches, the analogy-based MTBE does not produce rules.
This could be considered as a limitation if the goal is to infer reusable knowledge
about transformations.

7 Conclusion

In this paper, we presented an approach that aims at deriving model transfor-
mation rules from a set of model transformation examples. A first step of the
approach uses a data analysis method, RCA, to learn recurrent transformation
patterns. In the second step, the transformation patterns are filtered, refined, and
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automatically transformed into Jess rules. Those rules constitute the expected
transformation. Provided that meta-models and models are written as Jess facts
(which is done by automatic transformation), the rules can be executed by the
Jess engine to actually transform models. The approach is successfully evaluated
on a case study used in previous research work.

Future work includes transforming the obtained Jess facts (after rule appli-
cation) to produce models conforming to the initial meta-models. Furthermore,
we plan to work on rule execution control to select the rule to apply when we
have more than one rule for the same source element.
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Abstract. Model transformations are intrinsically related to model-
driven engineering. According to the increasing size of standardised meta-
model, large transformations need to be developed to cover them. Several
approaches promote separation of concerns in this context, that is, the
definition of small transformations in order to master the overall com-
plexity. Unfortunately, the decomposition of transformations into smaller
ones raises new issues: organising the increasing number of transforma-
tions and ensuring their composition (i.e. the chaining). In this paper,
we propose to use feature models to classify model transformations ded-
icated to a given business domain. Based on this feature models, au-
tomated techniques are used to support the designer, according to two
axis: (i) the definition of a valid set of model transformations and (ii)
the generation of an executable chain of model transformation that ac-
curately implement designer’s intention. This approach is validated on
Gaspard2, a tool dedicated to the design of embedded system.

1 Introduction

Model-Driven Engineering (MDE) advocates the principle of separation of con-
cerns, through the extensive use of models in all the steps of the software devel-
opment cycle [12,18]. In this context, model transformations are used to achieve
integration of concerns [14,17,3]. Considering the intrinsic complexity of the
meta-models in use (e.g., UML 2.x and its profiles), large model transforma-
tions (up to ten thousands lines of code) are developed. Such transformations
have substantial drawbacks [15], including limited reusability, reduced scalabil-
ity, poor separation of concerns, limited learnability, and undesirable sensitivity
to changes. The separation of concerns paradigm advocates the decomposition
of a complex system (e.g., architectures, object-oriented models) into smaller
artefacts. Thus, exactly as other artefacts, it is desirable to decompose trans-
formations [20]. Other researches have also argued that focusing on such an
engineering of transformations improves the uptake of MDE [22]. It is then es-
sential to support the systematic definition of small model transformations with
a unique intention [5], to improve scalability, maintainability and reusability of
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transformations. Such an approach leads to the definition of a family of trans-
formations associated to a given domain that jointly enable to generate systems
from a business domain.

The existence of small transformations raises two new issues. First, the chain
designer (called end user in the remainder of the paper) is in presence of a family
of model transformations, which needs to be organised. Secondly, the reification
of the dependencies that exist between elements of this family becomes critical.
As model transformations cannot be chained anyhow, dependencies that lead
to valid transformation chains must be captured. One way to automate this
development process is to use a Software Product Line (SPL) approach. In a
SPL, multiple products are derived by combining a set of different core assets.
One of the most important challenges of SPL engineering concerns variability
management, i.e., how to describe, manage and implement the commonalities
and variabilities existing among the members of the same family of products. A
well-known approach to variability modelling is by means of Feature Diagrams
(FD) introduced as part of Feature Oriented Domain Analysis [9] back in 1990.

Our contribution is to accurately combine model transformations and SPL to
support the end user while developing transformation-based applications. Busi-
ness experts’ knowledge is reified in a FD to accurately organise the different
transformations according to their intentions. Then, automated code analysis
techniques are used to accurately generate constraints between these transfor-
mations1, reified in the feature model as requirements between features. Thus, it
is possible for end users to use the FD to accurately define their own products,
that is, a valid subset of transformations that matches their intentions. Prod-
uct derivation mechanisms are then used to automatically generate the model
transformation chain that implements what the end user asked for. The ap-
proach is validated using Gaspard2, a transformation-based tool that supports
the modelling of embedded systems.

The remainder of this paper is organised as follows. In Section 2, we motivate
this work by exposing the different challenges that need to be addressed in
this domain. Then, Section 3 describes the approach we propose to tackle these
challenges. Section 4 validates the approach by applying it to the Gaspard2 case
study. Finally, Section 5 discusses the related works and Section 6 concludes this
paper by exposing some research perspectives.

2 Motivation

In order to enhance reusability, variability, flexibility and verifications, Gas-
pard2 [8], a co-design environment dedicated to high performance embedded
systems based on massively regular parallelism has been designed using Model
Driven Engineering (MDE) technologies. Thus it enables the generation of VHDL,
SystemC, OpenMP or Lustre code from a UML model enhanced with the Mod-
elling and Analysis of Real Time Embedded systems (MARTE) profile. Each

1 Informally, a transformation τ requires a transformation τ ′ if the model elements
handled by τ are produced by τ ′.
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language is targeted using a chain composed of three to five dedicated trans-
formations. These large transformations (up to 1500 lines of codes) were not
reusable and hardly maintainable even by their own developers.

To introduce flexibility and reusability, the Gaspard2 environment has been
re-engineered to rely on smaller transformations. Each transformation has a sin-
gle intention such as memory management or scheduling and corresponds to
150 lines of code in average. Finally, 19 transformations including 4 model to
text (M2T) transformations, and thus 15 model to model (M2M) transforma-
tions were defined. The number of chains that can be constructed from them is
humongous. Let T = {τ1, . . . , τn} a set of model to model transformations, and
M = {μ1, . . . , μm} a set of model to text transformations. We denote as NT∪M

the number of chains available in this context. The number of potential model to
model chains is equal to the number of sequences without repetition that involve
elements defined in T (denoted as P (k, n)). Secondly, There is (m+1) potential
targets for the previously defined sub-chain (as a transformation chain may not
generate text). Finally, it is also possible to only generate text without involving
other model transformation (thus, m chains).

NT∪M = m+ (m+ 1)

n∑
k=1

P (k, n), P (k, n) =
n!

(n− k)!

NT∪P is hardly computable generically. Nevertheless, a sub-optimal approxima-
tion is to consider NT∪P bigger than (m+1) times the highest term of the sum
P (k, n) (i.e., P (n, n), that in our case is equals to 5× 15!).

NT∪P . (m+ 1)× P (n, n) = (m+ 1)× n!, n = 15,m = 4, NT∪P . 6, 5× 1012

But only a few chains make sense! It becomes crucial to help the designer to built
such chains. Thus, the definition of transformation libraries raises new issues such
as (i) the representation of the transformations highlighting their purpose and
the relationships between them; (ii) their appropriate selection according to the
characteristics of the expected targeted system and (iii) their composition in a
valid order.

Traditionally, transformations are represented in chains or with their meta-
models. Such representations are not adapted to the description of transforma-
tion libraries. In preparation for chaining the transformations, it seems indis-
pensable to specify their purpose (i.e., what they handle), in addition to their
associated metamodels. To generate systems with their own characteristics (e.g.,
management of distributed versus shared memory, optimised vs simple schedul-
ing), transformations have to be consequently selected. Thus the end user has
to select the transformations not only according to the characteristics of the
resulting system she would like, but also to the relationships between the trans-
formations. Manually performed, this selection may be tedious and error prone.
From the selected transformations, several chains can be built. Transformations
cannot be chained arbitrarily, some constraints must be fulfilled [7,11]. If it is
often simple to identify the first transformation of the chain (depending on the
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input metamodels) and the last one (that is a model to text transformation,
if code has to be generated), establishing a valid order between the other se-
lected transformations may be difficult. Indeed, existing approaches check if the
proposed order is valid, but do not automatically provide a valid one.

In order to support the end user in the design of transformation chains, the
following challenges have to be addressed:

C1. Propose to the end user a library in which each transformation can be eas-
ily identified according to the characteristics of the expected final system
(Section 3.1).

C2. Help the end user to select transformations while automatically taking into
account the relationships between transformations (Section 3.2).

C3. Automatically derive the transformation chain from the characteristics se-
lected by the end user (Section 3.3).

3 Solution

To tackle the aforementioned challenges, we propose a feature-oriented approach
and the associated too set to automatically generate accurate model transfor-
mation chains as depicted in Figure 1.

Fig. 1. Approach Process Overview

This approach relies on three pillars: (i) the classification of the available
transformations as a Feature Diagram (FD) produced by the business expert,
(ii) the reification of requirement relationships between transformation (directly
generate from the Transformations set by the Extraction Tool) and (iii) the
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automated generation of transformation chains for a given product (using our
Derivation Tool) from features selected by the end user.

The FD is designed once for all by the business expert as a prerequisite. It is
nevertheless possible to modify it when new transformations and thus new fea-
tures become available. The requirement relationships are expressed between the
features and automatically computed from the transformation codes by the Ex-
traction Tool we provide. The extracted relations enable to derive other features
(and then the associated transformation) from the ones selected by the end user
using a Configuration Tool (e.g., FeatureIDE2). The requirement relationships
are also used by our Derivation Tool to order the selected features in order to
design valid chains.

3.1 Structuring the Transformation Set as a Feature Diagram

As a transformation is used to support a given intention according to a business
domain, a set of transformations implicitly model the variability of the different
intentions associated to a domain. FD were defined to model such a variability,
so its use is natural. We represent in Figure 2 an excerpt of the complete FD
associated to Gaspard2. Using FD, features (represented as nodes) are classified
among others according to constraints such as exclusiveness or optionality. Model
transformations are bound to features as assets. A feature f holds a link to the
actual model transformation to be used to implement the intention captured by
f at run-time. Normally, each feature corresponds to a single transformation and
vice versa. However, it occurs in practise that a single transformation may catch
many intentions and thus corresponds to many features.

For example, in Figure 2(a), the FD models that a given product must con-
tain a Scheduling feature, and may contain a Synchronisation feature. The
features Graph and Polyhedron are exclusive, i.e., the use of one in a given
product implies that the other cannot be used in this particular product. We
call a product a set of features that respects the constraints modelled in the
FD. For example, Figures 2(b) and 2(c) represent two products among the eight
valid w.r.t. the modelled FD. The first one (Figure 2(b)) considers a system syn-
chronised using a BlocByBloc method, and scheduled with a simple Graph. The
second product (Figure 2(c)) considers a system synchronised with a Barrier

method, and scheduled with a Polyhedron approach. In our context, features
reify model transformations: the actual implementation of the transformation
is bound as an asset of the associated feature node. Thus, considering a given
product, it is possible to automatically infer the set of transformations involved
in the transformation chain that supports it.

Key Points. The role of the FD is to capture the business knowledge associated to
a given set of transformations. It actually transforms a flat set of transformations
into an organised family of products.This classification is done by the business
expert, that is, someone who deeply knows the different transformations, their

2 http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/

http://wwwiti.cs.uni-magdeburg.de/iti_db/research/featureide/
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(a) Gaspard2 feature diagram (excerpt)

(b) p = {BlocByBloc, Simple, . . . } (c) p′ = {Barrier, Polyhedron, . . . }

Fig. 2. Gaspard2: Feature diagram and associated products (using FeatureIDE)

underlying intentions, as well as the artifact they are handling. The key idea
here is that this work is done once by the business expert, and capitalised in the
FD. Without the use of a FD to support such a classification, it would be up to
the end users to guess how the different transformations cope with each others
before assembling them.

3.2 Recovering Require Relationship from Transformations

On top of constraints expressing the mandatory/optional character of the fea-
tures as well as the and/or relationships between them, “require” relationships
can also be captured in FD. They enable to automatically deduced other fea-
tures from the selected ones, independently of the tree structure of the FD.
Require relationships can be determined manually by the business expert. How-
ever, when the number of features is huge, omission can happen leading to er-
roneous products determination. Therefore, we provide an automatic analysis
of the transformations to recover the require relationships (bijection) between
the features associated to them. A requirement between two features f and f ′

(denoted as a logical implication, i.e., f ⇒ f ′) means that the transformation
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bound to f requires the transformation bound to f ′. The following question is
raised: “When does a require relationship between two transformations exists?”.
In fact, it relies on the element type production and consumption. For two trans-
formations τ and τ ′, if τ ′ consumes types created by τ , then it implies that a
require relationship exists between τ and τ ′, denoted as τ ′ → τ (for τ ′ requires
τ). For each transformation, it is thus mandatory to automatically determine
the element types it produces and it consumes to provide an automatic require
relationships determination.

This automatic analysis relies on the different actions performed on element
types by a transformation. Four actions are classically performed by transfor-
mations: reading, creating, deleting and modifying. This analysis does not rely
on transformation execution but on static code analysis. Thus an element of
the input or the output metamodel of a transformation is considered read if the
presence of one on its instance enables the application of a transformation rule.
An element is considered created, if at least one of its instance can be created
by the transformation, and so on. Thus, τ ′ requires τ if τ ′ reads some elements
created by τ [6]. As we stated in the previous section, for a feature f from the
FD, it exists at most one transformation τ . So, considering two features f , f ′ in
the FD and two transformations τ , τ ′ mapped to f , respectively f ′, if τ → τ ′,
it implies that f ⇒ f ′.

Key Points. The proposed generation of the require relationships relies on a
static analysis of the transformation codes. Once the FD designed and the con-
straints generated, the end user can use a Configuration Tool to select the
features she wants for her transformation chain. The Configuration Tool is
parametrised by the feature diagram and the generated constraints. Thus, by
taking into account the generated constraints, during the feature selection, the
Configuration Tool can either invalidate features or add required features accord-
ing to the ones already selected by the end user. The automatic characteristic
of the generation enables a certain evolutivity of the FD.

3.3 Generating Transformation Chains

Based on the two previous parts of the contribution, it is now possible to (i) con-
sider a set of model transformations as a product family and (ii) automatically
infer the requirement relationships that exist inside the product family. These
two contributions act at the level of the FD. According to the global process, the
selected features are then passed to a Derivation Tool, which uses the generated
constraints to propose transformation chains from the selected features.

We consider now a given product p = {f1, . . . , fn}, i.e., a subset of features
that satisfies the constraints modelled in the FD. As stated in Section 3.1, model
transformations are bound to features. It is then possible to obtain the set of
model transformations associated to p (denoted as Tp) by mapping each feature
to its associated transformation: Tp = {τ1, . . . , τm}. As some features are only
used to structure the FD and are not related to any concrete transformation,
it should be noted that the cardinality of Tp may be lesser than the cardinality
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of p. But this set of transformations is not sufficient to properly derive a concrete
transformation chain from a given product. The requirement constraints identi-
fied in Section 3.2 must be taken into account. Considering two features f and
f ′, if the requirement f ⇒ f ′ exists, then the transformation τ ′ mapped to f ′

must be executed before the transformation τ mapped to f . As a consequence,
the analysis of the set of requirement constraints leads to the identification of
sequences of model transformations. Two situations can be encountered. If the
requirement constraints implement a total order on the set of transformations,
only one sequence will be identified, i.e., the proper transformation chain to
be executed to support the intentions captured by this product. But if the re-
quirement constraints implement a partial order, only partial sequences can be
identified automatically. But as there is no requirement between these different
sub-sequences, their order is not important. Consequently several valid chains
are generated. This “subchains approach” is useful to support the business ex-
pert while assessing the FM consistency. It also helps the non-expert end user
to construct a valid chain: any of the chains built upon these sub-chains, will by
essence respect the dependencies captured by the FM.

Key Points. A concrete chain of model transformations is automatically derived,
through the FD, from the transformation set selected by the end user. First, the
knowledge of a business expert is captured in the FD, and then an automatic
static analysis is used to properly extract technical constraints from the imple-
mentation of the transformations. Finally, it is possible to automatically derive
the chain, through the systematic exploration of the identified constraints. As a
consequence,the generation of the concrete model transformation chain is auto-
mated, and the end user does not require any knowledge of model transformation
from a technical point of view.

4 Validation: The Gaspard2 Case Study

Gaspard2 is a co-design environment dedicated to high performance embedded
systems based on massively regular parallelism. From high level specifications,
it automatically generates code for high performance computing, hardware-
software co-simulation, functional verification or hardware synthesis using model
transformations. Such generations are complex and require intermediary steps,
e.g., the explicit mapping of application tasks onto processing units, the mapping
of the data onto memories or the scheduling of the tasks. Each transformation
has a specific intention and deals with few concepts. Nineteen transformations
have been implemented for now but the framework may support even more of
them in the upcoming months. It is difficult for a non expert user to easily un-
derstand the purpose of each transformation, to select the ones useful to reach
the desired platform and finally to order them in order to compose a chain.

In this paper, we used the Familiar tool suite [1] to manipulate feature dia-
grams. This tool allows us to model FD, and is well integrated in the Eclipse
platform. Thus, standard Configuration Tools (e.g., FeatureIDE) can be used to
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allow the end user to configure products. But it should be noted that the ap-
proach is not bound to this tool nor to this case study from a theoretical point
of view, as described in the previous section.

4.1 Step #1: Capturing Business Expert Knowledge in a FD

Embedded systems designers usually do not master model transformation para-
digm and underlying technologies. It is then essential to support them while
designing the transformation chains used to generate code from high level speci-
fications. The design of these chains consists in the selection of relevant transfor-
mations available in a library and in the computation of a valid order. Selecting
a transformation requires to easily distinguish one transformation from another
and to quickly identify its intention. In order to help the embedded systems
designers, we have classified the available transformations based on embedded
characteristics using feature model. It is up to the business expert to find the
most appropriate classification method to be used to support the end user. Dur-
ing the implementation of the case study, we applied an incremental definition of
the FD. We produced 12 successive versions of the FD. Excepting from one deep
refactoring to better handle business requirement constraint, the implementation
of the FD by the business expert was straightforward.

Most transformations of Gaspard2 have a unique intention representing a spe-
cific characteristics of the produced systems such as memory management. The
transformations and their associated intentions are listed in Table 1. The Gas-
pard2 transformation library counts 19 intentions through 15 M2M and 4 M2T
transformations. For example, the scheduling transformation has the following
intention: it manages a simple scheduling of application tasks on computing
units. As a consequence of the non mandatory bijection between features and
transformations, the barrier and the openMP features are implemented by a sin-
gle transformation. This many-to-one (surjection) relationship corresponds to a
lack of modularisation of the transformation.

From these intentions, the business expert builds the feature diagram by as-
sociating a feature to each intention. Moreover, some features are added in the
hierarchy in order to specify the relationship AND/OR/XOR between features.
Indeed, as stated in Section 3.1, each feature represents at most one transfor-
mation. The resulting FD, depicted in Figure 3, gathers, in an non exhaus-
tive way, some characteristics that an embedded system produced by Gaspard2
may possess. For example, the OpenCL and OpenMP features, introduce a sci-
entific computation intention. However, only one of these two features can be
selected. Indeed, the target language is either OpenCL, or OpenMP. In the FD,
this choice is designed by the introduction of an intermediary abstract node
ScientificComputation and an alternative between the two features.

The associated tooling provided by the Familiar platform can be used to query
the model, as shown in Figure 4. This FD models up to 200 different available
configurations (obtained by the Familiar counting algorithm). The configs

command computes all the available products, returning the set of valid products
defined by this FD.
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Table 1. Gaspard2 transformation set

Transformation Intention

tiler2task - Keep repetitions hierarchy
gpuApi - Manage hybrid GPU-CPU computing
pThread - Manage buffered synchronisation by bloc

sequentialC - Generate sequential C code
barrier - Manage barrier synchronisation for OpenMP
shape2loop - Develop repetitions in the generated systems
scheduling - Manage simple scheduling
poly loop - Manage polyhedron optimised scheduling

explicitAllocation - Explicitly place tasks on processors
memorymapping - Manage absolute memory addresses

tilerMapping - Manage tiler (i.e. task distributing data) mapping on com-
puting unit

shared - Manage the shared memory type

openCL - Generate OpenCL code for scientific computation purposes
openMP - Generate OpenMP code for scientific computation purposes
systemcPA - Bind SystemC architecture with SystemC application

systemcBind - Manage SystemC data exchanges

systemcStruct - Manage SystemC architecture

pthreadGen - Generate pthread code for simulation purposes
functional - Introduce functional abstraction

Fig. 4. Using the Familiar shell to interact with the FD

4.2 Step #2: Extracting Constraints from the Implementation

This feature model enables the classification and the distinction of the trans-
formations the one from the others. However, in this primary form, it does not
gather enough information to build the chains: some others may be required and
the selection of one transformation may require the selection of others. Such de-
pendencies between transformations have to be captured and the feature model
tools enable to take them into account for the product configuration. Thanks to
the Extraction Tool, the implementation of the available transformations is au-
tomatically analysed. The result of this analysis is a set of “require” constraints
between the features modelled in the FD. We represent in Listing 1.1 the set
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of constraints obtained after the execution of the tool. These constraints are
generated using the syntax of the Familiar tool, and thus can be automatically
integrated in the FD. Contrarily to the initial FD that captures the knowledge
of the business expert, these relations reify the implementation constraints that
exist between the transformations, from a technical point of view. It then en-
sures that the products configured w.r.t. this FD will be valid at both level: (i)
business domain and (ii) technical implementation.

1 AbsoluteComputation -> Develop
2 AbsoluteComputation -> KeepHierarchy
3 AbsoluteComputation -> Polyhedron
4 BindingAppliArchi ->

AbsoluteComputation
5 BindingAppliArchi -> Architecture
6 BindingAppliArchi -> BlocByBloc
7 BindingAppliArchi -> MemoryType
8 BlocByBloc -> AbsoluteComputation
9 BlocByBloc -> Graph

10 BlocByBloc -> KeepHierarchy
11 BlocByBloc -> MemoryType

12 DataExchange -> Architecture
13 DataExchange -> KeepHierarchy
14 Functional -> Graph
15 Graph -> KeepHierarchy
16 Hybrid -> AbsoluteComputation
17 Hybrid -> Graph
18 Hybrid -> KeepHierarchy
19 Hybrid -> MemoryType
20 MemoryType -> KeepHierarchy
21 Simple -> Graph
22 Tiler -> Graph

Listing 1.1. Set of requirement constraints

Considering this set of constraints, the Configuration Tool now proposes 37
available products to the end user (from 200 at the beginning). This highlights
the fact that working with the implementation of the transformation is critical.
The technical implementation of the transformations dramatically reduces the
initial variability of the domain as it was designed by the business expert.

Taking into account the “real” features implementations in the FD (i.e, the
transformations code in our context) through this set of automatically computed
constraints also leads to interesting situations that help the business expert. We
consider here the feature Repetition, defined as optional by the business ex-
pert (see Figure 3). The generated set of constraints identifies a requirement be-
tween the feature AbsoluteComputation and the feature Develop (line 1 in List-
ing 1.1). However, AbsoluteComputation is mandatory, and selecting Develop

implies to select Repetition. Thus, the Repetition feature is automatically
identified by the tool suite as a false optional feature, that is, a feature mod-
elled as optional but enforced as mandatory by a requirement constraints. In
this case, it helped the business expert to identify a missing artifact in the FD:
it should also contain an alternative implementation for Repetition instead of
only defining the Develop approach.

4.3 Step #3: Deriving Transformation Chains

Based on the FD enhanced with the implementation constraints, we can now
ensure that the products configured by the end user through the configuration
tool are valid. The final step is to use a derivation tool that properly builds the
transformation chains associated to a given product. We consider here one of
the 37 products available according to this FD, denoted as p corresponding for
example to the set of the features selected by the end user. The first step is to
translate p into Tp, that is, the set of transformations involved by this product. It
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should be noted that |p| > |Tp|, as several features are only used to structure the
FD and consequently are not bound to concrete transformations. For example,
for the following product, corresponds the associated Tp:

p = {Gaspard,MemoryType,Polyhedron,Data,Barrier,MappingMgmt,

KeepHierarchy,Hierarchy,T iler,Develop, StaticScheduling,

AbsoluteComputation, Task,Explicit, ScientificComputation,

Scheduling, Objective, Repetition, Synchronisation, OpenMP}
Tp = {explicitAllocation,memMapping, openMP, poly loop,

shape2loop, tilerMapping, tiler2task}

The second step is to map the constraints between features as a partial order
among the transformations. The requirements involved in p are the following:

Feature Requirement � Transformation Ordering

AbsoluteComputation → Develop � memMapping → shape2loop

AbsoluteComputation → Polyhedron � memMapping → poly loop

MemoryType → KeepHierarchy � memMapping → tiler2task

Based on this partial order, it is possible to compute1 the following sets of
“independent” sub-chains involved in this product, as a chain template, that is,
a partition of the transformation set taking into account the partial order:

tplp = [ [openMP ], [explicitAllocation], [tilerMapping] (1)

[memMapping, [shape2loop, poly loop, tiler2task] ] ] (2)

Among the computed sub-chains, the openMP transformation is a “model to
text” transformation and will always be the last one executed in the chain. In
line 2, the partial order indicates that the memMapping transformation must be
preceded by the 3 transformations listed, without specifying any order between
them. Thus, there is up to 6 ways to combine these transformations according
to this constraint. As the explicitAllocation and tilerMapping transformations
can be executed independently of these sub-chains, they can be executed before,
after or inside the previously described sub-chains. As a consequence, up to 180
chains can be obtained from this product. Following the sub-chains computed
by our derivation tool, a valid transformation chain could be:

explicitAllocatlion → tiler2task → tilerMapping → · · ·
· · · poly loop → shape2loop → memMapping → openMP

Without any lead, the end user has only one constraint: the model to text trans-
formation must be the last of the chain. From the product p and its associated

1 We used a set of logical predicates implemented using he Prolog language to imple-
ment the Derivation Tool.
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set of transformations Tp, it means that the end user has the choice to organise
6 transformations. Thus, she has P (6, 6) = 720 choices to organise the model to
model transformations. Among the 720 chaining possibilities, many are not valid
because the require relationships are not considered. So, without any indication,
the end user has to choose from 720, potentially non valid, chains, whereas with
our methodology, the choice is reduced to 180 valid chains only.

To sum up, our methodology and the associated tool have allowed the end
user (without any knowledge about transformations) to easily build chains. She
has selected transformations based on embedded system features i.e. using terms
she is familiar with. Finally, she has to choose among 180 valid chains whereas
initially she was confronted to a huge number of possible chains that she has to
build by scrutinizing the transformation code.

5 State of the Art

In order to enhance the reusability of transformations, several authors promote
the decomposition of transformations into smaller ones. However transformations
have then to be chained. Vanhooff et al. proposed an approach based on the
explicit and manual identification of the required and provided concepts by the
chain developer for example using a profile in order to later build the chain [21].
Our approach relies on the feature model to compose the transformations.

Several approaches have been proposed to build chains. Transformations are
considered as functions to compose if their domains are compliant [13] or UML
activity that can be chained using different operators: composition, conditional
composition, parallel composition and loop [16]. However, in both cases, the
transformation chain has to be manually specify by the designer, without any
specific help. In the latter case, they are executed using the provided model trans-
formation orchestration tool. Our approach could be used upstream to identify
the useful transformations and to compose them.

Transformation chaining relies on constraints that can be automatically iden-
tified, e.g. using the distinction between concepts copied and those mutated [4].
This approach only deals with endogenous transformations (even if a possible
extension to heterogeneous transformations is suggested). With the ”require”
constraints, we have extended this approach to heterogenous transformations.

Several approaches propose to deal with the complexity of large systems with
a feature-based approach. For example, feature models were accurately used
to model the intrinsic variability of the Linux Kernel [10], and support end-user
during the kernel configuration task. The approach proposed in this paper follow
the same idea, that is, the use of feature modelling to leverage a highly variable
systems into an entity configurable by the end-user.

Being able to extract the features from the implementation is a challenge [2].
The most difficult part is the extraction of the feature hierarchy from the “flat-
tened” implementation [19]. Inferring such a hierarchy relies on domain heuristics
that rank the possible hierarchy, and the final assessment of these ranks by a
domain expert. In this paper, we do not consider the automatic extraction of
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the features from the transformation set, and only rely on the business expert to
properly model the feature diagram. Being able to support the business expert
during this task is an interesting perspective of this work.

Feature models are also used to support the reverse engineering of large scale
systems [1]. For example, the FraSCAti platform (an open source implemen-
tation of the SCA standard) was accurately reverse-engineered to support its
assessment. Based on a dedicated tool that extracts the architecture from the
implementation, the authors confront the automatically extracted feature model
with the one defined by the business expert. This approach complements ours, as
we also rely on a tool that automatically infers feature information from the ac-
tual implementation of the system (in our case requirements between features).
But instead of assessing the model defined by the business expert, we focused
on its enrichment, by merging the set of automatically identified information in
this feature model. We were able to identify several situations where the actual
system was not “as variable” as the business expert thought.

6 Conclusions and Perspectives

In order to be reusable and maintainable, model transformations are written
according to a single intention and complex transformations are built as the
chaining of smallest ones. In this paper, we proposed an approach based on FD
to support the design of model transformation chains. Based on a classification
of the transformations made by a business expert, This approach allows an end
user to build such chains, without any prior knowledge of model transformation
technologies. The implementation of the transformations is also automatically
taken into account to ensure that the built chains are valid from a run-time point
of view. From an implementation point of view, the approach is independent of
any tools and can be easily coupled to existing approaches (e.g., FeatureIDE,
Familiar). The approach was validated on the Gaspard2 case study, and we are
currently pursuing another validation study in the domain of website engineering.

The resulting chains are valid according to a type based approach [7]. How-
ever, two transformations that can be chained into both orders from a syntactic
perspective are not obviously commutable from a business point of view: the
execution of the two successive transformations on whatever models may not
always lead to the same result. A perspective of this work is to enhance the
expressiveness of the requirement detection mechanisms to address this issue.
Another perspective concerns the FD refinement. Indeed, the FD being man-
ually designed by the business expert, some constraints between features may
have been omitted. The automatic requirement relationships extraction could
be a first help to highlight a badly / incompletely designed FD. To help the
business expert in the definition or the refinement of the FD, we plan to auto-
matically extract features from the documentation written by the transformation
developers.
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Abstract. The model-driven architecture proposes stepwise model re-
finement. The resulting model-to-model (M2M) transformation chains
can consist of many steps. For realizing the transformations two ap-
proaches exist: Exogenous transformations, where input and output use
different metamodels, and endogenous transformations, that use the
same metamodel for input and output. Due to the particularities of
embedded systems, using only endogenous transformations is not ap-
propriate. For exogenous transformations, problems arise with respect
to creation and maintenance of the subsequent metamodels. Another
problem of these M2M transformation chains is that for one transforma-
tion step typically large parts of the model data remain unchanged. The
resulting M2M transformation does often include many copy operations
that distract the developers from the “real” transformations and increase
implementation overhead. This paper introduces a generic approach that
solves these issues by a (semi-) automatic metamodel construction and
copy operation of unchanged model data between subsequent steps.

Keywords: Transformation Chain, Model-to-Model Transformation,
Metamodel-to-Metamodel Transformation, Model-driven Software
Development, Model-driven Architecture.

1 Introduction

The model-driven architecture (MDA) [1] has been successfully used to cope
with large and complex systems. MDA suggests transforming platform inde-
pendent models (PIMs) by a series of model-to-model (M2M) transformations
into platform specific models (PSMs). Especially in the context of model-driven
software development (MDSD) [2] of embedded systems, this stepwise refine-
ment is very helpful. Embedded systems are characterized by the importance
of extra-functional requirements, timing issues, and the heterogeneity of the in-
volved components and platforms. Therefore, the transformations from PIM to
PSM have to take into account several tasks. To enhance readability and main-
tainability, every M2M transformation step should ideally perform one task.
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These tasks could be for example the mapping of software to hardware compo-
nents or the calculation of an execution schedule.

In the domain of embedded systems the metamodels used for user input and
for code generation very often differ significantly [3]. Due to this difference, a big
metamodel, whose structure is suited both for user input and code generation,
would be inadequate. The ideal transformation process consists of a series of
refinements resulting in intermediate models based on different metamodels. In
this approach of handling only one task within one M2M transformation step,
the changes between steps at the metamodel and model level are rather small
and only represent intermediate steps of the transformation towards the final
metamodel and model.

One problem of M2M transformation chains is the creation and maintenance
of the related metamodels. Successive metamodels typically have large parts
in common. As there is currently no tool support available for constructing
these metamodels, they are created manually, typically using Copy&Paste. An
additional problem arises if later a metamodel in a M2M transformation chain is
changed, e.g., by adding a new attribute. Usually the same adaptation has to be
applied to subsequent metamodels as well. A manual execution of such changes
is error-prone and tedious, hence should be avoided. Very often these problems
are avoided by reducing the number of steps in a M2M transformation chain.
This paper presents an approach to create and maintain the metamodels based
on difference descriptions.

If transformations between models with different metamodels (exogenous
transformation) [4] are implemented using an operational M2M transformation
language, such as Xtend1 or QVTOperational [5], the unchanged parts of the
system have to be copied manually. As a result, the size of the code for the
“real” M2M transformation is very often negligible compared to these manual
copy operations. To avoid the additional overhead for implementing these copy
operations, different refinement steps are very often combined or even only one
large M2M transformation is used. Such M2M transformations contradict state-
of-the-art in modern software engineering, which is based on modularity and
demands to focus on one task at a time. Therefore, this paper presents a way to
deal with the copy of data between successive models.

Section 2 clearly defines the problem statement and the focus of this paper.
An overview of our solution is given in Section 3. The approach supports both
the creation and maintenance of M2M transformation chains with respect to the
two above mentioned problems. Section 4 presents an incremental definition of
subsequent metamodels on the metamodel level. A semi-automatic conduction
of data copy and type transformation operations for unchanged parts2 between
models based on different metamodels is described in Section 5. The “real” M2M
transformation still needs to be specified manually. The implementation and the
evaluation of the approach in the context of two MDSD tools for embedded

1 Xtend/Xpand: http://wiki.eclipse.org/Xpand
2 Underlying metamodel structure has not changed.

http://wiki.eclipse.org/Xpand
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systems are contained in Section 6. The paper is concluded by a discussion of
related work in Section 7 and a summary in Section 8.

2 Problem Statement

Following the MDSD methodology [2] user-defined models are stepwise com-
bined and refined to a model adequate for code generation. This is especially
useful when applying MDSD in the domain of embedded system. Due to the
high heterogeneity of platforms and hence of implementations, PIMs abstract
from the underlying implementations to simplify the modeling task for develop-
ers. In the process of stepwise refinement, a PSM should be calculated that is an
optimal representation for code generation of a specific platform. One example
is schedule specification. While it is simpler to model the execution through de-
pendencies between tasks, the code generation is simplified if a concrete schedule
with start times is calculated during M2M transformations. The same is true for
the combination of models. To separate concerns and to reduce complexity, the
description of embedded system is very often done using several, aligned models
targeting different aspects of the system. Aligned models are models, which were
created with respect to each other. They share information and can reference
elements of each other without any problems. By working with different models,
the developers can concentrate on selected system aspects and their associated
data. Examples can be a model describing the used hardware and a model to
describe the application. The code generation is simplified when these different
“views” are merged.

Ideally the M2M transformation between the input model(s) and the final
output model is split up in many small transformations. Each of these trans-
formations then focuses on one task, e.g., schedule calculation or identifier as-
signment. Hence, a transformation changes only a small part of the model data.
The transformations in the chain can be implemented using exogenous or en-
dogenous transformations [4]. Exogenous transformations are transformations
between models based on different metamodels. In contrast, endogenous trans-
formations are transformations between models based on the same metamodel.
It is possible to perform transformations with big structural changes through
endogenous transformations. However, due to the big difference between PIMs
and PSMs for embedded systems, the use of endogenous transformations alone
is usually not advisable. Hence, this paper focuses on the support of step-wise
model refinement using exogenous transformations3.

One problem with exogenous transformations is the necessity to create and
maintain further metamodels with large common parts. Very often the similar-
ity between these metamodels leads to a construction using Copy&Paste. During
maintenance, problems can arise when metamodels are extended and adapted to
new needs. This usually requires applying the same changes in subsequent meta-
models. Depending on the length of the M2M transformation chain this can be

3 The problems with exogenous transformations discussed in the following, do not
exist for endogenous transformations.
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very time-consuming. Moreover, the refactoring is tedious and error-prone. Fig-
ure 1 shows the structure of a M2M transformation chain from PIM to PSM.
Metamodel evolution [6] is very similar as it considers the migration of models,
after the corresponding metamodel has been changed. The major difference be-
tween a M2M transformation chain and metamodel evolution is the life cycles
of metamodels. In metamodel evolution, only the latest metamodel is of con-
cern as this metamodel presents the latest version of the tool. The migration
of models is only performed once. In transformation chains, all metamodels are
required and the full chain of metamodels is processed every time the tooling is
invoked for an application. This difference causes some practicability issues that
are discussed in the following sections. M2M transformation chains and meta-
model evolution are orthogonal to each other as shown in Figure 1. This paper
proposes an approach for creating and maintaining metamodels in exoge-
nous M2M transformation chains based on difference specifications
between metamodels.

Fig. 1. Relation between Transformation Chains and Metamodel Evolution

Another disadvantage of exogenous transformations is the need to transform
all the data of input model(s) into the output model. This transformation also
includes copying data, which is not modified by the current M2M transforma-
tion, but needs to be transformed into the namespace of the new model. For
operational (imperative) M2M transformation languages these copy operations
have to be specified by the developers for all model elements. This is a very
time-consuming and tedious job. Furthermore, the developers have to ensure
that all data are copied from the input model(s) to the output model. The re-
sulting M2M transformation code is very often a mixture of copy and “real”
M2M transformation operations. As a consequence, these copy operations hin-
der the identification of the essential parts and ideas of the M2M transformation
itself. To avoid the additional overhead, different M2M transformation steps are
often combined or even only one large M2M transformation is used. This pa-
per proposes an approach to (semi-) automatically copy unchanged parts
between models through the use of a function library.
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3 General Approach

The problem statement targets both the metamodel and model level of M2M
transformation chains. To simplify discussion, we will deal with each of the prob-
lems in a separate section. As model transformations are based on the metamod-
els created by metamodel transformations, they can only be executed after the
metamodel transformations. Hence, we start with the discussion of metamodel-
to-metamodel (MM2MM) transformations. Typically, the transformations on
models are executed more often than transformations on metamodels. The rea-
son for this is that metamodel transformations belong to a change in the tool,
whereas model transformations are part of the tool application to create new
applications. Performance is therefore mainly an issue for M2M transformations
and can be neglected to a certain extent for MM2MM transformations.

Figure 2 shows the proposed approach. The models / metamodels of the dif-
ferent steps are connected through transformations belonging to a M2M trans-
formation chain. Numbers indicate the designated order of steps. The developers
start with defining the input metamodels (1). Afterwards a difference model (2)
[7,8,9] is used to create the metamodel of the next step (3). Based on this new
metamodel the developer can define the model transformation containing func-
tion calls to copy unchanged model data and the “real” transformation (4). Since
the “real” transformations represent the intelligence of the tool, they still have
to be implemented by the developers without any further support. These steps
can be repeated as often as needed (5–8). To create a new application the user
needs to define the required models (9) and start the processing (10–12). In the
approach only the differences between steps are specified manually. Similarities
are handled automatically.

Fig. 2. Schematic Illustration of Model-to-Model Transformation Chain Approach.
Gray elements indicate generated artifacts and automatic steps.
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4 Metamodel-to-Metamodel Transformations

For supporting M2M transformation chains on the metamodel level, an easy way
of creating the metamodels used in the different steps is needed. To keep the
overhead for managing the metamodels as small as possible, we suggest specify-
ing only the changes between metamodels (model deltas), e.g., adding, deleting,
or modifying of packages, classes, attributes, references, or operations. This is
closely related to metamodel evolution. The main difference is that metamodel
evolution usually only focuses on calculating a difference model to (semi-) auto-
mate the M2M transformation (model migration). The difference model is either
calculated by tracking changes of the developers when changing the metamodel
or by comparing the old and new metamodel. In contrast, we use the difference
model to calculate a successor metamodel out of the given ones. It is important
to note that the predecessor metamodels might be affected by changes to the
preceding metamodel chain. Hence, the tool must also support the developers
by notifying if a difference model becomes partly invalid. In addition, our differ-
ence model must be able to specify combinations (used to merge different views)
and adaptations of more than one metamodel, whereas metamodel evolution can
only relate two metamodels with each other.

Example. Before the approach is presented in detail, a simple example is given.
A system consisting of hard- and software components is modeled using separate
models (views). These models shall be merged and then further modified. A
suitable metamodel is needed to store the newly calculated data. Therefore,
the metamodels have to be merged into one metamodel. The merge of the two
metamodels raises a conflict as both contain a class Component. To resolve the
conflict the Component classes are renamed into HWComponent respectively
SWComponent. The commonalities of the classes are moved into a new abstract
Component class. In addition, an id attribute is added to give all Components
unique identifiers. Figure 3 shows on the left side the preceding metamodels and
on the right side the newly generated metamodel. The figure also depicts an
intermediate step, which will be described in the discussion of the algorithm.

name: String

Component

HW Metamodel Composed Metamodel

Component

name: String

Component

SW Metamodel

HWComponent SWComponent

Composed Metamodel

id: int
name: String

Component

HWComponent SWComponent

Phase 2

Detail Types

Phase 1

Create
Metamodel
Structure

requires

requires

Fig. 3. Simple Example of a Metamodel-to-Metamodel Transformation
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To create a subsequent metamodel the developers only need to specify the
input metamodels and the changes, which shall be applied. A tool then creates
the new metamodel. Figure 4 shows the difference model used to create the new
metamodel. Any number of difference models can be specified to create an ar-
bitrary number of subsequent metamodels, where one MM2MM transformation
with its difference model builds upon the result of the previous one.

Transformation: composed (www.fortiss.org/tooling/m2m/composed)
Metamodel: hardware (www.fortiss.org/tooling/m2m/hardware)

Class: Component -> HWComponent [super class = Component] => Modify
Attribute: name => Delete

Metamodel: software (www.fortiss.org/tooling/m2m/software)
Class: Component -> SWComponent [super class = Component] => Modify

Attribute: name => Delete
Class: Component [abstract] => Add

Attribute: id [int] => Add
Attribute: name [String] => Add

Fig. 4. Difference Model Used to Create the new Metamodel of the Simple Example

Fig. 5. Simplified Metamodel to Specify Metamodel Transformations. ModelTransfor-
mation constitute the root element. OperationType defines the kind of operation to
perform, where none is used if only child elements are affected by transformations.

Supported Operations. To specify the adaptations of the metamodels in an
unambiguous way, we provide a metamodel for specifying the difference model for
MM2MM transformations. Figure 5 shows the basic structure of the metamodel
used to specify MM2MM transformations. Based on this metamodel, it is easy to
define all changes. The difference model allows to specify adding, deleting, and
modifying of metamodel elements. The low level specification of changes gives
high flexibility and allows a fine grained transformation of metamodels. Figure 6
shows a table with all supported operations. The column Add To / Remove From
state where the elements can be added / deleted and Modify contains a list of
changeable properties.
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Element Add To / Delete From Modify

Package package name

Class package name, abstract class, super class

Attribute class name, type, multiplicity

Reference class name, type, multiplicity, containment

Operation class name, return type, parameters

Enumeration package name

Enumeration
enumeration name, value

literal

Data type package name, instance type name

Annotation element key, value

Fig. 6. Supported Metamodel Transformations

Transformation Algorithm. For the MM2MM transformation a difference
model is taken as input, which references the metamodels of the previous step
and includes a specification of all changes to apply. As result an adapted and po-
tentially combined metamodel is returned. In addition, the specified changes are
checked for consistency to cope with potential changes to the preceding meta-
models. This prevents the generation of inconsistent metamodels, e.g., meta-
model containing classes with same name or usage of not existing data types.

The actual transformation is carried out in two phases. In the first phase,
all packages and types (classes, enumerations, and data types) are created. For
each package and type the algorithm checks, whether it is not specified to be
deleted, before creating them in the new metamodel. This is done for all packages
and types of the referenced input metamodels. New packages and types are
created in addition. The first phase takes care of creating types incorporating
type renamings, without creating the internal structure of classes. By executing
the transformation in this way, it can be ensured that all types already exist
before they are used by other metamodel elements, e.g., data type of an attribute,
super class. After creating all types in the new metamodel, a second phase takes
care of the correct construction of the internal structure of classes. This includes
the creation of attributes, references, and operations. Assignment of super classes
is also part of this second phase.

Due to the fact that only changes between subsequent metamodels are speci-
fied through a difference model, changes to metamodels are automatically prop-
agated to all subsequent metamodels along the M2M transformation chain. The
implicit propagation of changes along the M2M transformation chain relieves the
developers from applying the same adaptation many times and helps to focus on
the differences between consecutive metamodels. Furthermore, careless mistakes
are avoided by automating the metamodel adaptations.

5 Model-to-Model Transformations

The second aspect of M2M transformation chains targets M2M transformations
themselves. The focus of this paper lies on removing the burden of writing data
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copy operations in operational transformation languages from developers. This
is achieved by copying all unchanged (unaffected) model data from the input
models to the output model. The developers can then fully concentrate on the
“real” transformation. In comparison to metamodel evolution, our focus lies not
on specifying the complete M2M transformation, so we split the M2M trans-
formation in a generic part realizing the copy of unchanged data and a manual
part. The developers still have to write the code for the “real” transformation.
Furthermore, our approach supports the combination of more than one model
describing a system from different viewpoints. In addition, we want to reuse the
information from the MM2MM transformation to perform a more comprehensive
M2M transformation considering exogenous transformations including renaming
of metamodel elements.

Example. The approach is illustrated in Figure 7 based on the example of
the previous section. The transformation consists of a (semi-) automated and a
manual phase. First, generic copy operations based on the difference model are
invoked to copy as much data as possible to the successor model. Afterwards, a
manual transformation specified by the developers calculates the values for the
new id attributes.

name = “Motor“

: Component

HW Model Composed Model

id =
name = “Motor“

: HWComponent

name = “PID Controller“

: Component

SW Model

Phase 1

Deep Copy

id =
name = “PID Controller“

: SWComponent

Phase 2

Manual
Transformation

requires requires

Composed Model

id = 1
name = “Motor“

: HWComponent

id = 2
name = “PID Controller“

: SWComponent

requires

Fig. 7. Simple Example of a Model-to-Model Transformation

To reduce the effort for transformation encoding, all unchanged data between
the steps are copied through calls of library functions. The library function trans-
formObject takes care of converting the objects between the different names-
paces – a deep copy is performed. Through the information contained in the
difference model of the MM2MM transformation, the function is also capable
of handling renamings of classes, attributes, or references, e.g., class Component
→ HWComponent. Thus, the developers can concentrate on the “real” trans-
formation (assignment of unique identifiers to components). Figure 8 shows the
encoding of the M2M transformation from a HW and SW Model to a Com-
posed Model in the M2M transformation chain. The transformation is encoded
using Xtend and contains 4 library functions calls. For usual examples the num-
ber of calls shall be lower than 10 and follow a similar structure.



588 G. Kainz, C. Buckl, and A. Knoll

//Manual transformation function
Void calculateAndAssignId(Component component):

component.setId(component.eContainer.components.indexOf(component) + 1);

//Orchestration function of M2M transformation
create ComposedModel this (hw::SWModel hwmodel, sw::SWModel swmodel,

ModelTransformation transformation)
initM2MTransformation(transformation) -> //Initialize M2M transformation

//Call M2M transformation function copying unchanged data (deep copy)
this.components.addAll(hwmodel.components.transformObject()) ->
this.components.addAll(swmodel.components.transformObject()) ->

//Manual M2M transformation
this.components.calculateAndAsignId();

finiM2MTransformation(this); //Finalize M2M transformation

Fig. 8. Manual Specification of a Model-to-Model Transformation. For simplification
reasons each model contains a root element which stores all the other elements.

Transformation Algorithm. The transformation algorithm is started on an
object of an input model. From there it traverses all reachable objects. Every
time an object is reached, the algorithm tries to create an equivalent object in the
output model and copies as much data as possible between those objects. This
includes the transformation between data types of different namespaces. The
class of the object, which has to be created in the output model, is determined
by using the information contained in the difference model of the metamodels. If
elements like classes or attributes do not exist in the next metamodel of the M2M
transformation chain, e.g., they are deleted, their data is ignored. The same holds
for newly created elements, for which no data exists. To simplify the algorithm
all objects are created when they are reached for the first time regardless whether
they are reached through a containment or normal association. For keeping track
of already created objects a map is used, which relates input objects with their
corresponding output objects. Later on, this map can be used during the manual
transformation to navigate from input to output objects and vice versa and
access their data as needed.

Since the algorithm starts at a specific object, it is possible that only a sub
tree of the input model is traversed. The developers have to orchestrate the M2M
transformation, so that all required parts are copied. This task is simplified by
the fact, that the provided transformObject abstracts whether the object has
already been transformed. The finiM2MTransformation in addition takes care
that the resulting model contains no objects without corresponding container
(storing) object.

The algorithm is provided as a Java library. This library contains func-
tions for initializing a transformation (initM2MTransformation), transforming
objects (transformObject), storing relations between input and output objects
(storeMapping), getting related objects (getDestinationObjects and getSourceOb-
jects), and finalizing a transformation (finiM2MTransformation). In the example
the library has been used from Xtend, but it can be used with any other model
transformation language. It is even possible to perform the generic transforma-
tion in Java and do the manual part with a model transformation language.
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The library can also be used directly without specifying the metamodel dif-
ferences. In this case the output metamodel needs to be specified. Unchanged
parts are then copied to the output model by relying only on the information
represented in the structure of the underlying metamodels. The type, attribute,
and reference names are than used as matching criteria. This requires unique
type names over all input metamodels, which are combined.

6 Implementation and Evaluation

In the following, the approach and its implementation are evaluated in the con-
text of two MDSD tools of the embedded systems domain: FTOS and εSOA. The
tools are built according to state-of-the-art for embedded systems development
and rely on M2M transformations to calculate data needed for code generation.
In both tools, the approach has been integrated to simplify their M2M transfor-
mations. Both tools are based on the Eclipse Modeling Framework (EMF)4 and
use the languages Xtend and Java for M2M transformations.

6.1 Implementation Details

The presented approach has been realized based on EMF, which can be consid-
ered as an implementation of the Essential Meta Object Facility (EMOF) [10].
The implementation consists of a metamodel used to specify MM2MM trans-
formations, a script to perform MM2MM transformations based on difference
models, and a library to support the (semi-) automatic copy of data in exoge-
nous M2M transformations for operational (imperative) model transformation
languages. Figure 9 shows the size of the implementation containing support for
both M2M and MM2MM transformations, where the code for MM2MM trans-
formations forms the majority. The implementation and an extended example
are available at http://tooling.fortiss.org/.

Criteria JAVA Code Xtend Code

# Functions 76 14

# Statements 999 28

Fig. 9. Size of Implementation Supporting Model-to-Model Transformation Chains

6.2 Evaluation of FTOS

FTOS [3,11] targets fault-tolerant real-time systems. It generates an applica-
tion specific run-time system including automated selection and configuration
of appropriate fault-tolerance mechanisms. FTOS is based on four input models
with their corresponding metamodels. In the hardware model, developers can
describe the hardware topology (nodes and networks). A software model is used
to specify the application components with a coarse schedule. The set of faults

4 EMF: http://www.eclipse.org/modeling/emf/

http://tooling.fortiss.org/
http://www.eclipse.org/modeling/emf/
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that might occur in the system are defined in a fault model. The fault tolerance
model is used to select fault detection tests and fault tolerance strategies.

During M2M transformations the four models are merged into one model,
appropriate fault-detection mechanisms, and a refined schedule are calculated. A
detailed discussion of the different calculations can be found in [3]. To avoid nasty
copy operations, a huge and complex M2M transformation was used instead of
applying a series of fine-grained M2M transformations. Another problem was
the manual creation of the output metamodel, since the input metamodels are
frequently extended to support further hardware components or other fault-
tolerance mechanisms.

For FTOS, we applied the approach without relying on a difference model for
MM2MM transformations. Hence, there is no support for metamodel changes in
the M2M transformation chain and for the handling of renamed objects during
M2M transformation. Figures 10 and 11 depict the results of the improvement.
As can be seen in Figure 10, the code size reduction of the M2M transformation
is significant. This results only from the elimination of copy statements. Even in
this bad setup by using only one big transformation containing a lot of calcula-
tions, the ratio of simple copy instructions contained is high. The increase of the
runtime for an equivalent transformation by using the generic library instead of
a manual optimized transformation is instead negligible, as stated in Figure 11.
Even without using MM2MM transformations the major benefits are the sig-
nificant reduction of transformation functions and statements. This reduction
can be explained by the fact that many elements and their properties are sim-
ply copied during the M2M transformation. In addition, the readability of the
manual M2M transformation code has been improved, since the remaining code
mainly contains code describing the “real” transformation.

# Meta- JAVA Code Xtend Code

model Old M2M Improve- Old M2M Improve-Tool
Elements

Criteria
Vers. Vers. ment Vers. Vers. ment

101
# Functions 124 93 25.0 % 406 286 29.6 %

FTOS
# Statements 1285 1045 18.7 % 1881 1146 39.1 %

13 # Functions 8 1 87.5 % 22 6 72.7 %
εSOA∗

(+ 79)∗∗ # Statements 59 20 66.1 % 72 22 69.4 %

Fig. 10. Evaluation Results without and with the Presented Approach (* Only code
related to M2M transformation and handling of instances of manual created metamodel
elements are considered. Other code is ignored, e.g., routing calculation or handling of
instances of generated metamodel objects. ** Generated metamodel elements).

6.3 Evaluation of εSOA

εSOA [12] is used to develop sensor / actuator networks. During M2M trans-
formations communication routes are calculated and the routing tables are pre-
pared. εSOA is based on four input models with their corresponding metamodels.
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Developers define and configure the nodes engaged in the system and their con-
nection with each other in the nodes and network model. The available services
are defined in the service model. In the application model developers can instan-
tiate services on nodes and configure their communication relations.

During M2M transformations an appropriate network routing is calculated
for the specified communication. Along with this, unique identifiers are assigned
to instantiated services. Most of the calculations and storing of data are done in
Java. This setting contradicts the main philosophy of MDSD as calculated data
is stored outside of models. The major reason why this approach was selected,
was to avoid the extension of the underlying metamodel, since the affected part of
the metamodel is generated and quite often changed. Otherwise the integration
of the manual changes had to be repeated after each regeneration of the corre-
sponding metamodel part. For comfort reasons only one M2M transformation
was implemented.

In the context of εSOA, both MM2MM and M2M transformations were ap-
plied. The advantages of the MM2MM transformation support are obvious, since
the metamodels of the input models are extended frequently. By using MM2MM
transformations, the changes between metamodels in the M2M transformation
chain needed to be specified only once and can now be reapplied whenever an
input metamodel changes. The MM2MM transformation consists of the merge of
6 metamodels. In addition, 1 new class is added and 2 are modified (not abstract
anymore, renaming due to a name conflict), 1 enumeration is renamed due to
a name conflict, 6 references are added and 1 is deleted, and 5 attributes are
added and 1 is deleted. Figures 10 and 11 depict the results of the improvement.
As can be seen in Figure 10, the code size of the M2M transformation could be
dramatically reduced. Even by ignoring the improvements on major parts. The
main reason for the huge reduction is that the M2M transformation is mainly
a model combination. Since a combination of models consists predominantly of
copy operations, it was easy to get rid of these operations by our approach.
Figure 11 shows that even a decrease in the runtime for an equivalent transfor-
mation by using the generic library has been achieved. The difference between
the run times observed in the context of εSOA and of FTOS can be motivated by
the fact that the manual M2M transformations of FTOS require an additional
traversing of the model whereas most of the transformations of εSOA are already
realized by the library. The speed up is motivated by the execution of compiled
Java code compared to interpreted Xtend code.

# Objects in Runtime
Tool

Application Model Old Version M2M Version Improvement

FTOS 121 468.2 ms 478.8 ms -2.3 %

εSOA 112 212.2 ms 199.4 ms 6.0 %

Fig. 11. Runtime without and with the Presented Approach (average over 5 runs)
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7 Related Work

The M2M transformation part of our approach is highly related to model trans-
formation languages like Xtend5, QVTOperational [5], or the imperative part
of ATL6 [13] and constitutes an extension of such languages through a library.
This extension is used to relieve the developers from specifying copy operations
for unchanged model data by providing support for deep copy. As demonstrated
in this paper, the amount of copy operations in a M2M transformation can be
rather high. For similar reasons ATL offers a refine mode, which can be used to
copy model elements, but works only for endogenous transformations.

The specification of differences between metamodels is closely related to the
representation of model differences [7] and delta models used in software product
lines (SPLs) [8,9]. Differences in SPLs are called features [14] and are used to
integrate functionality into a base configuration. Features are ordered relatively
to each other to ensure a consistent integration. When creating a new product, all
the required features are selected. The features are ordered and their applications
lead to the configured product. In our approach, we support the construction of
M2M transformation chains defining a fixed order of the transformations. We do
not only take care of transforming the model (product), but also consider the
creation of the metamodels required by M2M transformation chains.

Glue Generator Tool (GGT) [15,16] is a framework dedicated to the reuse of
PIMs and PSMs of existing applications. Composition rules are specified using
GGTs own metamodel. Correspondence rules are used to relate model elements.
For composition merge rules are used. Modifications are handled by override
rules. In contrast to GGT, our approach is more concerned with the various cal-
culations done in M2M transformation chains and their optimal support. There-
fore, only aligned models are considered.

Epsilon Merging Language (EML) [17] is a metamodel based language for
expressing model merges. It contains a model comparison and transformation
language. Like GGT it is rule based. Match rules specify matching elements,
which are then merged through according rules. Not matched elements are han-
dled by transformation rules. EML is concerned with the merge of models based
on a specification including copy operations. Our solution is focused on the au-
tomation of those copy operations based on type equality. Along with this, our
approach offers a way to describe the adaptation of metamodels.

Epsilon Flock [18] is a model migration tool build on top of EML. It contains
a rule based transformation language used to define adaptations for metamodel
evolutions. This language includes a conservative copy algorithm, which is used
to copy unchanged model elements to the new model version. As Epsilon Flock is
used to adapt models after a metamodel evolution happened, it does not consider
changing metamodels by itself. But as has been shown in this paper, the support
of metamodel changes is important for M2M transformation chains. The same
holds for other metamodel evolution tools, e.g., COPE [19] or Ecore2Ecore [20].

5 Xtend/Xpand: http://wiki.eclipse.org/Xpand
6 ATL: http://www.eclipse.org/atl/

http://wiki.eclipse.org/Xpand
http://www.eclipse.org/atl/
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Atlas Model Weaver (AMW)7 is a model composition framework that uses
a specification for model transformations called weaving model to produce an
executable model transformation. The weaving model contains composition op-
erators specifying the relation between the various input models. This weaving
model is used by AMW to compose various models. In this sense, it is more
a model transformation language. Copy operations can be automated based on
the various relations stored in the weaving model. However, the construction of
the output metamodel is not in the focus of AMW and not further supported
through weaving models.

8 Conclusions

MDA proposes a model refinement in several steps from PIMs to PSMs. However,
this requires the management of many similar metamodels and the copy of data
between the corresponding models. If large parts of the model remain unchanged,
the developers have to specify many copy operations. To avoid this problem, the
developers typically use only few steps between PIMs and PSMs.

In this paper an approach was presented that supports on the one hand the
(semi-) automatic metamodel construction to specify metamodel chains and to
cope with later changes. On the other hand the (semi-) automatic copy of un-
changed model data during M2M transformations is supported. The MM2MM
transformation support has been applied to one MDSD tool, clearly showing its
benefits there. The M2M transformation was applied to two MDSD tools. Both
tools show a significant reduction of the code for M2M transformations (up to
70 %). This reduction is only related to avoiding simple copy operations. How-
ever, besides lower effort for specifying M2M transformations, the readability is
improved drastically.
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Abstract. A major challenge in adopting UML in industrial environ-
ments is the lack of accessibility and comprehensibility of some diagram
types by non-technical stakeholders. Literate Modeling improves compre-
hension of these diagrams by adding narrative text, but lacks good tool
support for synchronizing model and text. This paper presents an ap-
proach for keeping model and text synchronized by effectively combining
state-of-the-art natural language processing technology with OCL model
querying. Thereby, consistency of element names in the UML model with
their counterparts in the text is achieved by using text annotations to
provide the semantic link. At a structural level, we propose an algorithm
that checks element relationships in the UML model using a set of vali-
dation constraints when particular sentence characteristics are detected.
An analysis of the runtime complexity shows the feasibility of including
the proposed solution in one of today’s CASE tools.

1 Introduction

The Unified Modeling Language (UML) has become the de-facto standard mod-
eling language. According to [20] 80%– 90% of questionnaire respondents use
UML for Model Driven Software Engineering. Empirical studies have shown that
even usage of UML models as software documentation is beneficial. A systematic
literature review [11] based on 23 empirical papers concludes that the benefits
of UML for developers outweigh the costs and risks. [12] finds that using UML
documentation can increase by 54% the functional correctness of changes in
comparison to the control group.

Despite these benefits, our experience in working with several large compa-
nies throughout Europe is that UML modeling continues to be underused. We
have seen time and again, that this is largely due to the lack of accessibility and
comprehensibility of UML models by business users, domain experts, managers,
some programmers, and even some analysts. In [1,2] we described our observa-
tions on the lack of accessibility of UML models due to the need for complex and
expensive modeling tools, and the lack of comprehensibility due to the complex
visual syntax and semantics of UML. In that paper we proposed a simple and
effective solution to some of these problems—Literate Modeling.

R.B. France et al. (Eds.): MODELS 2012, LNCS 7590, pp. 595–608, 2012.
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In Literate Modeling, the UML model is embedded in an explanatory narrative
to create a document called a Business Context Document. This is accessible
because it is in the form of a text document that anyone can read. It is made
comprehensible by the convention that the narrative part of the document must
stand alone, and be completely comprehensible without any knowledge of UML.
Of course, the introduction of an explanatory narrative creates the problem of
keeping the narrative and the model in sync. How do you know that what the
model says is accurately reflected in the narrative and vice versa? In [1,2] this
problem was addressed by the use of a controlled vocabulary whereby model
elements we referred to directly by name in the narrative. One could then read
the narrative and, by inspection, see that it accorded with the model, or vice-
versa. The Business Context Document closes the comprehensibility gap between
the modeler and their non-technical audience and allows for effective review and
feedback on the models by non-technical stakeholders.

Beginning with the work in [1] and continuing to apply Literate Modeling
through domains as diverse as travel, defence, insurance and investment banking,
we have consistently found that Literate Models are more accessible, compre-
hensible and therefore of higher value to our customers than plain UML models.
However, there are two key issues that we have discovered in Literate Model-
ing: Firstly, successful Business Context Documents need good writing skills.
We address this issue to some degree with a proposed set of Literate Modeling
writing standards to be published in [3]. Secondly, Business Context Documents
are difficult to write because of the need to reference model elements by name
and then use inspection to check the consistency of the narrative and the model.

In the ideal case, the Business Context Document should be generated directly
from the UML model. But as was pointed out in [1] this isn’t really practicable
because the UML model doesn’t contain enough information to create a com-
pelling narrative. In particular, all business context around the model, why it
is important, what parts need to be emphasized, how it fits into the rest of the
business, who it is important to, what "story" the model tells about the business,
is typically absent from UML models. A more pragmatic approach is to create an
environment that helps the writer to write Business Context Documents by au-
tomating (to some degree) the referencing and inspection requirements. Such an
environment could be integrated into existing CASE tools, allowing the author
to develop model and text in a synchronized manner.

In this paper, we present an approach that uses existing natural language pro-
cessing tools in conjunction with OCL to address the referencing and inspection
issues that must be handled in such an environment. The remainder of this paper
is structured as follows: Section 2 establishes the background of our research. In
Section 3, we present our synchronization approach, followed by a description
of the complete synchronization algorithm. Section 5 analyzes the runtime com-
plexity of the proposed solution. Section 6 briefly describes our prototype editor
for Literate Modeling, followed by a discussion of related work in Section 7. The
paper concludes in Section 8 with a summary of its contributions and possible
future work.
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2 Background

During individual activities in software development, the conceptual information
of a software system is captured using different representations, which exhibit
different degrees of formality. Initially, the requirements of a software system are
expressed in natural language, as they are usually developed in discussion with
the customer. Typically, these descriptions are then formalized using a modeling
language such as UML. The resulting model serves as the basis for the actual
implementation.

Moving between these representations involves some kind of transformation,
which is shown in Fig. 1. Typically, descriptions in natural language are infor-
mal and may contain additional information that is irrelevant for the actual
development of the software. UML can be seen as a semi-formal language, as it
contains both formal and informal elements, whereas code is a completely formal
representation of software.

The transitions between these representations cannot always be carried out
fully automatically. The process of moving from natural language to UML models
mainly suffers from the ambiguity of natural language, which makes it infeasible
to automatically construct an accurate model from the text. The transforma-
tion of models into code is limited by missing detail in the model. Analogously,
constructing models from source code may not be satisfactory as the resulting
artifacts typically contain too much detail, contrasting with the intention of
every model to provide a meaningful abstraction of a system. Similarly, descrip-
tions in natural language remain on the same level of abstraction as the model,
which does not contain any additional information that may be relevant from a
business perspective.

Most modern CASE tools offer the possibility to generate source code from
UML models, which can serve as a skeleton for the implementation. Some of
them have reverse engineering capabilities as well, that allow construction of
UML models from the code. What is much more challenging is closing the gap
between natural language and models. For the direction from model to text, [15]
describes a tool that generates customizable descriptions of object oriented

NL

English,
German,
Polish,
...

Model

UML,
ER,
DSLs,
...

Code

Java,
C++,
PHP,
...

Synchronization Synchronization

Refinement

Generation Generation

Generation Generation

informal semi-formal formal

Refinement Refinement

Fig. 1. Transformation between different representations of software
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models. [16] presents an approach for generating natural language specifications
from UML class diagrams. For the other direction, [13] describes a natural lan-
guage based CASE tool that generates object-oriented models from requirements
in natural language with assistance from the user or fully automatically. [8] pro-
poses a tool for generating static UML models from natural language require-
ments. An approach that transforms UML Use Case models into analysis models
and additionally establishes traceability links between these representations has
been proposed in [22].

In practice, changes may occur in all three representations during the soft-
ware development process, leading to incorrect and inconsistent information. In
this regard, generative methods clearly have their limitations. A more flexible ap-
proach to address these consistency issues is synchronization. Between model and
code, this synchronization is already provided by several CASE tools1, known
as Round-trip Engineering (RTE). However, to the best of our knowledge, there
does not exist a solution for synchronizing models and natural language.

3 Synchronization Approach

The synchronization approach presented in this paper is based on two consider-
ations. First, names of model elements that are referenced from the text need to
be synchronized with their counterparts in the UML model. Second, sentences
that contain references to model elements need to be checked whether they are
in sync with the structural features of the model they describe.

3.1 Running Example

To facilitate the explanation of our approach, this subsection provides a running
example. In this paper, we focus on class diagrams as they are among the most
important UML diagram types. However, the synchronization approach is not
merely limited to the UML elements used in class diagrams, but provides a
general mechanism to decrease the gap between natural language and UML
models.

The UML class diagram in Fig. 2 shows a fragment of a university model
explained using Literate Modeling. Model elements are referred to by their name,
and typeset using a special font. In addition, some names for relationships like
offeredBy are composed of two words, a verb (offered) and a preposition (by).

When changing the model or the text, inconsistencies may arise, as shown in
Fig. 3. Here, the multiplicity of the association end attached to Course of the
association enrolls has been changed from one or more to zero or more. More-
over, the association name offeredBy has been changed to providedBy. For
the second inconsistency, only a single element needs to be considered, whereas
for the first inconsistency, the complete sentence needs to be analyzed. Moreover,
changing multiplicities may cause the grammatical number of nouns and verbs to
1 Examples include MagicDraw UML (http://www.magicdraw.com) or Visual

Paradigm (http://www.visual-paradigm.com)

http://www.magicdraw.com
http://www.visual-paradigm.com
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offeredBy

11..*

enroll

1..*

1
(1) A Student enrolls for one or

more Courses.

(2) The Courses are offeredBy the
University.

Fig. 2. Class diagram fragment explained using Literate Modeling

UniversityCourse

Student

providedBy

11..*

enroll

0..*

1
(1) A Student enrolls for one or

more Courses.

(2) The Courses are offeredBy the
University.

Fig. 3. Inconsistencies between model and text

change, which must be considered as well. Using a conventional text processor,
these changes may remain undetected, resulting in incorrect and inconsistent
documentation.

3.2 Synchronization of Individual Elements

For synchronization of individual elements, we use text annotations that provide
the semantic link between a particular word of a sentence and the corresponding
element of the UML model, as shown in Fig. 4. In this way, model elements can
be clearly identified as such and are easily distinguishable from words that do not
describe some part of the model, even if they are lexically identical. Moreover,
changes of model elements can be handled quickly since their occurrences within
the text are known. Each annotation contains the unique resource identifier
(URI) of the model element, as well as the fully qualified name of the element
within the model, based on the idea of [2, p. 110]. By having both the unique
identifier and the fully qualified name, changes can be detected even if the model
has been edited separately from the text. For sentence (2) of Fig. 3, the system

A Student enrolls for one or more Courses.

Fig. 4. Semantic annotation of text
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would detect the difference between the strings providedBy and offeredBy,
and change the name in the text accordingly.

3.3 Validation of Sentences

To take account of the model’s structural features, sentences that contain refer-
ences to model elements need to be validated. This is achieved by checking each
sentence using a set of validation constraints. A validation constraint has the
form of an implication

(CS ⇒ CM ) (1)

where CS denotes a constraint that checks certain properties on the structure
of a sentence, and CM represents a meta-level constraint on objects of the UML
model. Whenever the constraint CS holds for a sentence, by implication CM has
to hold for the model. Note that the opposite direction does not hold in the
general case. Particular properties of the model do not enforce a specific gram-
matical structure on the observed sentence, as those properties can be described
using different sentences.

Sentence Constraints. For analyzing the structure of each sentence, we have
used the Stanford PCFG Parser [14]. To correctly handle names of elements in
a sentence, we modified the parser to account for non-meaningful names as well.
This process is described in detail in [19].

In addition to traditional phrase structure trees, the Stanford parser provides
a more meaningful representation in terms of grammatical relations, the Stanford
Typed Dependencies (SD) representation [7]. Hereby, a sentence is represented
as a binary relation between two sentence words, consisting of a governor and a
dependent. Fig. 5 shows the typed dependencies for sentence (1) in both graph-
ical and textual representation. In the graphical representation, each relation is
represented by an arrow from the governor to its dependent, labeled with the
name of the relation.

Based on this representation, we have developed a language that allows us to
search for specific grammatical relationships between individual constituents of a
sentence, as well as specify the type of the UML model elements particular words
have to be associated with. A sentence constraint expressed in this language
consists of three parts, a context declaration (keyword: context), one or more
type declarations (keyword: let) and a constraint expression (keyword: where).

– The context declaration is used to specify the name of the variable that
should be used as context for the corresponding model constraint.

– Type declarations are used to restrict particular variables to be of a specific
type, which can be either a UML type, or one of the primitive types Integer
and String.

– Finally, the constraint expression allows us to search for specific grammatical
relationships between individual constituents of the sentence.

An example sentence constraint that matches sentence (1) is shown in
listing 1.1.
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num(Courses,more)

(b)

Fig. 5. Typed dependencies of sentence (1) shown in graphical (a) and textual
form (b)

Listing 1.1. Example sentence constraint CS

context verb

l e t ( sub j : uml( ’uml::Class’ ) , verb : uml( ’uml::Association ’ ) ,
ob j : uml( ’uml::Class’ ) , l b : Integer )

where( nsubj ( verb , sub j ) and prep ( verb , ob j )
and quantmod ( l b , ub ) and num(ub , ob j ) and ub = ’more ’ )

The constraint checks whether the observed sentence has a subject that is con-
nected to an object using a verb and a preposition, with subject and object
each being linked to an object of type uml::Class and the verb being linked to
an object of type uml::Association. In addition, the existence of a quantifica-
tion modifier is checked, with its first parameter being of type Integer and the
second one equaling to the string "more".

Internally, the sentence constraints are translated into an equivalent Prolog
query and evaluated using a light-weight Prolog system for Java [10] that allows
the contribution of additional Prolog predicates written in the host language.
Our evaluation engine automatically determines whether a particular word can
be converted to the specified type, which works for numbers as well as numerals.

Model Constraints. For expressing the second component of the validation
constraint, we use the Object Constraint Language (OCL) [17]. Validation con-
straints are required to work with all possible user models, hence we use OCL on
the UML metamodel layer (M2) to constrain elements of the user model (M1).
More precisely, the invariant mechanism of OCL is used to check whether a set
of classes conforms to certain structural requirements.

To make this more clear, we take the sentence constraint of listing 1.1 and
write a corresponding model constraint CM , which is shown in listing 1.2. Note
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the missing context declaration in the OCL constraint. Here, a separate decla-
ration is not needed as the actual context element and the values for variables
are obtained from the successful evaluation of the sentence constraint.

Listing 1.2. Example model constraint CM .

s e l f . re latedElement−>asSet ( ) = Set{ subj , ob j }
and se l f .memberEnd−>any ( e : Property | e . type = sub j ) . lower = 1
and se l f .memberEnd−>any ( e : Property | e . type = sub j ) . upper = 1
and se l f .memberEnd−>any ( e : Property | e . type = ob j ) . lower = l b
and se l f .memberEnd−>any ( e : Property | e . type = ob j ) . upper = ∗

The constraint first checks whether the association relates the two elements at
all. If this is true, the multiplicities of the association ends are investigated, i.e.
whether they match the values obtained from the sentence constraint. Thereby,
the string ’more’ in the sentence constraint has to be considered explicitly and
is reflected by the multiplicity ∗ in the model constraint.

For sentence (1), the evaluation of the sentence constraint assigns the value 1 to
the variable lb. The corresponding model constraint evaluates to false for the UML
model of figure 3, as the lower bound of the Course end of the association enroll
is 0, and not 1. In this case, a meaningful error message should be raised, e.g.

"There does not exist an association enroll between the classes Student and
Course that has multiplicity 1..*".

Above, a configurable and extensible mechanism for mapping the semantics
of sentences in natural language to UML was presented. By writing a sufficiently
large set of constraint pairs (CS ⇒ CM ), a variety of different writing styles can
be covered.

In the next section, we present an algorithm that uses this approach to indicate
inconsistencies between a UML model and accompanying narrative text.

4 Algorithm

The synchronization algorithm presented in this paper takes a UML model
and an annotated piece of text as input and returns a set of problem mark-
ers, which each contains information about a particular inconsistency, i.e. the
location within the text, the particular error message as well as any additional
information on how to resolve the error.

Fig. 6 shows an activity diagram of the synchronization process, which is
carried out in three stages. The Pre-Processing stage is responsible for synchro-
nization of individual elements, as well as splitting the text into sentences that
serve as input for the subsequent stages. The Validation stage is responsible for
validating the sentences obtained from the previous stage using a set of valida-
tion constraints. Finally, the Post-Processing stage attempts to check whether
inflection of nouns and verbs is correct with respect to the multiplicities of the
involved model elements.
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Fig. 6. Activity diagram of the synchronization process

4.1 Pre-Processing

The Pre-Processing stage synchronizes annotated words in the input text with
their counterparts in the UML model. When the name of a model element has
changed, the inflection operation that was applied on the previous name is figured
out and repeated for the new name. For this task, we use an algorithmic approach
for pluralization that is presented in [5]. If the choice of inflection is ambiguous, a
problem marker is added. After all elements have been synchronized, the input
text is tokenized and split into individual sentences. Thereby, a sentence is a
candidate for validation if it contains at least a predefined number of semantic
annotations, corresponding to the minimum number of model elements that are
involved in a relationship. In that case, the validation stage is entered, otherwise,
the system continues with the next sentence.

4.2 Validation

The second stage is concerned with the validation of each sentence using a pre-
defined set of the validation constraints presented in subsection 3.3, which may
be extended through additional constraints defined by the end user. Each con-
straint pair is evaluated on the current sentence. If CS is valid, the corresponding
model constraint CM is evaluated on the involved elements of the UML model.
If CM holds, the algorithm continues with the next constraint pair, otherwise, a
problem marker is added on the current sentence and the next sentence is pro-
cessed. If a sentence passes all validation constraint checks, it may be considered
as correct with respect to the constraints defined in the library.

4.3 Post-Processing

The last stage of the algorithm deals with the grammatical intricacies related to
inflection, i.e. determining whether nouns and verbs have the correct grammat-
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ical number with respect to the multiplicities imposed by the model constraint.
Inconsistencies at this stage can happen if the user changes multiplicities of re-
lationships or attributes in the model. The inflection process consists of the two
steps described below.

1. Model Element to Noun Agreement: In the first step, multiplicities for model
elements are extracted from the OCL constraint if possible. Model elements
that have a noun role within the sentence are validated with respect to
correct inflection according to the multiplicities extracted from the OCL
constraint. We argue that usually only one attribute or relationship involving
multiplicities is expressed in a constraint pair, which makes the multiplicity-
extraction process non-ambiguous.

2. Noun to Verb Agreement: In the second step, verbs that are related to a
model element having a subject role are validated with respect to correct
inflection. This is done by examining the corresponding relations of the typed
dependencies for active and passive voice.

5 Complexity

In this section, we want to estimate the runtime complexity of our approach. The
time required for synchronizing one sentence containing model elements consti-
tutes of the time required for synchronizing the individual model elements (TE)
in the sentence and the time required for performing structural synchronization
(TS):

Tsync = TE + TS

TE is linear with respect to the number of model elements in the sentence. This
is usually a small constant less than or equal to 3, which corresponds to the
typical subject–verb–object structure found in declarative sentences. Therefore,
the runtime complexity is constant for a single sentence:

TE ∈ O(1)

The time TS for performing structural synchronization constitutes of the time
required for performing natural language processing (TNLP ) and the time for
evaluating all constraints (TC):

TS = TNLP + TC

The complexity for natural language processing using the Stanford PCFG parser
is cubic with respect to the number of words n in a sentence [14]:

TNLP (n) ∈ O(n3)

Although the computational complexity does not look encouraging in the first
place, it is acceptable considering the average sentence length of an English
sentence of 15–20 words.
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The time for evaluating all constraints constitutes of the time required to
evaluate all sentence constraints (TCS) and the corresponding model constraints
(TCM ), respectively:

TC = TCS + TCM

Each sentence constraint is precompiled into an equivalent Prolog expression,
which is evaluated against a set of facts corresponding to the typed dependencies
of each sentence

For our prototype, we used a Prolog interpreter implemented as an object-
oriented SLD-solver [9]. Each sentence constraint is translated into a Prolog
query that does not contain any nested terms, the typed dependencies of each
sentence are translated into a set of ground terms. This reduces the worst-case
complexity of unifying one query term from exponential to linear time with re-
spect to the number of terms in the fact base. The complexity introduced by
nesting of boolean operators in the query is negligible, as it was never necessary
to write complicated sentence constraints in our practical tests. Under these as-
sumptions, The resulting query is a set of Horn clauses that can be solved in
linear time [6]. The number of typed dependencies in a sentence grows in linear
fashion with the number of sentence words n, and the number of typed depen-
dencies in the constraint approximately corresponds to the constant number of
model elements. With #C being the number of constraints in the library, the
time complexity of evaluating all sentence constraints is

TCS ∈ O(#C · n)

Model constraints are expressed as OCL invariants, whose evaluation can take
exponential time in the worst case [4]. The actual complexity however depends
on the constraint entered by the user. Moreover, model constraints are only
evaluated if the associated sentence constraint evaluates to true, which happens
usually once or twice per sentence. As a result,

TCM is negligible

Based on this observation, one can conclude that the bottleneck of the approach
is the NLP part. This is also supported by the results of the experiments we
have conducted [19]. Based on three chapters of [2], we measured the total time
required to synchronize each document, as well as the execution time for in-
dividual steps of the synchronization. With a constraint library consisting of
20 constraints, we observed that 98% of the synchronization time is consumed
by NLP and only 2% by sentence constraint evaluation. The time for element
synchronization and model constraint evaluation was negligible. On our test ma-
chine, a MacBook Pro with a 2.53 GHz Intel Core 2 Duo processor and 4 GB
of RAM, 151ms were required on average to synchronize one sentence. For in-
stance, for the Party Archetype Pattern chapter in [2] having 447 sentences, our
prototype implementation needed 41.02 s for synchronization.
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6 Tool Support

The presented approach has been implemented in a prototypic editor for Lit-
erate Modeling, called LiMonE2, which was used to conduct the experiments
discussed above. The tool has been developed as a plugin for Eclipse, and is
designed to interoperate with different modeling tools built on top of the Eclipse
platform. Currently, adapters for the Papyrus UML Modeler and the UML2
Tools of Eclipse are provided.

The editor allows the user to create a Business Context Document for a par-
ticular model, and embed the diagrams of the model in the document. Model
elements can be inserted via an auto-completion feature, which allows the user to
select from a list of suggested items. UML model and text can be edited simulta-
neously, with changes to individual model elements being updated immediately
in the Business Context Document. In case structural changes have been made
to the model, those sentences containing text annotations are validated after the
model or the text document have been saved. As already mentioned in section
3.2, changes can be detected even when the model is edited without the editor
being open. A list with the detected inconsistencies is shown in a separate view,
with the corresponding sentences being underlined in the editor.

7 Related Work

In this section, we discuss related approaches and compare them to our solution.
We only consider research that deals with synchronized development of models
and text, as opposed to transformation between those representations.

The Development Environment For Tutorials (DEFT) [21] allows including
various development artifacts like source code or UML models within a doc-
ument. The source artifacts are transformed into an appropriate graphical or
textual representation, the system updates these representations whenever the
source artifacts change. Whereas DEFT focuses on enforcing consistency on an
artifact level, our approach attempts to provide fine-grained synchronization of
sentences in natural language with parts of the UML model.

Literate Process Modeling (LiProMo) [18] applies the idea of Literate Model-
ing to the domain of Business Process Modeling. The prototypical editor allows
the user to edit the actual process model and its textual description side-by-side.
Thereby, model elements can be linked to passages in the textual description.
These text passages are highlighted automatically when the associated model
elements have been selected, and vice versa. Compared to our approach, inte-
gration is provided on a paragraph level, but no synchronization on changes on
individual model elements is supported.

8 Conclusion and Future Work

In this paper, we have presented an approach to address a major problem in
Literate Modeling: consistency between model and text. The problem of keeping
2 LiMonE: http://squam.info/limone

http://squam.info/limone
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UML models and text synchronized has been addressed by using text annota-
tions and a synchronization algorithm that uses natural language processing in
conjunction with OCL. The presented approach maintains a certain degree of
expressional freedom for the author, as the algorithm uses a set of constraint
pairs that can be easily extended to cover different writing styles. As consis-
tency checks are made on a per-sentence basis, the presented approach is more
efficient than attempting to construct a model from the text for the sake of
synchronization.

An estimation of the computational complexity of our approach shows that
the time required to parse one sentence is a magnitude higher than the time
required to check its validity with respect to the UML model. In the current
state of the prototype, only those sentences that contain references to model
elements are parsed, but there are other possible optimizations that could be
applied. For instance, one could only synchronize those sentences that have been
edited by the user. Moreover, sentences could be synchronized on the fly while
the user is typing, i.e. immediately after a sentence has been completed. If a
structural change occurs in the model, only those sentences containing references
to the model elements affected by the change need to be considered. To improve
accuracy of the NL parser, one could investigate in more detail the relationship
between UML elements and how they are related to part of speech. Moreover, the
parser could be trained on an appropriate training corpus to further increase the
accuracy of the generated syntax trees. At the moment, model elements have to
be referred to by their name in the text, meaning pronouns that refer to model
elements are not considered. Support for this case could be added by either
linking the pronoun to the appropriate element in the model, or by employing
anaphora resolution to determine these elements automatically.

Although neither of these optimizations will make the synchronization work
perfectly accurately, we consider our approach a valuable contribution to enforce
consistent documents in Literate Modeling. In this regard, an integration with
a more mature framework like DEFT would be certainly promising.
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Abstract. With the advent of Model-driven Software Engineering, the
advantage of generating trace links between source and target model
elements automatically, eases the problem of creating and maintaining
traceability data. Yet, an existing transformation engine as in the above
case is not always given in model-based development, (i.e. when transfor-
mations are implemented manually) and can not be leveraged for the sake
of trace link generation through the transformation mapping. We tackle
this problem by using model matching techniques to generate trace links
for arbitrary source and target models. Thereby, our approach is based
on a novel, language-agnostic concept defining three similarity measures
for matching. To achieve this, we exploit metamodel matching techniques
for graph-based model matching. Furthermore, we evaluate our approach
according to large-scale SAP business transformations and the ATL Zoo.

Keywords: Traceability, Model Matching, Software Quality.

1 Introduction

In the IEEE Standard Glossary of Software Engineering Terminology1 the notion
of traceability is defined as: The degree to which a relationship can be established
between two or more products of the development process, especially products hav-
ing a predecessor-successor or master-subordinate relationship to one another.

Traceability data in Model-driven Software Development (MDSD) can be un-
derstood as the runtime footprint of model transformation execution according
to [7]. Essentially, trace links provide this kind of information by associating
input and output elements with respect to the execution of a certain transfor-
mation rule. Trace links have a manifold application domain [11,23]: a) System
comprehension to understand system complexity by navigating via trace links
along model transformation chains; b) Model transformation debugging to locate
bugs during the development of transformation programs and later in shipped
applications; c) Change impact analysis to analyze the impact of a model change
on existing generated output; d) Coverage analysis to check and ensure that all
relevant parts of the input model are actually utilized by a transformation.

1 No. Std 610.12-1990.

R.B. France et al. (Eds.): MODELS 2012, LNCS 7590, pp. 609–625, 2012.
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According to [7,28] model transformation approaches either generate trace
links implicitly or explicitly. That is, in the former case, either provide an inte-
grated support for traceability (e.g. QVT [21], MOFScript [19]) or in the latter
one, rely on a developer to encode traceability as a regular output model (e.g.
ATL [4], oAW [2]). Yet, these traceability solutions all depend on the existence of
a transformation engine. This is only one side of the coin regarding traceability
in MDSD, while taking into account: a) manually implemented transformations
and b) proprietary transformation engines. Our approach tackles the problem of
trace link generation for these cases. In doing so, we propose to use model match-
ing techniques to generate trace links for arbitrary source and target models.
Essentially, we base our matching process on a graph-based internal data model
in accordance with typed attributed graphs. The contribution of this paper is a
novel, language-agnostic concept defining three similarity measures upon which
trace links are generated. It turns out that the key-enabler for leveraging model
matching for trace link generation is the exploitation of metamodel matching
techniques.

The content of this paper is structured into the main sections: Problem def-
inition (cf. Section 2), our approach (cf. Section 3), evaluation (cf. Section 4)
and related work (cf. Section 5). We conclude this paper in Section 6 with a
summary and an outlook on future work.

2 Problem Definition

We start off to derive different possibilities on trace link generation, being rele-
vant and necessary to MDSD in order to span the scope of our work. Essentially,
three such cases are derived in Figure 1:

1. Generation of Trace links through Transformation: Using the inte-
gral model mapping of model transformations to derive trace links in parallel to
the execution of a model transformation is a wide-spread practice [12,1,2]. The
integral model mapping is directed through the transformation program’s rules
at model transformation runtime. According to the above-mentioned definition,
traceability is the runtime footprint of transformation execution, therefore the
record of the model mapping due to a model transformation.

2. Generation of Trace links after Transformation and Processing of
Input and/or Output: The post-processing of input and output models is a
common practice in MDSD [27], for model-to-model as well as for model-to-text
transformations. For example, artefacts that cannot be generated automatically
and thus have to be added manually, or in general due to the evolution of arte-
facts. While changing input and/or output model after the transformation resp.
trace link generation, an update of traceability data might be necessary and thus
entails the generation of trace links after transformation execution.

3. Generation of Trace Links independent from Transformation: The
first two cases are based on the existence of a model transformation, i.e. the gen-
eration of trace links is dependent on the use of a transformation engine. Since
this does not generally hold for the domain of MDSD, the third case covers the
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generation of trace links, while assuming the non-existence of a transformation
program. The latter case relates to either of two subcases (cf. Figure 1), that is: a)
Bridgeable transformation gap: the transformation program is missing, yet
not impossible to write (called bridgeable transformation gap in Figure 1), e.g.
if a transformation was implemented manually in Java, or the transformation en-
gine is proprietary or generally a third party component. (model-based not model-
driven development as often the case at SAP) and b) Unbridgeable transfor-
mation gap: it is impossible to write a transformation program, since the differ-
ence in level of abstraction of potential source and target is too great to be able to
be bridged through a transformation, while still preserving the semantics (called
unbridgeable transformation gap in Figure 1), e.g. when mapping features to de-
sign models. Current traceability solutions in MDSD provide support for the 1.
category, yet not for the 2. and 3. category which is the focus of our work. As
key-enabling technique for the latter two categories, we propose model matching
technniques from the field of ontology alignment and schema matching [6,22] to
generate traceability data. The promising idea of this technique is its potential in
the automation of trace link generationwithout executing a model transformation
[29], which is restricted in categories 2 and 3. For a solution regarding category 1,
we refer to our previous work [12]. Both above-mentioned technniques of trace link
generation are incorporated into a framework, called generic traceability frame-
work, which may be seen as the broader sense of our work.

Generation of
Trace Links

through
Transformation

Existing Transformation Program

Generation of Trace Links
independent

from Transformation 

Bridgeable 
transformation gap

Unbridgeable
transformation gap

Non-existing Transformation Program

Generation of 
Trace Links 

after
Transformation

and
Processing of 

Input and/or Output

1 2 3

Generic TraceabilityFramework

Previous Work Model Matching

Fig. 1. The Big Picture

3 Traceability Model Matching System

In this section, we describe our proposed approach on model matching in more
detail, called traceability model matching system, essentially, taking two models
as input and creating a mapping, that is, correspondences between model ele-
ments, as output. This mapping is further analysed with respect to extracting
potential trace links. In the following, we explain the processing steps of our
proposed matching system, as depicted in Figure 2:
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Fig. 2. Process Steps of the Traceability Model Matching System

1. Import of Models: The available source and target models need to be
imported into a common data model, to have a common basis for arbitrary
matching algorithms.

2. Matching of Models: Different matching algorithms are applied to the
imported source and target model in order to identify model elements refer-
ring to the same conceptual entity. The matching system can be configured
by choosing which matching algorithms should be involved in the matching
process.

3. Configuration of Similarity Value Cube: Each matching algorithm pro-
vides separate results for a certain source and target model, where the results
describe a similarity value for all source and target model element combina-
tions, called similarity value matrix. All of these matrices are arranged into a
cube, called similarity value cube (SVC), as depicted in Figure 2. To derive
a mapping (or matches) between source and target elements out of these
results, the similarity value cube needs to be configured, e.g. to form an ag-
gregation matrix by calculating the average of similarity values, or selection
matrix by selecting all elements exceeding a certain threshold.

4. Extraction of Trace Links: The resulting mapping is analysed and trace
links are extracted according to certain heuristics, or configurations.

3.1 Import of Models

The first process step requires models to be imported into a common data model
for the sake of generalisation. Alternatively, one could abstain from this and
adapt matching algorithms individually, amenable to each source and target
model. Yet, this would result in a higher implementation effort. Thus, we choose
the first option and implement an importer for each model-specific language.

To be able to base our work on the field of graph theory to make use of graph
matching algorithms, we require the internal data model to have a graph struc-
ture. We require a graph formalism on the basis of which arbitrary models can be
expressed a) uniformly as graphs, yet with an adequate expressiveness and b) in
relation to their corresponding metamodels since we make use of this ”instance-
of” relationship in our matching approach (cf. Section 3.3). The formalism of
Typed Attributed Graphs holds for the above premises [9] and thus serves as
the foundation of our graph construction. Please note, for those readers who
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wish to omit the formal definition of the theory of Typed Attributed Graphs, it
is still important to know the following basics. Metamodels are represented by
Attributed Typed Graphs (ATG), models by Attributed Graphs (AG). We will
make use of Typed Attributed Graphs (TAG) to express the “instance-of” rela-
tionship between ATGs and AGs, since a TAG is an AG together with a special
mapping from AG to ATG. This mapping is needed to render the metamodel
types of certain models elements.

3.2 Running Example

To underline our matching process, we introduce an illustrative example based
on a model transformation from certain entities to object-oriented class specifi-
cations. Both the source and target model with their corresponding metamodels
are depicted in Figure 3 as AGs resp. ATGs. We adopt the graph notation from
[9] for E-graphs. An E-graph has two different kinds of nodes, representing the
graph and data nodes, and three kinds of edges, the usual graph edges and spe-
cial edges used for the node and edge attribution. The solid nodes and arrows are
the graph nodes VG and edges EG, respectively. The dashed nodes are the (used)
data nodes VD and dashed arrows represent node and edge attribute edges.

The ATG-Source Metamodel includes Entities, which contain Features. Both,
Entities and Features, are characterized by a name of type String. The AG-
Source Model includes an Entity called Person owning two Features, carrying
the names, name and age. Furthermore, the ATG-Target Metamodel specifies
Classes that consists of Fields and Methods. Again, all model elements own a
name attribute of type String. The AG-Target Model describes a Person Class
containing two Fields, namely name and age, and according getter methods,
namely getName and getAge.

3.3 Matching of Models

Based on our internal E-graph model, we identified the following similarity mea-
sures upon which the calculation of similarity values is based on:

1. Attribute Similarity Measure: Similar data nodes from source and tar-
get graphs, indicate shared characteristics, which we refer to as attributes,
and thus a potential similarity between the graph nodes the data nodes are
connected to.

2. Connection Similarity Measure: The similarity between a set of source
and target children nodes acts as a similarity measure. Two parent graph
nodes from source and target graph with similar children graph nodes likely
refer to the same entity. Thus, the connectivity of a graph node to its children
graph nodes is used to propagate the similarity from child to parent node.

3. Instance-of Similarity Measure: We base the matching process on model
level on the results of metamodel matching by making use of the “instance-
of” relation. Thus, we investigate the outcome of propagating the similarity
of metamodel elements to their conforming model elements.
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Fig. 3. Illustrative Example

In the next subsections, we propose a configurable base matching algorithm mak-
ing use of the above-mentioned similarity measures. Depending on the chosen
similarity measure, the algorithm’s functionality is defined.

Model Matching. The model matching process with regard to the first two
similarity measures is outlined in Alg. 1 and 2. The core idea of Alg. 1 is to
match an attributed source and target graph and to return a mapping between
corresponding source and target graph nodes. The procedure matchGraphs

(line 1 − 8) matches two attributed graphs AG1 and AG2 on the basis of the
similarityMeasure from the set {ATTRIBUTES,CONNECTIONS}. In either
way the Cartesian product of source and target graph nodes is calculated (line
2−3), thereby assigning to each Cartesian pair (si, sj) a similarity value through
the matchNodes function (line 4 resp. 9− 16) and depending on the similarity
measure chosen in line 1. Accordingly, all similarity values are arranged in a sim-
ilarity value matrix denoted by SIM|V 1

G||V 2
G| (line 4). The retrieveMatches

function (line 7) receives SIM|V 1
G||V 2

G| as input and renders a mapping between

source and target graph nodes. In case the similarity measure ATTRIBUTES
is used, the similarity value assigned to a certain Cartesian pair (si, tj) is calcu-
lated through the matchAttributes function (Alg. 2, line 4− 13). In particu-
lar, the set of data nodes of si as well as tj is rendered (line 5− 6), denoted by
NodesATT

source resp. NodesATT
target, and their Cartesian product is calculated (line

7−8). For each such Cartesian pair, the degree of similarity is calculated through
the computeSimilarity function (line 12 resp. 1 − 3) and placed into a sim-
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Algorithm 1. Matching of two attributed graphs

Require: similarityV alues = {r|r ∈ R and 0 ≤ r ≤ 1} ∪ {UNKNOWN}
Ensure: similarityMeasure ∈ {ATTRIBUTES,CONNECTIONS}

1: procedure matchGraphs(AG1, AG2, similarityMeasure)
2: for all si ∈ V 1

G, i = {1, . . . ,
∣∣V 1

G

∣∣} do
3: for all tj ∈ V 2

G, j = {1, . . . ,
∣∣V 2

G

∣∣} do
4: SIM|V 1

G||V 2
G| � simij ← matchNodes(si, tj , similarityMeasure)

5: end for
6: end for
7: matches ← retrieveMatches(SIM|V 1

G||V 2
G|)

8: end procedure

9: function matchNodes(si, tj , similarityMeasure)
10: if similarityMeasure = ATTRIBUTES then
11: return matchAttributes(si, tj)
12: else if similarityMeasure = CONNECTIONS then
13: return matchConnectedNodes(si, tj)
14: end if
15: return UNKNOWN
16: end function

ilarity matrix SIMATT
Max(k)Max(l) (line 9). The resulting similarity matrix is re-

duced to a single similarity value by applying the set similarity function called
computeSetSimilarity2 (line 12) as similarity value between the two given graph
nodes (si, tj).

Alternatively, the similarity of two graph nodes is calculated on the basis of
the similarity measure CONNECTIONS and thus, the matchConnectedNodes
function (line 14 − 23) is called. The function takes as input a Cartesian pair
(si, tj) from Alg. 1, renders the set of all children graph nodes from si (line
15) resp. from tj (line 16), denoted by NodesCON

source resp. NodesCON
target and calcu-

lates the Cartesian product of these sets (line 17− 18). For each such Cartesian
graph node pair a similarity value is calculated on the basis of the function
matchAttributes and placed into a similarity matrix SIMCON

Max(p)Max(q) (line

19). Finally, the computeSetSimilarity reduces this matrix to a single similarity
value holding for the two given initial graph nodes (si, tj).

Example: In the following, we demonstrate model matching on the basis of the
similarity measures ATTRIBUTES and CONNECTIONS. We match the two
AGs depicted in Figure 4. First the Cartesian product of the set of all source
graph nodes (entity, feature1, feature2) and the set of all target graph nodes
(class, field1, f ield2,method1andmethod2) is calculated, yielding a similarity

2 We assume the computeSetSimilarity function to calculate a single similarity value
from the matrix of similarity values. In general, there are numerous ways of imple-
mentation.
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Algorithm 2. Similarity of two graph nodes

Require: compare : D1
s ×D2

s → similarityV alues
Ensure: dataNodesource ∈ D1

s ⊆ V 1
D and dataNodetarget ∈ D2

s ⊆ V 2
D

1: function computeSimilarity(dataNodesource, dataNodetarget)
2: return compare(dataNodesource, dataNodetarget)
3: end function
4: function matchAttributes(si, tj)
5: NodesATT

source ← {target1NA(e)|e ∈ E1
NA and source1NA(e) = si}

6: NodesATT
target ← {target2NA(e)|e ∈ E2

NA and source2NA(e) = tj}
7: for all sik ∈ NodesATT

source , k = {1, . . . ,
∣∣V 1

D

∣∣} do
8: for all tjl ∈ NodesATT

target, l = {1, . . . ,
∣∣V 2

D

∣∣} do
9: SIMATT

Max(k)Max(l) � simikjl ← computeSimilarity(sik , tjl )
10: end for
11: end for
12: return computeSetSimilarity(SIMATT

Max(k)Max(l))
13: end function

14: function matchConnectedNodes(si, tj)
15: NodesCON

source ← {target1G(e)|e ∈ E1
G and source2G(e) = si}

16: NodesCON
target ← {target2G(e)|e ∈ E2

G and source2G(e) = tj}
17: for all sip ∈ NodesCON

source, p = {1, . . . ,
∣∣V 1

G

∣∣ − 1} do
18: for all tjq ∈ NodesCON

target, q = {1, . . . ,
∣∣V 2

G

∣∣ − 1} do
19: SIMCON

Max(p)Max(q) � simipjq ← matchAttributes(sip, tjq )
20: end for
21: end for
22: return computeSetSimilarity(SIMCON

Max(p)Max(q))
23: end function

matrix of 15 cells. For the similarity measure ATTRIBUTES, the matchAt-

tributes function is called. For the sake of simplicity, we assume the
computeSimilarity function to calculate string similarity values on the basis of
the following definition: Given the data sorts D1

s = D2
s = String (where a sort is

defined as the set of data nodes of a certain label type, i.e. String) with v ∈ D1
s

and w ∈ D2
s , we define the function compare : D1

s × D2
s → similarityV alues

such that the following holds:

compare(v, w) =

⎧⎨
⎩
1 if v = w

0.5 if v ⊆ w

0 if v �= w

Thus, for the pair (entity, class) the data node Person is retrieved for the
source graph nodes entity as well as for the target graph node class. Since
their labels (i.e. strings) are identical, a similarity value of 1 is assigned to the
data node pair (Person, Person). Since the resulting similarity value matrix
SIMATT

11 (Alg. 2 line 12) contains only one cell with the similarity value 1,
the computeSetSimilarity function assigns the same value to the node pair
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Fig. 4. Model Matching Mappings for AG-Source Model and AG-Target Model

(entity, class). For the pair (feature1, class) a similarity value of 0 is calcu-
lated, since the labels of the data nodes name and person are unidentical. In
analogy, the mappings of the other graph nodes are calculated, as depicted by the
dashed lines with an according similarity value in Figure 4. In case the similarity
values are calculated on the basis of the similarity measure CONNECTIONS,
the matchConnectedNodes function is invoked. This entails the retrieval of
all children graph nodes per Cartesian graph node pair. For example, the graph
nodes feature1, feature2 resp. field1, f ield2,method1,method2 are retrieved
for the source graph node entity resp. target graph node class. Traversing the
Cartesian product of the retrieved sets, we assign to each Cartesian pair a sim-
ilarity value on the basis of the similarity measure ATTRIBUTES as described
above. For this example, we assume for the computeSetSimilarity function to
reduce the similarity matrix to a similarity value by taking the average of all
matching results from corresponding source-target children nodes. Thus a simi-
larity value of 0.75 is calculated and propagated to the node pair entity, class,
as depicted by the full line in Figure 4. Afterwards, the similarity of all remain-
ing Cartesian graph nodes pairs are calculated analogously. Since feature1 and
feature2 do not hold any related children graph nodes, no further similarity
values are calculated.

Metamodel-Driven Model Matching. In the following section, we introduce
an algorithm to realize the idea of how mappings due to metamodel match-
ing may be used for improving model matching results. Essentially, this im-
provement can be achieved by verifying or rejecting found matches based on
the metamodel mapping. This idea is called metamodel-driven model match-
ing and implements the third similarity measure, called INSTANCEOF. For
this purpose, we extend the above-mentioned algorithms by the similarity mea-
sure INSTANCEOF. To avoid repetition, we only describe the extended part
of the algorithm. In case the INSTANCEOF parameter is used, the matchN-

odeTypes function is invoked, which is defined in Alg. 3. The matchNode-

Types function takes as input a certain graph node pair (si, tj) from Alg. 1,
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Algorithm 3. Similarity of two typed graph nodes

Ensure: si ∈ V 1
G, NodeATG Type

source ∈ V1
G, tj ∈ V 2

G and NodeATG Type
target ∈ V2

G

Ensure: typeSimilarityMeasure ∈ similarityMeasure \ {INSTANCEOF}

1: function matchNodeTypes(si, tj)
2: NodeATG Type

source ← t1(si)

3: NodeATG Type
target ← t2(tj)

4: return matchNodes(NodeATG Type
source , NodeATG Type

target , typeSimilarityMeasure)
5: end function

thus working on respective source and target AGs. For each such pair (si, tj) the

corresponding graph nodes NodeATG Type
source , NodeATG Type

target of source and target
ATGs are returned by the attributed graph morphism t (line 2 − 3). For each

pair NodeATG Type
source , NodeATG Type

target a similarity value is calculated through the
matchNodes function (Alg. 3, line 4), the same way as in Alg. 1. As a con-

sequence, the similarity value of NodeATG Type
source , NodeATG Type

target is propagated to
(si, tj) (Alg. 1, line 4). Please note, we restrict the use of the similarity measure
INSTANCEOF to avoid potential cycles.

Example. We illustrate the similarity measure INSTANCEOF according to our
running example and assume a given metamodel mapping according to Alg. 1.
The metamodel mapping is depicted in the upper layer of Figure 5 with a map-
ping from Entity to Class as well as from Feature to Field and Method. For
each Cartesian pair the matchNodeType function is invoked. For the graph
nodes entity resp. class, the attributed graph morphism t yields the graph nodes
Entity resp. Class (being the metmodel types) Since a mapping exists be-
tween Entity and Class, the similarity value of 1 is propagated to the pair
(entity, class). Analogously, the similarities of the other Cartesian pairs is cal-
culated as depicted by the mappings in Figure 5.

Implementation. We based our implementation on the metamodel matching
framework, called Matchbox [31]. This framework is build up on the SAP Auto
Mapping Core, an implementation inspired by COMA++ [8], a schema match-
ing framework. The reason for choosing Matchbox is its language genericity and
broad scope of optimized metamodel matchers, fully aligned with our concep-
tual work on deriving three similarity measures for model matching. Essentially,
we adopted seven matchers from Matchbox: Name and NamePath matcher in
terms of the Attribute matcher; Children, Parent, Leaf, Sibling, Graph Edit Dis-
tance [30] and Pattern matcher [20] being structural matchers as variations of
the Connection matcher. Furthermore, we implemented an Instance-of matcher
in analogy to the data type matcher. Apart from “instance-of” matching, we
investigated blocking techniques [14] as part of metamodel-driven model match-
ing. In our case blocking is based on constraining the matching process to model
elements whose metamodel elements match (provided a correct and complete
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Fig. 5. Mappings of Metamodel-driven Model Matching

metamodel mapping). As a consequence, mapping results are more likely to be
correct and complexity is reduced. The difference between instance-of matching
and blocking is the point in time. The former takes place during the matching
process, while the latter in advance.

4 Evaluation

Our evaluation is based on 41 model transformations from the ATL Zoo3 as well
as a SAP business application, called Sales Scenario (SalesS) [10]. The motivation
for these scenarios stems from our requirements regarding the mapping tasks:
a) source and target models conforming to the same as well as different meta-
models, b) broad language scope and c) application domain. While the ATL Zoo
covers model-to-model transformations, the SalesS covers Xpand [2] model-to-
text transformations, thus fulfilling a). Both mapping scenarios complement each
other w.r.t. the language scope resp. applicability. In the SalesS (source and tar-
get model size: 72−1231 resp. 95−2593 model elements) domain-specific models
are transformed to Java source code in order to generate a complete business ap-
plication through corresponding large-scale transformations, on the other hand
the ATL Zoo (source and target model size: 41 − 3253 resp. 14 − 1813 model
elements) comprises common languages like UML, XML, and KM3 as well as

3 http://www.eclipse.org/m2m/atl/atlTransformations/

http://www.eclipse.org/m2m/atl/atlTransformations/
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Table 1. Summary of average results for Sales Scenario and ATL Zoo

Default Profile BlockingDBlockingP InstanceOf

SalesS
Recall 0.500 0.291 0.193 0.787 0.136
Precision 0.174 0.539 0.556 0.971 0.104
Fmeasure 0.204 0.338 0.257 0.851 0.072

ATL
Zoo

Recall 0.144 0.261 0.366 0.885 0.143
Precision 0.724 0.734 0.951 0.975 0.170
Fmeasure 0.210 0.313 0.477 0.901 0.084

domain-specific ones with transformations ranging from technical space bridges
over refactorings to model refinements.

4.1 Setup

To measure the quality of our matching results, we chose measures from in-
formation retrieval, namely: precision, recall and F-measure [24]. Secondly, our
evaluation is based on the brute force [17] method, entailing the variation of all
parameters w.r.t. to their values to gain all possible configurations upon which to
choose the qualitative best results. We adopted the parameters from [31] regard-
ing the strategies, Aggregation, Selection, Direction and a Combination of them.
The goldmapping retrieval for the ATL Zoo is based on the ATL higher order
transformation [13], while for the Sales Scenario the connector-based traceability
extraction from [12] was implemented.

4.2 Quality

With our evaluation, we answer the following questions: a) What is the average
quality of our matching results? b) What is the best quality per mapping? and
c) What is the influence of metamodel-driven matching?

For a) the average F-measure for a certain configuration over all SalesS and
ATL Zoo mappings is examined. Based on the latter, configurations providing
the maximum average F-measure are identified as default configurations. It turns
out, that the SalesS and ATL Zoo are characterized by significantly different de-
fault configurations. Regarding the matcher combination the results are particu-
larly striking. While the Attribute Matcher is most successful for the SalesS, the
GraphEditDistanceMatcher best accounts for the ATL Zoo. The average results
pertaining to these configurations are listed in Table 1 under default.

Regarding b) the configurations with the highest F-measure for each mapping
are considered as depicted in Figure 6 for the SalesS (top) and for the ATL Zoo
(two bottom rows). In general, the average of this highest F-measure (called
profile in Table 1) increases by a factor between 1.5 − 1.7 in comparison to the
default configuration.
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Fig. 6. Maximum of Precision, Recall and F-measure against Mappings

Regarding c), metamodel-driven blocking performed on the default configura-
tion mappings (denoted with BlockingD) improves matching results by a factor
of 1.3 − 2.3 w.r.t. the default configuration. Applying blocking on the profile
mappings (cf. BlockingP ) even improves results by a factor of 4.2 − 4.3. More-
over, Instanceof turns out to be effective only for models with a small amount
of instances per metamodel element.

4.3 Results

In order to successfully conduct traceability scenarios (cf. Section 1), the col-
lected traceability data needs to account for an adequate data expressiveness.
The above results show that metamodel-driven matching effective as blocking is
the key-enabler for leveraging model matching for trace link generation by rais-
ing the matching quality up to an F-measure of 0.9. In doing so, our approach
achieves a traceability data expressiveness of approximately 90% with respect to
trace link correctness and completeness.
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5 Related Work

In the following, we give an overview on related work, dealing with model resp.
metamodel matching. None of the following approaches have addressed nor tack-
led the problem of generating trace links on the basis of model and/or meta-
model matching with the same language genericity, quality (precision and recall)
of acquired matches and evaluation (authenticity and model size of evaluation
scenario(s)) as our approach.

Model matching is related to the field of schema matching and ontologymatch-
ing (also called alignment). Yet, the ideas of these matching approaches are based
on finding correspondences between source and target being on the same abstrac-
tion level. For a detailed survey we refer to [6,22,26]. Our approach additionally
allows for source and target models to conform to different metamodels, thus
allowing models to be on different levels of abstraction. The same applies to
entity matching, which focuses on identifying entities (objects, data instances)
referring to the same real-world entity for the sake of data integration and data
cleaning [14].

More closely related is the field of metamodel matching [31]. Yet, these ap-
proaches do not account for model-specific matching requirements, such as, lever-
aging on model-specific attributes for matching, containment semantics, import
mechanism from a model into a tree structure etc.

A range of technologies are available for differencing and comparing models
[16], both being amenable to model matching. For the following approaches,
we differentiate between intra-matching and inter-matching. Our work makes
a point of finding matches between source and target models conforming to
the same (referred to as intra-matching) as well as different (referred to as
inter-matching) metamodels. Additionally, we exploit metamodel-driven match-
ing techniques.

One possibility to computing model differences is static identity-based match-
ing. For example, in [3] a metamodel-independent algorithm is proposed to cal-
culate the difference and union of MOF-based models in the context of a version
control system. This approach necessitates a closed development environment in
which all model editors and other tools which modify models assign and main-
tain a persistent unique identifier at each model element. In such a context, one
can efficiently compute differences on the basis of persistent unique identifiers.
Yet, this approach only applies to mappings, where source and target conform to
the same metamodel and neither to models constructed independently from each
other, nor technologies that do not support maintenance of unique identifiers.

The Epsilon Comparison Language (ECL) [15] is a metamodel-agnostic and
technology-independent rule-based comparison language, accounting for model
comparison as foundation for model composition and model transformation test-
ing. Instead of relying on an internal data model, on which different similarity
measures are applied, ECL requires the user to specify domain-specific match
rules. These rules are dedicated to a certain source-target metamodel combi-
nation and specify matchers (in terms of our approach) with the help of a
model query language (EOL). In contrast to our matching system, this approach
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depends on metamodel-specific information to a high degree, yet on the other
hand, benefits from (potentially) more accurate matching results.

SiDiff [25] is based on a generic difference algorithm for UML models, support-
ing the three major state of the art matching strategies, i.e. ID-based, signature-
based and similarity-based matching. The internal data model basically is a tree
with typed elements that can be decorated with attributes and additionally may
have graph-like cross-references. In contrast to our graph model, this data model
is limited to containment (and reference) relationships and lacks e.g. representa-
tions of inheritance or instantiation. SiDiff uses an intra-matching approach with
an algorithm traversing a tree bottom up and top down similar to our Connec-
tion similarity measure propagation. However, SiDiff is language-specific, while
our approach is a configurable language-agnostic matching framework. On the
other hand, SiDiff makes use of UML-characteristis, by weighting similarity re-
sults according to element types and therefore evaluation results are likely to
outperform our aproach in this certain domain.

DSMDiff [18] provides for UML-specific intra-matching by using type infor-
mation of metamodels to encode characteristics in strings being compared. The
structural information used is as simple as the number of children or references.

EMFCompare [5] provides an out-of-the-box model comparison and merge
support and is the closest to our approach. The generic matching and differ-
encing engine are metamodel agnostic, thus support inter-matching in terms of
Ecore. Regarding the matching engine, matches are calculated through a sim-
ple algorithm which computes label and string edit distances. The comparative
evaluation between EMFCompare and our matching framework based on our
evaluation scenarios showed that EMFCompare identified correct matches for
29% of the available source-target combinations, with no correspondences in the
Sales Scenario. The resulting average F-measure of 0.1 is doubled resp. tripled by
the default configuration resp. profiles of our matching system. When applying
metamodel-driven matching techniques, in particular, blocking, EMFCompare
is outperformed by a factor of at least 4.7.

6 Conclusion and Future Work

In this paper, we proposed a traceability model matching system for generating
trace links for arbitrary source and target models in MDSD. The above system
accounts for the trace link generation categories 2 and 3 (cf. Section 2), that
is, in case a transformation engine is non-existing and thus, the integral model
mapping cannot be leveraged on, and/or in case the source and target models
have evolved after transformation execution. The methodology to develop the
matching system is founded on the idea of using a graph-based internal data
model based on Typed Attributed Graphs upon which the matching process
takes place. On grounds of this data model, we derived three similarity mea-
sures for the sake of model matching. Furthermore, the implementation of our
approach is build upon the metamodel matching framework, Matchbox, which we
extended to eight matchers aligned with the three derived similarity measures.
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The evaluation of our approach is based on the ATL Zoo and a SAP business
application. The results show that configuration profiles achieve 1.5− 1.7 times
better matching results w.r.t. default configurations. Metamodel-driven block-
ing on default configurations resp. on profile configurations improves matching
results by a factor of 1.3− 2.3 resp. even 4.2− 4.3.

For future work, we envision to improve the current set of matchers and the
integration of more language-specific matchers in order to optimize default con-
figurations, requiring no configuration effort for the user. Secondly, we investigate
the scalability for matching large-scale models (i.e. UML models), e.g. through
clustering. Furthermore, we look into the automatic derivation of configuration
profiles and their relation to similar matching scenarios.
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Abstract. In Business Process Modeling, several models are defined
for the same system, supporting the transition from business require-
ments to IT implementations. Each of these models targets a different
abstraction level and stakeholder perspective. In order to maintain con-
sistency among these models, which has become a major challenge not
only in this field, the correspondence between them has to be identified.
A correspondence between process models establishes which activities
in one model correspond to which activities in another model. This pa-
per presents an algorithm for determining such correspondences. The
algorithm is based on an empirical study of process models at a large
company in the banking sector, which revealed frequent correspondence
patterns between models spanning multiple abstraction levels. The algo-
rithm has two phases, first establishing correspondences based on similar-
ity of model element attributes such as types and names and then refining
the result based on the structure of the models. Compared to previous
work, our algorithm can recover complex correspondences relating whole
process fragments rather than just individual activities. We evaluate the
algorithm on 26 pairs of business-technical and technical-IT level mod-
els from four real-world projects, achieving overall precision of 93% and
recall of 70%. Given the substantial recall and the high precision, the al-
gorithm helps automating significant part of the correspondence recovery
for such models.

Keywords: BPMN Matching, Consistency Management, Change
Extraction.

1 Introduction

A growing number of enterprises use Model-Driven Engineering (MDE) based on
Business Process Modeling (BPM) to automate their business processes. BPM
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typically requires collaboration of many stakeholders, including Business Ana-
lysts, Systems Analysts, IT Architects and Developers. The distribution of re-
sponsibilities among these roles usually results in the creation of several models
of the same business process, each residing at a different abstraction level. These
models range from business-oriented ones, which are technology-independent
and easily understandable by business people, to IT-oriented ones, constructed
by taking into consideration technical facilities of existing systems. Specialized
modeling languages have been developed to represent such models. One such lan-
guage, standardized by the OMG, is Business Process Modeling and Notation
(BPMN) [11].

A key challenge in BPM is maintaining the consistency among these different
models. Maintaining consistency is important in order to ensure that business-
level process models are implemented correctly by executable models, and that
the business-level models reflect the implemented processes correctly, for ex-
ample, for auditing purposes. Checking and maintaining consistency between a
business-level model and its IT-level counterpart requires knowing the correspon-
dences between the activities in the first model and the activities in the other
one. Unfortunately, such correspondences are often missing in practice since the
models are created using different tools or languages. For example, business-level
models are often created using some variant of BPMN, either in a dedicated
BPMN tool or in a diagramming tool such as Visio, and the IT-level models
are often created in executable workflow language BPEL, targeting a specific
process execution engine. With the introduction of BPMN 2.0, both business-
and IT-level models can be expressed using the same language, improving tool
interoperability across levels of abstraction. Nevertheless, organizations having
existing business- and IT-level models still face the challenge of establishing the
correspondence among these models. For example, IT personnel at the Bank of
Northeast of Brazil (BNB), our industry partner, has faced this challenge as part
of a regulatory compliance project. In the absence of adequate tool support, this
task is very tedious and time consuming.

This paper presents a heuristic matching algorithm for determining such cor-
respondences. The algorithm is based on an empirical study of process models at
BNB [1]. The study revealed frequent correspondence patterns between models
spanning multiple abstraction levels, including adding or modifying the informa-
tion on individual activities and changing the models structure, for example, by
behavioral refactoring and adding IT-specific tasks. Consequently, our algorithm
has two phases, first establishing correspondences based on similarity of model
element attributes such as types and names and then refining the result based on
the structure of the models. Our algorithm can recover complex correspondences
relating whole process fragments of one model to such fragments in the other
model—a capability needed in practice [1]. Previous work on process models
has focused on either one-to-one correspondences between activities (e.g., [3]) or
one-to-many correspondences relating activities and process fragments ([17]).

We evaluate the algorithm on 26 pairs of business-technical and technical-IT
level models from four real-world projects, achieving overall precision of 93%
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and recall of 70%. Given the substantial recall and the high precision, the al-
gorithm helps automating significant part of the correspondence recovery for
models spanning multiple abstraction levels.

The remainder of the paper is structured as follows: Section 2 provides back-
ground on BPM and important concepts used throughout the paper. Section 3
describes the heuristic algorithm using a running example. Section 4 presents the
results of the empirical evaluation including threats to the validity of the work.
Section 5 discusses related work on process model matching. Finally, Sect. 6
summarizes and concludes the paper.

2 Background

2.1 BPMN, SESE, and PST

This paper assumes that the models to be matched are expressed in BPMN
2.0 [11]. BPMN 2.0 allows businesses to represent their internal business pro-
cedures in a graphical notation and communicate them in a standard way for
both documentation and execution. Models expressed in other languages, such
as BPMN 1.0 and BPEL, can be translated into BPMN 2.0 without adversely
impacting the information used by our algorithm (cf. Sect. 4.1). BPMN inherits
and combines elements from a number of previously proposed notations, includ-
ing the Activity Diagrams component of the Unified Modeling Notation (UML).

Figure 1 shows two BPMN process models. We added shorter names in paren-
theses (e.g., (AC)) to later facilitate concisely representing correspondences be-
tween the models. The notation displays activities by rounded rectangles, events
by circles, gateways by diamonds, and sequence flows by arrows. Each model
has a start, usually modeled by a start event (e.g., Customer inserts Card into
ATM ), a flow of activities governed by decisions (e.g., X1 ), and an end point.
A larger, realistic example is given elsewhere [1].

Any workflow graph (a BPMN process model in our case) can be uniquely
decomposed into single-entry single-exit (SESE) regions [15]. Let G = (N,E)
be a workflow graph, where N is the set of nodes and E the set of edges. A
SESE region R = (N ′, E′) is a nonempty subgraph of G, i.e., N ′ ⊆ N and E′ =
E∩(N ′×N ′) such that there exist edges e, e′ ∈ E with E∩((N\N ′)×N ′) = {e}
and E∩ (N ′× (N\N ′)) = {e′}; e and e′ are called the entry and the exit edge of
R, respectively. According to the formal definition, a SESE region is any region
in the workflow graph that has a single entry at the beginning and a single exit
at the end. In this way, an activity itself is a SESE region, and so is the whole
workflow graph.

The Process Structure Tree (PST) for a BPMN process model is a tree rep-
resenting the decomposition of the model into SESE regions [15], similar to the
much older notion of a program structure tree [9]. Figure 2 shows the PSTs corre-
sponding to the BPMN process models. There is a unique PST for each BPMN
model. The root represents the whole process model since a process model is
a SESE itself. Leaves represent model elements, i.e., activities, gateways and
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events. Inner nodes represent SESE regions. In particular, the parent of a region
R is the smallest region R′ that contains R.

Start

Approve Card
(AC)

           X1

Get Balance
(GB)

Consolidate 
Receipt

(CR)

Debit Account
(DA)

             X2

Emit Receipt 
(ER)

End

           X3            X4

(a) Business Specification

Customer Inserts 
Card into ATM

(Trigger)

Approve & Get 
Transaction

(AGT)

           X1

Get Balance
(GB)

Get Statement
(GS)

Debit 
Checkings

(DC)

             X2

Consolidate 
Receipt

(CR)
End

Debit Savings
(DS)

            X5             X6

         X3             X4

(b) Technical Specification

Fig. 1. BPMN Models

2.2 Differences between Business and IT Process Models

Our target scenario involves matching business-level models specified by business
analysts and the corresponding IT-level models implemented by IT specialists. IT
specialists usually refine the original specification to meet technical requirements
of the underlying IT infrastructure, such as invoking existing and new services,
adding exception treatment, and changing the control flow to satisfy application
protocols and optimize the execution. In previous work [1], we have studied over
70 models from BNB and interviewed their creators and maintainers, compiling
a catalog of 11 recurrent patterns used to refine business-level models into IT-
level models. These patterns include (i) adding or modifying properties of model
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elements, such as changing the name or type of an activity or adding service
call details, and (ii) changing the flow structure. The latter category includes
behavioral refinement and refactoring and adding additional behavior, such as
technical exception flow. An example from category (i) is the renaming and
retyping of the empty start event Start (Fig. 1.a) into the message-driven event
Customer inserts card into ATM (Fig. 1.b). An example from category (ii) is the
refinement of the task Debit Account (Fig. 1.a) into the block consisting of the
gateways X5 and X6 and two other tasks Debit Checkings and Debit Savings
(Fig. 1.b). Examples of other patterns are given in the study [1].

3 Matching Algorithm

We assume that the models to be matched represent the same process, but
at different levels of abstraction, as described in Section 2.2. We also assume
that, although the models are intended to be consistent, inconsistencies can
occur during their evolution. Thus, the models may include inconsistencies, such
as order of activities switched during refinement or business-relevant activities
added to the IT-level model but not reflected in the business-level model (see
[1] for other examples).

The algorithm identifies a correspondence between two models residing at
different abstraction levels. The algorithm operates on the PST representations
of the models. As stated in Sect. 2, leaves in a PST represent model elements ;
inner nodes represent SESE regions, or regions, for short. The algorithm com-
putes a (model) correspondence, which is a set of correspondence links among
PST nodes; each link connects a single node in the PST of the first model with a
single node of the PST of the other model. Thus, our algorithm is able to identify
correspondence links of different cardinality with respect to model elements: 1:1
(link among two model elements or two regions with only one model element
each), 1:n (link between a region with one model element in the first PST and
a region with more than one model elements in the second PST), and m:n (link
between regions with more than one model element each).

Our algorithm has two phases: attribute matching and structure matching.
The first phase deals with the search of correspondence links based on the at-
tributes of model elements such as names and types; the second phase tries
to find correspondence links based purely on the structures of the PSTs and
the links established in the first phase. Note that the first phase also considers
the structure of the PSTs since it matches both model elements and regions.
The next subsection presents the similarity measures for model elements and
regions. The following two subsections explain the two matching phases using
the running example from Fig. 1. The pseudo-code of the algorithm is available
at http://gsd.uwaterloo.ca/matchingbpm.

3.1 Matching Criteria for Model Elements and Regions

Our algorithm uses two attribute matching criteria for PSTs: one for matching
individual model elements and another for matching regions. We adapted them

http://gsd.uwaterloo.ca/matchingbpm
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from previous work on matching source code represented as abstract syntax trees
(ASTs) [6]. The original criteria use bigram string similarity to match the val-
ues of AST leaves and inner nodes. Fluri et al. [6] achieved better results for
source code matching using Dice Coefficient with bigrams as string similarity
compared to other measures such as the Levenshtein Distance [10]. In particu-
lar, the bigram-based similarity tolerates word re-orderings, which also occur in
process refinement (e.g., ApproveCard vs. CardApproval).

We have adapted the original matching criteria by Fluri et al. to the process
matching context, by using the information available in PSTs and refining the
criteria based on experiments with sample models. In particular, we require
exact matches for model elements and use bigram similarity only for inner nodes
(regions). The reason is that process model elements have often relatively short
names, and the names can be very similar, although representing completely
different functions (e.g., ApproveCredit, ApproveContract, CreditAccount). The
resulting criteria are as follows:

Matching criterion for model elements

matche(n,m) � (type(n) = type(m)) ∧ (name(n) = name(m))

Matching criterion for regions

matchr(r, s) � (
common(r, s)

max(r, s)
≥ l) ∧ (sim2g(value(r), value(s)) ≥ f)

where

type returns the type of the model element as a numeric code, such as 0
for start event, 1 for task, 2 for exclusive gateway, etc.

name returns the name of the model element, for example: Get Bal-
ance, Debit Savings, etc.

sim2g calculates the bigram-based similarity of two strings [6]; it returns a
numeric value between 0 and 1, where 1 means that the strings are equal.

value returns the string formed by the concatenation of the names and
types of all model elements of a region. Thus, similarity of names is em-
phasized, since types are short numeric codes and names are typically
complete words.

common returns the number of pairs of model elements of the two re-
gions that match exactly (i.e. matche is true).

max returns the maximum number of distinct pairs that could be matched
(i.e., the number of all model elements in the smaller region).

f and l are thresholds controling the algorithm. We obtained the best
results in our evaluation with 0.6 and 0.4, respectively.
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3.2 Attribute Matching

Let us explain the first phase by applying it to the PSTs in Fig. 2 obtained from
the models in Fig. 1.

Fig. 2. PSTs representation of the business process models

First, the algorithm assumes that the roots of both PSTs correspond to each
other. Then, the algorithm performs a depth-first traversal in one of the PSTs
in order to establish correspondence links with the second PST. Starting with
region R1 in PSTa, it tries to find a corresponding region in PSTb. According
to the matching criterion for regions (cf. Sect. 3.1), a necessary condition for a

match is to satisfy the formula common(R1,X)
max(R1,X) ≥ l with any region X in PSTb.

Since R1 has only one child (a model element), satisfying the formula requires
finding a region in PSTb containing a model element with exactly the same name
and type (matching criterion for model elements) as the activity Approve Card.
Since there is none, the algorithm proceeds to region R2.

For R2, the algorithm finds R2′ in PSTb to satisfy the above formula (56 ≥
0.4). The algorithm also checks that sim2g(value(R2), value(R2′)) ≥ f is satis-
fied. Assuming abbreviations, value(R2) returns X12X32GB1CR1X42DA1X22 ;
value(R2′) returns X12X32GB1GS1X42X52DC1DS1X62X22. Both strings have
a similarity of around 0.65 (assuming full names). The algorithm then keeps on

searching more matches for R2 in PSTb. The formula common(R2,R3′)
max(R2,R3′) ≥ l is also

satisfied, returning 3
4 ; however, the value obtained from the string comparison,

0.51, is smaller that f , so R3 is discarded as a match (see left figure in Fig. 3,
where the top link is selected and the bottom one is discarded). No other region
in PSTb satisfies the matching criterion with R2; however, if there were several
matching regions in PSTb, the correspondence link would be established with
the region with the highest string similarity to R2. If there are more than one
region with the same highest string similarity to R2 (unlikely though, because
copies are uncommon in process modeling), one of them is chosen arbitrarily.

The algorithm keeps traversing PSTa and establishes a correspondence link
between R3 and R3′, since the string similarity value is 0.79 (right figure in
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Fig. 3). R5′ in PSTb corresponds to R5, since the string similarity is 1. The
same applies to R6 and R9′. There are no correspondence links for R4 and R7.
Finally, the algorithm establishes correspondence links among model elements.
In our example, correspondence links from X1, X2, X3, X4, GB,CR and End
in PSTa to the model elements with the same name in PSTb are created.

Figure 4 shows the complete set of correspondence links based on attribute
matching, also indicating their model element cardinality. To avoid clutter, the
links among model elements with the same name are not shown.

Fig. 3. Attribute matching phase step by step for R2 and R3

Fig. 4. Correspondence Links for the Attribute Matching Phase

3.3 Structure Matching

The second phase of the algorithm aims to match nodes that have not been
matched in the first phase due to their different content. It does so by considering
the location of the unmatched nodes in the PSTs and the correspondence links
established so far. For example, consider regions R4 and R4′ in Fig. 4. Although
they are dissimilar, it is likely, given the correspondence links so far, that they
should be linked. The task of this procedure is to find such pairs of nodes and
link them. The rule for finding node pairs to link is as follows. Let na and nb
be a pair of unmatched nodes. If the parents of na and nb are linked, and if
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at least one sibling (the left or right one) of na and nb are linked, na and nb
should be linked, too. If none of the siblings are linked (possibly because they
do not exist), we will also link the nodes if both na and nb are the last or first
node in the child list. According to these rules, the aforementioned regions R4
and R4′ should be matched, as their parents (R2 and R2′) and their left and
right siblings (R3 with R3′ and X2 with X2) match. The same happens with
R1 and R1′ since R0 matches with R0′ and R2 with R2′. This newly created
correspondence link allows us to link the Start and Trigger events, too. All
correspondence links established by both phases of the algorithm are shown in
Fig. 5. As previously, correspondence links between model elements with the
same name are not shown.

Complexity. Assume n = max(|PSTa|, |PSTb|), where |PST | is the number of
regions. The cost of comparing the attributes of two regions is denoted by c and
the cost of checking their structure similarity is s. The matching of all regions
is in O(n2(c + s)), that is, O(n2), since the algorithm compares each possible
region pair.

Fig. 5. Correspondence Links from Both Phases

4 Evaluation

We are interested in knowing the precision and recall of the presented algorithm
when establishing correspondences among pairs of real-world process models
across different levels of abstraction. Precision tells us whether the recovered
correspondence links are correct and recall tells how large of a portion of the links
the algorithm can recover. The following subsections present the methodology
we have followed and the results.
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4.1 Methodology

Objective. We want to evaluate the precision and recall of our algorithm. We
define these measures for model correspondences (sets of correspondence links)
between the PSTs. We refer to a model correspondence established by the do-
main experts as a reference correspondence (RC) and to a model correspondence
established by our algorithm as a computed correspondence (CC). Given these

sets, precision (P ) and recall (R) are defined, respectively, as P = |RC
⋂

CC|
|CC| and

R = |RC
⋂

CC|
|RC| .

Subject Data. We used business process models taken from the Bank of North-
east of Brazil (BNB), a major financial institution in Brazil that is controlled
by the federal government and oriented towards regional development. BNB has
been using Business Process Modeling since 2007 in a development process based
on the Rational Unified Process. The development process entails iterative and
multi-staged model refinement, resulting in three types of process models (from
higher to lower level of abstraction): business specifications, technical specifica-
tions, and executable processes. We had access to several projects developed as
a result of this process and used them for evaluating the algorithm.

Table 1. BPM Projects

Number of Models

Project Domain Business Technical Implementation

P1 Customer Registration 2 2 2
P2 Credit Backoffice 6 6 6
P3 Credit Risk Assessment 2 2 2
P4 Procurement 3 3 3

We obtained four real BPM projects, containing 39 models in total. Table 1
shows, for each project, the number of models defined in each stage. Our target
is to determine the correspondences between each corresponding pair of busi-
ness and technical specifications and between the latter and executable imple-
mentations. Table 2 gives the total number of model elements for each level of
abstraction.

Reference Correspondences. As reference correspondences, we use the cor-
respondence links established manually by the domain experts (the bank’s em-
ployees) who created and maintain the models. The reference correspondences
in one of the projects was already established for auditing and regulatory com-
pliance purposes, and reused here. The correspondences for the other projects
were established as part of this research.
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Table 2. Model Sizes

Total Numbers
Tasks Gateways Events

P1
Business Spec. 59 38 25
Technical Spec. 78 46 36
Implementation 123 56 43

P2
Business Spec. 47 46 18
Technical Spec. 95 48 23
Implementation 107 52 31

P3
Business Spec. 17 8 6
Technical Spec. 19 10 8
Implementation 22 6 9

P4
Business Spec. 13 10 11
Technical Spec. 18 12 15
Implementation 25 14 17

Algorithm Implementation. We have implemented the algorithm in Java as
an Eclipse feature, on top of the SOA Tools Platform BPMN Modeler [13]. Since
the original models from BNB were created using IBM’s WebSphere Process
Modeler, we needed to recreate them to run our tool.

4.2 Results

Table 3 shows the results of our evaluation. We matched pairs of models at dif-
ferent levels of abstraction from each project. Concretely, we compared business
and technical models, and the latter and IT implementation models. Column
“Pair Type” indicates the type of models compared in each row. Column “Cor-
resp - RC” gives the total number of correspondence links identified by the
domain experts. Column “Corresp Type” shows the numbers obtained in each
phase of the algorithm.“Total” represents the net result of the two phases. No-
tice that the correspondence links do not overlap between the phases. Column
“Correct” specifies the number and the cardinality of correspondence links that
our algorithm was able to identify, in each phase, from those in the reference
correspondence, including their cardinalities. Columns “FP” and “FN” give the
number of false positives and negatives, respectively. False positives are those
correspondence links that our algorithm finds but do not belong to the set of
reference correspondence links. False negatives are those correspondence links
included in the reference correspondence that our algorithm is unable to de-
tect. In each phase, “FP” and “FN” are computed with respect to the complete
reference. Finally, “Prec” gives precision, followed by column “Recall”.

If we consider the correspondence links all together—as if they had been ex-
tracted from only one pair of models—we have 622 reference links found manu-
ally by the domain experts. Out of these 622, our algorithm was able to correctly
identify 438, with 32 false positives and 184 false negatives, yielding overall recall
of 70% and precision of 93% Among the reference links, 117 had cardinality type
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Table 3. Correspondences among Models across Different Abstraction Levels. B: Busi-
ness; T: Technical; IT: Information Technology; Corresp - RC: Reference Correspon-
dence; FP: False Positives; FN: False Negatives; Prec: Precision.

Project Pair Type Corresp - RC Corresp Type Correct (1:1 ; 1:n; m:n) FP FN Prec Recall

1
Attribute 16 (15;0;1) 0 14 100% 53%

B–T 30 Structure 4 (1;2;1) 2 26 67% 13%
Total 20 (16;2;2) 2 10 91% 67%

1
Attribute 28 (26;0;2) 0 14 100% 67%

T–IT 42 Structure 3 (2;1;0) 2 39 60% 7%
Total 31 (28;1;2) 2 11 94% 74%

2
Attribute 95 (90;0;5) 0 43 100% 69%

B–T 138 Structure 8 (6;2;0) 4 130 67% 6%
Total 103 (96;2;5) 4 35 96% 75%

2
Attribute 136 (127;0;9) 0 104 100% 57%

T–IT 240 Structure 18 (10;5;3) 12 222 60% 8%
Total 154 (137;5;12) 12 86 93% 64%

3
Attribute 22 (21;0;1) 0 10 100% 69%

B–T 32 Structure 4 (4;0;0) 2 28 67% 13%
Total 26 (25;0;1) 2 6 93% 81%

3
Attribute 32 (32;0;0) 0 12 100% 72%

T–IT 44 Structure 2 (2;0;0) 5 42 29% 5%
Total 34 (34;0;0) 5 10 87% 77%

4
Attribute 24 (23;0;1) 0 18 100% 57%

B–T 42 Structure 6 (3;3;0) 3 36 67% 14%
Total 30 (26;3;1) 3 12 91% 71%

4
Attribute 36 (36;0;0) 0 18 100% 67%

T–IT 54 Structure 4 (2;1;1) 2 50 67% 7%
Total 40 (38;1;1) 2 14 95% 74%

1:n and 89 had the cardinality type m:n. From these, the algorithm identified
correctly 14 (12%) and 24 (27%), respectively.

The overall precision ranges between 87%-96%. None of the false positives
is obtained in the attribute matching phase. This is very positive since a large
portion of the reference correspondence links is recovered in this phase. The
number of false positives in the structure matching phase is quite large compared
to the number of reference correspondence links of purely structural nature.
This would be a serious problem in a situation where models have many such
purely structural correspondences. We identified two causes for having so many
false positives. The principal cause is the presence of non-hierarchical refinement
patterns [1]. For example, in one B-T pair of the Project 2, there is an activity
in the business specification that corresponds to 3 activities in the technical
specification. Each of the 3 activities belongs to a different region in the technical
specification. The algorithm cannot identify such kind of correspondence; the
second phase matched the region containing the business activity to an incorrect
region in the technical specification. Another cause is matching nodes that are
the last or first node in the child list. Although this is reasonable in many cases,
it also leads to incorrect matches. For example, this rule produced a false positive
in one T-IT pair of the Project 3. Unfortunately, without extra information (e.g.,
IDs or annotations) it is likely not possible to decide whether or not to match
the regions in many of such cases.



638 M.C. Branco et al.

The relatively high number of false negatives —20%-40%—is caused mainly
also by the presence of non-hierarchical refinements, which occurred in all the
projects. We believe that these numbers can be reduced by applying a pat-
tern matching technique for describing and finding instances of well-known or
organization-specific non-hierarchical refinements patterns, which we leave for
future work.

4.3 Threats to Validity

This section summarizes the potential threats that may impact the internal and
external validity [4] of the empirical results.

Threats to External Validity. A potential threat to external validity is that
the models used in the evaluation may not be representative of those occur-
ring in other realistic settings. While the models used here come from real-
world projects, the algorithm should be tested additionally on models from other
organizations and domains.

Threats to Internal Validity. The main threat is the re-modeling of the
BNB’s business process models to be processed by our tool. BNB applies IBM
tools that use an extension of BPMN. Some features of the BNB models that
are not covered in BPMN had to be omitted during the translation. This threat
was minimized by checking with the domain experts that the BMPN models
obtained after the simplification were largely equivalent to the original models.

5 Related Work

Matching of models is a standard topic in MDD. For example, UMLDiff is a
prominent approach for matching UML models [19]. However, effective matching
requires heuristics that are usually notation and application specific. Our work
focuses on finding such heuristics for matching business process models across
levels of abstraction. Discovery of effective heuristics usually requires studying
the differences among such models. In this context, Dijkman [2] presents a classi-
fication of frequently occurring differences between similar business processes in
general. Our previous study [1] provided an in-depth analysis of such differences
between models targeting different levels of abstraction.

As in our approach, the work by Dijkman et al. [3] aims to realize business
process models alignment based on lexical matching (similar to our attribute
matching) and structural matching. They report recall of 60% and precision of
89% for their approach. However, their algorithm only captures 1:1 correspon-
dences between model elements. Our algorithm also identifies correspondences
between SESE regions, which is necessary for matching models at different levels
of abstraction.

Weidlich et al. present ICOP in [17], a framework based on matchers to iden-
tify correspondences between process models. They represent the models using
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Refined Process Structure Trees (RPSTs) [14,12] rather than PSTs. In RPSTs,
regions can have more than one entry and more than one exit. The approach by
Weidlich et al. deals both with 1:1 and 1:n matches. Our approach additionally
relates regions to regions, which are examples of m:n matches. They report recall
of 60% and precision of 80%.

Ehrig et al. [5] propose a set of similarity measures for process models, for
example, in order to discover existing related process models in repositories.
However, the approach does not establish fine grained correspondence links like
in our approach. The authors do not discuss recall and precision of the approach.

Several related works deal with comparing process models (e.g., [7,8]), check-
ing their consistency (e.g., [16]), and their synchronization (e.g., [18]). All these
works assume that model correspondences have been previously established.

Table 4 summarizes our contribution in the light of the related works.

Table 4. Related BPM Matching Approaches. + : Feature Provided; – : Feature not
Provided; NA : Not Available.

Approach

Feature Weidlich et al. [17] Dijkman et al. [3] Ehrig et al. [5] Our Approach

Match Activity Attributes + + + +
Match Model Structure + + – +
Match Activity-Activity (1:1) + + + +
Match Activity-SESE (1:n) + – – +
Match SESE-SESE (m:n) – – – +
Do not Require Model Element IDs + + + +
Support Activity Inserts and Deletes + + + +
Support Activity Moves + + – +
Support Activity Renaming + + – +
Support Activity Copies + + – –
Overall Precision 80% 89% NA 93%
Overall Recall 60% 60% NA 70%

6 Conclusions

We have presented an algorithm to automatically detect correspondences be-
tween BMPN process models across levels of abstraction. The algorithm oper-
ates over the PSTs of the input models in two phases. The first phase matches
the PST nodes using region and model element matching criteria adapted from
previous work on matching ASTs. The second phase establishes additional cor-
respondences based on the position of the nodes in the PSTs.

We evaluated our algorithm on 26 pairs of business-technical and technical-IT
level models from four real BPM projects, achieving overall precision of 93% and
recall of 70%. Given the substantial recall and the high precision, the algorithm
helps automating significant part of the correspondence recovery for such models.

The evaluation revealed that the algorithm is not able to detect certain kinds
of complex correspondences. We believe that this limitation could be addressed
in future work by extending the algorithm with an additional phase based on
general and project-specific refinement patterns.
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Abstract. MARTE (Modeling and Analysis of Real-Time and Embedded Sys-
tems) is a UML profile, which has been developed to model concepts specific to 
Real-Time and Embedded Systems (RTES). In previous years, we have applied 
UML/MARTE to three distinct industrial problems in various industry sectors: 
architecture modeling and configuration of large-scale and highly configurable 
integrated control systems, model-based robustness testing of communication-
intensive systems, and model-based environment simulator generation of large-
scale RTES for testing. In this paper, we report on our experiences of solving 
these problems by applying UML/MARTE on four industrial case studies. Based 
on our common experiences, we derive a framework to help practitioners for fu-
ture applications of UML/MARTE. The framework provides a set of detailed 
guidelines on how to apply MARTE in industrial contexts and will help reduce 
the gap between the modeling standards and industrial needs.  

Keywords: UML, MARTE, Real-time Embedded Systems, Architecture 
Modeling, Model-based Testing. 

1 Introduction 

Model Based Engineering (MBE) consists in using models as the primary artifacts in 
various development phases of software systems, including, for example, configura-
tion and software testing. The Unified Modeling Language (UML) [1] and its exten-
sions (via its profiling mechanism) are the most widely used modeling notations for 
software systems in diverse domains.  

Real-time embedded systems (RTES) are widely used in many different domains, 
as for example from integrated control systems to consumer electronics. Already 98% 
of computing devices are embedded in nature and it is estimated that, by the year 
2020, there will be over 40 billion embedded computing devices worldwide [2]. Mod-
eling for such systems requires constructs that deal with characteristics specific to 
RTES (such as resource modeling, timeliness, schedulability). The recent UML pro-
file for Modeling and Analysis of Real-Time Embedded Systems (MARTE) [3] is an 
effort to address the growing modeling needs of RTES.  
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In software engineering, like any engineering discipline, the usefulness of a new 
concept must ultimately be evaluated by applying it in real-life scenarios. To success-
fully apply MBE in practice, selecting a modeling language is not sufficient; rather 
we need to provide a detailed methodology on how to use the selected notations, 
which is a piece of information usually missing from language specifications and 
varies from problem to problem. This paper reports the experiences of four such ap-
plications on industrial RTES and based on the experiences layouts the guidelines that 
can be used for future successful application of UML/MARTE for RTES. 

There are very few works discussing the experiences of using UML/MARTE. De-
mathieu et al [4] discuss their experiences of applying UML and MARTE on an aca-
demic case study for software resource modeling, hardware resource modeling, and 
modeling for logical system decomposition. Briand et al [5] discuss their experiences 
of applying MBE to three industrial cases belonging to maritime and energy domains 
using UML and MARTE. The work focuses on providing guidelines to improve col-
laboration between industry and researchers. Yue et al [6] discuss their experience of 
conducting a systematic and industrial domain analysis and the feasibility of applying 
model-based product line engineering methods for architecture modeling and configu-
ration of large-scale integrated control systems. Espinoza et al [7] evaluate MARTE 
after applying it to a project in the automobile domain. Middleton et al [8] present 
their experiences about applying UML and MARTE for stochastic modeling of two 
interactive applications.  

Our work discusses experiences of applying UML/MARTE on four industrial 
RTES belonging to different domains. We report our experiences of solving three 
industrial problems over the span of four years. The first problem was about architec-
ture modeling and configuration of large-scale and highly configurable integrated 
control systems for FMC [9] Subsea Production Systems. The second problem was of 
model-based robustness testing of a video conferencing system at Cisco Systems [10]. 
The third problem was of environment model-based testing for a marine seismic ac-
quisition system at WesternGeco [11] and an automated bottle recycling system at 
Tomra [12]. Based on our common experiences in the projects, we derived a compre-
hensive framework to successfully use MARTE in future industrial applications. The 
framework, which is the first of its kind, aims at providing detailed guidelines and 
steps on how to apply and extend UML/MARTE in industrial contexts. 

The rest of the paper is organized as follows. Section 2 provides the background, 
while Section 3 discusses the contexts, modeling solutions and key results for the four 
selected industrial problems. Section 4 discusses the proposed framework based on 
our experiences from these four cases. Finally, Section 5 concludes the paper. 

2 Background 

The MARTE profile was defined to provide a number of concepts that modelers can 
use to express relevant properties of RTES, for example related to performance and 
schedulability. MARTE is meant to replace the previously defined UML profile for 
Schedulability, Performance, and Time specification (SPT) [13]. At the highest level, 
MARTE contains three packages. The core package is MARTE Foundations that con-
tains the sub-packages for modeling non-functional properties (NFP package), time 
properties (Time package), generic resource modeling of an execution platform for 
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RTES (GRM package), and resource allocation (Alloc package). The MARTE Foun-
dations package contains the core elements that are reused by the other two packages 
of the profile: MARTE design model and RealTime&Embedded Analysing (RTEA). 
The MARTE design model package contains various sub-packages required for model-
ing the design of RTES. This includes the packages to support modeling of compo-
nent-based RTES with the Generic Component Model package (GCM), high-level 
features for RTES with the High-Level Application Modeling package (HLAM), and 
for detailed modeling of software and hardware resources with the Detailed Resource 
Modeling package (DRM). The RTEA package contains further concepts related pri-
marily to modeling for analysis. This includes the Generic Quantitative Analysis Mod-
eling package (GQAM) which provides generic concepts for resource modeling. These 
concepts are further specialized by the Schedulability Analysis Modeling (SAM) pack-
age for modeling properties useful for Schedulability and the Performance Analysis 
Modeling package (PAM) for modeling properties useful for performance analysis. 

3 Industrial Applications of UML/MARTE 

This section discusses three UML/MARTE applications in different industrial con-
texts. For each of the three applications, we provide the case study description, the 
problem description, the modeling solution, the modeling tool, and the key results of 
the application. This information will subsequently be used to propose a framework 
meant to provide guidance to future users of UML/MARTE. 

3.1 Architectural Modeling and Configuration with UML/MARTE  

Case Study Description. Integrated Control Systems (ICSs) are heterogeneous sys-
tems-of-systems, where software and hardware components are integrated to control 
and monitor physical devices and processes, such as process plants or oil and gas 
production platforms. FMC Technologies, Inc is a leading global provider of technol-
ogy solutions for the energy industry. FMC’s Subsea Production Systems (SPSs) are 
large-scale, highly-hierarchical, and highly-configurable ICSs for managing exploita-
tion of oil and gas production fields. One of its key technologies is subsea production 
systems, used to develop new energy reserves and for managing and improving pro-
ducing fields. They are composed of hundreds of mechanical, hydraulic, and electrical 
components and configured software to support various field layouts ranging from 
single satellite wells to large multiple-well sites (more than 50 wells). The main com-
ponents of the system are subsea control modules, which contain software, electron-
ics, instrumentation, and hydraulics for safe and efficient operation of subsea tree 
valves, chokes, and downhole valves.  

Problem Description. The research question of this project is to devise a product line 
architecture modeling methodology, including modeling notations, guidelines, and 
tool support, for the purpose of facilitating the systematic and automated product 
configuration of ICSs such as FMC’s SPSs. The ultimate goal is to improve the over-
all quality and productivity of the product development lifecycle of ICSs. Specifical-
ly, selected/tailored modeling notations of such a methodology should have the 
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following characteristics: (i) It should contain both hardware and software modeling 
notations that should be expressive enough to model the required hardware and soft-
ware concepts; (ii) The relations between software and hardware components should 
be captured, such as the deployment of a software component to its hardware compu-
ting resources; (iii) The consistency between hardware and software components 
should be maintained in the context of supporting configuration; (iv) The variability 
modeling notation should enable automated configuration and configuration reuse. 
We have proposed such a produce line architecture modeling methodology, named 
SimPL [14], to facilitate automated configuration of families of ICSs.  

Modeling Solution. In addition to satisfy the modeling requirements described above, 
there are a number of practical requirements that affect the selection of existing mod-
eling languages: 1) the modeling notation should be easy to learn and apply for indus-
trial partners; 2) the modeling notation should have available tool support. Therefore 
our modeling solution is based on UML/MARTE, with a minimum extension through 
the UML profiling extension mechanism.  

To facilitate automated configuration, the modeling notation we proposed for mod-
eling the product line architecture uses UML classes, properties, and relationships 
(i.e., generalization relationships, and several types of association relationships) re-
sulting in base models of hardware and software. In the SimPL methodology we use 
the following four stereotypes from MARTE to create hardware models and to model 
software to hardware bindings/allocations. To distinguish between hardware and 
software classes, any class in the hardware sub-view should be stereotyped by one of 
the following four MARTE stereotypes: 1) «HwComputingResource» is used to dis-
tinguish those electrical hardware components on which software is deployed; 2) 
«HwDevice» is used to distinguish those hardware devices that are controlled by, or 
in general interact with, software; 3) «HwComponent» characterizes hardware classes 
representing hardware components that physically contain other devices and execu-
tion platforms; 4) «Assign» models the deployment, allocation, or binding of a struc-
ture (e.g., software class) in the software sub-view to a resource (e.g., a hardware 
component) in the hardware sub-view. UML templates and packages, along with six 
stereotypes from our newly proposed profile, named SimPL, are used to model the 
product line architecture.  

Modeling Tool. IBM Rational Software Architect (RSA) [15] was used to model the 
architecture. 

Key results. The resulting product-line model contained a total of five views and sub-
views and is visualized using 17 class diagrams. The model contains a total of 71 
classes, including 46 software classes, 24 classes belonging to the hardware sub-view, 
and a class representing the topmost element, FMCSystem.  

The software sub-view contains configurable software classes related to the se-
lected components of the FMC family, their attributes, their relationships, and sup-
porting containment and taxonomic hierarchies. The hardware sub-view captures a 
subset of devices (i.e., only those devices that are controlled by software classes cap-
tured in the software sub-view), their attributes, and the supporting containment and 
taxonomic hierarchies. The result is a hardware sub-view with 24 hardware compo-
nents and devices, including 11 computing resources. Two types of relationships be-
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tween the software and hardware classes (i.e., allocation of software to hardware and 
software controlling hardware) are captured in the allocation view.  

The variability view contains 22 configuration units, corresponding to 22 configur-
able classes in software and hardware sub-views. A total of 109 variability points are 
organized using these configuration units. In addition, a total of 34 dependencies ste-
reotyped with the SimPL profile were created to complete the variability model. A 
total of 16 OCL constraints are captured in the variability view modeling the depen-
dencies between variability points, mainly the dependencies between variability 
points introduced by software and those introduced by hardware.  

3.2 Model-Based Robustness Testing with UML/MARTE  

We applied UML/MARTE to support automated, model-based robustness testing of a 
core subsystem of a video conferencing system developed by Cisco Systems, Norway. 

Case Study Description. Our case study is a commercial Video Conferencing Sys-
tem (VCS) called Saturn developed by Cisco Systems Inc, Norway. The core functio-
nality of Saturn manages the sending and receiving of multimedia streams. Audio and 
video signals are sent through separate channels and there is also a possibility of 
transmitting presentations in parallel with audio and video. Presentations can be sent 
by only one conference participant at a time and all others receive it. In total, Saturn 
consists of 20 subsystems such as audio and video subsystems. Each subsystem can 
run in parallel to the subsystem implementing the core functionality dealing with 
establishing videoconferences.  

Problem Description. Our case study is part of a project aiming at supporting auto-
mated, model-based robustness testing of Saturn. A system should be robust enough 
to handle the possible abnormal situations that can occur in its operating environment 
and invalid inputs. For example, Saturn should be robust against hostile environment 
conditions (regarding the network and other communicating VCSs), such as high 
percentage of packet loss and high percentage of corrupt packets. Saturn should not 
crash, halt, or restart in the presence of, for instance, a high percentage of packet loss. 
Furthermore, Saturn should continue to work in a degraded mode, such as continuing 
the videoconference with lower audio and video quality. In the worst case, Saturn 
should return to the most recent safe state instead of bluntly stopping execution. Such 
behavior is very important for a commercial VCS and must be tested systematically 
and automatically to be scalable. 

Modeling Solution. Following, we discuss our modeling solution to support auto-
mated robustness testing.  

To model the functional behavior, for each subsystem, we modeled a class diagram 
to capture APIs and state variables. In addition, we modeled one or more state ma-
chines to capture the behavior of each subsystem. Due to confidentiality restrictions, 
we do not provide details of the subsystems. However, on average each subsystem has 
five states and 11 transitions, with the biggest subsystem having 22 states and 63 tran-
sitions. It is important to note that, though the complexity of an individual subsystem 
may not look high in terms of number of states and transitions, all subsystems run in 
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parallel to each other and therefore the spaces of system states and possible execution 
interleavings are very large. Saturn’s implementation consists of more than three mil-
lion lines of C code. 

Table 1. Summary of features of MARTE and other profiles applied 

Robustness 
Behavior 

Stereotypes Existing MARTE 
NFPs 

Newly introduced 
NFPs NFP GRM RobustProfile 

Media Quality 2 1 19 19 2 

Network Com-
munication 

4 1 13 21 3 

Illegal Inputs - - 1 2 - 

 
Robustness behavior is typically crosscutting many parts of the system functional 

model and, as a result, modeling such behavior directly within the functional models 
is not practical since it leads to many redundancies and hence results in large, clut-
tered models. To cope with this issue, we decided to adopt Aspect-Oriented Modeling 
(AOM) [16] and more specifically a UML profile for AOM called AspectSM [17]. 
With it, we model each aspect as a UML state machine with stereotypes (aspect state 
machine). The modeling of aspect state machines is systematically derived from a 
fault taxonomy [17] categorizing different types of faults (faults in the environment 
such as communication medium and media streams that lead to faulty situations in the 
environment). Each aspect state machine has a corresponding aspect class diagram 
modeling different properties of the environment using the MARTE profile, whose 
violations lead to faulty situations in the environment. More specifically, we used the 
NFPs package to model properties of the operating environment of Saturn.  

Saturn’s non-functional behaviors consist of five aspect class diagrams and five 
aspect state machines modeling various robustness behaviors. The largest aspect state 
machine specifying robustness behavior has three states and ten transitions, which 
would translate into 1604 transitions in standard UML state machines if AspectSM 
was not used.  

Modeling Tool. IBM RSA was used for modeling class diagrams, UML state machines, 
aspect state machines, and defining the AspectSM profile. 

Key Results. Table 1 summarizes the features of the MARTE profile and other pro-
files, which we used in conjunction with MARTE in our case study. The first column 
shows various robustness behaviors we modeled in this case study. The first one is 
related to modeling faulty situations in media, i.e., audio and video, the second beha-
vior is about constraining parameters of events on transitions, which is used to gener-
ate test cases exercising the system robustness with illegal inputs, and the third ro-
bustness behavior models the behavior of a system in the presence of various network 
faults. Columns two and three show that we used stereotypes from MARTE NFP and 
GRM packages. For instance, to model network communication we used four stereo-
types from the NFP package (e.g., NfpType), whereas we used one stereotype from 
the GRM package, CommunicationMedia. The fourth column shows the stereotypes 



648 M.Z. Iqbal et al. 

from other profiles used in conjunction with MARTE. In our case study, we used 
stereotypes from RobustProfile [17], which allows modeling various properties of 
faults (e.g., severity) to assist in defining robustness test strategies. For example, for 
modeling media quality we used in total 19 stereotypes such as AudioFault and Vi-
deoFault from RobustProfile. The fifth column shows the number of existing NFPs 
we used that are already defined in MARTE for each of the robustness behaviors. For 
media quality, we used 19 existing NFPs, e.g., NPF_Percentage. The last column 
shows the number of new NFPs we defined in our case study. For instance, in case of 
media quality, we defined two new NFPs based on the existing NFPs defined in 
MARTE, e.g., PacketLoss in the case of modeling network communication.  

3.3 Testing RTES Using UML/MARTE Environment Models 

We applied our approach for model-based testing of RTES to two industrial case stu-
dies, involving WesternGeco AS and Tomra AS, both in Norway. 

Case Study Description. The case study at WesternGeco is of a very large and  
complex control system for marine seismic acquisition. The system controls tens of 
thousands of sensors and actuators in its environment. The timing deadlines on the 
environment are in the order of hundreds of milliseconds. WesternGeco is a market 
leader in the field of such seismic systems. The system was developed using Java.  

The second case study is an automated bottle-recycling machine developed by 
Tomra AS. The system under test (SUT) was an embedded device ‘Sorter’, which was 
responsible to sort the bottles into their appropriate destinations. The system commu-
nicated with a number of components to guide recycled items through the recycling 
machine to their appropriate destinations. It is possible to cascade multiple sorters 
with one another, which results in a complex recycling machine. The SUT was devel-
oped using C. 

Both the RTES were running in environments that enforce time deadlines in the 
order of hundreds of milliseconds with acceptable jitters of a few milliseconds in 
response time.  

Problem Description. RTES typically work in environments comprising large num-
bers of interacting components. The interactions with the environment can be bound 
by time constraints. Violating such time constraints, or violating them too often for 
soft real-time systems, can lead to serious failures leading to threats to human life or 
the environment. For effective testing of industrial scale RTES, systematic automated 
testing strategies that have high fault revealing power are essential. The system testing 
of RTES requires interactions with the actual environment. Since, the cost of testing 
in real conditions tends to be high, environment simulators are typically used for this 
purpose. For the industrial systems of WesternGeco and Tomra, we applied one such 
approach for black-box system level testing based on the environment models of the 
systems. These models were used to generate an environment simulator [18], test 
cases, and obtain test oracles [19]. For test case generation, we applied various testing 
strategies, including search-based testing using search-based testing [20], adaptive 
random testing [21], and a hybrid approach combining these two strategies [22]. 
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Modeling Solution. The environment models were developed using our proposed 
UML & MARTE Real-time Embedded systems Modeling Profile (REMP) [23]. 
REMP provided extension to the standard UML class diagram and state machine 
notations and used the MARTE Time package and GQAM package for modeling 
timing details and non-deterministic events, respectively. One of the major aims while 
developing REMP was to keep it as simple as possible. We only used those notations 
and concepts from UML/MARTE that were essential to model the two industrial case 
studies. Even though the notation subset was minimal, the goal was to keep REMP 
generic and applicable to the testing of soft RTES belonging to various domains. This 
was the motivation to apply the methodology to two case studies that belonged to 
entirely different domains.  

The structural details of a RTES environment were modeled as an environment 
domain model, which captures the information of various environment components, 
their properties, and their relationships. For the domain model, we used the UML 
class diagram notation and annotated class diagram elements with REMP. The beha-
vioral details of the environment were modeled using the state machine notation an-
notated with REMP. Each environment component has one associated state machine. 
Such state machines contain information of the nominal behavior of the components, 
their robustness behavior (e.g., break down of a sensor), and “error states” that should 
never be reached (e.g., hazardous situations). If any of these error states is reached, 
then it implies a faulty RTES. Error states act as the oracle of the test cases, i.e., a test 
case is successful in triggering a fault in the RTES if an error state of the environment 
is reached during testing. 

Modeling Tool. For initial interactive sessions with experts, we used a sketching tool 
to model the domain. Later on when we had sufficient details of the system, we used 
Enterprise Architect for modeling Tomra’s case study (because that was the tool they 
already used) and IBM RSA for modeling WesternGeco. Later on due to various limi-
tations of Enterprise Architect, we migrated the models to IBM RSA. 

Key Results. For Tomra’s case, we had a total of 55 environment components, out of 
which 43 have a corresponding state machine. For testing, we only focused on a sub-
set of the SUT, for which we only use four of the environment components with a 
total of 23 states and 38 transitions. For the subset of environment models for Wes-
ternGeco’s case, a total of three environment components have a state machine. In 
total for these components, we modeled 27 states and 46 transitions. In both cases, 
environment components have a large number of instances during test case execution.  

From MARTE, we mostly used the concepts of TimedEvent and TimedProcessing 
from the Time Package. The MARTE TimedEvent concept is used to model timeout 
transitions, so that it is possible for the time events to explicitly specify a clock (if 
needed). Each environment component may have its own clock or multiple 
components may share the same clock for absolute timing. Clocks are modeled using 
the MARTE’s concept of clocks. According to REMP, if no clock is specified, then 
by default the notion of time is considered to be according to the physical time. 
Specifying a threshold time for an action execution or for a component to remain in a 
state is done using the MARTE TimedProcessing concept. This is also a useful 
concept and can be used, for example, to model the behavior of an environment 
component when the RTES expects a response from it within a time threshold.  
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From the GQAM package of MARTE, we used the concept of GaStep to model 
non-determinism. Whenever a timeout transition is labeled with «gaStep» and a non-
zero value for the prob property, this is interpreted as the probability of taking the 
transition over the time of the test case execution. This stereotype was used to model 
scenarios where the modeler wants to specify exact probabilities of an event occur-
rence. For non-determinism, REMP provides other stereotypes too that give more 
control to the testing engine to specify the probability of event occurrences. 

In our methodology, we chose Java as the action language for writing actions. The 
decision to choose Java as the action language at the model level is due to the lack of 
tool support for the UML action language (ALF) [24] at the time our tool was devel-
oped. Testers of the SUT are also expected to be more familiar with Java (consistent 
with our experience of applying the approach in two industrial contexts), rather than 
with a newly approved, standard language. Moreover, ALF does not provide support 
for specifying time related actions (e.g., corresponding to the MARTE’s concept of an 
RTAction to specify an atomic action). It was also not possible to specify time delays 
with ALF. Both these concepts were used repeatedly while modeling the environment 
of both industrial cases. 

4 Framework for Applying UML/MARTE in Industry 

In this section, we present a framework we devised by combining our experiences in 
applying UML/MARTE on the industrial problems described above. This framework 
can help practitioners in future application of UML/MARTE in industrial contexts. At 
a high level, the framework is presented as a UML activity diagram shown in Fig. 1. 
Following, we briefly discuss each of these activities. 

4.1 Perform Domain Analysis (A1) 

Each of our industrial applications started from performing a domain analysis. Do-
main analysis is defined as “the process by which information used in developing 
software systems within the domain is identified, captured, and organized with the 
purpose of making it reusable (to create assets) when building new products” [25]. 
Typically, the domain analysis results in a domain model [26] that captures domain 
concepts and the relationships among them. A domain model can be described using 
different notations, UML being a frequently used one. For all the three applications, 
we used the UML class diagram notation for domain modeling.  

The objective of the domain analysis that we performed was different from what is 
typically presented in OOAD methods [27]. More specifically, our domain analysis is 
not the start of the software analysis phase but its usage depends on the problem at 
hand. For architectural modeling, the domain model was later used as a basis to derive 
the product line architecture modeling methodology, including a UML profile and 
modeling guidelines. For both the model-based testing projects, the domain analyses 
resulted in the definition of either environment or system static structure models (as 
class diagrams), which were used, later on together with state machines, to facilitate 
automated test-case generation.  
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application domains. Though MARTE is a relatively new profile, we have observed 
significant progress in tool support and training material available over the last couple 
of years. Plus it has a rich set of concepts, which can be selected and used for various 
modeling purposes in the context of real-time, embedded, and concurrent systems. 

Despite the above-mentioned advantages, UML is still a challenge to apply in in-
dustrial settings without clear objectives and a well-defined methodology. UML is a 
general purpose, standard modeling language that is meant to cater for different appli-
cation domain and problems, and is as a result quite large. The entire language is not 
meant to be used to solve a particular problem in a particular domain. Therefore one 
of the key requirements to make UML successful in industry is to select a proper sub-
set of the language matching the needs. In our projects, we systematically aimed to 
identify such a minimal subset. Fig. 2 shows the packages of UML that were used for 
our applications. We used UML class diagrams for modeling the domains for all the 
industrial case studies. Other notations were selected based on individual needs of the 
target industrial problem and domain. For architectural modeling we used UML pack-
age and class diagram, and for both model-based testing applications, we used UML 
state machines to model system behavior. In total, we only used four out of fourteen 
UML diagrams (including the UML profile diagram that we used to create profiles as 
part of activity A2.2).  

MARTE is a comprehensive UML profile covering different aspects for modeling 
RTES (Section 2). Similar to UML, the set of concepts provided by MARTE are fair-
ly large to cater to a wide variety of analysis needs and it is also important to clearly 
identify the required subset of MARTE for a specific problem and domain. Fig. 3 
shows the six MARTE packages we used (highlighted in grey), a selected subset of 
the concepts which were used to model our four industrial case studies. In our expe-
rience, using UML/MARTE showed to be an adequate combination considering our 
industrial application domains.  

Extend Notations (A2.2). After we identified the subset of UML and MARTE, the 
next step was to find out whether the identified notations were sufficient to address 
our problems. Various steps that we performed in this activity are summarized as an 
activity diagram in Fig. 4. First we evaluated whether the identified MARTE subset 
was sufficient. If this was not the case, we tried to extend MARTE using the defined 
constructs (e.g., by adding a new NFP). When required, we further defined guidelines 
on how to extend MARTE (for example, see [17]) in the future. We then evaluated 
whether the identified subsets of UML, MARTE, and its extensions were sufficient 
for our modeling purposes. If this was not the case, we extended UML by creating 
UML profiles. One of the important decisions was to decide whether to go for a pro-
file or a domain specific language (DSL). In all our cases, we decided to opt for UML 
profiles over DSL since, in our applications as in many others, minimizing extensions 
to UML is expected to ease practical adoption and technology transfer. In [28], two 
main approaches for profile creation are discussed. The first approach directly imple-
ments a profile by defining key concepts of a target domain, such as what was done to 
define SysML [29]. The second approach first creates a conceptual model outlining 
the key concepts of a target domain followed by creating a profile for the identified 
concepts, such as what was done to define SPT [13] and MARTE. We used the 
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second approach to define profiles in our context, since it is more systematic as it 
clearly separates the profile creation process into two distinct stages. 

 

 

Fig. 2. UML packages used in industrial case studies (highlighted in grey) 

 

Fig. 3. MARTE packages used in industrial case studies (highlighted in grey) 

 

We found the MARTE NFP package and the extension mechanism sufficient for 
our industrial application of model-based robustness testing. The NFP package pro-
vides different data types such as NFP_Percentage and NFP_DataTxRate, which are 
helpful to model properties of the environment, for instance jitter and packet loss in 
networks. When the built-in data types of MARTE are not sufficient, the open model-
ing framework of MARTE can be used to define new NFP types by either extending 
the existing NFPs or by defining completely new NFPs. For example, we extended 
MARTE’s NFPs and define several properties of the environment when modeling 
echo in audio streams and synchronization mismatch between audio and video 
streams coming to a video conferencing system. From our experience of using 
MARTE, in addition to the advantages of using a standard, we can conclude that the 
MARTE profile and its open modeling framework were sufficient to model relevant 
properties of the Saturn operating environment (Section 3.2). However, for our specif-
ic problem of robustness testing, we defined a UML profile called RobustProfile [17] 
to model faults and their properties. The profile supports the modeling of recovery 
mechanisms when a fault has occurred and the modeling of states that a system can 
transition to when it has recovered. Since these features were not part of MARTE, a 
profile was required.  
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Define Guidelines (A2.4). The next step was to define modeling guidelines for each 
of the methodologies. As discussed earlier, only specifying a set of notations is not 
sufficient and we need a proper methodology to help modelers determine what to 
model, in which order, and at what level of detail. The guidelines are not generic and 
are, to some extent, specific to each domain and application. For example, for the 
environment model-based testing approach, we defined guidelines to help modelers in 
identifying test-relevant environment concepts and their relationships in the context of 
embedded systems [23]. According to our experience, such guidelines are crucial for 
modelers to correctly and effectively apply our modeling notations. 

4.3 Application of Methodology 

Once the methodology was defined, numerous training sessions took place, which 
ranged from acquiring basic UML modeling skills to more advanced methodology 
specific training. Training was conducted in an interactive manner, where the atten-
dees were given exercises based on their own domain and systems. This last point is 
very important as people more easily understand and adopt technologies that have 
shown to apply to their environment.  

Training must be complemented by workshops where we model the solution to a 
representative (sub)problem with them, thus reducing the initial learning curve with 
respect to the modeling tool and notations. Later, when the first modeling activities 
are undertaken, mentoring is also required, at least in the initial stages, until a certain 
level of comfort is attained. A natural tendency is for people to revert to previous 
practices when faced with a seemingly intractable problem.  

4.4 Summary and Discussion 

For the three industrial projects, we used the UML class, package and state machine 
diagrams for modeling the different aspects of software systems. From MARTE, we 
used concepts from the MARTE Time, NFP, GQAM, Alloc, GRM and HRM pack-
ages. Over the years, a number of researchers and industry practitioners have raised 
the issue that UML is too large [35] [36]. Recently, the same has been written about 
MARTE [7]. In our opinion and based on our practice, UML and MARTE are meant 
to provide an encompassing set of modeling notations catering diverse needs. To suc-
cessfully apply these standards to industrial projects, we need a complete methodolo-
gy that identifies the subset of UML and MARTE to be used to address specific prob-
lems in specific contexts and guidelines to help people apply such standards in a sys-
tematic and consistent manner.  

A complete methodology based on UML/MARTE should be derived for a specific 
purpose, to address a particular problem in a particular domain. To do so, we found 
that a thorough domain analysis is an important step, which, as we discussed in Section 
4.1, is a necessary basis not just for the analysis but also to make decisions during other 
activities. Depending on the complexity of the domain under analysis and the nature of 
the problem, the domain analysis activities and effort required vary significantly from 
case to case. The next steps are to carefully select a minimal subset of UML and 
MARTE notations and if needed, extend MARTE, for example by defining new NFPs, 
and extend UML by defining a profile. Though the selection of a modeling tool might 
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seem to be a trivial process, in our experience, this can have large impact on adoption 
by the industry partners. If needed, the modeling tool should be customized based on 
the modeling notations selected, so that concepts of UML and MARTE that are not 
relevant are also not visible to the end user. Along with the notations, we found it an 
essential step to provide a set of modeling guidelines for the end user, which will help 
her to properly use these notations. 

Integrating UML and MARTE can be challenging too, especially when it comes to 
bridging the semantic gap between the two. For example, when «HwComponent» was 
used on a class in a class diagram to represent a hardware component, the meaning of 
its association with another class not carrying any stereotype becomes ambiguous. 
This is because UML is typically used to model software. Without having any stereo-
type applied, a class by default implies that it is a software class. Then the association 
between the hardware component class and the software class should be given a spe-
cific meaning, like the deployment of the software to its hardware platform. In our 
cases, we address such semantic gaps in our modeling guidelines. 

In our experience, there is limited action language support for MARTE concepts, 
such as time delays between actions and the concept of RTAction (e.g., required to 
model atomic actions). Even in the recently released Action Language for Founda-
tional UML (ALF) [24], such concepts are not supported. We used Java as an action 
language, which provided the concepts of real-time actions that we required. 

For model-based robustness testing of RTES, we defined a profile for modeling 
faults and their properties, recovery mechanisms, and faulty states. These are based on 
well-defined fault models in the literature and are applicable to RTES in general. 
These concepts can be a good addition as they align with the goals of the MARTE 
profile, though this requires further investigation. 

5 Conclusion 

Applying Model-based Engineering (MBE) notations and methodologies to real-life 
industrial problems is a challenging task and very few articles in the research litera-
ture report on such experiences. For successful MBE application, a comprehensive 
methodology for modeling should be adopted that is specific to the problem being 
solved and adequate for the application domain. This paper discusses our experiences 
of applying Unified Modeling Language (UML) and the UML profile for Modeling 
and Analysis of Real-Time Embedded Systems (MARTE) to solve three distinct in-
dustrial problems related to the use of real-time embedded systems (RTES) in four 
different industry sectors. The industrial problems that we tackled were related to 
architectural modeling and configuration, model-based robustness testing, and envi-
ronment model-based testing of RTES. Based on these experiences, we derived a 
framework to guide practitioners in their application of UML/MARTE in industrial 
contexts. This will help practitioners bridge the gap between modeling standards and 
the modeling needs of industrial RTES. 
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Abstract. Cost estimation studies in model-driven engineering (MDE)
are scarce; first, due to difficulty in quantifying qualitative characteris-
tics of MDE that supposedly influence software development effort and
second, due to the complexity of measuring varied artifacts that are gen-
erated and used in an end-to-end MDE toolset. A cost estimation ap-
proach is therefore needed that can incorporate characteristics of MDE
that affect economies of scale and effort in application development with
the size computation of various artifacts in MDE. We plan to use the con-
structive cost model (COCOMO) II to obtain baseline cost estimation of
MDE applications. Our main contributions are a method to capture the
qualitative characteristics of MDE in terms of cost drivers in COCOMO
II and a method for computation of various artifacts generated by an
MDE toolset. Our initial exploration of these ideas suggests that it is
possible to automate cost estimation for MDE.

Keywords: Model-driven Engineering, Cost Estimation, COCOMO II.

1 Introduction

We began developing our model-driven engineering (MDE) toolset 15 years ago
with a need to deliver a banking application on a short notice [1, 2]. Since then
we have successfully delivered 60+ large business-critical enterprise applications
worldwide on a wide variety of technology platforms and differing domains us-
ing our MDE toolset [3, 4]. Yet, even now, as we commence negotiations with
prospective customers, we are asked if we can prove that our flavor of MDE
or MDE in general is economically more beneficial to them than code-centric
approaches.

The consideration of economic issues of MDE is particularly relevant now
more than ever. A number of IT companies are using MDE toolsets of their
own to deliver large applications spanning variety of domains [5]. MDE has been
thought by many to provide a slew of advantages over code-centric develop-
ment such as faster development, quality improvement, meaningful validation
with architecture enforcing, low skill demand for developers and empowering of
domain experts, and portability, interoperability, and reusability [6]. However,
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there is very little evidence as to whether these advantages can be validated to
be economically beneficial [7].

We believe that there are two reasons for the scarcity of cost estimation stud-
ies in MDE. Firstly, MDE differs from code-centric development with regards
to persuasive use of models which are more abstract than code, and enable
automation of all software development life cycle (SDLC) activities to various
extents. The raised level of abstraction and automation, and the rest of the
advantages, although perceivably reduce the software development effort, are
difficult to translate to quantitative units of economic profit. Secondly, if cost
estimation techniques are to be applied to MDE, a number of artifacts must
be taken into consideration for sizing software, starting with models and en-
compassing code, documentation, tests, configuration and deployment scripts,
and so on. There are differing opinions about how to do this leading to further
complexity of cost estimation in MDE.

We take a step in this direction by presenting an approach that attempts
to obtain quantitative measure of MDE characteristics responsible for reduced
development effort and compute size of various MDE artifacts. For this purpose
we propose to use constructive cost model (COCOMO) II [8]. COCOMO II
takes size of software application as input to its equations for estimating cost
and schedule. The equations also use a set of cost drivers, namely scale factors
and effort multipliers [9]. As the names suggest, these cost drivers include a
subjective assessment of development practices of an organization that are likely
to influence economies of scale and effort required for application development
respectively. Our main contribution are an explanation of how COCOMO II
cost drivers are likely to be influenced by development practices characteristic
of MDE and a way to compute size of variety of MDE artifacts. We do not yet
provide calibration and validation of our approach with historical data. While
our ongoing work concentrates on this, in this paper we provide only a brief
description of how we intend to approach it.

The paper is organized as follows. Section 2 describes the motivation behind
our work and presents an outline of our approach. In Section 3, we show how
qualitative characteristics of MDE can be quantified. Section 4 presents the
nature of various MDE artifacts and how the measurement of size can be au-
tomated for them. In Section 5, we discuss how we plan to integrate these and
calibrate and validate this integration in COCOMO II. Related work is reviewed
in Section 6 and Section 7 concludes the paper.

2 Motivation and Outline

Given the fact that MDE has been promoted as the paradigm to tackle grow-
ing complexity of business applications, one would presume that there are many
studies providing practical evidence of economic benefits of MDE. But economic
studies, particularly cost estimation studies, in the context of MDE are con-
spicuous only by their absence. A company like ours considers many product
pricing strategies like pricing-to-win and pricing by analogy and so on, and cost
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estimation would only give a baseline price of the product, upon the basis of
which further negotiations commence with a customer. However, cost estima-
tion is generally required by business units. Even for marketing purposes, it is
necessary that we are able to show that MDE in fact does increase the produc-
tivity in quantitative terms like person-months and calendar time while further
easing maintenance and reducing overall cost.

What makes cost estimation in MDE more complex than cost estimation in
code-centric applications is the inherent difficulty of capturing beneficial effects
of MDE on productivity, including those obtained by automation and raised
level of abstraction, in a measurable format. Furthermore, an end-to-end MDE
toolset such as ours uses models and generates a variety of artifacts which must
be measured for size and which take different amount of effort to generate and
maintain. Currently there are a number of opinions regarding how programming
languages and technology platforms affect the sizing of a product [10] and what
to do when code is auto-generated as against when it is manually written, as
well as how to measure a number of non-code artifacts [11].

COCOMO II
(parameters)

Size (K 
Source 
Lines of 
code or 

Function 
Points)

Cost Drivers 
(Software Platform, product, personnel, 

and project Attributes)

Cost

Schedule
COCOMO II for MDE

(parameters)
MDE 

Artifacts 
Size

MDE Cost 
Drivers 

Baseline 
Cost

Baseline 
Schedule

Code auto-generated 
from Models for given 
technology platform 

Manual 
behavioral code 
in a specific PL

Metadata-based 
Aspect-oriented 

Code
Tests, Configuration 
Scripts, Deployment 

Descriptors etc. Provide a mapping between MDE characteristics 
to COCOMO II scale factors and effort multipliers

Fig. 1. COCOMO II for Code-centric (left) and MDE (right) Applications

To estimate cost of MDE applications therefore, we need three components;
one, a way to quantify MDE characteristics like automation and raised level of
abstraction; two, a way to measure size of various MDE artifacts; and three, a
cost model that is amenable for including quantified MDE characteristics and
adjusted sizes of various MDE artifacts. The cost model we are investigating for
this purpose is COCOMO II as it provides these facilities apart from being a
widely used cost estimation model. Figure 1(left) shows COCOMO II used for
code-centric applications with size and cost drivers as input and cost and sched-
ule as outputs. Instead of modifying existing variables, adding extra variables,
or post-processing results of COCOMO (as in many COCOMO derivatives [12]),
at this early stage we use COCOMO II itself without making any changes; re-
interpreting various cost drivers in the context of MDE practices and taking into
account sizes of various MDE artifacts as shown in Figure 1(right).

In the following sections, first we show how quantification of MDE character-
istics can be achieved by mapping peculiarities of a MDE toolset to COCOMO II
cost drivers and then show size measurements for various common MDE artifacts
in the context of our MDE toolset.
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3 Measuring Qualitative Characteristics of MDE

As shown in Figure 1, we intend to map characteristic of our MDE toolset with
COCOMO II cost drivers. We show how this is done by first presenting a brief
description of the COCOMO II model itself.

3.1 COCOMO II

COCOMO II scale factors and effort multipliers are cost drivers that cap-
ture characteristics of software development that affect the effort to complete
a project. All COCOMO II cost drivers are assigned qualitative rating levels
that express the impact of the driver on development effort [9]. Each rating level
has a value that translates a cost driver’s qualitative rating into a quantitative
one for use in the model. These rating levels range from the lowest as very low
and to the highest as extra high. This is shown in Table 1.

Table 1. COCOMO II Cost Drivers Features and Rating to Value Conversion

Feature Very Low Low Nominal High Very High Extra High 
Feature X for 

given Cost 
Driver Value ranges for each rating level 

Each cost driver has varying number of features with values ranges for all rat-
ing levels as shown in Table 1. Our approach for quantifying MDE characteristics
is to explore the possible effects of practices specific to our MDE toolset on the
rating levels of COCOMO II cost drivers and determine general rating levels.
The actual rating levels are determined by data collection and analysis methods
such as questionnaires and interviews and then projected onto a quantitative
scale by using translation of COCOMO II ratings to values. Before elaborat-
ing how characteristics of our MDE toolset relate to various COCOMO II cost
drivers, we briefly review practices and capabilities of our toolset.

3.2 Our MDE Toolset

Our basic MDE approach was sufficient for addressing general functionality con-
cern of large business-critical database-centric enterprise applications [13]. How-
ever, having developed applications for a number of domains, we found that
applications for even the same domain differed in design strategies, architec-
tural specifics, and technology platforms 〈d, a, t〉 concerns [3]. We developed
aspect-oriented modeling techniques centered around the concept of building
blocks which are specifications of 〈d, a, t〉 concerns in terms of concern-specific
metamodels. The aspect-oriented modeling techniques enabled us to provide
manageable variations in these concerns [14]. Finally, the business process con-
cern was addressed by supporting families of business processes by extending
business process modeling notation with adaptation operators [15].
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These model-driven aspect-oriented code generation capabilities were
amended with multi-user repositories for storing models to provide a unified
view while developing with models at different stages of SDLC [16]. This was
followed by a component abstraction to support notions of private and pub-
lic workspaces and role-based MDE artifact access which made synchronization
between offshore and onsite developers possible [13, 16]. We also adopted well-
defined baseline for each phase in the product lifecycle as large software devel-
opment engagements were required to be delivered in phases [17].

Together with our model and metamodel architecture centered around sepa-
ration of functionality, design strategies, architectural specifics, technology plat-
forms, and business process concerns, model-aware specification and transfor-
mation languages (OMGen and Q++ [18]), multi-user repositories, component
abstraction, and versioning and configuration management, we were able to de-
liver 60+ quality products worldwide.

In the next section, the peculiar characteristics of our MDE toolset stated
above are used in finding how features of scale factors are affected with the
definitions of features in COCOMO II model definition manual [9].

3.3 COCOMO II Scale Factors and Our MDE Toolset

COCOMO II scale factors apply to a product as a whole. In the following
we explain how development practices using our MDE toolset possibly affect
COCOMO II scale factors.

Precedentedness. (PREC) This scale factor attempts to capture similarity
in products developed by an organization. If the products are largely similar
then precedentedness is high. From our experience in delivering 60+ enterprise
business applications, we found that a considerable amount of organizational
understanding of product objective is required initially. Once this knowledge
is encoded in the models though, the unified view provided by our model
repositories [16] can always be used to arrive at a big picture. Furthermore,
our MDE toolset provides end-to-end model to code capability which means
that piecemeal frameworks targeting various operational procedures and data
processing architectures and algorithms need not be integrated individually.
Therefore irrespective of specific domains or specialized requirements, we can
maintain an above nominal degree of precedentedness in our products.

Development Flexibility. (FLEX) This scale factor attempts to capture
flexibility in terms of conformance of software with pre-established requirements
and external interface specifications. Better separation of five concerns in our
MDE toolset [2] means that whatever level of conformance is required; we are
generally able to deliver within accepted trade-off between early completion
and deployment of a product and complete conformance with requirements and
specification.

Architecture/Risk Resolution. (RESL) This scale factor indicates the
extent to which an organization implements a risk management plan by
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development and verification of application specifications with scheduled
product design reviews. When developing enterprise applications with our
toolset, we create a reference implementation that spans all architectural layers.
It is validated by operational characteristics and this information is shared with
eventual stakeholders and finally, code generators are customized as required.
Manual reviews are scheduled based on project time line. In case of drastically
different architectures, about 25% of development schedule is dedicated to
establishing the architectures. With mostly similar requirements differing only
in GUI, only 5% development schedule is required to be assigned to architecture
building. RESL also captures percent of top architects required to be available
at different stages of development. In our case, a high percent of solution
architects are required in defining and encoding the architecture. Once the
architecture is encoded though, this percentage can be reduced during actual
development of the application. In other words, our MDE toolset can achieve
high to very high RESL ratings in general.

Process Maturity. (PMAT) The process maturity scale factor is determined
based on Capability Maturity Model (CMM) from Software Engineering Insti-
tute. When CMM rating is available for an organization, it may be used as it
is. Since our organization has overall CMM level 5, it means that the estimated
process maturity level (EPML) for us would be close to 51. Yet, we believe that
a review of each of the key process areas (KPAs) from the standpoint of our
MDE toolset is required to obtain a more realistic EPML level for development
units in our organization working with our MDE toolset, which is outside the
scope of this paper.

Team Cohesion. (TEAM) The team cohesion scale factor as described in CO-
COMO II considers synchronization in the objectives and cultures of stakehold-
ers and their experience is operating as a team. We believe that the TEAM
factor as described in COCOMO II manual is more or less independent of the
development paradigm used such as MDE. The coordinated development of a
project with team members located in different sites using our MDE toolset is
covered under SITE effort multiplier.

In the following, we similarly indicate how development practices using our
MDE toolset affect features of COCOMO II effort multipliers.

3.4 COCOMO II Effort Multipliers and Our MDE Toolset

The 17 effort multipliers in the post-architecture model are used to adjust nom-
inal effort required for a software product/solution under development. These
multipliers are classified into product factors, platform factors, personnel factors,
and project factors reflecting their rationale.

1 See Quality Framework section in TCS Corporate Facts available on Web at
http://www.tcs.com/about/corp_facts/Pages/default.aspx.

http://www.tcs.com/about/corp_facts/Pages/default.aspx
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Product Factors. The rationale behind product factors is that a product that
is complex, has high reliability requirements, and requires large test dataset will
require more efforts to complete.

Required Reliability. (RELY) indicates extent to which software must
perform its intended function and the effect of software failure. Since our toolset
provides extensive automated testing and validation support with manual
reviews, we believe that we are able to restrict financial losses due to software
failure to easily recoverable ones instead of letting them escalate into high losses.

Database Size. (DATA) multiplier indicates effort in generating and main-
taining test data. Since tests are generated automatically for business logic and
GUI in our toolset, we consider this effort to be low in general.

Product Complexity. (CPLX) captures complexity of control, computational,
device-dependent, data management, and user interface management operations
in a specific product. As described earlier in Section 3.2, our experience over
a number of products suggests that domains we handled presented with high
product complexity in general. Clear separation of concerns in our MDE toolset
with application development facilitated along GUI, data, and business logic
layers, has enabled us to reduce product complexity to nominal (and in some
cases low) levels.

Developed for Reuse. (RUSE) multiplier takes into account additional
effort required to construct reusable components. It is assumed that creation
of reusable components requires more generic design of software, elaborate
documentation, and extensive testing. The component abstraction in our MDE
toolset along with automated documentation and test generation implicitly
supports this. We have consequently found that it has enabled us to generate
different applications in the same vertical for different organizations. This
multiplier is between across program to across product line in general.

Documentation Match for Life Cycle Needs. (DOCU) multiplier indi-
cates the level of required documentation. The ability of our MDE toolset
to automatically generate documentation places this effort to nominal in general.

Platform Factors. These multipliers target hardware-software complex such
as execution time constraint (TIME), storage constraint (STOR), and
platform volatility (changes in compilers/assemblers supporting develop-
ment) (PVOL). Out of these, we consider TIME and STOR to be more or
less independent of any MDE practices and therefore would map to their
nominal values. PVOL, on the other hand, is adequately addressed by our MDE
toolset as we have experience in deploying application onto multiple and var-
ied platforms enabling us to reflect major changes within pre-established timeline.

Personnel Factors. These multipliers capture the development teams’ capa-
bility and expertise. When interpreting these in the context of our MDE toolset,
we attempt to indicate how the development team is helped by various facilities
provided by our MDE toolset.
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Analyst Capability. (ACAP) multiplier considers analysis and design ability
of an analyst, his efficiency and thoroughness, and his ability to communicate
and cooperate. We consider that analysts using our MDE toolset are helped in
terms of facilities for designing models and the model repositories enable sharing
knowledge with other stakeholders. Helped by component abstraction, high
internal cohesiveness, explicit and dependent components and their composition,
and ability to expose required and provided interfaces and implementation [16],
analysts in the nominal to high percentile can perform to very high levels in
general.

Programmer Capability. (PCAP) multiplier considers similar abilities as in
ACAP, on behalf of programmers. In our MDE toolset, programmer’s job is re-
stricted to providing business logic. Since business logic itself is written in Q++,
a high level language, code generators for project-specific technologies take care
of intricate details of technology platforms. Because documentation and test
are automatically generated, programmers’ job is made easier to a large extent.
As our code generators are themselves written in another model-aware lan-
guage called OMGen [18], developers of the code generators are similarly helped.

Personnel Continuity. (PCON) This multiplier considers annual personnel
turnover. In the context of our MDE toolset, we interpret this multiplier as the
degree to which MDE makes it easier for the new personnel to pick up where ear-
lier personnel left and how much of the personnel must continue over a longer
period of time. Using our MDE toolset, we have observed that solution architects
are not needed after the architecture is defined and encoded. Domain experts
though need to be present over most of the duration of the project. Various
graphical views and mild learning curve in learning high level model aware lan-
guage with much less number of operations and functionality than a general
purpose language enables a quick turnover of programmers as well. This enables
us to maintain above nominal to high continuity in general.

We believe that the effort multipliers application experience (APEX),
platform experience (PLEX), and language and tool experience (LTEX)
would be largely influenced by the maturity of our toolset. We have observed
that high level of abstraction and code generation along with other development
practices delineated earlier indicate that otherwise nominal level experience
over application, platform, and language/tools translates into roughly between
high and very high when using our MDE toolset.

Project Factors. These effort multipliers account for the influence of such
factors as use of modern software tools, location of development team, and effect
of compression of project schedule on estimated efforts.

We have indicated earlier that our MDE toolset encompasses all SDLC
stages. Furthermore, the use of multi-user repositories for models and business
logic specifications along with versioning and configuration management sup-
port means that use of software tools (TOOL) multiplier evaluates in general
to support for strong, mature, proactive life-cycle tools, well integrated with pro-
cesses, methods, and reuse.Multisite development (SITE) multiplier captures
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collocation of team members and communication support. In the context of our
MDE toolset, multisite development is made easier with workspace realization
and role-based secure access of various MDE artifacts, indicating a very high con-
nectedness. Required development schedule (SCED) effort multiplier maps
to 1 for most projects as changes in schedules can be more or less effectively
managed with buffer times provided over the baseline analogy estimates.

3.5 MDE Characteristics Influencing COCOMO II Cost Drivers

To determine the ratings for our MDE toolset, we use questionnaires and assisted
interviews in a manner similar to [19] and [20]. The respondents are chosen from
the personnel of our company who have been involved in the development and
use of our MDE toolset for a period 5-15 years.
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Fig. 2. Distribution of COCOMO II Cost Drivers over Rating Levels for MDE Appli-
cations; Response of 16 Team Leaders to 45 Multiple Choice Questions

Initial questionnaire responses and interviews with experienced team leaders
revealed the distribution of COCOMO II cost drivers over rating levels shown
in Figure 2. It indicates that a number of cost drivers fall into rating levels of
high and very high (drivers for which higher ratings indicate less efforts) and low
(drivers for which lower ratings indicate less efforts such as RELY and DATA)
resulting in economies of scale and reduced overall effort.

We have shown only the ranges of rating levels that each driver falls into in
Figure 2 rather than actual values for two reasons; first, these values are not
yet calibrated and validated, and second, we have considered responses only of
experienced team leaders and not other types of roles. Yet, the distribution seen
here could be considered representative of effort reducing benefits of our MDE
toolset with key contributing characteristics illustrated in Table 2.

As elaborated in the previous section, certain MDE characteristics affect both
scale factors and effort multipliers in COCOMO II. These are shown in Table 2.
We have also cited the reference(s) where a particular MDE characteristic was
explained in the context of our MDE toolset.
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Table 2. Relation between MDE Characteristics and COCOMO II Cost Drivers; TIME
and STOR are Independent of any Characteristic
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We have roughly divided the characteristics of our MDE toolset between two
core MDE characteristics, namely raised level of abstraction and automation.
Mature tooling, enabled on the basis of these two, results in reduced effort as
indicated by many COCOMO II cost drivers that are influenced by it. Although
the MDE characteristics noted in Table 2 and distribution of cost drivers over
rating levels shown in Figure 2 are specific to our toolset, we believe that map-
ping provided by us between these can be taken as a starting point by others. For
instance, capabilities similar to our MDE toolset such as separation of concerns
with component-like abstraction, model-aware Q++-like language(s) for auto-
mated code generation, automated consistency validation, tests, and document
generation, model persistence and query with repositories and versioning sup-
port, role-based MDE artifact access, and mature tooling for MDE SDLC can
be similarly mapped to COCOMO II cost drivers in case of other MDE toolsets
as elaborated in the previous section.

Having obtained quantitative measures of MDE characteristics, we explain in
the next section, how to obtain size measure of various MDE artifacts which is
another input to COCOMO II.

4 Measuring MDE Artifacts

Our MDE toolset uses four different kinds of artifacts, namely auto-generated
code (skeletal class code, queries, GUI code) [14], manually added code (code
written in Q++ for method bodies, services, etc.) [16], several non-code artifacts
such as tests, deployment descriptors, user documentation, and configuration
scripts [17] and finally, metadata-based aspect-oriented code for 〈d, a, t〉 concerns
which is application-specific [18].

Table 3 gives an idea about general size and technology platforms of some
of the applications we delivered using our MDE toolset [3]. At the time when
we measured the source lines of code (SLOC) of these applications, we did not
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Table 3. Final SLOC of Enterprise Applications [3]

Product # classes/screens Final SLOC (K) Technology Platforms 
Straight-through 

Processing 
 

334/0 3271 IBM S/390, Sun Solaris, Win NT, 
C++, Java, ICS, MQ Series, 
WebSphere, DB2 

Negotiated 
Dealing 

303/0 
 

627 
 

IBM S/390, Sun Solaris, Win NT, 
C++, Java, CICS, MQ Series, 
COM+, DB2 

Distributed 
Management 

250/213 
 

2670 
 

HP-UX, Java, JSP, WebLogic, 
Oracle, EJB 

Insurance 105/0 
 

2700 
 

IBM S/390, Sun Solaris, C++, 
Java, CICS, DB2, CORBA 

make the distinction between auto-generated code, manual code, non-code arti-
facts and application-specific code. Instead, we computed the SLOC of complete
application codebase. We have known that effort required for each of above men-
tioned artifacts is slightly different and it should be accounted for. We delineate
the separate SLOC computation for each of these artifacts next.

4.1 Separate Size Computation of MDE Artifacts

COCOMO II model definition module contains an SLOC checklist which ex-
cludes code generated with source code generators [9], but will be probably in-
cluded in future [21]. However a number of researchers state that it is necessary
to make the distinction between different kinds of code [10, 11]. Additionally,
COCOMO II considers logical SLOC rather than physical SLOC in order to
avoid the calibration and validation data to become language-specific. In the
following, we indicate different categories of code in our MDE toolset and its
SLOC computation.

Table 4. Auto-generated Code Adjustment Factors [11]; GL- Generation Language

Auto-generate Code 
in 

To obtain Logical SLOC Multiply 
Auto-generated Code SLOC by 

2GL 1 
3GL (C, Cobol) 0.25 
4GL (SQL, Perl) 0.06 

Object-oriented (C++, 
Java, Python) 

0.09 

Auto-generated Code. McDonald et al. observe that auto-generated code
needs to be measured properly lest its measurement is inflated [10]. Lum et al.
argue similarly stating that auto-generated code is not free and takes some effort
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and therefore needs to be considered along with the manually added code [11].
They suggest that since productivity level of developing auto-generated code
differs from other code, it must be converted so that it becomes comparable to
SLOC of non-auto-generated code. This is indicated in Table 4.

Manually Added Code. Our model-aware Q++ language is used to write
bodies of methods generated from the class models. The final code is generated
depending upon the target technology platform language2. Table 5 shows that
based on target programming language the logical SLOC differs as well. Depend-
ing upon whether code was written in a programming language or Q++, SLOC
can be counted directly by using SLOC counter for that language, or using a
general purpose statement counter and adjusting it by multiplying by 0.06 as
Q++ is a fourth generation language.

Table 5. Language Adjustment Factors [11]

Technology Platform 
Language 

To obtain Logical SLOC reduce 
physical SLOC by 

3GL 25% 
4GL 40% 

Object-oriented 30% 

Non-code Artifacts. Adjustments have also been suggested for counting of
non-code artifacts like database scripts, configuration and deployment scripts,
test cases, and so on, which also take effort to create and must be accounted
for [11]. The exact SLOC of these artifacts can be obtained using a general
purpose counter and then multiplied by 0.06 because these are auto-generated.

Metadata-Based Aspect-Oriented Code. Depending on domain require-
ments, it is possible that substantial amount of code is generated using metadata-
based aspect-oriented code generation techniques [14]. This is the code for 〈d, a,
t〉 concerns mentioned earlier in Section 3.2. Code that is generated for 〈d, a, t〉
concerns is conditional in nature, in the sense that model-to-text transformation
takes place differently based on choices along these concerns in specific applica-
tions. We have already provided an automation method and tool for counting
SLOC of 〈d, a, t〉 concerns [22] using software product line concepts.

These adjustments are incorporated in counting the complete SLOC of appli-
cation developed using our MDE toolset as described next.

4.2 Calculating Complete SLOC for MDE Applications

Starting with models, steps enlisted below can be followed to automate counting
and adjusting logical SLOC sizes of various MDE artifacts:

2 It is also possible to write method bodies directly in the target programming
language.
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– Auto-generated code is computed by using method similar to [23]. Since we
use only class models, other UML artifacts need not be considered in our
case as in [23]. Furthermore, we measure only the skeletal code rather than
simulating average SLOC of method bodies, since method bodies are added
manually which we measure separately. The SLOC is adjusted first by 0.09
and then by language adjustment factor for the target language as indicated
in Table 5.

– Manually added code is measured using a language-based SLOC counter and
adjusted according to language adjustment factor as shown in Table 5. If this
code is written in Q++, then both auto-generation adjustment factor of 0.06
and language adjustment factor is required to be used.

– Non-code artifacts are measured using general purpose SLOC counter. Since
they are auto-generated, the SLOC is adjusted by 0.06.

– Application-specific code due to 〈d, a, t〉 concerns is calculated by extending
code generators with SLOC counting statements. We account for code gen-
erator extension effort along with the auto-generated code adjustment factor
when computing the contribution of this code.

With the MDE characteristics captured in terms of scale factors and effort mul-
tipliers and the MDE artifacts sizes computed in terms of SLOC, we have ev-
erything needed for the estimation of cost and duration using COCOMO II as
explained next.

5 Proposed Calibration and Validation of COCOMO II
for MDE

The data required for calibration and validation of COCOMO II is values of
COCOMO II cost drivers, size of products in KSLOC, duration of the project in
calendar time, duration of person-months i.e., actual time spent by staff work-
ing on the project, how much of the staff worked on the given project and
their salaries [9, 24]. A calibration and validation method such as k-fold cross-
validation can be used for calibrating this data [25]. Generally, our clients are
charged by hours spent on their project and timekeeping record is maintained
over the duration of development. This is how we plan to obtain the rest of
the data needed for calibration and validation. Note that there are two reasons
why we do not yet present calibration and validation of proposed approach as
explained in the following sections.

5.1 Relevance of Response

The results presented in Section 3.5 were obtained based on the responses of
experienced team leaders who manage, train, and help developers, and were
developers working with our toolset previously and whose response we could get
in time. In our personnel we also have consultants (who are in contact with clients
and determine product scope, specifications of the concerned system, and also
partake in sales and support), domain experts (from our largest customers for
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the products under consideration), solution architects, and researchers (who were
involved in conceptualizing various aspects of our MDE toolset and technology
transfer). We believe that in order to get more accurate values for COCOMO II
cost drivers, we will have to take into consideration as to respondents of which
role are in a position to make the best subjective judgments about certain cost
drivers as shown in Table 6.

Table 6. COCOMO II Cost Drivers and Associated Roles: 1- Team Leaders, 2- Con-
sultants, 3- Domain Experts, 4- Solution Architects, 5- Researchers
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Although each respondent answers questions related to all cost drivers, the
value of each cost driver will be calculated by giving more weightage to the
answers by the respondents of role type indicated in Table 6. This will give us
values of COCOMO II cost drivers that are closer to reality in the context of
our MDE toolset.

5.2 Data Availability

Our MDE toolset has evolved over time and some of our products have spanned
5-15 years of development, maintenance, and enhancement cycle and timekeep-
ing records for some artifacts have not been digitally maintained. Peculiarities of
our business model and multisite development means that in some cases model
repositories and codebases are confidential. Making available sufficient and reli-
able data in time and to be able to validate our calibrations has proven difficult
to us as it has in other cost estimation studies [6]. Nevertheless, as we stated in
Section 2, the business relevance of these studies is helping us getting there and
in near future we will be able to calibrate and validate data related to sufficient
number of complete products.

6 Related Work

Assessing Benefits of MDE. Various social, technical, and organizational
factors that influence success of MDE were studied in [7]. It was also found
that maturity of toolset capable of carrying out various MDE SDLC tasks is
the main determinant of MDE success [6]. The factors that affect effort such
as better communication between stakeholders with models, quick response to
changes due to automation, and maturity of toolset, etc., expressed in these
studies are in line with our findings enlisted in Table 2. On the other hand,
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these as well as many other qualitative studies in MDE which we do not cite
for the lack of space, do not consider economic effect of these perceived MDE
advantages as done by us.

Sizing Studies in MDE. There are many proposals to estimate the size of
code or function points starting with UML models, for instance use case and
class points as in [23]. Other model sizing studies focus on object-oriented
constructs and metrics over them [26] or use metrics specification metamodel to
generate measurement software [27], disregarding the existence of various MDE
artifacts as in an industrial setting. In contrast, we consider code categories
that take different effort to generate and maintain and compute their SLOC
separately.

Our Estimation Studies in MDE. We have previously presented studies
which consisted of total number of screens and effort in person-months per
screen [28] and distribution of development effort in our MDE toolset for spe-
cific activities [17]. These studies nevertheless were not aimed at cost estimation.

COCOMO II for Large Applications. COCOMO II was applied to a set
of 10 industrial projects in [19] where values of cost drivers were determined
through interviews. A detailed description of calibration procedure is provided
in [19] which is useful to us. In contrast to the projects ranging 5-38 KSLOC
considered in this case study, our projects are very large reaching a few thousand
KSLOC as shown in Table 3 earlier. Application of COCOMO II in banking and
insurance environment by [20] describes a setup for measurement environment
for calculating SLOC and workload times. Cost drivers are determined through
questionnaire and conversion factors are used for reconciling differences between
SLOC of many programming languages. Both these studies are for code-centric
development in contrast to our approach.

7 Conclusion

We showed in this paper one way to estimate cost of MDE application by map-
ping practices of our MDE toolset to COCOMO II cost drivers and automating
size measurements of various MDE artifacts. MDE benefits could be roughly
grouped among raised level of abstraction, automation, and mature tooling which
influence various cost drivers and thus get reflected in the cost calculations. Also
these lead to generation of various code and non-code artifacts in different pro-
gramming languages and technology platforms. The right amount of effort for
each kind of artifact is obtained by various adjustment factors. Actual use of CO-
COMO II for MDE would need calibration of various constants in COCOMO II
effort, cost, and duration (schedule) equations and validation which is ongoing.
Because core characteristics of MDE are bound to be present in any end-to-
end MDE toolset in some or the other form and to varying extent, the method
described in the paper can be applied for other industrial MDE toolsets and
practices based upon them even though we present it in the context of our MDE
toolset.
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Abstract. The lack of empirical knowledge about the effects of model composi-
tion techniques on developers’ effort is the key impairment for their widespread 
adoption in practice. This problem applies to both existing categories of model 
composition techniques, i.e. specification-based (e.g. Epsilon) and heuristic-
based (e.g. IBM RSA) techniques. This paper reports on a controlled experiment 
that investigates the effort to: (1) apply both categories of model composition 
techniques, and (2) detect and resolve inconsistencies in the output composed 
models. The techniques are investigated in 144 evolution scenarios, where 2304 
compositions of elements of class diagrams were produced. The results suggest 
that: (1) the employed heuristic-based techniques require less effort to produce 
the intended model than the chosen specification-based technique, (2) the cor-
rectness of the output composed models generated by the techniques is not sig-
nificantly different, and (3) the use of manual heuristics for model composition 
outperforms their automated counterparts. 

Keywords: Model composition effort, empirical studies, effort measurement. 

1 Introduction 

Model composition plays a central role in many software engineering activities, 
including the evolution of design models [5,8]. Developers may spend some consider-
able effort applying model composition techniques to compose MA and MB. As a 
consequence, both academia and industry are increasingly concerned with developing 
effective techniques for composing design models (e.g. [5,10][14-19]). Model compo-
sition can be defined as a set of tasks that should be performed over two (or more) 
input models, MA and MB, in order to produce an output intended model, MAB.  

Existing techniques that support model composition can be classified as specifica-
tion-based techniques (e.g. Epsilon [15]), and heuristic-based techniques (e.g. the 
heuristics supported by the IBM Rational Software Architect (RSA) [16]). In the first 
case, developers explicitly specify the correspondence and composition relations  
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between the elements of the input models (MA and MB) to give rise to MAB. In the 
second case, developers use a set of predefined heuristics, which “guess” the relations 
between the elements of MA and MB before producing MAB.  

However, instead of producing the output intended model, MAB, as would be ex-
pected, the technoiques may produce an output composed model, MCM, with inconsist-
encies. These inconsistencies often result from the incorrect resolution of conflicting 
changes between the model element from MA and MB. If MCM and MAB do not match 
(MCM ≠ MAB) due to inconsistencies in MCM, developers will need to invest some extra 
effort to detect and resolve the inconsistencies in MCM so that it can be transformed 
into MAB. Note that the key motivation for applying composition techniques is to re-
duce the effort of the developers to produce the output intended model [17, 18]. The 
proponents of specification-based techniques claim that explicit composition specifica-
tions entail a more systematic way to compose MA and MB [8, 17]; hence, developers 
expect to save effort by using them. That is, the conventional wisdom [5, 8, 17, 18] is 
that a precise composition specification favors the production of correctly composed 
models (i.e. where MCM = MAB), thereby minimizing the developers’ effort. 

To date, however, there is little evidence to confirm (or not) this expectation. As a 
result, developers use model composition techniques without any support of empirical 
knowledge regarding their effects on the effort to apply them as well as to detect and 
resolve inconsistencies in MCM. If a particular composition technique reduces effort, 
but has a detrimental effect on the model correctness (or vice-versa), it is quite argua-
ble whether developers may use it in mainstream software projects, where time and 
cost are tight. Having empirical knowledge at hand, developers can choose and adopt 
composition techniques in a rational way. Today, the adoption of the techniques is 
based on evangelists (often divergent) opinions. 

This paper reports empirical findings on the use of specification-based and heuris-
tic-based composition techniques (Section 2.3) to evolve design models. We have 
conducted a controlled experiment to evaluate and compare such techniques with 
respect to the developer’s effort and model correctness in the context of evolving 
design models (Section 3). A total of 24 subjects carried out 144 compositions of 
UML class diagrams with the support of such techniques. The comparative analysis 
(Section 4) embodied the effort of applying alternative composition techniques, de-
tecting inconsistencies and resolving them in the output composed model. The main 
surprising results, supported by statistical analysis, suggest that: (1) the specification-
based technique required more effort to produce the intended model than the selected 
heuristic-based techniques; and (2) there was no significant difference in the correct-
ness of the output composed models generated by the assessed techniques. 

The contributions of this paper are (a) empirical findings on the impact of heuristic 
and specification-based composition techniques on developers' effort to apply tech-
niques, detect inconsistencies and resolve inconsistencies; (b)   insights about how to 
evaluate the developers’ effort, reduce error proneness in model composition, and min-
imize side effects of composition techniques in practice; and finally, (c) to serve as an 
in-depth example of how controlled experiments can be conducted to evaluate and 
compare model composition techniques. We also discuss the threats to validity (Sec-
tion 5), the limitations of related work (Section 6), and concluding remarks (Section 7). 
Although we cannot generalize our empirical findings to other model composition 
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techniques, our exploratory experiment stands for a trailblazing contribution to  
improve understanding of the potential effects of model composition techniques on 
developers’ effort. 

2 Background 

2.1 Model Composition Effort 

In this study, model composition effort is described by an effort equation (Fig. 1). 
Developers often invest effort to realize three activities to compose the base model, 
MA, (the model to-be changed) and the delta model, MB (i.e. the changes), to produce 
MCM. The first activity, the application of the model composition technique, is repre-
sented by f(MA,MB) in the equation. The additional effort is usually invested to detect 
inconsistencies in MCM – represented by, diff(MCM,MAB) – and to resolve these incon-
sistencies – represented by g(MCM). If MCM perfectly matches the intended model, 
MAB, then diff(MCM, MAB) = 0 and g(MCM) = 0. Otherwise, additional effort is re-
quired to deal with inconsistencies, meaning that diff(MCM,MAB) > 0 and g(MCM) > 0.  

 

Fig. 1. Overview of model composition effort: an equation. 

2.2 Composition Conflicts and Inconsistencies 

It is well known that the properties of the model elements of MA and MB may conflict 
with each other. Fig. 2 shows a simple example of composition conflict. In the base 
model, the Researcher is defined as a concrete UML class (i.e. Researcher.isAbstract 
= false) whereas in the delta model, Researcher is an abstract class (i.e. Research-
er.isAbstract = true). Before composing, the developers need to properly answer the 
question: should class Researcher be an abstract class (or not)? In this particular case, 
the correct answer is that the Researcher must be abstract (see the intended model in 
Fig. 2).  However, conflicts may be converted into inconsistencies in MCM when 
unexpected values are set to the properties of the model elements. Fig. 2 shows that 
the class Researcher produced by the override and merge algorithms (Section 2.3) is a 
concrete class (isAbstract = false) instead of an abstract one (isAbstract = true), as 
would be expected. Because of this inconsistency, the output composed model is not 
compliant with the intended model. Two categories of inconsistencies can emerge, 
including:  
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• Syntactic inconsistency emerges when a composed model element does not con-
form to the rules defined in the modeling language’s metamodel. For example, a 
class must have attributes with different names.  

• Semantic inconsistency arises when the meaning of the elements of the com-
posed model does not match with the meaning of the intended model elements. 
For instance, a class in MCM has an unexpected method, or it requires functional-
ity from other classes that no longer exist after the composition.  

 

Fig. 2. Illustrative example. 

In our study, we focus on semantic inconsistencies because they cannot be automatical-
ly identified using model composition techniques. They often require some interven-
tion from software developers. In addition, they are mainly responsible for non-trivial 
composition problems during the model evolution [8]. As a consequence, they often 
require more effort and are more detrimental to the correctness of the output model 
than syntactic inconsistencies [9]. The categories of semantic inconsistencies consid-
ered are: (1) a model element in MCM is not compliant with the corresponding one in 
MAB; (2) model elements are missing from MCM, or should nor be defined in MCM; (3) 
model elements are unexpectedly duplicated according to MAB; and (4) there are dan-
gling relationships between classes, i.e. a model element makes reference to other 
model elements that do not exist. These categories are the most common types of prob-
lems faced by developers dealing with model inconsistencies [4,8]. In our study, we 
explicitly discriminate each contradicting change (i.e. the conflict) from its conse-
quence in the output model (i.e. the inconsistency). 

2.3 Model Composition Techniques 

The composition techniques used in our study were Epsilon [15], the representative of 
specification-based techniques, and two representatives of heuristic-based techniques, 
namely the IBM RSA [16] and traditional composition algorithms (TRA) [9]. These 
three techniques were selected as they provide different degrees of automation sup-
port. The selected heuristic-based techniques include both an automated technique 
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(RSA) and a manual technique (TCA) to support model composition. Specification-
based techniques cannot be applied manually. Epsilon and IBM RSA are supported by 
robust, usable tools, an essential prerequisite for a controlled experiment like ours. 
IBM RSA is an industry-leading tool and it is the most widely used tool in the indus-
try [16]. Epsilon is stable, easy-to-use tool for specification-based composition that 
was available for our study. Traditional algorithms, such as merge and override, are 
well explored in the academic literature and have been used to support and guide 
manual model composition [10, 19]. These techniques are described as follows. 

Epsilon (EPS). It provides a hybrid, rule-based language for merging design models 
[15]. Developers invest effort to edit a set of match and merge rules before producing 
MAB. Fig. 2 shows an example of these rules. The merge rule specifies that all classes 
to be composed will have the names of classes from the delta model (i.e., c.name := 
d.name). Based on these specifications, developers define how composition relations 
should be identified. 

IBM RSA (RSA). It is one of the most robust modeling tools used in industry [16]. 
IBM RSA is characterized as a semi-automated model composition technique. Like 
the Epsilon technique, its use does not ensure that MAB will be always produced. By 
using the IBM RSA developers should interactively resolve conflicts before produc-
ing MAB.  Fig. 2 depicts an example of a conflict report. When conflicting changes 
emerge, developers should decide which changes will be inserted into the output 
composed model ― from the base model (Researcher.isAbstract = false) or from the 
delta model (Researcher.isAbstract = true). 

Traditional Algorithms (TRA). These algorithms fall in the category of manual, heu-
ristic-based composition techniques. In particular, we focus on three well-established 
composition algorithms: override, merge and union [9]. These algorithms were cho-
sen for several reasons. First, model evolution scenarios can be decomposed into one 
or more operations supported by a combination of these algorithms. Second, these 
algorithms are often used as guidelines for the developers composing OO models 
manually [10, 19]. Third, we wanted to investigate to what extent the aforementioned 
automated techniques outperform the use of a classical manual technique for model 
composition. In the following, we provide a brief definition for override and merge 
algorithms to be applied to two hypothetical input models, MA and MB. We say that 
two elements from MA and MB are corresponding if they have been identified as 
equivalent in the matching process. Matching can be achieved using any number of 
standard heuristics, such as match-by-name.  

1. Override (direction: MA to MB). For all pairs of corresponding elements in MA 
and MB, MA’s elements should override MB’s similar elements. Elements not involved 
in the correspondence remain unchanged and are inserted into the output model.  

2. Merge. For all corresponding elements in MA and MB, the elements should be 
combined. The combination depends on the element type. In this paper, we only con-
sider classes and interfaces — in this case, the combination adds the operations of 
MA’s elements to those of MB. Elements in MA and MB that are not involved in a cor-
respondence matching remain unchanged and are directly copied to the output model. 
In Fig. 2, the override and merge algorithms are applied and two composed models 
are produced with inconsistencies. 
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3 Experiment Planning  

3.1 Experiment Definition 

The objective of this study is stated based on the GQM template 2 as follows: 
Analyze model composition techniques for the purpose of investigating 
their effects with respect to the effort and correctness from the perspective 
of developers in the context of evolving design models.  

Based on this, we focus on the two research questions: 
RQ1: What is the relative effort of composing two input models by using specifica-
tion-based composition techniques with respect to heuristic-based composition tech-
niques? 
RQ2: Is the number of correctly composed models higher when using specification-
based techniques than heuristic-based techniques? 

3.2 Hypothesis Formulation 

Hypothesis 1. We conjecture that although specification-based composition tech-
niques provide a more systematic way to compose the input models, they do not re-
duce the overall composition effort in practice. We suspect that developers have to 
invest too much effort to specify the compositions; but, this additional effort is not 
converted into a higher number of correctly composed models than that produced 
with heuristic techniques. However, it is by no means obvious that this hypothesis 
holds. It may be, for example, that specification-based techniques help developers to 
match and then compose the input models more quickly.  

Null Hypothesis 1, H1-0: The specification-based composition technique requires 
less (or equal) effort than the heuristic-based ones to produce MAB from MA and MB. 
H1-0: Effort(MA,MB)Specification  ≤ Effort(MA,MB)Heuristic  

Alternative Hypothesis 1, H1-1: The specification-based technique requires more 
effort than the heuristic-based ones to produce MAB from MA and MB. 
H1-1: Effort(MA,MB) Specification  > Effort(MA,MB) Heuristic 

We refine this hypothesis in other three subhypotheses (H12, H13, and H14). A formu-
lation for these hypotheses is presented in Table 1. 

Hypothesis 2. The specification-based technique is expected to produce a higher 
number of correctly composed models as developers can precisely express the com-
position relations between the input models. However, it is not clear whether this 
composition technique can, in fact, help developers to improve the correctness (Cor) 
of the output model when compared to the use of heuristic approaches. These hypoth-
eses are presented as follows: 

Null Hypothesis 2, H2-0: The specification-based technique produces a lower (or 
equal) number of correctly composed models than the heuristic-based techniques. 

H2-0: Cor(MCM)Specification  ≤ Cor(MCM)Heuristic  
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Alternative Hypothesis 2, H2-1: The specification-based technique produces a 
higher number of correctly composed models than the heuristic-based technique. 

H2-1: Cor(MCM)Specification > Cor(MCM)Heuristics 

The composition correctness is influenced by the presence (or not) of inconsistencies 
in the output composed model. Thus, we investigate if the specification-based tech-
nique entails (or not) a lower inconsistency rate than the use of the heuristic-based 
techniques. This new elaborated hypothesis is stated in Table 1. 

Table 1. Tested hypotheses 

Null Hypothesis Alternative Hypothesis 
H11-0: Effort(MA,MB)S  ≤ Effort(MA,MB)H  H11-1: Effort(MA,MB)S  > Effort(MA,MB)H 
H12-0: f(MA,MB)S  ≤  f(MA,MB)H H12-1: f(MA,MB)S  > f(MA,MB)H 
H13-0: diff(MCM,MAB)S  ≤  diff(MCM,MAB)H H13-1: diff(MCM,MAB)S  > diff(MCM,MAB)H 
H14-0: g(MCM)S  ≤  g(MCM)H H14-1: g(MCM)S  > g(MCM)H 
H21-0: Cor(MCM)S  ≤ Cor(MCM)H H21-1: Cor(MCM)S  > Cor(MCM)H 
H22-0:  Rate(MCM)S  ≥ Rate(MCM)H H22-1: Rate(MCM)S  < Rate(MCM)H 

Effort: Effort to compose the input models (RQ1), S: Specification-based composition technique. 

f: Effort to apply the composition techniques (RQ1), H: Heuristic-based.  

diff: Effort to detect inconsistencies (RQ1), g: Effort to resolve the inconsistencies (RQ1). 

Cor: Correctness of the composition (RQ2), Rate: Inconsistency rate of the composed model (RQ2). 

3.3 Context and Subject Selection 

The subjects used the Epsilon, IBM RSA and the traditional algorithms to produce 
model compositions for six software evolution scenarios (Table 2). None of the sub-
jects were familiar beforehand with either the design models or the required changes. 
The selected evolution scenarios were tasks where developers are not the initial de-
signers of the models. The design models used were fragments of industrial models 
captured from different application domains, such as financial and simulation of pet-
rol extraction. The experiment was conducted with 16 subjects were professionals 
from Brazilian companies and 8 subjects were students with professional experience 
[19]. All professionals held a Master’s degree, Bachelor’s degree or equivalent, and 
had a considerable knowledge of software modeling and programming to participate 
in the experiment [19]. The students were also invited to participate in the experiment, 
so that we could have subjects with different backgrounds and levels of expertise [1]. 
They were from two Master and Doctoral programs in Computer Science at two Bra-
zilian universities: Pontifical Catholic University of Rio de Janeiro (PUC-Rio) and the 
Federal University of Bahia (UFBA). These students attended either a course on  
“empirical studies in software engineering” at PUC-Rio or a course on “software 
evolution” at UFBA. The experiments were part of the courses and were performed as 
practical laboratory exercises. The  participant was exposed to the same level of 
training on the model composition techniques under assessment [19]. 
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Table 2. The tasks of the evolution scenarios 

Task Models Required Changes to the Base Model 

1 Oil Extraction 
Add one class, one method, and one relationship. Modify one 
class from concrete to abstract. 

2 Car System 
Remove two methods and modify the direction of a relation-
ship. 

3 ATM 
Add two classes and refine two classes from one.  
Remove this last class. 

4 Supply Chain Add two classes and one relationship. 

5 Financial 
Remove one class and add two methods to a particular class. 
Refine two classes from one and remove the last one. Remove 
one relationship. 

6 
Simulation of 
extraction 

Modify the direction of five relationships.  
Modify the name of two methods. 

3.4 Experimental Design 

The experimental design of this study is characterized as a randomized complete block 
one with three treatments, i.e. the use of the three composition techniques. The study 
had a set of activities that were organized into three phases (see Fig. 3). The subjects 
were randomly assigned and equally distributed to the treatments, following a within-
subjects design in which all subjects serve in the three treatments [1]. In each treat-
ment, the subjects used a model composition technique to carry out two experimental 
tasks (Table 2), totaling six tasks performed. Therefore, the experiment design was, by 
definition, a balanced design.  Fig. 3 shows through an experimental process how the 
three phases were organized. The subjects individually performed all activities to avoid 
any threat to the experimental process. The activities are further described as follows.  

Training. All subjects received training to ensure they acquired the needed familiarity 
with each model composition technique.  

Apply the techniques. The participants were encouraged to compose MA and MB based 
upon a description of changes (Table 2) that defines how the model elements of MA 
were changed. Note that MB, the delta model, was pre-prepared. The measure of appli-
cation effort (time in minutes) was collected during this activity. In addition, the com-
posed model, video and audio records represent the outputs of this activity. Each sub-
ject performed this task six times. The video and audio records were later used during 
the qualitative analyses (Section 4.3). It is important to point out that a participant (sub-
ject x) produced MCM in the first phase; in the second phase, other participant (subject 
n-x) detected and resolved the inconsistencies in MCM in order to produce MAB.  

Detect inconsistencies. Subjects reviewed MCM to detect inconsistencies. To this end, 
they checked if MCM had the changes described in the evolution descriptions and if 
the contradicting changes between MA and MB were correctly addressed. As a result 
of this activity, we have the measure of detection effort (time in minutes), video and 
audio records, and a list of inconsistencies identified.  
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Fig. 3. The experimental process 

Resolve inconsistencies. The subjects resolved the inconsistencies previously local-
ized in order to produce MAB. The resolution effort was also measured (time in 
minutes) and the video and audios were recorded.  

Make interview and Answer questionnaire. Subjects reflected on their experience on 
model composition during the experiment through semi-structured interviews. These 
interviews helped us to enrich the body of qualitative data collected.  The subjects 
also filled out a questionnaire. This allowed us to collect their academic background 
and work experience and apply some inquisitive questions.  

Material. The models used in our study were UML class diagrams with about 8 clas-
ses and 7 relationships. This medium size of the models was essential to perform a 
controlled study like this and to be in compliance with recommendations from previ-
ous work [20]. For example, Asklund et al. [18] recommends that software changes 
should be as small as possible so that the number of conflicts remains small. In addi-
tion, given the time constraints of controlled experiments, the subjects could not be 
exposed to very large models. 
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Variables. The independent variable of this study is the choice of composition 
techniques. We investigate the impact of this independent variable in the following 
dependent variables: 

• Effort. This variable measures the overall time (in minutes) invested by sub-
jects to compose the input models (H1-1). It is elaborated in three other varia-
bles: effort to apply model compositions (H1-2), effort to detect inconsistencies 
(H1-3), and effort to resolve inconsistency (H1-4). 

• Correctness. The full correctness of a composition (H2-1) is ensured when the 
output composed model produced is correct with respect to the description of 
the intended change request (i.e. MCM = MAB). We have compared the produced 
models with the intended models (our ‘reference intended models’), produced 
by the actual developers of those systems from where the input models were ex-
tracted. The composed model produced may be rated as either correct or incor-
rect. Note that a composed model with one of the previously described incon-
sistencies (Section 2.2) would be deemed as incorrect. We also investigate the 
inconsistency rate of the incorrectly composed model. It represents the ratio of 
the number of inconsistencies of a composed model divided by its number of 
model elements (H2-2). The actual developers were consulted when we were un-
sure about particular inconsistencies in the composed models produced by the 
subjects. 

4 Experimental Results  

4.1 RQ1: Effort and Composition Techniques 

Descriptive Statistics. The developers invest less effort to produce MAB by using heu-
ristic-based techniques rather than the specification-based technique. In fact, they 
spent less effort to apply the composition techniques (f), detect inconsistencies (diff), 
and resolve inconsistencies (g) (Table 3). The traditional algorithms required less 
effort than the IBM RSA, which in turn required less than the Epsilon. This is a very 
interesting finding because the common sense would be otherwise i.e., developers 
would invest less effort by using the Epsilon and IBM RSA. Table 3 shows the de-
scriptive statistics of the collected data. Regarding the median of the general effort, it 
grew significantly from 11 to 14 and 21 by using RSA and Epsilon, respectively. This 
superior effort represents an increase by about 27.27 and 90.90 percent.  This upward 
trend was also observed in f, diff, and g. This evidence, therefore, demonstrates that 
the developers, in fact, tend to invest less effort with heuristic-based techniques than 
specification-based one.  

Hypothesis Testing. Since the Shapiro-Wilk test [1] indicated deviations from normal-
ity, the Wilcoxon signed-rank test and Friedman test were applied. While the Wilcox-
on test allowed us to realize a pairwise comparison of the distributions, Friedman test 
allowed checking if there exist significant differences among the three techniques 
under investigation. We test H1 (and its subhypotheses) to evaluate the RQ1 in the six 
experimental tasks (Table 2). Table 4 shows the p-values for the pairwise comparison. 
Bold p-values highlight statistically significant results (i.e. p-value < 0.05). 



686 K. Farias et al. 

They indicate the rejection of the respective null hypothesis. The main feature is 
that the general composition effort (and f, diff and g) using heuristic-based techniques 
were significantly lower than using automated techniques in all cases. Still by using 
the traditional algorithms this significance is higher. Thus, we can reject the H1 null 
hypotheses (and its H11-0, H12-0, H13-0 e H14-0). For example, in row 1 of Table 4, for 
measure Effort, between RSA and EPS, the W is negative (-544) and p-value is less 
than 0.05 (p = 0.001). This means that the composition effort by using the IBM RSA 
is significantly lower than one using Epsilon. From row 1 it is also possible to notice 
that only one null hypothesis was not rejected, and in just one case: the effort to detect 
inconsistencies considering the IBM RSA and Epsilon (p-value = 0.0891). This means 
that the subjects did not spend substantially different effort to detect inconsistencies in 
IBM RSA and Epsilon. Therefore, our initial intuition that the specification-based 
technique would not reduce the composition effort is confirmed.  

Table 3. Descriptive statistic for the composition effort 

 Effort f diff g 

 
[1] T

RA 
RSA EPS TRA RSA EPS TRA RSA EPS TRA RSA EPS 

N 46 46 46 46 46 46 46 46 46 46 46 46 
Min 5 5 9 2 3 4 1 1 1 0 0 0 
25th 7 11 14 4 6 8.7 2 2 3 0 0 0.5 
Med 11 14 21 6 8 12 3 4 4.5 0.5 2 3 
75th 18 24 34 9 11 17 5.2 8 8.7 4 7 9 
Max 31 66 114 25 22 39 11 22 38 9 22 38 
Mean 13.3 18.2 29.1 7.2 9.0 14.8 3.9 5.3 7.7 2.1 3.8 6.6 
St.D. 6.9 11.0 23.3 4.4 4.2 8.8 2.4 4.4 8.2 2.9 5.1 9.1 

N: #compositions, Min: minimum, Med: median, Max: maximum, StD: Standard Deviation, TRA: 
traditional, RSA: Rational Software Architect, EPS: Epsilon. 

Table 4. Wilcoxon test results for the composition effort 

  General Effort f(MA,MB) diff(MCM,MAB) g(MCM) 

task S A B C A B C A B C A B C 

All 
p 0.005 0.0001 0.001 0.02 0.0001 0.0003 0.03 0.0003 0.08 0.01 0.0003 0.04 
W -420 -900 -544 -277 -834 -588 -233 -533 -186 -261 -423 -248 

1 
p 0.33 0.5 0.5 0.42 0.40 0.3628 0.14 0.5 0.39 0.46 0.39 0.30 
W 6 0 0 -4 5 6 16 -1 4 -2 -4 -7 

2 
p 0.01 0.003 0.14 0.23 0.007 0.0342 0.01 0.22 0.23 0.08 0.05 0.22 
W -32 -36 -16 -12 -34 -27 -21 -8 8 -14 -24 -10 

3 
p 0.28 0.01 0.13 0.37 0.01 0.1548 0.27 0.05 0.12 0.23 0.06 0.12 

W -8 -21 -14 -4 -26 -16 -8 -20 8 -8 -10 12 

4 
p 0.5 0.01 0.01 0.29 0.01 0.0171 0.29 0.06 0.03 0.5 0.01 0.04 
W -1 -28 -26 -3 -28 -26 3 -19 -22 0 -21 -17 

5 
p 0.01 0.007 0.97 0.07 0.003 0.0177 0.02 .0.8 0.19 0.27 0.43 0.5 

W -26 -36 -20 -18 -36 -31 -11 -25 -11 -8 -3 -1 

6 
p 0.04 0.03 0.42 0.21 0.07 0.1094 0.06 0.01 0.11 0.04 0.12 0.42 

W -21 -23 3 -9 -18 -13 -12 -28 15 -17 -28 28 

W: sum of signed ranks, RSA: IBM rational software architect, EPS: Epsilon, TRA: traditional algorithm, 
A: TRA vs RSA, B: TRA vs EPS, C:RSA vs EPS, p: p-value, S: statistics. 
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4.2 RQ2: Correctness and Composition Techniques 

Descriptive Statistics. Fig. 4 shows the correctness of the compositions generated by 
using the three techniques: traditional algorithms, Epsilon, and IBM RSA in six exper-
imental tasks. The y-axis represents the proportions of the number of MAB achieved by 
the number of compositions realized in each task using each composition technique, 
while the x-axis consists of the experiment tasks. Thus, the histogram shows how the 
correctly composed model happened throughout the experimental tasks. 

The main outstanding feature is the lack of a distribution pattern of the proportions 
of correctly composed models in the tasks.  For example, in task 1, TRA produced a 
lower proportion of correctly composed models than RSA and EPS. That is, the in-
tended model was generated in 42.86 percent of the cases in TRA, whereas 57.14 
percent of the cases in RSA and EPS. On the other hand, in task 2, TRA outnumbers 
RSA and EPS. It produced the intended model in 71.43 percent of the cases, while 
EPS and RSA produced 28.57 and 57.14 percent of the cases, respectively.  

Although TRA has obtained low measures in task 3 in comparison to task 2 (a de-
crease from 71.43 to 42.86 percent), it still got a superior value compared to EPS and 
RSA, i.e. value by about three times higher than the measure of EPS and RSA, com-
paring 42.86 and 14.29 percent. On the other hand, in task 6, this superiority was 
reversed. RSA got double the value than TRA and EPS, comparing 28.57 and 57.14 
percent.  Still subjects obtained the intended model by using TRA and RSA in all 
composition cases, while less than half of the cases in EPS. We have observed that 
TRA got a higher number of intended models than RSA and EPS. The subjects pro-
duced the intended model in 61.90 percent of the compositions using TRA against 
59.52 and 42.86 percent using the RSA and Epsilon technique, respectively.  

Table 4 shows the descriptive statistics of the inconsistency rate of the composed 
models. Our initial expectation was that the specification-based technique would min-
imize the inconsistence rate whereas also get lower measures than the heuristic-based 
techniques.  However, this expectation was not confirmed. We have observed that 
the inconsistency rate was similar in specification-based and heuristic-based tech-
nique in most cases. This means that developers will not produce correctly composed 
model by using a technique based on composition specifications. Rather, the output 
models will have equal (or even more) inconsistency rate.  

 

Fig. 4. The correctness of the output composed 
model 

Table 5. The descriptive statistics for 
the inconsistancy rate 

 N Med 75th Max Mean St 
D. 

TRA 46 0 0.31 1.63 0.26 0.45 

RSA 46 0 0.425 1.22 0.21 0.29 

EPS 46 0.47 0.78 5.22 0.58 0.88 
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For example, on average, EPS produced a higher inconsistency rate than TRA and 
RSA. In general, the mean of the inconsistency rate in Epsilon is two times higher 
than one TRA and RSA, increasing by about 123 and 176 percent, respectively. Still 
note that the inconsistence rate in RSA is also higher than in TRA. In short, the incon-
sistency rate in EPS is higher than RSA, which outnumber TRA. This suggests that 
the inconsistency rate have favored TRA in comparison with RSA and EPS in most 
cases. This implies that, to some extent, the number of inconsistencies is decreased 
whenever the composed model is produced by TRA and RSA.  

Hypothesis Testing. We apply the McNemar test to test H21. Table 6 shows the chi-
square statistic and p-values for the pairwise comparisons. In all cases, the p-value 
was large (p > 0.05), so the null hypothesis of H21-0 cannot be rejected. Although the 
p-value to the six tasks is not shown in the table, the p-value took values greater than 
0.05 in the six tasks. This implies that there is no significant difference between the 
proportions of the correctly composed models of the composition techniques.  

We test H22 by applying the Wilcoxon test. Table 7 depicts the pairwise p-values 
for each measure. Bold p-values point out statistically significant results. They also 
indicate the rejection of the null hypothesis. Note that the sum of signed ranks (W) 
shows the direction in which the result is significant. For example, in row 2, W is 
negative (-250) and the p-value is lower than 0.05 (p = 0.0301) for the measure be-
tween TRA vs EPS. This means that the inconsistency rate for TRA is significantly 
lower than in EPS. RSA also obtained an inconsistence rate significantly lower (p = 
0.001) than EPS. For instance, in row 1, the W is negative (-5) and p-value is higher 
than 0.05 for the inconsistency rate between TRA vs RSA. This means that the incon-
sistency rate for TRA is lower, but no significantly lower than RSA.  

Table 6. The descriptive statistic for the 
inconsistancy rate 

Task Comparison χ2 p-value 

all 
TRA vs RSA 0.27 0.606 
TRA vs EPS 0.75 0.387 
RSA vs EPS 0 1 

 

Table 7. The descriptive statistic for the 
inconsistancy rate 

Tasks Statistic 
Inconsistency Rate 

tra vs 
rsa 

tra vs 
eps 

eps vs 
rsa 

All 
p-value 0.4851 0.0301 0.0011 

W -5 250 344 

W: sum of signed ranks. 

4.3 Additional Observations  

We have analyzed the qualitative data (i.e. interviews, video and audio records) to try 
explaining the results previously mentioned. First, the subjects mentioned that they 
often had some additional difficulties to match and compose the input model elements 
by using the specification-based composition techniques. Since they had difficulties to 
express the semantics of the changes required in each evolution scenario, given the 
problem at hand. This problem was observed in compositions dominated by relations 
between the input model elements of the type one-to-many (1:N) or many-to-many 
(N:N). The following extract from the interview also illustrates, for example, the 
difficulty related to the understanding of the scope of elements involved to specify a 
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composition: “…express the changes in match and merge rules is boring…because all 
overlapping parts of the two input models should be analyzed…this is not a trivial 
task.” Second, the IBM RSA tool shows the commonalities and differences between 
the input models in multiple, partial views. This strategy jeopardizes the creation of a 
“big picture view” of the output intended model. The following extract confirms this 
observation: “I have to check more than three views to complete something…it is very 
complicated when more complex changes happen… because I have to mentally 
“infer” a complete, unique view. On the other hand, the “strict” uses of the 
traditional algorithms are much more intuitive and allow me  to freely work closer to 
the manner that I think that about model composition is.”  

Finally, we have observed that: (1) the model composition techniques should be 
more intuitive and flexible to express different types of changes such as addition, 
removal, modification, and refinement of the model elements; (2) the techniques 
should represent the conflicts between the input models in more innovative views; 
and (3) new composition techniques should be a mixture of specification-based and 
heuristic-based techniques. As a possible follow-up work, we would suggest to design  
intelligent recommendation systems that help developers to indicate what the best 
model composition strategy to-be applied, or even recommending how the input 
models should be restructured to save effort, whereas preventing inconsistencies. 
Moreover, the future techniques might provide “richer” visualization means to help 
developers to prevent inconsistencies before model compositions happen. Instead of 
merely reporting conflicting changes and inconsistencies, the techniques might 
provide layers and visualization filters of both conflicting changes and 
inconsistencies. Thus, developers could intuitively identify how the input model 
elements conflict with each other and how the inconsistencies propagate through the 
elements of the output composed model.  

5 Threats to Validity 

Statistical Conclusion Validity. Experimental guidelines were followed to eliminate 
this threat [2]: (1) the assumptions of the statistical tests (paired t-test and Wilcoxon) 
were not violated; (2) collected datasets were normally distributed; (3) the 
homogeneity of the subjects’ background was assured; (4) the method of quantification 
was properly applied; and (5) statistical methods were used. The Kolmogorov-Smirnov 
and Shapiro-Wilk tests [2] were used to check how likely the collected sample was 
normally distributed.  Construct Validity. It concerns the degree to which inferences 
are warranted from the observed cause and effect operations included in our study to 
the constructs that these instances might represent. That is, it answers the question: 
"Are we actually measuring what we think we are measuring?" All variables of this 
study were quantified based on a previous study [4]. Thus, they were defined and 
independently validated. Moreover, the concept of effort used in our study is well 
known in the literature [10]. Therefore, we are sure that the quantification method used 
is correct, and the quantification was accurately done. External Validity. We analyzed 
whether the causal relationships investigated during this study could be held over 
variations in people, treatments, composition techniques and the design models. There 
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are reasons to believe the results generalize beyond the three techniques used, but leave 
it to further work to fully test this. 

6 Related Work 

Model composition is a very active research field in many research areas such as 
merging of state charts [7], composition of software product lines [11], aspect-
oriented models [12] and mainly UML models. Research initiatives tend to focus on 
proposing model composition techniques or even creating innovative modeling 
languages. However, the evaluation of the developers’ effort on composing design 
models using the proposed techniques is still incipient. The lack of quantitative and 
qualitative indicators on composition effort hinders mainly the understanding of side 
effects peculiar to certain composition techniques. 

Current work has notably aimed at evaluating modeling languages such as UML in 
terms of some quality attributes such as comprehensibility [14], completeness. 
Although UML has been adopted, in fact, as the industry standard modeling language, 
it is just a point of investigation in empirical studies considering model composition. 
In general, most of the research on the interplay of effort and composition techniques 
rest on subjective assessment criteria [5]. Even worse, this leads to dependence on 
experts who have built up an arsenal of mentally-held indicators to analyze the 
growing complexity of models and then evaluate the effort on composing them [4].  
Consequently, the truth is that developers ultimately rely on feedback from experts to 
determine “how good” the input models and their compositions are. There are many 
examples in the literature of composition techniques such as MATA [7], Epsilon [15], 
and IBM RSA [16]. But, they will only be useful if the quality of the output 
composed models (e.g. correctness) is assured, and the composition effort required is 
low. Unfortunately, these approaches do not offer any insight or empirical evidence 
about the effort required to compose design models. As a matter of fact, the current 
literature about the composition technique points out the absence of empirical studies 
and does highlight the importance of empirical evidence [5,7,8,12]. 

According to [5], the state of the practice in assessing model quality provides 
evidence that modeling is still in the craftsmanship era and when we assess model 
composition, this problem is accentuated. More specifically, to the best of our 
knowledge, our results are the first to empirically investigate the topics of the research 
questions in a controlled way and systematic by using specification-based and 
heuristic-based techniques.  

7 Concluding Remarks and Future Work 

This paper can be seen as a first step to systematically assess the trade-off between the 
specification-based and heuristic-based techniques in terms of effort and correctness. 
The results of this first controlled experiment suggested that  the specification-based 
techniques neither reduce the developers’ effort nor guarantee the higher number of 
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correctly composed models. Even worse, the traditional composition algorithms out-
numbered the specification-based technique, to some extent.  

However, further empirical studies are still required to investigate if our results can 
be confirmed (or not) in other contexts, considering other design models, encompass-
ing different evolution scenarios and evaluating other composition techniques. Alt-
hough the techniques investigated are robust and representative, and there are reasons 
to believe the results will possibly generalize to other similar scenarios, we do not 
claim this generalization beyond these techniques, and their use applied to the design 
models, in particular, class diagrams. Finally, we expect that our findings can be used 
to motivate other studies. 
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What Is Revolutionary, What Remains the Same?
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Abstract. A considerable amount of research has been dedicated to
bring the vision of model-driven engineering (MDE) to fruition. How-
ever, the practical experiences of organizations that transition to MDE
are underreported. This paper presents a case study of the organizational
consequences experienced by one large organization after transitioning to
MDE. We present four findings from our case study. First, MDE brings
development closer to the domain experts, but software engineers are still
necessary for many tasks. Second, though MDE presents an opportunity
to achieve incremental improvements in productivity, the organizational
challenges of software development remain unchanged. Third, switch-
ing to MDE may disrupt the balance of the organizational structure,
creating morale and power problems. Fourth, the cultural and institu-
tional infrastructure of MDE is underdeveloped, and until MDE becomes
better established, transitioning organizations need to exert additional
adoption efforts. We offer several observations of relevance to researchers
and practitioners based on these findings.

1 Introduction

Model-driven engineering (MDE)—the proposal to guide the development of
software-intensive systems with model-based abstractions, combining models,
process, analysis, and architecture [18,5]—shows much promise [11]. As abstrac-
tions, models could be more efficiently created and modified than lines of code,
driving down costs. If the abstractions are appropriate, models could also be
easier to understand than code, which would result in an increase of clarity and
quality.

As the proceedings of this conference over the years have demonstrated, there
has been a considerable amount of research dedicated to make the MDE vision
happen. However, there is a dearth of reports on its practical successes and lim-
itations [4], and specifically, about the effect that MDE has had on the software
development process of the organizations that adhere to it and on their resulting
socio-technical structures. This is despite the fact that such feedback would be
considerably valuable to practitioners exploring the feasibility of MDE in their
settings and to researchers looking for accounts of the real-life performance of
the tools they help create.

R.B. France et al. (Eds.): MODELS 2012, LNCS 7590, pp. 692–708, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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In this paper, we report on an interview-based empirical case study of MDE
and software development activities in two teams at General Motors, the well-
known car manufacturer, which has invested a significant effort in transitioning
to MDE in its development process. Our case study allowed us to explore several
benefits and drawbacks of MDE, and to gain insights into the ways in which coor-
dination dynamics are altered by the introduction of MDE into the development
process. We present these findings after the following discussions on previous
field studies of MDE and on the methodological details of our own fieldwork.

2 Related Work

Although there has been much research into analyzing the formal aspects of MDE
proposals, modelling languages, and model transformation techniques, as well
as into evaluating the comprehensibility of several model representations, there
are few accounts of what happens when projects actually transition into this
engineering approach [25]. The social, organizational, and political implications
of a technology as potentially disruptive as MDE are large, yet practitioners and
researchers have little information to help guide them on this process.

There are, however, several notable industrial field studies that report on the
factors that contribute to the success or failure of MDE adoption in large software
organizations. Hutchinson et al. [16,17] report on an interview-based study in
which they explore the experiences using and adapting to MDE. Among other
things, they warn against adopting MDE wholesale, recommending instead a
progressive and iterative approach. They also warn against transitioning without
proper organizational support or without motivation from the developers.

Similarly, Staron [28] reports on different experiences of two companies tran-
sitioning to MDE. One backed out, the other continued. Staron argues that the
state of the art (in 2006) in MDE technology did not support an efficient tran-
sition, and that the problem was exacerbated if the transitioning company had
to maintain a large base of legacy code. This issue was previously reported by
MacDonald et al. [22], who claim that MDE does not lead to an improvement in
efficiency, effectiveness, or productivity—at least not in the context of projects
with a large amount of legacy code.

Other studies of adoption of MDE in industrial settings include Cheng et al.
[6] who report on the adoption of automated analysis of object-oriented design
models and their effect on software design quality. UML class diagrams from
two large industrial models at different developmental stages are employed in a
utility analysis carried with DesignAdvisor. The authors find that the quantity
of severe errors increases proportionally with design complexity and that the
utility of design patters greatly contributed to lower the number of errors in the
models wherein the patterns were used.

Kulkarni and colleagues [20] describe strategies for scaling up MDE at Tata
Consulting and describe elements of their MDE infrastructure, as well as their
experience of using it to deliver large business applications over a period of 15
years.
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Closest to our study, the work of Baker et al. [2] reveals the impact of MDE
adoption at a large organization, Motorola. However, their findings are mostly
about tool and language feasibility to support large-scale development. They do
mention “team inexperience” as an issue Motorola experienced in their deploy-
ment of MDE. By inexperience they mean lack of a well defined process, missing
skill sets, and organizational lack of flexibility.

We note that, in parallel to this paper, Kuhn et al. [19] drew from the same
pool of participants we interviewed to study complementary and non-overlapping
research questions: while they focused on human aspects primarily at the indi-
vidual level, considering cognitive aspects of using MDE technology, we focused
on human aspects focused on the organizational consequences of MDE adoption.
Kuhn et al. found several forces and points of friction with respect to cognitive
issues of MDE technology. They discovered that model diffing should be a key
feature of MDE tools, that there is a need for problem-specific expressivity, that
there continues to be a need for exploration late in the product development
cycle, and that point-to-point traceability is a fundamental need that becomes
even more acute under MDE.

The majority of the related work, to the best of our knowledge, is concerned
with the adoptability of MDE in industry, whereas our report focuses on the
change of dynamics of an organization that has determined to adopt MDE. Our
approach to studying MDE is different—we focus not on factors of adoption,
but on the organizational consequences of adoption. We describe our research
questions in the next section and the case study design and findings in the
remainder of the paper.

3 Research Questions

To complement the existing empirical evidence about MDE in industry, the focus
of our investigation was on the issues related to consequences in the development
processes and the socio-technical structures enabled or affected by the introduc-
tion of MDE in large organizations. We formulated the following three research
questions to guide our data collection and analysis:

RQ1: How does MDE adoption look like in practice in large-scale projects?
To what extent does MDE alter the development landscape?

RQ2: How do the coordination dynamics and the division of labour change
under a transition to MDE?

RQ3: What issues, beyond those reported previously in the literature, are
relevant for organizations considering an MDE transition?

4 Case Study Design and Execution

We performed an empirical study of the organizational and coordination con-
sequences of transitioning to MDE. A data-rich qualitative study was the most
appropriate for our investigation, given the contextualized and multivariate na-
ture of the phenomena that we wished to study.
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We followed Yin’s case study methodology [30]. Specifically, we executed an
exploratory single-case case study. In an exploratory case study, as in other qual-
itative empirical methodologies such as Grounded Theory [13], one begins with
a set of research questions and no hypotheses or propositions to test. In contrast
with Grounded Theory, the goal of an exploratory study is not to produce a new
theory based on the data. Instead, the researcher collects data from a previously
under-explored domain with the goal of reporting insights that can be tested as
hypotheses in future studies.

We collected our data from a single organization: General Motors (GM). As
part of a larger research project on MDE in industry, the first author of this
paper, Aranda, visited the offices of GM in Michigan, along with two researchers
from the University of British Columbia, who were interested in studying issues
of cognition and MDE. These three researchers conducted a total of ten inter-
views together, each lasting about two hours, with control engineers, software
engineers, and managers of two teams (and in two campuses) at GM. Table 1
summarizes basic information from the interviewees. The first half of the inter-
views consisted of questions pertinent to this paper and was directed by Aranda;
the second half, directed by the UBC researchers, was concerned with cognitive
issues that will not be reported here.

The interviews were semi-structured. The interview guide is not included in
this paper for space reasons, but we have made it available online [1]. All the
interviews but one were audio recorded. A single researcher (Aranda) annotated
and coded them, and analyzed the interviews and notes guided by the research
questions stated above. We looked for robust findings: insights supported by the
observations of several interviewees, as opposed to single-source reports. All the
findings reported here are robust in this sense.

4.1 Details from the Study Site

For this paper, we studied the people and activities relating to software develop-
ment, testing, management, and process definition in two product development
groups at GM. For a reader not acquainted with modern automobile manufactur-
ing, studying software development at GM may appear odd: this is a well-known
automobile manufacturing corporation, not a software company. In truth, GM
(as other automobile manufacturers) is now a hardware and software develop-
ment company, and to an outsider it may be difficult to imagine the extent
to which software controls its products. GM cars increasingly rely on software
to perform their functionality, and correspondingly, GM increasingly depends
on its software development groups. Furthermore, GM transitioned to MDE in
the two years previous to our data collection, making the organization a prime
candidate for the study of the consequences of MDE adoption. Today, most soft-
ware at GM is developed in model-driven tools (such as MATLAB’s Simulink
and IBM Rational Rhapsody). One manager and process designer explained it
this way:
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Table 1. Interviewees for our study

ID Team Position

P1 Core Control Engineer (Algorithm Development Engineer)

P2 Core Control Engineer (Algorithm Development Engineer)

P3 Core Manager (Software Engineering)

P4 Core Software Engineer

P5 Core Software Engineer

P6 Aux Software Design Lead

P7 Aux Software Engineer

P8 Aux Software Engineer

P9 Aux Software Readiness Engineer (Testing)

P10 N/A Manager (Process Definition)

We made the rule that the model is the code; you want to make a change,
you change the model, you don’t change the code. And then you just
regenerate. —P10, Manager

However, as we will see, the MDE transition is still being negotiated in terms of
tool adoption, process agreement, and role definition.

As we stated above, the interviews span two product development groups.
One of them develops one type of core driving features1 (we will henceforth
refer to it as the “core functionality group”), the other develops a subset of
auxiliary functionality (we refer to it as the “auxiliary functionality group”).
Both groups follow the same high-level software process. It is based on a V
development model [23], with a workflow that goes down from requirements
definition to implementation and then back up to testing, but it is adapted to
account for the rest of the hardware demands of product design. Specifically,
the organization places a much greater emphasis on what it refers to as “the
Physics” (the equations and other engineering considerations required in the
design of automobiles), which need to be embodied by code, and in calibrating
and testing the software in the particular hardware in which it will be run.

The core functionality group is collocated at the building level, and it is
divided in two main teams, which we will call Team A and Team B. Broadly,
Team A workers are in charge of designing the equations and their interactions
with other features, while Team B workers are in charge of implementation.

1 We are not more precise purposefully, to obfuscate some internal details of the GM
structure and of the teams we studied. By “one type of core driving features” we
mean features that help a car perform its essential transportation functionality.
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There are other groups and roles as well, but they are more detached from MDE
and from development in general, and will not be considered here.

The auxiliary functionality group is globally distributed: it has engineers in
one of the main company campuses in Michigan and a team of offshore engineers
in Asia. Although the group also has people in charge of designing the equations
and others in charge of their implementation, they are not separated by teams in
the way that the core functionality group is. This group also has testers playing
a more prominent part in feature development.

5 Findings

In this section we present four findings on transitioning to MDE that we believe
should be of interest for researchers and practitioners in the area.

First, MDE succeeds in bringing software development closer to the subject
matter experts [25], but an important (if at times menial) subset of software
development activities still needs to be performed by people other than the sub-
ject matter experts—people with significant software development skills. These
software engineers still play an important role under an MDE structure.

Second, the basic processes and challenges of organizational structure and in-
teraction remain unchanged with MDE: software development uses largely the
same organizational forms [29] and processes as traditional software develop-
ment, and it is still difficult to coordinate, to clarify requirements, and to get
teams of professionals to deliver high quality software. In other words, though
MDE can bring important benefits under some situations, by abstracting away
some software development obstacles [11], it presents at best an incremental
improvement in software development, in the case we studied.

Third, switching to MDE may disrupt the organizational structure and alter
its balance, which creates morale and power problems that transitioning groups
should consider.

Fourth, MDE represents a migration to an underpopulated cultural and insti-
tutional landscape. The tools, training, and expectations of professionals under
MDE are not as well developed and established as those under more traditional
software development dynamics. We expect MDE transitions to be generally
problematic for this reason, now and until the cultural and institutional infras-
tructure of MDE becomes better established.

The following subsections expand on each of these findings.

5.1 Bringing Development Closer to the Subject Matter Experts

One of the most ambitious visions of MDE is that subject matter experts (or,
in lieu of them, requirements engineers or designers) will be able to model the
behaviour they wish their software artifacts to exhibit, using an accessible and
appropriate abstraction, most probably represented in diagrammatic form, and
that just with the push of a button their code will be auto-generated for them
and ready to deploy or use. Such a vision would, of course, bring in huge savings
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to the software development process in terms of, for instance, efficiency, quality,
and clarity [24]. Just as today nobody uses assembly language to program their
software if they can avoid it, we will, at some point in the near future, look back to
lines of code as an antiquated, needlessly detailed, and cumbersome mechanism
to capture the behaviour of software. Of course, this MDE vision does not need to
be realized in full to start yielding benefits. If developing software using models
is beneficial, a partial application might well bring partial benefits, too.

In practice, in GM to date, MDE has certainly brought development closer to
the subject matter experts at work. In some groups within GM, control engineers
(the mechanical or electrical engineers in charge of facing the hardware and other
physical and design constraints, and of describing and supervising the production
of automobile features) can now work with their simulations and, with relative
ease, auto-generate the code that will be deployed. This is in contrast to their
previous dynamic, in which control engineers would specify their requirements,
determine the equations that should be implemented if needed, and communicate
them to software engineers, who would be tasked with implementing them in full.

The extent to which this new dynamic is established varies across GM, partly
due to GM’s flexibility in allowing different groups to transition towards MDE
according to their contexts. Both team and personal factors seem to affect the
dynamic’s variation. At one extreme, for some collaborations between control
and software engineers, the control engineer now models all the desired func-
tionality, auto-generates the code, and passes it on to the software engineer to
do some more menial work—ensuring that the model adheres to standards, that
its integration with other code is handled properly, that its functionality satisfies
the description of the work item appropriately, and so on:

I prefer to just do it all myself. I do all the algorithm design and [the
software engineers] do checks and coding standards. I do the work and
[the software engineer] just tracks it. —P1 (Control Engineer)

At the other extreme, there has been no approximation of development to subject
matter experts at all: the control engineer continues to specify requirements and
functionality in free text, or even verbally, and the software engineer implements
them using a modelling tool:

I’m the dullest knife in the drawer when it comes to modelling simulation
and coding. I know how the physics work but I depend on these young
kids to make it manifest in software. [...] I would like a better separation
of responsibilities. I would like to work on requirements interfacing on
design, and somebody else create software which is the manifestation of
the algorithm and then get back to me and show me what they’ve done.
That’s when the system works best. —P2 (Control Engineer)

In between there are other variations. Some control engineers make their model
changes in a mock version of the models, and the software engineers use those
mock changes as their blueprint to implement the real changes. Other control
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engineers only model some component of their features of particular interest,
and leave the rest to the software engineers.

Beyond the extent to which some control engineers have successfully engaged
in developing software with a modelling language, there are several tasks that
will be difficult to bring under their scope. In other words, a software develop-
ment “middle man” might be still needed in an MDE framework. This is because
domain experts are unlikely to have the software development training, nor the
time, nor the professional inclination, to involve themselves with implementa-
tion issues. An organization developing software at this scale requires modelling
conventions and standards, quality controls, hardware-software calibrations, in-
tegration conflict resolutions, and involvement in necessarily bureaucratic pro-
cesses such as change management boards. Some of these issues may be resolved
with appropriate tooling, and others may be addressed by managerial mandate,
but this does not mean that the solutions are simple, painless, or even feasible
in the short term, and transitioning organizations need to account for this.

5.2 Persistence of the Traditional Organizational Forms

The increased closeness of domain experts to software development work brought
about by MDE raises the question of the extent to which MDE has revolutionized
the software development landscape. For a long time, organizational scientists
have observed that the various groups that belong to the same industry tend to
follow similar patterns of interaction, to structure themselves in similar ways,
and to encounter common problems and challenges [26]. In other words, they
have the same organizational form [29]. Revolutionary technologies can bring
about new organizational forms, with different challenges and strategies [14].

At the outset, it is unclear whether MDE can be one such revolutionary
technology. On one hand, MDE could upset the whole communication and co-
ordination structure, bringing many roles into obsolescence, and eliminating the
need for time-consuming and inefficient structures. On the other hand, one could
construe MDE more like a change in representation (that is, a change from tra-
ditional coding to modelling), and it is irrational to expect it to tackle the
fundamental problems of software development [11].

We found that the latter is indeed the case at GM: while MDE does bring
benefits, it cannot be considered a revolutionary solution with respect to the or-
ganizational challenges, processes, and structures of software development work.
As we mention above, MDE brings development closer to subject matter ex-
perts, in abstractions that are closer to their domain, but these experts still
must overcome the difficulties of defining, negotiating, and clarifying their activ-
ities [7,8], and of coordinating with other professionals when their work outputs
diverge from expectations in the real world. In fact, coordination, which has
been increasingly recognized as a central problem in software development [15],
seems to be as challenging for GM under MDE as for other large organizations
using traditional development approaches. It is still hard to coordinate, espe-
cially with remote sites that may be missing contextual information, and with
which communication is necessarily slower, as reported in previous studies of
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requirements engineering in global software teams [9]. Engineers still need to
clarify requirements with each other. Parallel streams of work mean that several
people tweaking the same pieces of code brings out conflicts.

In other words, what we found striking was how little difference there was be-
tween GM and other organizations’ forms, despite the fact that GM now adheres
to an approach that is in some respects radically different from the traditional
one. The tools and the language are different, but the organizational structure
and challenges remain largely the same. While MDE may provide productivity
gains, judging from this case it does not seem to lead to a radically different
work arrangement for the software industry.

We found two important caveats to this observation, however. We will deal
with them in the coming sections.

5.3 Coordination and Division of Labour

For GM, the switch to MDE caused an interesting organizational disruption. As
stated above, before the introduction of MDE, the core functionality group that
we studied had settled into a bipartite division of labour, organized by domain:
one team (Team A) tackled “the Physics” involved in designing automobile fea-
tures, and a second team (Team B) addressed the software implementation. One
person from each team coupled with each other to work on a feature together.
The Team A engineers (the Control Engineers) worked on the equations neces-
sary for the appropriate functioning of their features, as well as on the hardware
constraints and the interdependencies with other features. The Team B engi-
neers (the Software Engineers), in turn, focused on “hand-coding” the equations
and constraints from their partners into software. They also unit tested their
own code, ensured it adhered to their conventions, and were responsible for any
changes made to it. In conventional terms, and simplifying the collaboration, the
Team A engineer in each couple worked on the analysis and design of a feature,
while the Team B engineer worked on its development.

Eventually, MDE tools and processes were introduced to the group. The tools
allowed engineers to model the behaviour of their systems graphically, and to
auto-generate code that implemented the desired behaviour. The auto-generated
code rarely needed to be rewritten. Furthermore, the models could be initially
tested in a simulated environment, relaxing GM’s dependence on physical tests
with real hardware.

This introduction of MDE tools, however, brought a disruption in the work
arrangement we described above. The Team A engineer now prepared “the
Physics” as a computer model, and auto-generated the code that implements
it, but the Team B engineer was still necessary: there were aspects of software
development that Team A engineers did not have the training, the time, nor the
inclination to tackle: issues such as coding conventions, unit testing, versioning,
and code dependencies. The fact that these were largely clerical issues did not
escape members of either team. For instance, according to one Team A engineer:

There’s a software engineer who manages that [module]. We’re supposed
to be working with them to design stuff, but they really are acting like
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bookkeepers and code checkers rather than designers, and they don’t seem
to be interested in what we’re doing. (...) probably because their job is
boring. —P1 (Control Engineer)

In effect, the balance in the partnership was lost: Team A increased its concep-
tual power and dismissed the work of Team B, whereas Team B exercised its
remaining structural and technical power [21] as a gateway through which all
changes must flow. The collaboration, according to parties on both sides, was at
an all-time low.

The group attempted to solve this problem. Its main strategy was to loosen
the division of labour between both teams, so that Team A engineers would
become more involved with the implementation issues of their models, and Team
B engineers would become competent about the mechanical domain and could
contribute to the analysis and design of their features. In partnerships with the
right motivation and mentorship efforts, this approach worked. For instance,
according to one Team B engineer:

Sometimes I do development, that’s one of the things we tried to do
when we switched to models, to have [Team A] and [Team B] to take on
development. Every now and then we help [Team A], others we do the
changes ourselves. I’ve done a couple of those. —P4 (Software Engineer)

In other partnerships, however, the pattern we observed (which we named the
Modeller-Clerk pattern) remains. At the time of our interviews, GM continued
to negotiate the transition to its new normality.

5.4 Cultural and Institutional Problems

Cultural and institutional forces exert a powerful influence over the activities and
decisions of a software organization, though our community tends to overlook
them. Many problems of adoption, adaptation, morale, and process redefinition
in software development can be traced to institutionalization issues. In order to
make our point, however, we first cover the basics of institutionalization theory,
as we find it is not well known in our field.

Briefly, and simplifying institutionalization theory [10], in our day-to-day ac-
tivities we are faced with numerous decisions to make and data to ponder. In
general, an efficient strategy to deal with this overwhelming abundance of deci-
sions and data is to repeat the behaviours that worked in the past to deal with
similar situations [27]. We choose once (which text editor to use, how to respond
to a bug report, when to hold team meetings), and, as long as our choice was
at least somewhat successful, every time life throws a similar scenario at us, we
respond in the same way.

An essential point of institutionalization theory is that this habit-forming
tendency we have extends naturally to our peer interactions. Once a team has
satisfactorily dealt with a situation, it is likely to replicate the patterns of inter-
action that led to its resolution, and the more like situations it tackles, the more
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the pattern is reinforced: each team member learns what to expect from her
colleagues, and would be surprised, or perhaps angered, if a teammate deviates
from the established behaviour [3,12]. The team pattern is recognized as the way
to deal with the situation—it is institutionalized.

Furthermore, these patterns extend beyond single teams and into the wider
society. A team requires its recruits to have certain skills in order to perform
its patterns appropriately, and it pushes educational institutions to train their
students to meet its criteria. (Alternatively, educational institutions can push
other organizations to accept their definition of what counts as valuable skills
to have, and the other organizations shift their patterns accordingly.) In time,
most aspects of the domain become institutionalized: what counts as knowledge
and accepted wisdom, what are proper career paths, what are the tools of the
trade, what are the roles people can take, and which ways do they interact with
their peers. As long as a kind of situation arises with frequency, the community
will coalesce into a set of institutional forms to deal with it.

One can easily see, after these considerations, that any kind of significant orga-
nizational change is difficult. It entails the breakdown of many small negotiated
successes, it casts the organization’s shared understanding into disarray, and it
can even cause strong emotional reactions from people forced to reexamine and
rebuild many aspects of their professional lives.

We found that MDE adoption falls under the kind of significant organizational
change that causes these kinds of reactions at GM. In many respects, MDE is
still a pioneering strategy, and the mainstream of the software development field
is not familiar with the tools and the practices required for it.

To begin with, tooling capabilities and modelling conventions are still not
comparable to their traditional-coding counterparts:

One complaint was that changes took very long. Some people would say,
if it takes me one hour to make a change in C code, it will take me four
hours in MATLAB. —P4 (Software Engineer)

But the organizational toll may be a greater problem. For GM, hiring software
engineers from the mainstream would be difficult; it chooses to hire mostly elec-
trical or computer engineers, which not only have a better understanding of the
domain, but may be more familiar with modelling tools such as Simulink. How-
ever, these engineers may be less attuned to software development practices and
habits. Even then, many (if not most) of GM’s engineers have had to learn MDE
on the job.

Other engineers have been building automotive software for years, or even
decades, and among them resistance to MDE may be greater. They are used to
coding in C, and they are effective and efficient with it. The new approach asks
them to move towards tools they see as inferior, rightly or not. They find that
both small and large code changes take a longer time than they should. They
are not used to some of the abstractions embodied by their new tools. In short,
despite their wealth of expertise, both in the automotive and in the software
domains, they suddenly feel incompetent. The new cultural and institutional
infrastructure is not yet set up to exploit this wealth of expertise properly:
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It was clear that for people who’d been here for a while... it was all
mature, things worked, all that. [With] the MATLAB environment, we
needed to redesign the process [...]. For some new people, they were OK
with that, others are still struggling. —P3 (Manager)

Incidentally, the new approach also blocks the old one from functioning. Once
a module transitions to MDE, the auto-generated C code, by all accounts, is
terrible to work with directly. Furthermore, since the organization has committed
to a model driven strategy, its tools increasingly enforce a process that requires
model-based activity to move items towards their resolution.

It is unclear what an organization at this stage can do other than mitigation.
GM is aware that rolling back to traditional coding appears to be an expen-
sive solution—it would require the translation of large swaths of models into
human-readable C code, and the re-training of new engineers who are now used
to working primarily with models. A more likely scenario is to carry forward,
absorbing the costs of institutionalization gradually, in the hope that the new
approach will yield greater benefits than the old.

This is, of course, a consequence of being at “the bleeding edge” of innovation.
These are not intractable problems. If MDE catches on, most of these issues
(tooling, process, conventions, education) will dissipate. Our study merely points
out that, to date, these cultural and institutional issues still stand forcefully in
the way of a smooth transition towards MDE.

6 Discussion

Any technological approach that touches so many aspects of a socio-technical
structure as MDE does for software development deserves a close scrutiny of
its consequences. In the case of GM’s adoption of MDE, we found a set of
organizational benefits and problems that we think are of relevance for other
organizations considering an MDE transition and to the research community.

At this point, it is useful to revisit our original research questions and provide
some answers based on our exploratory study.

RQ1: How does MDE adoption look like in practice in large-scale projects? To
what extent does MDE alter the development landscape?

Though technically MDE presents several interesting innovations and challenges,
judging from our data, large-scale projects that adopt MDE look mostly similar
to more traditional large-scale projects. The mainstream structure of software
development teams and processes remains in place. That is, MDE brought a shift
in emphasis to the activities of GM professionals, a shift that allows Control En-
gineers to design automotive software features in a tool and in a manner conver-
gent with the product that will eventually be released, but it did not eliminate
the need for the software development structure (of software engineers, testers,
maintainers, and the like) that supports traditional software organizations.
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Furthermore, we found that the organization we studied, under MDE, still
struggles with the same issues that most traditional software organizations
struggle with. Under the right circumstances, MDE may help relieve some
problems in software development, but it leaves its basic organizational form
unchanged.

RQ2: How do the coordination dynamics and the division of labour change
under a transition to MDE?

Some inter-team coordination dynamics change after a transition to MDE. Mod-
els are more used for communication and coordination, although there is still
significant reliance on face-to-face communication to clear potential misunder-
standings, and on natural language to explain several aspects of architecture and
functionality.

MDE, however, may be expected to alter the current division of labour
in a transitioning organization, and the resulting imbalance may be hard to
negotiate, at least temporarily.

RQ3: What issues, beyond those reported previously in the literature, are
relevant for organizations considering an MDE transition?

The division of labour imbalance issue should be relevant for organizations con-
sidering transitioning to MDE. Another issue we discovered is the extent to which
the transitioning organization will find frictions as it migrates and attempts to
re-establish itself in an underdeveloped cultural and institutional setting. Previ-
ous studies [2] have pointed out that one of the most important challenges for
organizations adopting MDE is that change is difficult. Our results go a step for-
ward, by helping to explain in what sense is organizational change difficult, and
for which reasons (an underdeveloped infrastructure for the new institutions,
and a disruption with the old and well-established institutions).

6.1 Threats to Validity

As with any empirical results, one should exercise caution in the interpretation
of our findings. We discuss three threats to their validity that we were concerned
with as we performed our data collection and analysis: their generalizability,
the number of interviews we performed, and the fact that we only performed
interviews after the transition to MDE was well underway.

First, there is the natural question of whether one can generalize from a single
case study (or indeed from a single study of any kind) of a single organization
to the whole MDE field. The short answer is that one cannot. In a setting as
complex as that of organizational and technological change, there are too many
confounding factors, qualifications, and provisions. The experiences of other tran-
sitioning organizations may be quite different from those we observed at GM.
Nevertheless, we believe there is much value in reports such as these, for two rea-
sons: first, because they provide rich information when there was little or none,
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and second, because they begin the scientist’s task of uncovering the reasons
for which the probable consequences of MDE adoption will be experienced. For
instance, to say that “organizational change is hard” is trivial, but to uncover
in what ways it is hard for MDE, what are the likely causes for the hardships,
and when are they likely to dissipate, is valuable. Our report does not provide
certain answers to these questions, but we believe it helps reach them despite
its necessarily limited scope.

Second, we performed only ten interviews, and these were constrained to only
two teams within the organization. Of course, a greater number of interviews
and of teams would be preferable. We were fortunate, however, to be able to
interview professionals in a wide variety of positions, which provided us with
a multiple number of views on the inner workings of the organization. The in-
terviews themselves, as can be inferred from the findings we reported above,
were frank and wide-ranging. Although further studies at this or other organi-
zations should help us improve the confidence on our findings, we think they are
appropriate for the current, exploratory stage of our research.

Finally, we were only able to perform interviews after the transition to MDE
was a “done thing”. We did not interview professionals before the transition
began. We had to resort to their recollections of how things were different before
MDE, which may be biased by current events. We had to come to terms with
this necessary evil, given the otherwise unprecedented opportunity we had in
having access to a transitioning MDE organization and in being able to ask its
members both wide and sensitive questions on their work life.

6.2 Implications

For Researchers: Our findings point towards several research directions that
we believe are worth pursuing. First, they show that studying the practical
consequences of MDE is an important endeavour, and they call for further studies
to build a richer experience bank and improve our generalization power.

Second, the disruption of organizational balance is worth exploring. The ex-
tent to which it is unique to GM, or to which it can be avoided with careful orga-
nizational planning and design is unclear. The direct and indirect costs that the
transitioning organization needs to absorb to deal with it are similarly unclear.

Third, in the case that improvements brought about by MDE are not
radical (as our GM data suggests), there is the question of the conditions
under which a transition to MDE is advisable, and the realistic advantages
that the transitioning organization can be expected to reap from its ef-
forts. We note that these viability questions are severely under explored in the
MDE literature. Further research should help provide answers to these questions.

For Practitioners: Naturally, a transition to MDE will have costs and
benefits—the questions, as usual, are what costs and benefits are there, and un-
der which conditions the latter overcome the former. We did not delve into the
technical costs and benefits of the model representation (though our colleagues
from UBC have), but organizationally speaking, we found that introducing MDE
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does, in effect, bring development closer to subject matter experts, but does not
eliminate the need for work tasks that domain experts are not qualified or ex-
pected to perform. If the GM experience is indicative of more general cases,
it is unlikely that there will be savings from staff reductions or from a leaner
organizational structure.

Indeed, we found that the software development process remains largely indis-
tinguishable from that of traditional software development, with its same chal-
lenges and issues, though organizationally speaking the introduction of MDE
may alter the balance in undesirable ways.

Finally, while MDE has matured over the years to the point where it can
sustain the development of products of critical importance and of high quality,
as GM’s automotive software needs to be, its institutional infrastructure is still
underdeveloped, and transitioning practitioners will find that, both technically
and organizationally, many things they took for granted need to be built again.

7 Conclusion

As the viability of MDE continues to increase, we will need more field studies
that report on the consequences of their adoption by leading practitioners. Only
by identifying the current strengths and weaknesses of MDE can researchers
expect to refine the MDE approach to fulfill its vision.

By pointing out several positive and negative organizational consequences of
MDE adoption, this paper is a step in that direction. MDE brings development
closer to subject-matter experts, and although it does not alter the organiza-
tional form of software development groups, it shifts the balance of power and
the division of labour within them in ways that may be conflictive, at least
temporarily. Furthermore, adoption leads to institutional and cultural frictions
that will not be resolved in the short term. We argue that these organizational
consequences are far from negligible, and that transitioning organizations and
researchers need to consider them in their efforts to advance this domain.
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Abstract. Service-oriented computing (SOC) promises to solve many
issues in the area of distributed software development, e.g. the realization
of the loose coupling pattern in practice through service discovery and in-
vocation. For this purpose, service descriptions must comprise structural
as well as behavioral information of the services otherwise an accurate
service discovery is not possible. We addressed this issue in our previ-
ous paper and proposed a UML-based rich service description language
(RSDL) providing comprehensive notations to specify service requests
and offers.
However, the automatic matching of service requests and offers speci-

fied in a RSDL for the purpose of service discovery is a complex task, due
to multifaceted heterogeneity of the service partners. This heterogeneity
includes the use of different underlying ontologies or different levels of
granularity in the specification itself resulting in complex mappings be-
tween service requests and offers. In this paper, we present an automatic
matching mechanism for service requests and offers specified in a RSDL
that overcomes the underlying heterogeneity of the service partners.

1 Introduction

Service-oriented computing (SOC) enables reusability of software components
through their independent development and deployment as services. They can
be automatically discovered and consumed on the basis of their exposed service
descriptions, which specify services in terms of their operations offering certain
functionality and are invoked in a logical sequence.

To enable an automatic and accurate service discovery, services must be de-
scribed comprehensively in terms of their structure and their behavior, since
structurally similar services may have totally different behavior and vice versa.
However, current service description standards [22], are either limited to struc-
tural aspects, or in the case of semantic web service approaches are either not
comprehensive enough [13] or are not widely accepted in practice [19,8] due to
their diversion from existing standards. In our earlier work, we addressed these
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issues and proposed a UML-based rich service description language (RSDL) [10]
comprising an elaborate set of notations for service description in terms of op-
eration signatures, operation semantics as well as required/allowed operation
invocation sequences known as service protocols of the service partners.

In this paper, we propose a matching mechanism for service requests and offers
specified in this RSDL to enable an automatic and accurate service discovery in
service-oriented computing (SOC). For this purpose, the matching mechanism
has to consider different elements in service requests and offers. Further, the
matching mechanism must take into account the multifaceted heterogeneity of
the service partners in SOC.

This heterogeneity can lead to situations where service requests and offers are
structurally different but may be semantically similar due to different reasons.
For example, due to the use of independent ontologies, the service request and
offer may be using different terms and concepts to specify similar functionality.
These ontological differences need to be identified and resolved while matching
service request and offer. Similarly, due to different understanding of the domain,
the service partners may specify their requests/offers at different granularity
levels, e.g. functionality specified in terms of a single operation in a service
request may be specified by multiple operations invoked sequentially in a service
offer and vice versa. This results in complex correspondences, such as 1:n, n:1,
and n:m between requested and provided operations in the service requests and
offers, which need to be identified by the matching mechanism.

The novelty of our matching mechanism lies in the comprehensiveness com-
pared to existing works as it considers different elements of service request
and offer during matching. Further, we aim at an extensive evaluation of this
mechanism as part of the service computing platform being developed at the
Collaborative Research Center On-The-Fly Computing1.

The remainder of this paper is structured as follows: In Section 2, we provide
a typical SOC scenario from our industrial partner Hotel Reservation Service
(HRS)2. Along this scenario, we introduce our RSDL [10]. In Section 3, we in-
troduce a matching mechanism for service request and offer in RSDL that over-
comes the underlying heterogeneity of the service partners. Section 4 discusses
related work and finally, we conclude the paper and give an outlook on future
work in Section 5.

2 Scenario

Our industrial partner Hotel Reservation Service (HRS) is a worldwide accom-
modation booking company that provides a web application2 to its clients for
online hotel booking. A typical booking use case at HRS consists of searching,
viewing details of search result and online booking of a hotel room. To support
this use case, the HRS application acts as a service requestor requesting the

1 http://sfb901.uni-paderborn.de
2 http://www.hrs.com

http://sfb901.uni-paderborn.de
http://www.hrs.com


Towards an Automatic Service Discovery 711

services of the partner hotels, which in turn act as service providers enabling
HRS to access their room management system through their services.

based on

Requestor Domain

Public Domain

Provider Domain

publishes

matchingService
Request

Service
Offer

Service
Requestor

Service
Provider

Local
Ontology

Local
Ontology

publishes
based on

Fig. 1. A general overview of SOC

Figure 1 gives a general overview of such
an SOC scenario consisting of the following
steps: Firstly, service requestors and providers
specify their service requests and offers, re-
spectively conforming to their local indepen-
dent local ontologies. For instance, in the
tourism domain several ontologies exist, e.g.
the tourism ontology by the Open Travel Al-
liance (OTA)3 or the HarmoNET4 tourism on-
tology. Finally, service requests and offers are
published and matched for service discovery.

The current standards for service specification, such as WSDL [22] only spec-
ifies structural information and does not allow to specify the behavioral infor-
mation, which may lead to inaccurate service discovery. To address this issue,
a variety of approaches such as, WSDL-S [13], Web Ontology Language for
services (OWL-S) [19], and WSML[3] by Web Services Modeling Architecture
(WSMX)[8], etc. came up with notations for comprehensive description of the
requests/offers of service partners. However, some of them, e.g. WSDL-S [13] are
not comprehensive enough to cover different aspects of service descriptions like
service protocols. While others [19,3] are still limited to academia and are not
widely accepted in industry due to their diversion from existing standards.

To enable our vision of an automatic and accurate discovery of potential new
services, we came up with a proposal for a UML-based RSDL [10]. Due to the
use of existing UML notations, it is also easier in practical software engineering
projects to adapt to the proposed language. The RSDL comprises the following
artifacts for rich service description of service partners:

(A) A description of operation signatures using the existing standard WSDL
[22],

(B) A semantic description of each operation using UML-based visual contracts
(VC) [9,5], and

(C) A specification of service protocols using UML sequence diagrams for ser-
vice requests and UML state charts for service offers.

After detailed discussion with our industrial partners, we came up with potential
service request of HRS based on the proposed RSDL specified in Figure 2. It com-
prises the specification of operation signatures (A) and their semantic descrip-
tion in terms of visual contracts (VC) (B): checkAvailability(), viewDetails(),
makeReservation(), and makePayment(). A VC specifies the behavior of an op-
eration using two UML object diagrams typed over the concepts contained in
the local OTA ontology used by HRS. The object diagrams specifies the state
before and after the invocation of an operation, respectively. We refer to these

3 http://www.opentravel.org
4 http://www.harmonet.org

http://www.opentravel.org
http://www.harmonet.org
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object diagrams as preconditions of an operation opi (or Pre(opi) for short) and
postconditions (Post(opi) for short). In addition, the required invocation order
of the operations is specified in terms of a UML sequence diagram (C).

HRS Service Request
checkAvailability()
viewDetails()
makeReservation()
makePayment()

…

(A)

(B)

(C)

typed
over

VC: checkAvailability()

: BasicPropertyInfoType

: RoomStayType

: ProfileType : ProfileType

HRS HotelService

checkAvailability()

viewDetails()

makeReservation()

makePayment()

OTA based Local Ontology

RequiredPaymentsType PaymentFormType
HotelReservationType

BankAcctTypePaymentCardType

RoomType

WrittenConfInstType

ProfileType

RoomStayType BasicPropertyInfoType

RatePlanType

1

1

1

*

1

*

RoomAmenityPrefType

1
1

Fig. 2. Service Request of HRS with its OTA-based local ontology

Potential service providers (Hotel X and Hotel Y ) may specify their ser-
vice offers (e.g. based on the HarmoNET4 tourism ontology) as shown in Fig-
ure 3. The service offer of Hotel X comprises the operation signatures (A1) and
their semantic description (B1): getAvailableRoom(), makeABooking(), validate-
Credentials(), and payForBooking(). Similarly, the offer of Hotel Y also consists
of the operation signatures (A2) with their semantic descriptions (B2): search-
Room(), getRoomDetails(), and bookRoom(). Both service offers specify allowed
invocation sequences of their offered operations in terms of UML state charts
(C1 and C2).

To enable an automatic service discovery, we propose a mechanism to match
rich service requests and offers is required, which considers all the aspects of
service requests/offers and overcomes the underlying heterogeneity of the service
partners.

3 Matching of Rich Service Descriptions

Figure 4 gives an overview of our proposed matching mechanism, which can be
divided into two phases: a publishing phase and a searching phase. To publish
a service request/offer, the service partners manually map their local ontologies
to a global ontology in the first step. Here, we assume that the service partners
agree on a common global ontology, which may be provided and maintained by
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Fig. 3. Two Service Offers of Hotel X and Hotel Y
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Fig. 4. Matching of UML-based Rich Service Descriptions

a service marketplace provider. In Step 2, the VCs in the service request/offer
are automatically normalized by translating them to a public representation
typed over the global ontology. The searching phase starts with Step 3, where
the provided and requested operations are matched based on the normalized
VCs. In Step 4, the operation mappings are evaluated on the provider’s service
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protocol to check whether the provider allows the requested invocation sequence.
The individual steps are explained in detail in the following sections.

3.1 Local-Global Ontology Mapping and VC Normalization

The local ontologies of the service partners need to conform to a common repre-
sentation,i.e., a global ontology before matching service requests and offers. For
the following discussion, we select HarmoNET as the global ontology because it
covers different aspects of the tourism domain quite comprehensively.

Class Mappings Association Mappings

…

ClientProfileType

Local mapped
to Global

UnitRoomType

AccomodationBasicProperty
InfoType

RoomPackageRoomStayType

BookingHotelReservation
Type

…

Local mapped
to Global

Client

Booking

ProfileType

HotelReservation
Type

Payment

Receipt

RequiredPayments
Type

WrittenConfInst
Type

Unit

Facility

RoomType

RoomAmenity
PrefType

Fig. 5. Excerpt of the Local-Global Ontology
Mapping for our Case Study

To establish a local-global on-
tology mapping, we rely on a
manual 1:1 mapping mechanism
because this is not the main focus
of this paper. However, there is a
variety of existing algorithms and
techniques [11,17,16] for auto-
matic local-global ontology map-
ping, which can be reused in
future.

These mappings are estab-
lished in two stages, i.e., Class
mapping and Association map-
ping. During Class mapping,
classes in the local ontology are
mapped to classes in the global
ontology on the basis of the similarity between class names and their attributes.
The similarity between the names of the classes and the attributes can be deter-
mined manually or by using tool support for lexical matching [6]. Two classes
are mapped, if their names are similar and they have similar attributes. Dur-
ing Association mapping, an association in the local ontology is mapped to an
association in the global ontology if the source and the target classes of these
associations are already mapped during Class mapping.

For our case study, a subset of the local-global ontology mappings is shown
in Figure 5. On the basis of these mappings, the VCs contained in service re-
quests/offers can be automatically normalized to a common representation to
enable their matching in the next steps. In Figure 6, the VC of checkAvailabil-
ity() by HRS is normalized to a common representation typed over the global
ontology HarmoNET.

Normalized

to

VC: checkAvailability()

: BasicPropertyInfoType

: RoomStayType

: ProfileType : ProfileType

VC:checkAvailability() (Translated)

: Accomodation
: Client

: Client

: RoomPackage

Fig. 6. Normalization of the checkAvailability() Operation of HRS
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3.2 Operation Matching

In the second step, the operations in service request and offers are matched based
on the normalized VCs using four different matching strategies, i.e. 1:1, 1:n, n:1,
and n:m matching, which are discussed in the following sections.

1:1 Operation Matching Strategy. A 1:1 operation matching strategy has
already been proposed by [9]. According to this strategy, a provided operation
opp matches a requested operation opr if the following properties are fulfilled:

P1: opr fulfills all the preconditions of opp;
P2: opp fulfills all the postconditions of opr, i.e., Post(opp) completely satisfies

Post(opr);

To this extent, Post(opp) completely satisfies Post(opr), if all the elements that
are created, deleted, and preserved by opr have corresponding elements that are
also created, deleted, and preserved by opp, respectively.

As shown in Figure 7, the VCs of checkAvailability() by HRS and search-
Room() by Hotel Y constitute a 1:1 mapping, because checkAvailability() sat-
isfies all the preconditions of searchRoom(). In addition, Post(searchRoom())
completely satisfies Post(checkAvailability()), since all the objects added,
deleted, or preserved by checkAvailability() are also added, deleted, or preserved
by searchRoom().

1:1 Operation
Matching

VC:checkAvailability() (Translated)

: Accomodation
: Client

: Client

: RoomPackage

VC:searchRoom()
: Accomodation

: RoomPackage

: Client

: Client

Fig. 7. 1:1 Operation Matching Example

However, in a realistic SOC scenario, there can be complex operation map-
pings and hence, the 1:1 matching notion does not suffice. For example, two HRS
operations checkAvailability() and viewDetails() can be mapped to one opera-
tion getAvailableRoom() of Hotel X. To identify such complex mappings, more
elaborated operation matching strategies are required.

1:n Operation Matching Strategy. In the case, where a 1:1 mapping be-
tween a requested and a provided operation cannot be established, because its
postconditions are not completely satisfied by the provided operation, a 1:n op-
eration matching may be possible, where multiple provided operations can be
invoked in an allowed order to fulfill a requested operation.

Our proposed 1:n operation matching strategy maps a requested operation
opreq to a sequence of provided operations Seqresult = oppi → . . . → oppn.
Thereby, Seqresult is an allowed sequence of operation invocations specified in
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the provider’s service protocol (see Figure 3 C1 and C2) and every operation in
the sequence contributes to fulfill the requested operation. For the 1:n matching
strategy, we make the following assumptions:

– As Seqresult is a valid invocation sequence in the provider protocol, some
earlier operations in the sequence may participate to fulfill the preconditions
of an operation in Seqresult. Therefore, we assume that the preconditions
of an operation oppk ∈ Seqresult are satisfied by the postconditions of the
earlier operations in Seqresult and the preconditions of opreq, i.e. Pre(oppk) ⊆
Post(oppi) ∪ Post(oppk−1) ∪ Pre(opreq).

– Further, we assume that every provided operation oppk ∈ Seqresult does not
change any requested postconditions in Post(opreq) that are already satisfied
by earlier operations in Seqresult and satisfies at least some of the requested
postconditions in Post(opreq) that remain to be satisfied. Hence, Post(oppk)
partially satisfies Post(opreq), i.e. oppk does not change any elements cre-
ated, deleted, or preserved by oppi → ... → oppk−1 in Seqresult satisfying
a postcondition of opreq and at least some of the elements that still need
to be created, deleted, and preserved by opreq have corresponding elements
created, deleted, and preserved by oppk, respectively.

In our example, the 1:n matching strategy identifies a matching between the
requested operation makePayment() of HRS and the invocation sequence con-
sisting of the provided operations validateCredentials() → payForBooking()
of Hotel X as shown in Figure 8.

VC: makePayment() (Translated)

: Booking : Booking : Receipt

1:n Operation

: Client : Client : Payment : PaymentMode

1:n Operation
Matching

VC: validateCredentials()

: Client : Client : PaymentMode

VC: payForBooking()

: Booking : PaymentMode : Booking : Receipt
: Client : Client : PaymentMode

: Client

g

: Client : Payment : PaymentMode

Fig. 8. 1:n Operation Matching Example

Our 1:n matching strategy is specified in Listing 1. As input, it takes a re-
quested operation opreq and an invocation sequence Seqprov of the provider ser-
vice protocol. As output, it returns a sequence of provided operations Seqresult,
which is a sub-sequence of Seqprov and completely satisfies the postconditions of



Towards an Automatic Service Discovery 717

opreq. The matching strategy is invoked for every invocation sequence specified
in the provider service protocol until a mapping is established.

Listing 1: Algorithm for 1:n matching between a requested operation opreq
and a provider sequence of operations Seqprov

Input: Requestor Operation opreq
Input: An Invocation Sequence in the Provider’s Service Protocol Seqprov
// Seqprov = opp1 → opp2 → ... → oppn
Output: A matching Sub-sequence Seqresult of Seqprov

oneToNMatching(opreq , Seqprov)
opstart=opx ∈ Seqprov, where (Post(opx) partially satisfies Post(opreq))
AND Pre(opx) ⊆ Pre(opreq); // Step ①

Seqresult = opstart;
opi = opstart;
PreCheck = Pre(opreq); // Step ②

PostCheck = Post(opstart);

while (PostCheck NOT(completely satisfies) Post(opreq) AND (i ≤ n)) do

if Post(opi) partially satisfies Post(opreq) then // Step ③
if Pre(opi) ⊆ PreCheck then

Seqresult = Seqresult + opi;
PreCheck = (PreCheck ∪ Post(opi));
PostCheck = (PostCheck ∪ Post(opi));

end
else Seqresult = null;
STOP ; // Step ④

i++;

end
if (PostCheck NOT(completely satisfies) Post(opreq) AND (i > n)) then
Seqresult = null; // Step ⑤

return Seqresult;
end

The algorithm in Listing 1 works as follows: While iterating a provider’s se-
quence, the first operation oppi that partially satisfies the postconditions of opreq
and whose preconditions are satisfied by opreq becomes the first operation of
Seqresult (Step ①). In the given example, validateCredentials() is the first op-
eration in the provider’s sequence, whose postconditions partially satisfies the
postconditions of the makePayment(), i.e., PaymentMode is added and we as-
sume that PaymentMode will not be deleted by any subsequent provided oper-
ation in Seqresult. The preconditions of validateCredentials() are also satisfied
by makePayment(). PreCheck and PostCheck are initiated to check the stepwise
satisfaction of the postconditions of opreq and the preconditions of the provider
operation under consideration (Step ②).

The provider’s sequence is iterated until either the postconditions of opreq
are completely satisfied or the provider’s sequence ends. Each opi whose
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postconditions partially satisfies the postconditions of opreq and whose precondi-
tions are satisfied by the opreq or earlier provided operations is added to Seqresult
and PreCheck and PostCheck are updated (Step ③), e.g., after validateCreden-
tials(), payForBooking() is added to the Seqresult. Here, it is worth notifying that
preconditions of payForBooking() are satisfied not only by makePayment() but
also by the earlier provider operation in the sequence, i.e. validateCredentials().

The match strategy terminates without a successful 1:n mapping when
either an opi fails to satisfy any postcondition of opreq (Step ④) or the
end of a provider’s sequence is reached and the postcondition of opreq are
not completely satisfied (Step ⑤). The algorithm stops as soon as a valid
Seqresult is found. In our example, makePayment() is successfully mapped to
validateCredentials()→ payForBooking() (see Figure 8).

n:1 Operation Matching Strategy. There are two potential cases where an
n:1 matching strategy is applicable:

(a) When a 1:1 mapping is established between a requested and a provided op-
eration and it might be extended to a n:1 mapping. For example, checkAvail-
ability() of HRS has 1:1 mapping to getAvailableRoom() of Hotel X. However,
since the postconditions of viewDetails() of HRS are also completely satisfied
by getAvailableRoom(), this mapping can be extended to an n:1 mapping.

(b) When a 1:1 mapping is not possible between a requested and provided
operation because the postconditions of the provided operation completely
sastisfies the postconditions of the requested operation but its preconditions
are not satisfied by the requested operation.

Our proposed n:1 operation matching strategy maps a sequence of requested
operations Seqresult = opri → . . .→ oprn to a provided operation opprov, where
Seqresult is a required sequence of operation invocations in the requestor’s service
protocol (see Figure 2 (C)).

Our n:1 matching strategy is specified in Listing 2. As input, it takes a
provided operation opprov and the requested invocation sequence Seqreq. As
output, it returns Seqresult, i.e., a sub-sequence of Seqreq, which satisfies the
precondition of opprov and the postcondition of opprov completely satisfies the
postconditions of all the operations in Seqresult. For example, as shown in Fig-
ure 9, while matching the operations of HRS and Hotel X, after a 1:1 map-
ping between checkAvailability() of HRS and getAvailableRoom() by Hotel X
is detected, checkAvailability() → viewDetails() → makeReservation() →
makePayment() of HRS and getAvailableRoom() of Hotel X are provided as
inputs to the n:1 matching strategy.

The algorithm in Listing 2 works as follows: While iteration, the first
operation opx in Seqreq, whose postconditions are completely satisfied by
opprov and that satisfy some (or all) preconditions of the opprov is added
to Seqresult (Step ①). As shown in Figure 9, checkAvailability() becomes
the first operation of Seqresult because all its postconditions are satisfied by
getAvailableRoom() and it also satisfies the preconditions of getAvailableRoom().
PreCheck is initiated to track the satisfied preconditions of the opprov (Step ②).
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VC:checkAvailability() (Translated) VC: viewDetails() (Translated)VC:checkAvailability() (Translated)

: Accomodation
: Client

: Client

: RoomPackage

: Accomodation

: RoomPackage

: Accomodation

: RoomPackage

() ( )

n:1 Operation

g g

: Unit : Price: Facility

n:1 Operation
Matching

VC:getAvailableRoom()

: Accomodation: Client

: RoomPackage

: Client

: Unit : Price: Facility

Fig. 9. n:1 Operation Matching Example

Listing 2: Algorithm for n:1 matching between a requestor operation se-
quence Seqreq and a provider operation Opprov

Input: Provider Operation opprov
Input: An Invocation Sequence in Requestor’s Service Protocol Seqreq
// Seqreq = opr1 → opr2 → ... → oprn
Output: A matching Sub-sequence Seqresult of Seqreq

nToOneMatching(opprov , Seqreq)

opstart= The first opx ∈ Seqreq, where (Post(opprov) completely satisfies
Post(opx)) AND Pre(Opprov) ∩ Pre(opx) �= null; // Step ①

Seqresult = opstart;
opi = opstart;
PreCheck = Pre(opstart); // Step ②

while (Post(opprov) completely satisfies Post(opi) AND (i ≤ n)) do

Seqresult = Seqresult + opi; // Step ③

PreCheck = (PreCheck ∪ Pre(opi));
i++;

end

if Pre(opprov) � PreCheck then Seqresult = null; // Step ④

return Seqresult;

end

The requestor sequence Seqreq is iterated until either the postconditions of
the next requested operation are not satisfied or the Seqreq ends.

Every requested operation opi whose postconditions are completely satisfied
by the opprov is added to Seqresult and PreCheck is updated accordingly (Step
③). For instance, after checkAvailability(), viewDetails() is added to the Seqresult
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but in the next iteration, the postcondition of makeReservation() are not sat-
isfied by getAvailableRoom() and the algorithm stops. Till this point, if all the
preconditions of opprov are not satisfied then Seqresult is not a valid n:1 match for
opprov(Step④). In the given case, the n:1 operation matching strategy success-
fully maps checkAvailability()→ viewDetails() of HRS to getAvailableRoom()
of Hotel X (see Figure 9).

Here it is worth mentioning that if the n:1 matching strategy is initiated in the
Case (b) as mentioned above, then we prompt the requestor that the match result
is inexact. This is because the match is successful at design time but at the invo-
cation time, a provided operation can not be successfully invoked until all its pre-
conditions are satisfied. Therefore, the requestor has to decide whether he is able
to satisfy all the preconditions of the provider’s operation before its invocation.

n:m Operation Matching Strategy. Last but not least in some scenarios n:m
mappings between requested and provided operations can occur. We distinguish
between basic and complex n:m mappings. In the former category, existing 1:1,
1:n, and n:1 mappings can be extended to n:m operation mappings. In the latter
category, existing 1:n and n:1 mappings overlap and can be combined into n:m
mappings.

Category 1
(1.1) (1.2) (1.3)

Req ProvReq Prov ProReqReq ProvReq ProvReq. Prov.
1:1

Req. Prov.
extended

.

.

.

opr1

opr2

opp1
1:1opr1 opp1 to opr1 opp1

Prov.Req.

.
1:n

opr1 opp1

Prov.Req.

extended .
..

.

extended
to

.

.

.

opr1

Req.

opp1

Prov.

n:1.
.
.

opr1

Req.

opp1

Prov.

extended
to

oppn

.

opr2 oppn
oppnoprn+1

opp2oprn

Fig. 10. First Category of n:m Mapping Cases

Figure 10 shows the basic n:m mappings. For instance, (1.1) shows a 1:1 map-
ping established between a requested operation opr1 and a provided operation
opp1. On further investigation, this mapping can be extended to an n:m mapping
because the postconditions of next requested operation, i.e., opr2 are also par-
tially satisfied by the postconditions of opp1. However, the postconditions of opr2
are completely satisfied by a sequence of requested operations opp1 → . . .→ oppn.

As an example, we consider another potential service partner Hotel Z
providing the following operations in their allowed invocation sequence:
getAvailableRoom()→ makeABooking()→ getReceipt(). Figure 11 shows the
1:1 mapping between makeReservation() of HRS and makeABooking() of Hotel
Z. The postconditions of the next operation of HRS, i.e., makePayment() are
also partially satisfied by makeABooking() of Hotel Z.

However, the postconditions of makePayment() are completely satisfied by the
postconditions of makeABooking()→ getReceipt(). Therefore, the 1:1 mapping
can be extended to an n:m mapping.
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1:1 Operation
Matching

extended to n:m Operation
Matching

: Client

VC: makeReservation() (Translated)

: Client

: Booking: Accomodation

: RoomPackage

VC: makeABooking()

: Client: Booking: Accomodation

: RoomPackage

: Client

: Payment : PaymentMode

: Client

VC: makeReservation() (Translated)

: Client

: Booking: Accomodation

: RoomPackage

: Client

VC: makePayment() (Translated)

: Booking

: Client

: Booking

: Payment

: Receipt

: PaymentMode

VC: makeABooking()

: Client: Booking: Accomodation

: RoomPackage

: Client

: Payment : PaymentMode

VC:getReceipt()

: Booking : Client

: Payment : Receipt

: Client: Booking

: Payment

Fig. 11. n:m Operation Matching Example

The basic n:m mappings can be established using our existing matching strate-
gies. To deal with (1.1) to (1.3), the existing 1:1 and 1:n operation matching
strategies are reused with minor extensions.

As shown in Figure 12, there is a second category of complex n:mmapping cases.
For example, the Case (2.2) depicts a situation where an existing 1:n mapping is
between the requested operation opr1 and the provided operations opp1 → . . .→
oppn can be extended to an n:m mapping if some further operations in the service
request, i.e., opr2 → . . . → oprn can also be mapped to oppn. We aim at defining
a matching strategy to deal with such complex cases in our future work.

Category 2
(2.1) (2.2)

.

.

.

1:n
opr1 opp1

oppn

Prov.Req.

extended
to

.

.

.

.

.

.

Req. Prov.

opr1

opr2

opp1

oppn

oppn+m
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Req. Prov.

opp2.
.
.
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.
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.

.
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oprn
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.
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Fig. 12. Second Category of n:m Mapping Cases

Having computed all operation mappings for our given example (see
Figure 13), we evaluate whether the matched operations can be invoked in the
requested invocation order by inspecting the services protocols of the offered
services in Step 4 of our matching mechanism.
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3.3 Operation Mappings-Protocol Evaluation

Type

1:1

1:n

n:1

HRS
Requirements

HotelX
Capabilities

HotelY
Capabilities

checkRoom
Availability()

viewDetails()

searchRoom()

getRoomDetails()

makePayment()
validateCredentials()

payForBooking()

checkRoomAvailability()

viewDetails()
getAvailableRoom()

makeReservation() makeABooking()

makeReservation()

makePayment()
bookRoom()

Fig. 13. Operation Matching Results

In this step, we evaluate based on
the established operation mappings,
whether the provided service allows
to invoke the operations in the or-
der requested by the service request.
For this purpose, traces are extracted
from the service protocols contained
in the service requests/offers and the
operation mappings are evaluated on
these traces. For the given example,
we will elaborate this mechanism as
illustrated in Figure 14.

First, we consider the traces
of the service offer of Hotel
X. checkRoomAvailability() →
viewDetails() of HRS has a n:1
operation mapping to getAvailableRoom(). Therefore, it makes sense to check
whether any of the Hotel X traces starts with invocation of getAvailableRoom(),
which is indeed the case. The next invocation of HRS, i.e., makeReserva-
tion() has a 1:1 operation mapping to makeABooking(). Hotel X trace allows
the invocation of makeABooking() after getAvailableRoom(). Similarly, the
next requestor invocation makePayment() has a 1:n operation mapping to
validateCredentials() → payForBooking(), which is also allowed in Hotel X
trace. Therefore, the requestor’s trace can be completely mapped to one of the
provider’s traces. Hence, the service offer by Hotel X completely satisfies the
HRS service request.

Hotel Y Traces
sr searchRoom()
gd getRoomDetails()
br bookRoom()

sr gd

brsr

fulfilled by not fulfilled by

HRS Traces
cr checkRoomAvailability()
gt viewDetails()
mr makeReservation()
mp makePayment()

cr vt mr mp

Hotel X Traces
ga getAvailableRoom()
mb makeABooking()
vc validateCredentials()
pb payForBooking()

ga mb vc

ga

pb

Fig. 14. Service Partners and the Traces in their Protocols

Applying the same mechanism it can be deduced that Hotel Y does not satisfy
the required trace and hence fails to fulfill HRS service request. In this step, it
became evident that only one of the provided services, i.e., Hotel X is able to
completely fulfill the requestor’s request.
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4 Related Work

We will mainly discuss the related work in the area of service description match-
ing in this section. There are different matching mechanisms [15,12,1] proposed
for service requests and offers based on rich service descriptions [9,3,19]. For
instance, [15] proposes a matching mechanism for VC-based service descriptions
leaving some important issues unsolved, such as, dealing with the underlying het-
erogeneity, performing n:1 and n:m operation matching between service partners,
and service protocol matching. Similarly, service matching approaches like [12,1]
based on languages, such as, WSML and OWL-S, respectively, match the ser-
vices on the basis of the operation structure and behavior in the service request
and offer but do not consider the service protocols for this purpose.

Other approaches [14,2,20,4,21] come up with mechanisms for service protocol
matching. However, most of these approaches are limited. For example, [20] ig-
nores the underlying heterogeneity of the service partners domain while matching.
Similarly, [14,2,21] resolve the heterogeneity but do not take operation semantics
into account. Most promising in this regards is [4] that proposes a service protocol
matching approach with local-global ontology mapping to overcome heterogene-
ity of local ontologies. It also deals with n:m matching between operations in the
service request and offer.This approachparticularly emphasizes on the stateful ser-
vices and it considers the input/output parameters of the requested and provided
operations and the service states to match the service protocols. However, a clear
definition and structure of corresponding states is missing. In contrast, our pro-
posed approach relies on operation semantics for protocolmatching and the notion
of correspondingoperation semantics is clearly defined in thematching algorithms.

WSMX [8] propose a comprehensive mediator-based mechanism to match
user goals and service capabilities. Multiple mediators are introduced to deal
with different types of heterogeneity, e.g., OOMediator resolves the ontological
differences between the service requestor and the provider. Even though we share
the same aims, our approach differs from the WSMX on the fundamental issue
of using a de-facto standard like UML [18].

The approach presented in [7] identifies semantic equivalences in structurally
different process models by decomposing the models into fragments. This tech-
nique could also improve the service protocol matching in particular in case of
service compositions.

5 Conclusion and Future Work

We proposed an automatic matching mechanism for service descriptions based
on RSDL [10] enabling automatic service discovery despite underlying hetero-
geneity of the service partners. We have applied the proposed matching mech-
anism on a real-world case study of our industrial partner HRS. In future, we
intend to extend our matching mechanism to consider additional heterogeneity
aspects, such as complex mappings between ontologies, complex n:m operation
matchings, etc. Another potential area for future work is to automatically de-
fine service compositions by combining different service offers to fulfill a service
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request. Additionally, we will evaluate our approach more extensively through a
variety of case studies and an implemented system. This system will be part of a
platform for service computing tasks being developed at Collaborative Research
Center On-The-Fly Computing1.
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Abstract. Product Line Engineering (PLE) is expected to enhance quality and 
productivity, speed up time-to-market and decrease development effort, through 
reuse—the key mechanism of PLE. In addition, one can also apply PLE to sup-
port systematic testing and more specifically model-based testing (MBT) of 
product lines—the original motivation behind this work. MBT has shown to be 
cost-effective in many industry sectors but at the expense of building models of 
the system under test (SUT). However, the modeling effort to support MBT can 
significantly be reduced if an adequate product line modeling and configuration 
methodology is followed, which is the main motivation of this paper. The initial 
motivation for this work emerged while working with MBT for a Video Con-
ferencing product line at Cisco Systems, Norway. In this paper, we report on 
our experience in modeling product family models and various types of behav-
ioral variability in the Saturn product line. We focus on behavioral variability in 
UML state machines since the Video Conferencing Systems (VCSs) exhibit 
strong state-based behavior and these models are the main drivers for MBT; 
however, the approach can be also tailored to other UML diagrams. We also 
provide a mechanism to specify and configure various types of variability using 
stereotypes and Aspect-Oriented Modeling (AOM). Results of applying our 
methodology to the Saturn product line modeling and configuration process 
show that the effort required for modeling and configuring products of the 
product line family can be significantly reduced.  

Keywords: Aspect-Oriented Modeling, Product Line Engineering, Behavioral 
Variability, Model-based Testing, UML State Machine. 

1 Introduction 

Product Line Engineering (PLE) has gained significant attention in the recent years in 
both academia and industry because of its capability to deal with the ever increasing 
complexity and variation in software product families [1]. Using PLE has shown to  
be effective for enhancing quality and productivity in product development, and  
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speeding up time-to-market in many organizations such as Boeing, Lucent, and Nokia 
[2]. We believe that PLE can also potentially help in significantly reducing the amount 
of modeling effort required for Model-based Testing (MBT). For instance, modeling a 
Video Conferencing System (VCS) in Cisco Systems Inc, Norway [3], requires model-
ing 20 subsystems with at least one state machine per subsystem, where many of these 
subsystems can run concurrently to each other. The modeling effort required for sup-
port MBT is often the main concern of industrial testers, especially when there is a lack 
of familiarity with modeling. Using PLE, we conjecture that the amount of modeling 
effort required for various products in a product line family can be significantly  
reduced through reuse, which is the motivation of this work.  

While applying MBT on a VCS product [4, 5], we came to the conclusion that we 
needed a product line modeling and configuration methodology focused on reducing 
the overall modeling effort of MBT over the entire product line family. Since, as de-
tailed in our discussion of related works (Section 6), no existing PLE methodology 
addresses in a comprehensive manner all relevant aspects of behavioral variability in 
UML state machines, we derived and reported in this paper. The methodology has 
been applied on one Cisco’s VCS product line family called Saturn. It is worth  
mentioning that in this paper we only put our focus on modeling, not on automated 
derivation of executable test cases from models, which is discussed in [4, 5]. Our 
methodology mainly focuses on behavioral variability with a focus on UML state 
machines and this is due to two reasons. First, state machines are the main notation 
currently used for model-based test case generation [6-8] and are particularly useful in 
control and communication systems. Second, our industrial case study exhibits strong 
state-based behavior so that it is natural to provide support for UML state machines. 
However, in the future, our approach can be extended to other types of UML  
diagrams by following similar principles. 

Our methodology starts with classifying various types of variability that exist in 
UML class and state machines, in order to model the commonality and variability of a 
product line family with the goal of supporting MBT. Different approaches (e.g., 
UML stereotypes) are proposed to specify different variability types. Note that these 
models need to be built once for the product line family and later on are configured 
for each product in the product line family. As part of our methodology, we also pro-
pose a configuration process (with six steps) to guide a tester to configure the product 
line models to support MBT, in which different techniques (e.g., OCL constraints, 
AspectSM [9]) are applied to specify configuration information. This information is 
in a subsequent step automatically processed by our existing tools (e.g., TRUST tool 
[5], our OCL solver [10]). For example, our proposed UML 2.0 profile AspectSM, 
which supports Aspect-Oriented Modeling (AOM), is adopted to specify one type of 
configuration information. AspectSM allows comprehensive aspect modeling for 
UML 2.0 state machines and supports modeling crosscutting concerns on all features 
of UML 2.0 state machines. It also supports all basic features of Aspect-Oriented 
Software Development (AOSD) [11] such as pointcuts, introduction, joinpoints, and 
advice. AspectSM has proven to reduce about 95% of the modeling effort in our pre-
vious work [9], improved readability [12], reduced modeling errors [13], and im-
proved modeling quality [14]. We applied our methodology to the Saturn product line 
family and reported how we configure four products of the product line family. Re-
sults show that our product line modeling and configuration methodology can signifi-
cantly reduce modeling effort. 
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The rest of the paper is organized as follows. Section 2 provides a summary of 
AspectSM. Section 3 defines our product line modeling methodology. Section 4 de-
scribes the product configuration process. In Section 5 we present results and discuss 
our industrial application. Section 6 relates our work to existing works in the literature 
and finally Section 7 concludes our work and provides future directions. 

2 Aspect State Machines 

This section provides an introduction to the AspectSM profile [9] [15], which is used 
to model aspect state machines. The profile was initially developed for modeling sys-
tem robustness behavior, which is very common type of crosscutting behavior in 
many types of systems such as communication and control systems [6-8]. An example 
of a robustness behavior for a communication system is related to how the system 
should react, in various states, in the presence of high packet loss. The system should 
be able to recover lost packets and continue to behave normally in a degraded mode. 
In the worst case, the system should go back to the most recent state and not simply 
crash or show inappropriate behavior. In a control system, one needs to model, for 
example, how the system should react, in various states, when a sensor breaks down. 
AspectSM allows modeling UML state machine aspects as UML state machines (as-
pect state machines). Such an approach, relying on a standard and using the target 
notation as the basis to model the aspects themselves, is expected to make the practi-
cal adoption of aspect modeling easier in industrial contexts. In our previous work [9], 
we thoroughly compared AspectSM with the similar existing AOM profiles. Our 
findings showed that only AspectSM is exclusively based on standard UML notation 
and OCL, thus eliminates the need of learning additional non-standard notations or 
languages, and therefore making it easy to reuse open source and commercial  
technology. This is highly important in most industrial contexts and strongly affects 
the adoption of modeling technologies. In addition, it is easy to train people in the 
industry for standard languages such as UML and the OCL. 

Though AspectSM was originally defined to support scalable, model-based, ro-
bustness testing, including test case and oracle generation, a fundamental question is 
whether it is easier to model crosscutting concerns such as robustness with AOM in 
general, and AspectSM in particular, than simply relying on UML state machines to 
do it all. In AspectSM, the core functionality of a system is modeled as one or more 
standard UML state machines (called base state machines). Crosscutting behavior of 
the system (e.g., robustness behavior) is modeled as aspect state machines using the 
AspectSM profile. A weaver [9] then automatically weaves aspect state machines into 
base state machine to obtain a complete model, that can for example be used for test-
ing purposes. The AspectSM profile specifies stereotypes for all features of AOM, in 
which the concepts of Aspect, Joinpoint, Pointcut, Advice, and Introduction [9] are 
the most important ones. In this paper, we report an industrial application of 
AspectSM to model behavioral variability in UML state machines in a similar fashion 
as we modeled robustness behavior in [9]. 

An example of the application of AspectSM is shown in Fig. 1. An aspect state 
machine modeling crosscutting behavior EmergencyStop is shown in Fig. 1. This 
UML state machine is stereotyped as <<Aspect>>, which means that it is an aspect 
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Saturn product line consists of products which differ from each other both in terms of 
hardware and software. A typical product in Saturn manages the sending and receiv-
ing of multimedia streams. Audio and video signals are sent through separate chan-
nels. There is also a possibility of transmitting presentations in parallel with audio and 
video. Presentations can be sent only by one conference participant at a time and all 
others receive it. Such behavior is central to the operation of a product in the Saturn 
product line. In Section 3.1, we present the overview of the product line models,  
followed by the discussion of various types of variability (Section 3.2). 

3.1 Product Line Models 

According to the needs, we classified product line models into various categories, as 
shown in the conceptual model (Fig. 2). These models need to be developed once and can 
then be used to as the basis to configure various products of the product line family for the 
purpose of supporting MBT. We organize these models into two packages: Software and 
Hardware. The Software package models are further classified into CoreBehavior, 
FunctionalBehavior, NonFunctionalBehavior, and SoftwareConfiguration. Core behav-
iors (CoreBehavior) are functional behaviors, which differ significantly from one product 
to another. For example, in our current application, core behaviors are central to the opera-
tion of a VCS, which are related to establishing videoconferences. Core behaviors are 
modeled using class diagrams and state machines. A class diagram specifies state varia-
bles of a VCS as class attributes and Application Programming Interface (API) of the VCS 
as class operations. A state machine specifies the behavior of a VCS and contains model 
elements such as states (precisely described as state invariants in OCL constraints, based 
on state variables, which serve as test oracle during MBT) and transitions with triggers 
(operations in the API defined in the corresponding class diagram).  

Similar to core behaviors, functional behaviors are also modeled as class diagrams 
and state machines, which are configurable for various products. Nonfunctional be-
haviors (NonFunctionalBehavior) (e.g., those related to robustness and security prop-
erties) are modeled as configurable aspect class and state machines diagrams using 
AspectSM. For example, regarding the robustness of a product in Saturn, we are in-
terested in modeling its behavior in the presence of faulty situations in its operating 
environment such as the network and other VCSs communicating with it. An aspect 
class diagram models various properties of the environment (e.g., packet loss and 
jitter in the network) as class attributes using MARTE Non-functional Properties 
(NFPs) defined in MARTE, a UML profile for modeling and analyzing real-time and 
embedded systems [16] [17]. An aspect state machine models the behavior of the 
product in the presence of faulty situations in the environment and how it deals with 
such situations by transiting to a degraded mode or by executing fail-safe procedures 
and transiting to the most recent safe state.  

Package SoftwareConfiguration models various software configurations related  
to, for example, video conferencing protocols (H323 and SIP), as class attributes  
in a UML class diagram. These configurations may be used in state invariants  
or guards on transitions of the (aspect) state machines defined in CoreBehavior, 
FunctionalBehavior, and NonFunctionalBehavior. HarwareConfiguration is similar 
to SoftwareConfiguration except that it models hardware configurations, such as 
properties of a video output port, as class attributes in a class diagram. 
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4.1 Activity A1: Select a Core Behavior 

This step selects one or more core behaviors from the set of the core behaviors availa-
ble for a product line, which may be modeled using one or more state machines. In 
other words, this step resolves state machine variability (Section 3.2). For instance, in 
the case of Saturn product line, we have two options of core behaviors: Multi-site and 
Multi-way as discussed in Section 3.1. To configure a Saturn product, we either select 
Multi-site or Multi-way as its core behavior. Recall that each core behavior of the 
Saturn product line is specified using a class diagram and a state machine.   

4.2 Activity A2/A3: Configure Functional/Non-functional Models 

This activity involves configuring functional/non-functional models of the product 
line family. To achieve this, we configure the configurable parameters specified as 
class attributes in class diagrams by assigning particular values to these parameters. 
This step resolves class attribute value variability (Section 3.2). For example, in Fig. 
5, MaxNumberOfCalls is a configurable parameter and holds information about the 
number of simultaneous video calls a product can make. For instance, one product can 
handle three simultaneous calls and hence this attribute needs to be set to ‘3’ for the 
product. To specify the value for the attribute, the following constraint is defined: 

context Multisite inv: 
self. MaxNumberOfCalls = 3 

Note that in the above example; we could have simply assigned value 3 to parameter 
MaxNumberOfCalls of an instance of class Multisite, but instead we decided to use 
constraints due to reasons that are both general in nature or specific to our tool  
support: 1) An attribute can take range of possible values and may possibly have rela-
tionships with other configurable and non-configurable attributes; therefore OCL 
constraints should be specified to capture such complex cases, 2) By writing con-
straints, we don’t need to make any change to the product line models since we define 
constraints for each product, and 3) To automatically generate executable test cases 
from the product models plus constraints specifying configuration information, using 
our existing MBT tool called TRUST [5], the constraints are solved using our  
search-based OCL Solver [10].  

4.3 Activity A4: Develop Aspect State Machines to Configure Model Elements 

This activity involves configuring model elements using aspect state machines. For 
the example presented in Fig. 8, state invariants of the states stereotyped as <<Varia-
bility>> can be configured using an aspect state machine shown in Fig. 14. In the 
figure, attribute baseStateMachine of <<Aspect>> indicates that this aspect state 
machine will be woven into the ‘Multisite’ state machine shown in Fig. 7. The 
<<Pointcut>> stereotype on ConfigureStateInvariants selects all states of Multisite 
and apply a before advice ‘StateInvariantConfig’. Attribute constraint of <<Be-
fore>> has value ‘packetLoss > 0 and packetLoss <=1’, resulting in this constraint 
being conjuncted to the state invariants of all the states in the Multisite state machine. 
More details on aspect state machines and configuring more complicated model ele-
ments can be found in [9]. In our another previous work, we developed a weaver [9] 
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When automatically generating test cases, such constraints are solved using our 
OCL solver [10] to generate valid configuration specifications. In addition, to set 
those valid configurations such that automatically generated test cases from the state 
machines using our model-based testing tool TRUST [5] can be executed, statements 
corresponding to these configurations in a particular test scripting language such as 
Python, are inserted to the generated test cases.    

5 Case Study 

Our case study is a product line family of VCSs called Saturn, developed in Cisco 
Systems Inc, Norway [3]. The Saturn family consists of various hardware codecs 
ranging from C20 to C90. C20 is the lowest end product with minimum hardware and 
has lowest performance in the family.  

Saturn product line family consists of 20 subsystems such as audio and video sub-
systems. Each subsystem can run in parallel to the subsystem implementing the core 
functionality (Section 3) that deals with establishing videoconferences. Each subsys-
tem has at least one state machine specifying its functionality and on average such 
state machine has five states and 11 transitions. The biggest subsystem state machine 
has nine hierarchical state machines with 22 states and 63 transitions. Saturn product 
family models for non-functional behaviors consist of five aspect class diagrams and 
five aspect state machines modeling various robustness behaviors. The largest aspect 
state machine specifying robustness behavior has three states and ten transitions, 
which would translate into 1604 transitions in standard UML state machines if 
AspectSM were not used. Saturn product line family models also consist of 124 
hardware configuration parameters and 99 software configuration parameters. 

The results of configuring various products in Saturn product line family are  
summarized in Table 1. The columns show the various types of product line models 
(Section 3.1), which must be configured for various products. The Core Behavior 
column indicates the configuration of the state machine variability for each product, 
where all the products support multi-site except C20. The Functional Behavior and 
Non-Functional Behavior columns show the number of instances of the class attribute 
value variability. For all the products, 13 and 11 configuration parameters need to be 
configured for each product regarding functional behavior and non-functional behav-
ior, respectively. The Software Configuration and Hardware Configuration columns 
show the number of class attributes that need to be configured. For hardware configu-
ration, as shown in the table, less number of parameters must be configured for the 
lowest end product C20 as compared to its higher end products. 

Using our methodology the modeling effort is dividing between developing one set 
of product line family models and configuring products. In our study, from Table 1 
we can see that the latter is roughly equal to specifying on average 13 OCL con-
straints for functional behaviors, 11 OCL constraints for non-functional behaviors, 
and modeling on average nine aspect state machines for hardware/software configura-
tions. On the other hand, without using our methodology, for each product one needs 
to devise a set of models roughly equivalent to the size of Saturn product family mod-
els. This means that given the four products in the Saturn product line family, we 
would need to create the equivalent of four sets of Saturn product line family models 
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(with a minimum of 20 state machines, five aspect state machines, and hundreds of 
OCL constraints). As the number of products of the product line family increases, one 
can easily see that without using our methodology, modeling quickly gets out of 
hands. 

Table 1. Summarized results for configuring various products 

Product Core 
Behavior 

Functional 
Behavior 

Non-Functional 
Behavior 

Software 
Configuration 

Hardware 
Configuration 

C20 Multi-way 13 11 5 12 
C40 Multi-site 13 11 6 16 
C60 Multi-site 13 11 6 19 
C80 Multi-site 13 11 6 42 

 
Since modeling behavioral variability may crosscut various state machines (the 

configuration activities A5 and A6 in Fig. 13) or may crosscut several model elements 
within one state machine (the configuration activity A4 in Fig. 13), using AspectSM, 
such crosscutting variability can be modeled separately, thereby saving modeling 
effort by taking advantage of AOM features.  

Modeling behavioral variability using AspectSM provides enhanced separation of 
concerns. For instance, in Fig. 14, crosscutting variability in the state invariants is 
captured as aspect state machines. This means that a modeler, or several of them with 
possibly different expertise, can focus on each type of crosscutting variability. For 
example, in our current application, crosscutting variability related to media quality 
and crosscutting variability on networks can be handled separately using our 
AspectSM variability configuration mechanism. This is very important for our indus-
trial partner since they have separate groups for different kinds of testing activities 
including functional, video, audio and network testing. Using our methodology each 
group can independently model crosscutting variability related to their expertise.   

6 Related Work 

A wide variety of UML-based product line modeling approaches has been proposed 
in literature. The work reported in [19] extends the UML class diagram notation to 
model structural variability by defining a set of stereotypes to capture for example 
variation points (<<VariationPoint>>) and variants (<<Variant>>). Similar kinds of 
UML profile-based approaches [19-21] have been proposed to model variability in 
UML class and sequences diagrams. The way we model class attribute variability is 
similar to these approaches since we apply <<Variability>> to class attributes of 
class diagrams.  

The approaches reported in [22] and [23] support product line modeling by defin-
ing various stereotypes on use case diagrams, collaboration, and state chart diagrams. 
The stereotypes are similar to those defined in [19-21]. For example, for state charts 
[22], a transition can be marked as a variation point and for different products the 
transition is defined in different ways. Our methodology of specifying state machine 
model element variability is similar to these approaches as we stereotype state invari-
ants in a state machine using <<Variability>>, which are variation points. However, 
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in [22], variability configuration is realized by creating new models for different 
products with resolved variation points. In contrast, our approach involves specifying 
various product configurations using AOM and more specifically using the AspectSM 
profile. By doing so, the configurations are captured separately from product line 
models, thereby enhancing separation of concerns. In addition, our methodology  
defines a comprehensive classification of variability in UML state machines and  
provides a detailed product configuration process to deal with each type of variability, 
which are missing in the existing related works published in the literature.  
Furthermore, our objective is to reduce modeling effort required for MBT, which is 
not focused by any existing work in the literature.   

Several AOM approaches have been proposed (e.g., [24-27]) to model variability, 
most of which are defined by introducing new variability modeling languages. For 
instance, the work reported in [27] defines two metamodels, one for defining assets 
(commonality) and the second for modeling variability. These two metamodels are 
then weaved using AOM such as to obtain a unique metamodel extended with varia-
bility concepts. Instead of using any of these approaches, we rely on our UML profile 
(AspectSM) since, in our case study context as in many others, minimizing extensions 
to UML is expected to ease practical adoption. In addition, we have a weaver for 
AspectSM [9], which has been successfully applied to support MBT in industrial 
contexts.  

Since our product line modeling and configuration framework is proposed in the 
context of supporting automated state-based testing, modeling and configuration 
mechanisms are proposed for various types of behavioral variability in UML state 
machines. As visible from our discussion above, existing works did not address such 
objectives as their motivations were different.   

7 Conclusion and Future Work 

Exploring a new application domain for such technology, we propose a product line 
modeling and configuration methodology to support Model-Based Testing (MBT) in 
the context of product lines. This was applied to a Video Conferencing System (VCS) 
product line called Saturn developed by Cisco Systems Inc, Norway, for the purpose 
of reducing the overall modeling effort required for MBT. The methodology includes: 
1) defining a classification of variability that can exist in UML state machines, 2) 
proposing a set of standard-based mechanisms (e.g., stereotypes) to model different 
types of variability, 3) defining a product configuration process addressing various 
types of variability using as Aspect-Oriented Modeling (AOM)—and more specifical-
ly a profile named AspectSM—and the Object Constraint Language (OCL), and 4) 
automated processing of configuration specifications to support MBT by using our 
aspect weaver and a previously developed search-based constraint solver.  

We applied our methodology to the Saturn product line family and configured four 
of its products. Results showed that the overall amount of modeling effort required for 
creating test-ready models, for multiple products, in order to support MBT can be 
significantly reduced using our methodology. Moreover, using AspectSM provides 
enhanced separation of concerns since various variability types addressing different 
concerns (e.g., Audio and Video) can be separately modeled by different people ac-
cording to their expertise and responsibilities. Given that, in our previous work, we 
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conducted various controlled experiments showing that using AspectSM can signifi-
cantly reduce modeling effort, improve quality of models, and reduce modeling er-
rors, using it to support product line, model-based testing seems to be a promising 
approach.  

In the future, we are planning to apply our methodology to other VCS product lines 
in Cisco. We also plan to conduct a field study by involving industrial testers to de-
termine how easy it is for them to configure a product by using our methodology. In 
addition, we plan to conduct a series of controlled experiments in academic settings to 
assess our methodology from various aspects such as ease of application, modeling 
quality, and modeling effort. 
 
Acknowledgements. We would like to thank Marius Christian Liaaen from Cisco 
Systems Inc, Norway for very useful discussions and providing us access to various 
Video Conferencing Systems for this work. Lionel Briand was supported by a FNR 
PEARL grant. 

References 

1. Northrop, L.M.: SEI’s Software Product Line Tenets. IEEE Software 19, 32–40 (2002) 
2. http://splc.net/fame.html 
3. http://www.cisco.com 
4. Ali, S., Briand, L.C., Arcuri, A., Walawege, S.: An Industrial Application of Robustness 

Testing Using Aspect-Oriented Modeling, UML/MARTE, and Search Algorithms. In: 
Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011. LNCS, vol. 6981, pp. 108–122. 
Springer, Heidelberg (2011) 

5. Ali, S., Hemmati, H., Holt, N.E., Arisholm, E., Briand, L.C.: Model Transformations as a 
Strategy to Automate Model-Based Testing - A Tool and Industrial Case Studies. Simula 
Research Laboratory, Technical Report (2010-01) (2010) 

6. Drusinsky, D.: Modeling and Verification using UML Statecharts: A Working Guide to 
Reactive System Design. In: Runtime Monitoring and Execution-based Model Checking, 
Newnes (2006) 

7. Gomaa, H.: Designing Concurrent, Distributed, and Real-Time Applications with UML. 
Addison-Wesley Professional (2000) 

8. Lavagno, L., Martin, G., Selic, B.V.: UML for Real: Design of Embedded Real-Time Sys-
tems. Springer (2003) 

9. Ali, S., Briand, L.C., Hemmati, H.: Modeling Robustness Behavior Using Aspect-Oriented 
Modeling to Support Robustness Testing of Industrial Systems. Accepted for Publication 
in the Systems and Software Modeling (SOSYM) Journal (2011) 

10. Ali, S., Iqbal, M.Z., Arcuri, A., Briand, L.: A Search-Based OCL Constraint Solver for 
Model-Based Test Data Generation. In: 11th International Conference on Quality Software 
(QSIC). IEEE (2011) 

11. Filman, R.E., Elrad, T., Clarke, S., Aksit, M.: Aspect-Oriented Software Development. 
Addison-Wesley Professional (2004) 

12. Ali, S., Yue, T., Briand, L.C., Malik, Z.I.: Does Aspect-Oriented Modeling Help Improve 
the Readability of UML State Machines? Under Consideration for a Publication in a Jour-
nal (2011) 



742 S. Ali et al. 

13. Ali, S., Yue, T.: Comprehensively Evaluating Conformance Error Rates of Applying As-
pect State Machines for Robustness Testing. In: International Conference on Aspect-
Oriented Software Development (AOSD 2012). ACM (2012) 

14. Ali, S., Yue, T., Briand, L.C.: Empirically Evaluating the Impact of Applying Aspect State 
Machines on Modeling Quality and Effort Simula Research Laboratory, Technical Report 
(2011-06) (2011) 

15. Yue, T., Ali, S.: Bridging the Gap between Requirements and Aspect State Machines to 
Support Non-functional Testing: Industrial Case Studies. In: Vallecillo, A., Tolvanen, J.-
P., Kindler, E., Störrle, H., Kolovos, D. (eds.) ECMFA 2012. LNCS, vol. 7349, pp. 133–
145. Springer, Heidelberg (2012) 

16. http://www.omgmarte.org/ 
17. Iqbal, M.Z., Ali, S., Yue, T., Briand, L.: Experiences of Applying UML/MARTE on Three 

Industrial Projects. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.) MODELS 
2012. LNCS, pp. 642–658. Springer, Heidelberg (2012) 

18. IRISA and INRIA, http://www.kermeta.org/ 
19. Clauss, M.: Generic modeling using uml extensions for variability. In: OOPSLA (2001) 
20. Ziadi, T., Hélouët, L., Jézéquel, J.-M.: Towards a UML Profile for Software Product Lines 

(2004) 
21. Edson Alves de Oliveira, J., Gimenes, I.M.S., Huzita, E.H.M., Maldonado, J.C.: A varia-

bility management process for software product lines. In: Proceedings of the 2005 Confer-
ence of the Centre for Advanced Studies on Collaborative Research, pp. 225–241. IBM 
Press, Toranto (2005) 

22. Gomaa, H., Shin, M.E.: Multiple-View Meta-Modeling of Software Product Lines. In: 
Proceedings of the Eighth International Conference on Engineering of Complex Computer 
Systems, p. 238. IEEE Computer Society (2002) 

23. Gomaa, H.: Designing Software Product Lines with UML: From Use Cases to Pattern-
Based Software Architectures. Addison-Wesley Professional (2004) 

24. Jayaraman, P., Whittle, J., Elkhodary, A.M., Gomaa, H.: Model Composition in Product 
Lines and Feature Interaction Detection Using Critical Pair Analysis. In: Engels, G., 
Opdyke, B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 151–
165. Springer, Heidelberg (2007) 

25. Morin, B., Klein, J., Barais, O., Jezequel, J.-M.: A generic weaver for supporting product 
lines. In: Proceedings of the 13th International Workshop on Early Aspects, pp. 11–18. 
ACM, Leipzig (2008) 

26. Groher, I., Voelter, M.: Using Aspects to Model Product Line Variability. In: Early As-
pects Workshop at SPLC (2008) 

27. Morin, B., Perrouin, G., Lahire, P., Barais, O., Vanwormhoudt, G., Jézéquel, J.-M.: Weav-
ing Variability into Domain Metamodels. In: Schürr, A., Selic, B. (eds.) MODELS 2009. 
LNCS, vol. 5795, pp. 690–705. Springer, Heidelberg (2009) 
 



Sensitivity Analysis in Model-Driven

Engineering

James R. Williams, Frank R. Burton, Richard F. Paige, and Fiona A.C. Polack

Department of Computer Science, University of York,
Deramore Lane, York, YO10 5GH, UK

{jw,frank,paige,fiona}@cs.york.ac.uk

Abstract. Sensitivity analysis has been used in scientific research to ex-
plore the validity of models. Software engineering is inherently uncertain;
we propose that sensitivity analysis can be used to analyse and quantify
the effects of uncertainty when model management operations are applied
to models. In this paper, we consider forms and measures of uncertainty
in software engineering models. Focusing on data uncertainty, we present
a framework for sensitivity analysis, and create an instantiation of the
framework for the CATMOS decision-support tool. We show how this
can be used to qualify the output of the entailed model management
operations and thus improve both the confidence and understanding of
models.

1 Introduction

Models are created for a purpose. Historically, models have been used for illus-
tration and to aid problem understanding. In Model-Driven Engineering (MDE),
models have become primary artefacts in the development lifecycle. Models are
commonly used in code generation, decision-making processes, simulation, or as
input to some form of model management operation (MMO). More concretely,
MMOs are executable artefacts which manipulate models in some way and are
often forms of transformation, comparison, or validation.

All software engineering suffers from some degree of uncertainty [14]. Any
form of modelling is subject to different levels of uncertainty, such as errors of
measurement or interpretation, incomplete information, and poor or partial un-
derstanding of the domain [11]. When MMOs are applied to a model, uncertainty
can lead to unexpected behaviour, or a small change in a model might result in
a large change in the output of the MMOs. Modelling uncertainty can have a
significant impact on artefacts that use the models or their information.

Sensitivity analysis provides a means to explore how changes in an input
model affect the output of an MMO. Sensitivity analysis can provide a modeller
with confidence that a model and its associated MMO(s) resemble the domain,
and can expose areas in the domain that require a deeper understanding [11].
Furthermore, highlighting sensitive parts of a model can provide insight into the
execution of an MMO, if the execution is influenced significantly by sensitive
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parts of the model [10]. Sensitivity analysis can also show the relationships be-
tween model elements that may not be apparent from simply examining a model
and its MMO.

In this paper we introduce sensitivity analysis in MDE, and present an extensi-
ble framework that enables metamodel developers to provide sensitivity analysis
tool support for their domain. We provide a metamodel for capturing the data
uncertainty in models, which is used to analyse the effect of uncertainty on the
results of an MMO.

To motivate and illustrate the use of sensitivity analysis, we introduce CAT-
MOS, an acquisition planning tool for capability management (section 2). CAT-
MOS generates a set of solution models from a problem analysis; providing an
analysis of these solutions improves the basis for acquisition decision-making.
Section 3 introduces sensitivity analysis, a technique developed in the modelling
of natural systems [11], and section 4 shows how it might apply to MDE. In
section 5, we outline our sensitivity analysis framework, applying it to a set of
CATMOS solution models in section 6. Related work is considered in section 7,
whilst section 8 considers the pragmatics and challenges of sensitivity analysis
in MDE.

2 Motivating Example

CATMOS (Capability Acquisition Tool with Multi-Objective trade-off Support)
is an MDE tool that provides support for capability-based planning, to facilitate
systems of systems acquisition [3]. CATMOS is targeted at acquisition scenar-
ios that involve significant costs. In these situations, a better understanding of
uncertainty can increase confidence in decisions, and thus in investments to be
made in acquisition. In CATMOS, users model their problem scenario by defining
a set of desired system capabilities and a set of available components. CATMOS
then generates a set of output models that represent combinations of compo-
nents that can meet the capability requirements of the scenario. Every solution
model has a cost and a capability score, and the solution set can be represented
as a Pareto front of capability versus cost (i.e. no solution dominates any other
in all objectives), which can be used by stakeholders in decision making.

2.1 The Airport Crisis Management Scenario

In this paper, we apply sensitivity analysis to a CATMOS application to airport
crisis management (ACM). CATMOS is used to inform a decision as to what set
of resources should be invested by the airport in a scenario in which a fire breaks
out at an airport gate [9]. Figure 1 shows a Pareto front produced by CATMOS,
in which each star represents one of the solution models proposed. The circles
represent models from “non-dominating rankings”: in-effect, the next best Pareto
front. The measurements used to calculate the capability (y-axis) are features of
the problem scenario that are all subject to uncertainty; the level of uncertainty
can affect the interpretation of the results produced by CATMOS. For instance,
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Fig. 1. The Pareto front and first non-dominating rank produced by CATMOS for the
ACM problem

if the capability of a Pareto-optimal solution is subject to high uncertainty, but
the capability of a nearby non-dominating solution is less uncertain, the decision
makers may prefer the non-dominating solution. Sensitivity analysis allows us
to explore uncertainty in each model’s capability score.

3 Sensitivity Analysis

Any form of modelling is potentially subject to uncertainty that can be intro-
duced by numerous possible sources, such as errors of measurement, incomplete
information, or from a poor or partial understanding of the domain [11]. Sensi-
tivity analysis aims to determine how variation in the output of a model1 can
be attributed to different sources of uncertainty in the model’s input [11]. The
goal is to increase the confidence in a model by understanding how its response
(output) varies with respect to changes in the inputs.

In [11], sensitivity analysis is proposed for the following forms of model vali-
dation: to determine whether a model is sensitive to the same parameters as its
subject; to identify that a model has been tuned to specific input values (and
thus is inflexible to model change); to distinguish factors that result in variability
of output and those with little influence on the output (which could be omitted);
to discover regions of the space of input values that maximise result variation;
to find optimal input values (for model calibration); to find factors that interact
(and thus need to be treated as a group) and expose their relationships.

Sensitivity analysis approaches broadly fall into local or one-at-a-time (OAT),
and global analyses. OAT analyses address uncertain input factors independently,

1 In this section, the term “model” is used in the abstract sense of modelling, and
although this includes MDE models, the term should be read in the broader setting.
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revealing the extent to which the output is determined by any one input [11].
Global analyses perturb all input factors simultaneously, and can thus address
dependencies among inputs. To avoid combinatorial explosion, sensitivity anal-
ysis approaches use input space sampling techniques, such as random sampling,
importance sampling, and latin hypercube sampling [11]. A range of statisti-
cal correlation or regression approaches can be used to interpret the results of
sensitivity analysis.

The next section contexualises sensitivity analysis in MDE.

4 Sensitivity Analysis in MDE

Ziv et al [14] declared the Uncertainty Principle in Software Engineering which
states that “uncertainty is inherent and inevitable in software engineering pro-
cesses and products”. This links well with sensitivity analysis, which aims to
quantify the effects of said uncertainty.

In MDE, a model can be considered as representing both the abstract model of
a domain and its operating context – a set of MMOs that apply to it. The areas
of uncertainty are then potentially both the set of variable input factors and the
parameters of MMOs. The response is (part of) the output of the MMO(s).

The uses of sensitivity analysis (above) relate to validation, that a model
faithfully represents its domain, or that a model is faithful to a more abstract
specification. Model validation in MDE is important, and is commonly addressed
using task specific languages, such as OCL. Sensitivity analysis provides an al-
ternative, exploratory approach to validation. Furthermore, it presents an op-
portunity to understand the effects of modelling decisions, which can be crucial
in complex or poorly understood domains.

In this section we describe three areas that uncertainty can arise in MDE, and
discuss the different ways in which we might measure the response of an MMO.

4.1 Areas of Uncertainty

In section 2, we note that capability measurement is affected by uncertainty. The
sources of uncertainty are the same in software engineering as in scientific mod-
elling (errors of measurement or interpretation, incomplete information, poor
or partial understanding of the domain [11]). We identify three areas of uncer-
tainty in MDE and consider ways in which we might quantify their effects on
the application of MMOs.

Data Uncertainty. In modelling data structures, uncertainty is introduced
when deciding types and values of attributes – for instance, string types and *
multiplicities are often used because of uncertainty about the domain. In mod-
elling transitional systems (e.g. using state machines), uncertainty arises in deter-
mining the values used in transition guards. In modelling reactive systems (e.g.
using Petri nets), the firing conditions of transitions may be similarly uncertain.
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Strengthening or weakening Boolean conditions may significantly affect the be-
haviour of systems. Sensitivity analysis can be applied to attributes, guards and
firing conditions, to validate the states and behaviours of modelled systems.

To analyse data uncertainty, we can vary the values of attributes with respect
to a range or distribution of possible values, and see how the MMO output is
affected.

Structural Uncertainty. Uncertainty also arises when making decisions about
the structure of a model. One example of structural uncertainty is deciding
between aggregation and composition for an association. This decision could
have a huge effect on an MMO. For example, if the MMO deletes the owner
element then the type of association determines which elements remain available
for the remainder of the MMO’s execution.

Analysing structural uncertainty might be achieved through pattern matching
and replacement. A modeller could define a set of patterns of model elements
(possibly with respect to the underlying metamodel) where each pattern rep-
resents a set of equivalent patterns. Sensitivity analysis could then be used to
analyse the effect of replacing parts of the model with different patterns, to dis-
cover the effect on the output of the MMO. This would allow the modeller to
optimise their models in conjunction with the associated MMOs. Alternatively,
one might perform simple mutations to a model (e.g. deleting elements) and
analysing the effects of these mutations on the output. This would highlight the
parts of the model that are important to the execution of the MMO(s) and thus
sensitive to change.

Behavioural Uncertainty. Whereas the previous two categories related di-
rectly to models, behavioural uncertainty relates to the operating context of the
model – i.e. the MMO. The model and its MMO may be developed by different,
independent teams, and it may not be known to the modeller what the operation
does or how it does it. Knowing the operating context of a model removes this
uncertainty – for example, a modeller may make a different design decision if
the model is to be used for code generation as opposed to illustration.

Analysing behavioural uncertainty is challenging, though has been attempted
in [1].

In the rest of this paper, we focus on analysing data uncertainty. First, we
consider the issue of measurement.

4.2 Measuring the Response

Sensitivity analyses in scientific modelling tend to address readily-evaluable pa-
rameters. However, in MDE, the result of applying an MMO is often another
model (e.g. in the case of a model-to-model transformation), so it can be chal-
lenging to provide a useful measure of the effects of changing the input model.
A simple count of differences between the original output model and each of the
output models created from varying the input, may not be a suitable measure
of impact. Focusing the analysis on the effects on a small part of the output
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model, however, may be more appropriate. In the cases where a model is used
to generate code, the response might be measured by executing the generated
code and analysing, for example, the execution trace, the memory consumption,
or the program’s output.

Measurement is domain specific. Saltelli et al [11] comment that different mea-
sures of sensitivity directly affect the outcome of the analysis, and declare that
there is no universal recipe for measuring the response. Any MDE framework
that supports sensitivity analysis needs to provide the ability to support multiple
forms of response measurement and comparison.

5 A Framework for Applying Sensitivity Analysis
to Models

This section presents our implementation of an extensible framework for apply-
ing sensitivity analysis to models in MDE. Specifically, the framework is imple-
mented on top of the Eclipse Modeling Framework (EMF) [12]. The framework
provides a repeatable way of allowing metamodel developers to create tool sup-
port for rigorous analysis of models in their domain. Section 5.1 overviews the
process which our framework implements. Section 5.2 describes a simple repre-
sentation of models that makes the creation of variants of a model straightfor-
ward. We introduce a metamodel for expressing data uncertainty in section 5.3.
Section 5.4 describes the framework’s support for different sampling methods,
and presents two default methods. Section 5.5 shows how we provide support
for automated analysis of responses, as well as producing a sensitivity analysis
report for the modeller.

5.1 Overview

Figure 2 illustrates the process of applying sensitivity analysis to a model. First,
we need an uncertainty model for expressing the data uncertainty in the in-
put model (explained in section 5.3). These two models are the inputs to an
input space sampler – a bespoke model generator that selects variations of a
model within the scope described by its uncertainty model. Selection is con-
trolled by the sampling method of sensitivity analysis being applied (described in
section 5.4).

Each of the generated models (Model’) in the sample is executed against the
stated model management operation and the output is logged. The model man-
agement operation may be a model transformation, a simulation, or a complex
workflow of operations, as determined by the user. Once all generated models
have been executed, the set of outputs is fed into a response analyser which ap-
plies the sensitivity analysis and produces reports for inspection. As mentioned
previously, there is no single, optimal way to analyse sensitivity, and the output
of an MMO can take many forms. Therefore, whilst providing a number of de-
fault response analysers for numerical output, our framework also allows users
to develop their own (see section 5.5).
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Fig. 2. The process of applying sensitivity analysis to a model

The model variation method, used by the input space samplers, is made pos-
sible by utilising a simple, integer-based, representation of models [13], which we
briefly describe next.

5.2 A Simple Representation for Models

In [13] we show how a model can be represented as a single string of integers,
composed of a number of segments where each segment represents a single object
in the model. Figure 3 shows the structure of a segment in our representation.
The first node in a segment (the class node) identifies the object’s meta-class, and
successive nodes (the feature nodes) define the values of features from that class.
Feature nodes are grouped into pairs – the first member of the pair, the feature
selector node, identifies a feature of the meta-class, and the second member of
the pair, the feature value node, specifies the value of that feature.

In order to reference meta-elements, we assign identifiers to them. Each meta-
class is given an identifier, and each of its meta-features are also assigned identi-
fiers, unique to that meta-class only. Meta-elements that cannot be instantiated,
such as enumeration types and abstract classes, are not assigned a class-level
identifier.

Fig. 3. The structure of a segment, the building block for representing models as inte-
gers. (a) is the feature selector node, and (b) is the feature value node.
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(a) Step 1: Assigning identifiers to the metamodel. (b) Step 2: Data finitisation.

(c) Step 3: Mapping a segment to an object.

Fig. 4. The steps taken to instantiate an object from our integer-based representation.
Meta-element identifiers are displayed in grey circles.

A key part of the mapping from integers to models is the process of metamodel
finitisation [13]. The modeller is required to define a model that describes the
set of all possible models that can conform to the metamodel. If the data type
of an attribute is infinite, this involves determining finite concrete values that
the attribute can take. This allows us to index the possible values for use in
the mapping. In addition, the modeller must specify a “root” meta-class, i.e.
the container object in which all model objects reside. For a more complete
description of finitisation, see [13].

A simple example of mapping a segment to an object is shown in figure 4.
We annotate both the metamodel and its finitisation model with identifiers, in-
cluding specifying which meta-class is the root. The root object is automatically
instantiated during generation, independent of the generated integer strings, and
therefore does not need to be assigned an identifier in this instance. The reverse
mapping is also possible. We have implemented these mappings for Ecore, the
metamodelling language of EMF.

5.3 A Metamodel for Data Uncertainty

Figure 5 is the metamodel we have defined to allow users to describe the data
uncertainty in their models. Capturing uncertainty in a model allows developers
to manipulate this information with MMOs. Specifying the object reference in the
DataUncertainty class allows a modeller to describe the uncertainty of a specific
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(a) (b)

Fig. 5. (a) The metamodel used to describe uncertainty in a model. (b) An example
uncertainty model. The dotted lines show the boundaries between the uncertainty
model and the model which it references.

model element’s attribute. If the user does not assign the object reference, then
the uncertainty is valid for all instances of that attribute. For example, using
the metamodel shown in figure 4a, we can either assign the uncertainty to the
impurity attribute of the object whose name is Gold (figure 5b), or we can assign
it to the impurity attribute of all instances of the Element class.

The uncertainty metamodel has been designed with evolution in mind. Cur-
rently the metamodel only supports data uncertainty, but the metamodel can
be extended to capture other forms of uncertainty (by extending the Uncertainty
class) whilst maintaining backward compatibility with existing uncertainty mod-
els. We now describe how different sensitivity analysis methods can use the un-
certainty model and the integer-based representation to create variations of a
model for which to analyse.

5.4 Sampling the Input Space

The process of sampling the input space (i.e. generating variants of a model)
is illustrated in figure 6. The variation of a model is created by mapping the
model to a segment list and altering the appropriate feature pair value(s) before
transforming back to a model which contains the new data. The transformation
from a model to a segment list contains a hook for listeners to detect when
segments and feature pairs are created. We have defined a feature pair creation
listener which detects whether the feature pair being created represents one of
the features described in the uncertainty model. If so, we keep a reference to that
feature pair, along with the set of values described in the uncertainty model.
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Fig. 6. Utilising an integer-based representation of models, to create variants of a
model with respect to a set of specified uncertainties.

Once the model-to-integer transformation is complete, the sampling method
controls which of the uncertain feature pairs to vary. Each variation of the seg-
ment list is mapped back into a model for consumption by the MMO. As there is
commonly a large number of possible variations, our framework allows users to
create custom sampling methods and provides two by default. A one-at-a-time
sampler adjusts each attribute independently, creating samples for each possible
value that each attribute can take, whilst maintaining all other attributes in their
original form. A random sampling method adjusts all attributes simultaneously,
selecting a value for each attribute at random from the uncertainty model. The
user specifies the size of the sample that they desire.

5.5 Response Measures

The input space sampler produces a set of variations of a model which are then
fed through the MMO to obtain the associated responses. The final component in
our framework is the response analyser which provides various analysis methods
and a HTML report generator. Framework implementations can choose which
analyses to apply and include in the report. Furthermore users can extend the
analysis methods with custom methods, or integrate with existing statistical
analysis packages, such as jHepWork2, R3, or MatLab4. The results are saved to
disk as a comma-separated-values (CSV) file, so users can apply further analyses
as they gain a deeper understanding of the results. (In future iterations of this
work, we plan to develop a metamodel to capture the results as models. Each
analysis method will then be written as a model transformation, removing the
burden of using CSV files and improving reusability.) The reporting component

2 jHepWork website: http://jwork.org/jhepwork/
3 R website: http://www.r-project.org/
4 MatLab website: http://www.mathworks.co.uk/

http://jwork.org/jhepwork/
http://www.mathworks.co.uk/
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of the framework utilises an open source template engine, StringTemplate5, and
users can define their own templates to incorporate new analyses in the reports.

Currently the framework provides scatter plot based analysis for both OAT
and global sampling methods, as well as some useful statistics such as mean,
median, percentiles and standard deviations. JFreeChart6 is used to create a
scatter plot for each of the uncertain attributes, illustrating the effect that the
attribute has on the MMO’s response.

6 Case Study: CATMOS and ACM

Section 2 introduced an acquisition decision tool, CATMOS [3], and a case study
to which the tool has been applied. We have developed an instance of our sen-
sitivity analysis framework for the CATMOS tool. This section briefly presents
our implementation and describes some interesting results.

6.1 CATMOS Sensitivity Analysis

Extending the framework to support CATMOS required defining two Java classes
(totalling approximately 300 LOC), although more would be required to provide
a more sophisticated user interface. One class controls the loading of models,
specifies the sampling method(s) and starts the analysis, and the second class
provides the response calculation, controls the types of sensitivity analysis ap-
plied to the set of responses and generates reports. For repeatability, we have
made the models analysed and generated reports available online7.

The experimental goals that we wanted to analyse were:

EG1. Determine how each factor contributes to the overall capability score (the
response) of the model;

EG2. Understand how the different model factors relate to one another;
EG3. Provide insight into the confidence of the frontiers produced by CATMOS.

We therefore applied OAT sampling and random sampling to create scatter
plots for each factor in the 28 solution models (the Pareto front and first non-
dominating rank) produced by CATMOS for the ACM case study. Furthermore,
we developed a custom response measure which produces a plot showing the
response distribution, based on the sampling, for each of the models in the
solution set. The response measured was the capability score of the model. In
total, we evaluated nearly 20,000 model variants which took approximately 3
hours to execute on a 2GHz Intel Core 2 Duo Macbook with 2 GB of RAM.

6.2 Results

The results found from attempting to answer the experimental goals described
in the previous section are now presented.

5 StringTemplate website: http://stringtemplate.org/
6 JFreeChart website: http://www.jfree.org/jfreechart/
7 Results available at:http://www.jamesrobertwilliams.co.uk/models12-sa

http://stringtemplate.org/
http://www.jfree.org/jfreechart/
http://www.jamesrobertwilliams.co.uk/models12-sa
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EG1: Response Contribution. Figure 7 illustrates three types of response
contribution which were observed. Figure 7a shows a factor which has no effect
on the calculation of the capability provided by that solution (response of the
MMO). One possible cause of this is that the range of values analysed were
not appropriate, and more discussion with a domain expert would be required.
However, upon analysing the solution more closely, it became clear that the
component providing the particular capability had an unfulfilled dependency,
meaning that it had no effect on the output. In this case, the offending component
should be removed from the model to avoid misleading decision makers.

Figure 7b shows the effect that the “People Treatable” component had during
the random sampling method. You can see that there is a positive correlation,
highlighting the importance of this factor as it is heavily influential in determin-
ing the capability score. Furthermore, it validates the assumptions of the model –
a solution that is able to treat more people should have a higher capability score.
Other factors also showed relationships with the response that further validated
the model. Figure 7c illustrates a factor which exhibits an upper limit. This kind
of result proves useful in understanding the problem, allowing stakeholders to
act out ‘what-if’ scenarios.

EG2: Factor Relationships. 28 solution models were analysed and examining
the OAT results for each model showed that some factors affect on the response
differs between solutions. This shows a dependency on other factors in the model.
Figure 7c, for example, is limited by the factor defining the number of people
who can be transported to the hospital. Examining the random sampling plots
shows little to no correlation for most of the factors. Therefore, further analysis
is required to understand the relationship between multiple factors. This is,
however, out of scope for this paper.

EG3: Frontier Confidence. Figure 8 shows the response distributions, pro-
vided by random sampling, overlaid on top of part of the original Pareto front

(a) No effect (b) Positive Correlation (c) Upper limit

Fig. 7. Three different types of contribution towards the response
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O1 O2

Fig. 8. Part of the random sampling response distribution for each model in the Pareto
front and first non-dominating rank produced by CATMOS. Box width simply denotes
the series – the wider boxes being related to the Pareto front.

and first non-dominating rank produced by CATMOS (figure 1). Two interest-
ing observations can be seen. Firstly, O1 in figure 8 highlights the case where a
first non-dominating rank solution (red circle) appears to be, on average, bet-
ter than a solution in the Pareto front (blue star). Secondly, O2 highlights a
case where CATMOS has returned two solutions in the Pareto front with the
same capability and cost (this is allowed by CATMOS). A decision maker, may
therefore think themselves safe in selecting either solution. The associated box
plots, however, show that they have different interquartile ranges – suggesting
that one solution is more sensitive to uncertainty than the other.

One flaw with this analysis method is that it does not take the probability
distribution of each factor into account. For example, the random sample may
have collected a large number of improbable combinations of factors, which then
skewed the distribution. We plan to address this in future work (see section 8).

6.3 Summary

In this section we have shown how our implementation of the framework for the
CATMOS tool has provided new insight into the results which CATMOS pro-
duces. This has shown how sensitivity analysis can provide deeper understanding
of a problem, aid in the validation of a solution, and discover areas of a solution
which need further investigation by domain experts.

7 Related Work

Uncertainty has been studied in the software engineering community for some
time. Ziv et al [14] introduced the Uncertainty Principle in Software Engineer-
ing (UPSE) in 1997. They describe three sources of uncertainty in software
engineering: the problem domain, the solution domain and human participation.
They show how Bayesian belief networks can be used to model uncertainty in
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properties of software artefacts. The framework presented in this paper targets
analysing data uncertainty of individual components (models) in a system, but
could be used to provide belief values for those components in the Bayesian belief
network of the entire system.

Easterbrook et al [5] use multi-valued logics to model uncertainty through the
creation of additional truth values, and examine uncertainty using a multi-valued
symbolic model checker. Similarly, [4] describes how fuzzy logic can be used to
model uncertainty.

Harman et al [8] study the effects of data sensitivity on the results of a meta-
heuristic search algorithm for solving the next release problem [2]. Their aim is
to identify which requirements are sensitive to inaccurate cost estimation. We
believe that metaheuristic search techniques could prove fruitful at the sampling
phase of sensitivity analysis. The search goal might be to discover a sample of
input factor configurations which produce responses that vary dramatically from
the original. The modeller would then be able to examine these extreme cases
more carefully.

Autili et al [1] describe an approach to cope with uncertainty about the be-
haviour of reusable components with respect to a given goal. The approach aims
to aid people in deciding which components to reuse in their system by extract-
ing behavioural information from the set of possible components and estimating
how well they fit together to solve the goal.

Goldsby and Cheng [7] address uncertainty in adaptive systems by automat-
ically generating a number of system design models each exhibiting different
behaviours. These models are then analysed to enable users to make decisions
between trade-offs in non-functional characteristics and functional behaviour.

In the MDE domain, the closest work relating to sensitivity analysis that we
have found is by Fleurey et al [6] who apply mutations to models in order to
optimise a set of test models with respect to some metamodel and data coverage
criteria. Creating these mutated models is similar to the process of creating
variants of a model for sensitivity analysis, but their work is driven by different
motivations – that of optimising test sets as opposed to discovering and analysing
data sensitivity.

8 Conclusion and Future Work

In this paper we have motivated the need for supporting sensitivity analysis in
MDE. Uncertainty can appear in all aspects of MDE; we have defined three cate-
gories of uncertainty – data uncertainty, structural uncertainty, and behavioural
uncertainty. Due to the need for domain specific analysis of uncertainty, we have
presented a framework that enables metamodellers to provide sensitivity anal-
ysis tool support for models conforming to their metamodels. This framework
has an architecture which allows new sampling methods and response measures
to be integrated, making it easy to tailor to new domains. We have illustrated
the usefulness of this kind of framework by instantiating it to support an ex-
isting acquisition tool, and applied the analysis to a real problem. The analysis
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provided new insight into the solutions produced by the tool, which would better
inform the acquisition decision makers.

There are a number of interesting directions for future work. Firstly, a deeper
exploration of uncertainty in MDE is required. Uncertainty should be identified
and dealt with, and so understanding where it can arise, and providing a way
to aid users with managing uncertainty, would be very beneficial. This could
possibly be in the form of tool support, or a set of guidelines or best practices.

With respect to the framework, we plan to extend the uncertainty metamodel
to account for structural and behavioural uncertainty, and devise a method to
analyse these. For example, for structural uncertainty, changing the type of an
attribute would require changes to the underlying metamodel, which may not
be trivial, and so some thought is required to determine the best approach to
take. Further, we wish to include support for probability distributions for un-
certainties. This would add an extra dimension to the analysis as it would also
show the likeliness of a particular result occurring. Finally, we plan to develop a
metamodel to capture the results of analysis in order to define analysis methods
as model transformations, and thus increase reusability of analyses.
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Abstract. Software safety certification needs to address non-functional
constraints with safety implications, e.g., deadlines, throughput, and CPU and
memory usage. In this paper, we focus on CPU usage constraints and provide a
framework to support the derivation of test cases that maximize the chances of vi-
olating CPU usage requirements. We develop a conceptual model specifying the
generic abstractions required for analyzing CPU usage and provide a mapping
between these abstractions and UML/MARTE. Using this model, we formulate
CPU usage analysis as a constraint optimization problem and provide an imple-
mentation of our approach in a state-of-the-art optimization tool. We report an
application of our approach to a case study from the maritime and energy do-
main. Through this case study, we argue that our approach (1) can be applied
with a practically reasonable overhead in an industrial setting, and (2) is effective
for identifying test cases that maximize CPU usage.

1 Introduction

Many safety-critical systems, e.g., those in the avionics, railways, and maritime and
energy domains, are increasingly relying on embedded software for control and mon-
itoring of their operations. The safety-related software components of these systems
are often subject to software safety certification, whose goal is to provide an assur-
ance that the components are deemed safe for operation. Software safety certification
needs to take into account various non-functional constraints that govern how software
should react to its environment, and how it should execute on a particular physical plat-
form [1]. These constraints, among others, include deadlines, throughput, jitter, and
resource utilization such as CPU and memory usage [2,3]. Reasoning about these con-
straints is becoming more complex in large part due to the multi-threaded design of
embedded software, the shift towards multi-core and decentralized architectures for ex-
ecution platforms, and the increasing complexity of real-time operating systems.

In this paper, we concentrate on a particular type of non-functional constraints,
namely CPU usage, and provide a framework to derive test cases to verify that the
CPU time used by a set of concurrent threads running on a multi-core CPU does not
exceed a given limit, even under the worst possible circumstances. Keeping CPU usage
low in safety-critical applications is not merely for general quality reasons, but rather an
important safety precaution since with CPU usage above a certain threshold, the system
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may fail to respond in a timely manner to safety-critical alarms. For example, if a fire
and gas monitor is starved of CPU time due to CPU overload, it can have a delayed or
miss response to a fire or gas leak with potentially serious consequences. As a result,
test cases that can stress the system to maximize CPU usage are crucial for certification
of safety-critical systems. Our approach to CPU usage modeling and analysis is driven
by two main considerations:

1) Explicit modeling of time. Reasoning about CPU usage requires an explicit notion of
time. Logic-based languages used for reasoning about concurrent software, e.g., most
temporal logics, do not capture time explicitly [4]. Hence, while they can be used to
reason about relative orderings of concurrent tasks, they cannot be used for computing
constraints involving actual time values. We instead follow the common practice in
standard languages such as the UML Profile for Modeling and Analysis of Real-Time
and Embedded Systems (MARTE) [5], where time should be explicitly expressed.
2) Search-based optimization. Our goal is to find testing scenarios that maximize CPU
usage by a set of parallel threads running on a multi-core platform. We refer to this test-
ing activity as stress testing [6]. We characterize the stress test scenarios, i.e., test cases,
by environment-dependent parameters of the embedded software, e.g., the size of time-
delays used in software to synchronize with hardware devices or to receive feedback
from the hardware devices. To stress test the system, we choose the environment pa-
rameters in such a way that the system is pushed to use the maximum amount of CPU.
Finding such stress test cases requires to search the possible ways that a set of real-time
tasks can be executed according to the scheduling policy of their underlying real-time
operating system. In our approach, the search for stress test cases is formalized using a
constraint optimization model that includes (1) a set of constraints describing a declara-
tive representation of the tasks, their timing constraints and priorities, and the platform-
specific information, and (2) a cost function that estimates CPU usage. Our approach
for deriving test cases, while it may not result in provable system safety arguments, can
always provide test cases within a time budget and given a (potentially partial) set of
declarative constraints characterizing the embedded software and its environment.

Contributions of This Paper. We develop an automated tool-supported solution for
deriving test cases exercising the CPU usage requirements of a set of embedded parallel
threads running on a multi-core CPU. Specifically, we make the following contributions:

– A conceptual model that captures, independently from any modeling language, the
abstractions required for analyzing CPU usage requirements in embedded systems
(Section 3.1). To simplify the application of our conceptual model in standard Model-
Driven Engineering (MDE) tools, we provide a mapping between our conceptual
model and UML/MARTE (Section 3.2).

– Casting of the CPU usage problem as a constraint optimization problem over our
conceptual model (Section 4). If done effectively, this enables the use of mature con-
straint optimization technologies that have not been used so far to address this type
of problems. We provide an implementation of our approach in the COMET tool [7]
(Section 4). COMET comes with efficient implementations of various search algo-
rithms and is widely used in Operations Research for solving optimization problems.
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– An industrial case study from the maritime and energy domain concerning safety-
critical IO drivers. IO drivers are some of the most complex software components
in the maritime and energy domain with sophisticated concurrent designs and many
real-time properties (Sections 2). Our case study shows that our approach (1) can
be applied with a practically reasonable overhead, and (2) can identify test cases
maximizing CPU usage within time constraints (Section 5).

Structure of the Paper. In Section 2, we motivate our work using a specific industrial
context. In Section 3, we present our conceptual model and show how it can be mapped
to UML/MARTE. In Section 4, we formulate CPU usage as a constraint optimization
problem. We provide an evaluation of our approach in Section 5. We compare with
related work in Section 6, and conclude the paper in Section 7.

2 Motivating Case Study

We motivate our work with a class of safety-critical I/O drivers from the maritime and
energy industry. These drivers are used in fire and gas monitoring applications, and their
overall objective is to transfer data between control modules, and hardware devices,
i.e., detectors. The variations between different drivers are mainly due to the different
communication protocols that they implement in order to connect to different types of
detectors built by different vendors. Such drivers are common in many industry sectors
relying on embedded systems.

One of the main complexity factors in drivers is that they need to bridge the timing
discrepancies between hardware devices and software controller modules. Hence, their
design typically consists of several parallel threads communicating in an asynchronous
manner to enable smooth data transfer between hardware and software. Often, several
execution time constraints are included in the drivers’ requirements to ensure that the
flexibility in the design of the drivers does not come at the cost of overusing the re-
sources of the execution platform. An example of such constraints is the following: An
I/O driver shall, under normal conditions, not impact heavily on the CPU time. When
only one driver instance is running, the idle CPU time shall be above 80%.

There are three important context factors from the case study influencing our formu-
lation of the CPU usage problem in this paper:

1. Different instances of a given driver are independent in the sense that they do not
communicate with one another and do not share memory.

2. The purpose of the CPU usage constraints is to enable engineers to estimate the
number of driver instances of a given monitoring application that can be deployed
on a CPU. These constraints express bounds on the amount of CPU time required
by one driver instance. Our analysis in this paper, therefore, focuses on individual
driver instances. The independence of the drivers (first factor above) is key to being
able to localize CPU usage analysis to individual instances in a sound manner.

3. The drivers are not memory-bound, i.e., the CPU time is not largely affected by the
low-bound memory allocation activities such as transferring data in and out of the
disk and garbage collection. To ensure this, the partner company (over-) approxi-
mates the maximum memory required for each driver instance by multiplying the
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number of detectors connected to the driver instance and the maximum size of data
sent by each detector. Execution profiles at the partner company indicate that the
drivers are extremely unlikely to exceed this limit during their lifetime.

Figure 1(a) illustrates an activity diagram capturing the overall architecture of the I/O
drivers we focus on. Each driver consists of three parallel threads: Two of these threads,
pullData and pushCmd, are executed periodically upon receipt of a trigger, i.e., scan.
The IODispatch thread, however, is enclosed within an infinite (unconditional) loop.
The pullData thread receives (pulls) data from sensors/human operators/control mod-
ules, then puts the data in an appropriate command form, and finally sends it to the
IODispatch thread through a shared memory storage. The pushCmd thread receives
commands from the IODispatch thread via another memory storage, and transfers them
to the Fire Monitoring Systems (FMS). The memory storages in Figure 1 are shared
only between the threads of one driver instance.

«periodic» 
scan

«buffer» 
Message 

Box 1

«buffer» 
Message 

Box 2

To Fire Monitoring 
System (FMS)

From sensors, 
operators,
controllers

«thread» 
pullData

«thread»
pushCmd

«thread» 
IODispatch

«buffer» 
Queue

Data Transfer Scenario:
1. The system retrieves commands from its detectors
2. The system stores the commands in Queue 
3. The system sleeps for 50 msec 
4. The system reads the first command (or the
    command with the highest priority) from Queue 
5. The system puts the command in Message Box 2
to be read by FMS and then goes to step 1

(a) (b)

Fig. 1. Driver case study: (a) Overview of the drivers’ architecture. (b) The CPU intensive sce-
nario of drivers. This scenario is subject to stress testing regarding CPU usage.

Drivers in our partner company have four modes of operation: maintenance, normal,
initial and termination. Only the normal mode is critical with regard to CPU usage. In
this mode, the connections with FMSs are established, and the data transfer scenario is
enabled. The data transfer scenario of the drivers for an example communication proto-
col is shown in Figure 1(b). It describes a uni-directional communication where some
delay is injected between the commands in each transmission iteration to ensure that
the commands are received by FMSs at a slow enough rate so that the FMS can pro-
cess them. To show that drivers satisfy their CPU usage requirement, we focus on data
transfer scenarios of drivers only because other driver scenarios are not CPU intensive

The drivers run on a CPU with three separate cores. The operating system used is
VxWorks [8] – a Real-Time Operating System (RTOS). RTOSs share many features
with general-purpose operating systems, but in addition have specialized kernels and
a process scheduler that takes into account real-time constraints [3]. The installation
of VxWorks in our study uses a fixed priority preemptive scheduler. This scheduling
policy does not allow for a lower-priority task to execute while a high-priority task
is ready. The pullData, pushCmd, and IODispatch threads communicate in an asyn-
chronous way through buffers implemented using message queuing utilities provided by
VxWorks. In the driver implementation, all accesses to the shared buffers are properly
protected by semaphores and can potentially be blocking.
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Fig. 2. The conceptual model characterizing the information required for CPU usage analysis

To estimate the CPU time used by a driver, we need to first include in our design
models timing information such as how long it takes for the threads to run and their
frequency. We then need to specify how the CPU usage can be characterized based on
the input timing information. This requires capturing the concurrent dependencies be-
tween the threads, how these threads communicate, how the RTOS scheduler preempts
the threads, and how the threads can run on a multi-core processor. In the subsequent
sections, we provide our solution that can address all these details.

3 Modeling Guidelines

In this section, we first provide a conceptual model that captures the timing abstractions
necessary for analyzing CPU usage (Section 3.1). We then show how the abstractions
are mapped to the UML/MARTE metamodel (Section 3.2).

3.1 Conceptual Model

The conceptual model depicted in Figure 2 and explained below specifies the informa-
tion required for analysis of CPU usage:

Thread. An embedded software application consists of a set J = {j1, . . . , jn} of par-
allel threads. A thread j ∈ J can be periodic or aperiodic. Periodic threads, which
are triggered by timed events, are invoked at regular intervals and as such their execu-
tion time is bounded by the (fixed) length of one interval, denoted p(j) [9]. Any thread
that is not periodic is called aperiodic. Aperiodic threads have irregular arrival times.
In general, there is no limit on the execution time of an aperiodic thread, but one can
optionally have a minimum inter-arrival time min ia(j ) and a maximum inter-arrival
time max ia(j ) indicating the minimum and maximum time intervals between two
consecutive arrivals of the event triggering the thread, respectively [10].

A common use of periodic threads is when we need to send/receive data regularly
(e.g., pullData and pushCmd in Figure 1). In contrast, aperiodic threads are often
used to process asynchronous events/communications (e.g., IODispatch in Figure 1).
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Each periodic or aperiodic thread has a priority, denoted priority(j ) that is used by a
priority-based scheduler to determine which thread should be running at each time.

During its lifetime, a thread may perform the following lifecycle operations: (1)
Start(): to start execution after having been assigned to a CPU core by the scheduler.

ready

blocked

runningsleeping

Start

Wait

SleepResume

Res
ume

idle Finis
hTrigger

(2) Finish(): to complete its execution. (3) Wait(): to
wait in order to synchronize with another thread or to
acquire some resource. (4) Sleep(): to go to sleep. (5)
Resume(): to indicate to the scheduler that it is ready
to resume execution after a previous block or sleep pe-
riod. (6) Trigger(): to indicate to the scheduler that it
is ready to start a new execution in response to a new
triggering event after having completed a prior round of execution. The above state ma-
chine shows the lifecycle of a typical thread. A thread consumes CPU time only when
it is running.

Activity. An activity is a sequence of operations in a thread that can execute without
needing to release the CPU until its very last operation. The only situation where an
activity releases the CPU is when it is preempted by a (preemptive) scheduler so that
the CPU can go to another activity belonging to a thread that has a higher priority. In
other words, an activity is a sequence of operations that has Wait(), Sleep() or Finish()
as its last operation but nowhere else in the sequence. Each thread j ∈ J has a se-
quence (a1, . . . , amj ) of activities. We denote the set of all activities within a software
application by A. Each activity a has an estimated minimum and maximum execution
time denoted by min d(a) and max d(a), respectively. For each activity a, we denote
the thread that owns that activity by thread(a). Each activity a has a priority, inherited
from its owning thread, i.e., priority(thread(a)). When activities end with a Sleep()
operation, they are followed by a period of sleeping time. We use delay(a) to denote
the duration of the sleeping time. Activities of parallel threads can be related to one
another by two kinds of relations: temporal precedence and data dependency.

Temporal Precedence. When an activity a must be executed prior to an activity a′,
i.e., a is a prerequisite of a′, we say that a (temporally) precedes a′ and denote this by
a #t a′ where #t⊆ A × A. Temporal precedence relates activities belonging to the
same thread only.

We unroll the loops by copying the loop body a certain number of times. The number
of unrollings can be chosen as an input parameter, and depends on the amount of time
during which we choose to observe execution of the threads in our case study (see the
notion of observation time interval discussed in Section 4). Temporal precedence then
indicates that the activities in the first copy of the loop body precede those in the second
copy, and those in the second copy precede those in the third copy, and so on – an
example is given in Section 3.2. We also ensure that the last activity in the ith copy
of the loop is followed by the first activity in the (i + 1)st copy of the loop (see loop
constraints in Section 4).

Data Dependency. An activity a may depend on another activity a′ because a requires
some data that is computed by a′. We denote this relation by a′ #d a where#d⊆ A×A.
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Fig. 3. A sequence diagram capturing the data transfer scenario in Figure 1(b). The diagram is
augmented with MARTE timing and concurrency stereotypes and attributes.

For any data-dependent pair of activities, we need to specify whether the communica-
tion is synchronous or asynchronous. The activities related by a data dependency rela-
tion may or may not belong to the same thread.

Buffer. Asynchronous communications may or may not use buffers. Buffer accesses
by activities are protected by semaphores, and are blocking. Hence, each buffer access
within an activity implies an implicit Wait() operation and indicates the last operation
of that activity. Therefore, each activity can be related to at most one buffer. Also, at
most one activity can access a given buffer at any point in time. The time an activity is
blocked, waiting for a shared buffer, is determined by our scheduling constraints and is
zero when the buffer is not locked by any other activity (see Section 4).

Computing Platform and Global Clock. In addition to information about the soft-
ware application itself, we need information about the characteristics of the underlying
computing platform. In particular, we require knowledge of the number of CPU cores,
denoted c, which indicates the maximum number of parallel activities that the CPU
can host. We further need to know whether the scheduling policy used by the real-time
scheduler is preemptive or non-preemptive. Lastly, we need a (real-time) clock to model
time-based events/triggers.

3.2 Mapping to UML/MARTE

In this section, we demonstrate how the abstractions in Figure 2 are mapped to the
UML/MARTE metamodel. This mapping shows the feasibility of extracting the ab-
stractions required for CPU usage analysis from standard modeling languages sup-
ported by industry strength tools. We begin by first describing the abstractions that are
already present in UML. We then show how missing timing and concurrency aspects
can be mapped to MARTE.

In UML, Active Objects have their own threads of control, and can be regarded as
concurrent threads [11]. Active objects in UML sequence diagrams can be associated
to lifelines with several Execution Specifications that match activities in our conceptual
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model in Figure 2. The notation for describing synch and asynch communication
already exists in UML sequence diagrams where an Occurrence Specification indicates
a sending or a receiving of a message.

Figure 3 shows a sequence diagram capturing the data transfer scenario described in
Figure 1(b). As shown in the figure, each thread in the driver application has an object
with lifeline. Similar to threads and as shown in Figure 3, buffers correspond to passive
objects in UML, and can be represented using lifelines as well.

We represent each activity of a thread using an activation or an execution specifica-
tion (a thin box on the lifeline of a thread that shows the interval of time that the thread
is active). Each thread lifeline is made up of a sequence of activations corresponding to
its activities: thread j0 is composed of activities a0 and a1; thread j1 is composed of
a2, a3, a4, a5, a′2, and a′3; and thread j2 is composed of a single activity, a6. Activities
a′2 and a′3 are repetitions of a2 and a3, respectively. Due to space reasons, we have not
shown any repetition of a4 or a5, or any further repetitions of a2 or a3. As mentioned
earlier, we use constraints to ensure that a5 is followed by a′2 (see Section 4).

The order of activations on a thread lifeline implies the temporal precedence between
activities of that thread. For every pair a, a′ of activities, a #t a

′ if a and a′ belong to
the same thread j and a precedes a′ as indicated by the lifeline of j. For example, in
Figure 3, we have a0 #t a1 and a2 #t a3 #t a4 #t a5 #t a

′
2 #t a

′
3.

In sequence diagrams, a synchronous message from an activity a to an activity a′ is
shown using a solid arrow with a full head; an asynchronous message is shown by a solid
arrow with a sticky head. Synchronous communication is blocking and does not require
a buffer by default. I.e., the sending activity must wait until the receiving activity is ready
to receive messages. Asynchronous communications may or may not use buffers. In
our case study, and hence in the sequence diagram of Figure 3, all communications are
asynchronous and buffered. Based on the information obtained from the drivers’ design,
for the activities in Figure 3, we have a0 #d a2, a3 #d a4, and a4 #d a6.

Even though UML sequence diagrams can already capture several concepts in the
Embedded Software Application package in Figure 2, the schedulability concepts, and
the timing and concurrency attributes in that figure do not have appropriate counterparts
in UML. These concepts are captured by extensions of UML, in particular MARTE,
which is geared towards both the real-time and embedded system domains.

MARTE provides a Generic Quantitative Analysis Modeling (GQAM) sub-profile
intended to provide a generic framework for collecting information required for perfor-
mance and schedulability analysis. The domain model of this sub-profile includes two
key abstractions that closely resemble our notions of thread and activity respectively:
Scenario and Step. Step is a unit of execution, and Scenario is a sequence of steps. We
map 〈〈GaStep〉〉 (resp. 〈〈GaScenario〉〉) which is a stereotype representing the notion
of Step (resp. Scenario) in the domain model of GQAM to our notion of activity (resp.
thread). These two stereotypes can be applied to a wide set of behaviour-related ele-
ments in UML 2.0 metamodel, and in particular, to UML sequence diagrams. We also
map our notion of buffer to 〈〈MessageComResource〉〉 which represents artifacts for
communicating messages among concurrent resources.

MARTE includes a list of measures that are widely-used for analysis of real-time
properties of embedded systems. The majority of these are applied to Steps and
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Scenarios, creating their sets of quantitative attributes. The top two rows of Table 1 show
the mapping between our timing attributes to those of 〈〈GaScenario〉〉 and 〈〈GaStep〉〉
in MARTE. For example, we map interOccTime, the time interval between two succes-
sive occurrences of scenarios, to period or (max/min) inter-arrival times of threads, and
execTime, the execution time of a step, to (min/max) duration of activities. Note that
both of these measures can be specified either as single values or as max/min intervals.
As an example, the sequence diagram in Figure 3 is augmented with the timing and
concurrency stereotypes and attributes from MARTE.

We identified only one discrepancy in our mapping: In MARTE, individual steps
have a priority attribute, indicating the priority of the step on their processing host, but
this priority attribute does not directly apply to scenarios. At the implementation level,
however, it is common to define priorities for threads rather than for steps within the
threads. Hence, we specified priorities at the level of threads (Scenarios) and not for
individual activities (Steps). In our mapping, we assume that the steps within a scenario
have the same priority that carries over to the scenario which is a composite entity.

Information about the computing platform in Figure 2 is not captured on the se-
quence diagram but can be represented using MARTE streotypes applied to UML
class diagrams. The GRM::Scheduling sub-profile already includes the schedulability
concepts of Figure 2, i.e., 〈〈Scheduler〉〉 and 〈〈SchedulingPolicy〉〉. Finally, we map pro-
cessing units in Figure 2 to 〈〈ComputingResource〉〉 from GRM::ResourceType sub-
profile, and the global clock to 〈〈LogicalClock〉〉 from TimeAccesses::Clocks sub-profile.
The latter allows us to define regular triggers/events in RTOSs, e.g., scan in Figure 1.

Table 1. Mapping abstractions in Figure 2 to UML/MARTE

Concept MARTE StereoType/attributes
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   - priority
   - period, 
   - (min/max)  
      inter-arrival time

Activity
    - (min/max) duration
    - delay

Buffer
    - size

    - access()

«GaScenario»
  - *priority: NFP_Integer 
  - interOccT: NFP_Duration[*]

«TimedConstraint»
«GaStep»
  - execTime: NFP_Duration[*]
  - selfDelay: NFP_Duration[*]

«MessageComResource»
  - messageSizeElements: 
     ModelElement [0..*]     
  - sendServices/receiveServices: 
     BehavioralFeature [0..*] 

Scheduler

Scheduling Policy

Processing Unit

Global Clock
     - scan

«Scheduler»
«SchedulingPolicy»

«ComputingResource»
«LogicalClock»
   - clockTick

GQAM:: 
GQAM_Workload

GQAM:: 
GQAM_Workload

TimedConstraints

SRM::
SW_Interaction 

GRM::Scheduling

GRM::Scheduling

GRM::ResourceTypes

TimeAccesses::Clocks

4 CPU Usage Analysis through Constraint Optimization
Figure 4 shows an overview of our solution for CPU usage analysis using constraint
optimization. Our solution has four main elements: (1) time and concurrency informa-
tion, (2) scheduling variables, (3) objective functions, and (4) constraints characterizing
schedulability algorithms.
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Intuitively, given the input (time and concurrency information), the goal is to com-
pute values for the scheduling variables such that: (a) the schedulability constraints are
satisfied, and (b) an objective function is maximized or minimized depending on the
problem at hand. One main advantage of approaching our objectives as a constraint
optimization problem is that such computations can be performed using off-the-shelf
constraint optimization tools. We ground our formulation of the CPU usage problem
on the COMET tool. This choice is motivated mainly by the efficient implementation of
complete search in COMET and its support for parallel search (see Section 5), which is
used for the evaluation of our approach in this paper. Below, we discuss each of the four
main elements of our solution and outline their implementation in COMET.

 
  // (1) Time and concurrency information (Input)

  range Threads = 0..n-1;  range Activities = 0..m-1;  
  int c = 3;                                        // Number of cores       
  int p[Threads] = ..;                         // Periods 
  int priority[Threads] = ..;                // Priority
     ....

  // (2) Scheduling variables (Output)
  var{int} start[Activities];                                 // Actual start times
  var{int} end[Activities];                                  // Actual end times
  var{int} active[Activities, T];                          // Active matrix for individual time points       
  var{int} eligible_for_execution[Activities];     // Start times in ideal situation

  // (3) Objective function (maximizing CPU usage)
  maximize
     sum (a in Activities, t in T) (active[a, t])/ c* sizeofT     // CPU usage computation function

  // (4) Constraints (characterizing schedulability algorithms)
  subject to 
  {
      forall (a in Activities )
              post (end[a] < p[thread(a)]);   // An activity must end before the period of its thread
             post (active[a, start[a]] == 1);   // ...
              ....
  }

Fig. 4. CPU usage as a constraint optimization problem. The full COMET implementation can be
found at [12].

(1) Time and Concurrency Information. All the input data in Fig 4 (part (1)) corre-
sponds to the elements in our conceptual model in Section 3, and hence can be automat-
ically extracted from the UML/MARTE models. We implement this information using
COMET pre-defined data types. We define the notion of observation time interval as the
time we spend observing the thread executions and denote it by T .
(2) Scheduling Variables. These variables specify a schedule for a given set of activi-
ties A during an observation time interval T . Specifically, a schedule specifies the actual
start time start(a) and the actual end time end(a) for every activity a ∈ A. We denote
the duration of an activity a by d(a) (not to be confused with delay which represents
the delay time after activities). In non-preemptive scheduling, d(a) is simply defined as
the length of the interval between start(a) and end(a), i.e., d(a) = end(a)− start(a).
But for preemptive scheduling, a can be interrupted during its execution, and hence, it
may not be executing continuously. Therefore, we define d(a) to be a set variable rep-
resenting the set of time points at which a executes. In addition, for an activity a and
time point t, we define a function active(a, t) as follows:
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active(a, t) =

{
1 if a executes at time t
0 otherwise.

To account for multi-core scheduling, we define a variable eligible for execution(a),
or efe(a) for short, that returns the earliest possible time that a can start running assum-
ing that the number of cores is infinite, and hence, there is no bound on the number of
activities that can run in parallel.

We implement scheduling variables as COMET variables with a specific type and a
finite range. Values for these variables are computed within a given observation time
interval T . In our formulation, we have added a new dimension to the scheduling vari-
ables to compute these variables for multiple execution rounds, where the number of
rounds is determined by T (not shown in Figure 4 to avoid clutter, see [12]).
(3) Constraints. We use first-order logic to express the constraints. All the constraints
are provided below. We omitted constraint formulations when the formulations were
straightforward or lengthy. The complete formulations are available at [12].

� Well-formedness (sanity rules)

– Every activity must finish before the period of its corresponding thread elapses and
cannot start before the start time of that thread.

– The number of time points at which an activity is running is bounded by its min/max
duration.

– An activity starts running at its start time, ends just before its end time, and does
not run before its start time or after its end time.

� Loop Threads. Consider activities ai0, . . . , a
i
q representing the activities of itera-

tion i of a thread. Then, for every iteration i, we must have: start(a(i+1)
0 ) ≥ end(aiq).

� Temporal Precedence. For every a, a′ ∈ A s.t. a #t a′, we have start(a′) −
end(a) ≥ delay(a). Note that delay(a) = 0 if a is not followed by a delay.

� Synch/Asynch Communication. For every a, a′ ∈ A s.t. a #d a′, if the commu-
nication is synchronous then we have start(a′) ≥ end(a).

� Buffer. For every a, a′ ∈ A s.t. a #d a′, if the communication goes through a
shared buffer then if start(a) < start(a′), then start(a′) ≥ end(a). This is because a
locks the shared resource during its execution. Also, if a and a′ access the same buffer
(but no data dependency relation is known between them), then a and a′ cannot be
active at the same time at any given time.

� Multi-Core. The number of running activities at every time point is less than or
equal to the number of cores:

� Scheduling Policy

– Each activity can potentially be preempted: ∀a ∈ A · end(a)− start(a) ≥ d(a).
– The earliest time an activity a can start (efe(a)) is after the arrival time of its corre-

sponding thread and after the earliest termination time of all the activities preceding
a. Here, precedence includes both temporal precedence (#t) and data dependency
(#d) orderings.

– At any time, if there are two activities that can be scheduled for execution in parallel
but only one is running, the one that is not running has a lower priority.

Amongst the constraints above, only the scheduling policy constraints have a context-
specific nature and need to change according to the specific policy used in a given
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system. The remaining constraints are generic and be reused across different domains
and applications.
(4) Objective Functions. Our objective is to find combinations of input values that
can generate schedules that consume the CPU time most, and hence, are more likely to
violate CPU usage requirements of the system. To capture high usage of CPU time, we
define two alternative objective functions. The first one computes average CPU usage,
is denoted by fusage , and is defined as:

fusage =
∑

a∈A,t∈T active(a,t)

T×c

The summation
∑

a∈A,0≤t≤T active(a, t) measures the total time points when at least
one activity is running, and T × c is the total available time on all the cores. The sec-
ond objective function, called makespan, measures the total length of the schedule. We
denote this objective function by fmakespan and define it as:

fmakespan = maxa∈A end(a)

The fmakespan function is the time it takes for all the activities in an application to
terminate after the arrival time of the first thread in that application. Makespan is a
common metric for measuring response time [7].

By maximizing either fusage or fmakespan , we compute schedules that are more
likely to violate the CPU usage requirements. Note that fusage or fmakespan are heuris-
tics as their accuracy is bounded by the accuracy of the input data and the precision of
our constraints in characterizing the domain. Therefore, these functions should not be
viewed as measures for the actual CPU usage of the system. In Section 5, we discuss
how the input values maximizing these functions can be used to generate test cases for
CPU usage requirements.

5 Evaluation

The main goal of our evaluation is to investigate whether our technique can effectively
help engineers in deriving test cases for CPU usage requirements. The practical useful-
ness of our approach depends on (1) whether the input to our approach can be provided
with reasonable overhead, and (2) whether the engineers can utilize the output of our
analysis to derive test cases that can maximize CPU usage.

(i) Prerequisite and Overhead. As discussed before, the information required for
CPU usage estimation is captured by the conceptual model in Figure 2. To gather this
information, we first built UML sequence diagrams for the IO drivers in our partner
company using the existing design and implementation of the drivers. The resulting
sequence diagrams were iteratively validated and refined in collaboration with the lead
engineer of the IO drivers. Sequence diagrams are popular for visualizing concurrent
multi-threaded interactions and are intuitive to most developers as was confirmed in our
industry collaboration [13].

The quantitative elements in Figure 2 for our case study were obtained as follows:
The values for priority and period of the threads, and the size of the buffers were ex-
tracted from the certification design documents and the IO driver code. The min/max
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inter-arrival times of IODispatch, which is an aperiodic thread, and the values for the
min/max duration of activities in our case study were extracted from the performance
profiling logs of the drivers. We created the sequence diagrams augmented with the tim-
ing information over 8 days, involving approximately 25 man-hours of effort. This was
considered worthwhile as such drivers have a long lifetime and are regularly certified.

Finally, we obtained the computing platform information in Figure 2 from the RTOS
configuration and hardware design documents. Note that, given the mapping in Table 1,
any modeling development environment that supports UML/MARTE can be used to
develop and manipulate our input design notation.

(ii) Test Case Derivation. The I/O drivers in our study are subject to certification
based on the IEC61508 standard [14], which is one of the most detailed and widely-
used functional safety standards. It specifies 4 levels of safety, called Safety Integrity
Levels (SILs). SIL1 is the lowest and SIL4 is the highest level. The drivers in our study
need to be compliant to IEC61508 up to SIL2 or SIL3 depending on the context of their
application. Stress testing (subjecting the system to harsh inputs with the intention of
breaking it [6]) is classified by IEC61508 as “Recommended” for SILs 1-2 and “Highly
Recommended” for SILs 3-4. “Highly Recommended” techniques/measures are often
seen as “mandatory” by the certifiers, unless the supplier provides a convincing argu-
ment as to why a highly recommended technique/measure does not apply. Subsequently,
the engineers in our partner company needed to stress test the drivers (mandatory for
SIL3 deployments).

We characterize the stress test cases in our case study by the delay times that (po-
tentially) follow execution of activities, i.e., the delay attribute of the activity class in
Figure 2. IO drivers are instantiated in different environments with different numbers
and kinds of detectors and FMSs. The delay times after the IO driver activities must be
set to values that match the load and speed of the detectors and FMSs.

Based on the engineers’ intuition, large and complex hardware configurations, e.g.,
those consisting of several thousands of detectors, are more likely to violate the CPU
usage requirements. To identify the suspicious hardware configurations, however, the
analysis provided in this paper is necessary because the hardware configurations affect
the delay times of the IO drivers activities, and subsequently, the CPU usage estimates.

For example, the size of the delay time at step 3 of the data transfer scenario in
Figure 1(b) can heavily impact the CPU usage. Specifically, the delay time cannot be
so small that IODispatch (Figure 1(a)) keeps the CPU busy for so long that it exceeds
the given CPU usage requirement. Neither can the delay be too large, because then
pullData, which is periodic, may miss its deadline. Specifically it may quickly fill up
the Message Box 1 buffer, which in turn causes pullData to be blocked and waiting
for IODispatch to empty Message Box 1, which is now very slow due to a large delay
time. As a result, pullData may not be able to terminate before its next scan arrival.

To derive stress test cases based on the delay times of the activities, in our formula-
tion in Figure 4, we specify delay as an output variable whose value is bounded within
a range. The search then varies the values of these variables to maximize fmakespan and
fusage . Those combinations that maximize our objective functions are more likely to
stress the system to the extent that the CPU usage requirements are violated.
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Fig. 5. The result of maximizing fmakespan and fusage (Section 4) for both parallel and non-
parallel COMET implementations.

To perform the above experiment, we implemented the constraint optimization for-
mulation in Figure 4 in COMET Version 2.1.0 [7]. We further used the native support
of COMET for parallel programming to create a distributed version of our COMET im-
plementation that divides the search work-load among different cores. To perform the
experiment, we varied the observation time T from 1s to a few seconds and set the
quantum time (i.e., the minimum time step that a scheduler may preempt activities) to
10 ms. The input model included eight activities belonging to three parallel threads.

Figure 5 shows the result of our experiment, maximizing fmakespan and fusage for
both parallel and non-parallel COMET implementations. In both diagrams, the X-axis
shows the time, and the Y-axis shows the size of fmakespan in ms, and the percentage for
fusage . In our experiment, we used a complete (exhaustive) constraint solver of COMET,
and ran it on a MacBook Pro with a 2.0 Ghz quad-core Intel Core i7 with 8GB RAM.
As shown in the figure, the search terminated in both cases: after around 14 hours for
the non-parallel version, and after around 2 hours and 55 min for the parallel version.
The maximum computed values are: 50% for fusage , and 550 ms for fmakespan . In the
non-parallel case, the maximum result was computed after around 1 hour and 10 min
for fmakespan , and 1 hour and 13 min for fusage . No higher value was found in the
remainder of the search which took more than 14 hours in total. In the parallel case,
it took about 15 min to find the maximum for fusage , and 40 min to compute that for
fmakespan . To make sure these values were indeed maximum, the search continued until
it terminated after 2 hours and 55 min.

In the end, we could compute maximum values for fmakespan and fusage in around
2 hours and 55 min using COMET’s built-in support for parallel search. The values for
the delay times maximizing fmakespan and fusage are candidates for stress test cases.
We have recorded these values and have communicated them to our partner company.

Currently, the engineers at our partner company spend several days simulating their
systems and monitoring the CPU usage without following a systematic strategy for
stressing the systems to their CPU usage limits. We expect that by executing their sys-
tems based on the values produced by our approach, they can push the systems to states
where the CPU usage is maximized and ensure that the input delay times remain within
safe margins. The engineers at our partner company intend to test their system using
our findings. Our experimental results and the input data values are available at [12].
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6 Related Work

All approaches to performance engineering and schedulability analysis require a model
of the time and concurrency aspects of the system under analysis [15]. Examples of
such modeling languages include queuing networks [16], stochastic Petri nets [17], and
stochastic automata networks [18]. Recently, there has been a growing interest in devel-
oping standardized languages to enhance the adoption of performance engineering con-
cepts and techniques in the industry [19]. The most notable these languages is MARTE
which extends UML with concepts for modeling and quantitative analysis of real-time
embedded systems [5]. While a UML-profile, MARTE also encompasses the timing and
concurrency abstractions in many other languages, e.g., Architecture Analysis and De-
sign Language (AADL) [20]. As indicated by the mapping from our conceptual model
to MARTE (Section 3.2), the abstractions we use in our work already exist in MARTE.
However, MARTE is a large profile and by itself does not provide guidelines on what
subset of it is required for a particular type of analysis. Our conceptual model can thus
be viewed as a subset selection of MARTE, aimed specifically at CPU usage analysis.

The techniques for analysis of real-time systems can be divided into two general
groups: (1) Approaches based on real-time scheduling theory [9]. These approaches
estimate schedulability of a set of tasks through customized formulas and theorems that
often assume worst case situations only such as worst case execution times, worst case
response times, etc. Their results, therefore, can be too conservative because due to
inaccuracies in estimating worst-case time values, the worst-case situations may never
happen in practice. As a result, in general, we cannot rely on schedulability theory alone
when dealing with analysis of real-time systems. Moreover, extending these theories to
multi-core processors has shown to be a challenge [21,22].

(2) Model-based approaches to schedulability analysis. The idea is to base the
schedulability analysis on a system model that captures the details and specifics of real-
time tasks. This provides the flexibility to incorporate specific domain assumptions and
a range of possible scenarios, not just the worst cases [23,24]. Most approaches that fall
in this category, including our work, can deal with multi-core processors as well [24].

We formulate the problem of CPU usage analysis as a constraint optimization prob-
lem. Our work is inspired by Job shop scheduling – a well-known optimization problem
where jobs are assigned to resources at particular times [25]. Job shop has several vari-
ations. Our formulation is closest to the discrete resources variant [7], but differs from
it in that we need to specify scheduling policies used by the underlying RTOS.

Model checkers, in particular, real-time model checkers, e.g., UPPAAL [26], have
been successfully used for the evaluation of time-related properties. Model checking is
intended to be used for verification, i.e., to check if a given set of real-time tasks satisfy
some property of interest. To adapt model checkers to checking different properties of
real-time applications, the underlying state machines are built such that the question at
hand can be formulated as a reachability query. For example, in [24], in order to analyze
CPU-time usage, an idle state-machine is added to the set of interacting timed-automata
to keep track of the CPU-time, and the error states were chosen so that their reachability
could lead to violation of the CPU-time usage limit.

In our work, the property to be checked is captured by a quantitative objective func-
tion as opposed to a boolean reachability property, as in the case of model checking.
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Therefore, our work is more geared towards optimization with applications in test-case
generation rather than verification. One significant practical advantage is that, to adapt
our formulation to check other kinds of real-time properties, it often suffices to change
the objective function, and most of the constraints remain untouched. Lastly, to handle
multiple cores, the existing UPPAAL-based solution in [22] assumes that a mapping
between threads and cores is given a priori. Our approach in contrast does not require
any mapping between threads and cores.

7 Conclusions and Future Work

We provided a practical approach to support derivation of stress test cases for the CPU
usage requirements of concurrent embedded applications running on multi-core plat-
forms. We proposed a conceptual model that captures, independently from any mod-
eling notation, the abstractions required for analysis of CPU usage. We mapped our
conceptual model onto the standard modeling language UML/MARTE to support the
application of our approach in practice. We, then, formulated the CPU usage problem
as a constraint optimization problem over our conceptual model, and implemented our
formulation in COMET. Our evaluation on a real case study shows that our approach
(1) can be applied with practically acceptable overhead, and (2) can identify test cases
that maximize CPU usage. These (stress) test cases are crucial for building satisfactory
evidence to demonstrate that no safety risks are posed by potential CPU overloads. Fi-
nally, we note that while our approach cannot provide proofs, we can always provide
results given a (partial) set of declarative constraints and within a time budget.

Our solution draws on a number of context factors (Section 2) which need to be as-
certained before our solution can be applied. While the generalizability of these factors
need to be further studied, we have found the factors to be commonplace in many in-
dustry sectors relying on embedded systems. In the future, we plan to perform larger
case studies to better evaluate the generalizability and scalability of our approach and
experiment with other search methods, in particular, meta-heuristic search methods and
hybrid approaches combining complete and meta-heuristic search strategies.
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Abstract. In model-driven development of multi-layer systems (e.g.
application, platform and infrastructure), each layer is usually described
by separate models. When generating analysis models or code, these
separate models first of all need to be linked. Hence, existing model
transformations for single layers cannot be simply re-used.
In this paper, we present a modular approach to the transformation of

multi-layer systems. It employs model weaving to define the interconnec-
tions between models of different layers. The weaving models themselves
are subject to model transformations: The result of transforming a weav-
ing model constitutes a configuration for the models obtained by trans-
forming single layers, thereby allowing for a re-use of existing model
transformations. We exemplify our approach by the generation of analysis
models for component-based software.

Keywords: Model weaving, multi-layer systems, model transformations.

1 Introduction

For multi-layer systems, to adhere to clean design principles like separation of
concerns [28], a model-based design often derives separate models for the layers.
These are possibly constructed by different domain experts and based on differ-
ent meta-models. Cloud Computing applications provide us with specific sorts of
multi-layer systems: the cloud computing stack of SaaS (Software as a Service),
PaaS (Platform as a Service) and IaaS (Infrastructure as a Service) [3] allows
to flexibly run application software on different platforms and infrastructures.
Each layer might come with different models describing certain aspects of its
structure and behavior.

For an analysis of the multi-layer system, the layers need to be linked to dif-
ferent extents: an analysis of non-functional properties, like performance, might
also consider infrastructure models, while for functional analysis taking only
application and platform models into account might suffice. Furthermore, the
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flexibility to exchange the PaaS and IaaS layers might necessitate performing
the analysis for various system configurations. Therefore the assumption of hav-
ing one single fixed design model is no longer valid. Instead, we need to flexibly
combine different models of different layers.

Models and model transformations are at the heart of model-driven develop-
ment. The use of model transformations has been studied in diverse application
areas, like code generation, model integration or model differencing. One par-
ticular application is the translation of design models into analysis models (e.g.
[7,8,14,21]) to enable validation, simulation or verification. Analysis models serve
as input to various analysis tools (e.g. model checkers [8] or simulation tools [7]).

In an MDE (model-driven engineering) framework, the generation of analy-
sis models proceeds by the definition and execution of model transformations.
Ideally, we aim at a modular and structured use of model transformations for
our multi-layer system to handle different layers independently. A number of
approaches have thus studied various forms of composition of model transforma-
tions [32], including higher-order transformations [29]. Modularity and re-use is
also a key requirement for models in multi-layer systems: existing model trans-
formations for separate layers should be re-used in the transformation of the
overall system. For this, we do not compose the design models or model trans-
formations directly. Instead, we transform layers models like application and
platform models independently into compositional functional analysis models.
The actual composition of the partial analysis models is guided by weavings of
the design models. This does not only enable the re-use of existing transforma-
tions, but also the re-use of already generated functional analysis models and
thus provides us with great flexibility during analysis.

Figure 1 shows our overall approach. Starting with partial models for several
layers (possibly conforming to different meta-models) we first of all develop a
configuration weaving model (Section 3.1) linking these models. The weaving
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Fig. 1. Modular transformation approach for multi-layer systems
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model conforms to a specific weaving meta-model and references models of the
separate layers. Next, (possibly already existing) model transformations to the
target models are applied on single layers (1). This gives us several partial target
analysis models. Another part is generated out of the configuration weaving
model in the form of a glue or adapter model (2), linking the separate analysis
models (3) (Section 3.2). On the target side all analysis models conform to the
same meta-model.

We exemplify our approach by the generation of functional analysis models for
component-based software architectures to check for deadlocks and livelocks. For
this, application and platform models are described within the Palladio Compo-
nent Model (PCM) [7]. For the weaving model we employ AMW (Atlas Model
Weaver [11]) and consequently ATL (Atlas Transformation Language [20]) for
the transformations. Our target language for analysis is the process algebra CSP
(Communicating Sequential Processes) [18], for which we have developed a cus-
tom meta-model. The compositional nature of CSP allows for a straightforward
adapter generation: it is a CSP process linking the partial analysis models via
synchronized parallel composition.

The paper is structured as follows: We will next give a short introduction into
PCM and CSP, and alongside this will introduce our running example. Section 3
describes our overall approach of using weaving models as configurations for
the system. In Section 4 we give an overview of the tools we used and some
experimental results of the analysis. The following section then discusses related
work and the last section concludes.

2 Background

This section outlines the foundations of both PCM and CSP to an extend needed
for our approach. Both formalisms are introduced by means of our running ex-
ample.

2.1 The Palladio Component Model

The Palladio Component Model (PCM, [7]) is a component model that supports
modeling different views of a software system. As we focus on functional proper-
ties, we will only give an overview of the PCM views needed to specify interfaces,
components and their connections. We will restrict the explanations roughly to
the parts needed for our example.

In PCM a software component is specified by one or more interfaces. An
interface contains a list of signatures1. The role of an interface (provided or
required) is defined by its relation to a component. A component can be either a
basic or a composite component. A basic component is implemented directly by
a developer, while a composite component is build from other components using
connectors. Interfaces and components are stored within a repository.

1 Currently, we only consider method names, not parameters.
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Fig. 2. PCM repository of the application layer Fig. 3. PCM repository of
the platform layer

Figure 2 shows a PCM repository. It contains some interfaces and compo-
nents of a trip planning software that relies on a map database. The interface
ITripPlanner is provided by a composite component TripCoordinator and
a basic component TripPlanner. The basic component requires an interface
IMapDB, which is provided by the basic component MapDB. Figure 4 shows the
inner structure of the composite component TripCoordinator, which is assem-
bled from the basic components using connectors. This represents an excerpt of
our application layer model. In addition we provide parts of a model of the plat-
form layer, namely a thread pool (Figure 3). The interface IThreadPool and the
component SimpleThreadPool, which is capable of managing a limited number
of threads (here 3), belong to this layer. New threads can be acquired and released
using the methods IThreadPool.acquire() and IThreadPool.release()

respectively.

Fig. 4. Composite component TripCoordinator Fig. 5. SEFF of
TripPlanner.getTrip()

containing an external
call action
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To specify the behavior of components, and thus the dependencies between
provided and required interfaces of a component, PCM provides Resource De-
manding Service Effect Specifications (RDSEFFs, SEFFs for short). A SEFF
contains a start and a stop action, actions to model internal computations, calls
to required interface methods or the consumption of some countable resource,
and the control flow.

Figure 5 shows TripPlanner.getTrip() as an example for a SEFF with
an external call action. It specifies that during the execution of the method
TripPlanner.getTrip() another external method, namely IMapDB.getMap(),
is called. In the component SimpleThreadPool we see that the methods
acquire() and release() also have SEFFs associated to them (see Section 3.2).

To summarize, we have now obtained an application layer model for the trip
planning software and a model of a platform layer. Next, we are interested in
analyzing these models with respect to functional properties, namely deadlock-
and livelock-freedom. To this end, we need to generate input for some analysis
tool. The tool we use here is FDR [2], which can analyze process specifications
written in the process algebra CSP [18].

2.2 Communicating Sequential Processes

Communicating Sequential Processes (CSP [18]) is a process algebra that allows
to formally specify the behavior of processes that are defined by sequences of
atomic events they can participate in. Events in our setting will be method
calls, sometimes split into start and end events. They can be equipped with
inputs and outputs, e.g. ev.v denotes the occurrence of event ev with output
value v, ev?x is an event ev reading some input into a variable x. The variable
x can then be used in the rest of the process, for instance also as an output
in ev.x.

Processes in CSP are build out of events using different composition opera-
tors. The termination of a process is indicated by the special event SKIP as in
P = a→ SKIP (here → is the prefix operator and stands for sequential composi-
tion). The recursively defined process THREAD = acquire→ release→ THREAD

participates in an infinitely alternating sequence of some events acquire and
release. Processes can specify different potential behaviors by using the choice
operator �. For example, the process RPC = (send → deliver→ RPC) � FAIL

with FAIL = send → FAIL introduces an alternating sequence of send and
deliver as well as an infinite loop, where the process can only participate in
send.

If two processes can participate in the same events, it is possible to synchro-
nize them. Two processes MAPDB = acquire → getMap → release → MAPDB

and THREAD = acquire → release → THREAD can be synchronized using the
parallel operator ‖ by specifying the synchronization alphabet as in SYSTEM =
MAPDB ‖

X

THREAD with X = {acquire, release}. A single process in this parallel

composition can only execute acquire or release, if the other process can also
participate in the same event.
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Finally, the last feature of CSP important for our approach is the parameteri-
zation of processes. The process TPOOL given below, which represents a simplified
result of transforming the component SimpleThreadPool into CSP, specifies a
process that manages a limited number of max threads. The values of x and
max are drawn from the natural numbers, with max being an arbitrary con-
stant: TPOOL = TP(max), where

TP(0) = release→ TP(1)

TP(x) = (acquire→ TP(x− 1))�(release→ TP(x+ 1))

TP(max) = acquire→ TP(max− 1)

By modeling the operations of software components as CSP events we can use
CSP to specify the possible behavior and in particular the interaction of these
components. Our objective is to analyze this behavior. As a first property, we
consider deadlock freedom, i.e. we want to find out whether our trip planning
software may deadlock. We will see that for this property an analysis of the
application layer alone is not sufficient, as the thread pool model may influence
deadlock-freedom. For other properties, other parts of the platform layer might
be necessary. Thus we need a flexible way of combining different models for
analysis.

3 Concept

This section describes the main ideas behind the proposed approach. Section 3.1
outlines the mechanism used to model the configuration of a multi-layer system.
Section 3.2 provides an overview of our modular model transformation and com-
position approach. Both techniques are demonstrated on the case of generation
of a CSP (Section 2.2) analysis model for the trip planning application example
modeled in PCM (Section 2.1).

3.1 Weaving System Configuration

A configuration of a multi-layer system should contain information about indi-
vidual layers as well as their interactions. In our example, the TripCoordinator
belongs to the application layer model and the SimpleThreadPool constitutes
the platform layer model. As an example of interactions between layers, we con-
sider threads acquisition on the invocation of the TripPlanner.getTrip() and
MapDB.getMap() methods with their later release on the method reply. To de-
scribe such configurations we employ the model weaving technique and use the
Atlas Model Weaver (AMW) [11] for tool support.

The model weaving technique allows definition of various links between
(meta-) model elements independent of the structure of the woven models.
We use it to link actions of SEFFs (e.g. start/stop actions of TripPlanner.

getTrip() and MapDB.getMap()) as consumers to the resources within other
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layers that they require (e.g. SimpleThreadPool.acquire(), SimpleThread-
Pool.release()within our platform layer). To model such resource usage links,
we introduce a class ResourceHandling into our weaving meta-model.

Resource usages during the communication between components via external
calls are modeled differently to emphasize their interaction support purpose. To
model these usage links, we introduce a class Communication into our weaving
meta-model. However, to keep our example simple, we do not include these links
into our example configuration weaving model.

Figure 6 illustrates our weaving meta-model. It contains the mentioned link
classes extending an abstract class Usage that models the association between
the resource and consumer represented by UsedModelElement class. Class Us-
ageModel represents a configuration model itself with usages and associations
to the UsedModel class used for representing models of individual layers which
are woven. Classes UsedModel and UsedModelElement encapsulate mechanisms
for referencing woven models and model elements respectively.

Fig. 6. Weaving meta-model for system configuration modeling

Figure 7 shows part of the configuration weaving model for our example,
where the method MapDB.getMap() acquires a thread upon its invocation and
releases it on reply. The model weaves an application layer model containing
MapDB (Figure 7, left) with a platform layer model containing SimpleThreadPool
(Figure 7, right) by the ResourceHandling class instances (Figure 7, middle):
the ResourceHandling link ‘Map acquire thread’ connects the start action of the
method MapDB.getMap() as a consumer to the SimpleThreadPool.acquire()

method SEFF as the corresponding resource; and the ResourceHandling link
‘Map release thread’ connects the stop action of the method MapDB.getMap() as
a consumer to the SimpleThreadPool.release()method SEFF as the resource.

We aim to keep the layers’ models free of inter-layer usage and allow for a
flexible alteration of this information through such configuration models. There-
fore, a fully automatic generation of weaving models through some kind of de-
pendency analysis is not possible. However, the usage of default configuration
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Fig. 7. Part of the configuration model for the trip planning example

settings for specialization scenarios to allow semi-automatic generation could be
incorporated.

At this point, the resource consumption scenario is modeled directly in AMW
as a set of usages, one for each consumer/resource relation. With increasing num-
bers of layers and interactions between them, the correlated modeling overhead
will need to be addressed. One possible solution, which we will consider in our
future work, is the automatic generation of such configuration weaving models
from a more compact configuration description, e.g. rules or OCL constraints.

3.2 Modular Transformation Concept

After the system configuration design decision has been defined in a separate
weaving model, the entire multi-layer system model is given and can be trans-
formed into a target model of our choice (e.g. CSP). The definition of this trans-
formation depends on the source and target meta-model characteristics, as well
as, on the desired properties of the transformation itself. Possibilities vary from
a single monolithic transformation to a modular invocation of a set of (re-usable)
transformations.

In our case, the proposed transformation approach takes advantage of the
compositional layer-based nature of the source models. It allows flexible re-use
of transformation results for individual layers, by transforming them into sep-
arate models (Figure 1, (1)), and later composing those (Figure 1, (3)) under
consideration of the glue model obtained from the configuration model (Figure 1,
(2)). Each of these three transformations is briefly described in the rest of this
section.

Layer-Wise Model Transformations. As previously mentioned, each model
of a specific layer is transformed into the corresponding partial target model.
This transformation is goal, as well as, source and target meta-model specific.

In our case, the goal is the analysis of multi-layer systems, and the chosen
source and target meta-models are PCM (Section 2.1) and CSP (Section 2.2)
respectively. The transformation considers gray box behavior and interaction of
components.

Figures 8 and 9 demonstrate the PCM to CSP transformation principle on
the TripPlanner.getTrip() and SimpleThreadPool.acquire() SEFFs of the
application and platform layer models of our example. Each of the SEFFs is



784 G. Besova et al.

transformed into a recursive process and its definition is formed from the trans-
formation results for individual action steps.

GETTRIP =

invoke getTrip start?x → invoke getTrip end.x →
invoke getMap start.TripPlannerID →
reply getMap end.TripPlannerID →
reply getTrip start.x → reply getTrip end.x →

GETTRIP

Fig. 8. Transformation of TripPlanner.getTrip() SEFF

Start actions are transformed into process prefixes containing two events rep-
resenting the begin and end of an operation invocation (e.g. invoke getTrip

start?x and invoke getTrip end.x for the start action of the TripPlanner.

getTrip() SEFF, Figure 8). The first event accepts an input containing a caller
identification and the second passes this parameter value further. This parameter
is important for later synchronization with other processes.

Stop actions are transformed into similar prefixes (e.g. reply getTrip start.

x, reply getTrip end.x for the stop action of the TripPlanner.getTrip()

SEFF, Figure 8), however, the first event is not accepting any new input, but
transmitting the parameter obtained by ?x.

External calls are transformed into process prefixes of two events representing
direct invocation and reply of the called operation (e.g. invoke getMap start.

TripPlannerID and reply getMap end.TripPlannerID for the external call of
MapDB.getMap() method). In our example the caller is the TripPlanner and,
therefore, its ID is used as an event parameter value. Transformation details for
other elements of PCM like branches, loops, etc., are omitted here, but a general
idea can be found in [31].

ACQUIRE =

invoke acquire start?x → invoke acquire end.x →
acquireThread start.SimpleThreadPoolID →
acquireThread end.SimpleThreadPoolID →
reply acquire start.x → reply acquire end.x →

ACQUIRE

Fig. 9. Transformation of SimpleThreadPool.acquire() SEFF

Figure 9 shows the acquire action acquireThread, which is transformed sim-
ilar to start/stop actions, but the prefix events have a fixed caller ID (e.g.
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SimpleThreadPoolID). This is due to the fact, that in PCM an acquire/release
action can only be called by the owner of the resource. The transformation of
the release action is very similar. The passive resource itself is represented by
an instance of the corresponding managing process (see Section 2.2, TPOOL) pa-
rameterized by the resource capacity.

All described transformations have been implemented using the hybrid model
transformation language ATL [20]. They are applied to each layer model inde-
pendently, and the results are later (re-)used in the composition of the overall
target model (see Figure 1 (1, 3)).

Configuration Model Transformation. The weaving model for system con-
figurations described in Section 3.1 contains information required to compose
the transformation results of individual system layers into the complete target
model. It is used to create a CSP glue model, which defines the composition of
all layer processes within the system combined with a set of adapter processes for
modeling usage information without altering the initial layer models. In partic-
ular, the glue model contains the SYSTEM process, which represents the complete
system and a set of ADAPTER processes introducing interactions between the
previously independent consumers and resources for each usage.

ADAPTER MAP THREAD = invoke getMap start?x →
invoke acquire start.MapDBID → reply acquire end.MapDBID

→ invoke getMap end.x → ADAPTER MAP THREAD

Fig. 10. Transformation of ResourceHandling usage ‘Map acquire thread’ into CSP
adapter

Figure 10 shows an adapter process generated for one ResourceHandling us-
age with the SimpleThreadPool.acquire() resource and MapDB.getMap() start
action consumer. Outer events of the adapter allow synchronization with the con-
sumer and inner events with the resource operation. This ensures that the con-
sumer action is completed only if the resource operation was successful. Adapters
generated for communication usages have similar structure, but assume resource
usage in both communication directions.

The SYSTEM process combines the layers processes (e.g. TRIPPLANNER and
THREADPOOL) through adapter processes (e.g. ADAPTER MAP THREAD) depending
on the usages defined between the layers:

SYSTEM = ((TRIPPLANNER ‖
X

ADAPTER MAP THREAD ) ‖
Y

THREADPOOL )
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The alphabets X and Y define synchronization between the application layer
and adapters, and adapters and the platform layer respectively. Outer adapter
events with concrete values are in X = {invoke getMap start.TripPlannerID,
invoke getMap end.TripPlannerID}, and inner adapter events are in Y =
{invoke acquire start.MapDBID, reply acquire end.MapDBID}.

The described transformation for the weaving model (Figure 1, (2)) has been
also implemented in ATL. The last step is to compose the obtained results into
the complete target model.

Model Composition & Re-Use. Target models for each layer and for the
configuration model are composed and re-used during the creation of the overall
target model (Figure 1, (3)). For this purpose, an additional transformation
has been implemented in ATL to merge the models incrementally by combining
elements, omitting duplicates (by name) and updating references, if required.
Such modularity requires compositional qualities from the target meta-model.

4 Tools and Experiments

This section describes the application of our approach on the running example
and the tools we use.

Tools. We modeled all system layers in PCM with the help of the Palladio-
Bench [4]. For CSP, we created a custom meta-model using the Eclipse Mod-
eling Framework (EMF) [1], based on the CSP meta-model provided in [31].
The weaving model is specified within the AMW (Atlas Model Weaver) (see
Section 3.1). The model transformations are implemented in ATL (Atlas Trans-
formation Language, [20]).

To analyze the generated CSP models, we use the CSP refinement checker
FDR [2]. A model-to-text transformation is used to obtain CSPM code from our
CSP model instances, which is used as an input format for FDR. FDR provides
deadlock and livelock checks as well as specific refinement checks. Here, we only
use the former two.

Experiments and Results. A typical scenario of the influence of platform
models on the analysis of a software system model is the consumption of lim-
ited resources. Our examples are based on a scenario described in [13]: there,
some Web-services execute complex computations from the domain of theoreti-
cal chemistry and, although proven deadlock-free, deadlock after the deployment
due to the real servers’ thread management strategies.

We start with the CSP model, that is generated from the application model
consisting of the software components TripPlanner and MapDB (Section 2.1).
As a platform layer model, we use the simple thread pool introduced in the
same section, that is capable of managing a limited amount of threads. Addi-
tionally, we consider another platform model describing communication between
connected software components.
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Communication is modeled by an interface ITransmission, containing a sin-
gle method ITransmission.transmit(). We model two different components
to provide that interface: LocalCall, (not shown) contains only a trivial SEFF
with only a start and a stop action; and Rpc (Figure 11) as a composite com-
ponent, that models a high-level view of Remote Procedure Calls (RPC). As
we focus on communication, it contains only two components, RpcSender and
RpcReceiver, that are responsible for the remote method call. Furthermore, we
use the RPC model to inject an error: the SEFF for RpcSender.transmit()

contains an infinite loop as an alternative to the correct external call action to
the connected receiving component. This way, a potential livelock is introduced;
a livelock occurs when the system does not make any progress, but is not in a
deadlock state.

Fig. 11. Composite component modeling an abstract RPC behavior

This scenario provides various possible configurations, that can be checked for
deadlocks and livelocks.

First of all, we analyze the stand-alone application layer model. Then, we
create a configuration model such that both basic components of the application
model require a thread from the thread pool model. We also combine the ap-
plication model with each of the communication models, the trivial LocalCall
and the Rpc components. Additionally, we use the failure injecting variant of the
RPC model as well as the correct one. Finally, we combine application, thread
management, and communication models such that the communication model
components consume threads too. The thread pool is configured by different
number of threads. For our experiments, we currently consider only a single user
calling the modeled trip planning system.

We generate CSP models and check them with FDR. The application layer
model is both deadlock- and livelock-free. Connected to the thread pool model,
it deadlocks depending on the number of threads available: as two components
require a thread, providing only one thread leads to a deadlock. The application
model connected to the trivial communication model (LocalCall) is proved cor-
rect, while with the error-prone RPC model, it contains an expected livelock. A
corrected RPC model fixes this. The configurations containing the application,
the thread pool and a communication model, where the communication compo-
nents consume threads too, is analyzed with the expected results: a deadlock is
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detected if the thread pool model does not provide enough threads. Figure 12
summarizes the results.

Of course, on this example the results given by FDR are to be expected.
However, more complex case studies like [13] have shown that such an analysis
is actually necessary to obtain the correct configuration of the platform layer
(i.e., thread pool parameters). Our approach gives us a modular generation of
different analysis models: the analysis model for the application layer remains
the same, and is glued together with different platform analysis models.

Combination of models deadlock? livelock?

Application no no

Application + thread pool (1 thread) yes no

Application + thread pool (2 threads) no no

Application + local call no no

Application + RPC (erroneous) no yes

Application + RPC (correct) no no

Application
+ thread pool (3 threads) + RPC (correct) yes no

Application
+ thread pool (4 threads) + RPC (correct) no no

Fig. 12. Summary of model configurations and sample properties

5 Related Work

Model transformations play a key role in model-driven development. Their appli-
cation areas include model composition [6,5,23], abstraction [27] and refinement
[21], as well as model translation between different languages [12,22,17] (e.g. our
PCM to CSP example).

Transformations themselves can be represented as models [9], and exposed to
the above mentioned transformation operations. In this case, we get higher-order
model transformations (HOTs) [29] operating on transformation models.

Composition of models [6,5,23,19,14,25,21] and model transformations
[24,16,32] remains an active research topic aiming to increase flexibility dur-
ing development and re-use. Model compositions in [6] are realized via direct
composition of meta-models. The authors of [5] propose a generic composition
approach that allows definition of compositions for specific domains by establish-
ing correspondence relations to the generic part. This way composition operators
and strategies can be re-used. A modular model composition approach in [23]
uses fragment-based glue models, similar to weaving models, to connect mod-
els conforming to one meta-model. The mechanism defining mappings between
the glue and the models relies on fixed integration points within models that
cannot be flexibly changed. In [19], the authors explore concern-based composi-
tion of multi-format models with integration points within these concerns. The
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approach presented in [10] extends this multi-format idea by employing ontolo-
gies to integrate different meta-models based on common concepts, however, it
does not address model-level relation of conceptually different, but related en-
tities, that we are focusing on. Mentioned approaches do not promote modular
composition of models the way the model weaving technique, that we use, does.

In [14,25,21] model composition approaches are driven by a specific goal. [14]
proposes modular composition of analysis models transformed from service com-
positions with deployment models based on predefined resource consumption
logic. The approach does not consider multi-layer systems and does not allow
explicit modeling of resource usage, like in our case. [25] also propose modular
composition of Petri net models for analysis. Both approaches are similar to
our with regard to modularization, but we also allow flexible multi-layer model
re-configuration via a non-invasive model weaving.

In [21] the authors propose a model-driven performance prediction approach
which, like our method, considers PCMmodels, but only on the application level.
It uses feature model instances, called performance completions, to enrich the
application model with platform and infrastructure information. Unlike in our
method, these performance completions are not independent re-usable models,
that might also consume resources, but instances of a predefined set of features
spread over different layers. To analyze performance, the authors first refine
the annotated PCM model by means of a transformation specifically generated
by a HOT based on selected performance completions. The chosen refinement
strategy does not allow transformation modularization that we have.

Composition of model transformations has been studied by [24,16,32]. [24]
proposes model transformation composition by chaining single transformations.
We employ such a chaining technique to combine individual transformations
used in our method. Authors of [16] advocate for the establishment of a model-
driven development for model transformations to simplify their composition and
re-use. [32] proposes a rule-based transformation composition technique. For our
modular method this composition technique is too fine-grained. The approach
proposed in [33] also has its focus on the re-use of transformations. However,
it is achieved not by a composition, but by a generic to specific transformation
mapping. This technique also uses weaving to define correspondences between
the generic and specific meta-models. Approaches presented in [16,33] can be
potentially integrated in our method for developing model transformations.

Translating model transformations constitute the backbone of MDE, and fa-
cilitate tool interoperability [12,22,17], as well as integration of formal analysis
[14,7,25] in the development process. Tool interoperability and model integration
approaches use techniques like matching transformations and weaving [12], or
meta-model bridging defined by dedicated mapping components [22]. [17] pro-
vide an alternative to the meta-model weaving technique for model integration
based on Triple Graph Grammars (TGGs, [26]). Our method uses techniques
similar to some of these approaches, however, we focus on the model (and not
meta-model) level integration techniques for multi-layer systems.
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The already mentioned approach [14] additionally to model compositions
also uses translating transformations. The authors translate service composi-
tions under resource constraints into process calculi for verification. Approaches
presented in [7,25] employ translation of component-based software models into
various types of Petri nets to facilitate performance prediction. We use transla-
tion from PCM to CSP to demonstrate our modular transformation approach
by facilitating formal analysis of multi-layer systems. However, we do not limit
applicability of our method to this scenario.

The model weaving technique, that we employ, has also been used by other
approaches [12,33,30,15] including those previously mentioned [12,33]. Some of
them use weaving on meta-model level to define links for all model instances,
whereas others, like us, use weaving on the model level in such contexts like web
engineering [30] and aspect-oriented modeling (AOM) [15].

6 Conclusion

In this paper, we have proposed a modular transformation approach for multi-
layer systems. It promotes the use of weaving models for the system configu-
rations, which are then transformed into the glue for the partial target models
obtained for the individual layers. This way we can re-use existing model trans-
formations and even their already existing results. This approach has proven
beneficial for an analysis which needs to flexibly (re-)combine different layer
models to different extends. We have exemplified our approach on the analysis
of component-based software with respect to deadlock/livelock properties.

In the future we, in particular, intend to carry out more case studies to identify
an extend of linking facilities required for configuration weaving, and consider
more concise ways to specify such configuration models. Furthermore, we aim to
extend the application of our modular framework to other target meta-models,
i.e., languages for performance and reliability analysis.
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Abstract. In recent years, we have been exploring ways to foster a closer
collaboration between software engineering research and industry both to
align our research with practical needs, and to increase awareness about
the importance of research for innovation. This paper outlines our expe-
rience with three research projects conducted in collaboration with the
industry. We examine the way we collaborated with our industry part-
ners and describe the decisions that contributed to the effectiveness of
the collaborations. We report on the lessons learned from our experience
and illustrate the lessons using examples from the three projects. The
lessons focus on the applications of Model-Driven Engineering (MDE),
as all the three projects we draw on here were MDE projects. Our goal
from structuring and sharing our experience is to contribute to a better
understanding of how researchers and practitioners can collaborate more
effectively and to gain more value from their collaborations.

1 Introduction

Research and innovation go hand in hand in all engineering disciplines and soft-
ware engineering is no exception to this rule. Unless engineering research and
innovation are done in tandem and synergistically, both will suffer: research may
be poorly aligned with the “pain points” of the industry and will consequently
have limited impact; and innovation will be hampered if the industry is deprived
of an inflow of creative ideas and solutions stemming from research.

Motivated by the above, we have been seeking in the past few years ways to
collaborate more closely with industry, both to ensure better alignment between
our research and the current industrial needs, and further, to demonstrate to
our industry partners the role of software engineering research in boosting inno-
vation. This is what we refer to as research-based innovation.

This paper discusses our experience with three projects that have reached
maturity, selected from a larger set of ongoing projects that we are currently
conducting in collaboration with the industry. We reflect on the way we managed
our interactions with our industry partners in these projects, our observations,

R.B. France et al. (Eds.): MODELS 2012, LNCS 7590, pp. 793–809, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



794 L. Briand et al.

and the decisions that we believe contributed to the collaborations being more
effective. We discuss a number of lessons learned that emerged from our collective
experience and illustrate these lessons with concrete examples.

All three projects use Model-Driven Engineering (MDE) technologies [1]. This
adds yet another dimension of complexity: Despite the increasing momentum of
MDE, conducting MDE research in an industrial context remains hard, mainly
due to the difficulty of securing adequate buy-in from the partner companies.
The lessons learned we discuss in the paper not only cover the researchers’ role
in research-based MDE projects but also the expectations from the industry in
such projects, including upfront investment in learning and tailoring of MDE
solutions and the existence of champions for the devised solutions.

Our focus on MDE makes our work a useful complement to recent initiatives
by other researchers, most notably by Mohagheghi and Dehlen [2] and Hutchin-
son et al. [3,4], to investigate the success and failure factors for MDE in industrial
settings and the perceptions of practitioners about MDE. Our work, however,
differs from these initiatives in two ways: First, our goal is to provide insights
about how to engage industry in MDE research, rather than applying MDE per
se. The second difference is the source of information on which we draw our con-
clusions. Whereas Hutchinson et al. use surveys and interviews, and Mohagheghi
and Dehlen use a literature review as their primary means for data collection,
we rely on the experience gained through direct engagement with industry in
research and development activities.

The rest of the paper is structured as follows: Section 2 introduces the over-
arching project (ModelME!) within which the three (sub)projects that we focus
on in this paper were conducted. The section continues with an overview of each
of the three projects. Section 3 describes the way we organized our industry col-
laborations. Section 4 discusses and illustrates the lessons learned from the three
projects, organized according to the steps in our collaboration model (Section 3).
Section 5 summarizes the paper and highlights important observations.

2 Context: The ModelME! Project

The projects discussed in this paper are part of a larger project, called Mod-
elME! (Model -Driven Software Engineering for the M aritime and Energy Sec-
tors, http://modelme.simula.no). Broadly, the objective of ModelME! is to
improve software engineering best practices for software-intensive systems in the
Maritime and Energy (M&E) sectors. In this section, we briefly describe three
(sub)projects within ModelME! that have reached maturity and have been vali-
dated in realistic settings. These projects are the source for the lessons learned
discussed in Section 4.

2.1 Traceability and Slicing (TS)

This project concerns the problem of requirements to design traceability and
slicing of design models to improve design inspections during software safety

http://modelme.simula.no
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certification. The industrial partner in the project was a large supplier of pro-
grammable marine electronics. During our preliminary discussions, the engineers
in the partner company noted some issues related to the preparation and as-
sessment of software safety certification documents. To better understand the
current software safety certification practices, we attended a number of certifi-
cation meetings between the company’s engineers and a certification body. Our
observation of the meetings suggested that the majority of the issues identified
during design inspections in the certification process arise due to poor structur-
ing of the specifications and missing traceability, in particular, between safety
requirements and software design.

Following our observations, we set our research goals to be: providing an in-
formation model to characterize the traceability links required in design safety
inspections, a model-based methodology for establishing such traceability links,
and a mechanism for extracting minimized and relevant slices of the design for
a given safety requirement. Grounding our work on the Systems Modeling Lan-
guage (SysML) [5], we have developed a tool-supported framework for design
safety inspections in the context of safety certification [6,7], applied the frame-
work to a number of selected software modules from our industry partner, and
created guidelines tailored to the partner company for using our framework [8].

Our partner has now started using our guidelines in the design of its modules.
The models built in our case study are planned to be used in the upcoming round
of safety certification at the company. The project has thus far engaged three
full-time researchers for six months and one full-time engineer for two months.

2.2 Configuration and Derivation of Subsea Control Systems
(CDSCS)

Our second project has been carried out in collaboration with another large
systems supplier in M&E, particularly known for their Subsea Control Systems
(SCSs). The embedded software in SCSs has very large configuration spaces,
including configuration for hardware architectures, for data communication pro-
tocols, and for the individual physical devices.

In our initial investigation, we observed that the hardware and software con-
figuration processes at our partner company were isolated from one another,
resulting in many configuration mismatches and errors that were often detected
late and only after the integration of software and hardware. We therefore set
the primary goal of this project to be: providing support for configuration and
derivation of the software components in SCSs such that the complex dependen-
cies between hardware and software are captured and preserved. To achieve this
goal, we have developed a model-based approach for configuring the software
embedded in SCSs. We use built-in UML features for modeling the architecture
of SCSs and the architectural dependencies between the software and hardware
elements. Our approach can capture complex software-hardware dependencies.
The approach automates some of the configuration decisions and interactively
guides users to make the remaining configuration decisions [9,10].
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We have evaluated our approach on a case study from the partner com-
pany [10,11]. Our experience shows that our approach successfully enforces con-
sistency of configurations, can automatically infer up to 50% of the configuration
decisions, and reduces the complexity of making configuration decisions. We are
now working on integrating our approach and tool into the current configuration
process at the partner company. This project has thus far engaged two full-time
researchers for one year, and one full-time engineer for three months.

2.3 Technology Qualification (TQ)

The third project concerns the assessment of new technologies. New technologies
usually include novel aspects that are not addressedby existing standards and can-
not be certified in the sense that more conventional safety-critical systems are. To
demonstrate the safety and reliability of new technologies, these technologies are
often subject to a specific kind of assessment, which in many industries is known
as TechnologyQualification (TQ). The TQprojectwas conducted in collaboration
with DNV (Det Norske Veritas), which engages in various qualification projects,
with a focus on M&E, particularly offshore platforms and subsea systems.

As with the other two projects discussed earlier, our first step was developing
a better understanding of the needs and priorities of our industry partner. The
following observations were made about the current TQ practice based on meet-
ings and interviews with domain experts: (1) There is not adequate traceability
between the safety and reliability goals of a new technology, the identified risks,
and the evidence collected to show that the technology is fit for purpose; (2)
The process taken to elicit expert judgment is not always explicit, with a poten-
tial negative impact on the transparency of the qualification process; (3) Time
and budget overruns can occur if the evidence collection effort is not focused on
building and improving the right evidence information.

In response to the above, we have developed a model-based approach for
probabilistic assessment of new technologies [12,13], which combines goal models
[14], expert probability elicitation [15], and Monte Carlo simulation [16]. To
facilitate the adoption of the approach, we have developed a prototype but highly
usable tool to support it. We have further created a handbook for internal use
by DNV providing practical guidelines on how to use the research results and
the tool. Our solution has so far been applied in two industrial case studies both
concerning off-shore technologies. The first case study is described in [12].

The approach is currently being validated and refined internally at DNV in
other projects. An annex based on the results of our work is being considered for
DNV’s technology qualification recommended practice [17,18]. The TQ project
has thus far engaged two full-time researchers for a year, two master students
for six months, and five DNV staff members for approximately four months.

3 A Collaboration Model for Research-Based Innovation

To collaborate more efficiently with our partners, and further to ensure that we
record the insights gained from the collaborations for future projects, we apply
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a unified collaboration model across the projects in our group. One of the first
tasks we perform when engaging with a new industry partner is to discuss this
model. We have found this to be useful in two ways, first to put in place a
progression path for the project, and second, to clarify what we need from the
industry partner at each stage, and what outcomes they can expect from the
collaboration as the project progresses.

Our collaboration model in Figure 1, builds on and refines the collaboration
model proposed by Gorschek et al. [19]. Below, we first describe our collaboration
model and then discuss how it modifies Gorschek et al’s. In Section 4, we will
present the lessons learned according to the steps of our collaboration model.

Problem 
Formulation

Problem 
Identification

State of the 
Art Review

Candidate 
Solution(s)

Initial 
Validation

Training

Realistic 
Validation

Industry Partners

Research Groups

1

2

3

4

5

7

Solution 
Release

8

6

Fig. 1. Adaptation of Gorschek et al’s model [19] for research-based innovation

The first step, Problem Identification, aims to identify and obtain an initial
understanding of the problem that the partner company wishes to address. This
is often done through meetings and organizing workshops where the industry ex-
perts at the partner company give presentations about their perceived challenges.
In the second step, Problem Formulation, the identified problem is formulated
in a more precise manner, and the context factors and working assumptions
are clearly specified. If the problem is large and multi-faceted, it may further
need to be decomposed into sub-problems that can be prioritized and tackled
independently.

In the third step, State-of-the-Art Review, a critical review of the research
literature and existing commercial or open source technologies takes place in
order to identify to what extent the goals are already addressed and what are
the open issues to deal with through research. In other words, the research
will benefit from both the current practice and the published literature. In the
fourth step, Candidate Solutions, one or more potential solutions are devised.
These solution(s) will be iteratively refined based on the subsequent evaluation
steps (steps 6 and 7).

The fifth step, Training, is an incremental step. In the early stages, training
focuses on building up the background necessary for the practitioners to form an
(early) judgment about the feasibility of the solutions. Particularly, early training
should cover the modeling constructs that the solutions expect as input. While
not a definitive feasibility assessment, this allows practitioners to determine if
the constructs are “natural” and “easy to build” in realistic settings given the
resources they have available. In later stages and as the solutions mature, training
shifts towards practical guidelines and detailed methodological steps for applying
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the solutions. In addition, training is a nice way to discuss with the industry
partners the value of MDE in general.

In the sixth step, Initial Validation, we conduct a preliminary evaluation of the
solutions, either in an artificial or an industry setting. In an industrial setting,
we use a mix of seminars, hands-on workshops, and surveys for initial validation.
If validation in an artificial setting is possible, we may use controlled studies,
e.g., controlled experiments.

If the results of initial validation are promising, we move up the evaluation
ladder to Realistic Validation. In this step, we run case studies in industrial
settings, starting with pilot studies first and then spreading to wider use. The
details of the proposed solutions will be refined, in particular by providing practi-
cal guidelines, and tool support will be developed. During the pilot studies, only
a small group of stakeholders will be engaged, and experience and viewpoints
on practices and tools will be collected through interviews and questionnaires.
A typical result from pilot studies is that the practices are better streamlined
to reduce the overhead associated with learning and using these practices. Sub-
sequently, the streamlined practices and tools are rolled out to a wider group,
data collection is performed on these projects to further assess and refine, on a
wider scale, the proposed technologies.

We note that our collaboration model allows one to bypass Initial Validation
and move directly to Realistic Validation. This flexibility is desirable for two
reasons. First, it allows for more agility in the execution of a research-based
project if there are constraints on timelines and/or available resources. Second,
such flexibility is required when a solution cannot be meaningfully evaluated
outside a realistic setting (e.g., when expert judgment is required).

In the eighth (and final) step, Solution Release, the refined tools and training
material are released to the industry partner for broader application according
to the exploitation plans of the industry partner. Here, the research team plays
a primarily supportive role, e.g., through consultancy and maintenance services.
While the Solution Release step deserves careful consideration in research-based
projects, the three projects upon which we draw in this paper have only been
recently released, thus offering limited insight about the longer-term interac-
tions between research and industry in this step. A longer-term investigation is
required to provide a more conclusive picture of this step.

As we stated earlier, our collaboration model is an adaptation of the collabo-
ration model proposed by Gorschek et al. Our model offers two refinements over
Gorschek et al’s:

(1) We propose an explicit step for training, which starts long before the val-
idation steps. A major obstacle in conducting industrial MDE research is the
perception that one has to learn languages like UML in their entirety, before
being able to benefit from MDE. This perception often leads to the conclusion
that the learning curve associated with MDE is too steep. In reality, practition-
ers have to learn only what they really need from a language like UML, which
typically constitutes a small fragment of the language. This fragment is deter-
mined by the modeling methodology, which specifies what part of the notation
is used for a given objective and how the variation points in the semantics are
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specialized to address the objectives. A key goal of training should then be to
minimize the learning curve by narrowing the training material to the language
fragment that the practitioners actually need.

(2) We distinguish only between two validation steps, initial and realistic;
whereas Gorschek et al. distinguish three: validation in academia, static val-
idation (early stage industrial validation) and dynamic validation (late stage
industrial validation). Dynamic validation corresponds to realistic validation in
our model; but our model combines validation in academia and static valida-
tion into one, namely initial validation. This is because we find the distinction
between validation in academia and static validation blurry. A pure validation
in academia requires good benchmarks which are in general scarce for MDE.
The chances of finding suitable benchmarks decreases even further noting that
industry-driven research problems are defined in light of the context factors and
working assumptions of the industry partner. As a result, even when bench-
marks are used, they need to be tweaked and aligned with the partners’ needs
first. Subsequently, all validation activities at all steps are informed by real-
world considerations. Further, as we said earlier, we allow for bypassing initial
validation when the solution inherently requires a realistic setting.

Figure 2 shows the distribution of project effort over the steps of our collab-
oration model for the three projects that we described in Section 2. As noted
earlier, the projects are too young to provide detailed insights about the Solution
Release step in our collaboration model. Therefore, we do not consider Solution
Release in the project effort distribution. We further note that the percentages
in Figure 2 are estimations. Keeping track of real effort was not possible due to
the lack of control on how much work the industry partners did related to the
collaboration outside the meetings and workshops we had with them. As can be
seen from the figure, the relative effort spent on Steps 1, 3 and 4 are compara-
ble across projects; whereas, there are discrepancies across projects between the
relative effort spent on Steps 2, 5, 6 and 7.

Traceability and Slicing (TS) 

Configuration and Derivation (CDSCS) 

Technology Qualification (TQ) 

Fig. 2. Approximate effort distribution for the three projects. Horizontal axis repre-
sents the steps of the collaboration model; vertical axis represents the percentage of
overall project effort in a given step.
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Step 2 in CDSCS used more of the project effort compared to TS and TQ, be-
cause in this project, multiple concrete software products had to be examined in
order to develop a complete picture about the types of the configurable param-
eters and the architectural dependencies. The training step in CDSCS instead
took comparatively less effort than in the other two projects. This was mainly
due to the larger participation of the CDSCS partner in formulating the problem
and defining a solution, and thus receiving more exposure to modeling concepts
before detailed training. As for Initial Validation, the TS project required a
larger percentage of effort, because the project involved a benchmark case study
and was validated in an artificial setting first. Finally, the TQ project used a
larger percentage of the project effort over Realistic Validation than the other
two projects. This was because none of the aspects of the solution developed for
TQ could be validated outside a realistic setting. Therefore, the evaluation for
TQ was focused entirely on Realistic Validation. Note that this also had impli-
cations on the level of training required in the TQ project. Since there was no
initial validation, the experts involved in the TQ project had less exposure to
the solution ahead of realistic validation than the experts in the TS and CDSCS
projects. This gap in solution familiarity had to be compensated for via training.

Our experience from these projects indicates that an important success factor
in industry research is having a precise and concrete problem formulation. That
is, a reasonable amount of effort should be spent during the initial steps of a
project to adequately specify the problem and capture its context factors and
working assumptions. Investing effort early on for problem formulation not only
improves the credibility and validity of the final solution, but could also reduce
the training effort (as was the case in CDSCS).

4 Lessons Learned

In this section, we describe the lessons learned from the three MDE projects
outlined in Section 2. Several of these lessons are general and not limited to
MDE per se. However, since they came out of MDE projects, their usefulness
and whether they convey the right priorities in other types of research projects
has to be further investigated.

4.1 Problem Identification

LL1. The Stated Problem Is Often Only a Manifestation of One or
More Fundamental Problems. This lesson underlines the importance of ob-
servational studies in early stages of a project. In the TS project (Section 2.1), the
problem initially stated by the engineers was to extend and refine their Failure-
Mode and Effect Analysis (FMEA) techniques [20]. After attending software
certification meetings with third-party certifiers, we observed that the majority
of the issues that the certifiers raised were due to the lack of traceability from
safety requirements to design.
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In the CDSCS project (Section 2.2), initial discussions suggested that the most
pressing issues concerned the integration of third-party components. The data
collected from the systematic domain analysis that followed these initial discus-
sions provided us with more insights and showed that a major fraction of the
integration problems stem from improper configuration of software components.

In the TQ project (Section 2.3), the issue initially raised was the need to
increase the transparency and cost-effectiveness of the technology qualification
process. This high-level objective was refined through interviews, observation
of technology qualification activities, and reviewing of some past technology
qualification projects. The refined research needs that came out from analyzing
the high-level objective were discussed in Section 2.3.

4.2 Problem Formulation

LL2. Build a Domain Model as early as Possible. A domain model is a
useful tool to structure the detailed discussions about a problem with an industry
partner, to uncover the tacit knowledge of experts about their domain, and
to avoid ambiguity and misunderstandings over terminology. Industry partners
often see immediate value in domain modeling: with relatively small effort, they
get a reusable “mind map” of concepts they have to deal with on a regular
basis. Domain modeling is highly interactive and uses intuitive notations like
UML class diagrams (or SysML block diagrams if SysML is used). Both factors
contribute to leaving a good “first impression” about MDE.

In the TS project, domain modeling was performed using SysML and spanned
two days, involving approximately 10 person-hours of effort. The resulting SysML
(context) diagram was used during problem formulation for determining the
modules that were subject to safety certification, and subsequently, for identify-
ing the links that these modules had to other modules in the system.

In the CDSCS project, a domain model using UML was constructed during
problem formulation for one family of the company’s subsea systems. The domain
model took about 60-80 hours to create and served as a basis for identifying and
classifying the concepts relevant to configuration of subsea systems.

In the TQ project, given that we were not concerned with the development of
any particular system, and were focused on assessment, we did not initially see
the value of building a domain model. Instead of building a domain model, we
developed a glossary to distinguish assessment concepts such as goal, require-
ment, evidence, safety margin, etc. As the project progressed, it was realized
that a glossary alone, while useful, was not sufficient, because the relationships
between abstract and concrete terms, and the associations between different con-
cepts could not be easily specified. For example, we needed to distinguish various
types of safety evidence, e.g., testing results, analytical models, historical data.
This can be much better done using a model than only a glossary. In the light
of this observation, we are now extending our current assessment methodology
[12] to accommodate an explicit step for domain modeling.
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4.3 State of the Art Review

LL3. Carefully Consider the Context Factors and Working
Assumptions. Context factors and working assumptions constrain what can
be a feasible solution to a problem and are crucial in determining whether an
existing solution can be adopted from the literature or a new solution needs to
be developed.

The contextual factors in the TS project were: (1) The system requirements
were expressed as natural language statements and there was little flexibility in
using more rigorous requirements specification approaches (e.g., formal meth-
ods); (2) There was a technical constraint that a standardized notation (e.g.,
SysML) should be used for the design to minimize ambiguity and communica-
tion overhead when the licensing or regulatory body is performing safety certi-
fication; and (3) The goal pursued from traceability was very specific, namely
compliance to the IEC61508 standard. We did not find any existing solutions in
the literature that satisfied this particular combination.

Likewise, in the CDSCS project, the survey that we conducted of the existing
variability modeling languages did not identify any specific solution that could be
directly used for configuring architectural variabilities in SCSs and could further
capture the hardware-software dependencies in such systems.

In the TQ project, our literature review identified good solutions for the sub-
problems of the original problem. The main challenge was integrating the solu-
tion components into a complete and seamless solution. This was complicated
by the fact that the solution components were multidisciplinary, and combining
them required background from different fields.

In all three projects, the industry partners expected end-to-end solutions that
were not only technically sound but could also satisfy their criteria about cost,
training, integration with existing process, and organization culture.

4.4 Candidate Solutions

LL4. If Practitioners Cannot Conveniently Provide the Input Re-
quired by a Solution, The Solution Is Unlikely to Be Adopted. MDE
solutions are often accused of requiring input models that are too complex for
the engineers to build, or that are based on information which cannot be realis-
tically obtained at an organization. A major consideration in defining an MDE
solution is the simplicity and naturality of the models that it requires as in-
put and making sure the input language is a suitable match for the expertise,
processes, and the culture at the partner company (also see LL3 ).

LL5. Rely as much as Possible on Standardized Modeling Languages.
Reliance on standardized modeling languages increases buy-in from the industry
because it largely avoids “lock in”. Before a company invests into MDE technolo-
gies, they need to ensure that the technologies are going to be supported for a
long time. Proprietary modeling languages are usually considered risky, because
there is uncertainty as to how long they may be supported. Using standards is
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further advantageous for tool building, because solutions can be built on top of
the existing commercial or open-source environments.

The TS project was based on SysML due to its rising popularity in systems
engineering. We used only a subset of SysML that was essential for capturing the
design of the IO modules at the partner company. We held four modeling work-
shops with the lead engineer of these modules to ensure that our requirements for
the input models are reasonable. Thanks to the existing modeling platforms for
SysML, we could develop a tool for our solution, as a plugin for the Enterprise Ar-
chitect modeling environment (http://www.sparxsystems.com/products/ea/),
with relatively little effort.

In the CDSCS project, we base our work on UML and its extension for Model-
ing and Analysis of Real-Time and Embedded systems (MARTE) [21], primarily
because this combination can seamlessly capture software and hardware con-
cepts. Our methodology was designed after conducting interviews with the engi-
neers at the partner company and eliciting detailed information about their sys-
tems to ensure that the methodology would match their needs. The methodology
has been implemented on top of the Rational Software Architect modeling envi-
ronment (http://www.ibm.com/developerworks/rational/products/rsa/).

In the TQ project, the main decision about the input language concerned the
specification and decomposition of safety and reliability goals. Before adopting
goal modeling as the basis for our work, we made sure that key goal modeling
concepts such as “goals” and “obstacles” were natural for the experts. Among
the existing goal modeling languages, we chose KAOS (Knowledge Acquisition
in Automated Specification) [14] for two main reasons: (1) the existence of an
extended set of modeling guidelines in a textbook [14] which could be used for
training; and (2) amenability of KAOS to quantitative assessment. This made
KAOS a nice fit for the existing technology qualification practice which is based
mainly on probabilistic assessment. To provide a usable tool, we implemented
the KAOS notation as a UML profile for the Enterprise Architect environment,
rather than developing a tool from scratch.

4.5 Training

LL6. Do Training Only Incrementally and Based on Needs. Training
has to be incremental and tailored to the needs of the industry partner. On
the one hand, engineers have little slack time and cannot be expected to attend
extensive training. On the other hand, the engineers will not be able to apply
the proposed solutions unless they have received adequate training.

LL7. For Training, Use Examples from the Domain Being Studied,
Not Examples from Textbooks or Other Domains. No matter how com-
plete and concrete the examples used for training are, if the examples are not
related to the industry partner’s domain, they will seldom be convincing enough.
An example in an industry training course is not merely to convey an idea but
also a critical means to demonstrate that the idea applies to the domain of in-
terest. Naturally, examples drawn from a particular domain are also easier to

http://www.sparxsystems.com/products/ea/
http://www.ibm.com/developerworks/rational/products/rsa/
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remember and relate to for experts in that domain. Using such examples also
increases the overall effectiveness of training by creating a greater incentive for
engineers to actively participate in the training sessions.

In the TS project, training was integrated with the modeling review sessions
that we conducted with the engineers. The goal of these sessions was: First, to
validate and refine our design models for the IO modules, and second, to help
engineers modify and build these models for other similar modules. During these
sessions, the engineers were asked to comment on the models and to change them
for other IO modules. At the end of these sessions, we provided the engineers
with a technical report that included step-by-step guidelines for creating design
diagrams and traceability links for their IO modules.

In the CDSCS project, we held a number of modeling tutorials focused specif-
ically on the UML diagrams that were essential for understanding our methodol-
ogy. In the tutorials, we used illustrative examples from the models that we had
built for a family of subsea control systems at the company. The tutorials were
interactive and the attendees were provided with booklets containing modeling
guidelines and examples. At the end of the tutorials, they were asked to perform
a number of modeling exercises.

In the TQ project, training was performed in a number of modeling workshops.
We gave an introduction to KAOS based on its reference book [14]. For exem-
plification, we developed examples from real technology qualification projects.
Each workshop included a hands-on training session where we interactively built
and refined goal models with the experts. We observed that the experts became
increasingly self-sufficient in goal modeling over time.

4.6 Initial Validation

LL8. Validation in an Artificial Setting May Be of Limited Value or
Not Possible. Without good benchmarks, validation in an artificial setting may
have limited value, because there may be too wide a gap in terms of assump-
tions and level of complexity between an artificial and a real case study. For
some problems, an artificial setting may not even be possible, e.g., when expert
judgment is involved.

LL9. Take Particular Note of Scalability Considerations During
Initial Validation. Unfortunately, scalability often comes at the cost of lower-
ing precision, which in turn reduces the conclusiveness of the analyses performed.
During initial validation, it is important to discuss with the industry partner how
a proposed solution will “degrade” in the face of reduced precision in the input
models. A solution is less likely to be adopted if the degradation is too fast or is
just binary (i.e., there is a precision point above which analysis is fully conclusive
and below which analysis is fully inconclusive).

In the TS project, our initial validation involved applying our solution to
the Production Cell System (PCS) [22] – a well-known benchmark for reactive
systems, which has been previously used to evaluate the capabilities of various
specification methods for safety analysis [22]. We constructed a complete set of
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SysML models and traceability links for PCS. Throughout our benchmark study,
we also interacted with our industry partner to learn about the design of their
systems. This interaction influenced the way the design models in the benchmark
were built. A high priority for the partner was to keep the design effort low, while
satisfying all the criteria for compliance with the relevant safety standards. The
partner was flexible to accept a reasonable increase in the amount of modeling
effort if this meant the resulting models would be reusable for other modules, or
exploitable for purposes other than certification, e.g., for staff training.

In the CDSCS project, no artificial cases studies were performed because we
were unable to find representative benchmarks. In this project, we were given
access to a real system by the industry partner at the beginning of the project.
Initial validation was done through seminars in which we presented to the indus-
try partner our solution at different stages of progress and obtained feedback.
Scalability was a key requirement for the solution and had a direct influence on
the level of abstraction of the architectural models that we built, and on the
design of our configuration tool [9].

In the TQ project, no initial validation was performed. As stated earlier, our
solution in TQ involves expert probability elicitation and the only plausible way
to evaluate the solution was to apply it to a real case.

4.7 Realistic Validation

LL10. Choose Your Pilot Studies Wisely! New solutions are rarely put into
use immediately and are almost always tried on pilot projects first. To increase
the chances of a solution getting adopted, one must take the following factors
into account when selecting pilot studies:

– Pilot studies should be representative in the eyes of the industry partners,
so that they can believe the results. In other words, the pilot studies should
adequately reflect the characteristics of the broader range of systems that the
solutions are targeted at.

– Pilot studies should be complex enough for validation and yet commensu-
rate with the available resources. Results from simplistic pilot studies may
be unconvincing or even misleading. On the flip side, if the pilot studies re-
quire resources beyond what the research team can secure from the industry
partner, the studies will not succeed.

– When feasible, pilot studies should be defined over ongoing activities at the
partner company, as opposed to over past activities. From a practical stand-
point, basing a pilot study on ongoing work is beneficial in two ways: First,
the effort for the pilot study will be usually overlapping with the work that
the staff at the partner company have to do anyways to deliver their products
and services. Due to this overlap, the pilot study will no longer be viewed as
a side activity and the staff will be more willing to spend resources on the
pilot study. Second, if the pilot study contributes to improving the current
activities, the solution will have an immediate and tangible impact on the
company, thus increasing buy-in.
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If a reenactment of past activities is chosen as the basis for a pilot study, the
research team has to ensure that the company has a horizon for using the results
of the pilot in the future; otherwise, it may become difficult to stimulate enough
interest from the partner company to actively participate in the pilot.

LL11. Be Ready to Provide Substantial Help in Model Construction
During Realistic Validation. Mentorship is a critical element for success in
research-based innovation, particularly in the context of MDE. Specially, if the
industry collaborators do not have a long history of using MDE, the research
team has to set a good example during early case studies, which the collabora-
tors can learn from, refer to, and reuse in the future. We believe that mentorship
is best done through the deep involvement of the research team in the construc-
tion of the case study models. While time-consuming, “getting one’s hands dirty”
with model construction is also an excellent way for the researchers to under-
stand the modeling needs, and further to show to the partner company that the
researchers are genuinely interested and committed to addressing the partner
company’s problems, in turn helping with building trust (see LL12 ). Once the
mentorship process is complete, researchers’ assistance in model construction
should be phased out to avoid the validity threats one may face in our empirical
studies due to actively helping in creating the models.

In the TS project, the IO modules under study had a complex multithreading
structure. We were told early on that, unless the models built to specify the
multithreaded behavior of the modules were representative of all the modules,
the development team would be unable to apply our solution, because the multi-
threading models were too expensive to build for the modules individually. The
module selected for our case study was deemed as having all the multithread-
ing features that the broader set of modules use. However, to get a grip on
the complexity of the case study, we had to compromise on the communication
protocols that the module could work with: we only considered the simplest com-
munication protocols in our case study. The researchers led the effort on model
construction for the study. The work was aligned with the current needs of our
partner as the models were being prepared for the next round of certification.

In the CDSCS project, representativeness referred to covering as many vari-
ability types in the product family as possible. To achieve this, we chose three
different products that were deemed by the industry partner as collectively cov-
ering the majority of the variability types in their systems. These products were
planned to be used as a basis for their future product development. To manage
the complexity of realistic validation, instead of building a product-line archi-
tecture model that exhaustively captures all the commonalities and variabilities
in the products, we created a model that contains instances of all variability
types. The modeling effort was led by the researchers with participation from
both management and development staff at the partner company.

The TQ project differed from the TS and CDSCS projects in that in was
done in collaboration with an assessment body rather than a system supplier.
The body qualifies a diverse set of technologies ranging from purely mechanical
equipment to software-controlled systems. Due to this diversity, it was infeasible
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to define representativeness in an actionable manner. The selection process for
our pilot studies was opportunistic with the following constraints: (1) the pilot
studies must not be too time-consuming for the experts and should preferably
be on current/recent qualification projects, (2) experts in the domain areas of
the pilot studies have to be available throughout the studies for goal model
construction and expert elicitation. The modeling effort in our first pilot study
was led by the researchers. In the second pilot study, the models were constructed
by the experts with some help from the researchers.

4.8 Solution Release

LL12. Find Internal Champions for the Solution. For most industry re-
search problems, the researchers get to collaborate with the technical staff at the
partner companies, but the final decision about whether to adopt a proposed so-
lution is made by the management team who may not have been involved in the
collaboration. To be able to carry a new solution through to broad use, the tech-
nical staff at the partner company must champion the solution. In other words,
they have to make a convincing case to the management about the solution’s
benefits. For this purpose, the technical staff often have to provide compelling
business cases where the solution leads to cost savings or quality improvements,
and further to propose a strategy for integrating the solution into the current
development workflows at the company. This level of commitment does not ma-
terialize unless the industry collaborators develop a strong sense of trust in the
researchers and the research being conducted. Building such trust takes years
and requires the researchers to develop a deep appreciation of the business cul-
ture at the partner company [23].

The TS project is championed by the lead engineer of the IO modules, who
has also developed and presented an exploitation plan to the management after
the industrial case study was concluded. The CDSCS project is championed by
the quality assurance team, who are currently investigating how the developed
solution can be integrated into the existing tool chain at the company. For the TQ
project, management was involved in the technical work of the project, giving us
the opportunity to continuously synchronize our solution and tool support with
the required business cases at the partner company.

5 Conclusion

This paper reports on experiences we have had with three industry partners in
performing what we call research-based innovation. The fundamental position of
this research paradigm is that, in software engineering as in other engineering
disciplines, research and industrial innovation can be beneficially intertwined
in order to ensure that the problems addressed by researchers are well-defined
and relevant. We must also strive to account for all important context factors
in devising solutions to software engineering problems and this requires close
interactions with industry partners.
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This research paradigm is also an effective way to transfer novel technologies
to practitioners as they are involved early on in the development of the solutions,
thus creating many opportunities for mentoring and a sense of ownership. An-
other way to describe this research paradigm is to highlight its inductive nature,
that is the fact that we work from specific observations in concrete settings but
attempt to build general solutions with clear working assumptions.

The lessons learned we report in this paper are focused on applications of
Model-Driven Engineering. They are structured according to the various phases
of our research-based innovation model (Figure 1), starting with Problem Identi-
fication and ending with Solution Release. The ultimate goal of structuring and
sharing these experiences is to help future researchers and practitioners better
cooperate and ensure the success of their collaboration endeavors. Some of these
lessons learned focus on how to thoroughly understand the problem and context
before working on a solution. In software engineering, characteristics of the sys-
tem, organization, and human factors can have a strong influence on whether a
solution is applicable and scalable.

We also discuss other factors that influence the development of a solution such
as the need to account for modeling standards and assessing the feasibility of
integrating the solution within the existing process. How to perform training is
also addressed as being a key component of the paradigm. Industry practitioners
usually have little time to devote to professional education and this is usually a
significant obstacle to change. Last, we addressed the validation of the proposed
solutions, both at an early stage and then later on in realistic project settings. A
two-stage validation, though not always possible, is a way to alleviate the risks
associated with novel solutions.

From a more general standpoint, this paper discusses ways to bridge the exist-
ing gap between software engineering research and practice, an issue we believe
to be of crucial importance for the future of our profession.
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Abstract. We present an industrial model-driven engineering process
for the design and development of complex distributed embedded
systems. We outline the main steps in the process and the evaluation
of its use in the context of a radar application. We show the meth-
ods and tools that have been developed to allow interoperability among
requirements management, SysML modeling and MBD simulation and
code generation.
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Based Design, Platform-Based Design.

1 Introduction

The complexity of modern cyber-physical systems is rapidly growing. Advanced
system engineering methodologies are required to integrate all the competencies
and specialty groups required for the realization of a system using a structured
development process from concept to production to operation. The motivations
and objectives of the industrial design process we present in this paper are:

– Improve the quality of the requirements moving towards their definition in a
formal language and the need for tracking requirements into design artifacts
and hardware or software implementations;

– Improve the quality of the functional solutions by early verification and
validation on models using simulation, model checking or other forms of
automated verification;

– Produce reusable and documented components at all levels in the design
flow;

– Automatically derive implementations from models that are provably cor-
rect. Also, automatically generate documentations and possibly test cases.

R.B. France et al. (Eds.): MODELS 2012, LNCS 7590, pp. 810–826, 2012.
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Model-driven approaches such as domain-specific modeling languages, Model-
Driven Architecture (MDA) and Model-Based Development (MBD) are possible
choices to form the backbone of the design flow. Albeit MDA and MBD share the
same principle (models as primary artifacts driving the design and development
process), they differ substantially in their details. Each on his own is incapable of
addressing all the challenges of modern system design. However, their strengths
and weaknesses are complementary: MBD languages enable the realization of
mathematical specifications that can be exploited for system simulation, testing
and behavioral code or firmware generation, but they lack expressive power to
represent complex system architectural aspects and execution platforms. More-
over, their extension mechanisms are quite limited in scope. On the other hand,
MDA languages are very good at representing architectural aspects and are de-
signed for being easily extended and provide mechanisms to transform models
expressed in a language into another. However it is still hard to exploit these
kind of models for model execution and simulation.

Starting from requirement capture, our approach follows the tenets of
Platform-Based Design (PBD)[2], in which a functional model of the system
is paired to a model of the execution platform. In particular, we present in
this paper an integration of MBD and MBA to realize a comprehensive system
engineering process based on the INCOSE framework [23]at Elettronica S.p.A
(ELT)[1], one of the European leaders in the production of Electronic Defence
equipment (EW). We describe tools and model integration techniques, automatic
code generation using both MDA and MBD tools and the development of domain
specific metamodels and profiles, extending the OMG MARTE standard.

2 The Design Process

2.1 Our Objectives and Motivations to Change

As any industry the main reasons why we have decided to evolve and update
our design and development process are: to increase quality; to increase produc-
tivity; to reduce costs. In order to achieve these objectives we have identified
some aspects of our design and development process that could be positively
affected, for what concerns quality, productivity and costs, by a model driven
approach. The first aspect is: documentation. As a company operating in the
defense industry we have to provide a lot of documentation when designing and
developing a product. According to the MIL-STD-498 standard [24], to which
ELT is conform, more than 20 different documents have to be provided just for
the design and development of the software architectgure of a system. For each
document a review process has to be done in order to ensure its contents are
correct, enough descriptive and coherent. This is a very expensive activity that
has to be repeated every time we modify a project. Thanks to the model driven
workflow here described we have managed to automatically obtain almost all the
documentation from the models. The second aspect we wanted to optimize is the
interaction among engineers with different specialties (i.e. SW, HW, FW) which
work together but use different modeling and development tools. Often errors,



812 A. Sindico, M. Di Natale, and A. Sangiovanni-Vincentelli

due to misunderstanding, crept in and an extra effort was frequently needed in
order to integrate their design activities. The process we present in this paper is
instead a unified framework enabling SW,FW and HW engineers to share mod-
els and reduce integration effort. The third aspect is the reuse of components
which is now optimized by the fact that the exploitation of modeling languages
enable the definition of a functional architecture which is independent of a spe-
cific actual execution platform. Only when it has to be deployed onto a specific
platform the functional model is related to a platform model. Such mapping
eventually enables the automatic generation of the SW and FW artifacts which
realize the functional model for that platform.

2.2 The Overall Structure

The model driven design and development process we have defined (shown in
Figure 1) starts with the System Requirements Analysis and Definition stage
that establishes functional and performance requirements. The output of this
phase is a System Subsystem Specification (SSS) [24] document. Requirements
are expressed, documented, managed and linked to test descriptions (for ver-
ification) using the DOORS tool by IBM. In order to provide the required
formalization to requirements, DOORS textual descriptions are supplemented
by SysML state and interaction diagrams, block diagrams, (interface) type def-
initions and OCL constraints. For the creation and management of the SysML
models, the Topcased open source tool, based on the Eclipse Modeling Frame-
work (EMF) is used. The need to preserve the consistency of the requirements
and of the links tracking the requirements to architecture-level design decisions
and (refined) subsystem requirements led to the development of automatic trans-
formations between the DOORS and SysML tools and the information managed
by them, implemented in a custom Eclipse plugin (shown as 1© in the figure).
The plugin leverages the support offered by EMF for the OMG languages for the
development of metamodels (ECORE) to transform the DOORS requirements
modules in an Ecore model, and model-to-model QVT transformations to keep
the DOORS and SysML models synchronized.

The following stage of architecture-level Solution Definition translates these
requirements into a system architecture design and the corresponding document
called System Subsystem Design Description (SSDD) [24] that encompasses the
functional and execution platform architecture, and addresses the functional
requirements defined in the SSS. In the ELT process, DOORS is the master tool
for storing the textual requirements associated with the SSS and SSDD. System
models of the functional architecture and the execution platform are defined
in Topcased, and the plugin connecting Topcased and Eclipse with DOORS
synchronizes the architecture-level requirements in a similar way to what is done
with the system-level specifications. In addition, the plugin detects refinement
chains in the SysML model and automatically imports them as DOORS links
(step 2© in the figure).
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Fig. 1. Early V&V, model transformations and automatic generation of implementa-
tions in the ELT process

System interfaces are described in additional documents: the Interface Require-
ments Specification (IRS)[24], and the Interface Design Description (IDD). The
ELT process realizes a platform-based design approach [2] rendered here for the
sake of simplicity as an early V&V model on top of a (conventional) V process.
Automation is provided for the system-level testing stage, where the SysML
interaction diagrams defined for the system and subsystem specifications are
automatically processed to generate the models of the system- and subsystem-
level tests that verify them ( 3© in the figure). In architecture design, the SysML
models of the system and the subsystems are defined according to the Platform-
based Design paradigm, separating the functional model from the model of the
execution platform, including the physical architecture. A third model represents
the deployment of the functional subsystems onto the computation and commu-
nication infrastructure and the HW devices. To define the execution platform
and the mapping relationships between the functions and the platform (which
defines the model of the software tasks and the network messages, among oth-
ers) domain-specific SysML extensions are required. We found that the standard
MARTE profile [10] is not completely adequate for our needs. We therefore de-
fined our own domain-specific stereotypes as extensions to MARTE (step 4©
in the process). Synchronous reactive behavioral models of algorithmic compo-
nents are developed in MATLAB/Simulink: a Mathworks toolset comprising
a graphical modeling language (Simulink); a scripting language (MATLAB [18])
and a set of simulation, analysis and optimization and synthesis tools. These
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models provide an early validation of the system functionality by simulation
and are used to automatically derive a software or firmware implementation.
The Simulink models can refine functional subsystems of the SysML architec-
ture (in a top-down development) or provide building blocks for the definition of
the system (in a bottom-up flow). To support both paths, we developed scripts
and code generation templates that can be used to transform a Simulink subsys-
tem (hierarchy) into a (set of) SysML block(s) and viceversa, preserving the flow
specifications at the interface ports (step 5©). The process uses code generation
techniques or automatic generation of firmware implementations starting from
the Simulink models for the behavioral part, and from the SysML architecture
description for the implementation of the communication and synchronization
functions and for the code framework of the software tasks 7©. The synthesis of
the communication functions over shared memory and serial links uses a defini-
tion of the message model based on an Ecore metamodel that has been defined
ad hoc 6©.

2.3 Structure of a Project

Figure 2 depicts the reference SysML project structure used to organize and
relate the model elements used in the system design process. The project consists
of six packages:

– a SystemRequirements package containing a SysML model of the system re-
quirements imported from a DOORS SSS module by means of a RIF export;

– an IntefaceDataTypes package containing a SysML model defining the Data
Types and Interfaces provided and required by the system and its parts;

– a SystemFunctionalArchitecture package containing a SysML model describ-
ing the functional architecture of the system, as a network of subsystems
exchanging data signals;

– an ExecutionPlatform package containing a SysML model describing the
execution platform in terms of the HW and basic software components, in-
cluding boards, memories, processing units (cores), network connections, but
also device drivers, operating system(s) and middleware. For this purpose,
we extended the standard MARTE profile [10] for real-time and embedded
systems, providing baseline concepts for representing HW/SW systems;

– a Mapping package containing a SysML model using an extension of the
MARTE Mapping profile to specify how functional components and behav-
iors are mapped onto an execution platform, generating the software archi-
tecture of tasks and messages. To guarantee independence and reusability as
well as visibility of the design entities involved in the mapping, the mapping
model imports both the functional and platform models;

– a Test package containing a SysML model defining all the tests by means of
which the system requirements shall be verified.

Separated from the project models we maintain a domain model which is shared
among the different projects and contains domain specific meta-entities describ-
ing the information managed by the system. This organization enables the reuse
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Fig. 2. The structure of SysML projects in ELT

of Interfaces and Data Types and according to the PBD paradigm, allows deploy-
ing (by mapping) the same functional model into different platforms of execution.

2.4 System Requirement Modeling and Management

Our process starts with the definition of the system requirements in DOORS.
Requirements are expressed in natural language, which can be easily understood
by customers and other stake-holders, but is subject to inconsistencies, omissions
and duplication of information. To partially obviate to these problems, the SSS
requirements are paired with a SysML (semi)formal description. Next, when
the architecture models are defined, each model artefact must be traced to the
requirements that originated it and also to the (subsystem-level) requirements
that it defines.

To this end, we realized an Eclipse plugin for automating the exchange of
information and the synchronization of requirements models and diagrams be-
tween DOORS and Topcased. The plugin exploits a standard XML format for
requirements interchange called RIF (Requirement Interchange Format [25]). A
metamodel for the RIF format is available in Ecore and used in our approach
to automatically generate an Ecore model by importing the RIF XML exported
from DOORS. As with any other Ecore model, the Eclipse modeling framework
automatically generates an editor that can be used to modify the imported data.

In addition, we built a synchronization engine, based on correspondence rules
between the DOORS RIF objects and their attributes (in a given module) and
corresponding SysML elements and attributes in Topcased. The synchronization
module is based on rules written as QVT Model to Model transformations [17]
to synchronize the content of corresponding elements or automatically generate
them when requested. On top of the synchronization component, a wizard allows
the user to create correspondences between sets of requirements and sets of
SysML elements. In this way, parts of a source DOORS module (i.e. paragraphs,
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interface requirements, functional requirements, parametric requirements) can
be imported, or updated, into a new or already existing target SysML model.
Among the predefined rulesets provided by the wizard, the user can take a
DOORS module containing SSS requirements and automatically import it into a
(newly generated) SysML project as a set of SysML requirements. These SysML
requirements are used in the subsequent phase to define Satisfy relationships
with the SysML model entities of the architecture design (SSDD).

2.5 Computational Independent Models

A Computation Independent model or CIM (also called domain model) is a con-
ceptual model of the domain of interest (or problem domain) which describes the
various entities, their attributes, roles and relationships, plus the constraints that
govern the integrity of the model. Using Ecore, ELT defined an electronic warfare
meta-model (details can be found in [20]) as a formal and structured represen-
tation of the electronic warfare concepts, ranging from the concept of Platform
(i.e. aircraft, ships, tanks, etc.), to Sensors (i.e. Radars, ESMs, etc.), electro-
magnetic Waveforms (i.e. Radiofrequency, Pulse Repetition Interval, etc.) and
Countermeasures (i.e. Jammers, Chaff, Flare, etc.). This Ecore model represents
our Computational Independent Model and we want to keep it unique for all
the system we design. Our first aim in designing a new system is thus verifying
whether our domain model is expressive enough to cope with the system require-
ments. If the domain model does not contain concepts or entities’ characteristics
referenced in the system’s requirements we extend it or adapt the requirements
(in collaboration with the customer).

2.6 Defining the (Platform Independent) Functional Architecture

Once the system requirements are defined and the ontology of the domain en-
tities is available in the CIM, we start the actual system design by defining
the functional architecture of the system. To this end, we use SysML with the
MARTE (Modeling and Analysis of Real Time Embedded Systems) profile [10].
The SysML functional model of the system is a network of subsystems. Each
SysML Block represents a (sub)system functionality defined independently of
the eventual implementation technology (i.e. Software, Firmware, etc.) or the
HW upon which it will be executed (i.e. CPU, GPU, FPGA, etc.) according
to the PBD paradigm. The System Functional Architecture package contains
the SysML design of the architecture, consisting of Blocks, representing func-
tional subsystems, ports (interaction points) and connectors among ports. As
in any SysML model, standard (synchronous) invocation of services is modeled
through UML StandardPorts each typed with a UML Interface providing Op-
erations, each of which represents a behavior of the related component invoked
synchronously (in a blocking fashion) with respect to the caller. Non-blocking
communication may occur according to a discrete-event model (through signal
events) or according to a stream of data values produced periodically accod-
ing to a discrete-time base. In the case of (asynchronous) signal events, we use



A System Engineering Process with MDA and MBD 817

Fig. 3. The system-level design flow

ports stereotyped in MARTE as ClientServerPort that allow transmission or
reception of UML Signals. The corresponding port interfaces are stereotyped as
ClientServerSpecification. A UML Reception, stereotyped as ClientServerFeature
may be associated to each signal received by the port, specifying the behavior
response to it. The case of communication through periodic data streams is of
special interest, because it mirrors the communication semantics that is used in
the Synchronous Reactive (SR) models produced by the Simulink tool. In this
case, the behavior of a SR functional subsystem needs to be further restricted.
Communication ports will be SysML flow ports stereotyped as SRFlowPort.
Also, an SR subsystem is stereotyped as SRSubsystem and characterized by the
realization of a standard runtime interface consisting of a single Step method.
The SRSubsystem stereotype is associated with an execution period attribute.
Interfaces and client server specifications are contained in the Interface and Data
Types package so that they can used multiple times in different contexts. Data
types are generated from the previously described domain model. This guaran-
tees that the system relies on well structured and homogeneous data descriptions,
each constrained within the value range prescribed by the SSS. The functional
model of the system is part of the SSDD description and must be linked to the
SSS requirements from which it originated. After being imported from DOORS,
the SSS requirements are mirrored in the SysML tool as a set of SysML re-
quirements. Each component, port, interface and signal of the SysML functional
model is connected to the requirement it satisfies by means of the SysML Satisfy
relationship. OCL scripts verify that each functional component satisfies at least
one requirement. Each subsystem will define a set of derived requirements on its
structure and behavior. Those requirements are linked with a Trace relatonship
to the functional subsystem (or element, like a port or even a connection) that
originates them. By following the chain SSS Requirement → Satisfy → SysML
element→ Trace → SSDD Requirement, the tool is capable of inferring a Derive
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Relationship between the SSS and the SSDD requirements. The synchronization
plugin with DOORS allows to define other associations (QVT transformations)
for the automatic generation of the objects in a DOORS SSDD module starting
from a set of SysML architecture design descriptions and requirements. Further,
the tool generates a DOORS refinement link for each Derive relationships be-
tween SSS and SSDD requirements in Topcased. Figure 4 depicts a portion of
a real functional architecture model extracted from an actual ELT system. The
figure illustrates the kind of complexity in terms of interactions and interfaces
that is typical of ELT models.

Fig. 4. A portion of the Internal Block Diagram of the EW Integrated System

Once the functional architecture is defined, a state diagrammust be associated
to every subsystem in the functional architecture model. For each state transition
we define both triggers (e.g., the reception of a signal on a port) and guard
conditions by means of OCL constraints. After, the behaviors associated with
each of the subsystem states are defined.

The UML Superstructure [7] defines two kind of behaviors: executing and
emergent. Interaction diagrams (i.e. sequence diagrams) are used to model emer-
gent behaviors. Communication among active objects occurs through UML Sig-
nals. Active objects hide their Operations, which are invoked only upon the
reception of a signal. This approach improves the separation of concerns. While
modeling emergent behaviors we add time constraints for each request/response
exchange or operation call by means of UML DurationConstraints.
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Some executing behaviors are defined by activity diagrams and then imple-
mented manually in C++. Other actions define behaviors that are imported
from a Simulink model or for which an MBD development flow is going to be
used. These are stereotyped as Analytical and must refer to a Step function
of an SRSubsystem block. In case of a top-down process, the development flow
makes use of transformations from the interface view of the SysML SRSubsystem
block into the specification of a Simulink Subsystem, complete with its ports and
datatype specification as Bus Objects. The Simulink subsystem is then further
developed in the Mathworks environment. The transformation currently in use
is an Acceleo script (described in [21]) that transforms the SysML block into a
set of MATLAB scripts. More often, however, the functionality to be developed
has already been prototyped in Simulink and a reverse transformation generates
a SysML block. In this case, a MATLAB script generates an XML file compliant
with an Ecore metamodel developed ad hoc for the representation of Simulink
subsystems in EMF. A QVT model-to-model transformation then generates the
SysML block from the Ecore model. Later, at code generation time, special care
must be taken when generating the data implementations of the port interfaces
and the calls to the Step operations of the SRSubsystem blocks.

2.7 Execution Platform Modeling and Mapping

The execution platform and the mapping models define the structure of the
HW and SW architecture that supports the execution of the functional model.
For both models we leveraged the standard definitions of the MARTE profile.
However, it was apparent that MARTE is extensive and general and yet still
lacks several features of interest.

The execution platform is defined in a package called PlatformModels with
the same principles of hierarchical decomposition used in the functional model.
Here, blocks represent hardware components at different levels of granularity,
but also classes of basic software, including device drivers, middleware classes
and operating system modules. The MARTE profile provides several concepts
for the basic software classes, but is unfortunately not adequate for the definition
of hardware components. For example, not a single stereotype is dedicated to
the representation of physical network links (of any type), connectors or cables.
Also, concepts like message frames (for Ethernet, Controller Area Network or
other standards) and the placement of data signals onto frames are missing. For
this reason, we had to define our own taxonomy of stereotyped definitions for
most hardware components. Most of them were quite straightforward, others re-
vealed minor complexities or subtleties for usability, such as for the definition of
broadcast buses, which are derived by extension from the connector and block
metaclasses to ensure the possibility of representing one-to-many connections
(impossible with SysML connectors), but at the same time, allowing a more nat-
ural modeling of physical links with connectors whenever possible. The definition
of stereotypes for other physical elements proved to be much more difficult, as is
the case of connectors with multiple pins, a subset of which realizes a communi-
cation bus (such as, for example, an Ethernet link). In this case, the connector
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Fig. 5. A UML profile involved in physical communications

stereotype cannot be simply obtained by extending the port concept, because
ports cannot contain other ports representing pins. Figure 5 shows an example
of UML profile we have developed in order to model serial(e.g., RS232, RS422,
ARINC-429, and USB) and parallel (e.g., PCI, and VME) busses and cables.
The Mapping definitions are contained in the MappingModels package, in which
the mapping of the functional subsystems onto the execution platform generates
the SW architecture of tasks, messages and logical resources. For the definition
of concurrent software we use the SWConcurrency package which defines the
stereotype SwConcurrentResource to represent entities competing for comput-
ing resources and executing sequential instruction segments. The elements of
this package provide an execution context (e.g., stack, interrupts enable/disable
and registers) for an execution flow (sequence of actions).

2.8 Automatic Generation of Documentation, System and Unit
Tests and Software/Firmware Implementations

A significant improvement in the productivity and quality of the process is ob-
tained using the tools for the automatic generation of models, documents and
implementations (code and firmware). Documentation Once the elements of
the Functional Architecture and the Execution Platform models have been put
in a mapping relationship, we can apply a transformation workflow aimed at au-
tomatically generating an SSDD document describing the system architecture.
Most of the SSDD, SRS and SDD [24] contents are, in fact, already present in the
defined functional and platform models and can be imagined as different views
of the same models. The QVT transformations of the SysML-to-DOORS plugin
generate a RIF file that is imported, generating DOORS modules for the SSDD.
IRS and IDD specifications and the corresponding documents, each linked to the
related SSS requirements, according to what specified in the SysML model with
the Derive links.
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Test Cases
QVT transformations have been defined to process the interaction diagrams de-
scribing the system-level behaviors and generate the sequence diagrams of the
test suites that verify out of range and in range invocations for each constrained
operation call. Additional sequence diagrams are generated for all the duration
constraints aimed at testing out of time conditions. The models representing
system and unit tests are generated from the constraints on the entities of the
functional architecture and can be an input to further transformations aimed
at the automatic generation of the related System Test Plan and System Test
Description documents.

Implementation Generation
The automatic generation of the implementation of functionality is performed
using Mathworks tools (Simulink Coder) to derive the FPGA (if firmware) or
C (C++) code implementation (if software) of the behavior of some functional
subsystems. The generated FPGA implementation communicates with the other
subsystems using a set of registers and shared memory locations. The C or C++
generated code follows the conventions of the code generator (two functions for
the subsystem initialization and termination and a function with a conventional
name for the runtime evaluation of the block outputs given the inputs and the
state). The Simulink Coder conventions also define the names of the variables
implementing the interface ports. Other functional subsystems are developed
manually by hand-written code or purposely designed HW or firmware.

For the infrastructure that provides communication and synchronization
among blocks, we exploit the possibility of generating code using Acceleo trans-
formation rules (this work has not been completed as yet). For the communi-
cations among subsystems implemented by hand-written C++ code, there are
two options. In the case of local communication (detected from the mapping in-
formation of the SysML model), we defined a set of transformations generating
boost [27] active objects, signals and state machines according to what speci-
fied in the platform independent architecture models. In this case, data struc-
tures are also automatically generated and OCL constraints turned into run-time
checks on the specified value boundaries. When communication is remote (that
is, when the mapping model places the two communicating subsystems on dif-
ferent nodes) and, in case the connecting network is of Ethernet type, we make
use of a purposely developed Ecore model that defines mapping details, such as
on what (TCP/UDP/IP) message the data signal is transmitted and with which
offset and encoding, to generate automatically the network interface part of the
communication.

For the communication between hand-written C++ code implementing func-
tional subsystems and subsystems generated in SW from Simulink model, Ac-
celeo scripts automatically generate the wrappers that provide the marshalling
of parameters to the variables implementing the input ports and retrieving the
data from the output port variables. The Step function implementing the sub-
system runtime behavior is invoked in the context of a software thread executing
at the appropriate rate.
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Finally, for the case of communication between automatically generated
firmware implementations and software subsystems, the read and write interface
operating on the shared registers andmemory locations is automatically generated
using Acceleo based on the information provided in an additional Ecore mapping
model, defining the position of data signals in memory and/or HW registers.

2.9 Dealing with Legacy Systems and Sub-systems

The described process is applicable to the design and development of any new
system though particular attention has to be provided when dealing with already
existing legacy components (either HW, SW or FW) for which nomodels are avail-
able. In this case our approach is to manage the legacy component as a black block
and define modeling elements wrapping it. To this end we apply the Facade de-
sign pattern [47] each time the component does not provide a cohesive enough
well structured architecture. Such solution can be permanent, for those compo-
nent which are very stable and are not supposed to be extended/improved in the
future, or temporary, for those components we think will need to be extended or
improved in the future. In this second case we may in fact decide to start a reverse
engineering process aimed at obtaining a set of SysMLmodels describing the com-
ponent itself. This decision is any time taken after an evaluation of the required
extra cost compared to the return of investment that could derive.

3 A Case Study on an Electronic Warfare System

As an example of what can be achieved with our process we present results
related to a project developed at ELT from 2010 to the end of 2011 called Elec-
tronic Warfare Manager (EWM [29]). The EWM realizes a Mission Computer
for an electronic defence suite capable of gathering information from the avail-
able sensors (i.e. Radar Warning Receivers, Laser Warning Systems and Mis-
sile Warning Systems [28]), providing an integrated situation assessment that
decides what of the available electronic countermeasures (i.e. Chaff, Jammers,
etc.) to apply and managing their execution. From an industrial point of view,
a fundamental requirement for the system is that it must ensure connectivity
with different physical communication links on different platforms, according to
the customer. Retargetability of communication interfaces was obtained by the
automatic generation of IRS, IDD, and related C++ implementation from an
abstract SysML model of the interfaces. By modeling each communication pro-
tocol as described in Section 2.4, more than 15K lines of code (LOC) and almost
200 pages of documentation (IRS and IDD) have been automatically generated.
The code implementing these transformations is about 2,4KLOC implying that
the effort has been significantly reduced. Also the remaining part of the system
architecture has been modeled, as described in section 2.4, by means of SysML,
MATLAB and Simulink with the automatic generation of the corresponding im-
plementations for additional 25KLOC. Although it is in principle possible to
generate almost all the required code, as of now we still have to add some glue
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code allowing interactions among generated components. For the EWM, this
code was about 5KLOC so that the whole system is about 45KLOC, 90 percent
of which has been automatically generated from models. In order to have an eval-
uation of the saved effort we used the Constructive Cost Model II (COCOMO
II) [30] [32]. A web application provided by the Center of Systems and Software
Engineering (CSSE) [31] estimates for a SW project of 40KLOC (the amount of
code we automatically generated), leaving all the other COCOMO parameters
as nominal, a development effort of 169.9 Person-months for a cost of 1868638$.
This does not mean that 90% of this amount was actually saved, because the
Inception and Elaboration phases, corresponding to the System Requirement
Analysis and System Design Phases, are still (mostly) manually performed. How-
ever, the design step that is most affected by automatic code generation is the
Construction phase, which is also the most expensive (estimated by the CSSE
to be $1,420,166 for a duration of 12.5 months and 10.3 people involved). Ac-
curacy of the CSSE-COCOMO estimates was confirmed from the fact that the
Inception and Elaboration phase estimates turned out to be quite close to the
actual effort and cost experienced at ELT.

4 Related Work

The amount of work related to our project is simply staggering. We provide
some references with respect to and technologies used in the stages of the pro-
cess, but there are surely many more that are omitted. The match of a functional
and execution architecture is advocated by many in the academic community
(examples are the Y-cycle [33] and the Platform-Based Design PBD [2]) and in
the industrial domain (the AUTOSAR automotive standard [34] is probably the
most relevant recent example) as a way of obtaining modularity and separation
of concerns between functional specifications and their implementation on a tar-
get platform. The OMG and the MDE similarly propose a staged development
in which a PIM is transformed into a Platform Specific Model (PSM) by means
of a Platform Definition Model (PDM) [35]. The development of a platform
model for (possibly large and distributed) embedded systems and the model-
ing of concurrent systems with resource managers (schedulers) requires domain-
specific concepts. The OMG MARTE [10] standard is very general, rooted on
UML/SyML and supported by several tools. MARTE has been applied to several
use cases, most recently on automotive projects [37]. However, becasue of the
complexity and the variety of modeling concepts it has to support, MARTE can
still be considered an ongoing work, being constantly evaluated [36] and subject
to future extensions. Several other domain-specific languages and architecture
description languages of course exist, such as, for example EAST-AADL and
the DoD Architectural Framework. Several other authors [38], [39] acknowledge
that future trends in model engineering will encompass the definition of inte-
grated design flows exploiting complementarities between UML or SysML and
Matlab/Simulink, although the combination of the two models is affected by
the fact that Simulink lacks a publicly accessible meta-model [38]. Work on the
integration of UML and synchronous reactive languages [40] has been performed
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in the context of the Esterel language (supported by the commercial SCADE
tool), for which transformation rules and specialized profiles have been proposed
to ease integration with UML models [41]. With respect to the general subject
of model-to-model transformations and heterogenous models integration, several
approaches, methods, tools and case studies have been proposed. Some proposed
methods, such as the GME framework [42] and Metropolis [43]) consist of the
use of a general meta-model as an intermediate target for the model integra-
tion.Other groups and projects [44] have developed the concept of studying the
conditions for the interface combatibility between etherogeneous models. Exam-
ples of formalisms developed to study the formal conditions for compatibility
between different Models of Computation are the Interface Automata [45] and
the Tagged Signal Language [46]. In this context our contribution is to pro-
vide an example of an actual industrial framework in which different tools and
languages (i.e. DOORS, UML, SysML, MARTE, DSLs, SIMULINK, M2M and
M2T Transformations,etc.) are integrated together into a single design and de-
velopment workflow. Our contribution aims to show that there is not a ”ready to
use” model driven process suitable to any industry. It is instead necessary to de-
sign the process itself and properly tailor it around specific needs that could vary
from a company to another. In our experience this process engineering activity
can only be performed by a team with a very deep and wide knowledge of the
existing technologies and methodologies together with a strong understanding
of the company domain and needs.

5 Conclusions

In this paper, we presented an industrial flow and related tools featuring the in-
tegration of Model Driven Architecture and Model Based Design methodologies
using a Platform-Based Design paradigm for the realization of military real-
time embedded systems conforming to the MIL-STD-498 standard. The process
is characterized by integration of heterogeneous languages, methods and tools,
from requirements to implementation generation, in a flow in which the back-
bone is provided by the open source Eclipse Modeling Framework (EMF) and
its metamodeling, model-to-model and model-to-code transformation capabili-
ties. We provide system traceability from DOORS requirements to SysML design
elements and system-level tests, and viceversa. In our process, the functional ar-
chitecture is developed separately from the execution platform and later merged
with it, according to the PBD paradigm. The development of the models for
the execution platform revealed inadequacies and limitations of the standard
MARTE profile, which was suitably extended and for which a new release that
addresses the concerns regarding the communication modeling is strongly ad-
vocated. In our approach, almost all MIL-STD-498 compliant documentation is
automatically generated from system models. Similarly, on selected case studies,
about 90 percent of the target code and firmware implementations are gener-
ated from models with substantial savings. Behavioral code is generated from
Simulink models, while infrastructure, communication code and tasking code is
developed from SysML models and Ecore models, processed by Acceleo scripts.
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