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Abstract. In the recent years, extensions of graph transformation sys-
tems with quantitative properties, such as real-time and stochastic be-
havior received considerable attention. In this paper, we describe the new
quantitative modeling approach of probabilistic graph transformation sys-
tems (PGTSs) which incorporate probabilistic behavior into graph trans-
formation systems. Among other applications, PGTSs permit to model
randomized protocols in distributed and mobile systems, and systems
with on-demand probabilistic failures, such as message losses in unreli-
able communication media. We define the semantics of PGTSs in terms
of Markov decision processes and employ probabilistic model checking for
the quantitative analysis of finite-state PGTS models. We present tool
support using Henshin and Prism for the modeling and analysis and
discuss a probabilistic broadcast case study for wireless sensor networks.

1 Introduction

Graph transformation systems (GTSs) provide a natural and expressive formal-
ism for modeling dynamic distributed and mobile systems. In the recent past,
extensions of graph transformation systems with quantitative properties such
as real-time [1,2] and stochastic behavior [3] have been developed to increase
their expressiveness further. However, many protocols used in distributed sys-
tems also employ randomization in the form of discrete probabilistic behavior to
ensure liveness properties or to optimize quality of service properties without in-
troducing a centralized authority. Probabilistic behavior is also a key ingredient
for describing on-demand random failures, such as message losses in unreliable
communication media. However, such discrete probabilistic decisions are not sup-
ported by any of the existing quantitative graph transformation based modeling
approaches. Furthermore, since the employed models are always abstractions of
the real systems, they inevitably contain nondeterminism for which no proba-
bilistic assumption can be made. Consequently, a modeling approach is required
that also permits to combine probabilistic and nondeterministic behavior.

As a case study for probabilistic and nondeterministic behavior in distributed
systems, we consider a probabilistic broadcast protocol for wireless sensor net-
works (WSNs) described and formally analyzed in [4]. WSNs are decentralized
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and spatially distributed networks that do not rely on an existing infrastruc-
ture, such as routers or access points. To acquire or distribute information in
such networks, often a simple form of a flooding protocol is employed, where
flooding means that a node that receives a message forwards it to all its neigh-
bors by a broadcast. However, the nodes in a WSN typically have to work with
very limited resources such that unnecessary communications should be kept at
a minimum in order to save energy. So-called gossiping protocols use randomiza-
tion in order to reduce this overhead. In a gossiping protocol, every node decides
with a certain probability whether to forward a received message or not, which
reduces the communication costs. While the local decision whether to forward a
received message or not requires probabilistic behavior, the asynchronous nature
of the message delivery in such a network requires nondeterministic behavior.

In this paper, we introduce probabilistic graph transformation systems
(PGTSs) which permit to describe both probabilistic and nondeterministic phe-
nomena, and develop methods for their quantitative analysis. Transformation
rules in PGTSs can have multiple right-hand sides, each of them annotated with
a probability. The choice for an applicable rule and a particular match is nonde-
terministic, whereas the effect of a rule is probabilistic. We define the semantics
of PGTSs in terms of Markov decision processes (MDPs) and employ probabilis-
tic model checking for the quantitative analysis of finite-state PGTS models. We
present tool support for the modeling and analysis of PGTSs using the Hen-
shin [5] graph transformation tool and the probabilistic model checker Prism [6].
We discuss some of the advantages of PGTSs over component-based modeling
approaches using the WSN case study presented in [4]. Briefly, PGTSs provide
a better modeling scalability as the complexity of the model does not grow with
the complexity of the topology. Also, models in the graph transformation-based
approach can be more easily adjusted to reflect topology or protocol changes.

Organization Section 2 and 3 recall the formal foundations, specifically typed
graph transformation systems, Markov decision processes and the probabilistic
logic PCTL. We use the case study to illustrate their particular capabilities. In
Section 4 we introduce probabilistic graph transformation systems as a modeling
language and define their semantics. In Section 5, we present a probabilistic
model of our case study and compare it to existing models. In Section 6 we
present our tool support and discuss the obtained analysis results for the case
study. Section 7 contains related work and Section 8 conclusions and future work.

2 Typed Graph Transformation

We follow the double pushout (DPO) approach for typed graph transforma-
tion [7,8], which builds on category theory. Note that our probabilistic extensions
could be also applied to the single pushout (SPO) approach.

Definition 1 (Typed graphs and graph morphisms).

– A graph G = 〈V,E, s, t〉 consists of a set of nodes V , a set of edges E and
source and target functions s, t : E → V .
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– A graph morphism f : G1 → G2 is a pair of functions f = 〈fV , fE〉 with
fV : V1 → V2, fE : E1 → E2, such that fV ◦ s1 = s2 ◦ fE, fV ◦ t1 = t2 ◦ fE.

– Let T be a graph, called a type graph. A typed graph 〈G, τ〉 consists of a
graph G and a graph morphism τ : G→ T .

– For two typed graphs 〈Gi, τi〉 with i ∈ {1, 2} over the same type graph, a
typed graph morphism is a graph morphism f : G1 → G2 with τ2 = f ◦ τ1.

Definition 2 (Rule). A rule p = 〈L �←− K
r−→ R〉 is a span of injective typed

graph morphisms. The graph L is called the left-hand side (LHS), and R the
right-hand side (RHS) of p.

Definition 3 (Transformation). Given a rule p = 〈L �←− K
r−→ R〉, a typed

graph M , and a typed graph morphism m : L→ G, called a match. A transfor-

mation M
p,m
=⇒ N is defined by the double pushout diagram in Fig. 1.

L

m

��
(PO)

K
��� r ��

��
(PO)

R

��
M C�� �� N

Fig. 1. DPO diagram

Operationally, the graph M is transformed by (1) re-
moving the occurrence of L\�(K) in M , yielding the
graph C, and (2) adding a copy of R\r(K) to C. A rule
is applicable w.r.t. a given match, if the so-called glu-
ing condition is satisfied. Informally, all dangling edges
must be explicitly removed by the rule and all non-
injectively matched nodes and edges must be consis-
tently removed or preserved by the rule.

Negative Application Conditions. To increase the expressiveness of rules, several
extensions of the basic format in Definition 2 are available. For instance, negative
application conditions (NACs) provide a means to restrict the applicability of
rules. Formally, a NAC is a pair 〈N, c〉 with N a typed graph and c : L→ N a
typed graph morphism from the rule’s LHS into N . The applicability of the rule
is restricted to those matches which cannot be extended to any of its NACs.

Nested Rules and Amalgamation. Nested rules provide a concept to extend a
match of a basic rule to an unbounded number of substructures and to perform
modifications to all these structures in an atomic step. Formally, a nested rule is
modeled by a possibly nested embedding of one rule into another. The applica-
tion of a nested rule can be carried out by constructing an amalgamated rule and
applying it as a normal transformation as in Definition 3. For a comprehensive
discussion of the formal foundations of parallel rule applications we refer to [9].
Regarding tooling, we use nested rules as supported by the approaches in [10,5].
For the examples in this paper, we require only nested rules of depth 1.

As our case study, we model the variant of the gossiping protocol with nonde-
terministic execution order and message collisions as presented in [4] using graph
transformation. The type graph for this example is depicted in Fig. 2. Wireless
sensors are modeled as nodes and network topologies using edges between such
nodes. We usually assume bidirectional connections which we formally model



314 C. Krause and H. Giese

Fig. 2. Type graph
Fig. 3. Initial graph
for a simple topology

Fig. 4. Atomic pro-
position received (x)

using two edges in opposite directions. Additionally, every node can hold refer-
ences to an unbounded number of messages. To identify nodes and to model their
status, we use an attribute id of the finite type ID = {1, . . . , n} and a Boolean
attribute active. Note that we did not formally introduce attributes. However,
attributes over finite data domains can be easily encoded in graphs.

The behavior of the gossiping protocol is modeled using three rules. Fig. 5
depicts the rule send1 which models the situation where a node decides to broad-
cast its message to all its neighbor nodes. We depict only the LHS and the RHS
and indicate the partial mapping between them using indices. A node becomes
inactive if it correctly received a message. The broadcasting is possible only as
long as the sender is active and has exactly one message (ensured using a NAC).
If a node has more than one message, a collision occurred. Informally, if multiple
neighbors send messages to the same node, it can happen that the communica-
tion is disturbed and that the node receives only noise. We use a nested rule to
model the synchronous broadcast to all neighbors, i.e., every connected node re-
ceives a copy of the original message. Fig. 6 depicts the rule send2 which models
that the node decides not to broadcast the message to its neighbors. The node
can become inactive only if it correctly received the message (ensured using a
NAC). Fig. 7 depicts the rule reset which allows a node to reset itself by deleting
all its messages in the case of a collision. A simple network topology consisting
of only three nodes describing a possible initial graph is depicted in Fig. 3.

This model of the gossiping protocol contains only nondeterministic behavior.
During the execution, multiple nodes in the network may be able to send a
message at the same time. In our model, the choice for a particular sending order
is nondeterministic, which allows us to capture unknown details of the network,
such as the internal behavior of the nodes and the network characteristics, e.g.,
varying signal strengths. Note also that the nondeterministic modeling enables
us to reason about the range of possible behaviors, particularly about worst-
case and best-case execution orders. However, in the used approach also the fact
whether a node forwards a message or not has to be modeled as nondeterministic,
even though this decision should be probabilistic according to the gossiping
protocol. In particular, it is not possible to quantitatively specify the likelihood
of the message forwarding. Similarly, it is also not possible to specify probabilities
for message losses due to communication in unreliable media.
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Fig. 5. Rule send1 Fig. 6. Rule send2

Fig. 7. Rule reset

Fig. 8 depicts the state space for the example with the initial configuration in
Fig. 3 as a labeled transition system (LTS) in which states correspond to graphs
and transitions to rule applications. For a formal definition of the derived state
spaces see [11,3]. Note that both the asynchronous execution order and the local
decision whether a message is forwarded is nondeterministic in this model.

To later reason about the derived state spaces, we use a specification format
for graph-based atomic propositions and define a derived state labeling function.

In the following, we use the notation G
p

=⇒ to denote that there exists a graph

G′ and a match m such that G
p,m
=⇒ G′.

Definition 4 (Atomic propositions and labeling functions). An atomic
proposition is a non-modifying rule (with identical LHS and RHS). Let AP be
a set of atomic propositions and Q a set of typed graphs. The labeling function
LAP
Q : Q→ 2AP is defined as: LAP

Q (G) = { a ∈ AP | G a
=⇒ } for all G ∈ Q.
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Fig. 8. Labeled transition system Fig. 9. Markov decision process

Thus, a graphG satisfies an atomic proposition in form of a non-modifying rule if
it is applicable to G. For our example, we define the parameterized atomic propo-
sition received(x ) depicted in Fig. 4, where only the LHS of the non-modifying
rule is shown. The parameter x ranges over the set of node IDs. Intuitively,
a state satisfies received(x ) if the node x successfully received a message and
became inactive. As an example, we marked the (only) state where received (x)
holds for all x ∈ {1, 2, 3} by a filled circle in the state space depicted in Fig. 8.

3 Markov Decision Processes and Probabilistic Logic

Markov decision processes (MDPs) are a discrete-time model for systems ex-
hibiting both probabilistic and nondeterministic behavior.

Definition 5 (Discrete probability distribution). For a denumerable set Q,
we denote with Dist(Q) the set of discrete probability distributions over Q, i.e.,
the set of all functions μ : Q→ [0, 1] with

∑
q∈Q μ(q) = 1.

Definition 6 (Markov decision process). A Markov decision process (MDP)
M = (Q, qinit , Steps) consists of a denumerable set of states Q, an initial state
qinit ∈ Q and a probabilistic transition function Steps : Q→ 2Dist(Q).

Note that Steps assigns a set of probability distributions to states in order to
incorporate nondeterministic choice. Fig. 9 depicts the required MDP for the
WSN example. In contrast to the LTS in Fig. 8, the local decision whether a
particular node forwards a message or not, i.e., whether send1 or send2 is applied
for a given match, is probabilistic in this model. The intuition is that the two
basic rules send1 and send2 are combined into one probabilistic rule send which
yields different results according to a given probability distribution. Specifically,
the message is forwarded with a probability of p, and not forwarded with a
probability of (1 − p). However, the decision which of the enabled probability
distributions is chosen remains nondeterministic. Thus, in contrast to the LTS,
the MDP allows us to describe both the nondeterministic execution order of the
message sending and the probabilistic decision whether to forward a message.



Probabilistic Graph Transformation Systems 317

Formally, the operational semantics of an MDP can be understood as follows.

A probabilistic transition, written as q
μ−→ q′, is made from a state q ∈ Q by:

1. nondeterministically selecting a distribution μ ∈ Steps(q), and
2. making a probabilistic choice of target state q′ according to μ.

A path of an MDP is a non-empty finite or infinite sequence of probabilistic
transitions:

ω = q0
μ0−→ q1

μ1−→ q2
μ2−→ . . .

where for all i ∈ N it holds that qi ∈ Q, μi ∈ Steps(qi), and μi(qi+1) > 0.
We denote with ω(i) the ith state of ω, and with last(ω) the last state of ω
if it is finite. An adversary is a particular resolution of the nondeterminism in
an MDP. Formally, an adversary A for M is a function mapping every finite
path ω of M to a distribution μ ∈ Steps(last(ω)). The set of all adversaries
of M is denoted by AdvM. For any q ∈ Q and adversary A ∈ AdvM, we let
PathsAfin(q) and PathsA(q) be the sets of all finite and infinite paths starting in
q that correspond to A, respectively. Under a given adversary, the behavior of
an MDP is purely probabilistic. Formally, an adversary for an MDP induces a
probability measure ProbAq over the set of paths PathsA(q) (cf. [13] for details).

For the specification of properties of probabilistic systems, the Probabilis-
tic Computation Tree Logic (PCTL) [14] can be used. PCTL is a branching-
temporal logic based on CTL in which the existential and universal path quan-
tifiers are replaced by a probabilistic operator which can be used to specify that
the probability for a path formula meets a given lower or upper bound. For-
mally, the syntax of PCTL is defined as follows. A state formula over a set AP
of atomic propositions is formed using the following grammar:

Φ ::= true | a | ¬ Φ | Φ1 ∧ Φ2 | P∼λ(φ)

where a ∈ AP , φ is a path formula, ∼ ∈ {<,≤,≥, >} and λ ∈ [0, 1]. A path
formula is formed using the following grammar:

φ ::= © Φ | Φ1 U Φ2 | Φ1 U≤n Φ2

where Φ,Φ1, Φ2 are state formulas and n ∈ N. The temporal operators© and U
are the next- and until-operators from CTL. Φ1 U≤n Φ2 is a step-bounded variant
of the until-operator, which states that Φ2 holds within at most n steps, while Φ1

holds in all states visited before a Φ2-state was reached. The eventually-operator
♦ can be derived by setting ♦ Φ = true U Φ and analogously for a step-bounded
variant of it. For example, using the graph-based atomic proposition in Fig. 4,
the property ‘with a probability of 0.95 or higher, node 2 correctly receives a
message within 5 execution steps’ can be formalized as P≥0.95(♦≤5received(2)).

The semantics for PCTL is defined using a satisfaction relation. Given a la-
beling function L : Q → 2AP associating atomic propositions to states, the
satisfaction relation for state formulas is defined as:

q |= true
q |= a ⇔ a ∈ L(q)
q |= ¬ Φ ⇔ q �|= Φ

q |= Φ1 ∧ Φ2 ⇔ q |= Φ1 and q |= Φ2

q |= P≥λ(φ) ⇔ pmin
q (φ) ≥ λ

q |= P≤λ(φ) ⇔ pmax
q (φ) ≤ λ



318 C. Krause and H. Giese

where pmin
q (φ) and pmax

q (φ) are the minimum and the maximum probabilities for
the set of paths starting in q and fullfiling φ, formally:

pmin
q (φ) = inf

A∈AdvM
pAq (φ) and pmax

q (φ) = sup
A∈AdvM

pAq (φ)

where for a given adversary A and a start state q, the probability for φ is:

pAq (φ) = ProbAq {ω ∈ Paths(q) | ω |= φ}
The satisfaction relation for path formulas is defined as follows:

ω |=© Φ ⇔ ω(1) |= Φ
ω |= Φ1 U Φ2 ⇔ ∃j ≥ 0 : (ω(j) |= Φ2 ∧ (∀0 ≤ k < j : ω(k) |= Φ1))
ω |= Φ1 U≤n Φ2 ⇔ ∃0 ≤ j ≤ n : (ω(j) |= Φ2 ∧ (∀0 ≤ k < j : ω(k) |= Φ1))

4 Probabilistic Graph Transformation Systems

We now introduce probabilistic graph transformations systems (PGTSs), in
which the format for rules is extended to incorporate probabilistic behavior.

Definition 7 (Probabilistic rule). A probabilistic rule π = 〈J, P, μ〉 consists
of a typed graph J , a finite, non-empty set of rules P , such that J = L for all

p = 〈L �←− K
r−→ R〉 ∈ P , and a probability distribution μ ∈ Dist(P ).

A probabilistic rule π = 〈J, P, μ〉 formally consists of a finite set of basic (non-
probabilistic) rules P with the same left-hand side J and a probability distribu-
tion μ over these basic rules. A probabilistic rule is interpreted as a single rule
with multiple right-hand sides, which are picked randomly according to μ. Basic
(non-probabilistic) rules are modeled as probabilistic rules with a single RHS
and a probability distribution that assigns 1 to this RHS.

Definition 8 (Probabilistic transformation). Let M be a typed graph, π =
〈J, P, μ〉 a probabilistic rule, m : J → M a match, and p ∈ P a basic rule.

A probabilistic transformation M
π,m,p
=⇒ N is defined by a basic transformation

M
p,m
=⇒ N if and only if:

1. for all p′∈P there exists a typed graph N ′ such that M
p′,m
=⇒ N ′ and

2. μ(p) > 0.

Thus, a probabilistic transformation is possible if and only if (1) all its basic
rules are enabled, and (2) the probability for the chosen basic rule is strictly
greater than zero. Note that therefore a probabilistic rule is applicable w.r.t.
a match only if the gluing condition is satisfied for all its basic rules. This is
necessary because the choice for a particular basic rule is random and thus it
must be ensured that all of them are enabled. Note, however, in the case of SPO
graph transformation semantics, no checking of the gluing condition is required.
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Definition 9 (Probabilistic graph transformation system). A probabilis-
tic graph transformation system (PGTS) is a tuple G = 〈T,Ginit , Π〉 consisting
of a type graph T , an initial graph Ginit typed over T , and a set of probabilistic
rules Π typed over T .

In a given PGTS, a probabilistic transformation M
π,m,p
=⇒ N is made by:

1. nondeterministically selecting an applicable rule π = 〈J, P, μ〉 ∈ Π ,
2. nondeterministically selecting a match m : J →M ,
3. making a probabilistic choice for a basic rule p ∈ P according to μ,
4. transforming M into N using the basic rule p and the match m.

Thus, a probabilistic transformation M
π,m,p
=⇒ N is a particular resolution of

both the nondeterministic and the probabilistic choices in a PGTS. We denote
with G0 =⇒∗

G Gn the fact that there exists a finite sequence of consecutive
probabilistic transformations using the probabilistic rules of G:

G0
π0,m0,p0 �� G1

π1,m1,p1 �� . . .
π(n−1),m(n−1),p(n−1) �� Gn

The operational semantics of a PGTS induces a Markov decision process.

Proposition 1 (Induced MDP). Let G = 〈T,Ginit , Π〉 be a PGTS. Then G
induces a Markov decision process MG = 〈Q, qinit , Steps〉 with:
– Q = {[G] | Ginit =⇒∗

G G}, i.e., the set of isomorphism classes of typed graphs
reachable from Ginit ,

– qinit = [Ginit ],

– Steps([G]) = { ν | G π,m
=⇒ ν } where G

π,m
=⇒ ν with π = 〈J, P, μ〉 ∈ Π denotes

the fact that there exists p ∈ P and G′ ∈ Q such that G
π,m,p
=⇒ G′, and where

ν ∈ Dist(Q) is induced by μ as follows:1

ν([G′]) =
∑

p∈P :G
π,m,p
=⇒ G′

μ(p) (1)

The induced probabilistic transitions are defined in (1) by associating the prob-
abilities of each basic rule p to the result of applying p to the current graph with
the chosen match. Note that the states are defined up to graph isomorphism and
that the sum in (1) is required for cases with identical or symmetric RHSs.

The concepts of graph-based atomic propositions, negative application con-
ditions and nested rules as described in Section 2 can be directly transferred to
PGTSs. NACs are defined in the usual way and restrict the applicability of a
probabilistic rule as a whole. Nesting of probabilistic rules is achieved by a nest-
ing of its basic rules, where the nested LHSs of all basic rules must be identical.
For simplicity, we restrict ourselves to nested rules of depth 1 here. Note that
the probabilities are associated only to the embedded rule (which is matched
only once) in a nested rule. Due to lack of space, we omit the formal definition
here and illustrate the concepts using an example.

1 We use the convention
∑

∅
= 0 for sums over empty sets.
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Fig. 10. Probabilistic rule send

5 Modeling and Comparison

In this section, we show how to use probabilistic graph transformation systems
for a faithful modeling of the gossiping protocol described in Section 1 and 2
and discuss the differences to component-based models. For the PGTS model
we reuse the type graph in Fig. 2, the initial graph in Fig. 3 and the rule reset
in Fig. 7, where we trivially associate a probability of 1 to its only RHS. To
specify the likelihood of the message forwarding, we combine the two basic rules
send1 and send2 in Fig. 5 and 6 into one probabilistic rule send with two RHSs,
depicted in Fig. 10. The first RHS models the case where the message is for-
warded with a probability of p, whereas the second RHS models the case where
the message is not forwarded with a probability of (1 − p). Note that in both
cases the node becomes inactive and that the probabilistic rule is enabled only
if no collision occured. Moreover, the synchronous message passing to all neigh-
bors is modeled again using a nested rule. To reason about this model, we reuse
the atomic proposition received(x) in Fig. 4. As initial graphs, we consider four
example topologies shown in Fig. 11, where in each network the broadcasting
starts at node 1. Network 11a) is formally modeled by the typed graph in Fig. 3.

In the following, we discuss some of the advantages of using PGTSs as a
modeling approach over traditional component-based modeling approaches as
employed, e.g., in [4], where automata or process algebra models are used to
define the behavior of the components and the system as a whole.

Modeling scalability. The first important observation is that the size of the topol-
ogy has only a minor impact on the size of the PGTS model. Switching from the
simple topology depicted in Fig. 11a) to the 3× 3 network in Fig. 11b) only re-
quired to exchange the initial topology while the rules and the type graph remain
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(a) (b) (c) (d)

Fig. 11. Schematic example network topologies (broadcasting starts at node 1)

the same. In contrast, when using component-based models such as employed
in [4], a larger network topology requires that additional components, each with
its own specific local behavior and communication with its neighbors must be
added to the specification. Scalability of the verification approach, however, is a
separate issue and is planned to be addressed in our future work.

Changeability. When modeling different network topologies with PGTSs, this
simply boils down to using different input graphs as initial states such as the
four different example topologies in Fig. 11. In contrast, a modification in the
network topology is a real challenge when using component-based models, since
the intuitive graph structure of the network is not tangible in the specification
and must be carefully encoded in the local behavior of the nodes. Moreover, in
the case of a change in the protocol, only a few rules in the PGTS need to be
adjusted, whereas in an component-based model the local specifications of all
nodes must be altered to reflect the change in the protocol.

Expressiveness. In [4], multiple versions of the gossiping protocol are considered,
which can be all modeled using PGTSs. The model in this paper corresponds to
the case with nondeterministic execution order. The synchronous versions can be
modeled as a PGTS by increasing the nesting depth of the rule send such that all
active nodes with exactly one message execute the probabilistic sending at the
same time. The last variant presented in [4] includes a simple, i.e., memoryless
probabilistic delay for the sending of messages. This can be modeled also in a
PGTS by adding a Boolean attribute which is used as an additional precondition
for the send rule and which is switched on by a probabilistic rule.

Moreover, we argue that modeling dynamic structural changes in the net-
work topology is (except for encodings of very simple cases) impossible using
component-based models. In contrast, in the graph transformation-based ap-
proach, dynamic structural changes as needed for modeling reconfigurable and
mobile systems can be expressed directly.

Simplicity. We believe that specifying the distributed protocol using a PGTS
is less intricate and less error-prone because there is a clear separation between
the description of the protocol modeled using the rules on the one hand, and
the particular network structure on the other. This hypothesis is to some ex-
tent supported by our modeling experiment. In particular, we compared our
results discussed in Section 6 for network (b) to the data presented in [4]. While
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Fig. 12. Minimum / maximum probabilities for message reception for each node in
network (b) and send probabilities of p = 0.6, 0.7 and 0.8

our experiments yielded the same maximum probabilities, we noticed that our
modeling apparently predicted smaller minimum probabilities for the message
receptions. Apparently, their specification contains a modeling error as the prob-
abilistic decision whether to forward a message or not is already done at the
message reception, which rules out the possibility of a collision in the case the
node decides not to forward the message. However, due to the complicated en-
coding of the protocol this difference between their specification and the MDP
induced by our model could be identified only by a detailed analysis.

6 Tool Support and Analysis

We have implemented tool support for PGTSs in version 0.9.2 of the Henshin [5]
graph transformation tool using Prism 4 [6] as probabilistic model checking
back-end. We model probabilistic rules in Henshin using multiple basic graph
transformation rules with the same LHS (and possible additional application
conditions). Probabilities are associated to the different basic rules using anno-
tations. We then use Henshin’s state space generation capabilities to derive an
LTS, which is subsequently converted into an MDP by (1) removing all illegal
transitions where not all basic rules of a probabilistic rule are applicable for the
same match, and (2) replacing the nondeterministic choice between annotated
basic rules by probabilistic transitions. Our extension of Henshin generates an
MDP in the input format of Prism to carry out the PCTL model checking and
for computing the minimum and the maximum probabilities.

Using our tool, we have modeled the gossiping protocol and ran a number of
experiments. As a first setting, we fixed the send probability to p = 0.8 and chose
the network topology (b). For these parameters, we verified using Prism that
the property P>0.3(♦ received(8)) holds, i.e., the probability that node 8 receives
the message is greater than 0.3. In addition to the checking of PCTL formulas,
we used Prism to compute the minimum and the maximum probabilities for
each node successfully receiving the message. Fig. 12 depicts the minimum and
the maximum probabilities for each node in network (b) correctly receiving the
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(1) (2)

Fig. 13. Min./max. probabilities for message reception of node 9 in network (b)

message and for send probabilities of p = 0.6, 0.7 and 0.8. The minimum proba-
bilities reflect worst-case, the maximum probabilities best-case execution orders
for each node. We note that the minimum (and the maximum) probabilities for
the different nodes vary more or less depending on the chosen send probability
and the location of the node in the grid. To illustrate the impact of the send
probability, we have plotted the minimum and the maximum reception proba-
bilities for node 9 with changing p in Fig. 13.1). Note that for values of p greater
than approx. 0.7, the minimum reception probability decreases again.

We further investigated how the probability for a specific node receiving the
message changes over time, where time is measured as discrete execution steps.
Such properties can be specified using the step-bounded until-operator in PCTL.
Specifically, fixing the send probability to p = 0.7, we verified that the property
P≥0.2(♦≤10 received(9)) holds, i.e., the probability that node 9 in network (b)
successfully received the message after 10 execution steps is at least 0.2. Additi-
nally, Fig. 13.2) depicts the minimum and the maximum probabilities for node 9
having received the message after 1..10 execution steps.

Due to the graph-based approach, models with different network topologies
can be easily derived. The minimum and maximum probabilities for the networks
(b)-(d) are depicted in Fig. 14. The probabilities drop more for the nodes in net-
work (c) with high indizes than in network (b) which is caused by the higher
distance and the fewer number of connections. For network (d), the differences
between the minimum and maximum probabilities are higher than in the other
networks. This is caused by the higher connectivity of the network which in-
creases the chance for collisions. It is also evident that node 6 is a bottleneck in
the network causing the probabilities to drop abruptly for nodes 7-11.

7 Related Work

As discussed in Section 5, PGTSs compared to component-based models (as,
e.g., in the Prism specification language), provide a greater expressiveness in
terms of modeling concepts, since there is a clear separation between the mod-
eled protocols on the one hand and the used network topologies on the other.
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Fig. 14. Minimum / maximum probabilities for message reception for networks (b)-(d)
with a fixed send probability of p = 0.7

Therefore, PGTSs permit to study different network topologies and to adjust
protocols with minimal effort. In contrast, the component-based approaches re-
quire to encode the topology into the local behavior of the nodes, which can
result in complex and erroneous specifications.

Executable term rewrite theories as used in Maude [15] provide similarly
to GTSs natural modeling concepts for concurrent systems with structure dy-
namics. Probabilistic rewrite theories in PMaude [16] provide a combination of
structure dynamics, probabilistic behavior for discrete branching, and stochastic
behavior. Properties for such models can be specified using probabilistic tem-
poral logics and checked using discrete event simulation. However, in order to
simulate and analyze models in PMaude, all nondeterminism has to be resolved,
i.e., nondeterministic choices for rules and matches as in PGTSs are not allowed.

Several extensions of GTSs with quantitative properties such as real-time [1,2]
and stochastic behavior [3] exist. However, the combination of discrete proba-
bilistic decisions and nondeterminism in PGTSs can be emulated neither by
real-time nor by stochastic models. To clarify this, we discuss in detail the dif-
ference to stochastic graph transformation systems (SGTSs) [3]. While SGTSs
are based on a continuous time model, PGTSs are based on a discrete one. Fur-
thermore, SGTSs do not support nondeterminism. Instead, in any given state
there is a competition between all enabled rules and their matches, which is also
referred to as a race condition. The choice for a particular rule and match is
decided probabilistically based on the rules’ stochastic rates. In contrast, the
choice for a particular rule and match in a PGTS is made nondeterministically
whereas the effect of a rule is probabilistic. Due to the different time model and
the nondeterminism, PGTSs cannot be encoded into SGTSs, nor vice versa.

8 Conclusions and Future Work

In this paper, we introduced probabilistic graph transformation systems (PGTSs),
provided a sound foundation based on Markov decision processes, and presented
related tool support. We further demonstrated that the modeling using PGTSs
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compared to existing component-based approaches as, e.g., in Prism scale better
and can be more easily adjusted to reflect changes in the topology or protocol.
For future work, we plan to develop a compact visual syntax for PGTSs, to
incorporate interval-valued probabilistic and real-time behavior, and to improve
the scalability of the verification procedure using compositional schemes.
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