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Abstract. The categorical framework of M-adhesive transformation
systems does not cover graph transformation with relabelling. Rules that
relabel nodes are natural for computing with graphs, however, and are
commonly used in graph transformation languages. In this paper, we gen-
eralise M-adhesive transformation systems to M,N -adhesive transfor-
mation systems, where N is a class of morphisms containing the vertical
morphisms in double-pushouts. We show that the category of partially
labelled graphs is M,N -adhesive, where M and N are the classes of in-
jective and injective, undefinedness-preserving graph morphisms, respec-
tively. We obtain the Local Church-Rosser Theorem and the Parallelism
Theorem for graph transformation with relabelling and application con-
ditions as instances of results which we prove at the abstract level of
M,N -adhesive systems.

1 Introduction

The double-pushout approach to graph transformation, which was invented in the
early 1970’s, is the best studied framework for graph transformation [20,5,10,4].
As applications of graph transformation come with a large variety of graphs and
graph-like structures, the double-pushout approach has been generalised to the
abstract settings of high-level replacement systems [9], adhesive categories [17]
andM-adhesive categories [8,6,7].

The categories of labelled graphs, typed graphs, and typed attributed graphs,
for example, are known to be M-adhesive categories if one chooses M to be
the class of injective graph morphisms [8]. Each such category induces a class
ofM-adhesive transformation systems for which several classical results of the
double-pushout approach hold. Specifically, the Local Church-Rosser Theorem,
the Parallelism Theorem, the Concurrency Theorem, the Amalgamation The-
orem, the Embedding Theorem and the Local Confluence Theorem have been
established for rules with nested application conditions [6,7].

However,M-adhesive transformation systems do not cover graph transforma-
tion systems with rules that relabel nodes. Such rules are natural for computing
with graphs and are used as a foundation for the graph transformation language
GP [18,19]. The double-pushout approach can be extended with relabelling by
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introducing rules with partially labelled interface graphs [14], providing a theo-
retical foundation for graph transformation languages that is much simpler than
attributed graph transformation in the sense of [4]. In the latter approach, at-
tributed graphs contain the algebra underlying the operations in the attributes
as well as special edges which connect nodes and edges with their attributes.
Hence they are (usually) complex infinite objects which are difficult to compre-
hend and which do not directly correspond to the graph data structures used to
implement graph transformation languages.

In this paper, we study transformation systems over the category PLG of par-
tially labelled graphs and the class M of injective graph morphims (which are
used in rules). It turns out that PLG violates two of the properties required for
M-adhesive categories: pushouts alongM-morphisms do not always exist and,
when they exist, need not be pullbacks. We therefore generaliseM-adhesive cat-
egories toM,N -adhesive categories, where N is a class of morphisms containing
the vertical morphisms in double-pushouts.M-adhesive categories are then the
special case where N is the class of all morphisms.

For M,N -adhesive transformation systems with (nested) application condi-
tions, we prove two classical results of the double-pushout approach: the Local
Church-Rosser Theorem and the Parallelism Theorem. We then show that PLG
is M,N -adhesive, where N is the class of injective morphisms that preserve
unlabelled nodes and edges. As a result, we obtain both theorems for the setting
of graph transformation with relabelling and application conditions.

The paper is structured as follows. In Section 2, we generalise M-adhesive
categories to M,N -adhesive categories, prove that they satisfy the so-called
HLR properties, and identify two additional factorization properties. In Section
3, we present the Local Church-Rosser Theorem and the Parallelism Theorem for
M,N -adhesive transformation systems with application conditions. In Section
4, we show that the category PLG is M,N -adhesive for suitable classes M
and N of morphisms. As a consequence, we obtain the Local Church-Rosser
Theorem and the Parallelism Theorem for graph transformation with relabelling.
In Section 5, we conclude and give some topics for future work.

The proofs omitted in this paper are given in [15], as well as the Concurrency
Theorem forM,N -adhesive transformation systems with application conditions.

2 M,N -Adhesive Categories

In [8] an overview is given on some categorical frameworks for double-pushout
transformations. It is shown that adhesive categories [17], weak adhesive HLR
categories [4], and partial map adhesive categories [16] are special cases of so-
calledM-adhesive categories. A large number of results have been proved forM-
adhesive transformation systems, such as the Local Church-Rosser Theorem, the
Parallelism Theorem, the Concurrency Theorem, the Amalgamation Theorem,
the Embedding Theorem, and the Local Confluence Theorem [6,7].

In this section, we generalize M-adhesive categories as defined in [8,6] to
M,N -adhesive categories.
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Definition 1 (M,N -adhesive category). A category C is M,N -adhesive,
where M is a class of monomorphisms and N a class of morphisms, if the
following properties are satisfied:

1. M and N contain all isomorphisms and are closed under composition and
decomposition (see [6]). Moreover,N is closed underM-decomposition, that
is, g ◦ f ∈ N , g ∈ M implies f ∈ N .

2. C has pushouts alongM,N -morphisms and pullbacks alongM-morphisms.
Also, M and N are stable under M,N -pushouts and M-pullbacks (see
below).

3. Pushouts along M,N -morphisms are M,N -van Kampen squares (see be-
low).

Remark 1. A pushout along M,N -morphisms, orM,N -pushout, is a pushout
where one of the given morphisms is in M and the other morphism is in N .
A pullback along anM-morphism, orM-pullback, is a pullback where at least
one of the given morphisms is in M. A class X of morphisms is stable under
M,N -pushouts if, given the M,N -pushout (1) in the diagram below, m ∈ X
implies n ∈ X . Class X is stable under M-pullbacks if, given the M-pullback
(1) in the diagram below, n ∈ X implies m ∈ X .

A pushout alongM,N -morphisms is anM,N -van Kampen square if for the
commutative cube in the diagram below with the pushout as bottom square,
b, c, d,m ∈ M, f ∈ N , and the back faces being pullbacks, we have that the top
square is a pushout if and only if the front faces are pullbacks.

A

B

C

D

m

g

f

n(1)

A′

A C

C′

B′

B D

D′

b

c

d
m

f

Fact 1. Let C be any category and let N be the class of all morphisms in C.
Then C isM,N -adhesive if and only if C isM-adhesive in the sense of [6].

Proof. This follows from the definition of anM-adhesive category because if N
contains all morphisms, then M,N -pushouts and M,N -van Kampen squares
are precisely the M-pushouts and M-van Kampen squares of [6], respectively.

�

In Section 4, we show that the category PLG of partially labelled graphs is
M,N -adhesive but not M-adhesive. In this case, M is the class of injective
graph morphisms and N is the class of injective, undefinedness preserving graph
morphisms.
M,N -adhesive categories satisfy generalised versions of the so-called HLR-

properties [9] ofM-adhesive categories.
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Theorem 1 (HLR-properties). EveryM,N -adhesive category satisfies the
following HLR-properties :

1. Pushouts alongM,N -morphisms are pullbacks.
2. M,N -pushout-pullback decomposition: If (1)+(2) in the diagram below is

a pushout, (2) is a pullback, l ∈ M, and k, w ∈ N , then (1) and (2) are
pushouts as well as pullbacks.

3. Cube M,N -pushout-pullback decomposition: If in the commutative cube
(3) of the diagram below, all morphisms in the top square and in the bottom
square are inM, all vertical morphisms are inN , the top square is a pullback,
and the front faces are pushouts, then the bottom square is a pullback if and
only if the back faces are pushouts.

4. Uniqueness of pushout complements: Given morphisms A ↪→ B in M and
B → D in N , there is, up to isomorphism, at most one object C with
morphisms A → C and C ↪→ D such that (4) in the diagram below is a
pushout.

A

B

E

C

D

F

l

s

v

k

r

u

w

(1)

(2)

A′ B′

C′ D′

A B

C D (3)

AB

CD

(4)

In order to prove the desired results forM,N -adhesive transformation systems,
three more properties will be needed.

Definition 2 (HLR+-properties). Let C be anM,N -adhesive category, E a
class of morphisms, and E ′ a class of pairs of morphism with the same codomain.
Then the following properties are the HLR+-properties with respect toM, N ,
E and E ′.

1. C has binary coproducts.
2. C has an E-N factorization if for each coproduct morphism f : A1+A2 → C

induced by morphisms fi : Ai → C in N (i = 1, 2), there is a decomposition,
unique up to isomorphism, f = n ◦ e with e ∈ E and n ∈ N .

3. C has an E ′-M pair factorization if, for each pair of morphisms f1 : A1 → C
and f2 : A2 → C, there exist a unique (up to isomorphism) object K and
unique (up to isomorphism) morphisms e1 : A1 → K, e2 : A2 → K, and
m : K ↪→ C with (e1, e2) ∈ E ′ and m ∈ M such that m ◦ e1 = f1 and
m ◦ e2 = f2.



222 A. Habel and D. Plump

K

A

C

e

n

f
= K

A1 A2

C

e1 e2

m

f1 f2
= =

General Assumption. We assume that C is an M,N -adhesive category and
that E and E ′ are classes of morphisms and morphisms pairs, respectively, such
that C satisfies the HLR+-properties.

The E-N factorization is used in the proof of the Parallelism Theorem. The E ′-M
pair factorization is used in the proof of a shift lemma for application conditions
and in the construction of E-related transformations in [15].

Example 1. The category PLG considered in Section 4 satisfies the HLR+-
properties, where M is the class of injective morphisms, N is the class of
injective, undefinedness preserving morphisms, E is the class of surjective, unde-
finedness preserving morphisms, and E ′ is the class of pairs of jointly surjective,
undefinedness preserving morphisms.

3 M,N -Adhesive Transformation Systems

In this section, we introduceM,N -adhesive transformation systems and present
the Local Church-Rosser Theorem and the Parallelism Theorem in this setting.

We start by defining rules, direct transformations, and transformation systems.

Definition 3 (Rules, transformations, and systems). Given an M,N -
adhesive category, a rule � = 〈p, acL〉 consists of a plain rule p = 〈L←↩ K ↪→ R〉
with morphisms l : K ↪→ L and r : K ↪→ R inM, and an application condition
acL over L (see below). A direct transformation from an object G to an object
H via the rule � consists of two pushouts (1) and (2) as below where the vertical
morphisms1 are in N and g |= acL. We write G ⇒�,g H if there exists such a
direct transformation. For a set of rules R, we write G⇒R H , if G⇒� H with
� ∈ R.

L K R

DG H

l r

g d h(1) (2)

acL

=|

An M,N -adhesive transformation system consists of an M,N -adhesive cate-
gory and a set R of rules.

1 By stability of N under M,N -pushouts, it is equivalent to require d ∈ N .
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Remark 2. EveryM-adhesive transformation system in the sense of [6] is an
M,N -adhesive transformation system if we choose N as the class of all mor-
phisms in C. Our notion of transformation system is more flexible because it
allows to restrict the class of morphisms that are used to match rules. For exam-
ple, one can show that everyM-adhesive category isM,M-adhesive and hence
gives rise to anM,M-adhesive transformation system. A concrete example for
this is the category of totally labelled graphs together with the class of injective
graph morphisms (see also [12] for this setting).

Application conditions are nested constructs which can be represented as trees
of morphisms equipped with quantifiers and Boolean connectives.

Definition 4 (Application condition). Application conditions are induc-
tively defined as follows. For every object P , true is an application condition
over P . For every morphism a : P → C and every application condition ac over
C, ∃(a, ac) is an application condition over P . For application conditions ac, aci
over P with i ∈ I (for a given index set I), ¬ac and ∧i∈Iaci are application
conditions over P .

Satisfiability of application conditions is also defined inductively. Every mor-
phism satisfies true. A morphism p : P → G satisfies ∃(a, ac) over P if there
exists a morphism q : C ↪→ G inM such that q ◦ a = p and q satisfies ac.

P

G

C,a

p q
=

ac

|=
)∃(

A morphism p : P → G satisfies ¬ac over P if p does not satisfy ac, and p satisfies
∧i∈Iaci over P if p satisfies each aci (i ∈ I). We write p |= ac to express that p
satisfies ac.

Next we state two important technical results. The first lemma allows to shift
application conditions over arbitrary morphisms.

Lemma 1 (Shift of application conditions over morphisms [6]). There
is a construction Shift such that, for each application condition ac over P and
for each morphism b : P → P ′, Shift transforms ac via b into an application
condition Shift(b, ac) over P ′ such that, for each morphism n : P ′ → H , n ◦ b |=
ac ⇐⇒ n |= Shift(b, ac).

P

H

P ′b

n ◦ b n

Shift(b, ac)ac

=

The other technical result that we need is that application conditions can be
shifted over rules.
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Lemma 2 (Shift of application conditions over rules [13]). There is a
construction L such that, for each rule � and each application condition ac overR,
L transforms ac via � into an application condition L(�, ac) over L such that, for
each direct transformation G⇒�,m,m∗ H , we have m |= L(�, ac) ⇐⇒ m∗ |= ac.

L K R

DG H

m m∗(1) (2)

L(�, ac) ac

=| |=

Remark 3. There is a construction R with R(�, ac) = L(�−1, ac) that transforms
left application conditions ac via the rule � into right application conditions.

Assumption. For i = 1, 2, let �i = 〈pi, acLi〉 be a rule with plain rule pi =
〈Li ←↩ Ki ↪→ Ri〉. Also, let � = 〈p, acL〉 and �′ = 〈p′, acL′〉 be rules with plain
rules p = 〈L←↩ K ↪→ R〉 and p′ = 〈L′ ←↩ K ′ ↪→ R′〉, respectively.

First, we formulate the notions of parallel and sequential independence and
present the Local Church-Rosser Theorem.

Definition 5 (Parallel and sequential independence). Two direct transfor-
mations H1 ⇐�1,g1 G⇒�2,g2 H2 are parallelly independent if in the diagram be-
low there are morphisms dij : Li → Dj such that gi = bj ◦dij , g′i = (cj ◦dij) ∈ N ,
and g′i |= acLi (i, j ∈ {1, 2} and i �= j).

GD1H1

R1 K1 L1

D2 H2

R2K2L2

c1 b1 b2 c2

g1
g∗1 g2

g∗2
d21 d12

= =

acL1 acL2

Two direct transformations G⇒�1,g1 H1 ⇒�2,g2 M are sequentially independent
if in the diagram below there are morphisms d12 : R1 → D2 and d21 : L2 → D1

such that g∗1 = b2 ◦ d12, g2 = b1 ◦ d21, g′2 = (c1 ◦ d21) ∈ N , g′1 = (c2 ◦ d12) ∈ N ,
g′2 |= acL2 , and g′1 |= R(�1, acL1).

H1D1G

L1 K1 R1

D2 M

R2K2L2

c1 b1 b2 c2

g1
g∗1 g2

g∗2
d21 d12

= =

acL1 acL2

The following Local Church-Rosser Theorem generalises the corresponding result
in [6] from M-adhesive transformation systems to M,N -adhesive transforma-
tion systems.
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Theorem 2 (Local Church-Rosser Theorem). Given parallelly indepen-
dent direct transformations H1 ⇐�1,g1 G⇒�2,g2 H2, there are an object M and
direct transformations H1 ⇒�2,g′

2
M ⇐�1,g′

1
H2 such that G ⇒�1,g1 H1 ⇒�2,g′

2

M and G⇒�2,g2 H2 ⇒�1,g′
1
M are sequentially independent.

Given sequentially independent direct transformations G ⇒�1,g1 H1 ⇒�2,g2

M , there are an object H2 and direct transformations G ⇒�2,g′
2
H2 ⇒�1,g′

1
M

such that H1 ⇐�1,g1 G⇒�2,g′
2
H2 are parallelly independent:

G

H1

H2

M

�1

�2

�2

�1

Next we consider parallel rules, quotients rules, and parallel transformations.
The parallel rule �1 + �2 of the rules �1 and �2 is defined by using the binary
coproducts of the components of the rules (which exist by the General Assump-
tion).

Definition 6 (Parallel rule, quotient rule, parallel transformation). The
parallel rule of �1 and �2 is the rule �1+�2 = 〈p, acL〉 where p = 〈L1+L2 ←↩
K1+K2 ↪→ R1+R2〉 is the parallel rule of p1 and p2 and acL=∧2i=1Shift(ki, acLi)∧
L(p, Shift(k∗i ,R(�i, acLi))).

L1+L2 K1+K2 R1+R2

L1 K1 R1

L2 K2 R2k1
k∗
1

k2 k∗
2

acL1

acL2

acL

L K R

K ′L′ R′

l k(1) (2)

acL

acL′

The rule �′ is a quotient rule of a parallel rule � if there are two pushouts (1) and
(2) as in the figure above where k : K → K ′ is an epimorphism in the class of
coproduct morphisms induced by N and acL′ = Shift(l, acL). The set of quotient
rules of � is denoted by Q(�).

A direct transformation via a quotient of a parallel rule is called parallel direct
transformation or parallel transformation, for short.

Fact 2 ([6]). K1+K2 ↪→ L1+L2 and K1+K2 ↪→ R1+R2 are inM.

The connection between sequentially independent direct transformations and
parallel direct transformations is given in the Parallelism Theorem.

Theorem (Parallelism Theorem).
1. Synthesis. Given two sequentially independent direct transformationsG⇒�1,g1

H1 ⇒�2,g′
2
M , there is a parallel transformation G⇒Q(�1+�2),g M .
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2. Analysis. Given a parallel transformation G ⇒Q(�1+�2),m M , there are
sequentially independent direct transformations G ⇒�1,g1 H1 ⇒�2,g′

2
M and

G⇒�2,g2 Hi ⇒�1,g′
1
M .

3. Bijective correspondence. The synthesis and analysis constructions are in-
verse to each other up to isomorphism:

G

H1

H2

M

�1

�2

�2

�1

Q(�1+�2)

We conclude this section by mentioning that the Concurrency Theorem for
M,N -adhesive transformation systems is established in [15].

4 Category PLG Is M,N -Adhesive

In this section, we consider the category PLG of partially labelled graphs [14].
We first show that PLG is not M-adhesive for the class M of injective graph
morphisms. We then prove that PLG is M,N -adhesive, though, and satisfies
the HLR+-properties if we choose N as a suitable class of morphisms. As a
consequence, we obtain the Local Church-Rosser Theorem and the Parallelism
Theorem as new results for the setting of graph transformation with relabelling
and application conditions.

We start by recalling the basic notions of partially labelled graphs and their
morphisms.

Definition 7 (Graphs and morphisms). A (partially labelled) graph is a
system G = (VG,EG, sG, tG, lG,V, lG,E) consisting of finite sets VG and EG of
nodes and edges, source and target functions sG, tG : EG → VG, and partial
labelling functions lG,V : VG → CV and lG,E : EG → CE,

2 where CV and CE are
fixed sets of node and edge labels. A graph G is totally labelled if lG,V and lG,E

are total functions.
A morphism g : G → H between graphs G and H consists of two functions

gV : VG → VH and gE : EG → EH that preserve sources, targets and labels,
that is, sH ◦ gE = gV ◦ sG, tH ◦ gE = gV ◦ tG, and lH(g(x)) = lG(x) for all x in
Dom(lG)

3. Such a morphism preserves undefinedness if it maps unlabelled items
in G to unlabelled items in H . Morphism g is injective (surjective) if gV and
gE are injective (surjective), and an isomorphism if it is injective, surjective and

2 Given sets A and B, a partial function f : A → B is a function from some subset A′

of A to B. The set A′ is the domain of f and is denoted by Dom(f). We say that
f(x) is undefined, and write f(x) = ⊥, if x is in A−Dom(f).

3 We often do not distinguish between nodes and edges in statements that hold anal-
ogously for both sets.
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preserves undefinedness. In the latter case G and H are isomorphic, which is
denoted by G ∼= H . Furthermore, g is an inclusion if g(x) = x for all x in G
(note that inclusions need not preserve undefinedness). The composition h ◦ g
of g with a morphism h : H → M consists of the composed functions hV ◦ gV
and hE ◦ gE. We write PLG for the category having partially labelled graphs as
objects and graph morphisms as arrows.

In pictures of graphs, nodes are drawn as circles with their labels (if existent)
inside, and edges are drawn as arrows with their labels (if existent) placed next
to them. Graph morphisms are graphically represented by attaching the same
number to nodes and their images.

Example 2. Consider the partially labelled graphs G andH below. Nodes 4 and
5 in G, nodes 4 and 6 in H , and all edges are unlabelled. The graph morphism
g : G ↪→ H is injective but not undefinedness preserving, because it maps the
unlabelled node 5 in G to a labelled node in H .

A 1

B2 B 3

4 5

G

g
↪→

A 1

B2 B 3

4 A
5

6

H

While the category of labelled graphs with arbitrary morphisms has pushouts
[3], the category of partially labelled graphs with injective morphisms does not
have all pushouts [14]. As a consequence, the category PLG with the classM of
injective morphisms is notM-adhesive.

Fact 3 (PLG is not M-adhesive). Let M be the class of injective graph
morphisms. Then PLG does not have pushouts along arbitraryM-morphisms.
Moreover, pushouts alongM-morphisms need not be pullbacks.

Example 3. The morphisms a and b in square (1) below are injective but their
pushout does not exist: it is impossible to make both morphisms f and g label
preserving. Square (2) is a pushout alongM, but not a pullback.

B

A ?

b

fa

g

(1)

A

A A

b

fa

g

(2)
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Assumption. For the rest of this section, we consider the category PLG and
let M be the class of injective graph morphisms and N the class of injective,
undefinedness preserving graph morphisms.

Theorem 3. The category PLG isM,N -adhesive.

To prove Theorem 3, we establish the properties required by Definition 1 in the
following five lemmata.

Lemma 3 (Closure properties). M and N contain all isomorphisms and
are closed under composition and decomposition. Moreover, N is closed under
M-decomposition.

Proof. Straightforward. �

Lemma 4 (Pushouts along M,N -morphisms). Given graph morphisms
r : K ↪→ R in M and d : K ↪→ D in N , there exist a graph H and graph
morphisms c : D ↪→ H and h : R→ H such that square (2) below is a pushout.

K R

D H

r

c

d h(2)

Construction. The sets of nodes and edges are defined by H = (D−d(K))+R.
The source function sH is defined by sH(e) = if e ∈ ER then sR(e) else sD(e);
the target function tD is defined analogously. The labelling functions lH are
defined by

lH(x) =

⎧
⎪⎪⎨

⎪⎪⎩

lR(x) if x ∈ R and lR(x) �= ⊥,
lD(d(x′)) if x ∈ R, lR(x) = ⊥, r(x′) = x and lD(d(x′)) �= ⊥,
⊥ if x ∈ R, lR(x) = ⊥, r(x′) = x and lD(d(x′)) = ⊥,
lD(x) if x ∈ (D − d(K)).

Morphism h : R → H is the inclusion of R in H and c : D ↪→ H is defined by
c(x) = if x ∈ D − d(K) then x else r(k) for the unique k ∈ K with d(k) = x.

Proof. See [14]. �

The category PLG has not only pullbacks alongM-morphisms but possesses all
pullbacks.

Lemma 5 (Pullbacks). Let c : D → H and h : R → H be graph morphisms.
Then there exist a graph K and graph morphisms d : K → D and r : K → R
such that square (2) above is a pullback.
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Construction. The sets of nodes and edges are defined by

K = {〈x, y〉 ∈ D ×R | c(x) = h(y)}.
The source function sK is defined by sK(〈x, y〉) = 〈sD(x), sR(y)〉, the target
function tK is defined analogously. The labelling functions lK are defined by

lK(〈x, y〉) = if (lD(x) = lR(y) �= ⊥) then lR(x) else ⊥.
The morphisms d : K → D and r : K → R are the projections from D×R to D
and R, that is, they are given by d(〈x, y〉) = x and r(〈x, y〉) = y.

Proof. See [14]. �

Lemma 6 (M and N are stable). The classesM and N are stable under
M,N -pushouts andM-pullbacks.

Proof. This follows from the construction of M,N -pushouts and pullbacks in
Lemma 4 and Lemma 5, and the fact that pushouts and pullbacks are unique
up to isomorphism. �

Lemma 7 (M,N -van Kampen squares). Pushouts alongM,N -morphisms
areM,N -van Kampen squares.

Proof. We exploit the fact that the category ULG of unlabelled graphs isM-
adhesive. (This follows from Fact 4.1.6 for labelled graphs in [4], by restricting
the label alphabet to a single label.)

Consider the pushout (1) below where m ∈ M and f ∈ N . We have to show
that, given a commutative cube (2) with (1) as bottom face, b, c, d ∈ M, and
pullbacks as back faces, the following holds:

the top face is a pushout ⇔ the front faces are pullbacks.

A

B

C

D

m n

g

f

(1)

A′

A C

C′

B′

B D

D′

(2)
m

n

a

b

c

d

m′

g′

f ′

n′

g

f

Part 1 (“⇒ ”). Assume that the top face of cube (2) is a pushout. Since pullback
objects are unique up to isomorphism, it is sufficient to prove that B′ and C′

are isomorphic to the corresponding pullback objects. Let B′′ be the pullback
object of g and d with morphisms b′′ : B′′ → B and g′′ : B′′ → D′. By the
universal property of pullbacks, there is a unique morphism u : B′ → B′′ such
that b′′◦u = b and g′′◦u = g. By forgetting all labels, cube (2) becomes a cube in
ULG. Since ULG isM-adhesive, every pushout in ULG is a van Kampen square.
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Consequently, the morphism u is injective and surjective. It remains to show that
u is ⊥-preserving. Let x ∈ B′−Dom(lB′). Suppose that u(x) ∈ Dom(lB′′). Then
b(x) ∈ Dom(lB) and g′(x) ∈ Dom(lD′).

Since the top is a pushout in PLG and x ∈ B′ − Dom(lB′), there exists
y ∈ Dom(lC′) with g′(x) = n′(y). Since the bottom is a pushout in PLG and
m ∈ M, by Theorem 1, it is also a pullback, b(x) ∈ Dom(lB), c(y) ∈ Dom(lC),
and the left front face commutes, g(b(x)) = d(g′(x)) = d(n′(y)) and there exists
z ∈ Dom(lA) such that m(z) = b(x) and f(z) = c(y). Since the back right face
is a pullback, y ∈ Dom(lC′) and z ∈ Dom(lA) with c(y) = m(z), there is some
x′ ∈ Dom(lA′) with m′(x′) = x. Then x ∈ Dom(lB′), a contradiction. Thus u is
⊥-preserving and B′ and B′′ are isomorphic. Similarly, it is shown that C′ and
the pullback object C′′ of d and n are isomorphic. Thus, the back faces of cube
(2) are pullbacks.

Part 2 (“⇐ ”). Assume that the front faces of cube (2) are pullbacks in PLG.
Since pushout objects are unique up to isomorphism, it is sufficient to prove that
D′ is isomorphic to the corresponding pushout object. Let D′′ be the pushout
object of m′ and f ′ in PLG with morphisms g′′ : B′ → D′′ and n′′ : C′ → D′′. By
the universal property of pushouts, there is a unique morphism u : D′′ → D′ such
that g′ = u ◦ g′′ and n′ = u ◦ n′′. Consider now the underlying pushout in ULG.
Since ULG is M-adhesive, every pushout in ULG is a van Kampen square.
Consequently, the morphism u is injective and surjective. It remains to show
that u is ⊥-preserving. Let x ∈ D′′−Dom(lD′′ ). Suppose that u(x) ∈ Dom(lD′).
Then d(u(x)) ∈ Dom(lD). Since the bottom is a pushout, there are two cases.
In the first case, there exists an item y ∈ Dom(lB) such that g(y) = d(u(x)).
Since the left front face is a pullback, y ∈ Dom(lB) and u(x) ∈ Dom(lD′) with
g(y) = d(u(x)), there is some z ∈ Dom(lB′) with b(z) = y and g′(z) = u(x).
By commutativity of the left front face, d(g′(z)) = g(b(z)) = g(y) = d(u(x)).
By d ∈M, g′(z) = u(x) ∈ Dom(lD′′), a contradiction. In the second case, there
exists an item y ∈ Dom(lC) such that n(y) = d(u(x)). Since the right front face
is a pullback, we obtain a contradiction. Thus, the morphism u is ⊥-preserving
and the top face is a pushout. Since the back faces are pullbacks andM and N
are stable underM-pullbacks, m ∈M and f ∈ N imply m′ ∈ M and f ′ ∈ N ,
i.e. the top face is anM,N -pushout. �

Proof of Theorem 3. See Lemma 3 to Lemma 7. �

Lemma 8 (HLR+-properties). PLG has binary coproducts, an E-N factor-
ization, and an E ′-M pair factorization, where E is the class of surjective, unde-
finedness preserving morphisms and E ′ is the class of pairs of jointly surjective,
undefinedness preserving morphisms.

Proof. Routine. �

By Theorem 3 and Lemma 8, we obtain the following corollary.

Corollary 1. The Local Church-Rosser Theorem and the Parallelism Theorem
hold forM,N -adhesive tranformation systems over PLG.
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Remark 4. M,N -adhesive transformation systems over PLG provide a foun-
dation for the semantics of the graph programming language GP [18,19]. The
graphs on which GP programs operate are totally labelled, and instances of
GP’s conditional rule schemata are rules with application conditions whose left-
and right-hand graphs L and R are also totally labelled. The interface graph K
consists of unlabelled nodes and hence enables relabelling of nodes. Moreover,
the requirement that the vertical morphisms in double-pushouts must preserve
unlabelled nodes guarantees that pushout complements are unique (see [14]).

In comparison with the approach of [14], M,N -adhesive tranformation sys-
tems over PLG are more restrictive in that unlabelled nodes in rules must not
match labelled nodes in host graphs. However, to allow certain nodes in rules to
match nodes with arbitrary labels, one can use rule schemata with label vari-
ables instead of unlabelled nodes. As in GP, rule schemata are instantiated to
rules with totally labelled left- and right-hand graphs, while unlabelled nodes are
solely used for relabelling. Indeed, label variables in left-hand graphs are more
versatile than unlabelled nodes because they can be typed in order to match
only subsets of labels.

5 Conclusion

Double-pushout graph transformation with relabelling is not covered byM-ad-
hesive transformation systems. Relabelling is natural for computing with graphs,
though, and provides a foundation for graph transformation languages such as
GP. We have generalisedM-adhesive transformation systems toM,N -adhesive
transformation systems which do cover graph transformation with relabelling.
We have proved the Local Church-Rosser Theorem and the Parallelism Theo-
rem forM,N -adhesive transformation systems with application conditions, and
hence these results hold for graph transformation with relabelling. The Concur-
rency Theorem is proved in the long version of this paper [15].

We hope to establish the Amalgamation Theorem, the Embedding Theorem
and the Local Confluence Theorem in our new framework, too. These results have
recently been proved for M-adhesive transformation systems with application
conditions [6,7].

In future work, we expect to be able to show that the category of term graphs
is M,N -adhesive. This category is known to be not M-adhesive, too, but has
been shown to be quasi-adhesive [2]. Indeed the categories of term graphs and
partially labelled graphs are similar in that PLG can also be shown to be quasi-
adhesive. In PLG, the regular monomorphisms are precisely the undefinedness
preserving injective morphisms.

An extension ofM,N -adhesive transformation systems with rules that have a
non-monomorphic right-hand morphism, allowing to merge items, may be possi-
ble. In the context of graph transformation with relabelling, the approach of [14]
already includes such rules. Independently, in [1] a class of categories is identified
for which the local Church-Rosser property holds for certain classes of rules with
non-monomorphic right-hand morphisms.
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Finally, the W-adhesive transformation systems introduced in [11] provide a
general framework for attributed objects. They allow undefined attributes in
the interface of a rule to change attributes, which is similar to relabelling. But
the precise relationship toM,N -adhesive transformation systems remains to be
worked out.

Acknowledgements. We are grateful to Berthold Hoffmann for drawing our
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ered byM-adhesive transformation systems, and for comments on a draft version
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