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Preface

ICGT 2012 was the sixth International Conference on Graph Transformation,
held at the University of Bremen in September 2012 under the auspices of the
European Association of Theoretical Computer Science (EATCS), the European
Association of Software Science and Technology (EASST), and the IFIP Working
Group 1.3, Foundations of Systems Specification. ICGT 2012 continued the series
of conferences previously held in Barcelona (Spain) in 2002, Rome (Italy) in
2004, Natal (Brazil) in 2006, Leicester (UK) in 2008, and in Enschede (The
Netherlands) in 2010 following a series of six International Workshops on Graph
Grammars and Their Application to Computer Science from 1978 to 1998.

The conference motto was “Modeling and Analysis of Dynamic Structures”.
Dynamic structures are the predominant concept for modeling and understand-
ing complex problem situations. They consist of elements and interrelations
which either may be added or removed, or may change their state. Dynamic
structures are used in many computer science disciplines as the fundamental
modeling approach. Examples are software architectures, software models, pro-
gram structures, database structures, communication and network structures,
or artifact versions and configurations. These structures are dynamic as they
may be changed at design time or at runtime. These changes are known as, e.g.,
architectural refactorings, model transformations, or artifact evolutions. In the
case of executable descriptions, dynamic structures are also used as semantic do-
mains or as computational models for formal specification approaches, providing
in this way means to formally analyze dynamic structures for certain predefined
or user-defined properties.

All these approaches rely on the same uniform structure of graphs as well
as on graph transformations to describe their dynamic behavior. Both aspects
of graphs and graph transformations have been studied for more than 40 years
by the graph grammar and graph transformation community. The conference
aims at fostering this community as well as attracting researchers from other
research areas to join the community. This could happen by contributing to
the theory of graph transformation or by applying graph transformations to
already known or novel application areas. Examples are self-adaptive systems,
virtual structures in cloud computing, or advanced computational models such
as models for DNA computing.

The conference program was split into the foundations track and the applica-
tions track with separate program committees, in order to yield a high-quality
conference program covering all aspects of graph transformations. The proceed-
ings of ICGT 2012 consist of three invited papers and 24 contributions, which
were selected following a thorough reviewing process. Moreover, the three pre-
sentations accepted for the Doctoral Symposium are documented by extended
abstracts.
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The volume starts with the invited papers. The further papers are divided
into the foundations track and the applications track. The foundations track
consists of 15 papers subdivided into the thematic topics behavioral analysis,
high-level graph transformation, revisited approaches, general transformation
models, and structuring and verification while the applications track consists of
nine papers subdivided into the thematic topics graph transformations in use,
(meta-)model evolution, and incremental approaches. The volume ends with the
abstracts of the presentations given at the Doctoral Symposium.

We are grateful to the University of Bremen for hosting ICGT 2012, and
would like to thank the members of the organization committee and of the two
program committees as well as the subreviewers. Particular thanks go to Andrea
Corradini and Gabriele Taentzer for organizing the Doctoral Symposium as part
of the conference. Moreover, according to the tradition of the ICGT series, three
satellite workshops were organized:

– 7th International Workshop on Graph Based Tools (GraBaTs 2012) orga-
nized by Christian Krause and Bernhard Westfechtel,

– 4th International Workshop on Graph Computation Models (GCM 2012)
organized by Rachid Echahed, Annegret Habel, and Mohamed Mosbah, and

– 5th International Workshop on Petri Nets, Graph Transformation and other
Concurrency Formalisms (PNGT 2012) organized by Kathrin Hoffmann and
Julia Padberg.

We are also grateful to Marcus Ermler, Melanie Luderer, and Caroline von
Totth for their help in editing this volume. Finally, we would like to acknowledge
the excellent support throughout the publishing process by Alfred Hofmann
and his team at Springer, and the helpful use of the EasyChair and ConfTool
conference management systems.

July 2012 Hartmut Ehrig
Gregor Engels

Hans-Jörg Kreowski
Grzegorz Rozenberg
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Table of Contents XI

Probabilistic Graph Transformation Systems . . . . . . . . . . . . . . . . . . . . . . . . 311
Christian Krause and Holger Giese

Applications 2: (Meta-)Model Evolution

Co-transformation of Graphs and Type Graphs with Application
to Model Co-evolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

Gabriele Taentzer, Florian Mantz, and Yngve Lamo

Graph Transformations for Evolving Domain Knowledge . . . . . . . . . . . . . . 341
Bernhard Westfechtel and Manfred Nagl

Construction of Integrity Preserving Triple Graph Grammars . . . . . . . . . . 356
Anthony Anjorin, Andy Schürr, and Gabriele Taentzer
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A Graph-Based Design Framework for Services

Antónia Lopes1 and José Luiz Fiadeiro2

1 Faculty of Sciences, University of Lisbon
Campo Grande, 1749–016 Lisboa, Portugal

mal@di.fc.ul.pt
2 Department of Computer Science, Royal Holloway University of London

Egham TW20 0EX, UK
Jose.Fiadeiro@rhul.ac.uk

Abstract. Service-oriented systems rely on software applications that
offer services through the orchestration of activities performed by ex-
ternal services procured on the fly when they are needed. This pa-
per presents an overview of a graph-based framework developed around
the notions of service and activity module for supporting the design
of service-oriented systems in a way that is independent of execution
languages and deployment platforms. The framework supports both be-
haviour and quality-of-service constraints for the discovery, ranking and
selection of external services. Service instantiation and binding are cap-
tured as algebraic operations on configuration graphs.

1 Introduction

Service-oriented systems are developed to run on global computers and respond
to business needs by interacting with services and resources that are globally
available. The development of these systems relies on software applications that
offer services through the orchestration of activities performed by other services
procured on the fly, subject to a negotiation of service level agreements, in a
dynamic market of service provision. The binding between the requester and the
provider is established at run time at the instance level, i.e., each time the need
for the service arises. Over the last few years, our research has addressed some
challenges raised by this computing paradigm, namely:

(i) to understand the impact of service-oriented computing (SOC) on software
engineering methodology;

(ii) to characterise the fundamental structures that support SOC indepen-
dently of the specific languages or platforms that may be adopted to de-
velop or deploy services;

(iii) the need for concepts and mechanisms that support the design of service-
oriented applications from business requirements;

(iv) the need for mathematical models that offer a layer of abstraction at which
we can capture the nature of the transformations that, in SOC, are operated
on configurations of global computers;

(v) the need for an interface theory for service-oriented design.

H. Ehrig et al.(Eds.): ICGT 2012, LNCS 7562, pp. 1–19, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 A. Lopes and J.L. Fiadeiro

As a result of (i) above, we identified two types of abstractions that are useful
for designing service-oriented systems: business activities and services. Activities
correspond to applications developed by business IT teams according to require-
ments provided by their organisation, e.g., the applications that, in a bank,
implement the financial products that are made available to the customers. The
implementation of activities may resort to direct invocation of components and
can also rely on services that will be procured on the fly. Services differ from
activities in that they are applications that are not developed to satisfy spe-
cific business requirements of an organisation; instead they are developed to be
published in ways that they can be discovered by activities.

Taking into account this distinction, we developed a graph-based framework
for the design of service-oriented systems at a level of abstraction that supports
this “business-oriented” perspective. In this framework, services and activities
are defined through activity modules and service modules, respectively. These
modules differ in the type of interface and binding they provide to their clients,
which in the case of activities is for direct invocation or static binding (e.g.,
human-computer interaction or system-to-system interconnections established
at configuration time) and, in the case of services, for dynamic discovery and
binding. Activity and service modules are graph-based primitives that define a
workflow and the external services that may need to be procured and bound to
in order to fulfil business goals. Behaviour and service-quality constraints can be
imposed over the external services to be procured. These constraints are taken
into account in the processes of discovery, ranking and selection.

The proposed design framework is equipped with a layered graph-based model
for state configurations of global computers. Configurations are made to be busi-
ness reflective through an explicit representation of the types of business activi-
ties that are active in the current state. This model captures the transformations
that occur in the configuration of global computers when the discovery of a ser-
vice is triggered, which results in the instantiation and binding of the selected
service.

In this paper, we present an overview of this framework. In Sec. 2, we present
the notions of service and activity modules, the cornerstone of our framework,
grounded on an interface theory for service-oriented design. In Sec. 3, we present
a model for state configurations of global computers that in Sec. 4 is used to
provide the operational semantics of discovery, instantiation and binding. We
conclude in Sec. 5 by pointing to other aspects of SOC that have been investi-
gated within the framework.

2 Design Primitives for Service-Oriented Systems

The design primitives we propose for service-oriented systems were inspired by
the Service Component Architecture (SCA) [22]. As in SCA, we view SOC as
providing an architectural layer that can be superposed over a component infras-
tructure – what is sometimes referred to as a service overlay. More concretely,
we adopt the view that services are delivered by ensembles of components (or-
chestrations) that are able to bind dynamically to other services discovered at
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run time. For the purposes of this paper, the model that is used for defining
orchestrations is not relevant. As discussed in Sec. 2.1, it is enough to know that
we have a component algebra in the sense of [9] that makes explicit the structure
of the component ensembles.

We illustrate our framework with a simplified credit service: after evaluating
the risk of a credit request, the service either proposes a deal to the customer or
denies the request; in the first case and if the proposal is accepted, the service
takes out the credit and informs the customer of the expected transfer date. This
activity relies on an external risk evaluator that is able to evaluate the risk of
the transaction.

2.1 The Component Algebra

We see the ensembles of components that orchestrate services as networks in
which components are connected through wires. For the purpose at hand, the
nature of these components and the communication model is not relevant. The
design framework is defined in terms of a set COMP of components, a set PORT
of ports that components make available for communication with their environ-
ment, a set WIRE of wires for interconnecting pairs of ports, and a component
algebra built around those elements. In the sequel we use ports(c) and ports(w)
to denote, respectively, the set of ports of a component c and the pair of ports
interconnected by a wire w.

Definition 1 (Component Net). A component net α is a tuple 〈C, W, γ, μ〉
where:

– 〈C, W 〉 is a simple finite graph: C is a set of nodes and W is a set of edges.
Each edge is an unordered pair {c1, c2} of nodes.

– γ is a function assigning γc∈COMP to every c∈C and γw∈WIRE to every
w∈W .

– μ is a W -indexed family of bijections μw establishing a correspondence be-
tween ports(γw) and the components {c1, c2} interconnected by w, such that:

1. For every P∈ports(γw), P∈ports(μw(P )).

2. If w′={c1, c3} is an edge with c2 �= c3, then μw(c1) �= μw′(c1).

This definition reflects component-and-connector architectural configurations
where the mapping μ defines the attachments between component ports and
connector roles. Because in SOC communication is essentially peer-to-peer, we
take all connectors to be binary. The fact that the graph is simple means that all
interactions between two components are supported by a single wire and that no
component can interact with itself. Through (2), ports of a component cannot
be used in more than one connection.

The ports of a component net that are still available for establishing further
interconnections, i.e., not connected to any other port, are called interaction-
points:
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Definition 2 (Interaction-point). An interaction-point of a component net
α=〈C, W, γ, μ〉 is a pair 〈c, P 〉 where c∈C and P∈ports(γc) such that there is
no edge {c, c′}∈W such that μ{c,c′}(c)=P . We denote by Iα the set of interaction-
points of α.

Component nets can be composed through their interaction points via wires that
interconnect the corresponding ports.

Definition 3 (Composition of Component Nets). Let α1=〈C1, W1, γ1, μ1〉
and α2= 〈C2, W2, γ2, μ2〉 be component nets such that C1 and C2 are disjoint,
(wi)i=1...n a family of wires, and 〈ci1, P i

1〉i=1...n and 〈ci2, P i
2〉i=1...n families of

interaction points of, respectively, α1 and α2, such that: (1) each wi is a wire
connecting {P i

1, P i
2}, (2) if ci1 = cj1 and ci2 = cj2 then i = j, (3) if ci1 = cj1

with i �= j, then P i
1 �= P j

1 and (4) if ci2 = cj2 with i �= j, then P i
2 �= P j

2 . The
composition

α1

�i=1...n

〈ci1,P i
1〉,wi,〈ci2,P i

2〉
α2

is the component net defined as follows:

– Its graph is 〈C1 ∪C2, W1 ∪W2 ∪
⋃

i=1...n{ci1, ci2}〉.
– Its functions γ and μ coincide with that of α1 and α2 on the corresponding

subgraphs. For the new edges, γ{ci1,ci2}=wi and μ{ci1,ci2}(P
i
j ) = cij.

In order to illustrate the notions just introduced, we take the algebra of Asyn-
chronous Relational Nets (ARN) defined in [13]. In that algebra, components
interact asynchronously through the exchange of messages transmitted through
channels. Ports are sets of messages classified as incoming or outgoing. A compo-
nent consists of a finite collection of mutually disjoint ports and a set of infinite
sequences of sets of actions (traces), each action being the publication of an
outgoing message or the reception of an incoming message (for simplicity, the
data that messages may carry is ignored). Interconnection of components is es-
tablished through channels – a set P of messages and a set of traces. A wire
consists of a channel and a pair of injections μi:P→Pi that uniquely establishes
connections between incoming and outgoing messages.

ClerkcreditReq

           Λ c
approved
denied

transferDate

RiskEvaluator

request

result

getRisk

riskValueaccept

Pc

Pc Pe

           Λe
Pc Pc

proc
essC
redi
t

expe
cted
Date

1

2

3

4

Λ w

getU
serR
isk

user
Risk
Valu
e

Fig. 1. An example of an ARN with two components connected through a wire
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Fig. 1 presents an example of an ARN with two components connected through
a wire, which support part of the activities involved in the request of a credit.
The net has two nodes {c:Clerk, e:RiskEvaluator} and a single edge {c, e}:wce.

The component Clerk has four ports. Its behaviour Λc is as follows: after
the delivery of the first creditReq message on port P 1

c , it publishes getUserRisk
on port P 2

c and waits for the delivery of userRiskValue in the same port; if
the credit request comes from a known user, this may be enough for making
a decision on the request and sending approved or denied ; if not, it publishes
getRisk on P 3

c and waits for the delivery of riskValue for making the decision;
after sending approved (if ever), Clerk waits for the delivery of accept , upon
which it publishes processCredit on P 4

c and waits for expectedDate; when this
happens, it sends transferDate.

The component RiskEvaluator has a single port and its behaviour is quite
simple: every time request is delivered, it publishes result . The wire wce inter-
connects ports P 3

c and Pe and establishes that the publication of getRisk in P 3
c

will be delivered in Pe under the name request and the publication of request in
Pe will be delivered in P 3

c under the name riskValue.
The example presented in Fig. 1 can also be used to illustrate the composition

of ARNs: this ARN is the composition of the two single-component ARNs defined
by Clerk and RiskEvaluator via the wire wce.

2.2 The Interface Algebra

As discussed in the introduction, the interfaces of services and business activi-
ties need to specify the functionality that customers can expect as well as the
dependencies that they may have on external services.

In our approach, a service interface identifies a port through which the service
is provided (provides-point), a number of ports through which external services
are required (requires-points) and a number of ports for those persistent com-
ponents of the underlying configuration that the service will need to use once
instantiated (uses-points). Activity interfaces are similar except that they have a
serves-point instead of a provides-point. The differences are that the binding of
provides and requires-points is performed by the runtime infrastructure whereas
the binding of uses and serves-points has to be provided by developers.

In addition, interfaces describe the behavioural constraints imposed over the
external services to be procured and quality-of-service constraints through which
service-level agreements can be negotiated with these external services during
matchmaking. The first are defined in terms of a logic while the latter are ex-
pressed through constraint systems defined in terms of c-semirings [5].

More concretely, we consider that sentences of a specification logic SPEC are
used for specifying the properties offered or required. The particular choice of
the specification logic – logic operators, their semantics and proof-theory – can
be abstracted away. For the purpose of this paper, it is enough to know that
the logic satisfies some structural properties, namely that we have available an
entailment system (or π- institution) 〈SIGN , gram,�〉 for SPEC [17,11]. In this
structure, SIGN is the category of signatures of the logic: signatures are sets
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of actions (e.g., the actions of sending and receiving a message m, which we
denote, respectively, by m! and m¡) and signature morphisms are maps that
preserve the structure of actions (e.g., their type, their parameters, etc). The
grammar functor gram:SIGN→SET generates the language used for describing
properties of the interactions in every signature. Notice that, given a signature
morphism σ:Σ→Σ′, gram(σ) translates properties in the language of Σ to the
language of Σ′. Translations induced by isomorphims (i.e., bijections between
sets of actions) are required to be conservative.

We also assume that PORT is equipped with a notion of morphism that
defines a category related to SIGN through a functor A:PORT→SIGN . The
idea is that each port defines a signature that allows to express properties over
what happens in that port. We use AP to denote the signature corresponding
to port P . Moreover, we consider that every port P has a dual port P op (e.g.,
the dual of a set of messages classified as incoming or outgoing is the same set
of messages but with the dual classification).

For quality-of-service constraints, we adopt so-called soft constraints, which
map each valuation of a set of variables into a space of degrees of satisfaction A.
The particular soft-constraint formalism used for expressing constraints is not
relevant for the approach that we propose. It is enough to know that we consider
constraint systems defined in terms of a fixed c-semiring S, as defined in [5]:

– A c-semiring S is a semiring of the form 〈A,+,×, 0, 1〉 in which A represents
a space of degrees of satisfaction. The operations × and + are used for
composition and choice, respectively. Composition is commutative, choice is
idempotent and 1 is an absorbing element (i.e., there is no better choice than
1). S induces a partial order ≤S (of satisfaction) over A: a ≤S b iff a+ b = b.

– A constraint system defined in terms of c-semiring S is a pair 〈D, V 〉 where
V is a totally ordered set (of variables), and D is a finite set (domain of
possible values taken by the variables).

– A constraint consists of a subset con of V and a mapping def :D|con|→A
assigning a degree of satisfaction to each assignment of values to the variables
in con.

– The projection of a constraint c over I⊆V , denoted by c ⇓I , is 〈def ′, con′〉
with con′ = con ∩ I and def ′(t′) =

∑
{t∈D|con|:t↓con

con′=t′} def (t), where t↓YX
denotes the projection of Y -tuple t over X .

We start by defining a notion of service and activity interface.

Definition 4 (Service and Activity Interface). An interface i consists of:

– A set I (of interface-points) partitioned into a set I→ with at most one
element, which (if it exists) is called the provides-point and denoted by i→,
a set I← the member of which are called the requires-points, a set I↑ with at
most one element, which (if it exists) is called the serves-point and denoted
by i↑, a set I↓ the member of which are called the uses-points, such that
either I→ or I↑ is empty.

– For every r∈I, a port Pr and a consistent set of formulas Φr over APr .
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Fig. 2. An example of a service interface

– For every r∈I←∪I↓, a consistent set of formulas Ψr over the amalgamated
union of APr and AP op

r
.

– A pair C = 〈Ccs, Csla〉 where Ccs is a constraint system 〈CD, CV 〉 and Csla is
a set of constraints over Ccs.

A service interface i is an interface such that I↑ is empty and I→ is a singleton.
Conversely, an activity interface i is an interface such that I→ is empty and I↑

is a singleton.

The formulas Φr at each interface-point r specify the protocols that the element
requires from external services (in the case of requires-points) or from other
components (in the case of uses-points) and those that it offers to customer
services (in the case of the provides-point) or to users (in the case of the serves-
point). The formulas Ψr express requirements on the wire through which the
element expects to interact with r. C defines the constraints through which SLAs
can be negotiated with external services during discovery and selection.

In Fig. 2, we present an example of an interface for a credit service using a
graphical notation similar to that of SCA. On the left, we have a provides-point
CSCustomer through which the service is provided; on the right, a requires-
point IRiskEvaluator through which an external service is required; and, on
the bottom, two uses-points through which the service connects to persistent
components (a database that stores information about users and a manager of
approved credit requests).

In this example, the specification of behavioural properties is defined in linear
temporal logic. For instance, Φc includes �(creditReq¡ ⊃ �(approved !∨denied !))
specifying that the service offers, in reaction to the delivery of the message
creditReq, to reply by publishing either approved or denied . Moroever, Φc also
specifies that if accept was received after the publication of approved , then
transferDate will eventually be published. On the other hand, Φe only includes
�(getRisk ¡ ⊃ �riskValue!) specifying that the required service is asked to re-
act to the delivery of getRisk by eventually publishing riskValue. Ψe specifies
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that the wire used to connect the requires-point with the external service has to
ensure that the transmission of both messages is reliable.

The quality-of-service constraints are defined in terms of the c-semiring 〈[0, 1],
max, min, 0, 1〉 of soft fuzzy constraints. SLA CreditService declares three con-
figuration variables – c.amount (the amount conceded to the customer), e.fee
(the fee to be paid by the credit service to the risk evaluator service) and e.cfd
(the confidence level of the risk evaluator) – and has two constraints: (1) the
credit service targets only credit requests between 1000 and 10 000; (2) the fee
f to be paid to the risk evaluator must be less than 50, the confidence level c
must be greater than 0.9 and, if these conditions are met, the preference level is
given by c−0.9

0.2 + 50−f
100 .

Composition of interfaces is an essential ingredient of any interface algebra.
As discussed before, activities and services differ in the form of composition they
offer to their customers. In this paper, we focus on the notion of composition
that is specific to SOC, which captures the binding of a service or activity with
a required service.

Definition 5 (Interface Match). Let i be an interface, r∈I← and j a ser-
vice interface. An interface match from 〈i, r〉 to j consists of a port morphism
δ:P i

r→P j
j→ such that Φj

j→�δ(Φi
r) and a partial injective function ρ:CiV→C

j
V . In-

terface i is said to be compatible with service interface j w.r.t. requires-point r
if (1) I and J are disjoint, (2) blevel(Cisla⊕ρCjsla) >S 0 and (3) there exists a
match from 〈i, r〉 to j.

An interface match defines a relation between the port of the requires-point r of
interface i and the port of the provides-point of j in such a way that the required
properties are entailed by the provided ones. Moreover, the function ρ identifies
the configuration variables in the constraint systems of the two interfaces that are
shared. The formulation of condition (2) above relies on a composition operator
⊕ρ that performs amalgamated unions of constraint systems and constraints,
taking into account the shared configuration variables. These operations are
defined as follows.

Definition 6 (Amalgamation of Constraints). Let S1=〈D1, V1〉 and S2=〈D2,
V2〉 be two constraint systems and ρ:V1 → V2 a partial injective function.

– S1⊕ρS2 is 〈D, V 〉 where D is D1∪D2 and V is V1⊕ρV2, the amalgamated
union of V1 and V2. We use ιi to denote the injection from Vi into V1⊕ρ V2.

– Let c=〈con, def 〉 be a constraint in Si. ρ(c) is the constraint 〈ιi(con), def ′〉
in S1⊕ρS2 where def ′(t) is def (t) for t ∈ D

|con|
i and 0 otherwise.

– Let C1,C2 be sets of constraints in, respectively, S1 and S2. C1⊕ρC2 is
ρ(C1)∪ρ(C2).

The consistency of a set of constraints C in S=〈D, V 〉 is defined in terms of the
notion of best level of consistency as follows:

blevel(C) =
∑

t∈D|V |

∏
c∈C

def c(t ↓Vconc
)
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Intuitively, this notion gives us the degree of satisfaction that we can expect
for C. We choose (through the sum) the best among all possible combinations
(product) of all constraints in C (for more details see [5]). C is said to be con-
sistent iff blevel(C) >S 0. If a set of constraints C is consistent, a valuation for
the variables used in C is said to be a solution for C and can be also regarded
as a constraint.

Definition 7 (Composition of Interfaces). Given an interface i compatible
with a service interface j w.r.t. r, a match μ=〈δ, ρ〉 between 〈i, r〉 and j, and a so-
lution Δ for (Cics⊕ρCjcs)⇓ιj◦ρ(CiV ), the composition i ‖r:μ,Δ j is 〈K→, K←, K↑, K↓,

P, Φ, Ψ, C〉 where:
– K→ = I→, K← = J← ∪ (I← \ {r}), K↑ = I↑ and K↓ = I↓ ∪ J↓.
– P, Φ, Ψ coincides with P i, Φi, Ψ i and P j , Φj , Ψ j on the corresponding points.
– C = 〈Cics⊕ρCjcs,(Cisla⊕ρCjsla) ∪ {Δ}〉.

Notice that the composition of interfaces is not commutative: the interface on
the left plays the role of client and the one on the right plays the role of supplier
of services.

2.3 Service and Activity Modules

A component net orchestrates a service interface by assigning interaction-points
to interface-points in such a way that the behaviour of the component net val-
idates the specifications of the provides-points on the assumption that it is in-
terconnected to component nets that validate the specifications of the requires-
and uses-points through wires that validate the corresponding specifications.

In order to reason about the behaviour of component nets we take the be-
haviour of components c∈COMP and wires w∈WIRE to be captured, respec-
tively, by specifications 〈Ac, Φc〉 and 〈Aw, Φw〉 in SPEC defining the language of
components and wires to be the amalgamated union of the languages associated
with their ports. Given a pair of port morphisms θ1:P1→P ′1 and θ2:P2→P ′2, we
denote by 〈θ1, θ2〉 the unique mapping from the amalgamated sum of AP1 and
AP2 to the amalgamated sum of AP ′1 and AP ′2 that commutes with θ1 and θ2.

Notice that nodes and edges denote instances of components and wires, re-
spectively. Different nodes (resp. edges) can be labelled with the same component
(resp. wire). Therefore, in order to reason about the properties of the component
net as a whole we need to translate the properties of the components and wires
involved to a language in which we can distinguish between the corresponding
instances. We take the translation that uses the node as a prefix for the elements
in their language. Given a set A and a symbol p, we denote by (p. ) the function
that prefixes the elements of A with ‘p.’. Note that prefixing defines a bijection
between A and its image p.A.

Definition 8 (Component Net Properties). Let α = 〈C, W, γ, μ〉 be a com-
ponent net. Aα =

⋃
c∈C c.(Aγc) is the language associated with α and Φα is the

union of, for every c ∈ C, the prefix-translation of Φγc by (c. ) and, for every
w∈W , the translation of Φγw by μw, where, for a∈AP , μw(a)=μw(P ).a.
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The set Φα consists on the translations of all the specifications of the components
and wires using the nodes as prefixes for their language. Notice that because we
are using bijections, these translations are conservative, i.e. neither components
nor wires gain additional properties because of the translations. However, by
taking the union of all such descriptions, new properties may emerge, i.e., Φα is
not necessarily a conservative extension of the individual descriptions.

Definition 9 (Orchestration). An orchestration of an interface i consists of:

– a component net α=〈C, W, γ, μ〉 where C and I are disjoint;

– an injective function θ:I → Iα that assigns a different interaction-point to

each interface-point; we write r θ−→c to indicate that θ(r) = 〈c, Pc〉 for some
Pc∈ports(γc);

– for every r of I→ ∪ I↑, a port morphism θr:Pr→Pcr where r θ−→cr;

– for every r of I← ∪ I↓, a port morphism θr:P
op
r →Pcr where r θ−→cr;

If i is a service interface, we require that⋃
r∈I←∪I↓

( r.Φr ∪ μr(Ψr) ) ∪ Φα � ci→ .(θi→(Φi→))

where μr(a) = r.a for a∈APr and μr(a) = cr.θr(a) for a∈AP op
r
. We use α �θ i

to denote an orchestrated interface.

Consider again the single-component ARN defined by Clerk . This ARN, to-
gether with the correspondences CSCustomer �→ 〈Clerk , P 1

c 〉, IRiskEvaluator �→
〈Clerk , P 3

c 〉, IUserDB �→ 〈Clerk , P 2
c 〉 and ICreditMgr �→ 〈Clerk , P 4

c 〉, defines an
orchestration for the service interface ICreditService. The port morphisms in-
volved are identity functions. The traces in Λc are such that they validate Φc on
the assumption that Clerk is interconnected through IRiskEvaluator , IUserDB
and ICreditMgr to component nets that validate, respectively, Φe, Φu and Φm

via wires that validate Ψe, Ψu and Ψm.
Services are designed through service modules. These modules define an or-

chestrated service interface, the initialisation conditions for the components and
the triggers for the requires-points (stating when external services need to be
discovered). The proposed framework is independent of the language used for
specifying initialisation conditions and triggers: we assume that we have available
a set STC of conditions and a set TRG of triggers.

Definition 10 (Service and Activity Module). A service (resp. activity)
module consists of an orchestrated service (resp. activity) interface α �θ i and
a pair of mappings 〈trigger, init〉 such that trigger assigns a condition in STC
to each r∈I← and init assigns a condition in STC to each c in the nodes of α.

We use interface(M), orch(M) and θM to denote, respectively, i, α and θ;
M→ and M← to denote, respectively, i→ and I←; Ccs(M) and Csla(M) to denote,
respectively, the constraint system and the set of constraints of i.



A Graph-Based Design Framework for Services 11

The service interface ICreditService orchestrated by Clerk together with a
initialization condition for Clerk and a trigger condition for IRiskEvaluator de-
fine the service module CreditService. We do not illustrate these conditions
because their formulation depends on the formalism used for specifying the be-
haviour of components and wires (e.g., state machines, process calculi, Petri-
nets). See [15,16] for examples in SRML, a modelling language for SOC that we
defined in the Sensoria project.

Definition 11 (Service Match). Let M be a module and r∈M←. A service
match for M w.r.t. r is a triple 〈S, μ, w〉 where

– S is a service module such that the set of nodes of orch(S) is disjoint from
that of orch(M) and interface(M) is compatible with interface(S) w.r.t. r,

– μ is an interface match from 〈interface(M), r〉 to interface(S),
– w is a wire connecting ports {P, P ′} such that Φw � 〈θMr , θSS→ ◦ ρ〉(ΨM

r ),
assuming that θM (r)=〈c, P 〉 and θS(S→)=〈c′, P ′〉.

Proposition and Definition 12 (Module Composition). Let M be a ser-
vice (resp. activity) module with interface i and r∈M←; 〈S, μ, w〉 a service
match for M w.r.t. r with μ=〈δ, ρ〉 and j = interface(S); Δ a solution for
(Cics⊕ρCjcs)⇓ιj◦ρ(CiV ). The composition M⊕r:μ,w,ΔS is the service (resp. activity)
module with:

– (i ‖r:μ,Δ j)�θ (orch(M)
�
θi(r),w,θj(j→)

orch(S)), where θ coincides with θi

on the interface-points inherited from i and with θj on those inherited from
j

– trigger and init have the conditions that are inherited from M and S.

M ⊕r:μ,w S is the composition in which no additional constraints are imposed on
the external services, i.e., M ⊕r:μ,w,∅ S.

Fig. 3 illustrates the elements involved in the composition of CreditService
(presented before) and RiskEvalService. The interface of this new service
has the provides-point RECustomer , with Φr including �(request ¡ ⊃ ©result !),
and its constraint system includes the configuration variables r.fee and r.cfd
constrained by r.fee=−3+ 3

(1−r.cfd) . The orchestration of this service is provided

by the single-component ARN with the component RiskEvaluator involved in
the ARN presented before with κRECustomer being the identity.

The match between the two services is given by the mappings δ: getRisk �→
request , riskValue �→ result and ρ: e.fee �→ r.fee, e.cfd �→ r.cfd . The required
property included in Φe translated by δ is �(request ¡ ⊃ �result !) which is triv-
ially entailed by Φr . For the composition of the two services, we take the wire wce

also used in the ARN presented in Fig. 1 (its properties entail δ(Ψe)) and the con-
straint cfd = 0.9095. This confidence level implies that the fee is approximately
30. This pair of values is one that provides the best level of consistency among
the solutions for (Csla(CreditService)⊕ρ Csla(RiskEvalService)) ⇓{fee,cfd}.

The result of this composition is a service module whose interface has two
uses- and two provides-points (inherited from CreditService), the variables
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Fig. 3. Example of a service match

c.amount, fee and cfd subject to the constraints inherited from the two interfaces
and also cfd = 0.9095∧ fee = 30.14917. The service is orchestrated by the ARN
presented in Fig. 1.

This example illustrates how the proposed notion of composition of services
can be used for obtaining more complex services from simpler ones. The service
provider of IRiskEvaluator was chosen at design-time as well as the SLA and
the result of this choice was made available in a new service CreditService⊕
RiskEvalService.

3 Business-Reflective Configurations

As mentioned before, component nets define configurations of global computers.
In order to account for the way configurations evolve, it is necessary to consider
the states of the configuration elements and the steps that they can execute. For
this purpose, we take that every component c∈COMP and wire w∈WIRE of a
component net may be in a number of states, the set of which is denoted by
STATE c and STATEw, respectively.

Definition 13 (State Configuration). A state configuration F is a pair
〈α,S〉, where α=〈C, W, γ, μ〉 is a component net and S is a configuration state,
i.e., a mapping that assigns an element of STATE c to each c∈C and of STATEw

to each w∈W .

A state configuration 〈α,S〉 may change in two different ways: (1) A state tran-
sition from S to S ′ can take place within α – we call such transitions execution
steps. An execution step involves a local transition at the level of each compo-
nent and wire, though some may be idle; (2) Both a state transition from S to S ′
and a change from α to another component net α′ can take place – we call such
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transitions reconfiguration steps. In this paper, we are interested in the recon-
figurations steps that happen when the execution of business activities triggers
the discovery and binding to other services. In order to determine how state
configurations of global computers evolve, we need a more sophisticated typing
mechanism that goes beyond the typing of the individual components and wires:
we need to capture the business activities that perform in a state configuration.
We achieve this by typing the sub-configurations that, in a given state, execute
the activities with activity module, thus making the configurations reflective.

Business configurations need also to include information about the services
that are available in a given state (those that can be subject to procurement).
We consider a space U of service and activity identifiers (e.g., URIs) to be given
and, for each service and activity that is available, the configuration has in-
formation about its module and for each uses-point u: (i) the component cu
in the configuration to which u must be connected and (ii) a set of pairs of
ports and wires available for establishing a connection with cu. This information
about uses-points of modules captures a ‘direct binding’ between the need of
u and a given provider cu, reflecting the fact that composition at uses-points
is integration-oriented. The multiplicity of pairs of ports and wires opens the
possibility of having a provider cu serving different instances of a service at the
same time.

We also consider a space A of business activities to be given, which can be
seen to consist of reference numbers (or some other kind of identifier) such as
the ones that organisations automatically assign when a service request arrives.

Definition 14 (Business Configuration). A business configuration is 〈F ,P ,
B, C〉 where

– F is a state configuration
– P is a partial mapping that assigns to services s∈U , a pair

〈PM (s), {Pu(s) : u ∈ PM (s)↓}〉
where PM (s) is a service module and Pu(s) consists of a node cu in F (i.e.,
a component instance) and a set of pairs 〈Pu

i , wu
i 〉, where each Pu

i is a port
of γcu distinct from the others and wu

i is a wire connecting Pu
i and the port

of u that satisfies the properties Ψu imposed by PM (s). The services and
activities in the domain of this mapping are those that are available in that
state.

– B is a partial mapping that assigns an activity module B(a) to each activity
a∈A (the workflow being executed by a in F). We say that the activities in
the domain of this mapping are those that are active in that state.

– T is a mapping that assigns an homomorphism T (a) of graphs orch(B(a))→
F to every activity a∈A that is active in F . We denote by F(a) the image
of T (a) – the sub-configuration of F that corresponds to the activity a.

Let us consider a configuration in which CreditService (presented before) and
CreditActivity are available. The latter is an activity that the same provider
makes available in order to serve requests that are placed, not by other services,
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Fig. 4. Excerpt of a business configuration

but by applications that interact with users (e.g., a web application that sup-
ports online credit requests). Suppose that the configuration also defines that
the uses-points IUserDB and ICreditMgr of both interfaces should be connected,
respectively, to UserDB and CreditMgr – a database of users and a manager of
approved credit requests that are shared by all instances of this service and ac-
tivity. The other elements of the business configuration are (partially) described
in Fig. 4. It is not difficult to recognise that there are currently two active busi-
ness activities – AAlice and ABob. Intuitively, both correspond to two instances
of the same business logic (two customers requesting a credit using the same
business activity) but at different stages of their workflow: one (launched by
BobUI ) is already connected to a risk evaluator (BobREval ) while the other
(launched by AliceUI ) has still to discovery and bind to a risk evaluator service.
The active computational ensemble of component instances that collectively pur-
sue the business goal of each activity in the current state are highlighted through
a dotted line.

4 Service Discovery and Binding

Every activity module declares a triggering condition for each requires-point,
which determines when a service needs to be discovered and bound to the current
configuration through that point. Let L=〈F ,P ,B, C〉 be the current business
configuration. The discovery of a service for a given activity a and requires-point
r of B(a) consists of several steps. First, it is necessary to find, among the services
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that are available in L, those that are able to guarantee the properties associated
with r in B(a) and with which it is possible to reach a service-level agreement.
Then, it is necessary to rank the services thus obtained, i.e., to calculate the
most favourable service-level agreement that can be achieved with each S – the
contract that will be established between the two parties if S is selected. The last
step is the selection of one of the services that maximises the level of satisfaction
offered by the corresponding contract.

Definition 15 (discover(M, r,P)). Let P be a mapping as in Def. 14, M an
activity module and r∈M←. discover(M, r,P) is the set of tuples 〈s, 〈δ, ρ〉, w, Δ〉
such that:

1. s ∈ U and S=PM(s) is defined;
2. 〈S, 〈δ, ρ〉, w〉 is a service match for M w.r.t. r;
3. Δ is a solution for (Csla(M) ⊕ρ Csla(S))⇓ιS◦ρ(CMV ) and blevel(Csla(M) ⊕ρ

Csla(S) ∪ {Δ}) is greater than or equal to the value obtained for any other
solution of that set of constraints;

4. blevel(Csla(M)⊕ρCsla(S)∪{Δ}) is greater than or equal to the value obtained
for any other tuple 〈s′, δ′, ρ′, Δ′〉 satisfying the conditions 1-3, above.

The discovery process for an activity module and one of its requires-points r also
provides us with a wire to connect r with the provides-point of the discovered
service. By Def. 11, this wire guarantees the properties associated with r in B(a).

The process of binding an activity to a discovered service for one of its requires-
points can now be defined:

Definition 16 (Service Binding). Let L=〈F ,P ,B, T 〉 be a business configu-
ration with F = 〈α,S〉, a an active business activity in L and r∈B(a)←.

– If F(a) |= triggerB(a)(r) and discover(B(a), r,L) �= ∅, then binding B(a) to
r using any of the elements in discover(B(a), r,P) is enabled in L.

– Binding B(a) to r using 〈s, 〈δ, ρ〉, w, Δ〉∈discover(B(a), r,L), and assuming
that PM (s)=S, induces a business configuration 〈〈α′,S ′〉, P ,B′, T ′〉 such
that:

• B′(x) = B(x), if x �= a and B′(a) is the activity module B(a)⊕r:μ,w,Δ S
• if θB(a)(r)=〈c, P 〉 and θS(S→)=〈c′, P ′〉, α′ is α

�
Ξ αS where

∗ αS is a component net obtained by renaming the nodes in orch(S)
in such a way this set becomes disjoint from the set of nodes of
orch(B(a)),

∗ c′′ is the node in αS corresponding to c′,
∗ Ξ={〈〈T (c), P 〉, w, 〈c′′, P ′〉〉, 〈〈cu, Pu

i 〉, wu
i , θS(u)〉:u ∈ S↑} where cu

is the component identified by Pu(s), Pu
i is a port in Pu(s) that is

still available for connection and wu
i is the corresponding wire, as

defined by Pu(s).
• S ′ coincides with S in the nodes of α and assigns, to every node c in αS,
a state that satisfies initS(c).

• T ′ is the homomorphism that results from updating T with the renaming
from orch(S) to αS.
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Fig. 5. Reconfiguration step induced by a service binding

That is to say, new instances of components and wires of S are added to the
configuration while existing components are used for uses-interfaces, according
to the direct bindings defined in the configuration.

Figure 5 illustrates the binding process. On the left side is depicted part of
the business configuration L1, before the activity ABob has bound to a risk
evaluator service (activity AAlice was not yet active at this time). On the
right side is depicted the result of the binding of IRiskEvaluator to the ser-
vice RiskEvalService using the service match presented in Fig. 3. This means
that this service is, among all the services available in P1 that fit the purpose,
one of the services that best fits the quality-of-service constraints. According to
what discussed in Sec. 2.3, the contract established between the two parties is a
confidence level of 0.9095 and a fee of 30.14917.

5 Conclusions

In this paper, we presented an overview of a graph-based framework for the
design of service-oriented systems developed around the notion of service and
activity module. Service modules, introduced in [14], were originally inspired by
concepts proposed in SCA [22]. They provide formal abstractions for compos-
ite services whose execution involves a number of external parties that derive
from the logic of the business domain. Our approach has also been influenced
by algebraic component frameworks for system modelling [10] and architectural
modelling [2]. In those frameworks, components are, like services, self-contained
modelling units with interfaces describing what they require from the environ-
ment and what they themselves provide. However, the underlying composition
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model is quite different as, unlike components, services are not assembled but, in-
stead, dynamically discovered and bound through QoS-aware composition mech-
anisms. Another architectural framework inspired by SCA is presented in [25].
This framework is also language independent but its purpose is simply to offer
a meta-model that covers service-oriented modelling aspects such as interfaces,
wires, processes and data.

Our notion of service module also builds on the theory of interfaces for service-
oriented design proposed in [13], itself inspired by the work reported in [9] for
component based design. Henzinger and colleagues also proposed a notion of
interface for web-services [4] but the underlying notion of composition, as in
component-based approaches, is for integration.

We presented a mathematical model that accounts for the evolutionary pro-
cess that SOC induces over software systems and used it to provide an oper-
ational semantics of discovery, instantiation and binding. This model relies on
the mechanism of reflection, by which configurations are typed with models of
business activities and service models. Reflection has been often used as a means
of making systems adaptable through dynamic reconfiguration (e.g. [8,19,20]).
A more detailed account of the algebraic properties of this model can be found
in [15].

The presented framework was defined in terms of abstractions like COMP ,
PORT and WIRE so that the result was independent of the nature of compo-
nents, ports and wires and of the underlying computation and communication
model. In the same way, we have considered that the behavioural constraints
imposed over the interface-points were defined in terms of a specification logic
SPEC . A large number of formalisms have been proposed for describing each of
these concepts in the context of SOC – e.g., process-calculi [7,18,26], automata-
based models [3,23] and models based on Petri-nets [21,24]. An example of the
instantiation of the framework is provided by the language SRML [12,16], a mod-
elling language of service-oriented systems we have developed in the context of
Sensoria project. This modelling language is equipped with a logic for specify-
ing stateful, conversational interactions, and a language and semantic model for
the orchestration of such interactions. Examples of quantitative and qualitative
analysis techniques of service modules modelled in SRML can be found in [1,6].
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20. Léger, M., Ledoux, T., Coupaye, T.: Reliable Dynamic Reconfigurations in a Re-
flective Component Model. In: Grunske, L., Reussner, R., Plasil, F. (eds.) CBSE
2010. LNCS, vol. 6092, pp. 74–92. Springer, Heidelberg (2010)

21. Martens, A.: Analyzing Web Service Based Business Processes. In: Cerioli, M. (ed.)
FASE 2005. LNCS, vol. 3442, pp. 19–33. Springer, Heidelberg (2005)

22. OSOA. Service component architecture: Building systems using a service oriented
architecture (2005), White paper available from http://www.osoa.org

http://www.osoa.org


A Graph-Based Design Framework for Services 19

23. Ponge, J., Benatallah, B., Casati, F., Toumani, F.: Analysis and applications of
timed service protocols. ACM Trans. Softw. Eng. Methodol. 19(4), 11:1–11:38
(2010)

24. Reisig, W.: Towards a Theory of Services. In: Kaschek, R., Kop, C., Steinberger, C.,
Fliedl, G. (eds.) UNISCON 2008. LNBIP, vol. 5, pp. 271–281. Springer, Heidelberg
(2008)

25. van der Aalst, W., Beisiegel, M., van Hee, K., Konig, D.: An SOA-based archi-
tecture framework. Journal of Business Process Integration and Management 2(2),
91–101 (2007)

26. Vieira, H.T., Caires, L., Seco, J.C.: The Conversation Calculus: A Model of Service-
Oriented Computation. In: Drossopoulou, S. (ed.) ESOP 2008. LNCS, vol. 4960,
pp. 269–283. Springer, Heidelberg (2008)



Evolutionary Togetherness:
How to Manage Coupled Evolution

in Metamodeling Ecosystems

Davide Di Ruscio, Ludovico Iovino, and Alfonso Pierantonio

Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica
Università degli Studi dell’Aquila

Via Vetoio, L’Aquila, Italy
{davide.diruscio,ludovico.iovino,alfonso.pierantonio}@univaq.it

Abstract. In Model-Driven Engineering (MDE) metamodels are cornerstones
for defining a wide range of related artifacts interlaced with explicit or implicit
correspondences. According to this view, models, transformations, editors, and
supporting tools can be regarded as a whole pursuing a common scope and there-
fore constituting an ecosystem. Analogously to software, metamodels are subject
to evolutionary pressures too. However, changing a metamodel might compro-
mise the validity of the artifacts in the ecosystem which therefore require to co-
evolve as well in order to restore their validity.

Different approaches have been proposed to support at different extent the
adaptation of artifacts according to the changes operated on the corresponding
metamodels. Each technique is specialized in the adaptation of specific kind of
artifact (e.g., models, or transformations) by forcing modelers to learn different
technologies and languages. This paper discusses the different relations occur-
ring in a typical metamodeling ecosystem among the metamodel and the related
artifacts, and identifies the commonalities which can be leveraged to define a
unifying and comprehensive adaptation process. A language and corresponding
supporting tools are also proposed for the management of metamodel evolution
and the corresponding togetherness with the related artifacts.

1 Introduction

Model-Driven Engineering (MDE) [1] is increasingly emerging as a software discipline
which employs metamodels to engineer domains. They permit to formalize problems in
a given domain by means of ‘upstream’ models, which can be regarded as approxi-
mation of reality [2]: each problem can then be step-wise refined into ‘downstream’
models corresponding to the solution.

Admittedly, metamodels play a precise and formal role in the development of models
and transformations because of the conformance and domain conformance relations [3],
respectively. However, the entities which are defined upon metamodels are numerous
and include editors, models for concrete syntaxes, model differencing and versioning,
and many more. The nature of the dependencies existing among metamodels and such
components is often explicit, formal, and well-known, other times depending on the ar-
tifact it is implicit, intricate, or blurred, if not obscured. All these constituent elements
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and their interlaced correspondences form what we like to call a metamodeling ecosys-
tem, i.e., a metamodel-centered environment whose entities are traditionally subject to
distinct evolutionary pressures but cannot have independent life-cycles1. In essence, the
way the ecosystem can evolve is not always cooperative and coordinated since meta-
models have two different categories of competing clients:

– the modelers which are continuously attempting to rework the metamodel in order
to accommodate additional requirements deriving from new insights emerged from
the domain [5], and

– the artifacts whose definition is implicitly or explicitly depending on the metamodel
and therefore rely on its immutability [3].

Clearly, the second of the two might represent a serious impediment to possible changes
in the metamodel as any modification in the metamodel tend to render the artifacts not
valid any longer. As a consequence, this can easily culminate in having the metamodel
locked in the ecosystem. In order to let the artifacts remain valid after a metamodel
undergoes modifications, they need to be consistently adapted. Naturally, the modeler
and the implementors can always adapt the models, the transformations and any other
tool in the ecosystem by inspecting the artifacts, detecting the necessary refactorings,
and finally applying them with manual operations. However, carrying on this activity
without specialized tools and techniques presents intrinsic difficulties. The intricacy of
metamodel changes on one hand, but also the size and diversity of the artifacts on the
other hand, can rapidly affect the accuracy and precision of the adaptations [6]. In fact,
if the adaptation is based on spontaneous and individual skills and pursued without any
automated support, it can easily give place to inconsistencies and lead to irremediable
information erosion [7].

Over the last year, different proposals have been made to mitigate this problem by
supporting the automated adaptation of modeling artifacts. However, each approach is
specialized in adapting a specific kind of artifact (e.g., models, or transformations) by
forcing modelers to learn different languages and technologies. In order to let the meta-
models freely evolve without - at a certain extent - compromising the related artifacts
and tools, we aim at realizing an evolutionary togetherness by endowing the metamodel
and consequently the ecosystem with a migration infrastructure capable of preserving
the validity of the components. To this end, the paper discusses the different relation-
ships occurring in a typical metamodeling ecosystem, and identifies the commonalities
which can be exploited to define a systematic adaptation process. By leveraging such
commonalities, a language and corresponding supporting tools are proposed for a com-
prehensive and uniform management of metamodel evolution. Migration programs are
therefore used to let the artifacts uniformly co-evolve throughout the ecosystem.

The paper is structured as follows: Sect. 2 presents the problem of coupled evolution
in MDE. Section 3 is an overview of existing approaches which have been conceived to
support the adaptation of different modeling artifacts, and identify the commonalities
of both the problems and adaptations which can be leveraged to define EMFMigrate,

1 A more comprehensive definition of software ecosystem considers it as a set of software so-
lutions that enable, support and automate the activities and transactions by the actors in the
associated social or business ecosystem and the organizations that provide these solution [4].
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a uniform approach to coupled evolution presented in Sect. 4. The supporting tools for
such a new approach are presented in Sect. 5. Conclusions and future work are discussed
in Sect. 6.

2 Coupled Evolution in MDE

As aforementioned, metamodels are fundamental ingredients of an ecosystem and they
rarely exist in isolation. Resolving the pragmatic issues of their evolutionary nature is
core to improving the overall maintainability. Evolution may happen at different levels
as once the metamodel changes it causes a ripple of adaptations to be operated through-
out the ecosystem. Such adaptations are different and must be individually but coher-
ently designed as each of them is traditionally not unequivocal [3]. On the contrary, if
the problem is inaccurately or wrongly handled, it can easily let the system slide to-
wards a lock-in situation where the metamodel becomes easily immutable and resilient
to variations [8]. The adaptation process can be regarded as a three-steps process as

Fig. 1. The adaptation process

illustrated in Fig. 1:

1. Relations definition. A set of relations between the metamodel and the other mod-
eling artifacts are identified. Intuitively, those relations can be considered as depen-
dencies between artifacts, and they play a role similar to that of tracing information
between source and target models of a model-to-model transformation.

2. Change impact detection. In this step the relationships defined in step 1 can be
considered in order to assess the impact on the related artifacts of the changes made
in the metamodel.

3. Adaptation. In this step the developer apply some adaptation actions on the (pos-
sibly corrupted) artifacts. This step can imply the use of very different adaptation
policies, depending on the types of artifacts to be adapted.

Current practices usually end up with blurring the distinction between impact assess-
ment and adaptation semantics. Thus, it is important to clarify the nature of the rela-
tion which exists between the metamodel and the other artifacts. Indeed, dependencies
emerge at different stages during the metamodel life-cycle, and with different degrees
of causality depending on the nature of the considered artifact. For instance, by refer-
ring to Fig. 2, there may be a transformation that takes an input model and produces
an output model, each conforming to a metamodel; also a graphical or textual editor
to properly edit models or other kinds of artifacts may be utilized, and all of them are
typically related to the metamodel at different extent.

Being more precise, metamodels may evolve in different ways: some changes may
be additive and independent from the other elements, thus requiring no or little co-
changes. However, in other cases metamodel manipulations introduce incompatibilities
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Fig. 2. A sample of an ecosystem with some artifacts and relations

and inconsistencies which can not be always easily (and automatically) resolved. In
particular, the co-changes which are required to adapt modeling artifacts according to
the changes executed on the corresponding metamodel, depend on the relation which
couples together the modeling artifact and the metamodel. According to our experience
and to the literature (e.g., [2,9,10,11,12]), at least the following relations are involved
in the metamodel co-evolution problem:

– conformsTo: it holds between a model and a metamodel, it can be considered sim-
ilar to a typing relation. A model conforms to a metamodel, when the metamodel
specifies every concept used in the model definition, and the models uses the meta-
model concepts according to the rules specified by the metamodel [2];

– domainConformsTo: it is the relation between the definition of a transformation
and the metamodels it operates on. For instance, a sample domain conformance
constraint might state that the source elements of every transformation rule must
correspond to a metaclass in the source metamodel [10] and same for target meta-
model elements;

– dependsOn: it is a generic and likely the most complex relation, since it occurs
between a metamodel and modeling artifacts, which do not have a direct and a
well-established dependence with the metamodel elements. For instance, in case
of GMF [12] models, some of them do not refer directly to the elements specified
in the metamodel, even though some form of consistency has to be maintained in
order to do not generate GMF editors with limited functionalities.

In particular, the dependsOn relation denotes a large class of possible dependencies
between metamodels and artifacts. In Fig. 2, for instance, the correspondence between
the editor and the metamodel is one of such cases, it is clearly a dependency as the editor
is specifically design for editing models conforming to that given metamodel but it is
also a looser relation if compared with the conformance. As a result, its management
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is more challenging and requires a deeper understanding of the established relations.
Additionally, dotted arrows are denoting a usage relation, which describes how a given
artifact can be consumed by other artifacts, as for instance a transformation consuming
a model in order to produce another one, or an editor designed to edit models.

The different coupled evolution scenarios occurring because of the relations de-
scribed above are discussed in the next section. We are aiming at identifying and lever-
aging the commonalities of the approaches in order to devise a unifying paradigm to
manage the evolutionary togetherness of metamodeling ecosystems. Therefore, each
coupled evolution problem is discussed by outlining a representative solution.

3 Existing Coupled Evolution Scenarios

As said, each different artifact has to be ad-hoc adapted in response to a given meta-
model modification. Hence, models, transformations, and any other metamodel-based
tools require a different support to their automated adaptation. In this section, we present
different coupled evolution problems in terms of the available techniques. In particular,
this section is organized to discuss separately the metamodel/model (Sect. 3.1), meta-
model/transformation (Sect. 3.2), and metamodel/editor (Sect. 3.3) coupled evolution
problems.

During the discussions the typical explanatory PetriNet metamodel evolution shown
in Fig. 3 is considered. In the evolved version of the metamodel shown in Fig. 3.b the
metaclasses Arc, PlaceToTransition, and TransitionToPlace have been added, and other
changes have been executed, i.e., the merging of the references places and transitions
into the new elements, and the renaming of the metaclass Net as PetriNet. Such meta-
model evolution might affect different existing artifacts defined on the initial version
of the PetriNet metamodel, thus proper adaptation techniques have to be employed as
discussed in the sequel.

3.1 Metamodel/Model Coupled Evolution

As mentioned in the previous section, when a metamodel evolves, existing models may
no longer conform to the newer version of the metamodel. For instance, Fig. 4 shows a
simple model conforming to the first version of the PetriNet metamodel in Fig. 3. Such
model represents a PetriNet (see the Net element named net1) consisting of three places
and one transition. Because of the performed metamodel modifications, the model in
Fig. 4 has to be migrated in order to adapt the element named net1 (since the metaclass
Net has been renamed in PetriNet), and to add PlaceToTransition and TransitionTo-
Place elements to connect the existing places and transition elements, which cannot be
directly related according to the new version of the metamodel.

Over the last years, different approaches have been defined to automate the migration
of models, and all of them can be classified according to the following categories [13]:

– manual specification approaches (e.g., [14,15]) provide transformation languages
to manually specify model migrations;
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a) Initial version

b) Evolved version

Fig. 3. Simple PetriNet metamodel evolution

– operator-based approaches (e.g., [16,7]) provide coupled operators that permit to
specify metamodel changes together with the corresponding migrations to be oper-
ated on the existing models;

– metamodel matching approaches (e.g., [9,17]) are able to generate model trans-
formations from difference models representing the changes between subsequent
versions of the same metamodel.

As discussed in [13] it is impossible to identify the best tool for supporting the cou-
pled evolution of metamodels and models. Each tool has strengths and weaknesses and
depending on the particular situation at stake (e.g., frequent, and incremental coupled
evolution, minimal guidance from user, and unavailability of the metamodel change
history) some approaches can be preferred with respect to others.
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Fig. 4. Petrinet model sample

Just to give an example, in the following we consider Flock [14], one of the ap-
proaches belonging to the manual specification category previously mentioned. It is an
EMF-based textual language that permits the specification of model migration strate-
gies. When a migration strategy is executed, some parts of the migrated model are de-
rived directly from the original model, other parts are derived from user-defined rules.
In Listing 1.1 a simple Flock migration program is specified in order to adapt models
which have been affected by the metamodel evolution shown in Fig. 3. In particular, for
each Net element in the source model, a target PetriNet element is generated (see lines
3-4). Moreover, the source Place and Transition elements will be simply copied to the
new model (see lines 5-6).

Listing 1.1. Fragment of Flock model migration for Petrinet example
1...
2migrate Nets{
3 for (net in petrinetmodel.nets){
4 var petrinet = new Migrated!PetriNet;
5 petrinet.places := net.places.equivalent();
6 petrinet.transitions := net.transitions.equivalent();
7 }
8}
9...

Flock has been applied on different metamodel/model coupled evolution situations.
However, more efforts are still required to provide some native mechanisms for sup-
porting the reuse of already developed migrations, and to support user’s intervention
when required.

3.2 Metamodel/Transformation Coupled Evolution

Because of changes operated on a given metamodel, model transformation inconsisten-
cies can occur and are those elements in the transformation, which do not longer satisfy
the domain conformance relation discussed in the previous section. The metamodel/-
transformation coupled evolution problem is less investigated than the metamodel/model
one, partly because is intrinsically more difficult, and because the metamodel/model
problem has been considered first by natural choice. In [11] the authors propose a set of
tasks that should be performed in order to re-establish the transformation consistency
after metamodel evolution. In particular, the authors claim that the transformation mi-
gration should be performed by means of three phases [11]:
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Fig. 5. GReAT transformation example Petrinet to PNML

– impact detection, to identify the transformation inconsistencies caused by meta-
model evolution;

– impact analysis, to obtain - possibly by using human assistance - the set of trans-
formation updates to re-establish the domain conformance;

– transformation adaptation, the updates identified in the previous phase are really
applied.

Besides such an exploratory work, another attempt has been proposed by Levendovszky
et al. in [18]. They propose an approach based on higher-order transformations (HOTs)
able to automatically migrate, when possible, existing transformations according to oc-
curred metamodel changes. If automatic adaptations can not be performed, user inter-
ventions are demanded. The approach is specifically tailored for managing transforma-
tions developed in the GME/GReAT toolset2. The approach is able to partially automate
the adaptation, and the developed algorithms alert the user about missing information,
which can then be provided manually after the execution of the automatic part of the
evolution. A simple GReAT transformation is shown in Fig. 5 which specifies how to
create a PNML3 document (conforming to the metamodel shown in Fig. 6) out of a
source PetriNet model.

Because of the metamodel evolution shown in Fig. 3, the simple GReAT transforma-
tion needs to be adapted since the Net element is no longer existing in the new version
of the metamodel. In [18] the Model Change Language (MCL) is proposed to specify
metamodel evolutions and automatically generate the corresponding migration. Thus,
MCL rules, like the one in Fig. 7, are the input for the generation of the HOT able to
adapt the transformations which have to be migrated. Essentially, the simple MCL rule
shows how the Net metaclass in the original transformation has to be mapped into the
adapted one.

As said above, the outlined metamodel/transformation coupled evolution approach
has been a first attempt to support such complex coupled evolution scenario. However,
the approach misses adequate support for reusing and customizing developed higher-
order transformations. Moreover, the presented adaptations are limited to not too com-
plex cases and leaved the responsibility of more complex adaptations to the designer.

2 www.isis.vanderbilt.edu/Projects/gme/
3 Petrinet Markup Language

www.isis.vanderbilt.edu/Projects/gme/
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Fig. 6. PNML metamodel

3.3 Metamodel/Editor Coupled Evolution

As already discussed, metamodels underpin the development of a wide number of re-
lated artifacts in addition to models and transformations. For instance, in the definition
of domain specific modeling languages (DSMLs), metamodels play a central role since
they define the abstract syntaxes of the languages being developed. A number of other
related artifacts are produced in order to define the concrete syntaxes and possibly fur-
ther aspects related to semantics or requirements of a particular DSML tool. In such
cases, specific techniques are required to propagate any abstract-syntax changes to the
dependent artifacts, e.g., models of the graphical or concrete syntaxes.

In the Eclipse Modeling Framework (EMF) [19] different approaches have been pro-
posed to define concrete syntaxes of modeling languages, e.g., GMF [12] for developing
graphical editors, EMFText [20], TCS [21], and XText [22] for producing textual edi-
tors. Essentially, all of them are generative approaches able to generate working editors
starting from source specifications that at different extent are related to the abstract
syntax of the considered DSML. The relation between the metamodel of the language
and the editor models is weaker than the conformance and domain conformance. Thus,
even the detection of the inconsistencies between the editor models and the new version
of the metamodel is more difficult to be determined. Besides, even if we could detect
such inconsistencies, re-establishing consistency requires a deep knowledge of the used
editor technology in order to properly propagate the metamodel changes to the editor
models, and in case also to the generated code.

Concerning the adaptation of GMF editors, in [8] the authors introduce the approach
shown in Fig. 8. The approach relies on three adapters able to automate the propagation

Fig. 7. Migration rule for Net
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Fig. 8. Automated adaptation of GMF editor models

of domain-model changes (i.e., metamodel changes) to the EMFGen, GMFTool, and
GMFMap models required by GMF to generate the graphical editor. In particular, EM-
FGen is a model used by the EMF generator to produce Java code required to manage
models conforming to the metamodel of the considered modeling language. GMFTool
defines toolbars and other periphery of the editor to facilitate the management of dia-
gram content. GMFMap links together all the other GMF models. The adapters in Fig. 8
are special model-to-model transformations that are driven by a difference model which
represents the differences between two subsequent version of the considered domain-
model.

The approach is a first attempt the deal with the co-evolution challenge of GMF and
more investigations are required. In particular, more efforts are required to achieve a
full coverage of Ecore, the metamodeling language of EMF, and full understanding of
the implicit semantics of GMF model dependencies and tools.

4 A Unifying Paradigm for Metamodeling Ecosystems Adaptation

Managing the coupled evolution problem is a complex task. However, with the accep-
tance of Model-Driven Engineering has come the urgent need to manage the complex
change evolution within the modeling artifact in a more comprehensive and satisfac-
tory manner. Different attempts have been proposed to cope with the intricacies raised
by the adaptation of different kinds of artifacts. Thus, modelers have to learn different
techniques, and notations depending on the artifacts that have to be adapted.

By taking into account the coupled evolution scenarios previously discussed, we be-
lieve that the metamodel co-evolution problem has to be managed in a more uniform
way, i.e., with a unique technique, notation, and corresponding paradigm for any kind
of migration problem regardless of the artifact type. In particular, we aim at a declar-
ative approach as migration strategies are problems in a restricted domain and thus a
programmatic approach based on a general-purpose language is not always necessary
in our opinion. Since migration patterns occur repeatedly, the notation must allow the
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specification of default behaviors with the possibility to customize them with an em-
phasis on usability and readability. Being more precise, we would like to specify

– relation libraries, each formalizing a relation (like the ones discussed in Sect. 2)
and the default adaptation behavior;

– custom migration rules for extending and customizing the default migration li-
braries.

A migration engine can then adapt existing artifacts by executing the proper migration
rules with respect to occurred metamodel changes. Such changes can be automatically
calculated (with state- or operation-based methods) or specified by the modeler assur-
ing enough flexibility in choosing the most adequate solution. In any case, metamodel
changes, regardless whether specified or calculated, should be properly represented by
means of difference models (e.g., as in [23]) which are amenable to automatic ma-
nipulations. To satisfy such requirements, in Sect. 4.1 we describe the EMFMigrate ap-
proach. The provided support for the definition of migration libraries and corresponding
customizations is discussed in Sect. 4.2

4.1 EMFMigrate Overview

EMFMigrate [3,24] is an attempt aiming at supporting the coupled evolution in a uni-
form and comprehensive way, in the sense that it is not restricted to specific kinds of
artifacts. As shown in Fig. 9 the approach consists of a DSL which provides model-
ers with dedicated constructs for i) specifying migration libraries, which aim to em-
body and enable the reuse of recurrent artifact adaptations; ii) customizing migrations
already available in libraries; and iii) managing those migrations which are not fully
automated and that require user intervention. In other words, metamodel refactorings
originate different adaptations depending on the kind of artifact to be kept consistent,
with each adaptation formalized in a library. Recurrent adaptations are specified in de-
fault libraries which can be in turn customized in order to address ad-hoc needs.

A sample EMFMigrate migration program is shown in Fig. 10. It consists of a header
(see lines 1-4) which defines the name of the migration (line 1), specifies the migration

Fig. 9. Overview of EMFMigrate
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library to be imported (line 2), refers the artifact to be adapted together with its meta-
model, and the difference model representing the changes which have been operated on
the modified metamodel (see lines 3-4). After the header section, a number of migra-
tion rules are specified (see lines 6-23). Each migration rule consists of a guard (e.g.,
see lines 7-11) and a body (e.g., see lines 12-15). The former filters the application
of the latter. For instance, the migration rule RenameClass will be applied for all the
occurrences of the metamodel change specified in lines 7-11, which represents meta-
class renamings. For all renamed metaclasses, the body in lines 12-15 will be applied
on the considered petrinet2PNML.atl ATL transformation. Essentially, the body of
a migration rule consists of rewriting rules defined as follows

s → t1[assign1]; t2[assign2]; . . . tn[assignn]

where s, t1, . . ., tn refer to metaclasses of the metamodel of the artifact to be adapted
(in the example in Fig. 10, the ATL metamodel is considered). After the specification of
the rewriting rules, a where condition can be specified (e.g., see line 15). It is a boolean
expression which has to be true in order to execute all the specified rewriting rules. It is
possible to specify the values of the target term properties by means of assignment op-
erations (see assigni above). For instance, in case of the RenameClass rule in Fig. 10,
the considered ATL transformation is migrated by rewriting its OclModelElement in-
stances which have the same name of the matched class c involved in the renaming
operation (see line 8). In particular, each OclModelElement instance is rewritten with
a new OclModelElement having the property name set with the new name of the
matched class c (see name <- %{newName} in line 13).

The migration in Fig. 10 is able to adapt the transformation in Fig. 11 with respect
to the renaming operation performed on the initial metaclass Net in Fig. 3.a. In fact,
the guard of the migration rule in lines 7-11 in Fig. 10 matches with the renaming
operation performed on the metaclass Net to obtain the final PetriNet in Fig. 3.b.

Fig. 10. Sample migration program in EMFMigrate
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Fig. 11. Sample ATL transformation rule and its abstract syntax

In case of metaclass renamings the considered ATL transformation can be adapted by
replacing all the occurrences of the old metaelement with the new one (see line 13).
By considering the transformation in Fig. 11, the execution of the migration program
in Fig. 10 adapts the input pattern PetriNetMM0!Net of the rule Net by replacing it
with the new PetriNetMM0!PetriNet.

4.2 EMFMigrate Migration Libraries and Customization Support

As said, there are metamodel changes which require the intervention of the designer
since it is not possible to fully automatize the migration of the affected artifacts. How-
ever, in such situations it is still feasible to implement default migration policies which
can be refined/completed or even fully replaced by the user. EMFMigrate provides the
modeler with the library construct to specify default migration rules for a given meta-
model. For instance, Fig. 12 shows migration rules which are defined in the library
named libATL specifically conceived for managing the adaptation of ATL transforma-
tions. The shown rules are related to the merge of references (see lines 5-21) and to the
addition of new metaclasses (see lines 24-44).

The mergeReference rule in Fig. 12 is able to adapt ATL transformations when
two references in a given metaclass of the source metamodel are merged together by
giving place to a new one. For instance, this is the case of the references places and
transitions in the sample PetriNet metamodel in Fig. 3.a, which are merged in the
new reference elements as shown in the new version of the metamodel in Fig. 3.b.
Such a complex difference is specified in the guard in lines 6-15. The adaptation im-
plemented by the body in lines 16-21 rewrites all the occurrences of the matched ref-
erences ref1 and ref2 with target ATL select operations which properly filter the
new reference newName by selecting elements of type ref1.type and ref2.type.
For instance, in case of the reference place of the running example, all the instances
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Fig. 12. Sample EMFMigrate migration library

of NavigationOrAttributeCallExp4 named place will be rewritten with the ex-
pression elements->select(e|e.oclIsKindOf(Place)) (see line 17 in Fig. 12).
To simplify the specification or rewriting rules, EMFMigrate permits to specify terms
by using the concrete syntax of artifact to be adapted instead of its abstract syntax (see
lines 17 and 19 in Fig. 10). Concerning the addMetaclass migration rule in lines 24-
44 of Fig. 12, the implemented default migration consists of adding a new matched rule
that has the input pattern which refers to the new added class. In the output pattern,

4 NavigationOrAttributeCallExp is the metaclass of the ATL metamodel which is
used to refer to structural features of a given element. For instance, on the right-hand side of
Fig. 11, there are two NavigationOrAttributeCallExp instances since the references
places, and transitions of the source metaclass Net are used to set the value of the
target contents reference.
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an ATL comment is generated since there is no information which can be exploited to
generate a corresponding manipulation.

EMFMigrate permits to customize migration rules defined in libraries as in the case
of the migration program in Fig. 10. In particular, the shown migration program uses the
library shown in Fig. 12 and customizes the addMetaclass migration rule. EMFMi-
grate provides developers with two different constructs named refines, and replaces.
The former enables the refinement of an existing rule in the default library. In particu-
lar, after the execution of the considered migration rule in the library, the rewriting rules
in the customization are executed. Migration rules can be also completely overridden
whenever the default migration policy does not reflect the intentions of the develop-
ers. In this respect, the construct replaces can be used to overwrite the body of an
existing migration rule. For instance, CustomAddMetaClass replaces the body of the
existing migration rule addMetaclass. In particular, CustomAddMetaClass is ap-
plied if the guard of addMetaclass holds (see super.guard in line 19 in Fig. 12)
and if the name of the added class is TPArc or PTArc. The intention of the developer
is to overwrite the addMetaclass migration rule only for added metaclasses which
are abstract, or that are named TPArc or PTArc. In this case, since the body of of the
CustomAddMetaClass migration rule is empty, the effect of such a customization is
disabling the application of the default addMetaclass migration rule when the guard
in lines 19 and 23 in Fig. 10 holds.

5 Tool Support

This section outlines the existing supporting tools for specifying and executing EMFMi-
grate migration programs. As with other approaches, it is of great importance not to
neglect the role of dedicated environments in the management of the general coupled
evolution problem as usability and accuracy are hardly achievable without any auto-
mated support.

As described in the previous section, migration rules are executed according to the
metamodel changes which can be generated or manually specified. In this respect, a
textual editor for defining metamodel changes (in the EDelta language [3]) is provided.
Moreover, an additional editor is available for specifying migration strategies that use
EDelta specifications as input. The editors are based on EMFText 5 and are freely avail-
able6. The editors provide syntax coloring and error identification as shown in Fig. 10
and Fig. 12.

The semantics of EMFMigrate is defined in transformational terms by a semantic
anchoring, which targets the EMF Transformation Virtual Machine (EMFTVM) [25]
– a reusable runtime engine for the model transformation domain [24]. EMFTVM
was conceived as a common runtime engine for heterogeneous model transformation
languages, and provides a high-level bytecode metamodel to express transformations.
Domain-specific language primitives are part of the bytecode metamodel, such as ex-
plicit transformation modules and rules, including their composition mechanisms, and
model manipulation instructions. Since the bytecode of EMFTVM is represented as a

5 http://www.emftext.org/index.php/EMFText
6 http://code.google.com/a/eclipselabs.org/p/emfmigrate/
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(a) Generation of an EMFTVM module out of an EMFMigrate specification

(b) Execution of the generated EMFTVM module

Fig. 13. Executing EMFMigrate specifications

metamodel, the semantics of EMFMigrate has been given in terms of a model trans-
formation as shown in Fig. 13. In particular, an ATL transformation module translates
EMFMigrate migrations into EMFTVM specifications (see Fig. 13.a). The generated
EMFTVM module is then executed on top of the existing runtime engine infrastructure
to obtain a migrated version of the modelling artefact (see Fig. 13.b). The infrastructure
shown in Fig. 13 has been fully implemented and is freely available7.

6 Conclusions

Similarly to any software artifact, metamodels are entities whose nature is steadily lean-
ing towards evolution. Since they are pivotal ingredients in metamodeling ecosystems,
any modification in a metamodel must be accurately assessed and managed because
of the ripple effect which causes over the rest of the corresponding ecosystem. This
requires proper co-evolution techniques able to propagate the changes over those mod-
eling artifacts which are defined on top of the metamodels. If the adaptation is operated
with spontaneous or individual skills without automated support, it might easily lead to
inconsistencies and irremediable information erosion on the refactored artifacts.

In recent years, different approaches have been proposed to cope with this intrinsi-
cally difficult problem. However, each of them is specifically focussing on a particular
kind of modeling artifact requiring the modelers to become familiar with different lan-
guages and systems in order to deal with the overall re-alignment. For these reasons,
we are interested in dealing with the metamodel-based artifacts as a whole and con-
sidering their adaptation as something which should be inherently belonging to the
metamodel definition. Migration facilities must be related to generic metamodel refac-
toring patterns which can be applied off-the-shelf throughout the ecosystem, whenever

7 http://tinyurl.com/emig2EMFTVM-atl

http://tinyurl.com/emig2EMFTVM-atl
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the metamodel undergoes an evolution. This should lead to the concept of evolutionary
togetherness: metamodels are related to all artifacts, as metamodel evolution is related
to a comprehensive and uniform adaptation of the whole ecosystem. Without such a
holistic attitude towards this problem, metamodels sooner or later will become always
more resilient to change as the consequences of their modifications would be too ex-
pensive and complex to be socially and financially sustainable. In essence, the key lies
in resolving pragmatic issues related to the intricacy of the coupled evolution problem.
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Abstract. Due to the steadily increasing complexity, the design of em-
bedded systems faces serious challenges. To meet these challenges ad-
ditional abstraction levels have been added to the conventional design
flow resulting in Electronic System Level (ESL) design. Besides abstrac-
tion, the focus in ESL during the development of a system moves from
design to verification, i.e. checking whether or not the system works as
intended becomes more and more important. However, at each abstrac-
tion level only the validity of certain properties is checked. Completeness,
i.e. checking whether or not the entire behavior of the design has been
verified, is usually not continuously checked. As a result, bugs may be
found very late causing expensive iterations across several abstraction
levels. This delays the finalization of the embedded system significantly.
In this work, we present the concept of Completeness-Driven Develop-
ment (CDD). Based on suitable completeness measures, CDD ensures
that the next step in the design process can only be entered if complete-
ness at the current abstraction level has been achieved. This leads to an
early detection of bugs and accelerates the whole design process. The
application of CDD is illustrated by means of an example.

1 Introduction

Although embedded systems have witnessed a reduction of their development
time and life time in the past decades, their complexity has been increasing
steadily. To keep up with the (customer) requirements, design reuse is common
and, hence, more and more complex Intellectual Property (IP) is integrated.
According to a recent study [1], the external IP adoption increased by 69%
from 2007 to 2010. In 2010, 76% of all designs included at least one embedded
processor. As a result, the development of embedded systems moves from design
to verification, i.e. more time is spent in checking whether the developed design
is correct or not. In fact, in the above mentioned time period, there has been a
4% increase of designers compared to an alarming 58% increase of verification
engineers.

To face the respective verification challenges, significant effort has been put
into clever verification methodologies and new flows have been investigated.
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A major milestone for the development and verification of embedded systems
has become the so-called Electronic System Level (ESL) design which is state-
of-the-art today [2]. Here, the idea is to start designing a complex system at a
high level of abstraction – typically using an algorithm specification of the de-
sign. At this level, the functionality of the system is realized and evaluated in an
abstract fashion ignoring e.g. which parts might become hardware or software
later.

The next level of abstraction is based on Transaction Level Modeling (TLM)
[3, 4]. As modeling language typically SystemC [5–7] is used which offers the
TLM-2.0 standard [8]. A TLM model consists of modules communicating over
channels, i.e. data is transferred in terms of transactions. Within TLM, dif-
ferent levels of timing accuracy are available such as untimed, loosely-timed,
approximately-timed, and cycle-accurate. The respective levels allow e.g. for
early software development, performance evaluation, as well as HW/SW parti-
tioning and, thus, enable a further refinement of the system.

Finally, the hardware part of the TLM model is refined to the Register Trans-
fer Level (RTL), i.e. a description based on precise hardware building blocks
which can subsequently be mapped to the physical level. Here, the resulting
chip is eventually prepared for manufacturing.

While this flow is established in industry today, ESL-based design focuses
on the implementation and verification of the system. However, although the
validity of certain properties of the implementation is checked at the various ab-
straction levels, often the behavior is not completely considered in these stages.
Completeness, i.e. checking whether or not certain behavior of the resulting de-
sign has been verified, is usually not continuously checked. This typically causes
expensive iterations across several abstraction levels and delays the finalization
of the embedded system significantly.

In this work, we present the concept of Completeness-Driven Development
(CDD). The idea of CDD ensures that the next step in the design process
can only be entered if completeness at the current abstraction level has been
achieved. For this purpose, suitable completeness measures are needed for each
abstraction level in a CDD flow. With CDD, the focus moves from implementa-
tion to completeness while completeness is targeted immediately. Overall, CDD
has the following advantages:

– In-place verification: New details are verified when they are added.

– No bug propagation: Bugs are found as soon as possible since complete-
ness ensures verification quality. As a consequence, bugs are not propagated
to lower levels.

– Long loop minimization: Loops over several abstraction levels may only
occur due to design exploration or unsatisfied non-functional requirements.

– Correctness and efficient iterations: The essential criterion is design
correctness which is ensured via completeness along each design step. Thus,
iterations are only necessary at the current abstraction level.
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Fig. 1. Conventional flow

CDD is illustrated by means of an example at two representative abstraction
levels (Sect. 3). Before, the addressed problem and the proposed CDD flow is
described in more detail in the next section.

2 Completeness-Driven Development

2.1 Established ESL Flow

Figure 1 shows a rough sketch of the established ESL flow for embedded sys-
tems. To cope with the increasing complexity, requirements for the system are
not incorporated at once, but subsequently added leading to a continuous refine-
ment. Usually, the functional requirements are considered first at higher levels
of abstraction. Non-functional requirements are added afterwards in the lower
levels of the design flow. This allows designers to concentrate on the behavior
of the system first. This procedure is sufficient for early simulation (through an
executable specification) as well as analysis of the correctness of the functional
aspects.

As can be seen in Fig. 1, newly incorporated requirements are verified against
prior design states and the specification. However, although a positive verifica-
tion outcome ensures the correctness of the system with respect to the proper-
ties that are checked, full correctness cannot be ensured as it is unclear whether
enough properties have been considered. For this task, completeness checks have
to be applied. However, today completeness checkers are typically not used con-
tinuously, i.e. coverage checks are performed after several design steps and, even
worse, mainly at lower levels of abstraction – too late in the overall design pro-
cess.

As a consequence, behavior that has not been verified at the current abstrac-
tion level is not considered until the lower stages of the design flow. If it turns
out that this unconsidered part contains bugs, a large portion of the design flow
needs to be repeated, leading to long and expensive verification and debugging
loops.
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2.2 Envisioned Solution

To solve the problem described above, we propose the concept of CDD. CDD
shifts the focus from implementation to completeness, i.e. completeness is added
orthogonally to the state-of-the-art flow. By this, completeness checks are per-
formed at a high level of abstraction and during all refinement steps. As a conse-
quence in each situation, the next step in the design process can only be entered
if completeness at the current abstraction level has been achieved.

A major requirement for this flow is that suitable coverage measures must be
available for each abstraction level. For the lower levels of abstractions different
approaches already exist, see e.g. [9–13]. Also solutions of industrial strength are
available, for instance [14]. In contrast, on higher level of abstraction only a few
approaches have been proposed. Most of them are based on simulation, e.g. [15–
18], and, hence, are not sufficient since the identification of uncovered behavior
is not guaranteed. On the formal side, initial approaches have been devised for
instance in [19, 20]. If, within a specific abstraction level, an implementation
step can be adequately formalized as a model transformation, then completeness
results can be propagated through several transformations, as long as their cor-
rectness is ensured. As an example, in [21], behavior preserving transformations
are used to refine the communication model of a system.

In the following, we demonstrate CDD at two representative abstraction levels.
The design is composed through Behavior Driven Development (BDD) [22] and
subsequent refinement/IP-reuse. BDD is a recent development approach which
has its roots in software Test Driven Development (TDD) [23]. Essentially, in
TDD testing and writing code is interleaved while the test cases are written
before the code. In doing so, testing is no longer a post-development process,
which in practice is often omitted due to strict time constraints. BDD extends
TDD in the sense that the test cases are written in natural language, easing
the communication between engineers and stakeholders. In BDD, all test cases
are called acceptance tests. To summarize, in contrast to the current flow from
Fig. 1, with CDD completeness is considered additionally at each abstraction
level as shown on the right hand side in Fig. 2. This is demonstrated using a
concrete example in the next section.
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3 Completeness-Driven Development in Action

In this section, we present an example to demonstrate the proposed CDD flow.
We first review the applied abstraction levels and the respective flows at a glance.
The details are then explained in the following subsections.

In the example, the development of a calculator is considered. In the process,
we use two abstraction levels: the behavioral level and the register transfer level.
The overall flow from Fig. 2 is partitioned into two subflows for each respective
abstraction level as depicted in Figs. 3 and 4, respectively. As can be seen,
in conjunction with BDD at the behavioral level and the refinement/IP-reuse
approach at RTL, completeness analysis techniques tailored for each respective
method are employed (see right hand side of both figures).

The development process starts with a document of requirements (see Fig. 3).
The translation of these initial requirements to acceptance tests requires an in-
termediate step that derives low-level requirements. The following BDD process
first produces the acceptance tests from these requirements and generates a set
of corresponding testcases written in SystemC. Afterwards, the SystemC behav-
ioral model is incrementally developed to pass the defined testcases one at a
time. The defined behavior has been fully implemented, if the model passes all
testcases. As a consequence, we perform a completeness check to ensure that all
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requirements have already been considered and the testcases are complete. The
result of this step is a complete set of properties that have been generalized from
the tests.

After the completeness at behavioral level has been achieved, we proceed to
the lower abstraction level at RTL (see Fig. 4). The SystemC model is refined to
an RTL model in Verilog. In this refinement step, IP components are integrated.
The functionality and the completeness of the RTL model are subsequently as-
sured by using property checking and property-based coverage analysis, respec-
tively.

In the remainder of this section, we first briefly describe the path from the
initial requirements to the acceptance tests of BDD. Afterwards, the model and
the development process at the behavior level and the RTL are presented in nec-
essary detail focusing on the completeness analysis at both levels of abstractions.

3.1 From Requirements to Acceptance Tests

An excerpt of a list of requirements describing the functionality of the considered
calculator reads as follows:

REQ1. The system shall be able to perform calculation with two given numbers.
At least addition, subtraction, and multiplication shall be supported.

REQ2. The system shall be able to store the last calculated result and perform
calculation with this number and another given number.

REQ3. A given number:
1. can have a positive integer value;
2. can have a negative integer value;
3. shall have up to 3 digits;
4. can be 0.

REQ4. If the result of a calculation has more than 3 digits, the system shall
report an error.

REQ...

These requirements are then translated to low-level requirements that capture
precisely the expected behavior of the calculator in each specific case. For ex-
ample, the first two low-level requirements (LLR1 and LLR2 in the following)
specify the addition operation of the calculator. Note that the relation to the
initial high-level requirements is maintained when specifying each low-level re-
quirement.

LLR1. The system shall be able to add two given numbers in the
range [−999, 999]. If the sum of the given numbers fits in the
range [−999, 999], the system shall return this value. This requirement cor-
responds to REQ1, REQ3 and REQ4.

LLR2. The system shall be able to add two given numbers in the
range [−999, 999]. If the sum of the given numbers does not fit in the
range [−999, 999], the system shall report an error. This requirement cor-
responds to REQ1, REQ3 and REQ4.
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LLR3. The system shall be able to subtract the second given number from the
first one ...

LLR...

At the beginning of the BDD process, the low-level requirements are compiled
into acceptance tests which are provided in a very close form to a testcase and
also contain precise values of the numbers given to the calculator. For example,
the acceptance test that corresponds to LLR1 is as follows:

When the numbers < a > and < b > are given
And I want to add < a > and < b >
Then the result should be < c > (where < c >=< a > + < b >)
Examples:

a 0 7 20 1 ...
b 0 4 17 997 ...

c 0 11 37 998 ...

Through BDD, these acceptance tests can now be used to determine an according
SystemC description.

3.2 CDD at High Level of Abstraction

Generating the Behavioral Model in SystemC. First, the BDD process
generates a system description following a TLM modeling style. That is, the data
transported to and from the calculator is modeled as a payload shown in Fig. 5.
It contains the requested operator, two given numbers, and also the status and
the result of the calculation. The functionality of the calculator shall be fully
captured in a function calculate which receives a payload, performs the requested
calculation, and writes back the result into the payload.

After this basic structure has been defined, the BDD process continues with
the translation of the acceptance tests to executable testcases in SystemC. Fig-
ure 6 exemplarily shows a testcase which corresponds to one of the precise cases
in the acceptance test for the low-level requirement LLR1 shown earlier. Line 2
declares a SystemC port to which the calculator will be connected later. In
Lines 11–16, a payload with a request operator as well as numbers is initialized
and sent to the calculator through the port, while afterwards the received results
are checked.

After all testcases have been written, the SystemC model (essentially the
function calculate) is developed step-by-step to gradually pass all testcases. The
final version of calculate is depicted in Fig. 7. For example, the first development
step has added Line 5 and Lines 14–21 to satisfy the testcases defined for the
addition of two given numbers. Lines 14–21 check the intermediate result, then
raise the error status flag or write the valid result back, respectively. This code
lines are also common for the other operations, so that only Line 6 and Line 7
had to be added to make the testcases for subtraction and multiplication pass.
The SystemC model has been successfully tested against all defined testcases.



Completeness-Driven Development 45

1 struct calc payload {
2 Operator op;
3 int number1;
4 int number2;
5 CalcStatus calc status;
6 int result;
7 };

Fig. 5. Calculator payload

1 struct testcase : public sc module {
2 sc port<calculator if> calc port;
3
4 SC HAS PROCESS(testcase);
5
6 testcase(sc module name name) : sc module(name) {
7 SC THREAD(main);
8 }
9

10 void main() {
11 calc payload p;
12 p.op = ADD;
13 p.number1 = 7;
14 p.number2 = 4;
15 calc port−>calculate(p);
16 assert(p.calc status == CALC OKAY && p.result == 7+4);
17 }
18 };

Fig. 6. A testcase for the calculator

Checking the Completeness. Since the relation between the initial require-
ments, the low-level requirements, the acceptance tests, and the testcases in
SystemC have always been maintained in each translation step, it is very easy
to trace back and check whether all requirements have been considered.

To check the completeness of the testcases, they are first generalized into for-
mal properties. As the whole functionality of the calculator is captured in the
function calculate, the properties only need to reason about the behavior at the
start and the end of each calculate transaction. Most of the generalization pro-
cess can be automated, however, human assistance is still required in providing
adequate invariants.

To illustrate the concept, Fig. 8 shows two generalized properties for the addi-
tion of two given numbers. Both properties are written in a flavor of the Property
Specification Language (PSL) extended for SystemC TLM [24]. As mentioned
earlier, we only need to sample at the start (:entry) and the end (:exit) of the
function/transaction calculate. Property P1 covers the case that the sum of two
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1 void calculate(calc payload& p) {
2 p.calc status = CALC OKAY;
3 switch (p.op) {
4 case NOP : break;
5 case ADD : acc = p.number1 + p.number2; break;
6 case SUB : acc = p.number1 − p.number2; break;
7 case MULT : acc = p.number1 ∗ p.number2; break;
8 case ACC ADD :
9 ...

10 default :
11 // unknown op −> error response
12 p.calc status = CALC ERROR;
13 }
14 if (p.calc status == CALC OKAY) {
15 if (acc > MAX VAL || acc < MIN VAL) {
16 p.calc status = CALC ERROR;
17 acc out of range = true;
18 } else {
19 p.result = acc;
20 }
21 }
22 }

Fig. 7. Function calculate

given numbers fits in the range so that the calculation will be successful and the
sum will be returned, while P2 specifies the calculation in the other case, i.e. the
sum is out of range. In both cases, the valid range had to be provided manually
as an invariant. Both properties then represent the generalized behavior which
is partly considered by the testcases. This generalized behavior is also proven by
the high-level property checking method in [25].

However, as determined by the completeness check, behavior remained uncov-
ered. In fact, the invariant for P1 is insufficient. More precisely, the completeness
check has detected an uncovered testcase:

p.number1 == 0 and p.number2 == 999.

This is representative for the general forgotten case of

p.number1 + p.number2 == 999.

The result in this case is not defined by neither P1 nor P2. If this uncovered
testcase would have been included in the set of testcases from the beginning,
it would have been impossible to provide the insufficient invariant for P1, since
a generalized property must be compliant with the testcases it covers. This
demonstrates clearly the usefulness and necessity of completeness at this high
level of abstraction.
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P1: default clock = calculate:entry || calculate:exit;
always (calculate:entry && p.op == ADD && (−999 < p.number1 +

p.number2 && p.number1 + p.number2 < 999))
−> next (calculate:exit && p.calc status == CALC OKAY &&

p.result == p.number1 + p.number2)

P2: default clock = calculate:entry || calculate:exit;
always (calculate:entry && p.op == ADD && ((p.number1 +

p.number2 >= 1000) || (p.number1 + p.number2 <= −1000))
−> next (calculate:exit && p.calc status == CALC ERROR)

Fig. 8. Generalized properties for addition

3.3 CDD at RTL

Generating the RTL Model in Verilog. The RTL model is created in a re-
finement process starting with the behavioral SystemC model. First, the payload
(see Fig. 5) is refined to inputs and outputs of the overall design: both numbers
and the operator become inputs, while the result and the calculation status be-
come outputs. Subsequently, the sufficient bit-width for each input and output
has to be determined based on the values it has to represent. Both number in-
puts and the result output are in the range [−999, 999] and thus each of them
needs 11 bits. The calculation status contains two states that can be represented
using only one bit. For the operator input, three bits are required since its value
can either be reset or one of the six supported arithmetic operators.

After the inputs and the outputs have been identified, we proceed to the
translation of the algorithmic behavior. Some parts of the algorithmic behavior
can be translated one-to-one, for example, the range check of the numbers. Before
any computation, the respective inputs are checked if their values are within
the valid range. The function calculate of the SystemC model is refined to two
additional modules: the module CALCULATE to perform the actual calculation,
and the module SELECT that stores the last calculated result and delivers it to
CALCULATE when an accumulative operation is chosen.

To speed up the development, we integrate two existing IP components into
the module CALCULATE: an Arithmetic Logic Unit (ALU) – for the addition
and subtraction – and a multiplier. Both IPs are taken from the M1 Core [26].
The ALU itself has 15 different operation modes, including the arithmetic func-
tions addition and subtraction, some shift and some Boolean operations. Both
units can handle numbers up to 32 bits. Thus, an additional check has to be
added to ensure that either the calculated result is in the allowed range or the
status output is set.

The overall structure of the RTL design is depicted in Fig. 9. As can be
seen, the two number inputs, the operator input, the result output, and the
calculation status are denoted as a, b, op, results, and status, respectively. In
each calculation, the inputs are checked first in the unit CHK1 whether they are
within the valid range. Then, they are forwarded to the CALCULATE module.
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Fig. 9. RTL model overview

The CALCULATE module calculates the result using either the ALU or the
multiplier depending on the value of the input op. This result is then checked
again in unit CHK2.

Checking the Completeness. After the RTL model has been completely
implemented, its correctness has to be verified. For this task, the complete set
of properties at the behavioral model is also refined to a set of RTL properties.
Essentially, timing needs to be added to the properties while adjusting the syntax
of the PSL properties.

After all refined properties have been proven, we perform the completeness
check at RTL using the method proposed in [13]. The check detects uncovered
behavior of the RTL model for the value 1112 of the 3-bit operator input op.
The other seven values correspond to the defined operations of the calculator
and hence the behavior in these cases is fully specified by the property set. In the
case of 1112, the ALU performs an unintended operation (a shift operation). This
mismatch is possible because the ALU has not been specifically developed for the
calculator (in fact as mentioned above the ALU is an external IP component).
This shows clearly that completeness checks are necessary, in particular, since
integrated IPs may have additional but unintended behavior.

4 Conclusions

In this paper, we have presented the concept of Completeness-Driven Develop-
ment (CDD). With CDD, completeness checks are added orthogonally to the
state-of-the-art design flow. As a result, completeness is ensured already at the
highest level of abstraction and during all refinement steps. Hence, bugs are
found as soon as possible and are not propagated to lower levels. As a result, ex-
pensive design loops are avoided. We have demonstrated the advantages of CDD
for an example. For two abstraction levels (behavioral level and RTL) we have
shown that completeness is essential for correctness and efficient development.

Going forward, to implement the concept of CDD, high-level and continu-
ous completeness measures are necessary. Furthermore, innovative methods to
support correct transformation as well as property refinement need to be inves-
tigated.
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Abstract. Software systems with dynamic topology are often infinite-
state. Paradigmatic examples are those modeled as graph transformation
systems (GTSs) with rewrite rules that allow an unbounded creation
of items. For such systems, verification can become intractable, thus
calling for the development of approximation techniques that may ease
the verification at the cost of losing in preciseness and completeness. Both
over- and under-approximations have been considered in the literature,
respectively offering more and less behaviors than the original system.
At the same time, properties of the system may be either preserved or
reflected by a given approximation. In this paper we propose a general
notion of approximation that captures some of the existing approaches
for GTSs. Formulae are specified by a generic quantified modal logic that
generalizes many specification logics adopted in the literature for GTSs.
We also propose a type system to denote part of the formulae as either
reflected or preserved, together with a technique that exploits under- and
over-approximations to reason about typed as well as untyped formulae.

Keywords: model checking, graph transition systems, abstraction,
graph logics, approximations, simulations.

1 Introduction

Various approaches have been proposed to equip visual specification formalisms
with tools and techniques for verification. Recently, quite some attention has
been devoted to those proposals that have adapted traditional approaches (such
as model checking) to the area of graph transformation. Among others, we men-
tion here two research lines that have integrated the techniques they argue for
into suitable verification tools: GROOVE [5, 9, 12–16] and AUGUR [1–4, 10]1.

A main ingredient in those works is the adoption of a suitable language for
property specification. The language is in form of a modal logic capturing very
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often two essential dimensions of the state space of graph transformation sys-
tems (GTSs): the topological structure of states (i.e. graphs) and the temporal
structure of transitions (i.e. graph rewrites). The topological dimension is usually
handled by variants of monadic second-order (MSO) logics [6], spatial logics [7]
or regular expressions [12], while the temporal dimension is typically tackled
with standard modal logics from the model checking tradition like LTL, CTL or
the modal μ-calculus. Our own contribution [8] to this field follows the tradition
of [2] and is based on a quantified version of the μ-calculus that mixes temporal
modalities and graph expressions in MSO-style.

The model checking problem for GTSs is in general not decidable for such log-
ics, since GTSs are Turing complete languages. Pragmatically, the state space of
GTSs (usually called graph transition system) is often infinite and it is well
known that only some infinite-state model checking problems are decidable.
Paradigmatic examples are GTSs with rewrite rules allowing an unbounded cre-
ation of items. Verification becomes then intractable and calls for appropriate
state space reduction techniques. For example, many efforts have been devoted
to the definition of approximation techniques inspired by abstract interpretation.
The main idea is to consider a finite-state abstract system that approximates
(the properties of) an infinite-state one, so that verification becomes feasible
(at the acceptable cost of losing preciseness in the verification results). Approx-
imated systems represent either more or less behaviours than the original one,
resulting respectively in over- or under-approximations. In general, in order to
consider meaningful approximations, it is necessary to relate them with the orig-
inal systems via behavioural relations, like simulation ones. Such approximation
techniques have been developed in both the above mentioned research lines:
namely neighbourhood abstractions [5] and unfoldings [1, 3, 4].

Contribution. Even if such techniques have been shown to be very effective,
we do believe that there is still space for pushing forward their exploitation in
the verification of GTSs. In this paper we propose a general formalization of
similarity-based approximations, and a verification technique exploiting them.
We focus on the type system of [4] proposed within the unfolding technique to
classify formulae as preserved or reflected by a given approximation. We extend
and generalize such type system in several directions: (i) our type system is
technique-agnostic, meaning that it does not require the approximated systems
to be obtained with a particular mechanism (e.g. the unfolding one); (ii) we
consider counterpart models, a generalization of graph transition systems; (iii)
our type system is parametric with respect to a given simulation relation (while
the original one considers only simulations with certain properties); (iv) we use
the type system to reason on all formulae (rather than just on closed ones);
and (v) we propose a technique that exploits over- and under-approximations to
estimate properties more precisely, handling also part of the untyped formulae.

Synopsis. Sect. 2 provides the necessary background. Sect. 3 defines simulation
relations between counterpart models. Sect. 4 provides a type system to classify
formulae as preserved, reflected or strongly preserved, exploited in Sect. 5 to
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define the approximated evaluation of formulae. Finally, Sect. 6 discusses related
works, and concludes the paper outlining future research avenues.

2 Background

We summarize here the basic machinery of our approach: essentially, the notion
of counterpart models (which generalize graph transition systems) and a logic to
reason about such models. A detailed presentation can be found in [8].

2.1 Counterpart Models

While graph transition systems have graphs associated to states, counterpart
models use many-sorted algebras to denote the structure of states (worlds).

Recall that a (many-sorted) signature Σ is a pair (SΣ , FΣ) composed by a
set of sorts SΣ = {τ1, · · · , τm} and by a set of function symbols FΣ = {fΣ :
τ1 × . . .× τn → τ | τi, τ ∈ SΣ} typed over S∗Σ, and that a (many-sorted) algebra
A with signature Σ (a Σ-algebra) is a pair (A, FA

Σ ) such that: (i) the carrier
A is a set of elements typed over SΣ ; (ii) FA

Σ = {fA
Σ : Aτ1 × . . . × Aτn → Aτ |

fΣ : τ1× . . .× τn → τ ∈ FΣ} is a family of functions on A typed over S∗Σ , where
Aτ = {a ∈ A | a : τ}, and each fΣ ∈ FΣ corresponds to a function fA

Σ in FA
Σ .

Given two Σ-algebras A and B, a (partial) morphism � is a family of par-
tial functions {�τ : Aτ ⇀ Bτ | τ ∈ SΣ} typed over SΣ , such that, for each
function symbol fΣ : τ1 × . . . × τn → τ ∈ FΣ and list of elements a1, . . . , an, if
each function �τi is defined for the element ai of type τi, then �τ is defined for
the element fA

Σ (a1, . . . , an) of type τ and the elements �τ (f
A
Σ (a1, . . . , an)) and

fB
Σ (�τ1(a1), . . . , �τn(an)) coincide. A morphism is injective, surjective or bijective
if all the �τ are so, meaning that they are so over its domain of definition.

Example 1. The signature for directed graphs is (SGr, FGr). The set SGr consists
of the sorts of nodes τN and edges τE , while the set FGr is composed by the
function symbols s : τE → τN and t : τE → τN , which determine the source and
the target node of an edge. For example, in Fig. 1 the graph tagged with w1 is
(N �E, {s, t}), where N = {u, v}, E = {e1}, s = {e1 �→ u} and t = {e1 �→ v}.

A basic ingredient of our logic are open terms. For this purpose we consider
signatures ΣX obtained by extending a many-sorted signature Σ with a denu-
merable set X of variables typed over SΣ . We let Xτ denote the τ -typed subset
of variables and with xτ or x : τ a variable with sort τ . Similarly, we let ετ or ε : τ
indicate a τ -sorted term. The set T (ΣX) of (possibly open) terms obtained from
ΣX is the smallest set such that X ⊆ T (ΣX) and f(ε1, . . . , εn) : τ ∈ T (ΣX)
for any f : τ1 × . . .× τn → τ ∈ FΣ and εi : τi ∈ T (ΣX).

For ease of presentation, we omit the sort when it is clear from the context or
when it is not necessary. Moreover, we fix a generic many-sorted signature Σ.

We are finally ready to introduce counterpart models, which can be seen as a
generalization of graph transition systems (see e.g. [2]).
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Definition 1 (Counterpart model). Let A be the set of Σ-algebras. A coun-
terpart model M is a triple (W,�, d) such that W is a set of worlds, d : W →
A is a function assigning to each world a Σ-algebra, and � ⊆ W × (A ⇀
A)×W is the accessibility relation over W , enriched with (partial) morphisms
( counterpart relations) between the algebras of the connected worlds.

In the following we may use w1
cr� w2 for (w1, cr, w2) ∈�. In particular, for

each w1
cr� w2 we have that cr : d(w1)→ d(w2) defines the counterparts of (the

algebra of) w1 in (the algebra of) w2. Counterpart relations allow hence to avoid
trans-world identity, the implicit identification of elements of different worlds
sharing the same name. Element names thus have a meaning that is local to
their world. For this reason, these relations allow for the creation, deletion, and
type-respecting renaming and merging of elements. Duplication is forbidden: no
cr associates any element of d(w1) to more than one of d(w2).

•u �� •u �� •u ��

�� ��

. . .

e1

��

�� e1 e2 ��
��. . .

•v �� •v �� •v �� . . .

w0 w1 w2 . . .

Fig. 1. A counterpart model

Should Σ be a signature for graphs, a
counterpart model is a two-level hierarchi-
cal graph: at the higher level the nodes
are the worlds w ∈ W , and the edges are
the evolution steps labeled with the asso-
ciated counterpart relation; at the lower
level, each world w contains a graph repre-
senting its internal structure. In standard
terminology, we consider a transition system labeled with algebra morphisms, as
an immediate generalization of graph transition systems [2].

Example 2. The counterpart model in Fig. 1 is made of a sequence of worlds wi,
where world wi is essentially associated to a graph d(wi) with i edges between
nodes u and v. The counterpart relations (drawn with dotted lines) reflect the
fact that each transition (wi, cri, wi+1) is such that cri is the identity for d(wi).

2.2 A Logic to Reason about Counterpart Models

We now present a logic for counterpart models. The main idea is that the inter-
pretation of a formula in a model M provides sets of pairs (w, σw) where w is a
world of M and σw associates first- and second-order variables to elements and
to sets of elements, respectively, of d(w). In what follows we fix a model M with
signature Σ, and let X , X and Z ranged by x, Y and Z, respectively, denote de-
numerable sets of first-order, second-order, and fix-point variables, respectively.

Definition 2 (Quantified modal formulae). The set FΣX of formulae ψ of
our logic is generated by

ψ ::= tt | ε ∈τ Y | ¬ψ | ψ ∨ ψ | ∃τx.ψ | ∃τY.ψ | ♦ψ | Z | μZ.ψ

where ε is a τ-term over ΣX , ∈τ is a family of membership predicates typed over
SΣ (stating that a term with sort τ belongs to a second-order variable with the
same sort), ∃τ quantifies over elements (sets of elements) with sort τ , ♦ is the
“possibility” one-step modality, and μ denotes the least fixed point operator.
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The semantics of the logic is given for formulae-in-context ψ[Γ ;Δ], where Γ ⊂ X
and Δ ⊂ X are the first- and second-order contexts of ψ, containing at least its
free variables. However, we may omit types and contexts for the sake of presen-
tation. As usual, we restrict to monotonic formulae, where fix-point variables
occur under an even number of negations to ensure well-definedness.

The logic is simple, yet reasonably expressive. We can derive useful operators
other than boolean connectives ∧, →, ↔, and universal quantifiers ∀τ . For in-
stance “=τ”, the family of equivalence operators for terms in T (SΣ), typed over
SΣ , can be derived as ε1 =τ ε2 ≡ ∀τY. (ε1 ∈τ Y ↔ ε2 ∈τ Y ). The greatest
fix-point operator can be derived as νZ.ψ ≡ ¬μZ.¬ψ, and the “necessarily” one-
step modality as �ψ ≡ ¬♦¬ψ (ψ holds in all the next one-steps). Moreover, we
can derive the standard CTL* temporal operators, as explained in detail in [8].

The semantic domain of our formulae are sets of assignments.

Definition 3 (Assignments). An assignment (σ1
w, σ2

w) for a world w ∈ W is a
pair of partial functions typed over SΣ with σ1

w : X ⇀ d(w) and σ2
w : X ⇀ 2d(w).

We use ΩM (or just Ω) to denote the set of pairs (w, σw), for σw an assignment
for w. A fix-point variable assignment is a partial function ρ : Z ⇀ 2ΩM .

Given a term ε and an assignment σ = (σ1, σ2), we denote with σ(ε) or σ1(ε) the
lifting of σ1 to T (ΣX). Intuitively, it evaluates ε under the assignment σ for its
variables. If σ is undefined for any variable in ε, then σ(ε) is undefined as well.
We let λ = (λ1, λ2) indicate the empty (or undefined) assignment.

Example 3. Let r, z, x, y ∈ X . In our logic it is easy to define a predicate regard-
ing the presence of an entity with sort τ in a world as presentτ (z) ≡ ∃τr. z = r.
The predicate evaluates in pairs (w, ({z �→ a}, λ2)), with a : τ ∈ d(w). Now, the
predicate (omitting typings) p(x, y) ≡ present(z) ∧ s(z) = x ∧ t(z) = y regards
the existence of an edge connecting two node terms. The evaluation of p(u, v),
with u and v nodes, provides assignments of z to edges connecting u to v.

We denote by Ω
[Γ ;Δ]
M the set of all pairs (w, (σ1

w , σ2
w)) such that the domain of

definition of σ1
w is contained in Γ , and the one of σ2

w is exactly Δ. Note the
asymmetry in the definition: σ may be undefined over the elements of Γ , yet
not over those of Δ. Intuitively, σ(x) may be undefined if the element it was
denoting has been deallocated, while we can always assign the empty set to
σ(Y ). We hence use partial first-order assignments to treat item deallocations.

Given models M = (W,�, d), M ′ = (W ′,�′, d′), worlds w ∈ W , w′ ∈ W ′,
morphism φ : d(w)→ d′(w′), and assignment σw = (σ1

w , σ2
w) for w, we use φ◦σw

to denote the assignment σw′ (for w′) obtained applying φ to the components of
σw′ , i.e. σ1

w′ = φ ◦ σ1
w, and σ2

w′ = 2φ ◦ σ2
w, for 2

φ the lifting of φ to sets.
Assignments can be restricted to and extended by variables. Given an assign-

ment σ = (σ1, σ2) such that (w, σ) ∈ Ω[Γ,x;Δ], its restriction σ ↓x wrt. x �∈ Γ is
the assignment (σ1 ↓x, σ2), such that (w, σ ↓x) ∈ Ω[Γ ;Δ], obtained by removing
x from the domain of definition of σ1. Vice versa, the extension σ[a/x] of an as-
signment σ = (σ1, σ2) such that (w, σ) ∈ Ω[Γ ;Δ] wrt. mapping x �→ a (for x �∈ Γ
and a ∈ d(w)) is the assignment (σ1[a/x], σ2) such that (w, σ[a/x]) ∈ Ω[Γ,x;Δ].
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The notation above is analogously and implicitly given also for second-order
variables, as well as for their lifting to sets 2↓x and 2↑x . Intuitively, by extending
Ω[Γ ;Δ] with respect to a variable xτ �∈ Γ , we replace every pair (w, σw) ∈ Ω[Γ ;Δ]

with the set {(w, σw [
a/x]) | a : τ ∈ d(w)}. Note that extensions may shrink the

set of assignments, should the algebra associated to the world have no element
of the correct type. In general terms, the cardinality of 2↑xτ ({(w, σw)}) is the
cardinality of d(w)τ , i.e. the cardinality of the set of elements of type τ in d(w).

Given a transition w cr� w′ and (w, σw) ∈ Ω[Γ ;Δ], the counterpart assignment
of σw relatively to cr (denoted σw

cr� σw′) is the assignment σw′ = cr ◦σw. Thus,
for x ∈ Γ , if σw(x) is undefined, then σw′(x) is undefined as well, meaning that if
σw(x) refers to an element deallocated in w, then also σw′(x) does in w′; if σw(x)
is defined, but cr(σw(x)) is not, then the considered transition deallocates σw(x).
Whenever both σw(x) and cr(σw(x)) are defined, then σw(x) has to evolve in
σw′(x) accordingly to cr. As for Y ∈ Δ, the elements in σw(Y ) preserved by cr
are mapped in σw′(Y ). If σw(Y ) is defined, then σw′(Y ) is also defined, with a
cardinality equal or smaller, due to fusion or deletion of elements induced by cr.

We now introduce the evaluation of formulae in a model M , as a mapping
from formulae ψ[Γ ;Δ] into sets of pairs contained in Ω[Γ ;Δ]. Hence, the domain
of the assignments in these pairs is, respectively, contained in Γ , and exactly
Δ. Intuitively, a pair (w, σw) belongs to the semantics of ψ[Γ ;Δ] if the formula
holds in w under the assignment σw for its free variables. We assume that all
the bound variables are different among themselves, and from the free ones.

Definition 4 (Semantics). The evaluation of a formula ψ[Γ ;Δ] in M under

assignment ρ : Z → 2Ω
[Γ ;Δ]

is given by the function �·�ρ : F [Γ ;Δ] → Ω[Γ ;Δ]

�tt[Γ ;Δ]�ρ = Ω[Γ ;Δ]

�(ε ∈τ Y )[Γ ;Δ]�ρ = {(w, σw) ∈ Ω[Γ ;Δ] | σw(ε) is defined and σw(ε) ∈ σw(Y )}
�¬ψ[Γ ;Δ]�ρ = Ω[Γ ;Δ] \ �ψ[Γ ;Δ]�ρ

�ψ1 ∨ ψ2[Γ ;Δ]�ρ = �ψ1[Γ ;Δ]�ρ ∪ �ψ2[Γ ;Δ]�ρ
�∃τx. ψ[Γ ;Δ]�ρ = 2↓x ({(w, σw) ∈ �ψ[Γ, x;Δ]�(2↑x◦ρ) | σw(x) is defined})
�∃τY. ψ[Γ ;Δ]�ρ = 2↓Y (�ψ[Γ ;Δ,Y ]�(2↑Y ◦ρ))

�♦ψ[Γ ;Δ]�ρ = {(w, σw) ∈ Ω[Γ ;Δ] | ∃w cr� w′. ∃(w′, σw′ ) ∈ �ψ[Γ ;Δ]�ρ . σw
cr� σw′}

�Z[Γ ;Δ]�ρ = ρ(Z)
�μZ.ψ[Γ ;Δ]�ρ = lfp(λY.�ψ[Γ ;Δ]�ρ[Y /Z ])

Notice how in order to evaluate ∃τx.ψ[Γ ;Δ], we first evaluate ψ extending Γ
with x. Then, by dropping the pairs with undefined assignment for x, we obtain
the ones whose worlds contain items satisfying ψ if assigned to x. The second-
order case is similar, but assignments are defined for all the variables in Δ. Note
that ρ is modified accordingly, thus ensuring a proper sorting for ρ(Z).

Another interesting case arises evaluating formulae ♦ψ[Γ ;Δ], where we search
for pairs (w, σw) such that there exists a transition w cr� w′ and a σw′ with
σw

cr� σw′ and (w′, σw′) belonging to the evaluation of ψ[Γ ;Δ]. In words, σw′

has to respect the relation induced by cr between the items of the two worlds.
Finally, the evaluation of a closed formula, i.e. with empty context, is a set

of pairs (w, λ), for λ the empty assignment, ensuring that our proposal properly
extends standard semantics for propositional modal logics.
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Example 4 (Evaluation of formulae). Consider the formula of Example 3, the
model M of Fig. 1 and the empty assignment λ = (λ1, λ2). Evaluating �p(u, v)�M
results in {(w1, ({z �→ e1}, λ2)), (w2, ({z �→ e1}, λ2)), (w2, ({z �→ e2}, λ2)), . . . }.

3 Behavioural Equivalences for Counterpart Models

In this section we lift classical behavioural preorders and equivalences to coun-
terpart models. For the sake of presentation, for the rest of the paper we fix two
models M = (W,�, d) and M ′ = (W ′,�′, d′). Intuitively, we define relations
from M to M ′ as sets of triples (w, φ, w′) ∈ R formed by a world w ∈ W , a world
w′ ∈ W ′ and a morphism φ : d(w)→ d(w′) relating their respective structures.

Definition 5 (Simulation). Let R ⊆ W × (A ⇀ A) ×W ′ be a set of triples
(w, φ, w′), with φ : d(w) → d′(w′) a morphism. R is a simulation from M to

M ′ if for every (w1, φ1, w′1) ∈ R we have that w1
cr� w2 implies w′1

cr′� w′2
for some w′2 ∈ W ′, with (w2, φ2, w′2) ∈ R and φ2 ◦ cr = cr′ ◦ φ1. If R−1 =
{(w′, φ−1, w) | (w, φ, w′) ∈ R} is well defined, and it is also a simulation, then
R (as well as R−1) is called bisimulation.
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��
��
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��
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�� e1 e2

•v �� •v �� •v

Fig. 2. Approximations

Notice how the φ components of bisim-
ulations are precisely injections. We call
“iso” a bisimulation whose φ components
are isomorphisms. We may abbreviate
(w, φ, w′) ∈ R in wRw′ if φ is irrelevant.
As usual, we define (bi)similarity as the
greatest (bi)simulation, and say that M
is similar to M ′ or that M ′ simulates M ,
written M �R M ′ (where we may omit
R), if there exists a simulation R from M
to M ′ such that, for every w ∈ W , there
exists at least a w′ ∈ W ′ with wRw′.

Example 5. Fig. 2 depicts three mod-
els: M (center), M (top) and M (bot-
tom). The model M , taken from Exam-
ple 2, is infinite-state and M and M can
be understood as its over- and under-
approximations, respectively. Indeed, we
have relations R and R (denoted with dou-
ble arrows) such that M �R M �R M .

Intuitively, M is a truncation of M con-
sidering only the first two transitions of
M . Every tuple (w, φ, w) in R is such that
φ : d(w)→ d(w) is the identity.

On the other hand, M can be seen as “M modulo the fusion of edges”. That
is, every tuple (w, φ, w) in R is such that φ : d(w)→ d(w) is a bijection for nodes
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(in particular, the identity restricted to the nodes of d(w)) and a surjection on
edges mapping every edge ei into edge e.

Given a set of pairs ω ⊆ ΩM and a simulation R from M to M ′ we use R(ω) to
denote the set {(w′, φ ◦ σw) | (w, σw) ∈ ω ∧ (w, φ, w′) ∈ R}.

In the following, with an abuse of notation we use R ◦ ρ to indicate the
composition of R with the fix-point assignment ρ, defined as R ◦ ρ = {(Z �→
R(ω)) | (Z �→ ω) ∈ ρ}. Note that R−1 is not always well-defined since the
morphisms in the triples (w, φ, w′) may not be injective. However, we often use
the pre-image R−1[·] of R, defined for a set of pairs ω′ ⊆ ΩM ′ as R−1[ω′] =
{(w, σw) ∈ ΩM | ∃(w, φ, w′) ∈ R. (w′, φ ◦ σw) ∈ ω′}.

4 Preservation and Reflection

As usual, the evaluation of formulae in a model M may be only approximated
by a simulation M ′. We hence introduce the usual notions of preserved formulae,
those whose “satisfaction” in M implies their “satisfaction” in M ′, and reflected
formulae, those whose “satisfaction” in M ′ implies their “satisfaction” in M . Of
course, since the semantic domain of our logic are assignment pairs, the notion
of “satisfaction” corresponds to the existence of such pairs.

Definition 6 (Preserved and reflected formulae). Let R be a simula-
tion from M to M ′ (i.e., M �R M ′), ψ[Γ ;Δ] a formula, and ρ an assign-
ment. We say that ψ is preserved under R (written ψ :R⇒) if �ψ[Γ ;Δ]�M ′R◦ρ ⊇
R(�ψ[Γ ;Δ]�Mρ ); reflected under R (written ψ :R⇐) if R−1[�ψ[Γ ;Δ]�M ′R◦ρ] ⊆
�ψ[Γ ;Δ]�Mρ ; and strongly preserved under R (written ψ :R⇔) if ψ :R⇒ and
ψ :R⇐.

Note that the choice of ρ, Γ , and Δ is irrelevant. In the definition of ψ :R⇐ we use
R−1[·] rather than R−1 because the latter is not always defined and, moreover,
if ψ:R⇐, then we additionally have that R(�¬ψ[Γ ;Δ]�Mρ )∩ �ψ[Γ ;Δ]�M ′R◦ρ = ∅, i.e.
that a pair in Ω

[Γ ;Δ]
M \ �ψ[Γ ;Δ]�Mρ cannot be similar to any pair in �ψ[Γ ;Δ]�M ′R◦ρ.

Example 6. Consider again the predicate p(x, y) of Example 3 stating the exis-
tence of an edge connecting node x to node y, and the models M �R M �R M
of Example 5 shown in Fig. 2. It is easy to see that p(u, v) is strongly preserved
both under R and under R. Recall that in Example 4 we saw that �p(u, v)�M =
{(w1, ({z �→ e1}, λ2)), (w2, ({z �→ e1}, λ2)), (w2, ({z �→ e2}, λ2)), . . . } (for any
ρ, thus neglected). Now, �p(u, v)�M = {(w1, ({z �→ e1}, λ2)), (w2, ({z �→
e1}, λ2)), (w2, ({z �→ e2}, λ2))}, and hence R(�p(u, v)�M ) is {(w1, ({z �→
e1}, λ2)), (w2, ({z �→ e1}, λ2)), (w2, ({z �→ e2}, λ2))}, which is clearly con-
tained in �p(u, v)�M . Moreover we also have that R−1[�p(u, v)[Γ ;Δ]�M ] ⊆
�p(u, v)[Γ ;Δ]�M . We hence have that p(u, v) :R⇔. Similarly, we have that

�p(u, v)�M = {(w1, ({z �→ e}, λ2))}, and R(�p(u, v)�M ) = {(w1, ({z �→ e}, λ2))}.
Both conditions are again satisfied, and hence we have p(u, v) :R⇔.
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Of course, determining whenever a formula is preserved (or reflected) cannot
be done in practice by performing the above check, since that would require to
calculate the evaluation of the formula in the (possibly infinite) original model
M , which is precisely what we want to avoid. Moreover, note that determining
whenever a formula is preserved (and the same occurs for being reflected) is an
undecidable problem, since our logic subsumes that of [4].

Nevertheless, we can apply the same approach of [4] and define a type sys-
tem that approximates the preservation and reflection of formulae. In particular,
our type system generalizes the one of [4] in several directions: (i) we consider
counterpart models, a generalization of graph transition systems; (ii) our type
system is parametric with respect to the simulations R (while the original one
is given for graph morphisms that are total and bijective for nodes and total
and surjective for edges, we exploit the injectivity, surjectivity and totality of
the morphisms of R for each sort τ); (iii) we use the type system to reason on
all formulae (while the original proposal restricts to closed ones); and (iv) we
propose a technique exploiting over- and under-approximations of a model to
obtain more precise approximated formulae evaluations, and we handle part of
the untyped formulae.

The type system is parametric with respect to the properties of R. In partic-
ular, we consider the properties of the morphisms in R, namely, for each sort
τ , if they are τ -total (τt), τ -surjective (τs) or τ -bijective (τb). To ease the pre-
sentation, we say “τprop R”, with prop ∈ {t, s, b}, whenever all (w, φ, w′) ∈ R
are such that φ is τ -prop. Moreover, we shall consider the case in which R is an
iso-bisimulation.

Definition 7 (Type system). Let R be a simulation from M to M ′ (i.e.,

M �R M ′), ψ a formula, and T = {←,→,↔} a set of types. We say that

ψ has type d ∈ T if ψ : d can be inferred using the following rules

tt :R ↔
d=

{
→ for τt R
← for τb R

ε∈τY :R d
ψ :R → ψ :R ←

ψ :R ↔
ψ :R ↔
ψ :R d

ψi :R d
ψ1∨ψ2 :R d

ψ :R d with d=

{
→ for τt R
← for τs R

∃τx.ψ :R d and ∃τY.ψ :R d
ψ :R d

¬ψ :R d−1

Z :R ↔
ψ :R d with d=

{
→ for any R
← for R an iso-bisimulation

♦ψ :R d
ψ :R d

μZ.ψ :R d

where it is intended that →−1=←, ←−1=→ and ↔−1=↔.

The type system is not complete, meaning that some formulae cannot be typed:
if ψ cannot be typed, we then write ψ :R ⊥. However, the next proposition states
its soundness.

Proposition 1 (Type system soundness). Let R be a simulation from M
to M ′ (i.e., M �R M ′) and ψ a formula. Then (i) ψ :R→ implies ψ :R⇒; (ii)
ψ :R← implies ψ :R⇐; and (iii) ψ :R↔ implies ψ :R⇔.
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As we already noted, our type system can be instantiated for graph signatures,
in order to obtain the one of [4] as a subsystem. In fact, the authors there consider
only simulation relations R that are total on both sorts, as well as being (τN )b
(that is, bijective on nodes) and (τE)s (surjective on edges).

Another instance is for iso-bisimulations. This is the case of the analysis of
graph transition systems up to isomorphism (e.g. as implemented in [13]). In
this case the type system is complete and correctly types every formula as ψ :↔.

Example 7. Consider the models M �R M �R M of Fig. 2, and the formula
p(u, v) of Example 6, where we saw that p(u, v) :R⇔ and p(u, v) :R⇔. Our type

system provides the types p(u, v) :R↔ and (since R is not injective on edges)

p(u, v) :R→. Note that the type for R is exactly inferred, while for R it is only
approximated as we get preserved while it is actually strongly preserved.

5 Approximated Semantics

Approximations can be used to estimate the evaluation of formulae. Consider the
case of three models M , M and M , with M �R M �R M , as in Fig. 2, where

M and M are under- and over-approximations of M , respectively. Intuitively,
an approximated evaluation of a formula ψ in M or M may provide us a lower-
and upper-bound, defined for either M or M , of the actual evaluation of ψ in
M . We call under- and over-approximated evaluations the ones obtained using,
respectively, under- (e.g. M), and over-approximations (e.g. M).

Exploiting approximated evaluations, we may address the local model check-
ing problem: “does a given assignment pair belong to the evaluation of the for-
mula ψ in M?”. Given that approximated semantics compute lower- and upper-
bounds, we cannot define a complete procedure, i.e. one answering either true
or false. A third value is required for the cases of uncertainty. For this purpose
we use a standard three valued logic (namely Kleene’s one) whose domain con-
sists of the set of values K = {T ,F , ?} (where ? reads “unknown”), and whose
operators extend the standard Boolean ones with T ∨ ? = T , F ∨ ? = ?, ¬? = ?
(i.e. where disjunction is the join in the complete lattice induced by the truth
ordering relation F < ? < T ). Moreover, we also consider a knowledge addition
(binary, associative, commutative, partial) operation ⊕ : K ×K ⇀ K defined as
T ⊕T = T , F ⊕F = F and x⊕? = x for any x ∈ K. Notice how we intentionally
let undefined the case of contradictory addition “F ⊕ T ”.

In particular, given a formula, with our approximated semantics we are able
to group the pairs of an approximating model in three distinct sets: the ones
associated with T , the ones associated with F , and the ones associated with ?.
For instance, the over-approximated semantics is defined as follows.

Definition 8 (Over-approximated semantics). Let R be a simulation from
M to M (i.e. M �R M) and ρ an assignment. The over-approximated semantics

of �·�Mρ in M via R is given by the function {[·]}Rρ : F [Γ ;Δ] → (Ω
[Γ ;Δ]

M
→ K),

defined as {[ψ[Γ ;Δ]]}Rρ = {(p, k(p, ψ[Γ ;Δ], R)) | p ∈ Ω
[Γ ;Δ]

M
}, where
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{[p(u, v)]} {[¬p(u, u)]} {[p(u, v) ∨ ¬p(u, u)]} +{{[[p(u, v) ∨ ¬p(u, u)]]}}
(w0, λ), (w1, λ) F T ? T
(w1, (z �→ e, λ2)) ? T ? T

(w0, λ),(w1, λ),(w2, λ) F T T T
(w1, (z �→ e1, λ2) T T T T
(w2, (z �→ e1, λ2) T T T T
(w2, (z �→ e2, λ2) T T T T

(w2, (z �→ e2, λ2)) |=R �·� ? T ? T
(w2, (z �→ e2, λ2)) |=R �·� T T T T

(w2, (z �→ e2, λ2)) |=R
R �·� T T T T

Fig. 3. Approximated semantics and checks for some formulae

k(p, ψ[Γ ;Δ], R) =

{
T if ψ :R← and p ∈ �ψ[Γ ;Δ]�M

R◦ρ
F if ψ :R→ and p /∈ �ψ[Γ ;Δ]�M

R◦ρ
? otherwise

Intuitively, the mapping of the pairs in Ω
[Γ ;Δ]

M
depends on the type of ψ. If it is

typed as reflected, then all pairs in �ψ[Γ ;Δ]�M
R◦ρ are mapped to T , since their

counterparts in M do certainly belong to the evaluation of ψ. Nothing can be
said about the rest of the pairs, which are hence mapped to ?.

Dually, if ψ is typed as preserved, then all those pairs that do not belong to

�ψ[Γ ;Δ]�M
R◦ρ are mapped to F because we know that their counterparts in M

do certainly not belong to the evaluation of ψ. Again, nothing can be said about
the rest of the pairs, which are hence mapped to ?.

Finally, if ψ cannot be typed, then all pairs are mapped to ?.
Notice how, in practice, we rarely have to explicitly compute R ◦ ρ. In fact,

formulae of our logic are thought to be evaluated under an initial empty assign-
ment for fix-point variables, which is manipulated during the evaluation. Clearly
R ◦ ∅ = ∅ for any R, and it can be shown that the rules of the semantics manip-
ulating the fix-point assignment preserve this equivalence.

We can hence use the over-approximated semantics to decide whether an assign-
ment pair belongs to the evaluation of a formula in M as formalized below.

Definition 9 (Over-check). Let R be a simulation from M to M (i.e. M �R

M) and ρ an assignment. The over-approximated model check (shortly, over-

check) of �·�Mρ in M via R is given by the function · |=R �·�Mρ : Ω
[Γ ;Δ]
M ×F [Γ ;Δ] →

K, defined as

p |=R �ψ[Γ ;Δ]�Mρ =

{
? if R(p) = ∅∨
p∈R(p)

{[ψ[Γ ;Δ]]}Rρ (p) otherwise

Example 8. Consider again the predicate p(x, y) of Example 3 stating the ex-
istence of an edge connecting node x to node y, and the models M and
M with M �R M of Example 5 shown in Fig. 2. In the first group of
lines of Fig. 3 we exemplify the over-approximated semantics in M via R
of �p(u, v)�M , �¬p(u, u)�M , and �p(u, v) ∨ ¬p(u, u)�M , considering the pairs

Ω
[z;∅]
M

= {(w0, λ), (w1, λ), (w1, (z �→ e, λ2))}. We recall from Example 7 that
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p(u, v) :R→, and, hence, ¬p(u, u) :R← and p(u, v) ∨ ¬p(u, u) :R ⊥. Moreover

we know that �p(u, v)�M = {(w1, (z �→ e, λ2))}, and �¬p(u, u)�M = Ω
[z;∅]
M

. Fol-

lowing Definition 8, we hence have that (w0, λ) and (w1, λ) are mapped to F for
p(u, v), and to T for ¬p(u, u), while (w1, (z �→ e, λ2)) is mapped to ? and to T .
Different is the case of p(u, v)∨¬p(u, u): it cannot be typed and its approxima-
tion hence maps the three pairs to ?.

In the third group of lines of Fig. 3 we find the over-check “· |=R �·�” of
(w2, (z �→ e2, λ2)) in M via R for the three formulae. Note that R((w2, (z �→
e2, λ2))) = (w1, (z �→ e, λ2)), hence the over-checks of p(u, v) and of p(u, v) ∨
¬p(u, u) give ?, because no pair in R((w2, (z �→ e2, λ2))) is mapped to either
T or F . Instead, given that {[¬p(u, u)]}((w1, (z �→ e, λ2))) = T , then we have

(w2, (z �→ e2, λ2)) |=R �¬p(u, u)� = T .

With the next proposition we state that the above described check is sound.

Proposition 2 (Soundness of over-check). Let R be a simulation from M

to M (i.e. M �R M), ψ[Γ ;Δ] a formula, and ρ an assignment. Then (i) p |=R

�ψ[Γ ;Δ]�Mρ = T implies p ∈ �ψ[Γ ;Δ]�Mρ ; and (ii) p |=R �ψ[Γ ;Δ]�Mρ = F implies

p �∈ �ψ[Γ ;Δ]�Mρ .

Now, we can define the under-approximated semantics in a specular way.

Definition 10 (Under-approximated semantics). Let R be a simulation
from M to M (i.e. M �R M) and ρ an assignment. Then, the under-

approximated semantics of �·�Mρ in M via R is the function {[[·]]}Rρ : F [Γ ;Δ] →
(Ω

[Γ ;Δ]
M → K), defined as {[[ψ[Γ ;Δ]]]}Rρ = {p �→ k(p, ψ[Γ ;Δ], R) | p ∈ Ω

[Γ ;Δ]
M },

where

k(p, ψ[Γ ;Δ], R) =

{
T if ψ :R→ and p ∈ �ψ[Γ ;Δ]�

M

R−1[·]◦ρ
F if ψ :R← and p /∈ �ψ[Γ ;Δ]�

M

R−1[·]◦ρ
? otherwise

We can define an under-approximated model checking procedure as follows.

Definition 11 (Under-check). Let R be a simulation from M to M (i.e.
M �R M) and ρ an assignment. The under-approximated model check (shortly,

under-check) of �·�Mρ in M via R is given by the function · |=R �·�Mρ : Ω
[Γ ;Δ]
M ×

F [Γ ;Δ] → K, defined as

p |=R �ψ[Γ ;Δ]�Mρ =

{
? if R−1[p] = ∅∨
p∈R−1[p]

{[[ψ[Γ ;Δ]]]}Rρ (p) otherwise

Next proposition states the soundness of the under-check procedure.

Proposition 3 (Soundness of under-check). Let R be a simulation from
M to M (i.e., M �R M), ψ[Γ ;Δ] a formula, and ρ an assignment. Then (i)
p |=R �ψ[Γ ;Δ]�Mρ = T implies p ∈ �ψ[Γ ;Δ]�Mρ ; and (ii) p |=R �ψ[Γ ;Δ]�Mρ = F

implies p �∈ �ψ[Γ ;Δ]�Mρ .
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We finally show how to combine sets of under- and over-approximations.

Definition 12 (Approximated check). Let {R0 . . . Rn} be simulations from
{M0 . . . Mn} to M and {R0 . . . Rm} simulations from M to {M0 . . . Mm} (i.e.
Mi �Ri M �Rj

Mj for any i ∈ {0 . . . n} and j ∈ {0 . . . m}). The approx-

imated check of �·�Mρ in {M0 . . . Mn} and {M0 . . . Mm} via {R0 . . . Rn} and

{R0 . . . Rm} is the function · |={R0...Rm}
{R0...Rn}

�·�Mρ : Ω
[Γ ;Δ]
M ×F [Γ ;Δ] ⇀ K, defined as

p |={R0...Rm}
{R0...Rn}

�ψ[Γ ;Δ]�Mρ =
⊕
j

(p |=Rj �ψ[Γ ;Δ]�Mρ )
⊕
i

(p |=Ri
�ψ[Γ ;Δ]�Mρ )

Note that, even if ⊕ is partial, the approximated check is well-defined since
Propositions 2 and 3 ensure that we never have to combine contradictory results
(e.g. T ⊕ F ). It is also easy to see that the soundness result of Propositions 2
and 3 allows us to conclude the soundness of the approximated check.

Theorem 1 (Soundness of approximated check). Let {R0 . . . Rn} be sim-
ulations from {M0 . . . Mn} to M and {R0 . . . Rm} from M to {M0 . . . Mm} (i.e.
Mi �Ri M �Rj

Mj for any i ∈ {0 . . . n} and j ∈ {0 . . . m}). Let ψ[Γ ;Δ] a

formula, and ρ an assignment. Then (i) p |={R0...Rm}
{R0...Rn} �ψ[Γ ;Δ]�Mρ = T implies

p ∈ �ψ[Γ ;Δ]�Mρ ; and (ii) p |={R0...Rm}
{R0...Rn} �ψ[Γ ;Δ]�Mρ = F implies p �∈ �ψ[Γ ;Δ]�Mρ .

Approximated semantics provide us with a suitable evaluation of any formula,
even though its result may not be meaningful, since we may have empty lower-
bounds or unbounded upper-bounds as particular instances, namely when all
the pairs are assigned to ?. Indeed, this is the case of formulae that cannot be
typed with our type system. In order to obtain a more significant approximation
also in those cases, we may try to enrich our approximated semantics by rules
exploiting the structure of formulae.

We can thus extend both under- and over-approximated semantics (Defini-
tions 8 and 10). In the following we present the enrichment for over-approximated
semantics only, with the under-approximated case treated similarly.

Definition 13 (Enriched over-approximated semantics). Let R be a sim-

ulation from M to M (i.e. M �R M) and ρ an assignment, such that {[·]}Rρ
is the over-approximated semantics of �·�Mρ in M via R. The enriched over-

approximated semantics of �·�Mρ in M via R is given by the function +{{[[·]]}}Rρ :

F [Γ ;Δ] → (Ω
[Γ ;Δ]

M
→ K) defined as

+{{[[ψ[Γ ;Δ]]]}}Rρ =

⎧⎪⎪⎨⎪⎪⎩
+{{[[ψ1[Γ ;Δ]]]}}Rρ ∨+{{[[ψ2[Γ ;Δ]]]}}Rρ if ψ :R ⊥ and ψ ≡ ψ1 ∨ ψ2

¬+{{[[ψ1[Γ ;Δ]]]}}Rρ if ψ :R ⊥ and ψ ≡ ¬ψ1

{[ψ[Γ ;Δ]]}Rρ otherwise
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Example 9. Consider again the predicate p(x, y) of Example 3, and the models
M and M with M �R M of Example 5 shown in Fig. 2. In Example 8 we
have seen that the over-approximated semantics of �p(u, v) ∨ ¬p(u, u)�M in M
via R does not provide us any information. This happens because p(u, v) :R→
and ¬p(u, u) :R←, and hence p(u, v) ∨ ¬p(u, u) :R ⊥. In particular, as de-
picted in the third column of the first group of lines of Fig. 3, all the pairs

in Ω
[z;∅]
M

are assigned to “?”. The enriched over-approximated semantics is
instead more interesting. Following Definition 13, we evaluate separately the
(enriched) over-approximated semantics of the two disjuncts (first and second
column of the first group of lines of Fig. 3), and then combine them as shown
in the last column of Fig. 3. Considering for example the pair (w0, λ), we have
+{{[[p(u, v)[z; ∅]]]}}Rρ ((w0, λ)) = F , and +{{[[¬p(u, u)[z; ∅]]]}}Rρ ((w0, λ)) = T , and hence
+{{[[p(u, v))∨¬p(u, u)[z; ∅]]]}}Rρ ((w0, λ)) = F∨T = T . Considering instead (w1, (z �→
e, λ2)) we have +{{[[p(u, v)) ∨ ¬p(u, u)[z; ∅]]]}}Rρ ((w1, (z �→ e, λ2))) =? ∨ T = T .

We may enrich the under-approximated semantics exactly in the same way, and

thus straightforwardly define an enriched version “·+|={Rj}
{Ri} �·�Mρ ” of the approx-

imated checking by replacing both approximated semantics with their enriched
variants. It is also easy to verify that also this new check is sound.

6 Conclusions and Further Works

In the present work we proposed a general framework for simulation-based ap-
proximations, and we exploited them for developing a verification technique
based on a suitable type system for formulae of a second-order modal logic
with fix-point operators. The logic was previously introduced for the specifica-
tion of systems with dynamic topology [8, 11], and it is thus now equipped with
a powerful abstraction mechanism.

Our approach can be seen as an evolution of the verification technique for
graph transformation systems based on temporal graph logics and unfoldings [2,
4], which is generalized to counterpart models, and extended for the kind of
simulations under analysis.

Our proposal may provide interesting insights for other approximation tech-
niques, such as neighbourhood abstraction [5], where states are shapes (i.e. graph
algebras extended with an operation for abstraction purposes), and suitable ab-
straction morphisms (i.e. surjective graph morphisms, similar to the morphisms
of our simulations) coalesce nodes and edges of concrete states according to their
neighbourhood similarity. The logic adopted is less expressive than ours (as well
as of the one used in [2]), but it offers the advantage that all formulae are strongly
preserved by the approximation.

We foresee several directions for further research. First, we plan to enrich our
prototypal model checker for finite models [11] with the techniques presented
here, possibly making use of existing approximation techniques, like the ones
previously mentioned. Second, we would like to investigate the enrichment of
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approximated semantics in order to deal with more untyped formulae. An in-
teresting question in this regard is whether we can use both an under- and an
over-approximation simultaneously, by translating assignment pairs back and
forth via the composition of the corresponding abstraction and concretization
functions.
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Abstract. We present a new abstraction technique for the exploration
of graph transformation systems with infinite state spaces. This tech-
nique is based on patterns, simple graphs describing structures of interest
that should be preserved by the abstraction. Patterns are collected into
pattern graphs, layered graphs that capture the hierarchical composition
of smaller patterns into larger ones. Pattern graphs are then abstracted
to a finite universe of pattern shapes by collapsing equivalent patterns.
This paper shows how the application of production rules can be lifted to
pattern shapes, resulting in an over-approximation of the original system
behaviour and thus enabling verification on the abstract level.

1 Introduction

Graph transformation (GT) is a framework that, on one hand, is intuitive and
flexible enough to serve as a basic representation of many kinds of structures,
and, on the other hand, is precise and powerful enough to formally describe sys-
tem behaviour. Many techniques and tools have been proposed to analyse the
behaviour of GT systems. In particular, systems with infinite state spaces pose a
challenge since they require some form of abstraction. A key aspect when design-
ing such abstractions is the trade-off between preserving the expressive power of
GT and managing the complexity of the abstraction mechanism. This trade-off
has been considered at various points of its scale on the different abstractions
given in the literature [1,3,17].

In this paper we present a new abstraction based on graph patterns (simple
edge-labelled graphs), to be used in the analysis of infinite-state GT systems.
The novelty of the approach lies in the flexibility for tuning the abstraction
according to the substructures of interest, represented via a type graph. At the
concrete level we work with pattern graphs, a layered structure that describes the
composition of patterns. The abstraction of pattern graphs gives rise to pattern
shapes, which are bounded structures forming a finite universe.

In this work we define how pattern graphs and pattern shapes are constructed
from simple graphs, and we show how the application of GT rules can be lifted
� The work reported herein is being carried out as part of the GRAIL project, funded

by NWO (Grant 612.000.632).
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to these new structures. Our major result is a proof that the abstract state space
obtained by transforming pattern shapes is an over-approximation of the original
system behaviour, thus enabling verification on the abstract level. This text is an
abridged version of [16] where all technical details, including proofs, are given.

2 Simple Graphs

In its basic form, a graph is composed of nodes and directed binary edges.

Definition 1 (graph). A graph is a tuple G = 〈NG, EG, srcG, tgtG〉 where
– NG is a finite set of nodes;
– EG is a finite set of edges, disjoint from NG; and
– srcG : EG →NG and tgtG : EG →NG are mappings associating each edge to

its source and target nodes, respectively. �
For a node v ∈ NG, we consider the set of edges outgoing from and incoming to
v, defined as v�G = {e ∈ EG | srcG(e) = v} and v�G = {e ∈ EG | tgtG(e) = v},
respectively. A path in G is a non-empty sequence of edges π = e1 · · · ek such
that tgtG(ei) = srcG(ei+1) for 1 ≤ i < k. For convenience, we write src(π) =
srcG(e1) and tgt(π) = tgtG(ek). Paths π1, π2 are parallel if src(π1) = src(π2) and
tgt(π1) = tgt(π2). Furthermore, v is a predecessor of w in G, denoted v ≤G w, if
either v = w or there is a path π with src(π) = v and tgt(π) = w.

Definition 2 (graph morphism). A graph morphism between graphs G, H is
a function m : (NG ∪ EG)→(NH ∪ EH), such that m(NG) ⊆ NH , m(EG) ⊆ EH ,
srcH ◦ m = m ◦ srcG, and tgtH ◦ m = m ◦ tgtG. �

If function m is injective (surjective, bijective) then the morphism is called injec-
tive (surjective, bijective). A bijective morphism is also called an isomorphism
and we write G 
 H to denote that there is an isomorphism between G and H .
We use m : G → H as a short-hand notation for m : (NG ∪ EG) → (NH ∪ EH).
If G ⊆ H , we use emb(G, H) to denote the embedding of G into H .

Let Lab be a finite set of labels, partitioned into disjoint unary and binary
label sets, denoted LabU and LabB, respectively.

Definition 3 (simple graph). A simple graph G is a graph extended with an
edge labelling function labG : EG → Lab, where
– for all e ∈ EG, if labG(e) ∈ LabU then srcG(e) = tgtG(e); and
– for any e1, e2 ∈ EG, if srcG(e1) = srcG(e2), tgtG(e1) = tgtG(e2), and

labG(e1) = labG(e2), then e1 = e2. �
The second condition in the definition above prohibits parallel edges with the
same label, justifying the choice of the term simple graph. The first condition
limits the occurrence of unary labels to self-edges, which are used to encode node
labels. We write 〈v, l, w〉 to represent an edge e with srcG(e) = v, labG(e) = l,
and tgtG(e) = w. The universe of simple graphs is denoted by SGraph.

Figure 1(a) shows an example of a simple graph representing a single-linked
list composed of five cells and a sentinel node to mark the head and tail elements
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Fig. 1. (a) Simple graph representing a linked list. (b,c) Two transformation rules.

of the list. Unary labels are shown inside their associated node and node identities
are displayed at the top left corner of each node.

Definition 4 (simple graph morphism). A simple graph morphism between
simple graphs G, H ∈ SGraph is a graph morphism m : G → H that preserves
edge labels, i.e., labH ◦ m = labG. �

We write SMorph to represent the universe of simple graph morphisms. Simple
graphs are transformed by simple graph rules.

Definition 5 (simple graph transformation rule). A simple graph trans-
formation rule r = 〈L, R〉 consists of two simple graphs L, R ∈ SGraph, called
left-hand side (lhs) and right-hand side (rhs), respectively. �

The relation between L and R is established by their common elements, via an
implicit identity morphism on L. We distinguish the following sets:
– Ndel = NL \ NR and Edel = EL \ ER are the sets of elements deleted; and
– Nnew = NR \ NL and Enew = ER \ EL are the elements created by the rule.

We write U = L∪R and Unew = Nnew∪Enew as short-hand notation, and we use
SRule to denote the universe of simple graph transformation rules. Figure 1(b,c)
shows rules removing the head element of a list (get) and inserting a new element
at the tail of the list (put).

Definition 6 (simple graph transformation). Let G be a simple graph and
r = 〈L, R〉 a simple graph transformation rule such that G and Unew are disjoint.
An application of r into G involves finding a match m of r into G, which is an
injective simple graph morphism m : L→G. Extend m to U by taking m∪ idUnew .
Given such m, rule r transforms G into a new simple graph H, where
– NH = (NG \ m(Ndel)) ∪ Nnew;
– EH = ({e ∈ EG | srcG(e), tgtG(e) �∈ m(Ndel)} \ m(Edel)) ∪ Enew;
– srcH = (srcG ∪ (m ◦ srcU ))|EH , tgtH = (tgtG ∪ (m ◦ tgtU ))|EH ; and
– labH = (labG ∪ labU )|EH . �

In the definition above, dangling edges are deleted, following the SPO approach.
Since we do not distinguish between isomorphic graphs, the assumption that
Unew and G are disjoint can be satisfied without loss of generality by taking an
isomorphic copy of U where the elements of Unew are fresh with respect to G.
We write G −r→ H to denote that the application of r to G (under some m) gives
rise to the transformed graph H .
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Definition 7 (simple graph grammar). A simple graph grammar is a tuple
G = 〈R, G0〉, with R a set of simple graph rules and G0 an initial simple graph.�
Our standard model of behaviour is a simple graph transition system (sgts).

Definition 8 (sgts). A simple graph transition system is a tuple SGTS =
〈S,→, ι〉 where S ⊆ SGraph is a set of states, → ⊆ S × SRule × S a set of rule
applications, and ι ∈ S is the initial state. Grammar G generates a SGTSG if
ι = G0 and S is the minimal set of graphs such that G ∈ S and G −r→ H for r ∈ R
implies that there exists H ′ ∈ S where H 
 H ′ and G −r→ H ′ is a transition. �

3 Pattern Graphs

Pattern graphs are the cornerstone graph representation in this work. We first
give a general definition, but in this paper we restrict ourselves to pattern graphs
that are well-formed, a condition that will be presented shortly.

Definition 9 (pattern graph). A pattern graph P is a graph extended with a
labelling function labP : NP ∪ EP →SGraph ∪ SMorph that maps nodes to simple
graphs (labP (NP ) ⊆ SGraph), and edges to simple graph morphisms (labP (EP ) ⊆
SMorph), such that labP (d) : labP (srcP (d))→ labP (tgtP (d)) is an injective, non-
surjective simple graph morphism, for all d ∈ EP . �
In categorical terms, a pattern graph corresponds to a diagram in the category
SGraph. Elements of NP and EP are called pattern nodes and pattern edges,
respectively. For p ∈ NP , labP (p) is the pattern of p. As with simple graphs,
we may write 〈p, f, q〉 as a short-hand for a pattern edge d with srcP (d) = p,
labP (d) = f , and tgtP (d) = q. Note that the restriction to non-surjective simple
graph morphisms means that the pattern of tgtP (d) is always strictly larger than
that of srcP (d), which in turn implies that a pattern graph is always a dag. We
layer the nodes of P according to the number of simple edges in their patterns
(for i ≥ 0): N i

P = {p ∈ NP | |EG| = i, G = labP (p)} and N i+

P =
⋃

j≥i N j
P .

Figure 2 shows an example of a pattern graph. Pattern nodes are drawn with
dashed lines and the associated patterns are shown inside the node. Pattern
edges are depicted as arrows labelled with their corresponding simple graph
morphisms, except that embeddings are omitted to avoid clutter. Layers are
indicated on the right. Note that there is no distinction between simple edges
with unary or binary labels for the purpose of layer assignment. From here on
we simplify the figures by showing only the patterns with labelled simple nodes.

Let d = 〈p, f, q〉 ∈ EP be a pattern edge and let G = labP (p). The image of d
is defined as imgP (d) = H where NH = f(NG), EH = f(EG), srcH = f ◦ srcG,
tgtH = f ◦ tgtG, and labH ◦ f = labG. It is easy to see that H ⊂ labP (q). We say
that every pattern edge d covers the sub-graph imgP (d). Furthermore, we call a
set of pattern edges E′ ⊆ EP jointly surjective if tgtP (d1) = tgtP (d2) = p for all
d1, d2 ∈ E′, and

⋃
d∈E′ imgP (d) = labP (p). As a equivalent term we say that the

pattern edges of E′ together cover labP (p).
A pattern graph P is called well-formed if (with G = labP (p))
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Fig. 2. Example of a pattern graph that is not well-formed and not commuting

– for all p ∈ N0
P , |NG| = 1;

– for all p ∈ N1
P and the unique e ∈ EG, NG = {srcG(e), tgtG(e)} and p�P

together cover NG; and
– for all p ∈ N2+

P , p�P together cover G.

In words, the patterns of level-0 pattern nodes consist of a single node, the
patterns of level-1 pattern nodes consist of a single edge and its end nodes, and
the patterns on any other level are determined by the combined images of their
predecessors. Another consequence of pattern morphisms being non-surjective is
that, on well-formed pattern graphs, there are no pattern edges between nodes of
the same layer. The universe of (well-formed) pattern graphs is denoted PGraph.
Note that the pattern graph in Figure 2 is not well-formed: pattern nodes p5,
p12, and p17 are not sufficiently covered by the incoming morphisms.

Definition 10 (pattern graph morphism). A pattern graph morphism be-
tween pattern graphs P, Q ∈ PGraph is a graph morphism m : P → Q, where,
1. for all p ∈ NP , there exists an isomorphism ϕp : labP (p)→ labQ(m(p)); and
2. for all d = 〈p, f, q〉 ∈ EP , ϕq ◦ f = f ′ ◦ ϕp, with f ′ = labQ(m(d)).

Moreover, m is called closed if, in addition,
3. for all p ∈ NP and d′ ∈ m(p)�Q, there exists d ∈ p�P with m(d) = d′; and
4. for all N ′ ⊆ NP and jointly surjective {d′k ∈ m(p)�Q | p ∈ N ′}k∈K (where

K is some index set), there are jointly surjective {dk ∈ p�P | p ∈ N ′}k∈K

with m(dk) = d′k, for all k ∈ K. �

The definition above states that m maps pattern nodes with isomorphic patterns
(condition 1) and that m is compatible with the simple graph morphisms of
pattern edges modulo isomorphism (condition 2). Closedness indirectly imposes
conditions on P : every pattern edge in Q whose target pattern node is in the
morphism image should itself also be the image of some pattern edge in P
(condition 3), and so should every jointly surjective set of pattern edges in Q
whose source pattern nodes are in the morphism image (condition 4).
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Definition 11. Let P be a pattern graph.
– P is called commuting when for all q ∈ N2+

P and any distinct d1, d2 ∈ q�P ,
if G = imgP (d1) ∩ imgP (d2) is not an empty graph, then there exist p ∈ NP

and parallel paths π1, π2 in P such that labP (p) = G, src(πi) = p, tgt(πi) = q,
and di ∈ πi, for i = 1, 2.

– P is called concrete if it satisfies the following properties:
1. for all distinct p, q ∈ NP , labP (p) �= labP (q); and
2. for all 〈p, f, q〉 ∈ EP , f = emb(labP (p), labP (q)). �

The commutativity condition states that common simple nodes and edges in pat-
terns always stem from a common ancestor. The pattern graph in Figure 2 is not
commuting: the pattern associated with pattern node p16 cannot be constructed
from its predecessors since there is no common ancestor for simple node v2.

The first concrete pattern graph condition states that all patterns are distinct
and the second condition that identities of simple graph elements are preserved
along pattern graph edges. For concrete pattern graphs P , we define the flatten-
ing of P as flat(P ) =

⋃
p∈NP

labP (p). The following states that we can essentially
always treat commuting pattern graphs as concrete.

Proposition 12. Let P be a pattern graph.
1. If P is concrete, then P is commuting.
2. If P is commuting, there is a concrete pattern graph Q isomorphic to P . �

So far we have not restricted the patterns occurring in a pattern graph, but
in practice we will only use typed patterns.

Definition 13 (pattern type graph). A pattern type graph T is a pattern
graph such that labT (p) �
 labT (q) for all distinct p, q ∈ NT . A T -type morphism
is a closed pattern graph morphism to T . �

Figure 3 shows an example of a pattern type graph. We call P a T -pattern graph
if it is typable by T , i.e., has a T -type morphism. It is easy to see that for a
given pattern type graph T , any pattern graph P has at most one morphism to
T . If this morphism exists but is not a type morphism (i.e., is not closed), it
is always possible to extend P to a T -pattern graph Q, namely by adding the
elements required by the morphism closure conditions.

Proposition 14. Let P be a concrete pattern graph and T a pattern type graph.
If there exists a morphism m : P → T , then there exists an unique (modulo
isomorphism) concrete T -pattern graph Q ⊇ P , and flat(P ) = flat(Q). �

We call Q the closure of P with respect to T , and denote it closeT (P ). Given
a pattern type graph T we can define the lifting operation P = liftT (G) from
simple graphs G to concrete T -pattern graphs P with typing morphism t:

– For all H ⊆ G such that there exists an isomorphism ϕH : H → labT (p′) for
some p′ ∈ NT , add a fresh pH to NP and let labP : pH �→ H , and t : pH �→ p′.

– For all pH ∈ NP and for every d′ ∈ t(pH)�T , let F ⊆ H be defined by
F = ϕ−1

H (imgT (d′)). Note that this implies F 
 labT (srcT (d′)), and therefore
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Fig. 4. Concrete pattern graph lifted from the simple graph of Figure 1 according to
the pattern type graph of Figure 3. The pattern equivalence relation ≡ (Definition 25)
over nodes of the pattern graph is shown with dotted rectangles.

there exists a pF ∈ NP . Add a fresh edge d to EP and let srcP : d �→ pF ,
tgtP : d �→ pH , labP : d �→ emb(F, H), and t : d �→ d′.

An example of a lifted concrete T -pattern graph is shown in Figure 4.

Proposition 15. Let T be a pattern type graph.
1. For any simple graph G, liftT (G) is a concrete T -pattern graph.
2. For any concrete T -pattern graph P , liftT (flat(P )) 
 P . �

Concrete T -pattern graphs are transformed by lifting simple graph rules to pat-
tern graph equivalents. Usually we only consider simple rules whose left hand
sides are patterns in T , i.e., for any simple graph rule r = 〈L, R〉, L 
 labT (p)
for some p ∈ NT . In this sense, a set of simple rules R constrains the choice of
type graph T , or, equivalently, T is extracted from set R.

Definition 16 (pattern graph transformation rule). A pattern graph rule
r = 〈λ, ρ〉 consists of two concrete T -pattern graphs λ (the lhs) and ρ (the rhs),
where for any x1 ∈ λ and x2 ∈ ρ, x1 = x2 if and only if labλ(x1) = labρ(x2). �

The definition above implies that there exists an identity pattern graph mor-
phism on λ ensuring the equality of patterns. Based on this identity, we distin-
guish the sets of pattern graph elements deleted and created by pattern graph
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Fig. 5. Pattern graph rule equivalent to the get rule of Figure 1

rules, as done previously for simple graphs. Also, we use Υ = λ∪ρ to denote the
pattern graph resulting from the union of lhs and rhs, and Υ new to represent
the set of pattern graph elements created by the rule. We use PRule to denote the
universe of pattern graph transformation rules, with one shown in Figure 5. A
simple graph rule r = 〈L, R〉 and a pattern graph rule r′ = 〈λ, ρ〉 are equivalent
if flat(λ) = L and flat(ρ) = R.

Essentially, what happens when a rule is applied is that graph elements are
removed and others are added. In a concrete pattern graph, each simple graph
element x is represented by a pattern node in N0

P (if x is a simple node) or N1
P

(if x is a simple edge), and it also contributes to all successor patterns; so when x
is removed, all those pattern nodes disappear. Conversely, adding simple graph
elements to a pattern graph means adding new pattern nodes to N0

P and N1
P ,

and then closing the resulting structure with respect to T .

Definition 17 (pattern graph transformation). Let P be a concrete pat-
tern graph, r = 〈L, R〉 a simple graph transformation rule, and r′ = 〈λ, ρ〉 an
equivalent pattern graph rule such that P and Υ new, and flat(P ) and Unew are dis-
joint. An application of r′ into P involves finding a match μ of r′ into P , which
is an injective pattern graph morphism μ : λ → P . Match μ implicitly induces a
simple graph match m : L→flat(P ). Extend μ to Υ and m to U by taking μ∪idΥ new

and m ∪ idUnew , respectively, and let N ′ = {q ∈ NP | p ∈ μ(Ndel), p ≤P q} and
E′ = {d ∈ EP | srcP (d) ∈ N ′or tgtP (d) ∈ N ′}. Given such μ, r′ transforms P
into closeT (Q), where Q is defined by

– NQ = (NP \ N ′) ∪ Nnew and EQ = (EP \ E′) ∪ Enew;
– srcQ = (srcP ∪ (μ ◦ srcΥ ))|EQ and tgtQ = (tgtP ∪ (μ ◦ tgtΥ ))|EQ ;

– for all p ∈ NQ, labQ :
{

p �→ labP (p) if p �∈ Nnew,
p �→ m(labρ(p)) otherwise; and

– for all d ∈ EQ, labQ : d �→ emb( labQ(srcQ(d)), labQ(tgtQ(d)) ). �

As with simple graph transformations, we can satisfy the disjointness assump-
tions of the definition above by taking isomorphic copies of r and r′ and the result
of the transformation is the same, modulo isomorphism. It is easy to see that
Q is a concrete pattern graph and therefore its closure w.r.t. T is well-defined.
Figure 6 shows an example of a pattern graph transformation.
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Fig. 6. Example of a pattern graph transformation. (a) Pattern graph to be trans-
formed, with match of rule get shown in bold. (b) Resulting pattern graph, with ele-
ments added by the closure operation shown in bold.

We come now to the first major result of this paper: simple and pattern graph
transformations are equivalent.

Theorem 18 (transformation equivalence). Let G be a simple graph, r =
〈L, R〉 a simple graph rule, and r′ = 〈λ, ρ〉 an equivalent pattern graph rule.
1. If G −r→ H is a simple graph transformation then there is a pattern graph

transformation liftT (G) =r′
=⇒ Q with Q 
 liftT (H).

2. If liftT (G) =r′
=⇒ Q is a pattern graph transformation then there is a simple

graph transformation G −r→ H with Q 
 liftT (H). �

The equivalence between simple graph and pattern graph transformations is
used to show the equivalence between simple graph transition systems (sgts,
Definition 8) and pattern graph transition systems (pgts, defined below).

Definition 19 (pattern graph grammar). A pattern graph grammar PT =
〈RT , P0〉 has a set of pattern graph rules RT and an initial T -pattern graph P0.�

We say that a simple graph grammar G = 〈R, G0〉 and a pattern graph grammar
PT = 〈R′

T , P0〉 are equivalent if for any simple graph rule r ∈ R there exists an
equivalent pattern graph rule r′ ∈ R′

T , and vice versa; and P0 = liftT (G0).

Definition 20 (pgts). A pattern graph transition system PGTS = 〈S,⇒, ι〉
consists of a set of states S ⊆ PGraph, a set of rule applications ⇒ ⊆ S×PRule×
S, and an initial state ι ∈ S. Grammar PT generates a PGTSP if ι = P0 and
S is the minimal set of graphs such that P ∈ S and P =r⇒ Q for r ∈ RT implies
that there exists Q′ ∈ S such that Q 
 Q′ and P =r⇒ Q′ is a transition. �

We conclude this section with our second major result, which establishes the
relation between a sgts and a pgts generated by equivalent grammars.

Theorem 21. Let T be a pattern type graph, G a simple graph grammar and
PT a pattern graph grammar equivalent to G. Transition systems SGTSG and
PGTSP are isomorphic. �
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Isomorphism is a quite interesting result because it implies that satisfaction of
μ-calculus formulae (and thus also CTL*, CTL, and LTL formulae) are preserved
among the two systems. This in turn means that we can discard the sgts and
perform verification (model-checking) on the pattern graph level. However, a
pgts may still be infinite, effectively preventing its construction.

4 Pattern Shapes

Pattern graphs are abstracted into pattern shapes. As usual with structural ab-
straction, equivalent structures (patterns) are collapsed into an abstract rep-
resentative, while keeping an approximate count of the number of concrete
elements collapsed. We use ω to denote an upper bound on the set of natu-
ral numbers and we write Nω = N ∪ {ω}. A multiplicity is an element of set
M = {〈i, j〉 ∈ (N× Nω) | i ≤ j} that is used to represent an interval of consec-
utive values taken from Nω. Given 〈i, j〉 ∈ M, if i = j we write it as i and
if j = ω, we use i+ as short-hand. Multiplicity 1 is called concrete. Set M is
infinite, since i and j are taken from infinite sets. To ensure finiteness, we need
to define a bound of precision, which limits the possible values of i and j.

Definition 22 (bounded multiplicity). A bounded multiplicity is an element
of set Mb ⊂ M, defined, for a given bound b ∈ N, as Mb = {〈i, j〉 ∈ M | i ≤
b + 1, j ∈ {0, . . . ,b, ω}}. �
It is straightforward to define arithmetic operations and relations over multi-
plicities. For this paper, it suffices to consider (i) the subsumption relation �,
defined as 〈i, j〉 � 〈i′, j′〉 if i ≥ i′ and j ≤ j′, and (ii) relation ≤, defined as
〈i, j〉 ≤ 〈i′, j′〉 if j ≤ j′. Also, it is simple to define a function βb : M → Mb

that approximates multiplicities according to a bound b. Let M ⊂ M be a set
of multiplicities. We write

∑b
M to denote the bounded multiplicity sum over

elements of M , as a short-hand notation for βb(
∑

M). From here on we assume
the existence of two bounds, n, e ∈ N, called node and edge bounds, respectively.

Definition 23 (pattern shape). A pattern shape S is a pattern graph with
additional node and edge multiplicity functions, denoted multnS : NS →Mn and
multeS : ES →Me, respectively. �
Function multnS indicates how many concrete patterns were folded into an ab-
stract pattern node, up to bound n. Function multeS , on the other hand, counts
locally, i.e., it indicates how many edges of a certain type each of the concrete
nodes had, up to bound e. We write PShape to denote the universe of pattern
shapes and we consider multS = multnS∪multeS . Pattern graphs can be trivially ex-
tended to pattern shapes by associating multiplicity maps according to the kind
of pattern graph. For a pattern type graph T we associate the most abstract
multiplicity to all elements of T , i.e., multT (x) �→ 0+, for all x ∈ T . For any
other pattern graph P , its trivial extension is obtained by making multP (x) �→ 1,
for all x ∈ P . From here on, we consider that trivial extensions of pattern graphs
are taken when necessary. The distinct choice for multiplicities in pattern type
graphs is motivated by the definition below.
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Definition 24 (�-morphism). A �-morphism between pattern shapes X, Y ∈
PShape is a pattern graph morphism m : X → Y that relates multiplicities ac-
cording to relation �, i.e.,
– for all p′ ∈ NY ,

∑n
p∈m−1(p′) multnX(p) � multnY (p′); and

– for all d′ ∈ EY and all p ∈ NX ,
∑e

d∈C multeX(d) � multeY (d′), where C =
m−1(d′) ∩ p�X .

A pattern shape morphism is defined to be a ≤-morphism, and a �-morphism
is called a subsumption morphism. �

We write depth(S) to denote the maximum layer of pattern shape S that is not
empty, i.e., depth(S) = i ∈ N such that |N i

S | �= 0 and for all j > i, |N j
S | = 0.

Let A be a set and ≡ ⊆ A × A be an equivalence relation over A. For x ∈ A,
we write [x]≡ to denote the equivalence class of x induced by ≡, i.e., [x]≡ =
{y ∈ A | y ≡ x} and we write A/≡ to denote the set of equivalence classes in A,
i.e., A/≡ = {[x]≡ | x ∈ A}. For any C1, C2 ⊆ A, C1 ≡ C2 if for all x1 ∈ C1 there
exists x2 ∈ C2 such that x1 ≡ x2, and vice versa.

Definition 25 (pattern equivalence). Let S be a T -pattern shape and t : S→
T be the typing morphism. The pattern equivalence ≡ is defined as the smallest
symmetrical relation over NS × NS and ES × ES where
– for any p1, p2 ∈ NS, p1 ≡ p2 if t(p1) = t(p2) and for all C1 ∈ (p1�S)/≡,

there exists C2 ∈ (p2�S)/≡ such that C1 ≡ C2 and
∑e

d1∈C1
multeS(d1) =∑e

d2∈C2
multeS(d2); and

– for any d1, d2 ∈ ES, d1 ≡ d2 if t(d1) = t(d2) and tgtS(d1) ≡ tgtS(d2). �

The definition above implies that only nodes of the same layer can be equivalent,
and that equivalent nodes have the same number of outgoing edges of each type
into the same classes. Also, note that the second condition for node equivalence
is vacuously true for nodes in layer depth(S), which gives a base case for the
inductive definition. Given ≡ we can derive a finer relation � that groups edges
per source equivalence classes: d1 � d2 if d1 ≡ d2 and srcS(d1) ≡ srcS(d2).

Definition 26 (canonical pattern shape). Let X be a T -pattern shape and
let t : X → T be the typing morphism. The canonical pattern shape of X w.r.t.
equivalence relation ≡ is the pattern shape Y , where NY = NX/≡ and EY =
EX/�, and for all [p]≡ ∈ NY , p ∈ NX , [d]� ∈ EY and d ∈ EX :
– srcY : [d]� �→ [srcX(d)]≡ and tgtY : [d]� �→ [tgtX(d)]≡;
– labY : [p]≡ �→ labT (t(p)) and labY : [d]� �→ labT (t(d));
– multnY : [p]≡ �→ ∑n

p′∈[p]≡ multnX(p′); and
– multeY : [d]� �→ ∑e

d′∈C multeX(d′), where C = (srcX(d)�X) ∩ [d]�. �

In words, nodes and edges of canonical pattern shape Y are the equivalence
classes of X , the labelling of Y takes the type associated with each equivalence
class of X , and the multiplicities of Y are the bounded sum of the multiplicities
of elements in the equivalence classes of X . Let P be a pattern graph and S be
a pattern shape. We write abstract(P ) and normalise(S) to denote the canonical
pattern shape of P and S, respectively. Morphism α : P → abstract(P ) is called
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Fig. 7. Canonical pattern shape obtained when considering the pattern graph and
equivalence relation of Figure 4. Pattern edge morphisms are not explicitly shown.
Node multiplicities are given at the upper right corner of each pattern node. All edge
multiplicities are 1 and are not shown.

an abstraction morphism and morphism Ω : S → normalise(S) is called a nor-
malisation morphism. Both α and Ω are instances of subsumption morphisms.

Figure 7 shows an example of a canonical pattern shape. We use CanPShapen,e
T

to denote the universe of canonical shapes typable by T and bounded by n and e.
Our third major result follows, establishing finiteness of the abstract state space.

Theorem 27. Given a pattern type graph T and bounds n, e ∈ N, universe
CanPShapen,e

T is finite (under isomorphism). �

We now proceed to define how pattern shapes can be transformed by rules. Given
a pattern shape S and a set of pattern nodes N ′ ⊆ NS , let N ′

� = {q ∈ NS |
∃o ∈ NS , p ∈ N ′ : o ≤S p, o ≤S q} and E′

� = {d ∈ ES | srcS(d) ∈ N ′
�}. Pair

envS(N ′) = 〈N ′
�, E′

�〉 is called the environment of N ′ in S, i.e., the pattern
graph elements that can be affected by a pattern graph transformation matched
on N ′. Environment envS(N ′) can be trivially turned into a sub-graph of S.

Definition 28 (rule pre-match/match into pattern shapes). Let S be a
T -pattern shape and r = 〈λ, ρ〉 be a pattern graph rule. A pre-match of r into S
is a pattern shape morphism μ : λ → S. We call μ a match if envS(μ(Nλ)) is a
concrete pattern graph and for all x ∈ envS(μ(Nλ)), multS(x) = 1. �
Given a match, a concrete pattern shape transformation proceeds as a pattern
graph transformation on the environment sub-graph.

Definition 29 (concrete pattern shape transformation). Let X be a T -
pattern shape, r = 〈λ, ρ〉 be a pattern graph rule, μ : λ → X be a match of r
into X, X� = envX(μ(Nλ)) ⊆ X be the environment sub-graph of μ(Nλ) in X,
and let X� =r⇒ Y ′ be a pattern graph transformation. The result of a concrete
pattern shape transformation of X is the T -pattern shape Y , where
– NY = (NX \NX�)∪NY ′ and EY = {d ∈ EX | srcX(d), tgtX(d) ∈ NY }∪EY ′ ;
– srcY = (srcX ∪ srcY ′)|EY and tgtY = (tgtX ∪ tgtY ′)|EY ;
– labY = (labX ∪ labY ′)|(NY ∪EY ); and
– multnY = (multnX ∪ multnY ′)|NY and multeY = (multeX ∪ multeY ′)|EY . �
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We write X =r⇒ Y to denote a concrete pattern shape transformation, which we
can now use to define transformations for canonical pattern shapes.

Definition 30 (canonical pattern shape transformation). Given a canon-
ical T -pattern shape X, a rule r = 〈λ, ρ〉, and a pre-match μ : λ→X, let X ′ be a
T -pattern shape such that ΩX : X ′→X is a normalisation morphism, μ′ : λ→X ′

is a match of r into X ′, and μ = ΩX ◦μ′. The canonical pattern shape transfor-
mation of X is the canonical T -pattern shape Y , where X ′ =r⇒ Y ′ is a concrete
pattern shape transformation and ΩY : Y ′ → Y is a normalisation morphism.�

Pattern shape X ′ is called a materialisation of X according to pre-match μ. An
essential property is that a materialisation always exists, for any pre-match. We
write X �r Y to denote a canonical pattern shape transformation. Similarly
to what was done with simple graphs and pattern graphs, rule applications on
pattern shapes produce a pattern shape transition system (psts).

Definition 31 (psts). A pattern shape transition system PSTS = 〈S, �, ι〉
consists of a set of states S ⊆ CanPShapen,e

T , a set of rule applications � ⊆
S×PRule×S, and an initial state ι ∈ S. A pattern graph grammar PT = 〈RT , P0〉
generates a PSTSP if ι = abstract(P0) and S is the minimal set of canonical
pattern shapes such that X ∈ S and X �r Y for r ∈ RT implies that there
exists Y ′ ∈ S such that Y 
 Y ′ and X �r Y ′ is a transition. �

Our last result establishes the connection between concrete and abstract spaces.

Theorem 32. Transition system PSTSP simulates PGTSP . �

An immediate consequence of psts being an over-approximation is that verifi-
cation can then be carried out on the abstract domain, which is always finite.
As usual with over-approximations, if a property holds at the pattern shape
level then it is guaranteed to hold at the pattern graph level; however if a prop-
erty is false for pattern shapes then we cannot be sure that it is also false
for pattern graphs since the abstraction can introduce spurious behaviour [1].
The results at the pattern graph level transfer directly to simple graphs due to
Theorem 21.

5 Related Work

Perhaps the most well-known method for the verification of infinite-state GT
systems is the Petri graph unfolding technique, by König et al., initially presented
in [1]. Given a graph grammar this method extracts an approximated unfolding:
a finite structure (called Petri graph) that is composed of a hyper-graph and a
Petri net. The Petri graph captures all structure that can occur in the reachable
graphs of the system, and dependencies for rule applications are recorded by net
transitions. The structure obtained can then be used to check safety properties in
the original system. If a spurious counter-example is introduced, the abstraction
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can be incrementally refined [10]. These techniques are implemented in the tool
augur which is now in its second version [11].

The approaches presented in [19,17] use a backwards reachability analysis for
hyper-edge replacement grammars, where a search is started from a forbidden
graph configuration and traverses backwards trying to reach an initial graph.
This technique is applied to ad-hoc network routing and heap analysis, respec-
tively, but is not guaranteed to terminate. In [5], an invariant checking method is
developed for determining statically if a given forbidden pattern is an inductive
invariant of a given rule. States that may lead to a forbidden graph are described
symbolically, yielding a representation that is both complete and finite.

Our own take on GT abstractions was inspired by the seminal work on shape
analysis by Sagiv et al. [18] and lead to theoretical results on graph shapes [13,14].
A similar approach called partner abstraction was developed in parallel by Bauer
[2,4] and later these two approaches were unified in the framework of neigh-
bourhood abstraction [3]. In [15,20] we describe the implementation effort for
integrating neighbourhood abstraction into groove [12,8], our GT tool set.

The main advantage of pattern abstraction over neighbourhood abstraction is
the flexibility in specifying which structures should be collapsed. Precision of the
neighbourhood method can be adjusted via a radius parameter but this radius is
always the same when analysing the equivalence of nodes and edges. On the other
hand, the pattern-based method is much more fine-grained: patterns of various
sizes can be represented in the type graph, and are considered independently by
the abstraction. Roughly speaking, a radius i neighbourhood abstraction can be
simulated by a pattern abstraction using a type graph T with depth i, where all
possible simple graphs of size smaller or equal to i occur as patterns in T .

6 Conclusions and Future Work

This paper presented a new method for a property-driven abstraction of graphs,
based on a pre-defined collection of patterns of interest, represented as a pattern
type graph. Pattern-based abstraction leads to a finite over-approximation of
(infinite-state) graph transformation systems and as such the abstraction can
be used for system verification. Furthermore, the technique lends itself nicely to
abstraction refinement: one can start with a rather minimal type graph and then
add more patterns to it to make the abstraction more precise when necessary.

The theory here presented, while sound, still leaves certain steps under-
specified. In particular, the materialisation of canonical pattern shapes is of
importance, since it may have a significant influence on the size of abstract state
spaces. Based on our previous experience of implementing the theory of neigh-
bourhood abstraction, we defer the definition of a materialisation algorithm to
a later implementation phase, when a proper practical analysis of the trade-off
between performance and abstraction precision can be made.

An interesting side-effect of developing a theory of pattern graph transformation
is that structures used in incremental pattern matching like RETEnetworks [9] can
now also be formalised as pattern graphs. To the best of our knowledge, this is the
first time such structures were considered under a more formal focus.
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We plan to implement this new theory into groove, so that experiments can
be carried out to gauge how suitable the proposed abstraction is in practice.
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Abstract. Given a transition system and a partial order on its states,
the coverability problem is the question to decide whether a state can be
reached that is larger than some given state. For graphs, a typical such
partial order is the minor ordering, which allows to specify “bad graphs”
as those graphs having a given graph as a minor. Well-structuredness of
the transition system enables a finite representation of upward-closed sets
and gives rise to a backward search algorithm for deciding coverability.

It is known that graph tranformation systems without negative appli-
cation conditions form well-structured transition systems (WSTS) if the
minor ordering is used and certain condition on the rules are satisfied.
We study graph transformation systems with negative application condi-
tions and show under which conditions they are well-structured and are
hence amenable to a backwards search decision procedure for checking
coverability.

1 Introduction

Graph transformation systems (GTS) [17] are a Turing-complete model of com-
putation, which means that many properties of interest, especially concerning
reachability and coverability (“Is it possible to reach a graph that contains a
given graph as a subgraph?”) are undecidable. Naturally, one obtains decid-
ability of both problems when restricting to finite-state graph transformation
systems, i.e., systems where only finitely many graphs up to isomorphism are
reachable from a given start graph. However, similar to the case of Petri nets
[5], it is possible to obtain decidability results also for certain (restricted) classes
of infinite-state graph transformation systems [2]. This is important for many
applications, since systems with infinitely many states arise easily in practice.

A good source of decidability results for the coverability problem are so-called
well-structured transition systems [7,1]. They consist of a (usually infinite) set
of states, together with a transition relation and a well-quasi-order (see Defini-
tion 1), such that the well-quasi-order is a simulation relation for the transition
system. Standard place/transition nets can be seen as well-structured transi-
tion systems, furthermore systems with some degree of lossiness (such as lossy
channel systems, where channels might lose messages) are well-structured.
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Well-structuredness implies that every upward-closed set of states can be rep-
resented by a finite set of minimal states (this is a direct consequence of the
properties of a well-quasi-order). Under some additional conditions it is possible
to perform a backwards search in order to compute and represent (via minimal
states) all predecessors of an upward-closed set. This allows to answer coverabil-
ity questions algorithmically.

In [11,10] we have shown how (single-pushout) graph transformation systems
with edge contraction rules can be seen as well-structured transition systems.
As well-quasi-order we used the minor ordering on graphs, which is shown to be
a well-quasi-order in the famous Robertson-Seymour theorem [15,16].

However, the theory in [11] does not apply to graph transformation systems
with negative application conditions [8,4], which often arise in practice. Such
negative application conditions disallow the application of a rule if a certain
“forbidden” subgraph is present.

Here we study such graph transformation systems with negative application
conditions and show that they are well-structured under certain conditions (for
instance in the presence of deletion and contraction rules that arise naturally
in lossy systems). While this result is fairly straightforward to prove, it is more
difficult to perform a backwards step and hence obtain a decision algorithm.
We here give a general procedure for computing the predecessor set and show
that it terminates in specific cases, i.e., for certain types of negative application
conditions. We illustrate the theory with various examples, especially we study
a (faulty) termination detection protocol and apply the decision procedure to
the set of rewriting rules describing the protocol.

Proofs are published as a technical report [12].

2 Preliminaries

2.1 Well-Structured Transition Systems

We will now give the definitions concerning well-structured transition systems,
following the presentation in [7].

Definition 1 (wqo and upward closure). A quasi-order1 ≤ (over some set
X) is a well-quasi-order (wqo) if for any infinite sequence x0, x1, x2, . . . of ele-
ments of X, there exist indices i < j with xi ≤ xj.

An upward-closed set is any set I ⊆ X such that x ≤ y and x ∈ I implies
y ∈ I. A downward-closed set can be defined analogously.

For a subset Y ⊆ I, we define its upward closure ↑Y = {x | ∃y ∈ Y : y ≤ x}.
Then, a basis of an upward-closed set I is a set Ib such that I = ↑Ib.

The definition of well-quasi-orders gives rise to some properties which are espe-
cially important for the backwards algorithm presented later.

Lemma 1. Let ≤ be a well-quasi-order, then the following two statements hold:

1 Note that a quasi-order is the same as a preorder.
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1. Any upward-closed set I has a finite basis.
2. For any infinite, increasing sequence of upward-closed sets I0 ⊆ I1 ⊆ I2 ⊆ . . .

there exists an index k ∈ N such that Ii = Ii+1 for all i ≥ k.

Definition 2 (Well-structured transition system). A well-structured tran-
sition system (WSTS) is a transition system T = (S,⇒,≤), where S is a set of
states and ⇒ ⊆ S × S, such that the following conditions hold:

1. Well-quasi-ordering: ≤ is a well-quasi-order on S.
2. Compatibility: For all s1 ≤ t1 and a transition s1 ⇒

s2, there exists a sequence t1 ⇒∗ t2 of transitions such
that s2 ≤ t2.

t1 t2

≤ ≤

s1 s2

*

Given a set I ⊆ S of states we denote by Pred(I) the set of direct predecessors
of I, i.e., Pred(I) = {s ∈ S | ∃s′ ∈ I : s ⇒ s′}. Furthermore Pred∗(I) is the set
of all predecessors which can reach some state of I with an arbitrary sequence of
transitions. Let (S,⇒,≤) be a WSTS. Backward reachability analysis involves
the computation of Pred∗(I) as the limit of the sequence I0 ⊆ I1 ⊆ I2 ⊆ . . . where
I0 = I and In+1 = In ∪ Pred(In). However, in general this may not terminate.
For WSTS, if I is upward-closed then it can be shown that Pred∗(I) is also
upward-closed (compatibility condition) and that termination is guaranteed (see
Lemma 1).

Definition 3 (Effective pred-basis). A WSTS has an effective pred-basis if
there exists an algorithm accepting any state s ∈ S and returning pb(s), a finite
basis of ↑Pred(↑{s}).

Now assume that T is a WSTS with effective pred-basis. Pick a finite basis Ib

of I and define a sequence K0, K1, K2, . . . of sets with K0 = Ib and Kn+1 =
Kn ∪ pb(Kn). Let m be the first index such that ↑Km = ↑Km+1. Such an m
must exist by Lemma 1 and we have ↑Km = Pred∗(I).

The covering problem is to decide, given two states s and t, whether starting
from a state s it is possible to cover t, i.e. to reach a state t′ such that t′ ≥ t.
The decidability of the covering problem follows from the previous argument: we
define I = ↑{t} and check whether s ∈ Pred∗(I), i.e., if there exists a s ∈ Km

such that s ≤ s.

Theorem 1 (Covering problem [7]). The covering problem is decidable for
a WSTS with an effective pred-basis and a decidable wqo ≤.

Thus, if T is a WSTS satisfying the extra conditions of Theorem 1 and the
“error states” can be represented as an upward-closed set I, then it is decidable
whether any element of I is reachable from the start state.

2.2 Graph Transformation Systems

We will now introduce the necessary preliminaries in order to define
single-pushout (SPO) graph rewriting. Note that the minor relation used in
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the following admits a characterization via partial graph morphisms and hence
straightforwardly integrates with SPO, which is defined in the category of partial
morphisms. The concatenation of a rule and a minor morphism is again a rule.

Definition 4 (Hypergraph). Let Λ be a finite set of labels and a function
ar : Λ → N that assigns an arity to each label. A (Λ-)hypergraph is a tuple
(VG, EG, cG, lG) where VG is a finite set of nodes, EG is a finite set of edges,
cG : EG → V ∗G is a connection function and lG : EG → Λ is the labelling function
for edges. We require that |cG(e)| = ar (lG(e)) for each edge e ∈ EG.

We will simply use graph to denote a hypergraph. To simplify the necessary com-
putations we will only use hypergraphs with at most binary edges, i.e. |ar (�))| ≤
2 for all labels �. However note that large parts of the theory (except Proposi-
tion 2) can be extended to the general case.

Definition 5 (Graph morphism). Let G, G′ be (Λ-)graphs. A partial graph
morphism (or simply morphism) ϕ : G ⇀ G′ consists of a pair of partial func-
tions (ϕV : VG ⇀ VG′ , ϕE : EG ⇀ EG′) such that for every e ∈ EG it holds
that lG(e) = lG′(ϕE(e)) and ϕV (cG(e)) = cG′(ϕE(e)) whenever ϕE(e) is defined.
Furthermore if a morphism is defined on an edge, it must be defined on all nodes
adjacent to it. Total morphisms are denoted by an arrow of the form →.

We will now introduce the notion of (SPO) graph rewriting ([13]) with negative
application conditions.

Definition 6 (Graph rewriting). A rewriting rule is a partial morphism
r : L ⇀ R together with a finite set of negative application conditions. A neg-
ative application condition (NAC) is a total, injective morphism ni : L → Ni.
A match is a total, injective morphism m : L → G. We say that a match m
satisfies a NAC ni if there is no total, injective morphism n′i : Ni → G such that
n′i ◦ ni = m. A rule is applicable to a graph G if there is a match satisfying all
NACs.

For a pair of a rule r and a match m applicable to G, a rewriting step is
obtained by taking the pushout of m and r in the category of partial graph mor-

phisms. Then G is rewritten to the pushout object H (written as G
r,m⇒ H or

simply G ⇒ H).

In [11] so called conflict-free matches are used, which may be non-injective.
However, these matches cannot be used with our variant of negative application
conditions, since the NAC and its match to G are injective and can therefore
not commute with any non-injective match m. Note that any injective match is
also conflict-free.

In this paper a graph transformation system (GTS) is simply a finite set of
rules, not necessarily associated with an initial graph. For verification purposes
initial and final graphs can be used as shown in the example below.

Example 1. For the later illustration of a backward step and the backward search
algorithm, we introduce the following termination detection protocol as a run-
ning example. A similar protocol was used in [2] but without negative application
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DA

A

(a) A possible initial graph

(D)A

termination

(b) The final graph

Fig. 1. The protocols initial graph and it error configuration

conditions. For lossy systems this protocol is erroneous and we will show how
the backwards search will detect the error.

The protocol consists of normal processes which can be active (A) or passive
(P ) and a detector process which can be active (DA) or passive (DP ). The label
(D)A thereby stands both for an active detector and an active normal process
((D)P is used analogously). The initial graph is a directed circle with an active
detector and an active (normal) process (see Fig. 1a). Additional active processes
can be generated (Fig. 2d) and active processes may become passive (Fig. 2b).
When the detector becomes passive start and end flags are created and attached
to the corresponding detector (Fig. 2a). The end flag can be forwarded along
passive processes (Fig. 2e) and when the end flag was forwarded around the entire
ring to reach the detector again, a termination flag is created (Fig. 2f) stating
that all processes are passive. Any active process can reactivate a passive process
(Fig. 2c) if there is no start flag between them. This ensures that all processes
(including the detector) between the start and the end flag are passive. The
absence of the start flag is thereby ensured by a negative application condition,
which is indicated by the dashed edge.

Additionally there are rules simulating the lossiness of the system. Processes
can leave the ring (Fig. 2g, Fig. 2h) and flags can be lost (Fig. 2i, Fig. 2j). We
will later show that this GTS is well-structured.

The protocol is correct if and only if from the initial graph no graph can be
reached which contains the final graph (Fig. 1b), because this would mean that
a termination flag was generated although there still exists an active process.

2.3 Minors and Minor Morphisms

We will now introduce the notion of graph minor [15,16] and recall some results
from [11].

Definition 7 (Minor). A graph M is a minor of a graph G (written M ≤ G),
if M can be obtained from G by (repeatedly) performing the following operations
on G:

1. Contraction of an edge. In this case we remove the edge, choose an arbitrary
partition on the nodes connected to the edge and merge the nodes as specified
by the partition. (This includes edge deletion as a special case.)

2. Deletion of an isolated node.
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1 2
DA ⇒

1 2
DP

start end

(a) Deactivate the detector

1 2
A ⇒

1 2
P

(b) Deactivate a non-detector

1 2 3

(D)A

4

(D)P

start

⇒
1 2 3

(D)A

4

(D)A

(c) Activate processes

1 2

(D)A ⇒
1 2

(D)A A

(d) Create new processes
1 2

P

3

end

⇒
1 2

P

3

end

(e) Forward termination message

1 2
DP

3

end start

⇒
1 2

DP

3

termination

(f) Termination detection

1 2

(D)A ⇒
1,2

(g) Active process leaves

1 2

(D)P ⇒
1,2

(h) Passive process leaves

1

start/end

⇒
1

(i) start or end -message lost

termination ⇒
(j) termination flag lost

Fig. 2. The basic rules of a termination detection protocol with NACs

Note that since we restrict the arity of any edge to at most two, there is only
one possible partition if the arity is zero or one and only two possible partitions
if the arity is two (one of which coincides with edge deletion).

The Robertson-Seymour Theorem [15] says that the minor order is a well-
quasi-order even if the edges and vertices of the graphs are labelled from a well-
quasi-ordered set, and also for hypergraphs and directed graphs (see [10,16]).
Here we use the minor ordering presented in [11], but since we restrict the arity
of edges, the ordering is essentially the same as for directed graphs.

Now any GTS with negative application conditions which satisfies the com-
patibility condition of Definition 2 (with respect to the minor ordering), can
be analysed using the theory of WSTS. But before we characterize such GTS
we first need the definition of minor morphisms and their properties. A minor
morphism is a partial morphism that identifies a minor of a graph.
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Definition 8 (Minor morphism). A partial morphism μ : G ⇀ M is a minor
morphism (written μ : G �→ M) if

1. it is surjective,
2. it is injective on edges and
3. whenever μ(v) = μ(w) = z for some v, w ∈ VG and z ∈ VM , there exists a

path between v and w in G where all nodes on the path are mapped to z and
μ is undefined on every edge on the path.

For a minor morphism μ we define ‖μ‖ to be the number of nodes and edges on
which μ is undefined.

We call a minor morphism μ a one-step minor morphism if μ deletes exactly
one node or contracts or deletes exactly one edge, i.e. additionally to the above
restrictions it holds that either:

1. μ is injective, defined on all edges and defined on all but one node or
2. μ is defined on all nodes, defined on all but one edge and is injective on all

nodes not attached to the undefined edge.

In [16] a different way to characterize minors is proposed: a function, going in
the opposite direction, mapping nodes of M to subgraphs of G. This however
cannot be seen as a morphism in the sense of Definition 5 and we would have
problems integrating it properly into the theory of graph rewriting. However, in
[10] it is proven, that our minor ordering is a wqo and that the following facts
about minor morphisms hold.

Lemma 2 ([11]). The class of minor morphisms is closed under composition.

Lemma 3 ([11]). M is a minor of G iff there exists a minor morphism μ :
G �→ M .

Lemma 4 ([11]). Pushouts preserve minor morphisms in the following sense: If
f : G0 �→ G1 is a minor morphism and g : G0 → G2 is total, then the morphism
f ′ in the pushout diagram below is a minor morphism.

G0 G1

G2 G3

f

g g′

f ′

Note that Lemma 4 is also valid if g is not total and we require that f does not
contract any edge deleted by g. In the following we will also use this variant of
the lemma. Finally we need the following lemma, which is a weaker version of a
related lemma in [11].

Lemma 5 ([11]). Let ψ1 : L → G be total and injective. If the diagram below on
the left is a pushout and μ : H �→ S a minor morphism, then there exist minors
M and X of R and G respectively, such that:
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1. the diagram below on the right commutes and the outer square is a pushout.
2. the morphisms μG ◦ ψ1 : L → X and ϕ1 : M → S are total.

L R

G H

S

L R M

G H

SX

ψ2

ψ1 ψ′1
ψ′2

μ

ψ2 μR

ψ1 ψ′1

ϕ1
ψ′2

μG

ϕ2

μ

Furthermore we need the following additional properties.

Lemma 6 (Reordering of minor decompositions). Every minor morphism
μ can be decomposed into a finite sequence of one-step minor morphisms μi such
that μ = μ1 ◦ . . . ◦ μn and there are k, � with 1 ≤ k ≤ � ≤ n + 1 and

1. μi with 1 ≤ i < k is undefined on one node (node deletion),
2. μi with k ≤ i < � is undefined on one edge and not injective on nodes (edge

contraction) and
3. μi with � ≤ i < n + 1 is undefined on one edge and injective on nodes (edge

deletion).

3 Well-Structuredness and Negative Application
Conditions

One condition for the backwards algorithm to compute correct results is well-
structuredness. In the following proposition we formulate a rather general con-
dition for a GTS with negative application conditions which ensures that it is
well-structured with respect to the minor ordering. We have to ensure that when-
ever M ≤ G and a rule r : L ⇀ R can be applied to M , the same rule can be
applied to G. There are two problems that might disallow the rule application:
G might contain a disconnected copy of the left-hand side L (which must be
contracted to form a match of L in M) and G may contain more structure such
that a valid match of L in M might not satisfy the NACs when extended to G.
In both cases we ensure that G can be rewritten to G′ in which both problems
disappear.

Proposition 1. A GTS containing rules with negative application conditions is
well-structured wrt. the minor ordering if for every rule r : L ⇀ R with negative
application conditions ni : L → Ni and every minor morphism μ : G �→ M the
following holds: for every match m : L → M satisfying all NACs (indicated by
the crossed-out arrows), G can be rewritten to some graph G′ such that there is
a match m′ : L → G′ satisfying all NACs and a minor morphism μ′ : G′ �→ M
with m = μ′ ◦m′ (see diagram below).
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G L Ni

M

G L Ni

G′

M

μ m

ni

μ m

m′

μ′

*

ni

“Lossy systems” (such as the GTS of Example 1) usually already satisfy Propo-
sition 1 and other GTS can be transformed into GTS satisfying the conditions
by adding rules for lossiness. In general this is possible by introducing rules that
contract and deleted nodes and edges for every label (so called minor rules).
The contraction rules enable the simulation of edge contractions performed by
μ to generate a graph where the rule matches, while the deletion rules can be
used to destroy matches of negative application condition. In the latter case it is
sufficient to introduce rules which only delete edges that are associated with a
negative application condition, such as rules νe : N → N \ {e} for all edges e not
in the range of n : L → N . Note that any introduction of new rules will cause
the backward search to compute an overapproximation for the original GTS.

For the computation of the finite basis of Pred(S) we first introduce the notion
of edge decontraction and bounding functions.

Definition 9 (Edge decontraction). Let G be a graph. We define expand(G)
to be the set of all graphs G′ ≥ G such that there is an edge e in G′ and the
contraction of e results in a graph isomorphic to G.

Definition 10 (Bounding function). Let T be a GTS with rule set R and
let bTr : Matches → N0 be a function, where (r : L ⇀ R, N ) ∈ R is a rule
and Matches is the set of all matches m : L → G of r to some graph G, not
necessarily satisfying all NACs N . We call bTr a bounding function if every
minor morphism μ : G′ �→ G, where there is a match m′ : L → G′ satisfying all
NACs, can be decomposed into minor morphisms μ′ : G′ �→ M and μ′′ : M �→ G
satisfying the following properties:

1. μ = μ′′ ◦ μ′,
2. μ′ ◦m′ is a total, injective match of L in M and satisfies all NACs and
3. ‖μ′′ ‖ ≤ bTr (m).

The bounding function is used to calculate the maximal number of decontrac-
tions needed to compute a graph of the predecessor basis. The existence of such
a function guarantees termination of a backward step and we will prove its ex-
istence for special cases. In the following we will omit the superscript T , since
the GTS of interest is fixed.

We will now describe a procedure for computing an effective pred-basis (see
Definition 3). In essence, given a graph S, we have to apply a rule r : L ⇀ R
backwards. However, there are several complications, caused by the fact that
S does not simply stand for itself, but represents a whole set of graphs, the
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upward-closure of S (i.e., all graphs that have S as a minor). Hence we have to
consider the following facts:

– S might not contain an entire (co-)match of R, but it might represent graphs
that contain such matches. In order to solve this problem we do not simply
apply r backwards, but first compute all minors of R and look for matches
of those minors (see Step 2 below).

– Whenever, after doing a backwards step, we find that the resulting graph
X ′ contains a non-injective match of L, we do not discard X ′. Again, this is
because X ′ directly is not a predecessor, but it represents other graphs which
are predecessors of graphs represented by S. Those graphs can be obtained
by “forcing” the match to be injective via edge decontractions (Step 3).

– Finally, we have to solve the problem that the backwards step might result
in a graph X which may contain an injective match, but does not satisfy the
NACs. Similar to the case above, we have to find larger graphs represented
by X by edge decontractions such that the resulting graphs do satisfy the
NACs (Step 4).

The last item is more complex than the second-last: while we can bound the
number of steps needed to “make” a match injective via decontractions by the
number of nodes which are merged, this is not so easy in the case of NACs: by
decontractions we may destroy a NAC, but create a new one. Since we want to
represent upwards-closed sets wrt. a well-quasi-order, we can be sure that there
are finitely many representatives. However, when searching for them, we might
not know whether we have already found all of them. This is where the bounding
function of Definition 2 comes into play in order to terminate the search.

Procedure 1. Let T be a GTS with the rule set R satisfying the compatibility
condition, as described in Proposition 1. We assume that there is a bounding
function for every rule of T .

In the following we give a description of a procedure pbn(S) which generates a
finite basis for the set of graphs reaching a graph larger or equal to S in one step.
The first two steps are basically identical to the procedure presented in [11].

1. For each rule (r : L ⇀ R, N ) ∈ R, where N is the set of all negative
application conditions of r, let MR be the set of all minor morphisms with
source R. Furthermore let br be the bounding function of r.

2. For each (μ : R �→ M) ∈ MR consider the rule μ ◦ r : L ⇀ M and perform
the following steps.

3. For each total match m′′ : M → S compute all minimal pushout comple-
ments X ′ such that m′ : L → X ′ below is total and injective on edges.2

Then repeatedly apply the expand -function in order to split non-injectively
matched nodes and to obtain a basis for all graphs X , of which X ′ is a minor
and which contain an injective match of L (see diagram below).3

2 The term minimal is used with respect to the minor ordering. For more details
see [11].

3 Alternatively the graph can be partially enlarged before applying the rule backwards
to create an initial, injective match as explained in [2].
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L M

X ′ SX

μ ◦ r

m′ m′′

r′

m

4. For each such X compute every total, injective morphism nj
i : Ni → X of

any NAC (ni : L → Ni) ∈ N that commutes with the match. If there is none,
store X and proceed with the next X .
If there is at least one such morphism, compute expand(X). For each X ∈
expand(X) do the following:
– Let μ : X �→ X be the minor morphism that exists by Definition 9 and

Lemma 3.
– If there is no m : L → X , such that m = μ ◦m, i.e. the decontraction

destroyed the match, discard X .
– If there is a match m satisfying all NACs, store X and proceed with the

next X.
If none of the previous two conditions hold, repeat Step 4 with the graph X
and the match m. Stop the recursion after br(m) steps.4

5. The set pbn(S) contains all graphs X stored after the last repetition of the
previous step.

Example 2. To illustrate the handling of negative application conditions we ex-
emplarily apply rule 2c of our running example backward to the graph G in
Figure 3a (� indicates a backward step). In Step 3 of Procedure 1 among oth-
ers the graph H in Figure 3a is generated (μ is the identity), but the rule cannot
be applied (in forward direction) to H to reach G since the negative application
condition is not satisfied. Hence, in Step 4 the minimal set of graphs larger than
H has to be found which can be rewritten to some graph larger than G. All
eight resulting graphs are shown in Figure 3b. The “decontracted” edge in the
middle can point in both directions and be labeled A, P, DA or DP. All other
decontractions either destroy the match or do not destroy the match of the NAC,
which in both cases produces graphs where the rule is not applicable.

Additional graphs will be generated if different matches of the left-hand side
of rule 2c are used. For instance the graph in Figure 3c is generated (among
others) if only one of the A-edges is matched to the right A-edge of G. An
additional A-edge is created while generating an injective match. Note that the
last graph is immediately deleted since it is larger than G and therefore already
represented. A more comprehensive demonstration of backward steps is done in
Section 4.

We will now state our main theorems: especially we will show that every graph
generated by pbn(S) is in the predecessor set of the upwards-closure of S and
vice versa.

4 Note that applicability of the rule μ ◦ r does not depend on μ and hence we do not
need a bounding function bμ◦r.
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G:

A A

start

�2c
H :

A P

start

(a) First the left graph G is rewritten to H ignoring the NAC

A P

(D)A/(D)P

start

(b) Eight possible decontractions

A A P

start

(c) Another decontraction with a different match

Fig. 3. Backward step of rule 2c containing a negative application condition

c a b ⇒ a

Fig. 4. A simple rule with a NAC (the dashed part)

Theorem 2. The procedure pbn(S) (Procedure 1) computes a finite subset of
Pred(↑S).

Theorem 3. If there is a bounding function br for every rule r, the set generated
by pbn(S) is a finite basis of ↑Pred(↑S).

Theorem 3 depends on the existence of a bounding function. As we will illus-
trate later, bounding functions are non-trivial to obtain, but we have bounding
functions for specific negative application conditions.

Proposition 2. There is a bounding function for all rules if the corresponding
GTS satisfies the following properties:

1. ar(�) ≤ 2 for all labels � ∈ Λ and
2. for every negative application condition n : L → N the graph N has at most

one edge and two nodes in addition to n(L).

Example 3. In the general case the complexity of the bounding function can
grow with the complexity of the match and the NAC. In particular there are
rather simple NACs where decontractions cannot be discarded if they generate
new matches of a NAC. Figure 4 shows a rule together with a NAC (dashed
part of the graph). Assume the left graph in Figure 5 was generated by step 3
of the procedure. The two displayed decontractions lead to the right graph, but
the middle graph does not satisfy the NAC and there is no single decontraction
where the NAC is satisfied and the rightmost graph is represented.

Negative application conditions for arbitrary hypergraphs can therefore re-
quire a complex bounding functions.
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a b
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a b

Fig. 5. Graphs generated from left to right via decontractions
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termination A

DP start

end A

DA
end
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end

A

DA

P

end

A

DP

P

end

A

DA

P A

DA

A
A

DA

�2f �2a

�

2c

�2e�2c

�

2a

�2b �2d

Fig. 6. An exemplary sequence of backward steps

4 Verification of a Termination Detection Protocol

As already mentioned the termination detection protocol presented in Example 1
is erroneous for lossy systems. Note also that its NAC satisfies the restrictions of
Proposition 2 and can hence be analyzed automatically. One possibility to derive
(a minor of) the initial graph from the final graph is shown in Figure 6. This
derivation is found by the backward search within eight backward steps each
indicated by � (together with the used rule). The rules used in the first three
steps and the sixth step only partially match the graph, i.e. not the corresponding
rule r is applied backwards, but the rule μ ◦ r for some minor morphism μ (see
Step 2 of Procedure 1). For instance the minor morphism μ used in the first
step is injective and only undefined on the DP -edge, hence this edge is added
when the rule is applied backwards. In the second step the minor morphism is
undefined for the end flag, which is non-existent at the right place in the graph,
but it is not added, since the rule creates it when applied forward. In all other
steps (except the sixth) r is applied backwards directly, i.e. μ is the identity.

The most interesting step is the third, because rule 2c cannot be applied di-
rectly to the graph, since the match would be non-injective, but the rule can
be applied to some larger graphs which are represented by the given graph.
This backward step is shown in detail in Figure 7, where the diagram of Step 3
of the procedure is shown with the generated graphs. First the rule is applied
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2 1

3

A

DA

P

end
2 1,3P

DA
end

1 2 3
DA P

1 2 3
DA A

2 1,3A

DA
end

Fig. 7. The third backward step of the sequence in Fig. 6 in detail

backwards with a non-injective match replacing the A-edge with a P -edge, pro-
ducing another non-injective match. Since this is not a valid match in the sense
of Definition 6, the rule is not directly applicable and the node 1,3 has to be split
such that the match is injective. This is done by decontraction generating the
A-edge (which is just one possibility). The resulting graph is one of the graphs
represented by the previous graph, with the difference that the rule is applicable.

The other five steps are straightforward or similar to the first three. Note
that since in the last step a graph is reached which is smaller or equal to (in this
case isomorphic) the initial graph, the final state is coverable and the protocol
erroneous.

Note that, seen in the other direction, this is not quite a sequence of rewriting
steps of the GTS. Rather, by applying the rules in the forward direction, we
sometimes obtain a graph different from the one in the figure, but represented by
it. Still, following the sequence against the direction of the arrows, it is possible
to reconstruct why the error occurs in the protocol: after the detector first turns
passive, the start flag is lost. Then, the end flag as well as the activation zone
make their tour around the ring. Note that this is possible for the activation
zone since the start flag is no longer there to block rule applications. Then the
detector turns again passive and creates another start flag that reacts with the
end flag of the previous round, leading to an erroneous termination message.

5 Conclusion

We have shown how graph transformation systems with negative application
conditions can be viewed as well-structured transition systems. This is similar
to the case of lossy vector addition systems [3] where lossiness is used in a similar
way in order to deal with inhibiting conditions.

Furthermore we have described a generic backwards search decision procedure
and proved that it terminates in specific cases. Termination depends on the
existence of bounding functions and a question left open in this paper is to
prove their existence in the general case.

Once this problem is solved, it could be interesting to study also general nested
application conditions [14,9] and to check whether the results of this paper can
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be generalized. Furthermore we plan to look at other kinds of well-quasi-orders
for graphs, possibly for restricted sets of graphs (see [6]).

We also plan to extend an existing implementation to deal with negative
application conditions.
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Abstract. Graph transformation systems (GTS) have been proposed
for high-level stochastic modelling of dynamic systems and networks. The
resulting systems can be described as semi-Markov processes with graphs
as states and transformations as transitions. The operational semantics
of such processes can be explored through stochastic simulation. In this
paper, we develop the basic theory of stochastic graph transformation,
including generalisations of the Parallelism and Concurrency Theorems
and their application to computing the completion time of a concurrent
process.

1 Introduction

Stochastic graph transformation systems (SGTS) [4,12] support the integrated
modelling of structural reconfiguration and non-functional aspects such as per-
formance and reliability. An SGTS is a graph transformation system (GTS)
where each rule name is associated with a probability distribution governing the
delay of its application once a match has been found.

SGTSs have been used to model P2P networks, biochemical and cellular sys-
tems, as well as business processes. Typical questions to ask of such models
include quality-of-service properties, such as if in 90% of cases of submitting a
request, an answer will be received within two minutes. Such guarantees combine
a statement of a time interval for an event with the probability for the event to
happen within that interval. Properties like these can be verified by stochastic
model checking or simulation.

As an alternative to the “execution” of models or the generation and explicit
representation of their state space, we are interested in dealing with the stochas-
tic aspect symbolically. For example, if two processes are composed sequentially
and their individual durations are known, it is possible to compute the overall
duration. The theory of graph transformation knows a number of constructions
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on rules and transformations, such as embedded rules, specialised by additional
context, concurrent or parallel rules representing the execution of two or more
(independent) steps without observing intermediate states, etc. In each case, we
would like to give the distribution associated to the composed rule in terms of
the distributions of the components. Thereby, we have to make sure that an
application of the composed rule enjoys the same timing and probability as the
corresponding applications of its component rules.

In this paper, we start developing the corresponding theory of stochastic graph
transformation, investigating parallel and sequential compositions which allow
us to construct certain classes of concurrent processes. Graph transformations
are a natural choice for the modelling of concurrent processes where actions
have local causes and effects. Such a process is represented by a partial order or
equivalence class of sequences of transformations.

If we are interested in the completion time of a process, the symbolic approach
can be used to compute the distribution of the overall duration of the process
from the distributions of individual transformations. The problem turns out to
be that of determining the makespan for a stochastic scheduling problem given
by a set of tasks with stochastic durations and a partial order describing their
precedence [10]. Such problems can be solved efficiently for a class of processes
that are series-parallel, i.e., can be obtained by parallel and sequential composi-
tion. We solve the problem of approximating the delay of a graph transformation
process by representing it as a series-parallel composition of rules.

This is of theoretical interest because it provides us with the stochastic equiv-
alent of the basic notion of concurrent process of DPO graph transformation.
From a practical point of view, they provide a model of business processes with
concurrent actions, but deterministic outcomes. Being able to predict the likely
runtime of such processes, we can select the fastest on average or the one most
likely to finish by a certain deadline.

Example 1 (Business Process). As running example, we use a business process
that is a small and slightly simplified part of a loan granting process model used
in [1,5] based on a case study at Credit Suisse. The business process model de-
picted in Fig. 1 is specified as an event driven process chain (EPC) and contains
a sequence of 3 business functions (B1,B2,B3). Function B1 specifies the last
step of the customer interview, where the relationship manager (RM) identifies
the customer demand and stores this information in a data base (DB1). In the
second step, the rating application is used to calculate the rating and credit wor-
thiness of the customer (business function B2). For this purpose, the application
uses customer data (address and customer value) that were determined at the
beginning of the customer interview (not contained in Fig. 1). Finally, the third
step specifies that the credit advisor (CA) uses the price engine (PE) to create
an optimized product, which is again stored in a data base (DB1). This last step
requires that the customer demand (CD) as well as the credit worthiness of the
customer were determined in previous steps.
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Fig. 1. Business process (extended EPC diagram)

2 Preliminaries

In this section, we provide the necessary background on probability theory [3].
The delay of a rule application, between the time it is enabled by a match and
its application, is treated as a real-valued random variable v. This means that
v’s values are not known in advance, but they are known to fall into particular
real-valued intervals with certain probabilities described by a probability distri-
bution f : �+ → [0, 1]. From such a distribution we can compute a cumulative

distribution function F : �+ → [0, 1] by F (x) =
x∫
0

f(t)dt, whose value at each

real x is the probability that the value of the random variable is smaller than
or equal to x. Values for v can be chosen randomly based on the probability
distribution f . We denote such choice of a random number by v = RNF .

All graphs and computations in our example were computed and generated
with Wolfram Mathematica [8].

Example 2 (Distributions). To each business function (B1-B3) of our business
process model in Fig. 1, we assign a fictive, but realistic distribution as shown
in Fig. 2. All distributions f(v1) − f(v3) are given by log-normal distribution
functions with parameters (μi, σi) according to the table depicted in the figure.
Log-normal distributions are a typical model for response times of both humans
fulfilling a task [7] as well as servers or transaction systems [9]. Such a distribution
is characterized by a location parameter μ, representing the mean, and a scale
parameter σ, representing the standard deviation, on a logarithmized scale.

By inspecting the distribution functions in the diagram, we can observe the
following properties. Function f(v1) (customer interview) has a peak at app. 22
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Fig. 2. Distribution functions for completion times of variables v1, v2 and v3 (business
functions B1, B2, B3)

Fig. 3. Cumulative distribution functions for completion times of variables v1, v2 and
v3 (business functions B1, B2, B3)

minutes, function f(v2) (rating of the customer) peaks at 2 minutes and function
f(v3) (product optimization) at 4 minutes. Moreover, the variance of function
f(v2) is higher than the one of f3, because an external data base (DBSchufa) is
involved and may lead to delays. Naturally, the variance of f(v1) is much higher
than the other two, because it concerns the customer interview, i.e., commu-
nication between humans. The cumulative distributions F (v1) − F (v3) of our
example are depicted in Fig. 3 and are computed from the distribution functions
f(v1)− f(v3).

We will make use of the sum and the maximum of independent random variables
in order to derive the overall completion time of a process consisting of the se-
quential or concurrent composition of transformation steps. The corresponding
operations at the level of distributions are the convolution and product of dis-
tribution functions. Given distribution functions f1 and f2 associated with inde-

pendent real-valued random variables v1 and v2, f1∗f2(u) =
∞∫
−∞

f1(x)f2(u−x)dx

defines their convolution, i.e., the distribution function associated with the sum
v1 + v2. By definition, we obtain the cumulative distribution function

F1 ∗ F2(x) =
x∫
0

f1 ∗ f2(t)dt. The operation is commutative and associative,

which allows us to write the convolution of a set of distributions {F1, . . . , Fn}



100 R. Heckel et al.

as F1 ∗ · · · ∗ Fn or ∗i∈{1,...,n}Fi. The product F1 · F2 of cumulative distribution
functions, defined by F1 · F2(x) = F1(x) · F2(x), represents the cumulative dis-
tribution of the maximum max(v1, v2) of the independent random variables v1
and v2.

Example 3 (Unaccomplished Guarantee). Considering the example introduced in
Ex. 2, we can compute the completion time of a business process executing the
function B1, B2, B3 by the convolution FS = F (v1) ∗ F (v2) ∗ F (v3) as the sum
of the single processing times and derive the cumulative distribution function
FS shown in Fig. 3. In the present scenario, the required guarantee concerning
the completion time is given by F (40) ≥ 95%, i.e., in less than 5% of all cases,
the completion time may exceed the limit of 40 minutes. Note that the result
for FS (sequential execution) is FS(40) = 93.90% and thus, the required criteria
are not guaranteed.

3 Stochastic Graph Transformation Systems

In this section we first introduce the basic notions of stochastic graph transfor-
mation, including their operational semantics in terms of simulation. Then we
define the completion time of a timed run and show how the distribution of com-
pletion times of a set of timed runs sharing the same underlying transformation
sequence is derived from the delay distributions of the rules in the sequence.

A typed graph transformation system G = (T G, P, π) consists of a type graph
T G, a set of rule names P and a function π associating with each name p ∈ P

a span of injective T G-typed graph morphisms π(p) = (L
l←− K

r−→ R). The

application G
p,m
=⇒ H of rule p at a match m : L → G subject to the usual

gluing conditions is defined by a double-pushout construction. A stochastic graph
transformation system SG = (T G, P, π, F ) consists of a graph transformation
system G = (T G, P, π) and a function F : P → �+ → [0, 1] which associates
with all rule names in P cumulative probability distribution functions F (p) :
�+ → [0, 1].

Given a start graph G0, the behaviour of SG can be explored by simulation.
To this effect the simulation tool GrabS [12] has been developed, using the graph
transformation tool VIATRA [13] as its underlying engine to represent graphs,
find matches, and perform transformations. The simulation works as follows.

For a graph G, events in G are defined by E(G) = {(p, m) | p ∈ P ∧ π(p) =
L ← K → R ∧ ∃m : L → G satisfying p’s gluing conditions}, i.e., each event is
an enabled rule match. States (G, t, s) of the simulation are given by the current
graph G, the simulation time t, and the schedule s : E(G)→ �+ mapping events
to their scheduled times.

1. Initially, the current graph is the start graph G = G0, the time is set to t = 0
and the scheduled time s(p, m) = RNF (p) for each enabled event (p, m) is
selected randomly based on p′s probability distribution.

2. For each simulation step
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(a) the first event e = (p, m) is identified, i.e., such that for all events e′,
s(e) ≤ s(e′). Rule p applied at match m to the current graph G produces

the new current graph H , i.e., G
p,m
=⇒ H

(b) the simulation time is advanced to t = s(e)
(c) the new schedule s′, based on the updated set of enabled events E(H),

is defined for all (p′, n′) ∈ E(H) with π(p′) = L′ ← K ′ → R′ in the
diagram below as
– s′(p′, n′) = s(p′, n), if (p′, n) ∈ E(G) and there exists a morphism

k : L′ → D with l∗ ◦ k = n, such that n′ = r∗ ◦ k;
– s′(p′, n′) = t + RNF (p′), otherwise.

L

m ��

K
l�� r ��

��

R

m∗��
G D

l∗�� r∗ �� H

L′
n

������������
k

�	����� n′
	


K ′
l′�� r′ �� R′

The result is a (simulation) run r = (G0
p1,m1,t1
=⇒ · · · pn,mn,tn

=⇒ Gn), i.e., a trans-
formation sequence where steps are labelled by time stamps t1, . . . , tn ∈ �+ with
ti < ti+1 for all i ∈ {1, . . . , n− 1}. We call ct(r) = tn the completion time of the
run.

Our simulation algorithm represents an optimal strategy for executing runs in
SG, in the sense that every step is performed as early as possible: The stochastic
delay begins as soon as the rule is enabled by the match, and it is applied precisely
when that time has passed. This is described more abstractly as follows.

– A step Gi−1
pi,mi
=⇒ Gi has an enabling time et(i) and an application time

at(i), but no duration.
– The enabling time is the point at which match mi comes to exist, either

at the start of the run (et(i) = 0), or by the application of an earlier step

Gj−1
pj ,mj
=⇒ Gj with j < i, in which case et(i) = at(j). In the latter case, that

step j will be the last step that step i depends on in the sequence.
– The delay delay(i) = at(i)− et(i) of step i is a random variable governed by

the distribution function F (pi).

Given a start graph G0, we say that run r follows sequence s if they both start in
G0 and contain the same steps (rules and matches) in the same order. Formally,
a run following a sequence of n steps extends s by an ordered vector r̄ ∈ (�+)

n

of time stamps.
We can imagine the entire behaviour of the underlying GTS G with start graph

G0 to be given by a transition system with states as graphs and transitions given
by transformation steps labelled by rule-match pairs. A transformation sequence
s starting in G0 is a path in this transition system. The probability for a run in SG
starting in G0 to follow a particular path s is thus determined by the probability
of choosing the “right” outgoing transitions from each state on the path. For
this to happen, the transformation corresponding to the desired transition needs
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Fig. 4. Derived operational rules for dependency analysis (for business functions B1,
B2, B3)

Fig. 5. Transformation sequence according to the business process model

to be the next on the schedule. The probability for that depends on the delay
distribution of the respective rules. We denote the probability for a run in SG
starting in G0 to follow a particular sequence s by P rob(r follows s).

Example 4 (Generated Transformation System). In order to analyse and improve
the business process in Fig. 1, we generate a corresponding transformation sys-
tem according to [5]. Each business function corresponds to a graph transforma-
tion rule. In our example, we derive the three rules in Fig. 4 specifying the three
business functions B1-B3. The left hand sides of the rules contain the data ele-
ments that are read by the business function from their corresponding resources
and they contain the involved actors. Each rule (p1-p3) creates a node for its
corresponding business function (B1-B3), the data elements that are created by
it and edges from the actors who execute the business function.

The transformation sequence in Fig. 5 shows the three transformation steps
via rules p1-p3 in the same order as in the given business process model in Fig. 1.
Matches are given by naming.
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Fixing SG and G0, the completion time distribution of all runs following sequence
s (briefly completion time distribution of s) is defined as the function ctd(s) :
R+ → [0, 1] assigning each positive real number x the conditional probability
for a run to complete within time x if the run follows s.

ctd(s)(x) = P rob{ct(r) ≤ x | run r follows s}

For a transformation sequence s = (G0
r1,m1
=⇒ · · · rn,mn

=⇒ Gn) we find its completion
time distribution by first identifying the critical steps of the sequence, i.e., the
chain of latest steps required before the next step is enabled, and then adding
up the individual delays of these steps.

Definition 1 (enabling steps). Assume a sequence s = (G0
p1,m1
=⇒ · · · pn,mn

=⇒
Gn) in SG. We write j � k if step Gj−1

pj ,mj
=⇒ Gj enables Gk−1

pk,mk
=⇒ Gk, that

is, in the diagram below there exists nk with h◦nk = mk such that g◦nk satisfies
pk’s gluing condition, and there is no nj with r∗j ◦ nj = g ◦ nk such that l∗j ◦ nj

satisfied pk’s gluing condition.

Lj

mj

��

Kj

lj�� rj ��

��

Rj

m∗j
��

Lk

mk

��
nk
��
�


���
�

nj

������
����

����
����

����
� Kk

lk�� rk ��

��

Rk

m∗k
��

Gj−1 Dj

l∗j��
r∗j

�� Gj D
g�� h �� Gk−1 Dk

l∗k
�� r∗k �� Gk

The span Gj
g←− D

h−→ Gk−1 represents the derived span, i.e. the composi-

tion via pullbacks of the sequence of transformation spans of steps Gj
pj+1,mj+1

=⇒
· · · pk−1,mk−1

=⇒ Gk−1.

That means, step pk is applicable to Gj , but not to Gj−1, at a match compatible
with mk. Gj is therefore the first graph enabling an event (namely (pk, g ◦ nk))
evolving into (pk, mk). Therefore, step k is scheduled when step j is performed,
and the delay of step k spans the interval [at(j) = et(k), at(k)]. The following
proposition decomposes a run into consecutive intervals, so that the sum of their
delays makes up the overall completion time.

Proposition 1 (completion time distribution). Assume a non-empty se-

quence s = (G0
p1,m1
=⇒ · · · pn,mn

=⇒ Gn) in SG. The set of critical steps CS(s) ⊆
{1, . . . , n} of s is the smallest subset of step indices such that

– n ∈ CS(s) and

– for all k ∈ CS(s) and j ≤ k with j � k, also j ∈ CS(s).

The completion time distribution of runs following s is given by

ctd(s) = ∗i∈CS(s)F (pi)
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Proof. By induction on the cardinality of CS(s): If the final step n is enabled
in G0, CS(s) = {n}. In this case, the completion time ct(r) of a run following s
equals the delay at(n)− et(n) of the last step, while the (shorter) delays of steps
1 . . . n− 1 are irrelevant because they are contained in the delay of step n.

If s = (G0
p1,m1
=⇒ · · · pk,mk

=⇒ Gk
pk+1,mk+1

=⇒ · · · pn,mn
=⇒ Gn) such that k � n,

CS(s) = {n} ∪ CS(s1k) with s1k = G0
p1,m1
=⇒ · · · pk,mk

=⇒ Gk. In this case, ct(r) =
ct(r1k) + ct(rkn) where r1k; rkn is the decomposition of r into runs following s1k
and the remainder sequence skn.

Given a run r following s, the overall time is thus obtained by decomposing
the sequence into intervals [et(i), at(i)]i∈CS(s). The intervals are consecutive,
i.e., if j is the smallest index in CS(s) larger than i, at(i) = et(j). Due to the
construction of CS(s) the smallest index has enabling time 0 while the largest
has application time at(n). Thus, the completion time of a run r following s is
given by

ct(r) =
∑

i∈CS(s)

at(i)− et(i)

By definition, ct(r) is a random variable distributed according to ctd(s). Since
the random variables representing the delays are independent, the convolution
of their distributions F (pi) provides the distribution of the sum of all intervals,
making up the completion time distribution.

Example 5 (Completion time distribution of a run). The dependencies between
the three steps in the graph transformation sequence s = (G0 =

p1,m1
===⇒ G1 =

p2,m2
===⇒

G2 =
p3,m3
===⇒ G3) in Fig. 5 are 1 � 3 and 2 � 3, because both steps 1 and 2 are

necessary for the enabling of step 3. These dependencies can be computed as
presented in [1] based on Mathematica, but also using the dependency analysis
of the tool AGG [11] using the extended type graph according to [1].

Since steps 1 and 2 are independent, the simulation will tend to execute the
rule with the smaller delay first, depending on the concrete values RNF (v1)

and RNF (v2) for a certain run. This means that a run r follows the sequence

s = (G0 =
p1,m1
===⇒ G1 =

p2,m2
===⇒ G2 =

p3,m3
===⇒ G3) if RNF (v1) ≤ RNF (v2). In this

case we derive the set CS(s) = {2, 3} of critical steps and ct(r) = F (v2) ∗
F (v3). Otherwise, if RNF (v1) ≥ RNF (v2), the run r will follow the sequence

s′ = (G0 =
p2,m

′
2===⇒ G′1 =

p1,m
′
1===⇒ G2 =

p3,m3
===⇒ G3) and the set CS(s′) = {1, 3} of

critical steps leads to ct(r) = F (v1) ∗ F (v3). That means, completion times can
be different for the two runs, even if they are shift equivalent.

In our model, steps have delays but no duration. A sequence can show apparent
concurrency when delays overlap, even if the actual steps are strictly sequential.
In the next section we consider parallelism and concurrency of steps in the
traditional sense.
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4 Parallelism and Concurrency

Much of the basic theory of algebraic graph transformation follows a common
pattern. In order to describe a structured notion of transformation, a compo-
sition operation op on rules is introduced such that applications of composed
rules represent op-structured transformations. For example, with op = +, par-
allel rules are defined, leading to parallel transformations. A corresponding the-
oretical result defines a relation ser : (op G)∗ → P(G∗) where G∗ denotes the
set of transformation sequences of G and (op G)∗ is the set of sequences of
op-structured rules. For example, each parallel transformation sequence can be
serialised into several sequential sequences. Often, it is possible to characterise
the codomain of this serialisation, giving rise to a precise correspondence be-
tween op-structured and suitable sequential derivations. For example, parallel
steps are in correspondence with sequentially independent two-step sequences.

We will exploit this idea to extend the definition of completion time from
sequential to structured (i.e., parallel and concurrent transformations), and then
ask for a characterisation of completion time distributions of complex steps in
terms of those of their components. The delay distribution of composed rules
will be defined accordingly. The approach is illustrated in the diagram below.
The completion time distribution for an op-structured transformation sequence
d is defined by ctd(d) =def ctd(ser(d)) where ser(d) is the set of sequential
transformations related to d and ctd is extended to sets of sequences S by

ctd(S)(x) = P rob{ct(r) ≤ x | run r follows a sequence s ∈ S}

G∗

ctd

��

(op G)∗ser��

cdt����
���

���

[0, 1]�

Below, we consider this situation for parallel rules and transformations. Let the
parallel rule for rules p1 and p2 be given by p1+p2, with π(p1+p2) = π(p1)+π(p2)

the parallel span obtained by componentwise coproduct, and s = (G
p1+p2,m
=⇒

H) denote the corresponding parallel step. A parallel sequence is a sequence of
sequential and parallel transformation steps. Extending the sequential case, we
say that a run r follows a parallel sequence d if there exists a sequence s obtained
by replacing parallel steps in d by their corresponding serialisations, such that
r follows s. Accordingly, the notion of completion time distribution carries over
to (runs following) parallel sequences.

Proposition 2 (Parallelism). The completion time of a parallel step d =

(G
p1+p2,m
=⇒ H) is distributed according to the product ctd(d) = F (p1) · F (p2)

of the distribution functions for the delays of p1 and p2. Therefore, the cu-
mulative distribution function for the delay of the parallel rule is defined by
F (p1 + p2) = F (p1) · F (p2).
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Proof. If r is a run following (either of the two serialisations s1 and s2 of) d, then
its completion time ct(r) is given by the greater of the delays d1 and d2 scheduled
for p1 and p2, i.e., ct(r) = max(d1, d2). These delays are distributed according
to F (p1) and F (p2), respectively. The product F (p1) · F (p2) of the distribution
functions represents the distribution of the maximum of these delays.

For rules p1 and p2 with a specified overlap of the right-hand side R1 with the
left-hand side L2 we build their concurrent rule [2], intuitively, as sequential
composition of p1 and p2.

Definition 2 (Concurrent rule). Assume a dependency relation R1
e1−→ E

e2←−
L2 between rules p1 : L1 ← K1 → R1 and p2 : L2 ← K2 → R2 as shown in
the diagram below, such that e1 satisfies the gluing condition of the inverse rule
p−11 : R1 ← K1 → L1 and e2 that of p2. The concurrent rule p1 �e1,e2 p2 : L ←
K → R is constructed as follows. First the reduction of graph E to the image
E′ of R1 and L2 in E is defined via the coproduct R1 + L2 and the epi-mono
factorisation i◦e of the unique morphism into E that commutes with the coprod-
uct injections i1, i2 and morphisms e1 and e2. Second, applying the inverse rule
p−11 : R1 ← K1 → L1 to m∗1 = e ◦ i1 and rule p2 to m2 = e ◦ i2, we construct

the double pushout diagrams representing transformations L
p1,m1
=⇒ E′

p2,m2
=⇒ R.

Extracting K, r∗, l∗ as pullback of r∗1 and l∗2, the concurrent rule is given by

p1 �e1,e2 p2 : L
l∗1◦r

∗
←− K

r∗2◦l
∗

−→ R.

L1

m1

��

K1
l1�� r1 ��

��

R1

m∗1
		

�		

i1 ��

e1

��

R1 + L2

e��

L2

m2





��




i2��

e2

��

K2
l2�� r2 ��

��

R2

m∗2

��

E′

i��
L D′1

l∗1��
r∗1

���������������
E D′2

l∗2

��������������� r∗2 �� R

K

l∗
���������������

r∗
���������������

Rule p1 �e1,e2 p2 is called sequentially independent if the two DPO diagrams
representing its construction form a sequentially independent transformation se-

quence L
p1,m1
=⇒ E′

p2,m2
=⇒ R, that is, there exist morphisms k1 : R1 → D′2 such

that l∗2 ◦ k1 = m∗1 and k2 : L2 → D′1 such that r∗1 ◦ k2 = m2. If p1 �e1,e2 p2 is not
sequentially independent, we write p1;e1,e2 p2.

The rule is disjoint if e1(R1) ∩ e2(L2) = ∅, in which case we write p1 + p2.

The definition is slightly non-standard in the sense that it allows graph E to be
larger than necessary for the dependency relation to be expressed. Therefore, a
reduction step is needed to cut out the unnecessary context in E, leaving only
the union of the images of R1 and L2. After that the construction proceeds as
usual. The variation is required due to Def. 4 in the following section where graph
E will be fixed while, in a composition of rules p1 and p2, p1 may be replaced
by a subrule p′1. While composing p1 and p2, E may represent a union of p1’s
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right- and p2’s left-hand side, but this won’t be true of the composition of p′1
and p2. In such a case we manipulate the embeddings explicitly, e.g., replacing
in p1 �e1,e2 p2, rule p1 by p′1 : L′1 ← K ′1 → R′1 with j1 : R′1 → R1, we write
p′1 �e1◦j1,e2 p2.

If p1 �e1,e2 p2 is independent it is possible to replace its applications by ap-
plications of p1 + p2 at a match identifying the parts where the rules overlap
in (e1, e2). Thus, concurrent rules and transformations subsume parallel ones,
and we can limit ourselves to considering two cases: non-independent concurrent
rules representing sequential composition and disjoint concurrent rules repre-
senting parallel composition.

The Concurrency Theorem [2] states that steps G
p1�e1,e2p2,m

=⇒ H using concur-
rent rules are in one-to-one correspondence with so-called e1, e2-related trans-

formation sequences s1 = (G
p1,m1
=⇒ G1

p2,m2
=⇒ H), where the overlap between p1

and p2 in G1 conforms to the dependency relation e1, e2.
A concurrent sequence is a sequence of (possibly concurrent) transformation

steps. We say that a run r follows a concurrent sequence d if there exists a
sequence s obtained by substituting concurrent steps in d by their corresponding
sequences, such that r follows s. The notion of completion time distribution
carries over to (runs following) concurrent sequences.

Proposition 3 (Concurrency). Let d = (G
p1�e1,e2p2,m

=⇒ H) be a transforma-

tion using the concurrent rule and s1 = (G
p1,m1
=⇒ G1

p2,m2
=⇒ H) be the corre-

sponding (e1, e2)-related transformation sequence according to the Concurrency
Theorem. If s1 is not sequentially independent, ctd(d) = F (p1)∗F (p2), otherwise
ctd(d) = F (p1) · F (p2).

Therefore, if p1 �e1,e2 p2 is sequentially independent, the cumulative distribu-
tion function for the concurrent rule is defined by F (p1 �e1,e2 p2) = F (p1) ·F (p2),
otherwise it is defined by F (p1 �e1,e2 p2) = F (p1) ∗ F (p2).

Proof. First, observe that (e1, e2)-related transformation sequence s1 is sequen-
tially independent if and only if p1 �e1,e2 p2 is sequentially independent. There-
fore, if the concurrent rule is independent, s1 is an independent sequence and
by Prop. 2 this implies that ctd(d) = F (p1) · F (p2). Otherwise, it follows from
Prop. 1 that ctd(d) = F (p1) ∗ F (p2).

5 Series-Parallel Transformations

Using the results of the previous section, we should be able to determine the
completion time of derivations formed by sequential and/or parallel composition
of basic steps. We first introduce a notion of series-parallel rule and then study
the conditions under which the completion time distributions calculated via their
structure match the actual distributions of corresponding derivations.

Definition 3 (series-parallel rules and derivations). Assuming SG = (T G,
P, π, F ) and a T G-typed graph E, series-parallel (sp) rule expressions over E are
defined by
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c ::= p | c;e1,e2 c | c + c

where p ∈ P and c represent basic and composed rules, respectively, and e1, e2
are morphisms into E. The mappings π and F are extended inductively from P .

1. For π(ci) = Li ← Ki → Ri, e1 : R1 → E and e2 : L2 → E, such
that c1;e1,e2 c2 is not sequentially independent, we define π(c1;e1,e2 c2) =
π(c1) �e1,e2 π(c2) and F (c1;e1,e2 c2) = F (c1) ∗ F (c2).

2. π(c1 + c2) = π(c1) + π(c2) and F (c1 + c2) = F (c1) · F (c2)

A series-parallel (sp) rule is a rule expression with rule span c : π(c). A series-
parallel (sp) derivation is a sequence of steps using sp rules.

Let d = G
c,m
=⇒ H be an sp transformation. If c = c1;e1,e2 c2 or c = c1 + c2,

ser(d) = {s1s2 | si ∈ ser(di) where d1d2 is a serialisation of d.}

Note that, due to clause 1 above, π and F are only partially defined, i.e., there
are rule expressions which, in the context of a given stochastic GTS, do not give
rise to rules. If π(c) is defined, we call c a well-formed rule expression.

Serialisation of sp transformations is defined in terms of the serialisation of
parallel and (non-independent) concurrent transformations. It is well-defined be-
cause serialisations have the same start and end graphs of the original sequence.
Note that in the parallel case, d has two serialisations d1d2, up to isomorphism,
whereas in the concurrent case there is just one e1, e2-dependent derivation d1d2.

A run r follows an sp sequence d if it follows any sequence s obtained by
serialising d. The notion of completion time distribution carries over to (runs
following) sp sequences.

The distribution of an sp rule implies an execution strategy where, whenever
a sequential composition c1;e1,e2 c2 is encountered, all components of c1 have
to finish before any components of c2 are scheduled. This is consistent with
the behaviour of serialisations if each parallel component following a sequential
composition ;e1,e2 depends (directly or indirectly) on all parallel components
before ;e1,e2 . If this is the case, c1;e1,e2 c2 allows an exact characterisation of
completion time distribution by F (c1) ∗ F (c2).

Definition 4 (strongly dependent series parallel rules). We distinguish
the class of strongly dependent sp rules by defining it inductively, following the
structure of their rule expressions. When referring to a rule expression, we as-
sume that it is well-formed, otherwise the corresponding clause is not applicable.

1. basic rule names p and their sequential compositions p1;e1,e2 p2 are strongly
dependent;

2. c1 + c2 is strongly dependent if both c1 and c2 are;
3. c;e1,e2 (c1+c2) is strongly dependent if c;e1,e2◦j1 c1 and c;e1,e2◦j2 c2 are, where

ji : Li → L1 + L2 are the coproduct injections;
4. (c1+c2);e1,e2 c is strongly dependent if c1;e1◦j1,e2 c and c2;e1◦j2,e2 c are, where

ji : Ri → R1 + R2 are the coproduct injections;
5. (c1;e1,e2 c2);e′2,e′3 c3 is strongly dependent if c1;e1,e2 c2 and c2;e′2◦m∗2,e′3 c3 are,

where m∗2 is the morphism mapping the right-hand side of c2 into that of
c1;e1,e2 c2 (cf. Def. 2);
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Fig. 6. Cumulative distribution functions for completion times of transformation se-
quence s = (G0 =

p1,m1===⇒ G1 =
p2,m2===⇒ G2 =

p3,m3===⇒ G3)

6. c1;e1,e2 (c2;e′2,e′3 c3) is strongly dependent if c1;e1,e2◦m1 c2 and c2;e′2,e′3 c3 are,
where m1 is the morphism mapping the left-hand side of c2 into that of
c2;e′2,e′3 c3 (cf. Def. 2);

Proposition 4 (series-parallel composition). If transformation d = (G
c,m
=⇒

H) is using an sp rule c, ctd(d) ≤ F (c). If c is strongly dependent, ctd(d) = F (c).

Proof. By induction on the structure of rule expressions c we prove the stronger
statement for the strongly dependent case first. If c = p is basic, ctd(d) = F (p)
by Prop. 1. For the induction step, if c = c1;e1,e2 c2, then F (c) = F (c1;e1,e2 c2) =
F (c1)∗F (c2). Assuming ctd(di) = F (ci) we have to show that ctd(d) = ctd(d1)∗
ctd(d2) for e1, e2-related transformations d1d2 corresponding to d. Serialisations
of d are concatenations of serialisations s1s2 of d1d2 and the completion time
distribution of an sp sequence is defined via the completion time distributions of
its serialisations. For these we have ctd(s1s2) = ctd(s1) ∗ ctd(s2) because strong
dependency implies that no step of s2 is enabled before the last step of s1. If
c = c1 + c2, then F (c) = F (c1 + c2) = F (c1) · F (c2) = ctd(d), by the same
reasoning as in Prop. 3.

If c is not strongly dependent, a step of s2 could be enabled before the last
step of s1, leading for the completions times of runs of s1 and s2 to overlap, thus
leading to ctd(s1s2) ≤ ctd(s1)∗ctd(s2) and therefore ctd(d) ≤ ctd(d1)∗ctd(d2) =
F (c1) ∗ F (c2) = F (c).

Example 6 (Completion time distributions of a run with series parallel rule).
According to Prop. 4 we derive an sp rule c from the transformation sequence
s = (G0 =

p1,m1
===⇒ G1 =

p2,m2
===⇒ G2 =

p3,m3
===⇒ G3), where steps 1 and 2 are combined

via parallel composition, because the steps are independent. The completion time

distribution FSP for the corresponding run d = (G0
c,m
=⇒ G3) is shown in Fig. 6.

Concerning the given deadline of 40 minutes, we derive FSP (40) = 98.7% and
thus, the given requirement is met. In particular, we have that FSP (37) = 96.3%,
i.e., there is even a buffer of 3 minutes. This means that we have not only found
these business functions that can be executed in parallel, but have also proven
that in this case the time constraints are guaranteed.
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6 Conclusion

We extended the parallel and sequential composition of rules to stochastic graph
transformations and used them to characterise the overall completion time of a
series-parallel process. We would like to explore in more detail the relation of our
approach with stochastic scheduling theory [10], using the causal order of a pro-
cess to derive a series-parallel over-approximation by adding new dependencies.
This would provide an upper bound to the CTD analogous to Prop. 4.
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Abstract. There are three major algebraic approaches to graph trans-
formation, namely the double-pushout (DPO), single-pushout (SPO),
and sesqui-pushout approach (SqPO). In this paper, we present a frame-
work that generalises all three approaches. The central issue is a gluing
construction, which is a generalisation of the construction introduced in
[14]. It has pushout-like properties wrt. composition and decomposition,
which allow to reestablish major parts of the theory for the algebraic ap-
proaches on a general level. We investigate parallel independence here.

1 Introduction and Preliminaries

There are three algebraic frameworks for graph transformation, namely the
double-pushout (DPO) [6], single-pushout (SPO) [12,13,1], and sesqui-pushout
approach (SqPO) [3]. In all approaches, a transformation rule t is represented by
a span t = L

l← K
r→ R of morphisms in a basic category. A match m for a rule

t = L
l← K

r→ R in a host graph G is also similar in all three approaches, namely
a morphism L

m→ G. The notion of direct derivation, however, is different.
In this paper, we show that all three concepts of direct derivation can be

understood as special cases of a single gluing construction of pairs of spans. As
a basis, we use the gluing construction introduced in [14], which was already
able to model DPO, SPO at conflict-free matches, and both variants of SqPO
presented in [3]. The refined version of this gluing of spans is presented in section
2. In section 3, we show that SPO is a special case of the new framework. Section
4 demonstrates that the refined gluing possesses pushout-like composition and
decomposition properties1. These properties can serve as a basis for a general
theory for a broad variety of new rewriting mechanisms. Section 5 presents one
example, namely a refined version of contextual graph rewriting, compare [14].
Section 5 also demonstrates the conceptual power of the new framework by a
proof of a general local Church-Rosser theorem.

Due to space limitations the paper does not contain the proofs for all propos-
itions and theorems. The missing proofs are contained in [15].

In the following we assume for the underlying category G:
1 Composition is already known, see [14]. Decomposition is new.

H. Ehrig et al.(Eds.): ICGT 2012, LNCS 7562, pp. 111–125, 2012.
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(G1) G has all limits of small diagrams2.
(G2) G has all finite colimits.
(G3) All pullback functors in G possess a right adjoint.

Given a morphism m : A → B in the category G, m∗ : G ↓ B → G ↓ A denotes
the pullback functor and m∗ : G ↓ A → G ↓ B its right-adjoint. The co-unit of
m∗ for t ∈ G ↓ A is denoted by εm

t : m∗(m∗(t)) → t. Note the following facts
about this adjunction:

Proposition 1. (Properties of the pullback functor and its right-adjoint)
(a) If an object t ∈ G ↓ A is monic, m∗(t), m∗(m∗(t)), and εm

t are monic.
(b) If t is isomorphism in G ↓ A , m∗(t), m∗(m∗(t)), εm

t are isomorphisms.
(c) If m is monic, the co-unit εm

t is monic for all t ∈ G ↓ A.
(d) If f is monomorphism in G ↓ A , m∗(f) and m∗(m∗(f)) are monic.

A concrete span in G is a pair of G-morphisms (p, q) such that domain(p) =
domain(q). A concrete span (p, q) is a relation if p and q are jointly monic.3 Two
spans (p1, q1) and (p2, q2) are equivalent and denote the same abstract span if
there is an isomorphism i such that p1 ◦ i = p2 and q1 ◦ i = q2; in this case
we write (p1, q1) ≡ (p2, q2) and [(p, q)]≡ for the whole class of spans that are
equivalent to (p, q). The category of abstract spans S(G) over G has the same
objects as G and equivalence classes of spans wrt. ≡ as arrows. The identities
are defined by idS(G)

A = [(idA, idA)]≡ and composition of two spans [(p, q)]≡
and [(r, s)]≡ such that codomain(q) = codomain(r) is given by [(r, s)]≡ ◦S(G)

[(p, q)]≡ = [(p ◦ r′, s ◦ q′)]≡ where (r′, q′) is a pullback of the pair (q, r).

2 The Refined Gluing Construction

Definition 2. (Gluing construction) The central construction in this paper is
depicted in Figure 1. Let (l, r) and (p, q) be two spans such that the codomain of
l and p coincide:
1. Construct (l0, p0) as the pullback of (l, p).
2. Let p′1 = r∗(p0), (p1, r1) be the pullback of (r, p′1), i. e. p1 = r∗(r∗(p0)), and

u0 = εr
p0

satisfying p0 ◦ u0 = p1 the corresponding co-unit. The co-unit u0

will also be called v0 in the following.
3. Symmetrically, let l′1 = q∗(l0), (l1, q1) be the pullback of (q, l′1),i. e. l1 =

q∗(q∗(l0)), and v0 = εq
l0

satisfying l0 ◦ v0 = l1 the corresponding co-unit. The
co-unit v0 will also be called u0 in the following.

4. Iterate the following process for i ≥ 1:

2 A diagram is small, if its collection of objects and its collection of morphisms are
both (possibly infinite) sets.

3 We do not need the category of relations in the following. Therefore, we do not define
composition on relations. In this paper, being a relation is just a property of a span.
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Fig. 1. Refined gluing construction

(a) Let v′i = r∗(ui−1) and vi = r∗(v′i).
[This implies that (i) p′

i+1 := r∗(p0◦u0 . . .◦ui−1), (ii) (pi+1, ri+1) is the pullback
of (r, p′

i+1), i. e. pi+1 = r∗(r∗(p0 ◦ u0 . . . ◦ ui−1)), (iii) ri ◦ vi = v′
i ◦ ri+1 and

pi ◦ vi = pi+1, (iv) there is the co-unit ui = εr
p0◦...◦ui−1 satisfying (p0 ◦ u0 . . . ◦

ui−1) ◦ ui = pi+1, and (v) ui−1 ◦ ui = ui−1 ◦ vi, since vi = r∗(r∗(ui−1)).]
(b) Symmetrically, let u′

i = q∗(vi−1) and ui = q∗(u′
i).

[This implies that (vi) l′i+1 := q∗(l0 ◦ v0 . . . ◦ vi−1), (vii) (li+1, qi+1) is the
pullback of (r, q′i+1), i. e. li+1 = r∗(r∗(l0 ◦v0 . . .◦vi−1)), (viii) qi ◦ui = u′

i ◦qi+1

and li ◦ui = li+1 (ix) there is the co-unit vi = εr
l0◦...◦vi−1

satisfying (l0 ◦v0 . . .◦
vi−1) ◦ vi = li+1, and (x) vi−1 ◦ vi = vi−1 ◦ ui, since ui = q∗(q∗(vi−1)).]

5. Construct (C, (cr
i )i∈N0 , (c

q
i )i∈N0) as the limit of the double chain (vi, ui)i∈N0 ,

such that cr
0 = cq

0 and for all i ∈ N cr
i−1 = vi−1 ◦ cr

i and cq
i−1 = ui−1 ◦ cq

i . In
the following cr

0 = cq
0 is also called c0. Construct (D, (di)i∈N) as the limit of

the chain (v′i)i∈N with (v′i ◦ di+1 = di)i∈N, and (E , (ei)i∈N) as the limit of the
chain (u′

i)i∈N with (u′
i ◦ ei+1 = ei)i∈N.
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6. Since we have for all i ∈ N: ri ◦ cr
i = ri ◦ vi ◦ cr

i+1 = v′i ◦ ri+1 ◦ cr
i+1 and

qi ◦ cq
i = qi ◦ui ◦ cq

i+1 = u′
i ◦ qi+1 ◦ cq

i+1, (ri ◦ cr
i )i∈N and (qi ◦ cq

i )i∈N are cones
for (v′i)i∈N resp. (u′

i)i∈N. Thus, we obtain r∞ : C → D and q∞ : C → E with
(di ◦ r∞ = ri ◦ cr

i )i∈N resp. (ei ◦ q∞ = qi ◦ cq
i )i∈N.

7. Construct (q′, r′) as the pushout of (r∞, q∞).
8. Set p := p0 ◦ c0, l := l0 ◦ c0, p′ := p′1 ◦ d1, and l′ := l′1 ◦ e1.

The pair of spans ((l′, r′), (p′, q′)) is the gluing of (l, r) and (p, q). A gluing is
bounded if c0 is monomorphisms. ��
Note that the refined gluing construction above coincides with the one in [14] in
the special case that u0 and v0 are isomorphisms, compare also [3].

Proposition 3. (Commutative diagram in S(G)) In the gluing construction
above, (p, r∞) is pullback of (r, p′) and (l, q∞) is pullback of (q, l′). This means
that the gluing construction provides a commutative diagram in the category of
spans, i. e. (p′, q′) ◦ (l, r) = (l′, r′) ◦ (p, q).

The result of the refined gluing construction possesses properties that are com-
parable to the properties of the gluing construction in [14].

Proposition 4. (Mediating triple) The gluing construction has the following
property: Given a tuple of morphisms (x′, x, k, y′, y, h) such that (i) l◦x′ = p◦y′,
(ii) (x′, k) is the pullback of (r, x), and (iii) (y′, h) is the pullback of (q, y), then
there is a triple of morphisms (g, yq, xr) such that p◦g = x′, l◦g = y′, p′◦xr = x,
xr ◦ k = r∞ ◦ g, l′ ◦ yq = y, and yq ◦ h = q∞ ◦ g.

The mediating triple of Proposition 4 is not unique in the general case.

Proposition 5. (Unique mediating triple) The triple in Proposition 4 is unique
if the gluing is bounded.

This means that (p, p′, r∞, l, l′, q∞) is final among all comparable 6-tuples in the
bounded case. Thus, the gluing produces a “final triple diagram” in the sense of
[17].

Proposition 6. (Bounded) Let ((l′, r′), (p′, q′)) be the gluing of ((l, r), (p, q)):
(a) If l and p are monic, then l, p, l′, and p′ are monic and the gluing is bounded.
(b) If r and q are monic, the gluing is bounded.
(c) If p and q are monic, the gluing is bounded and p and p′ are monic.

3 Gluing of Partial and Co-partial Morphisms

An abstract span [(p, q)]≡ in G is a partial morphism if p is a monomorphism.
Note that the identity spans are partial morphisms and that the span com-
position of partial morphisms yields a partial morphism again, since pullbacks
preserve monic arrows. We denote the subcategory of S(G) which consists of all
abstract partial morphisms by P (G).



Refined Graph Rewriting in Span-Categories 115

Fig. 2. Pushout/pullback cube

Definition 7. (Hereditary pushout) A pushout (q′, p′) of (p, q) in G is hered-
itary if for each commutative cube as in Figure 2, which has pullback squares
(pi, i0) and (qi, i0) of (i2, p) resp. (i1, q) as back faces such that i1 and i2 are
monomorphisms, the top square (q′i, p

′
i) is pushout of (pi, qi) if and only if the

front faces (p′i, i1) and (q′i, i2) are pullbacks of (i3, p′) resp. (i3, q′) and morphism
i3 is monic.4

Theorem 8. (Pushout of partial morphisms) Given a category G with hereditary
pushouts, the gluing ((l′, r′), (p′, q′)) of partial morphisms (l, r) and (p, q) is the
pushout of (l, r) and (p, q) in P (G).

Proof. Commutativity of the resulting diagram is guaranteed by Proposition 3.
That (l′, r′) and (p′, q′) are partial morphisms and the fact that the gluing is
bounded is provided by Proposition 6(a).

Now suppose (p∗, q∗) ◦ (l, r) = (l∗, r∗) ◦ (p, q). Then we obtain the situation
depicted in Figure 3, where (p′′, r′′) is pullback of (r, p∗), (l′′, q′′) is pullback
of (q, l∗), l ◦ p′′ = p ◦ l′′, and q∗ ◦ r′′ = r∗ ◦ q′′. Due to Proposition 5, there
are unique morphisms x1, x2, and x3 such that the resulting diagram commutes.
These morphisms are monic since p′′ resp. l′′, p∗, and l∗ are. Now construct (q, r)
as the pushout of (r′′, q′′). Since q′◦x2◦r′′ = q′◦r∞◦x1 = r′◦q∞◦x1 = r′◦x3◦q′′,
there is x4 with x4 ◦q = q′ ◦x2 and x4 ◦r = r′ ◦x3. Since q∗ ◦r′′ = r∗ ◦q′′, there is
x5 with x5 ◦ q = q∗ and x5 ◦ r = r∗. Since the pushout (q′, r′) is hereditary, x4 is
a monomorphism, (x2, q) is pullback of (q′, x4), and (x3, r) is pullback of (r′, x4).
Thus, (x4, x5) is a mediating partial morphism with (x4, x5) ◦ (p′, q′) = (p∗, q∗)
and (x4, x5) ◦ (l′, r′) = (l∗, r∗).

It remains to show that the mediating partial morphism is unique. Sup-
pose there are two mediating partial morphisms (x4, x5) and (x′

4, x
′
5), such that

(x4, x5) ◦ (p′, q′) = (p∗, q∗) = (x′
4, x

′
5) ◦ (p′, q′) and (x4, x5) ◦ (l′, r′) = (l∗, r∗) =

(x′
4, x

′
5) ◦ (l′, r′). Then we obtain the situation depicted in Figure 4: (x2, q1),

(x′
2, q2), (x3, r1), and (x′

3, r2) are pullbacks and we have the isomorphisms i and
j with (i) p′ ◦x2 ◦ i = p′ ◦ x′

2, (ii) x5 ◦ q1 ◦ i = x′
5 ◦ q2, (iii) l′ ◦x3 ◦ j = l′ ◦x′

3, and
(iv) x5 ◦ r1 ◦ j = x′

5 ◦ r2. Since p′ and l′ are monomorphisms, we can conclude
(i’) x2 ◦ i = x′

2 and (iii’) x3 ◦ j = x′
3

Since (p◦x1, r
′′
1 ) is pullback of (r, p′◦x2) and (p◦x′

1, r
′′
2 ) is pullback of (r, p′◦x′

2),
we get an isomorphism i′ with (v) r′′1 ◦ i′ = i ◦ r′′2 and (vi) p ◦ x1 ◦ i′ = p ◦ x′

1.
4 For details on hereditary pushouts see [9].



116 M. Löwe

Fig. 3. Mediating span

Similar arguments provide an isomorphism j′ with (vii) q′′1 ◦ j′ = j ◦ q′′2 and
(viii) l◦x1◦j′ = l◦x′

1. From (vi) and (viii) we get l◦p◦x1◦i′ = l◦p◦x′
1 = p◦l◦x′

1 =
p ◦ l ◦ x1 ◦ j′ = l ◦ p ◦ x1 ◦ j′. Since l, and p ◦ x1 are monomorphisms, (ix) i′ = j′.
Since pushouts are hereditary, we know that (x) (q1, r1) and (xi) (q2, r2) are

pushouts of (r′′1 , q′′1 ) resp. (r′′2 , q′′2 ). Now we have q1 ◦ i ◦ r′′2
(v)
= q1 ◦ r′′1 ◦ i′

(x)
=

r1 ◦ q′′1 ◦ i′
(ix)
= r1 ◦ q′′1 ◦ j′

(vii)
= r1 ◦ j ◦ q′′2 . Thus, there is k with (xii) k ◦ q2 = q1◦i

and (xiii) k ◦ r2 = r1◦j. A symmetric argument provides the inverse for k,
which, thereby, turns out to be an isomorphism. That x5 ◦ k = x′

5, follows from

x5 ◦ k ◦ r2
(xiii)
= x5 ◦ r1 ◦ j

(iv)
= x′

5 ◦ r2 and x5 ◦ k ◦ q2

(xii)
= x5 ◦ q1 ◦ i

(ii)
= x′

5 ◦ q2; and

x4 ◦ k = x′
4 is implied by x4 ◦ k ◦ q2

(xii)
= x4 ◦ q1 ◦ i = q′ ◦ x2 ◦ i

(i’)
= q′ ◦x′

2 = x′
4 ◦ q2

and x4◦k◦r2
(xiii)
= x4◦r1◦j = r′◦x3◦i

(iii’)
= r′◦x′

3 = x′
4◦r2. ��

Note that the refined gluing construction of partial morphisms is an exact model
of single-pushout rewriting with a rule (l, r) at a conflict-free or a conflicting
match (p, q), compare [13]. At the same time, it is also a generalisation of sesqui-
pushout rewriting with monic left-hand sides in rules at conflict-free matches [3].
In both cases p is not only a monomorphism but an isomorphism. Conflict-
freeness can be reformulated here by the requirement that v0 is a isomorphism
in Figure 1. Theorem 8 shows that the direct derivation in this variant of the
sesqui-pushout approach is a pushout of spans.

There are other restrictions of the general span category in which the gluing
construction turns out to be pushout: An abstract span [(p, q)]≡ in G is a co-
partial morphism if q is a monomorphism. The identity spans are co-partial
morphisms and composition is closed within co-partial morphisms. C(G) denotes
the subcategory of S(G) which contains all abstract co-partial morphisms.
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Fig. 4. Unique mediating span

Definition 9. (Van-Kampen pushout) A pushout (q′, p′) of (p, q) in G is a van-
Kampen diagram if for each commutative cube as in Figure 2, which has pullback
squares (pi, i0) and (qi, i0) of (i2, p) resp. (i1, q) as back faces, the top square
(q′i, p

′
i) is pushout of (pi, qi) if and only if the front faces (p′i, i1) and (q′i, i2) are

pullbacks of (i3, p′) resp. (i3, q′). A pushout is a semi-van-Kampen diagram if it
satisfies only the if-part of the property above.

Note that, due to requirement G3, each pushout in the underlying category pos-
sesses the semi-van-Kampen property, compare “stability” in [16].

Theorem 10. (Pushout of co-partial morphisms) Given a category G in which
(i) pushouts preserve monomorphisms and (ii) pushouts of monic morphisms are
van-Kampen, the gluing ((l′, r′), (p′, q′)) of co-partial morphisms (l, r) and (p, q)
is the pushout of (l, r) and (p, q) in C(G).

4 Gluing Beyond Partial Morphisms

The constructions within the proof of Theorem 8, that the gluing construction
of definition 2, or a suitable specialisation, can be characterised by universal
properties in a more general set-up. We investigate these properties here: The
construction of the mediating morphism is always possible if the pushout of the
gluing is van-Kampen. Uniqueness requires a bounded gluing and two additional
ingredients, compare Figure 4:

1. The implication (∗) x5◦q1◦r′′1 ◦i′ = x5◦q1◦r′′1 ◦j′ =⇒ q1◦r′′1 ◦i′ = q1◦r′′1 ◦j′,
provides an isomorphism k with x5 ◦k = x′

5. (∗) is guaranteed if x5 is monic.
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2. If x1 ◦ i′ = x′
1 and x1 ◦ j′ = x′

1 is given, we obtain by the properties of
bounded gluings that x2 ◦ i = x′

2 and x3 ◦ j = x′
3. This provides the second

half of the required property of k, namely x4 ◦ k = x′
4.

The formalisation of the first requirement is the contents of the rest of the section.

Definition 11. (Semi-pushout) A co-span B
h−→ D

k←− C is a semi-pushout
of the span B

f←− A
g−→ C if (i) h ◦ f = k ◦ g and (ii) the mediating morphism

u : P → D from the pushout B
g′
−→ P

f ′
←− C of (f, g) to D is a monomorphism.

Note that every pushout is a semi-pushout by definition. Semi-pushouts are the
necessary tool for an abstract definition of a gluing with “good” properties:

Definition 12. (Span semi-pushout and perfect gluing) A span semi-pushout
of ((l, r), (p, q)) is a pair of spans ((l′, r′), (p′, q′)) such that (i) (l′, r′) ◦ (p, q) =
(p′, q′)◦(l, r), and (ii’) (r′, q′) is semi-pushout. A perfect gluing for ((l, r), (p, q))
is a span semi-pushout ((l′, r′), (p′, q′)), such that (ii) (r′, q′) is pushout and
(iii) for any span semi-pushout ((p∗, q∗), (l∗, r∗)) of ((l, r), (p, q)), there is a
unique span (x, y) with (x, y) ◦ (l′, r′) = (l∗, r∗) and (x, y) ◦ (p′, q′) = (p∗, q∗).

Corollary 13. Perfect gluings are unique up to isomorphism, if they exist.

In the rest of this section, we show that perfect gluings can be composed and
decomposed like pushouts. As a prerequisite for this, we need that semi-pushouts
themselves can be composed and decomposed like pushouts.

Proposition 14. (Composition and decomposition of semi-pushouts) In a cat-
egory where pushouts preserve monomorphisms the following holds: (i) If (c, d)
is semi-pushout of (a, b) and (g, f) is semi-pushout of (d, e), then (f ◦ c, g) is
semi-pushout of (a, e ◦ b), compare left part of Figure 5. (ii) If (c, d) is pushout
of (a, b) and (f ◦ c, g) is semi-pushout of (a, e ◦ b), then (g, f) is semi-pushout of
(d, e), compare right part of Figure 5.

Proposition 15. Let a category be given in which pushouts preserve mono-
morphisms: If (i) (l′, r′) ◦ (n, m) = (n′, m′) ◦ (l, r), (ii) (p′, q′) ◦ (n′, m′) =
(n′′, m′′)◦(p, q), (iii) (l◦x, q◦y) = (p, q)◦(l, r), (iv) (l′◦h, q′◦k) = (p′, q′)◦(l′, r′),
and (v) (r′, m′) is pushout, then (m′′, q′) is pushout or semi-pushout, if and only
if (q′ ◦ k, m′′) is pushout resp. semi-pushout, compare Figure 6.

Proof. In Figure 6, let (r∞, n) and (m∞, l) be the two pullbacks for (i) such
that n ◦ l = l ◦ n and (r′, m′) is pushout of (r∞, m∞). Let (q∞, n′) and (m′

∞, p)
be the two pullbacks for (ii) such that n′ ◦ p = p ◦ n′ and m′′ ◦ q∞ = q′ ◦ m′∞.
Let (f, g) be the pullback of (r∞, p) and v and w the mediating morphisms
that make the whole diagram commute. Then (f, w) is pullback of (m∞, h),
since (h, k) and (f, m′∞ ◦ g) are pullbacks. Symmetrically, (v, g) is pullback
of (y, n′). Thus (v, q∞ ◦ g) and (w, l ◦ f) are the two pullbacks representing
(n′′, m′′)◦((p, q) ◦ (l, r)) = ((p′, q′) ◦ (l′, r′))◦(n, m). The semi-van-Kampen prop-
erty guarantees that (k, m′

∞) is pushout of (w, g).
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Fig. 6. Composition and decomposition of perfect gluings (Diagram)

“⇐=”: (q′, m′′) is pushout or semi-pushout of (m′∞, q∞). The composition
property of pushouts resp. semi-pushouts (compare Proposition 14) provides
that (q′ ◦ k, m′′) is pushout resp. semi-pushout.

“=⇒”: (q′ ◦ k, m′′) is pushout or semi-pushout and (k, m′∞) is pushout. The
decomposition property of pushouts/semi-pushouts (Proposition 14) guarantees
that (q′, m′′) is pushout/semi-pushout of (m′∞, q∞). ��
The definition of span semi-pushouts implies:

Corollary 16. (Inheritance of span semi-pushouts) If a pair of spans (u, v) is
a span semi-pushout for the span pair (f, h ◦ g), i. e. v ◦ f = u ◦ (h ◦ g), then
(u ◦ h, v) is a span semi-pushout for (f, g).

Proposition 17. (Composition of perfect gluings) If (f ′, g′) is a perfect gluing
of (f, g) (subdiagram (1a) in Figure 7) and (f ′′, h′) is a perfect gluing of (f ′, h)
(subdiagram (2a) in Figure 7), then (f ′′, h′ ◦ g′) is a perfect gluing of (f, h ◦ g)
((1a)+(2a) in Figure 7).

Proof. We have to proof the properties (i) - (iii) of definition 12. Commutativity
is obvious. Property (ii) follows from Proposition 15. It remains to show the
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universal property (iii). Let (x, y) be a span semi-pushout for (f, h ◦ g). Then
(x◦h, y) is a span semi-pushout of (f, g) by Corollary 16. Thus, there is a unique
span u with u ◦ g′ = y and u ◦ f ′ = x ◦ h. Since (x, y) is span semi-pushout and
(1a) is perfect gluing, (x, u) is span semi-pushout for (h, f ′) by Proposition 15.
Thus, we get unique v with v ◦h′ = u and v ◦ f ′′ = x. This v is a mediating span
from (f ′′, h′ ◦ g′) to (x, y). Suppose v′ with v′ ◦ f ′′ = x and v′ ◦ h′ ◦ g′ = y. Then
v′ ◦h′ ◦ f ′ ◦ g = v′ ◦ f ′′ ◦h◦ g = x◦h◦ g = y ◦ f . Thus by the uniqueness property
of (1a), we get v′ ◦ h′ = u. Now the uniqueness property of (2a) implies v = v′.

Proposition 18. (Decomposition of perfect gluings) Let a commutative dia-
gram (1b)+(2b) as in Figure 7 be given: If (n′, m′) is perfect gluing of (n, m)
( (1b) in Figure 7) and (n′′, p′ ◦m′) is perfect gluing of (n, p ◦m) ( (1b)+(2b) in
Figure 7) then (n′′, p′) is perfect gluing of (n′, p) ( (2b) in Figure 7).

Proof. Commutativity is given. Proposition 15 guarantees the pushout property.
If (x, y) is a span semi-pushout for (n′, p), then (x, y◦m′) is a span semi-pushout
for (n, p ◦ m) by Proposition 15. Therefore, there is unique w with w ◦ n′′ = x
and w ◦ (p′ ◦m′) = y ◦m′. Since (x, y ◦m′) is a span semi-pushout for (n, p ◦m),
(x◦p, y◦m′) is a span semi-pushout for (n, m) by Corollary 16 providing w◦p′ = y.
Any other w′ with w′ ◦n′′ = x and w′ ◦p′ = y has also the property w′ ◦p′ ◦m′ =
y ◦ m′. Since (1b)+(2b) is perfect gluing w = w′. ��
Here is the first instance of pairs of spans that possess a perfect gluing.

Theorem 19. (Gluing of a relation with a monic span) Given a category where
(i) pushouts preserve monomorphisms and (ii) all pushouts along monomorph-
isms are van-Kampen, the gluing (definition 2) of a relation (l, r) and a pair of
monomorphisms (p, q) is a perfect gluing.

Note that the gluing of a relation and a monic span is a model for sesqui-pushout
rewriting with a rule (l, r) at a monic match (p, q) [3], namely for the special case,
where p and v0 (compare Figure 1) are isomorphisms. Theorem 19 shows that
direct derivations in this type of SqPO-rewriting have pushout-like properties.



Refined Graph Rewriting in Span-Categories 121

5 Gluing of Graphs

The gluing construction and its theory developed above can be used as a general
framework for algebraic graph transformation in the category of graphs:

Definition 20. (Category of graphs) A graph G = (V ; E; s, t : E → V ) consists
of a set of vertices V , a set of edges E, and two total mappings s and t assigning
the source and target vertex to every edge. A graph morphism f : G → H = (fV :
VG → VH , fE : EG :→ EH) is a pair of total mappings such that fV ◦sG = sH◦fE

and fV ◦ tG = tH ◦ fE. All graphs and graph morphisms with component-wise
composition and identities constitute the category GRAPH.

The category GRAPH will be used in this section. Note its properties:
1. It has all small limits and colimits
2. Pullback functors have right-adjoints [16].
3. Pushouts preserve monomorphisms [16].
4. Pushouts are hereditary [13].
5. Pushouts along monomorphisms are van-Kampen [6].

Definition 21. (Algebraic graph rewriting system) An algebraic graph rewrit-
ing system GRS = (T, M = (Mt)t∈T ) consists of a class of abstract spans T ,
called transformation rules, and a class of matching abstract spans Mt for each
t ∈ T , such that m = (p, q) ∈ Mt=(l,r) implies codomain(l) = codomain(p). The
gluing ((l′, r′), (p′, q′)) of (t = (l, r), m = (p, q) ∈ Pt) is the direct derivation with
t at m. A direct derivation of a Graph G to H with a rule (l, r) at a match (p, q)
is written (l′, r′) : G � H.

All algebraic graph transformation approaches fit into this framework, namely:
1. Double-pushout approach [14].
2. Single-pushout approach (Theorem 8).
3. Single-pushout approach with co-partial morphisms (Theorem 10).
4. Sesqui-pushout approach at monic matches [3] (Theorem 19).
5. Sesqui-pushout approach at monic partial matches (Theorem 19).
6. Sesqui-pushout approach with monic left-hand sides in rules [3] (Theorem 8).
7. Contextual graph rewriting in [14].

Note that direct derivations in DPO, SqPO, and contextual graph rewriting [14]
are perfect gluings. The theory of SPO is based on composition and decomposi-
tion properties of pushouts. If we want to obtain a similar theory for contextual
graph rewriting [14] based on Propositions 17 and 18, we need additional prop-
erties such that the underlying gluing construction becomes a perfect gluing.

Definition 22. (Straight co-span) A co-span p→ l← is straight for a span l′← p′
→

in GRAPH if p◦ l′ = l◦p′ and for all vertices vp
1 , vp

2 , vl
1, v

l
2 with preimages wrt. l′

resp. p′: p(vp
1) = p(vp

2) = l(vl
1) = l(vl

2) =⇒ vp
1 = vp

2 ∨ vl
1 = vl

2 and for all edges
ep
1, e

p
2, e

l
1, e

l
2 with preimages wrt. l′ resp. p′, such that s(ep

1) = s(ep
2)∧t(ep

1) = t(ep
2)

and s(el
1) = s(el

2) ∧ t(el
1) = t(el

2), we get: p(ep
1) = p(ep

2) = l(el
1) = l(el

2) =⇒
ep
1 = ep

2 ∨ el
1 = el

2.
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Now we are able to formulate a general rewriting system whose direct deriva-
tions are perfect. It can provide the theoretical basis for concrete and practical
rewriting systems. For example contextual rewriting introduced in [14] is an
instance.

Definition 23. (Abstract span rewriting at co-partial matches) The algebraic
graph rewriting system GRSPSR = (TPSR, MPSR) has (i) all relations as trans-
formation rules and m = (p, q) ∈ MPSR

t=(l,r), if (ii) q is a monomorphism, (iii) the
gluing of t and m is bounded, and (iv) (p, l) is straight for (l, p).

Theorem 24. (Perfect rewriting) Direct derivations in GRSPSR are perfect.

Proof. The assumptions (ii) and (iii) in definition 23 imply that a mediating span
always exists. It remains to show uniqueness. Consider Figure 4. Note: since the
gluing is bounded, (l, p) is a sub-object of the pullback of (l, p) and the pair (l, p)
is jointly monic (∗).

For a given vertex v, consider the three vertices v1 = x′
1(v), v2 = x1(i′(v)), and

v3 = x1(j′(v)). Since x5 and q1 are monic, r′′1 ◦ i′ = r′′1 ◦ j′. Thus, (a) r∞(v2) =
r∞(x1(i′(v))) = x2(r′′1 (i′(v))) = x2(r′′1 (j′(v))) = r∞(x1(j′(v))) = r∞(v3). We
know (b) p(v1) = p(v2) and (c) l(v1) = l(v3). Since (l, p) is straight, we obtain
either (d1) p(v1) = p(v2) = p(v3) or (d2) l(v1) = l(v2) = l(v3). In case of (d1),
it follows v1 = v3 due to (∗) (with (c) and (d1)). Properties (a) and (d1) imply
v2 = v3, since (p, r∞) is pullback. All together, we get v1 = v2 = v3, which means
x′

1(v) = x1(i′(v)) = x1(j′(v)). In case of (d2), it follows v1 = v2 due to (∗) (with
(b) and (d2)). It remains to show v2 = v3: (d2) provides (e) l(p(v2)) = p(l(v2)) =
p(l(v3)) = l(p(v3)). By (a), we obtain (f) r(p(v2)) = p′(r∞(v2)) = p′(r∞(v3)) =
r(p(v3)). (e) and (f) imply (g) p(v2) = p(v3), since (l, r) is a relation. Finally,
(d2) and (g) guarantee v2 = v3.

The proof for edges is analog, since for every edge e we know, by the proof
above, that the source and target nodes for the edges x′

1(e), x1◦i′(e), and x1◦j′(e)
coincide. ��
The properties (i) – (iv) of the system GRSPSR (definition 23) have the following
operational interpretation: Rules can delete and add items, if l resp. r is not
surjective. Rules can copy and identify items, if l resp. r is not injective. It is
forbidden to take a copy of an item and to identify copy and original afterwards
(rule must be a relation; def. 23(i)). This is reasonable since such an action has
no effect from the operational point of view.

The injective part of the match, namely q, identifies the part of the host graph
that gets affected by rule application (def. 23(ii)). A non-injective p allows to
match many items in the host graph with a single item in the rule. Universal
quantification can be formulated this way, compare for example [14].

Straightness of (p, l) forbids copy-copy conflicts (def. 23(iv)): Items that get
copied by rule application (non-injective l) must be matched with a single object
in the host graph. The boundedness of the gluing (def. 23(iii)) forbids identify-
copy conflicts, since bounded gluings in GRAPH always result in straight pairs
(r, p′) for (p, r∞), compare Figure 3. Items that get identified by rule application
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(non-injective r) must be matched with a single object in the host graph. If
one item of a group of objects that get identified is not matched at all, the
identification results in a deletion.5 If all items are matched with at least one
object and one of them is matched with more than one object in the host graph,
the gluing result is not bounded. In this case the rule is not applicable at (q, p).6

Some theorems can be formulated once and for all (perfect-gluing-based) al-
gebraic approaches if the refined gluing construction of definition 2 and the
Propositions 17 and 18 (see above) are used as a common basis.

Definition 25. (Parallel independence) Two transformations (l′1, r′1) : G � H,
and (l′2, r

′
2) : G � K with rule t1 = (l1, r1) at match (p1, q1) and with t2 =

(l2, r2) at (p2, q2) are parallel independent in a graph rewriting system, if (l′1, r
′
1)◦

(p2, q2) ∈ Pt2 and (l′2, r
′
2) ◦ (p1, q1) ∈ Pt1 .7

Theorem 26. (Local Church-Rosser) Let an algebraic graph transformation
system be given in which all direct derivations are perfect gluings: If two trans-
formations G � H with rule t1 and G � K with rule t2 are parallel independent,
then there are transformations H � X with rule t2 and K � X with rule t1.

Proof. Parallel independence guarantees that t2 is applicable after t1 and vice
versa at the induced matches. Consider Figure 8. Construct the gluing of (l1, r1)
and (l′2, r′2)◦ (p1, q1). Then we get (l∗2 , r∗2) with (l∗2, r∗2)◦ (l′1, r′1) = (l∗1 , r∗1)◦ (l′2, r′2),
compare subdiagram (3) in Figure 8. By Proposition 18, (3) is a perfect gluing.
Due to Proposition 17, (2)+(3) is the perfect gluing that represents the transform-
ation with t2 after t1. Thus, t1 after t2 produces the same graph as t2 after t1. Even
the two traces (l∗2 , r

∗
2) ◦ (l′1, r

′
1) and (l∗1 , r

∗
1) ◦ (l′2, r

′
2) coincide. ��

5 Single-pushout behaviour at conflicting matches [13].
6 The result will be infinite even when rule and match comprise finite graphs only.
7 Note the parallel independence is purely syntactical compared to [14].
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6 Related Work and Conclusion

Besides SqPO, there are some approaches to graph transformation that provide
mechanisms for copying and identification in the rules and universal quantifica-
tion in the matches.8

Graph rewriting with polarised cloning [5] is a refinement of the SqPO-approach
and provides more control on the cloning process of edges in the context of copied
vertices. These effects can be simulated by the gluing construction introduced
above, if the context for each copied vertex, namely a prototype incoming and a
prototype outgoing edge, is added in the rule with the requirement that all edges
of this type in the host graph must be mapped to these prototype edges.

The relation-algebraic approach [10,11] uses a completely different set-up in
collagories. The effects of direct derivations in this approach are similar to the
gluing construction introduced here. But due to the completely different base
category, there is no easy correlation of the framework in [10,11] to the algebraic
approaches to graph transformation.

In the double-pushout approach, universal quantification for matches is added
by amalgamation [8]. The gluing construction introduced here is able to provide
a simpler notion of direct derivation for many situations where amalgamation is
needed in the double-pushout approach.

There is a good chance that the gluing construction of definition 2 can serve as
a common framework for many mechanisms in SPO-, SqPO-, and DPO-rewriting
and as a basis for higher-level operational effects like controlled cloning [4] and
matches that require that some edges in the rule’s left-hand side are universally
quantified. It is up to future research to investigate how far the known theory for
DPO or SPO can be reestablished. First results on parallel independence have
been achieved. Theorem 26 improves the corresponding result in [14], since inde-
pendence is purely syntactical if all gluings involved are perfect. And contextual
rewriting [14] with relations as rules turned out to be perfect, compare Theorem
24. It can be expected that other fragments of the theory can be lifted to a more
abstract level.
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1 Universitat Politècnica de Catalunya, Spain
{orejas,nicos}@lsi.upc.edu
2 University of Leicester, UK

aboronat@mcs.le.ac.uk

Abstract. Borrowed context graph transformation is a simple and pow-
erful technique developed by Ehrig and König that allows us to derive
labeled transitions and bisimulation congruences for graph transforma-
tion systems or, in general, for process calculi that can be defined in terms
of graph transformation systems. Moreover, the same authors have also
shown how to use this technique for the verification of bisimilarity. In
principle, the main results about borrowed context transformation do
not apply only to plain graphs, but they are generic in the sense that
they apply to all categories that satisfy certain properties related to the
notion of adhesivity. In particular, this is the case of attributed graphs.
However, as we show in the paper, the techniques used for checking bisim-
ilarity are not equally generic and, in particular they fail, if we want to
apply them to attributed graphs. To solve this problem, in this paper,
we define a special notion of symbolic graph bisimulation and show how
it can be used to check bisimilarity of attributed graphs.

Keywords: Attributed graph transformation, symbolic graph transfor-
mation, borrowed contexts, bisimilarity.

1 Introduction

Bisimilarity is possibly the most adequate behavioural equivalence relation. In
[5] Ehrig and König show how a notion of bisimilarity could be defined for
graph transformation systems. In particular, they introduced borrowed context
graph transformation as a simple and powerful technique that allows us to de-
rive labelled transitions and bisimulation congruences for graph transformation
systems or, in general, for process calculi that can be defined in terms of graph
transformation systems (e.g. [1]). These results are quite general since they apply
to any kind of transformation system on a category that satisfies some properties
related to adhesivity [7,3], as the category of attributed graphs. Moreover, in [12],
Rangel, König and Ehrig showed how to use these techniques for the verification
of bisimilarity. Unfortunately, the approach to verification introduced informally
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in [5] and studied in detail in [12] does not work when dealing with attributed
graphs. This is especially unfortunate, because one of the motivations for [12] is
being able to show that model transformations (and, in particular, refactorings)
preserve behavioural equivalence, and in these cases we work with attributed
graphs. The problem is related with the fact that, when applying an attributed
graph transformation rule, we must match all the variables in the left-hand side
of the rule to some given values. This implies, in the case of borrowed context
transformation, that the partial application of a single rule may give rise to an
infinite number of different borrowed context transformation, where all of them
have different labels. The reason is that, if the borrowed context includes some
variable, each substitution of that variable by any data value defines a different
borrowed context transformation.

The nature of the problem immediately suggests using borrowed context sym-
bolic graph transformation to check bisimilarity of attributed graphs, since in
symbolic graph transformation variables do not need to be immediately substi-
tuted by values [8,10]. Actually, since symbolic graphs form an adhesive HLR
category, all the results in [5] apply to this class of graphs. Unfortunately, as a
counter-example in Sect. 4 shows, bisimilarity for symbolic graphs, as defined in
[5], does not coincide with bisimilarity for attributed graphs. Hence, in this work
we define a new notion of symbolic bisimilarity, which is also a congruence, and
we show that it coincides with attributed graph bisimilarity. Moreover, using a
variation of the case study presented in [5], we show how this new notion can be
used for checking bisimilarity for attributed graphs. In particular, the example
not only shows that the problem with the substitution of the variables is solved,
but it also shows how symbolic graphs allow us to decouple a bisimilarity proof
in two parts. The first one, that has to do with graph structure, is based on
borrowed context transformation, while the second one, which is related to data
in the graphs, has to do with reasoning in the given data algebra.

The paper is organized as follows. In Sect. 2 we introduce the main results and
constructions presented in [5] and we introduce our case study, describing the
problems when attributed graph transformation is considered. In the following
section we introduce symbolic graph transformation. Sect. 4 is the core of the
paper, where we present our main constructions and results. In Sect 5, we extend
some techniques used in [5] for the verification of bisimilarity and we apply them
to our case study. Finally, in Sect. 6 we present some related work and draw some
conclusions. Due to lack of space, the paper includes no proofs. Anyhow they
can be found in the long version of the paper.

2 Graph Transformation with Borrowed Contexts

Given a set of transformation rules, graph transformation with borrowed con-
texts is a technique that allows us to describe and analyze how a graph could
evolve when embedded in different contexts. This technique is based on several
ideas. The first one is that we have to specify explicitly what is the open (or
visible) part of the given graph G, i.e. what part of G can be extended by a
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context. This part is called the interface of the graph and, in general, it may
be any arbitrary subgraph of G. A consequence of this is that a context should
be a graph with two interfaces. The reason is that, when we connect a context
to G, by matching the interface of the graph with a corresponding interface of
the context, the result is also a graph G′ with an interface, so that it can also
be embedded into a new context. More precisely, the resulting graph is obtained
gluing together, by means of a pushout, G and the context.

Definition 1. A graph with interface J is an injective morphism (usually an
inclusion) J → G, and a context is a cospan of injective morphisms J → C ← J ′.
The result of embedding J → G into the context J → C ← J ′ is the graph with
interface J ′ → G′, defined by the pushout diagram:

J

(PO)

��

��

C

��

J ′��

��
G �� G′

the resulting graph G′ will also be denoted as C[G].

The second idea underlying this technique is to allow for a partial match between
the left-hand side of a rule L and the graph G. Then, the associated transforma-
tion would start adding to G the missing part of L and, afterwards, applying a
standard graph transformation. That is, we add to G a minimal context, so that
the given rule can be applied. As this context is the part of L that has not been
matched with G, we say that G borrows this context from the rule. The third
idea is to consider that the interface of the resulting graph is the old interface
plus the borrowed context, minus the parts deleted by the rule. Finally, the last
idea is to label the borrowed context transformations with the context used in
the transformation step.

Definition 2. Given a graph with interface J → G and a graph transformation
rule p : L ← K → R, we say that J → G reduces to I → H with label J →
F ← I, denoted (J → G)

J→F←I−−−−−→ (I → H) if there are graphs C, G+, D and
additional morphisms such that all the squares in the diagram below are pushouts
(PO) or pullbacks (PB) and all the morphisms are injective:

C

(PO)

��

��

L

(PO)
��

K

(PO)

��

��

�� R

��
G

(PO)

�� G+

(PB)

D�� �� H

J ��

	


F

	


I

	


��

��

The intuition here is that C is the subgraph of L that completely matches G;
J → F ← I is the context borrowed to extend G; and G+ is the graph G enriched
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with the borrowed context. In particular, F , defined as the pushout complement
(if it exists) of the left lower square, extends J with all the elements in G+ which
are not in G. In Fig. 3 we can see an example of attributed borrowed context
transformation that is explained in Example 1. But not all borrowed context
transformations are useful for characterizing the behaviour of a graph when
embedded in any arbitrary context. This is the case of transformations where
the partial match is included in the part of the interface that remains invariant
after the transformation, since the same transformation could be applied to any
graph with the same interface. These transformations are called independent.

In labelled transition systems, a bisimulation is a symmetric relation between
states that is compatible with their observational behaviour. This means that if
two states s1 and s2 are related then for every transition from s1 labelled with l
there should be a transition from s2 with the same label and the resulting states
should again be related. Then, bisimilarity is the largest bisimulation relation.

Definition 3. Given a set T of transformation rules, a relation R on graphs
with interface is a bisimulation if it is symmetric and moreover if (J →
G1)R(J → G2), for every transformation (J → G1)

J→F←I−−−−−→ (I → H1) there

exists a transformation (J → G2)
J→F←I−−−−−→ (I → H2) such that (I → H1)R(I →

H2).
Bisimilarity, denoted ∼ is the largest bisimulation relation (or, equivalently,

the union of all bisimulation relations).

In [5] it is proved that the condition to prove that a relation is a bisimulation
can be restricted to dependent transformations. Moreover, the main result in
that paper is that bisimilarity is a congruence.

Example 1. The running example that we use in this paper is an adaptation
of the example used in [5], but now including some attributes. The rules in
Fig. 1 describe communication in a network. For simplicity we have omitted the
interface part of the rules, which is assumed to be the common part between
their left and right-hand sides. Round nodes represent locations in the network
and edges between these nodes represent communication links. There are two
kinds of links, simplex communication links, represented by thin arrows, and
duplex communication links, represented by thick arrows. The rules specify that
messages can be sent in one direction via simplex links and in two directions via
duplex links. The difference with respect to the example in [5], is that we use some
attributes to describe a simple form of encrypted communication. We assume
that the data algebra includes two sorts of values, messages and keys, and two
operations, e and d, for encrypting and decrypting messages, respectively. Both
operations have two parameters, a key and a message, and return a message. In
this sense, the rules also include square and elliptic nodes that include some data
values (i.e. they are attributed). Square nodes represent messages and include a
value of sort message, and elliptic nodes represent keys and include a value of
sort key. Message nodes may be connected to a round node meaning that the
message is at that location. Elliptic nodes may also be connected to round nodes
indicating that this key is shared by the connected locations.
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Fig. 1. Transformation rules

s The three rules describe how (encrypted) messages are sent through the net-
work. In particular, the first rule describes how a message is sent from the source
to the target node of a simplex communication link, while the second and third
rules show how a message can be sent in both directions through a duplex com-
munication link. Moreover, the three rules describe in a different (and rather
artificial) way that the messages are assumed to be encrypted before they are
sent, and they are decrypted when they are received. In the first rule, the mes-
sage to be sent is explicitly assumed to be encrypted, since it is the result of the
term e(k, m), where k is the key shared by the two locations. After the transfor-
mation, the decrypted message m is associated to the target node. In the other
two rules, it is not explicitly stated if the message m attached to the sending
node is encrypted or not. However, the message received is explicitly decrypted,
since the message received is the result of d(k, m).

Fig. 2. Bisimilar graphs

The example used in [5] is similar but graphs have no attributes: there are
no keys or encryption/decryption of messages, and messages are not assumed to
be values of any kind, but just nodes. Then, using the techniques described in
the paper, it is shown that the two graphs J → G and J → G′, depicted in Fig.
2, are bisimilar. In particular, they analyze what are all the borrowed context
transformations that can be applied to the two graphs and check that for every
transformation applied to one of them, there is another transformation that can
be applied to the other one, with the same label, such that the resulting graphs
I → H and I → H ′ are extensions, with the same context, of J → G and J → G,
respectively. And this means that J → G and J → G′ are bisimilar.

However, in our example, that kind of proof is not possible. The main problem
is that, when applying an attributed graph transformation rule to an attributed



Borrowed Contexts for Attributed Graphs 131

Fig. 3. Attributed borrowed context transformation

graph, all the variables in the rule must be matched to some given data values
and, accordingly, the terms included must be evaluated. This applies also to
borrowed context transformation, but variables in the context would not be
matched but must be substituted by arbitrary values. For instance, in Fig. 3 we
show a possible borrowed context transformation by applying the second rule
in Fig. 1 to the graph J → G′ on the left in Fig. 2, assuming that messages
and keys are integers, that the variables m and k are substituted by 23 and 15,
respectively, and that the value of d(23, 15) = 135. and other substitutions of m
and k would lead to a different borrowed context transformation. This causes
that, to prove the bisimilarity of the above two graphs we would need to prove
the bisimilarity of an infinite number of graphs. A second problem is that the
data (the attributes) in the rules do not exactly coincide. Actually, as we will
see in Sect. 5, the two graphs are bisimilar if the encrypting and decrypting
operations are the inverse of each other. Then it may be unclear how to prove
this fact in the context of attributed graph transformation.

3 Symbolic Graphs and Symbolic Graph Transformation

A symbolic graph is a graph that specifies a class of attributed graphs. More
precisely, a symbolic graph SG = 〈G, Φ〉 over a given data algebra A is a kind
of labelled graph G (technically, an E-graph [3]), whose nodes and edges may
be decorated with labels from a given set of variables X , together with a set of
formulas Φ over these variables and over the values in A. The intuition is that
each substitution σ : X → A of the variables in X by values of A such that
A |= σ(Φ), defines an attributed graph σ(G) in the semantics of G, obtained
replacing each variable x in G by the corresponding data value σ(x). That is,
the semantics of SG is defined:

Sem(SG) = {σ(G) | A |= σ(Φ)}
For instance, the graph below on the left specifies a class of attributed graphs,
including distances in the edges, that satisfy the well-known triangle inequality,
and the graph in the center would belong to its semantics
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It may be noticed that every attributed graph may be seen as a symbolic graph
by just replacing all its values by variables, and by including an equation xv = v,
into the corresponding set of formulas, for each value v, where xv is the variable
that has replaced the value v. We call these kind of symbolic graphs grounded
symbolic graphs. In particular, GSG(G) denotes the grounded symbolic graph
defined by G. For instance, the graph above on the right, can be seen as the
symbolic representation of the attributed graph in the center.

A morphism h : 〈G1, Φ1〉 → 〈G2, Φ2〉 is a graph morphism h : G1 → G2 such
that A |= Φ2 ⇒ h(Φ1), where h(Φ1) is the set of formulas obtained when replac-
ing in Φ1 every variable x1 in the set of labels of G1 by h(x1). Symbolic graphs
and morphisms over a given data algebra A form the category SymbGraphA.

To write h(Φ1) is, actually, an abuse of notation, since h is assumed to be a
graph morphism and, therefore, it is not defined on formulas. To be rigorous,
and less readable, we should have written h#

X(Φ1), where hX is the restriction of
h to the set of labels of G1 (i.e. hX maps the variables in G1 to the variables in

G2) and h#
X is the (unique) extension of hX to terms over the given signature.

For (technical) simplicity, we assume that in our graphs no variable is bound
to two different elements of the graph. We call these graphs in normal form. It
should be clear that this is not a limitation since every symbolic graph SG is
equivalent to a symbolic graph SG′ in normal form, in the sense that Sem(SG) =
Sem(SG′). It is enough to replace each repeated occurrence of a variable x by
a fresh variable y, and to include the equality x = y in ΦG′ .

In [8], we showed that SymbGraphA is an adhesive HLR category [7,4] taking
as M-morphisms all injective graph morphisms where the formulas constraining
the source and target graphs are equivalent. In particular, the proposition below
shows how pushouts of symbolic graphs are defined:

Proposition 1. [8] Diagram (1) below is a pushout if and only if diagram (2)
is also a pushout and A |= Φ3 ≡ (g1(Φ1) ∪ g2(Φ2)).

〈G0, Φ0〉

(1)

h1 ��

h2

��

〈G1, Φ1〉

g1

��

G0
h1 ��

(2)h2

��

G1

g1

��
〈G2, Φ2〉 g2

�� 〈G3, Φ3〉 G2 g2
�� G3

In this paper, a symbolic graph transformation rule is a pair 〈L ←↩ K ↪→ R, Φ〉,
where L, K and R are graphs over the sets of variables XL, XK and XR, respec-
tively, and Φ is a set of formulas over XR and over the values in A. We consider
that a rule is a span of symbolic graph inclusions 〈L, ∅〉 ←↩ 〈K, ∅〉 ↪→ 〈R, Φ〉,
Intuitively, Φ relates the attributes in the left and right-hand side of the rule.
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Fig. 4. Symbolic graph transformation

This means that we implicitly assume that XL = XK ⊆ XR. In [10] we allow
for more general rules.

As usual, we can define the application of a graph transformation rule 〈L ←↩
K ↪→ R, Φ〉 by a double pushout in the category of symbolic graphs [10]).

Definition 4. Given a transformation rule r = 〈L ←↩ K ↪→ R, Φ〉 over a data
algebra A and a morphism m : L → G, 〈G, Φ′〉 =⇒r,m 〈H, Φ′ ∪m′(Φ)〉 if and
only if the diagram below is a double pushout and Φ′ ∪m′(Φ) is satisfiable in the
given data algebra.

L

(1)m

��

K

(2)

� ��� � � ��

��

R

m′

��
G D�

��� � � �� H

For instance in the upper part of figure 4, we can see a symbolic graph transfor-
mation rule stating that if a given graph has two consecutive edges, e1 and e2,
with some given distances d1 and d2, respectively, then we can add a new edge
from the source of e1 to the target of e2 whose distance must be smaller or equal
than d1 + d2. Moreover, in the bottom part of the figure we may see the result
of applying that rule to the graph on the left.

We may notice that, in general, Φ′ ∪m′(Φ) may be unsatisfiable. This would
mean that the resulting graph 〈H, Φ′ ∪m′(Φ)〉 would have an empty semantics,
i.e. it would be inconsistent. This is avoided by requiring explicitly that Φ′∪m′(Φ)
must be satisfiable. It is not difficult to show that the above construction defines
a double pushout in the category of symbolic graphs [10].

A symbolic graph transformation rule can be seen as a specification of a class
of attributed graph transformation rules. More precisely, we may consider that
the rule r = 〈L ←↩ K ↪→ R, Φ〉 denotes the class of all rules σ(L) ←↩ σ(K) ↪→
σ(R), where σ is a substitution such that A |= σ(Φ), i.e.:
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Fig. 5. Symbolic transformation rules

Sem(r) = {σ(L)←↩ σ(K) ↪→ σ(R) | A |= σ(Φ)}

It is not difficult to see that given a rule r and a symbolic graph SG, SG =⇒r SG′

if and only if for every graph G ∈ Sem(SG), G =⇒r G′, with G′ ∈ Sem(SG′)
and moreover, for every graph G′ ∈ Sem(SG′), G =⇒r G′, for some G ∈
Sem(SG) [8].

We will require that transformation rules must be strict meaning that the
result of a rule application to a grounded model must also be grounded1:

Definition 5. A transformation rule 〈L ←↩ K ↪→ R, Φ〉 is strict if for every
transformation 〈G, Φ′〉 =⇒p,m 〈H, Φ′ ∪ m′(Φ)〉, whenever 〈G, Φ′〉 is grounded
〈H, Φ′ ∪m′(Φ)〉 is also grounded.

For instance, the rule in figure 4 is not strict. However, assuming that all rules
must be strict is not really a restriction since every non-strict rule may be made
strict including in XL all the variables in XR. This forces to match every variable
in XR to some given value causing that the result of the transformation 〈H, Φ′∪
m′(Φ)〉 must be grounded. Moreover, it is easy to see that the semantics of a
non-strict rule (as defined above) and its associated strict one coincide.

As shown in [8], symbolic graph transformation is more powerful than at-
tributed graph transformation. In particular, any attributed graph transforma-
tion rule r can be represented by a symbolic graph transformation rule SR(r)
such that an attributed graph G can be transformed by r into a graph H if and
only if the grounded graph associated to G, SG, can be transformed by SR(r)
into the grounded graph associated to H . However, the converse is not true.

For example, in Fig 5 we show the symbolic rules associated to the attributed
rules depicted in Fig 1.

1 This does not mean that the result of a borrowed context transformation of a
grounded graph using a strict rule must also be grounded. In particular, the rules
in Example 1 are strict but, as shown in Example 3, the results of their borrowed
context application to two grounded graphs are not grounded.
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4 Symbolic Bisimilarity

In this section we study a notion of bisimilarity for symbolic graphs to be used
for proving the bisimilarity of attributed graphs. First we show that a definition
of symbolic bisimulation just applying the concepts introduced in Section 2 to
SymbGraphA is not adequate for checking the bisimilarity of attributed graphs.
Then, we define a notion of symbolic bisimulation and show that it coincides with
attributed bisimulation, when restricted to grounded graphs. Finally, we show
that this symbolic bisimilarity is also a congruence on SymbGraphA.

Symbolic graphs form an M-adhesive category [8]. Hence, all the definitions
and results in [5] concerning borrowed context transformation and bisimilarity
apply to this category. For instance, we have notions of symbolic graph with
interface, of context, and of borrowed context transformation exactly as in Sec-
tion 2, but within the category of symbolic graphs. To be precise, we consider
that graph interfaces are not arbitrary symbolic graphs, but graphs with an
empty set of conditions, since we consider that the interface must only specify
the open part of a graph. Then, we may think that a direct application of these
results may be a solution for the problem of checking bisimilarity for attributed
graphs, since we may directly work with terms and variables, without having to
compute all its possible substitutions, as described in Example 1. This means
that for deciding if two attributed graphs are bisimilar we could check if their
associated grounded graphs are bisimilar in the category of symbolic graphs. Un-
fortunately, as we can see in the counter-example below, two attributed graphs
may be bisimilar as attributed graphs, while their associated grounded symbolic
graphs are not bisimilar as symbolic graphs.

Example 2. Let us consider the attributed graph transformation system, con-
sisting of three rules, depicted below.

The first rule includes a variable x used in different expressions including x2.
The remaining two rules are simple attributed rules with integer values. Now,
let us consider the two attributed graphs, including as interface just the source
node of the edges in the graphs, I → G1 and I → G2 that are depicted below.

We can see that these graphs are bisimilar. The only dependent borrowed context
transformations that we can apply on both graphs are depicted below and, in
both cases, the resulting graphs are equal.
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Notice that, in the figure, we do not depict the data values that are not bound
to any node or edge. However, if we consider the symbolic versions of the above
rules we can show that GSG(I → G1) and GSG(I → G2) are not bisimilar. In
particular, below we can find the symbolic borrowed context transformation of
the two grounded graphs using the symbolic versions of r3 and r1, and we may
see that no direct transformation can be applied to the resulting graph on the
left, GSG(I → G4). However, we may also see that the conditions associated to
the resulting graph on the right are equivalent to (z = 4 ∧ x = 2 ∧ t = 3 ∧ u =
9)∨ (z = 4 ∧ x = −2 ∧ t = −1 ∧ u = 5), which means that we can transform
this graph using the symbolic version of r1 (matching x to 3).

The problem in the above counter-example is that, when considering attributed
graph transformation, each instance of the rule r1 (i.e. when x = 2 or when
x = −2) is simulated by r2 and r3, respectively, and vice versa. However, when
considering symbolic transformation, we need to say that r1 is simulated by
r2 and r3 together, and vice versa. This is not possible if we define symbolic
bisimulation as in [5]. Instead, we define a new notion that solves this problem:

Definition 6. A relation R on symbolic graphs with interface is a symbolic
bisimulation with respect to a set of transformation rules, if it is symmetric
and moreover if (J → SG1)R(J → SG2), for every transformation (J →
SG1)

J→F←I−−−−−→ (I → SG′1), with SG′1 = 〈G′1, Φ′1〉 there exist a family of con-

ditions {Ψi}i∈I and a family of transformations {(J → SG2)
J→F←I−−−−−→ (I →

SHi)}i∈I , with SHi = 〈Hi, Πi〉 such that:

– For every substitution σ′1 such that A |= σ′1(Φ
′
1), there is an index i and a

substitution σi such that A |= σi(Ψi ∪ Πi) and σ′1 �I= σi �I , where σ �I
denotes the restriction of σ to the variables in I.

– For every i, (I → 〈G′1, Φ′1 ∪ Ψi〉) R (I → 〈Hi, Πi ∪ Ψi〉).

Symbolic bisimilarity, denoted ∼S, is the largest symbolic bisimulation relation.
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Intuitively, each condition Ψi specifies which instances of the transformation

(J → SG1)
J→F←I−−−−−→ (I → SG′1) are simulated by instances of the transfor-

mation (J → SG2)
J→F←I−−−−−→ (I → SHi). For instance, in the above counter-

example, to show GSG(I → G1) ∼S GSG(I → G2), the symbolic transforma-
tion of GSG(I → G2) via r3 depicted above on the left, would be simulated
by the transformation of GSG(I → G1) via rule r1, together with the condition
x = −2. Similarly, the symbolic transformation of GSG(I → G1) via r1 depicted
above on the right, would be simulated by the transformations of GSG(I → G2)
via rule r2, together with the condition x = 2 and of GSG(I → G2) via rule r3,
together with the condition x = −2.

Using symbolic bisimilarity we can prove the bisimilarity of attributed graphs:

Theorem 1. Given transformation rules T , (J → G1) ∼ (J → G2) with respect
to Sem(T ) if and only if GSG(J → G1) ∼S GSG(J → G2) with respect to T .

To prove this theorem we use two lemmas:

Lemma 1. Let R be the following relation defined on symbolic graphs. (J →
SG1)R(J → SG2) if:

– For every attributed graph σ1(J → SG1) ∈ Sem(J → SG1) there is an
attributed graph σ2(J → SG2) ∈ Sem(J → SG2) such that σ1(J → SG1) ∼
σ2(J → SG2).

– For every attributed graph σ2(J → SG2) ∈ Sem(J → SG2) there is an
attributed graph σ1(J → SG1) ∈ Sem(J → SG1) such that σ1(J → SG1) ∼
σ2(J → SG2).

Then, R is a bisimulation.

Lemma 2. The relation on attributed graphs (J → G1)R(J → G2) if GSG(J →
G1) ∼S GSG(J → G2) is a bisimulation.

To prove this theorem we have that, if (J → G1) ∼ (J → G2) then GSG(J →
G1) and GSG(J → G2) satisfy the conditions of Lemma 1. So they must be
bisimilar. Conversely, if GSG(J → G1) ∼S GSG(J → G2), lemma 2 directly
implies that (J → G1) and (J → G2) are bisimilar.

The last theorem shows that symbolic bisimilarity is a congruence:

Theorem 2. If (J → SG1) ∼S (J → SG2) then, for every context J → C ← I,
(I → C[SG1]) ∼S (I → C[SG2]).

The proof uses a property shown in [5] that if a graph J → G is embedded
in J ′ → G′ with a given context and if J ′ → F ′ ← I ′ is a possible label
for transforming J ′ → G′ then there is a context I → C′ ← I ′ and a label
J → F ← I, such that any transformation of J ′ → G′ with label J ′ → F ′ ← I ′

can be obtained by first transforming J → G with a label J → F ← I and, then,
embedding the result in the context I → C ← I ′.
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5 Checking Bisimilarity

In this section we show the basic ideas of how we can use the previous results
to show that two attributed graphs (J → G1) and (J → G2) are bisimilar. In
principle, we would need to consider all the possible borrowed context transfor-
mations with the same label of their associated grounded graphs and show that
we can group them in pairs, so that under suitable conditions Ψi, the resulting
graphs are bisimilar. The obvious problem is that this clearly leads to a non-
terminating process. To avoid this non-termination (if possible) Sangiorgi [13]
defined the notion of bisimulation up to context that is adapted to the case of
graph transformation in [5]. In our case this notion would be defined as follows:

Definition 7. A relation R is a symbolic bisimulation up to context if whenever

(J → SG1)R(J → SG2), then for every transformation (J → SG1)
J→F←I−−−−−→

(I → SG′1), with SG′1 = 〈G′1, Φ′1〉 there exist a family of conditions {Ψi}i∈I
and a family of transformations {(J → SG2)

J→F←I−−−−−→ (I → SHi)}i∈I , with
SHi = 〈Hi, Πi〉 such that:

– For every substitution σ′1 such that A |= σ′1(Φ
′
1), there is an index i and a

substitution σi such that A |= σi(Ψi ∪Πi) and σ′1 �F= σi �F .
– For every i, (I → 〈G′1, Φ′1 ∪ Ψi〉) and (I → 〈Hi, Πi ∪ Ψi〉) are the result of

embedding (J → SG1) and (J → SG2) in the same context.

Proposition 2. [5] If R is a symbolic bisimulation up to context then R ⊆∼S.

This means that if, when trying to check if (J → SG1) and (J → SG2), we have
to prove that (I → SG′1) and (I → SG′2) are also bisimilar and if the latter
graphs can be obtained by embedding the former graphs into the same context,
then we can consider that (I → SG′1) and (I → SG′2) are bisimilar. So, if this
happens for all the pairs of graphs that we have to prove bisimilar, then we can
conclude that (J → SG1) and (J → SG2) are indeed bisimilar.

Moreover, as in [5], we can restrict ourselves to checking only dependent trans-
formations. This is important since, if the number of transformation rules is fi-
nite, and the given graph, J → G, is also finite, then there is a finite number of
possible borrowed context transformations that can be applied to J → G. Let
us now show how these ideas would be applied to the example in Section 2.

Example 3. We want to check if the graphs J → G and J → G′ depicted in
Fig. 2 are bisimilar. In this case, since G and G′ include no explicit attributes,
their associated grounded graphs would look similar. Now, there are only two
dependent borrowed context transformations that can be applied to each of the
two graphs. In Fig. 6 we depict the transformations that can be applied to J → G
and J → G′, using the first and the second rule in Fig. 5, respectively, when we
add to the two graphs a context consisting of a common key k and a message m
attached to the leftmost node. In particular, on the left and the right of the figure
we depict the transformations of G and G′ and, in the middle, we depict the label
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of the transformation. Fig. 7 is similar, and describes the transformations over
J → G and J → G′, using the first and the third rules, respectively.

To prove J → G ∼S J → G′, according to the definition of symbolic bisim-
ulation, we have to show, on the one hand, that the conditions associated to
the transformations, {m = e(k, m′)} and {m′ = d(k, m)} are equivalent; and,
on the other hand, that the resulting graphs are bisimilar, (I → SH1) ∼S (I →
SH ′1), with SH1 = 〈H1, {m = e(k, m′)}〉 and SH ′1 = 〈H1′, {m′ = d(k, m)}〉,
and (I → SH2) ∼S (I → SH ′2), with SH2 = 〈H2, {m = e(k, m′)}〉 and
SH ′2 = 〈H2′, {m′ = d(k, m)}〉. But if the conditions are equivalent, SHi and SH ′i
(i = 1, 2) are just the original graphs extended by the same context. Therefore,
the bisimilarity of the graphs J → G and J → G′ depends on the equivalence of
the above conditions. More precisely, if the given data algebra A satisfies:

d(k, e(k, m)) = m

e(k, d(k, m)) = m

i.e. if encryption and decryption are the inverse of each other.

Fig. 6. Transformation 1 Fig. 7. Transformation 2

6 Conclusion and Related Work

Bisimilarity was introduced by Park in [11] and, since then, it has been studied
by many authors in relation to many different formalisms. In [5], Ehrig and König
not only introduced a notion of bisimilarity for graph transformation systems,
but they provided a simple and general technique to derive labelled transitions
and bisimulation congruences from unlabelled ones. This paper was followed by
[12] where they showed how these techniques could be used for the verification
of bisimilarity. Moreover, in [6], the borrowed context technique is generalized
to transformation rules including application conditions. Unfortunately, as we
have seen in this paper, these techniques do not work in the case of attributed
graphs. Borrowed context transformations have been used for the definition of
other behavioral equivalence relations [2]. On the other hand, symbolic graphs
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were introduced in [9] in order to define constraints on attributed graphs. Then
symbolic graph transformation was studied in detail in [8,10].

In this paper we have presented a new notion of bisimulation for symbolic
graph transformation that has been shown to be useful for checking the bisimi-
larity of attributed graphs. The key issue is that in symbolic graph transforma-
tion we do not need to replace all the variables by values. Moreover, the neat
separation in symbolic graphs between the graph structure and the algebra of
data also helps for this purpose. Currently we are working in devising a specific
proof method to implement these ideas.
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Abstract. Triple graph grammars (TGGs) are a common formalism to
specify model transformations in a relational way, creating source and
target models together with their correspondences. The classical theoret-
ical model of triple graphs is based on a morphism span from the corre-
spondence component to the source and target components. In practice,
this formalization often can not be used as for certain applications no
proper morphisms between the correspondence and source or target com-
ponents can be found. In this paper, we introduce TGGs as plain graph
grammars with special typing which avoids an extra flattening step and
is more directly suitable for implementation and formal analysis due to
the more flexible and homogeneous formalization. The typing expresses
that each graph can be partitioned into a source, correspondence, and
target component allowing arbitrary relationships between the compo-
nents. We further show that the main decomposition and composition
result, which is the formal basis for correctness, completeness, consis-
tency, and functional behavior, holds analogous to the classical approach
and demonstrate that classical triple graph transformation is actually a
special case – after flattening – of the more flexible one.

1 Introduction

Model transformations can be specified in a relational (declarative) way by triple
graph grammars (TGGs) [1], creating source and target models together with
their correspondences. In order to operationalize TGGs, forward, backward, and
correspondence rules can be derived. They can be applied to a source model,
target model, or pair of source and target model to obtain a forward, backward,

� The work of both authors was developed in the course of the DFG-funded
project Correct Model Transformations
http://www.hpi.uni-potsdam.de/giese/projekte/kormoran.html?L=1.

H. Ehrig et al.(Eds.): ICGT 2012, LNCS 7562, pp. 141–155, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



142 U. Golas et al.

or correspondence transformation, respectively. In [2], the basic concepts of clas-
sical TGGs were formalized in a set-theoretical way, which was generalized and
extended in [3] to typed, attributed graphs. We restrict our considerations in
this paper to typed TGGs.

The classical theoretical model of triple graphs is based on a morphism span
from the correspondence component to the source and target components, while
nearly all implementations in contrast map the triple graphs on flat graphs to
simplify their handling and be more flexible. However, besides that for certain
applications no proper morphisms between the correspondence and source or
target components can be found, the classical theoretical model due to its het-
erogeneous nature also makes formal analysis unnecessarily complex.

In this paper we therefore present a new formalization1 for TGGs as plain
graph grammars with special typing. This typing expresses that each graph can
be partitioned into a source, correspondence, and target component. Thereby,
the correspondence component holds correspondence nodes that can be con-
nected via special edges to source or target nodes. We show that this new formal
approach fits very well to most TGG implementations, where triple graph trans-
formation is performed as a specially typed plain graph transformation. We show
that the main decomposition and composition result (cf. Fig. 4) can be carried
over in an elegant way to the new approach. This is the formal basis to transfer
also the results on correctness, completeness, consistency, and functional behav-
ior of model transformations [5,3,6,4]. Finally, we show a formal comparison with
the classical model, demonstrating the flexibility of the new model with respect
to specifying correspondences. Other means to enhance expressiveness are, e.g.,
application conditions [6,7] or relaxing the bind-only-once semantics of TGGs [8].

In Section 2, we reintroduce the classical triple graph model and motivate our
new more flexible and flattened model presented in Section 3. It is demonstrated
that triple graph transformation can indeed be performed as specially typed plain
graph transformation. We show in Section 4 that for our new model the main
decomposition and composition result holds analogous to the classical model
[1,3]. In Section 5, we demonstrate that the classical model is actually a special
case – after flattening – of the more flexible one. A conclusion and outlook to
future work closes the paper.

2 Classical Triple Graphs and Motivation for Flexibility

Classical triple graphs consist of a morphism span from the correspondence com-
ponent to the source and target component. Classical triple graph morphisms
consist of three graph morphisms mapping source, correspondence, and target
component to each other in a compatible way. A classical TGG consists of a
triple graph as start graph and a set of non-deleting triple rules [1].

1 This new model with its corresponding category was introduced in less detail in [4],
where it is shown how to bridge the gap between the TGG formal semantics and an
efficient corresponding implementation with a specific bookkeeping mechanism.
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BlockDiagram

SystemBlock

Block

BD2CD

BL2CL

SB2CL

ClassDiagram

Class

Association

source target

Fig. 1. Type triple graph

Definition 1 (Classical triple graph). A classical triple graph G = (GS
sG←

GC
tG→ GT ) consists of graphs GS, GC , and GT , called source, correspondence,

and target component, and two graph morphisms sG and tG mapping the corre-
spondence to the source and target components. A classical triple graph morphism
f : G1 → G2 is a tuple f = (fS : G1S → G2S , fC : G1C → G2C , fT : G1T →
G2T ) such that sG2 ◦ fC = fS ◦ sG1 and tG2 ◦ fC = fT ◦ tG1 . Classical triple
graphs form the category CTripleGraphs.

Definition 2 (Typed classical triple graph). The typing of a classical triple
graph is done in the same way as for standard graphs via a type graph TG - in
this case a classical type triple graph - and a typing morphism typeG from the
classical triple graph G into this type graph leading to the typed classical triple
graph (G, typeG). Typed classical triple graphs and morphisms form the category
CTripleGraphsTG.

While the classical formalization of triple graphs works well in theory and for
certain examples, there are other examples showing that it is too restrictive.

Example 1 (Running example). As a running example not adhering to the clas-
sical model, we use a model transformation2 from SDL block diagrams to UML
class diagrams. The simplified type graphs for these languages are shown on the
left and right of Fig. 1, respectively. A BlockDiagram may contain SystemBlocks
which in turn contain Blocks. A ClassDiagram may contain Classes and Associa-
tions that can connect Classes to each other. The middle part of the type graph
shown in Fig. 1 expresses potential relations between elements of the source and
target languages. A TGG is shown for the example in Fig. 23. The axiom re-
lates a BlockDiagram with a ClassDiagram via the axiom correspondence node.
Rule 1 creates a SystemBlock and a corresponding Class. The BlockDiagram and
ClassDiagram must already exist. Rule 2 creates a Block and a corresponding
Class with an Association, connecting thereby the Block to the already existing
SystemBlock and the Class with Association to the SystemBlock ’s Class. Note
that Rule 2 creates triple graphs with correspondence nodes connected to two

2 This model transformation is a simplified version of a transformation used in the
industrial case study on flexible production control systems [9].

3 Note, that the types defined in Fig. 1 are abbreviated in Fig. 2. Elements that belong
to the left- and right-hand side are drawn in black; elements that belong only to the
right-hand side (i.e. which are created by the rule) are green and marked with ‘++”.
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bd1:BD cn1:BD2CD cd1:CD

bd1:BD cn1:BD2CD cd1:CD

sb2:SB cn2:SB2CL cl2:CL

++
++

++
++

++

++
++

sb2:SB cn2:SB2CL cl2:CL

bl3:BL cn3:BL2CL

as3:AS

cl3:CL

source

target

++

++
++

++

++

++

++
++

++ ++

++
++

cn1:BD2CD cd1:CDbd1:BD

Axiom (BlockDiagram to ClassDiagram)

Rule 1 (SystemBlock to Class)

Rule 2 (Block to Class and Association)

SA CA TA

SL1 CL1 TL1

SR1 CR1 TR1

SL2 CL2 TL2

SR2 CR2 TR2

Fig. 2. Triple graph grammar

different target elements, expressing that a Block corresponds to two different
elements Class and Association in the target domain. In particular, this does
not correspond to the classical formalization, since we cannot define a proper
graph morphism from the correspondence to the target component.

In other triple graph papers, such as [10,8,11], more TGG examples and case
studies can be found not adhering to the classical triple graph formalization,
showing that we need a triple graph formalization with arbitrary relations be-
tween correspondence elements and source or target elements. A correspondence
node may be related to more than one source or target node, or even to none.
Both cases cannot be adequately modeled with the current formalization.

Note that formalizing triple graphs as plain graph grammar with special typ-
ing instead of as morphism spans has also several practical benefits as witnessed
by the choice of nearly all implementations:4 TGG implementations that per-
form triple graph transformation as specially typed plain graph transformations
are directly covered. Furthermore, it simplifies formal analysis [17,18] as concepts

4 Fujaba’s TGG Engine [12], MOFLON [13], the TGG Interpreter [8], the TGG En-
gine [4] and ATOM3 [14] all flatten the triple graphs to obtain a single typed graph
containing all three components [15]. The only TGG implementation that we are
aware of implementing the classical model directly [16] is based on Mathematica.
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for the specification or analysis of typed graph transformations can be employed
much easier. E.g., graph constraints [19] can be defined across triple graphs or
TGGs can be directly equipped with OCL constraints defined over the same
special meta-model [20] .

Summarizing, we propose a new formalization using a special type concept
to define a formal model of triple graphs which has, as we will demonstrate,
no disadvantages as the existing theoretical results for triple graph grammars
and for plain graph transformation can be carried over but the following advan-
tages: (i) It is more flexible than the classical model when it comes to expressing
relations between correspondence and source or target elements as needed for
various examples. (ii) The new model can be used without the need for flattening
as theoretical foundation for implementations. (iii) The new model is more suit-
able for formal verification or validation of TGGs. Note, that we use the term
“classical triple graph” when referring to the classical definition of triple graphs,
while “triple graph” in the following is one w.r.t. our new definition.

3 Flexible Triple Graph Category

The main idea of our more flexible variant of triple graphs is to use a distin-
guished, fixed triple graph TRIPLE which all triple graphs are typed over. It
defines three node types s, c, and t representing the source, correspondence, and
target nodes, and corresponding edge types ls and lt for source and target graph
edges. Moreover, for the connections from correspondence to source or target
nodes the edge types ecs and ect are available.

Definition 3 (Type graph TRIPLE). The type graph TRIPLE is given by
TRIPLEN = {s, c, t}, TRIPLEE = {ls, ecs, ect, lt} with source and target functions
according to the following signature:

TRIPLE s c t
ecs ectls lt

We say that TRIPLES , TRIPLEC , and TRIPLET , as shown below,

TRIPLES s
ls

TRIPLEC s c t
ecs ect

TRIPLET t
lt

are the source, correspondence, and target component of TRIPLE, respectively.
Analogously to the aforementioned case, the projection of a graph G typed over
TRIPLE to TRIPLES , TRIPLEC , or TRIPLET selects the corresponding component.

We denote a triple graph as a combination of three indexed capitals, as for
example G = SGCGTG, where SG denotes the source and TG denotes the target
component of G, while CG denotes the correspondence component, being the
smallest subgraph of G such that all c-nodes as well as all ecs- and ect-edges are
included in CG. Note that CG has to be a proper graph, i.e. all target nodes of
ecs and ect-edges have to be included.

Definition 4 (Triple graph). A triple graph (G, tripleG) is a graph G with
source and target mappings src and tgt, resp., equipped with a morphism tripleG :
G → TRIPLE. We denote a triple graph (G, tripleG) as SGCGTG, where SG =
G|TRIPLES , CG = G|TRIPLEC\{n | tripleG(n) ∈ {s, t},¬∃e ∈ G|TRIPLEC : tgt(e) =
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n}, and TG = G|TRIPLET . Consider triple graphs SGCGTG = (G, tripleG) and
SHCHTH = (H, tripleH), a triple graph morphism f : SGCGTG → SHCHTH is
a graph morphism f : G → H such that tripleG = tripleH ◦ f . The category of
triple graphs and triple graph morphisms is called TripleGraphs.

Using this notation we can define the restriction of a triple graph and a triple
graph morphism to its source and target component.

Definition 5 (Restriction). The restriction of a triple graph SHCHTH to a
triple graph of its source (or target) component is defined by the pullback object
SH∅∅ (∅∅TH) of tripleH and TRIPLES → TRIPLE (TRIPLET → TRIPLE) as in
diagram (1). Analogously, a triple morphism f : SGCGTG → SHCHTH can be
restricted to fS : SG∅∅→ SH∅∅ (fT : ∅∅TG → ∅∅TH) as induced morphism
as shown in the diagram.

SG∅∅

SGCGTG SH∅∅ TRIPLES

SHCHTH TRIPLE

(1)

iSG fS

f
iSH

tripleH

Fact 1. Given the induced morphisms iSG : SG∅∅→ SGCGTG and iSH : SH∅∅
→ SHCHTH , for any triple morphism f : SGCGTG → SHCHTH we have that
f ◦ iSG = iSH ◦ fS. This holds analogously for the target component.

Proof. This follows directly from the construction of the restriction as pullback.

Analogously to typed graphs, typed triple graphs are triple graphs typed over a
distinguished triple graph, called type triple graph.

Definition 6 (Typed triple graph). A type triple graph STT CTT TTT is a
distinguished triple graph. A typed triple graph (SGCGTG, type) is a triple graph
SGCGTG equipped with a triple graph morphism type : SGCGTG → STT CTTTTT .
Consider typed triple graphs (SGCGTG, typeG) and (SHCHTH , typeH), a typed
triple graph morphism f : (SGCGTG, typeG) → (SHCHTH , typeH) is a triple
graph morphism f : SGCGTG → SHCHTH such that typeH ◦ f = typeG. The
category of typed triple graphs and morphisms is called TripleGraphsTT.

In the remainder of this paper, we assume every triple graph SGCGTG and
triple graph morphism f to be typed over STTCTT TTT , even if not explicitly
mentioned.

Example 2 (Typed triple graph). The type triple graph STTCTT TTT of our run-
ning example is depicted in Fig. 1. In particular, it is a triple graph, since it is
typed over TRIPLE. This is visualized by the two dashed vertical lines, distin-
guishing at the left-hand side the source component STT , at the right-hand side
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the target component TTT , and the correspondence edges crossing the dashed
lines with incident source, correspondence, and target nodes as CTT . All triple
graphs typed over STTCTT TTT via a triple morphism type are instances of
STTCTT TTT respecting the source, correspondence, and target components. As
mentioned already in Example 1 and visible in the type triple graph in Fig. 1, a
Block in the source domain may be connected via an incoming correspondence
edge from a single correspondence node and two outgoing edges to two different
elements Class and Association in the target domain. In particular, this does
not correspond to the classical formalization, since it would not be possible to
define a proper graph morphism mapping a correspondence node of type BL2CL
to two different node types Class and Association in the target domain.

Definition 7 (Triple graph rule). A triple graph rule p : SLCLTL
r→

SRCRTR consists of a triple graph morphism r, which is an inclusion. The triple
graphs SLCLTL and SRCRTR are called the left-hand side (LHS) and the right-
hand side (RHS) of p, respectively.

Definition 8 (Triple graph transformation). Given a triple graph rule p :

SLCLTL
r→ SRCRTR and a triple graph SGCGTG, p can be applied to SGCGTG

if there is an occurrence of SLCLTL in SGCGTG i.e. a triple graph morphism
m : SLCLTL → SGCGTG, called match. In this case, a direct triple graph

transformation SGCGTG
p,m⇒ SHCHTH from SGCGTG to SHCHTH via p and m

consists of the pushout (P O) in TripleGraphsTT [21].

SLCLTL SRCRTR

SGCGTG SHCHTH

(P O)

r

m n

h

Since pushouts along inclusion morphisms in TripleGraphsTT always exist,
(P O) can always be constructed. In particular, h can be chosen to be an inclu-

sion analogous to r. A triple graph transformation, denoted as SG0CG0TG0

∗⇒
SGnCGnTGn, is a sequence SG0CG0TG0 ⇒ SG1CG1TG1 ⇒ · · · ⇒ SGnCGnTGn of
direct triple graph transformations.

Remark 1. Note that pushouts in TripleGraphsTT are constructed componen-
twise in the node and edge components, since the involved objects are normal
graphs. The triple morphism of the pushout object is uniquely induced by the
pushout property.

Definition 9 (Triple graph grammar). A triple graph grammar (TGG)
GR = (R, SACATA, STT CTTTTT ) consists of a set of triple graph rules R and
a triple start graph SACATA, called axiom, typed over the type triple graph
STTCTT TTT .

Example 3 (TGG). In Example 1, we already explained our running example
TGG (see Fig. 2). The TGG rules are indeed typed over the type triple graph
depicted in Fig. 1.
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Remark 2 (Formal foundations for implementation). Note that typing a graph
over a type triple graph already defines the triples, i.e. any typed graph (G,
typeG) and any typed graph morphism f : (G, typeG)→ (H, typeH) typed over
the type triple graph STTCTT TTT correspond uniquely to a typed triple graph
(SGCGTG, typeG) and a typed triple graph morphism f : (SGCGTG, typeG) →
(SHCHTH , typeH), respectively. Accordingly, if all morphisms in a pushout (P O)
in Graphs are typed triple graph morphisms, then (P O) is also a pushout in
TripleGraphs andTripleGraphsTT. Concluding, regular graph transformation
tools can be used to perform (typed) triple graph transformations, since a regular
graph transformation can be interpreted as a (typed) triple graph transformation
if the rule, match, and graph to be transformed are proper (typed) triple graphs
and morphisms.

Remark 3 (Carry over HLR results). By construction, TripleGraphsTT is the
slice category TripleGraphs/TT of the slice category Graphs/TRIPLE. Conse-
quently, it follows from [19,22] that the category TripleGraphsTT together with
the class M of all monomorphisms forms an M-adhesive category.M-adhesive
categories [22] and their variants like adhesive [23] and weak adhesive HLR [19]
categories form a framework for graph transformations and their analysis. They
are based on a distinguished morphism classM, which is used for the rule mor-
phisms and has to satisfy certain properties, and a special van Kampen property
describing the compatibility of gluings and restrictions, i.e. pushouts and pull-
backs in categorical terms. Based on this van Kampen property, many results
can be proven that hold for different kinds of graphs. In particular, as we will
see in Section 4, we will use the Local Church–Rosser and Concurrency Theo-
rems to prove the Composition and Decomposition result for TGGs with flexible
correspondences.

4 Classical TGG Results in Flexible Triple Graph
Category

For classical triple graphs, operational transformation rules from relational TGG
rules can be derived as introduced in [1]. Analogously, we define them for our
triple graphs. For the forward transformation, all elements belonging to the
source domain that were previously created are added to the LHS of the rule.
Reversely, a backward rule translates target elements to source elements. A cor-
respondence rule specifies how source and target elements can be connected to
each other according to the TGG.

Definition 10 (Operational rules). Given a triple graph rule p : SLCLTL
r→

SRCRTR, construct the pushout (1) over iSL : SL∅∅ → SLCLTL and rS :
SL∅∅ → SR∅∅ with pushout object SRCLTL. Since r ◦ iSL = iSR ◦ rS (Fact 1),
we obtain from the pushout property the morphism rCT .

From this construction, we define the source rule pS : SL∅∅
rS→ SR∅∅ and the

forward rule pF : SRCLTL
rCT→ SRCRTR.
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p

pS

pF

SL∅∅

SR∅∅

SLCLTL SRCRTR

SRCLTL

iSL

rS

r

rS rCT

iSR

(1)

Vice versa, we can construct the target rule pT : ∅∅TL → ∅∅TR and the back-
ward rule pB : SLCLTR

rSC→ SRCRTR. The correspondence rule pC : SRCLTR
rC→

SRCRTR is obtained by applying this construction twice.

Example 4. We can derive the forward rule SR2CL2TL2 → SR2CR2TR2 of Rule
2 in our running example as depicted in Fig. 3.

Triple graph rules can be understood as a concurrent application of source rules
and forward rules, or of target rules and backward rules, or of the parallel appli-
cation of source and target rules with correspondence rules. A concurrent rule
p1 ∗E p2 consists of a sequence of two rules via an overlapping triple graph E of
the RHS of the first rule and LHS of the second rule. For the definition of con-
current, parallel and sequentially independent rule applications we refer to [19]
where these notions are defined in the context ofM-adhesive categories (see also
Remark 3). This leads to the main result for triple graph grammars that each
triple graph transformation sequence can be decomposed into a source transfor-
mation generating the source component followed by a forward transformation
translating the source component into its target component, and the other way
round.

Fact 2. Given a triple graph rule p : SLCLTL → SRCRTR, then
(i) p = pS∗SRCLTLpF , (ii) p = pT ∗SLCLTRpB, and (iii) p = (pS+pT )∗SRCLTRpC.

Proof. Consider the following proof for the source and forward rule, the other
decompositions follow analogously. In the following diagram, (1) is the pushout

sb2:SB cn2:SB2CL cl2:CL

bl3:BL cn3:BL2CL

as3:AS

cl3:CL

source

target
++

++

++

++

++
++

++ ++

++
++

cn1:BD2CD cd1:CDbd1:BD

Forward Rule 2 (Block to Class and Association)

SL2 CL2 TL2

SR2 CR2 TR2

Fig. 3. Type triple graph
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from the construction of the operational rules, (2) is also a pushout, and (e, id)
are jointly surjective. This means that p = pS ∗SRCLTL pF .

SL∅∅ SR∅∅

SLCLTL SRCLTL

SRCLTL SRCRTR

SRCRTR

(1) (2)

rS

e

rCT

id

Fact 3. Whenever a forward transformation is followed by a source transforma-
tion, these transformations are sequentially independent.

Proof. Consider the following diagram, where first a forward transformation

SGCGTG =
pF
1=⇒ SG′CG′TG′ and then a source transformation SG′CG′TG′ =

pS
2=⇒

SHCHTH is applied. Since the forward transformation does not change the source
component of G we have SG = SG′ and define i(x) = m2(x) for all x ∈ SL2 . Since
f is an inclusion, the triangle commutes, which shows sequential independence.

SR1CR1TR1SR1CL1TL1 SL2∅∅ SR2∅∅

SG′CG′TG′SGCGTG SHCHTHf

m2

i

Definition 11 (Source and Match Consistency). Consider a sequence
(pi)i=1,...,n of triple graph rules leading to corresponding sequences (pSi )i=1,...,n

and (pFi )i=1,...,n of source and forward rules. A triple graph transformation se-

quence SG0CG0TG0 =
(pS

i )i=1,...,n
=======⇒ SGnCG0TG0 =

(pF
i )i=1,...,n

=======⇒ SGnCGnTGn via first
pS1 , . . . , pSn and then pF1 , . . . , pFn with matches mS

i and mF
i and co-matches nS

i

and nF
i , respectively, is match consistent if the source component of the match

mF
i is uniquely defined by the co-match nS

i .

A triple graph transformation SGnCG0TG0 =
(pF

i )i=1,...,n
=======⇒ SGnCGnTGn is called

source consistent if there exists a match consistent sequence as above.

Theorem 4 (Decomposition and Composition Result). For triple graph
transformation sequences the following holds for triple rules p1, . . . , pn with cor-
responding source rules pS1 , . . . , pSn and forward rules pF1 , . . . , pFn :

1. Decomposition: For each triple graph transformation sequence SG0CG0TG0

=
p1
=⇒ SG1CG1TG1 ⇒ . . . =

pn
=⇒ SGnCGnTGn there is a corresponding match

consistent triple graph transformation sequence SG0CG0TG0 =
pS
1=⇒ SG1CG0TG0

⇒ . . . =
pS
n=⇒ SGnCG0TG0 =

pF
1=⇒ SGnCG1TG1 ⇒ . . . =

pF
n=⇒ SGnCGnTGn.

2. Composition: For each match consistent triple graph transformation se-

quence SG0CG0TG0 =
pS
1=⇒ SG1CG0TG0 ⇒ . . . =

pS
n=⇒ SGnCG0TG0 =

pF
1=⇒

SGnCG1TG1 ⇒ . . . =
pF
n=⇒ SGnCGnTGn there is a triple graph transformation

sequence SG0CG0TG0 =
p1
=⇒ SG1CG1TG1 ⇒ . . . =

pn
=⇒ SGnCGnTGn.

3. Bijective Correspondence: Composition and Decomposition are inverse
to each other.
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Proof. The proof is similar to that in [3], by substituting classical triple graphs
by our new ones. The basic idea is to use the Concurrency Theorem [19] and
Fact 2 to split the triple rules and the Local Church–Rosser Theorem [19] to
commute sequentially independent transformation steps.

Decomposition: We prove this by induction on the number n of triple graph
rule applications. For n = 1, as a consequence of Fact 2 and the Concurrency
Theorem, a direct triple graph transformation SG0CG0TG0 =

p1
=⇒ SG1CG1TG1 can

be uniquely split up into SG0CG0TG0 =
pS
1=⇒ SG1CG0TG0 =

pF
1=⇒ SG1CG1TG1 , which

is obviously match consistent.

For arbitrary n and the triple graph transformation SG0CG0TG0 =
(pi)i=1,...,n
=======⇒

SGnCGnTGn , suppose we have a corresponding match consistent transformation

sequence SG1CG1TG1 =
pS
2=⇒ SG2CG1TG1 ⇒ . . . =

pS
n=⇒ SGnCG0TG0 =

pF
1=⇒

SGnCG1TG1 ⇒ . . . =
pF
n=⇒ SGnCGnTGn . Using the same argument as above, the

triple graph transformation SG0CG0TG0 =
p1
=⇒ SG1CG1TG1 can be split up into

a match consistent sequence SG0CG0TG0 =
pS
1=⇒ SG1CG0TG0 =

pF
1=⇒ SG1CG1TG1 .

Now the applications of pF1 and pS2 are sequentially independent (Fact 3). This
means that the two transformations can be switched leading to square (1) in
Fig. 4. Iterating this construction leads to the desired triple graph transforma-

tion SG0CG0TG0 =
pS
1=⇒ SG1CG0TG0 ⇒ . . . =

pS
n=⇒ SGnCG0TG0 =

pF
1=⇒ SGnCG1TG1 ⇒

. . . =
pF
n=⇒ SGnCGnTGn which can be shown to be match consistent.

Composition: Vice versa, each match consistent transformation sequence im-
plies that the corresponding subsequences are sequentially independent, such
that they can be shifted using again the Local Church–Rosser Theorem. More-
over, the corresponding source and forward rule applications are E-related such
that the application of the Concurrency Theorem leads to the required transfor-
mation.

Bijective Correspondence: The bijective correspondence of composition and
decomposition is a direct consequence of the bijective correspondence in the
Local Church–Rosser and the Concurrency Theorem. �

SG0CG0TG0 SG1CG0TG0 SG2CG0TG0
. . . SGnCG0TG0

SG1CG1TG1 SG2CG1TG1
. . . SGnCG1TG1

SG2CG2TG2 SGnCG2TG2

. . . . . .

SGnCGnTGn

(1)

pS1 pS2

pS2

p1

p2

pF1 pF1 pF1

pF2

Fig. 4. Decomposition and Composition
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5 Comparison of Classical and Flexible Triple Graphs

In this section, we show that the classical theoretical model for triple graphs is a
special case of the new model after flattening. In particular, we limit the formal
comparison to the full subcategory CTripleGraphsDis of CTripleGraphs,
where triple graphs have a discrete correspondence component, consisting only
of nodes and not of edges. The flattening construction for classical triple graphs
[15] is limited to the case without edges in the correspondence component as well.
Thus, we show that our new model is more flexible and more directly suitable
for implementation than the flattened model obtained as described in [15].5

We define a flattening functor from CTripleGraphsDis to
TripleGraphsSub, being the full subcategory of TripleGraphs where triple
graphs have correspondence nodes with exactly one outgoing edge to some source
and target node, respectively. Note that TripleGraphsSub is a real subcategory
of TripleGraphs – as illustrated by our running example (see Ex. 1) – because
in TripleGraphs triple graphs with multiple or zero outgoing edges from cor-
respondence nodes are allowed, which is not allowed in TripleGraphsSub.

The flattening functor translates the source and target component from clas-
sical triple graphs directly to source and target components in the new model.
The correspondence component together with the morphism span into source
and target component of the classical model is translated into a correspondence
component in the new model, where the morphism span is flattened into special
correspondence edges connecting source nodes and target nodes via correspon-
dence nodes as prescribed by the morphism span.

Definition 12 (Flattening functor). The flattening functor F = (FOb,
FMor) : CTripleGraphsDis → TripleGraphsSub is defined as follows:

Given a classical triple graph G = (GS
sG← GC

tG→ GT ), where w.l.o.g. GS,
GC , and GT are disjoint, then FOb(G) = SCT, where S = GS , T = GT , CV =
GC ∪ sG(GC) ∪ tG(GC) the set of nodes in C, CE = {(c, s)|c ∈ GC ∧ s ∈
GS ∧ sG(c) = s} ∪ {(c, t)|c ∈ GC ∧ t ∈ GT ∧ tG(c) = t} the set of edges in C and
source and target mappings for C induced by the edge names, srcC(c, s) = c and
tgtC(c, s) = s, srcC(c, t) = c and tgtC(c, t) = t, respectively.

Given a classical triple graph morphism f : G1 → G2 with f = (fS : G1S →
G2S , fC : G1C → G2C , fT : G1T → G2T ), then FMor(f) : FOb(G1) → FOb(G2)
with (FMor(f))(n) = fS(n) for each node n in S1 = G1S , (FMor(f))(n) = fT (n)
for each node n in T1 = G1T , (FMor(f))(n) = fC(n) for each n in G1C ⊆
C1,V , (FMor(f))(c, s) = (fC(c), fS(s)) for each edge (c, s), and (FMor(f))(c, t) =
(fC(c), fT (t)) for each edge (c, t) in FOb(G1).

5 A more extensive comparison would even be possible following the same principle of
expressing TGGs as plain graph grammars with special typing. It would be neces-
sary to extend TRIPLE in TripleGraphs, accordingly. For example, in [24] special
correspondence edges for model synchronization or in [4] special bookkeeping edges
are used that can be formalized by extending TRIPLE accordingly. For simplicity
reasons, we restrict to the most common variant with discrete correspondence com-
ponent here.
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Using this flattening functor, we can show the equivalence of the categories
TripleGraphsSub and CTripleGraphsDis.

Theorem 5 (Equivalence of categories). The categories TripleGraphsSub
and CTripleGraphsDis are equivalent.

Proof idea. There exists an inverse functor G = (GOb,GMor) : TripleGraphsSub
→ CTripleGraphsDis. Given a triple graph SGCGTG, then G(SGCGTG) = G

with G = (GS
sG← GC

tG→ GT ), where GS = SG, GC = {v ∈ CG | tripleG(v) = c},
and GT = TG. Moreover, sG(v) = w and tG(v) = w′ for the unique edges that
exist from v to the source node w and the target node w′ as a prerequisite of
SGCGTG being in the subcategory. For a triple graph morphism f : SGCGTG →
SHCHTH , G(f) = (fS , fC , fT ) with fS , fC , fT being the restrictions of f to the
domain.

Basically, G translates source and target components and all nodes of the cor-
respondence component of the new model to source, correspondence, and target
components of the classical model in a straightforward way. Moreover, corre-
spondence edges from correspondence to source or target nodes are translated
into a morphism span in the classical model. Thus, we find natural isomorphisms
from both G ◦ F and F ◦ G to the identity functor.

This means that CTripleGraphsDis and TripleGraphsSub are equivalent
categories, demonstrating that the classical theoretical model for triple graphs
is a special case of the new model after flattening.

From this result, it also follows that each triple graph transformation in the
classical model can be flattened to a corresponding triple graph transformation
in our new model.

Corollary 1 (Transformation preservation). Given a classical triple graph
transformation G =

p,m
==⇒ H consisting of a pushout in CTripleGraphsDis, there

is a corresponding flexible triple graph transformation F(G) =
F(p),F(m)
======⇒ F(H)

consisting of the pushout flattened via F in TripleGraphs.

Proof. This follows directly from the equivalence of the categories
CTripleGraphsDis and TripleGraphsSub (Theorem 5), with
TripleGraphsSub ⊆ TripleGraphs.

Remark 4. Obviously, the reverse direction of Corollary 1 only holds for triple
graph transformations in TripleGraphsSub, but not for general ones. A coun-
terexample are triple graph transfomations using the triple rules from Example 1,
which do not have a correspondence in classical triple graphs.

6 Conclusion and Future Work

We have presented a new formalization for TGGs as plain graph grammars with
special typing more suitable for implementation than the classical formalization



154 U. Golas et al.

for TGGs and at the same time also more flexible with respect to specifying
relationships between source and target elements. We have proven that the main
decomposition and composition result can be carried over from the classical to
the new formal TGG model. Moreover, we have presented a formal comparison
with the classical model demonstrating that it is actually a special case of the
new one, allowing for cross-fertilization between both approaches and the further
development of new TGG theory nearer to implementation based on the new
formal, flattened and more flexible model.

There exist different approaches to attributed graph transformation [19,25]. It
is part of future work to equip our new TGG model with attribution and derive
the corresponding important TGG results for triple graphs with attribution as
described in one of these approaches and started in [26]. Another future goal is to
generalize more recent and specific TGG results like correctness, completeness,
consistency, and functional behavior, as presented, for example, in [5,3,6,4], to
the new triple graph model in order to bridge the gap between formal seman-
tics and corresponding implementations with different bookkeeping mechanisms.
Moreover, the new model and corresponding theory should be generalized to
TGGs with application conditions as presented already, for example, in [7,6].
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Abstract. We tackle the problem of graph transformation with particu-
lar focus on node cloning. We propose a new approach to graph rewriting,
called polarized node cloning, where a node may be cloned together with
either all its incident edges or with only its outgoing edges or with only
its incoming edges or with none of its incident edges. We thus subsume
previous works such as the sesqui-pushout, the heterogeneous pushout
and the adaptive star grammars approaches. We first define polarized
node cloning algorithmically, then we propose an algebraic definition.
We use polarization annotations to declare how a node must be cloned.
For this purpose, we introduce the notion of polarized graphs as graphs
endowed with some annotations on nodes and we define graph transfor-
mations with polarized node cloning by means of sesqui-pushouts in the
category of polarized graphs.

1 Introduction

Graph transformation [22,11,13] extends string rewriting [3] and term rewriting
[1] in several respects. In the literature, there are many ways to define graphs and
graph rewriting. The proposed approaches can be gathered in two main streams:
(i) the algorithmic approaches, which define a graph rewrite step by means of
the algorithms involved in the implementation of graph transformation (see e.g.
[2,10]); (ii) the second stream consists of the algebraic approaches, first proposed
in the seminal paper [14], and which use categorical constructs to define graph
transformation in an abstract way. The most popular algebraic approaches are
the double pushout (DPO) [14,5] and the single pushout (SPO) [21,16,17,12].

In this paper we are interested in graph transformation with particular focus
on node cloning. Indeed, making copies of values is a very useful feature shared
by most popular programming languages (see for instance the so-called shallow
cloning [15] or deep cloning [20] operations). Informally, by cloning a node n, we
mean making zero, one or more copies of n with “some” of its incident edges.
The classical DPO and SPO approaches of graph transformation are clearly not
well suited to perform cloning of nodes. As far as we are aware of, there are
two algebraic attempts to deal with node cloning : the sesqui-pushout approach
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(SqPO) [4] and the heterogeneous pushout approach (HPO) [7]. The sesqui-
pushout approach has the ability to clone nodes with all their incident edges
whereas the HPO clones a node only with its outgoing edges. Our aim in this
paper is to investigate a new flexible way to perfom node cloning, so that every
copy of a node n can be made either with all the incident edges (denoted hereafter
n±), with only its outgoing edges (n+), with only its incoming edges (n−), or
without any of its incident edges (denoted simply as n). We call this kind of
graph transformation polarized node cloning. To achieve this task, we introduce
the notion of polarized graphs. Informally, we define a polarized graph X as a
graph X where each node n is annotated as n± , n+, n− or just n. The rules
in our approach are made of a polarized graph K, consisting of a graph K

with annotated nodes, and a span of graphs L
l← K

r→ R. The annotations of
K indicate the cloning strategy of incident edges. We prove that the polarized
node cloning can be described as a SqPO rewriting of polarized graphs, preceded
by the polarization of every node n in the left hand side as n± and followed by
forgetting all polarizations in the right hand side. This is called the polarized
sesqui-pushout rewriting (PSqPO for short).

The paper is organized as follows. The notion of polarized node cloning of
graphs is defined in an elementary algorithmic way in Section 2. In Section 3 we
define polarized graphs and the corresponding sesqui-pushout rewriting, from
which we get the polarized sesqui-pushout rewriting for the polarized node
cloning of graphs. Our approach is adapted to labeled graphs and illustrated
through some examples in Section 4. A comparison with related work is made in
Section 5 and concluding remarks are given in Section 6. An Appendix is added
in order to ease the verification of the accuracy of our results. Detailed proofs
can be found in [8]. We use categorical notions which may be found for instance
in [19].

2 Polarized Node Cloning of Graphs

In this section we introduce some notations involving graphs and define the
notion of polarized node cloning.

2.1 Graphs

Definition 1. A graph X is made of a set of nodes |X |, a set of edges X→ and
two functions source and target from X→ to |X |. An edge e with source n and

target p is denoted n
e→ p. The set of edges from n to p in X is denoted Xn→p.

A morphism of graphs f : X → Y is made of two functions (both denoted f)

f : |X | → |Y | and f : X→ → Y→, such that f(n)
f(e)→ f(p) for each edge n

e→ p.
This provides the category Gr of graphs.

In order to build large graphs from smaller ones, we will use the sum of graphs
and the edge-sum for adding edges to a graph, as defined below using the symbol
+ for the coproduct in the category of sets, i.e., the disjoint union of sets.
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Definition 2. Given two graphs X1 and X2, the sum X1+X2 is the coproduct of
X1 and X2 in the categry of graphs, which means that |X1+X2| = |X1|+|X2| and
(X1 + X2)→ = X1→+X2→ and the source and target functions for X1+X2 are
induced by the source and target functions for X1 and for X2. Given two graphs
X and E such that |E| ⊆ |X |, the edge-sum X +e E is the pushout, in the
category of graphs, of X and E over their common subgraph made of the nodes
of E and no edge. This means that |X +e E| = |X | and (X +e E)→ = X→+E→
and the source and target functions for X +e E are induced by the source and
target functions for X and for E.

Clearly, the precise set of nodes of E does not matter in the construction of
X +e E, as long as it contains the source and target of every edge of E and is
contained in |X |. This notation is extended to morphisms: let f1 : X1 → Y1 and
f2 : X2 → Y2, then f1+ f2 : X1+X2 → Y1+Y2 is defined piecewise from f1 and
f2. Similarly, let f : X → Y and g : E → F with |E| ⊆ |X | and |F | ⊆ |Y |, then
f +e g : X +e E → Y +e F is defined as f on the nodes and piecewise from f
and g on the edges.

Remark 1. Let X be a subgraph of a graph Y . Let X denote the subgraph of
Y induced by the nodes outside |X | and X̃ the subgraph of Y induced by the
edges which are neither in X nor in X, that is, the edges that are incident to
a node (at least) in X but do not belong to X . For all nodes n, p in Y let

X̃n→p denote the subgraph of Y induced by the edges from n to p in X̃ (so that

X̃n→p is empty whenever both n and p are in X). Then Y can be expressed

as Y = (X + X) +e X̃ with X̃→ =
∑

n∈|Y |,p∈|Y | X̃n→p which can also be

written as |Y | = |X |+ |X| and Y→ = X→ + X→ +
∑

n∈|Y |,p∈|Y | X̃n→p

Definition 3. A matching of graphs is a monomorphism of graphs. Given a
matching m : L → G, the nodes and edges in m(L) are called the matching
nodes and the matching edges, respectively.

Thus, a morphism of graphs is a matching if and only if it is injective, in the
sense that both underlying functions (on nodes and on edges) are injections. So,
up to isomorphism, every matching of graphs is an inclusion. For simplicity of
notations, we now assume that all matchings of graphs are inclusions.

2.2 Polarized Node Cloning, Algorithmically

The polarized node cloning of graphs is a graph transformation which allows one
to perform flexible cloning of nodes and their incident edges. Given a rewriting
rule with a left-hand side L and a right-hand side R and a matching m of L
in a graph G, the transformation of the nodes and the matching edges of G is
provided by the rule, while the transformation of the non-matching edges (i.e.,
edges of G not in the image of L) is rather flexible: a node n can be cloned either
with all its non-matching edges, or with all its outgoing non-matching edges, or
with all its incoming non-matching edges, or with none of its non-matching
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edges. Definition 4 below provides an algorithmic definition of polarized node
cloning (AlgoPC for short). An algebraic approach, more abstract, is presented
in Section 3.

Definition 4. An AlgoPC rewrite rule consists of a tuple μ = (L, R, C+, C−),
where L and R are graphs and C+, C− : |L| × |R| → N are mappings. Then
L and R are called the left-hand side and the right-hand side, respectively, and
C+, C− are called the cloning multiplicities of μ. Let μ = (L, R, C+, C−) be an
AlgoPC rewrite rule, G a graph and m : L → G a matching. Thus |G| = |L|+ |L|
and G→ = L→+L→+ L̃→. The AlgoPC rewrite step applying the rule μ to the
matching m builds the graph H and the matching h : R → H such that h is the
inclusion and |H | = |R|+ |L| and H→ = R→ + L→ +

∑
n∈|H|,p∈|H|En,p where:

1. if n ∈ |R| and p ∈ |R| then there is an edge n
(e,i)→ p in En,p for each edge

nL
e→ pL in L̃→ and each i ∈ {1, . . . , C+(nL, n)× C−(pL, p)};

2. if n ∈ |R| and p ∈ |L| then there is an edge n
(e,i)→ p in En,p for each edge

nL
e→ p in L̃→ and each i ∈ {1, . . . , C+(nL, n)};

3. if n ∈ |L| and p ∈ |R| then there is an edge n
(e,i)→ p in En,p for each edge

n
e→ pL in L̃→ and each i ∈ {1, . . . , C−(pL, p)};

4. if n ∈ |L| and p ∈ |L| then En,p is empty.

So, when an AlgoPC rule μ = (L, R, C+, C−) is applied to a matching of L in
G, the image of L in G is erased and replaced by R, the subgraph L remains
unchanged, and the edges in L̃ are handled according to the cloning multiplicities.
The subtleties in building clones lie in the treatment of the edges in L̃.

Example 1. Let us consider the following rule μ = (L, R, C+, C−) where

L R

f

����
��

��




a b

g
�����
�

���
�����

c d e

C+(a, c) = 2, C+(a, e) = 1, C−(f, g) = 2, and every other cloning multiplicity
is 0. Now let us consider the graphs G and H :

G H

Γ
��

��

��
��

��
��

��
��

�

		��
��
��
��
��
�

f



���
���

���

����
���

���
�

a

��



b

Γ
��

�� ��
g



���
���

���

����
���

���
�

��

c

��

����

�� ��

d e

����

��
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Then G rewrites into H using the rule μ and the matching L → G defined by
the inclusion. Indeed, as specified by the cloning multiplicities, the edge going
out of node a towards Γ is cloned three times, two times by the edges going out
from c towards Γ (C+(a, c) = 2) and a third time by the edge going out from
e (C+(a, e) = 1), the node b is erased as well as all its incident edges, and the
incoming edges of f are duplicated (C−(f, g) = 2) and redirected towards g.
The edge from a towards f is copied four times (C+(a, c)× C−(f, g) = 4) from
c to g and two times (C+(a, e)× C−(f, g) = 2) from e to g.

3 Polarized Sesqui-Pushout of Graphs

In this section, in order to provide an algebraic version of the polarized node
cloning of graphs defined in Section 2.2, we introduce polarized graphs, we study
their sesqui-pushout rewriting and we use it for defining the notion of polarized
sesqui-pushout of graphs.

3.1 Polarized Graphs

A polarized graph is a graph where every node may be polarized in the sense
that it may be marked either with a “+”, with a “−”, with both “±” or with
no mark. The polarizations will be used as cloning instructions.

Definition 5. A polarization X± of a graph X is a pair X± = (|X |+, |X |−)
of subsets of |X |. A node n may be denoted n+ if it is in |X |+, n− if it is in
|X |− and n± if it is in |X |+ ∩ |X |−. A polarized graph X = (X, X±) is a graph
X together with a polarization X± of X such that the source of each edge e of
X→ is in |X |+ and the target of e is in |X |−. A morphism of polarized graphs
f : X → Y, where X = (X, X±) and Y = (Y, Y ±), is a morphism of graphs
f : X → Y such that f(|X |+) ⊆ |Y |+ and f(|X |−) ⊆ |Y |−. This provides the
category Gr± of polarized graphs. The notations in defintion 1 are extended to
polarized graphs: when X = (X, X±) then |X| = |X | and X→ = X→.

Definition 6. Given two polarized graphs X1 and X2, their sum is the polarized
graph X1 + X2 made of the graph X1 + X2 with the polarization |X1 + X2|+ =
|X1|+ + |X2|+ and |X1 + X2|− = |X1|− + |X2|−. Given two polarized graphs
X and E such that |E| ⊆ |X |, |E|+ ⊆ |X |+ and |E|− ⊆ |X |−, their edge-sum
is the polarized graph X +e E made of the graph X +e E with the polarization
|X +e E|+ = |X |+ and |X +e E|− = |X |−.

Definition 7. A matching of polarized graphs is a monomorphism f : X → Y
such that f(|X |+) = f(|X |)∩ |Y |+ and f(|X |−) = f(|X |)∩ |Y |− (we say that f
strictly preserves the polarization).

Thus, a matching of polarized graphs is a matching of graphs which strictly
preserves the polarization. We now assume that all matchings of polarized graphs
are inclusions, which is the case up to isomorphism.
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Remark 2. Let f : X → Y be a matching of polarized graphs. Analogously to
Remark 1, using the fact that f strictly preserves the polarization, we can express
Y as Y = (X+X) +e X̃ with X̃→ =

∑
n∈|Y|,p∈|Y| X̃n→p, where X̃n→p denotes the

polarized graph made of the graph X̃n→p as in Remark 1 with its nodes polarized
as in Y.

Example 2. Here is a morphism of polarized graphs which is an inclusion al-
though it is not a matching (the condition f(|X |+) = f(|X |) ∩ |Y |+ is not
fulfilled):

n−

p+

�������
��

n±

��
���

��
��

p+

�������
��
�� q−

Definition 8. The underlying graph of a polarized graph X = (X, X±) is X.
This defines a functor Depol : Gr± → Gr. The polarized graph X induced by
a graph X is X = (X, X±) where |X |+ = |X |− = |X |. This defines a functor
Pol : Gr→ Gr±, which is a right adjoint to Depol (this is denoted Depol ( Pol).
Moreover, the functor Depol ◦ Pol is the identity of Gr.

3.2 Sesqui-Pushout Rewriting of Polarized Graphs

In this section we describe the sesqui-pushout of polarized graphs. The sesqui-
pushout rewriting [4] relies on the well-known categorical notions of pushout
(PO) and pullback (PB): a sesqui-pushout rewriting step is made of a final
pullback complement followed by a pushout. Pushouts and final pullback com-
plements of polarized graphs are described in Propositions 1 and 2, respectively.

Proposition 1. Let r : K→ R be a morphism of polarized graphs and d : K→
D a matching of polarized graphs. The following square, where h is the inclusion,
is a pushout of d and r in Gr±.

K

d
��

r �� R

h
��

D = (K +K) +e K̃
r1=(r+id

K
)+er̃

�� H = (R+K) +e R̃

where R̃n→p =
∑

nD∈r−1
1 (n),pD∈r−1

1 (p) K̃nD→pD for all n, p ∈ |H|, nD ∈ |D|+,
pD ∈ |D|−, and where r̃ : K̃→ R̃ maps nD

e→ pD to r1(nD)
e→ r1(pD).

Remark 3. Pushouts are preserved by Depol, because Depol is left adjoint to
Pol. With the notations as in Proposition 1, this implies that Depol(h) can also
be obtained by computing a pushout of Depol(d) and Depol(r) in Gr.
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Let us now define final pullback complements in the naive way, this definition
coincides with the one in [9,4] when both exist.

Definition 9. In a category M, let a : X → Y and g : Y → Y1 be consecutive
morphisms. A pullback complement (PBC) of a and g is an object X1 with a
pair of morphisms f : X → X1, a1 : X1 → Y1 such that there is a pullback:

Y
g
��

X
a��

f
��

Y1 X1a1

��

A morphism k : (X1, f, a1) → (X ′1, f ′, a′1) of pullback complements of a and g
is a morphism k : X1 → X ′1 in M such that k ◦ f = f ′ and a′1 ◦ k = a1. This
yields the category of pullback complements of a and g, and the final pullback
complement (FPBC) of a and g is defined as the final object in this category, if
it does exist.

Proposition 2. Let l : K → L be a morphism and m : L → G a matching of
polarized graphs. The following square, where d is the inclusion, is a FPBC of l
and m in Gr±:

L

m
��

K
l��

d
��

G = (L+ L) +e L̃ D = (K + L) +e K̃
l1=(l+id

L
)+e l̃

��

where K̃nD→pD = L̃l1(nD)→l1(pD) for all nD ∈ |D|+, pD ∈ |D|− (otherwise

K̃nD→pD = ∅) and where l̃ : K̃→ L̃ maps nD
e→ pD to l1(nD)

e→ l1(pD).

The next definition is the usual definition of SqPO rewriting [4], applied to the
category of polarized graphs.

Definition 10. A SqPO rewrite rule of polarized graphs is a span of polarized

graphs. Let ρ = L
l← K

r→ R be a SqPO rewrite rule of polarized graphs and
m : L → G a matching of polarized graphs. The SqPO rewrite step applying
the rule ρ to the matching m builds the polarized graph H and the matching of
polarized graphs h : R → H such that h is the inclusion, in two steps. First a
FPBC of m and l is built as in Proposition 2, which gives rise to a polarized
graph D, a morphism l1 : D → G and a matching d : K → D in Gr±. Then a
pushout of d : K → D and r : K → R is constructed as in Proposition 1, which
gives rise to a graph H, a morphism r1 : D → H and a matching h : R → H
in Gr±.
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We represent a SqPO rewrite step of polarized graphs by the following diagram:

L

m

��

K
l�� r ��

d
��

R

h
��

G D
l1

��
r1

�� H

Merging Propositions 1 and 2 yields the following result, which provides an
explicit description of a SqPO rewrite step of polarized graphs.

Theorem 1. In the category of polarized graphs, let ρ = (L
l← K

r→ R) be a

SqPO rewrite rule and m : L → G a matching, so that G = (L + L) +e L̃. The
SqPO rewrite step applying ρ to m builds the matching h : R → H where h is
the inclusion and H = (R+ L) +e R̃ where, for all nodes n, p in |H|:

R̃n→p =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∑
n+
K∈r−1(n),p−K∈r−1(p) L̃l(nK)→l(pK) when n, p ∈ |R|∑

n+
K∈r−1(n) L̃l(nK)→p when n ∈ |R|, p ∈ |L|∑

p−K∈r−1(p) L̃n→l(pK) when n ∈ |L|, p ∈ |R|
∅ when n, p ∈ |L|

3.3 Polarized Node Cloning of Graphs, Algebraically

In this section we show that the polarized node cloning of graphs can easily be
performed using the sesqui-pushout rewriting of polarized graph. This is called
the polarized sesqui-pushout rewriting system (PSqPO). In a PSqPO rewriting
step, the given matching m : L → G and the resulting matching h : R → H
are matchings of ordinary graphs, while the interface matching d : K → D is
a matching of polarized graphs where the polarization of a node indicates how
the rewriting step acts on the non-matching edges incident to this node. The
adjoint functors Pol : Gr → Gr± (right adjoint) and Depol : Gr± → Gr (left
adjoint) from Definition 8 are used for moving between categories Gr and Gr±.
It should be reminded that Depol ◦ Pol is the identity of Gr.

Definition 11. A PSqPO rewrite rule of graphs is a span of graphs L
l← K

r→ R
together with a polarized graph K such that K = Depol(K). This is denoted by

L
l← K

r→ R. Thanks to the adjunction Depol ( Pol, each PSqPO rewrite

rule L
l← K

r→ R gives rise to a SqPO rewrite rule L
l← K

r→ R in Gr± where
L = Pol(L) and R = Pol(R). The PSqPO rewrite step applying a PSqPO rewrite

rule ρ = (L
l← K

r→ R) to a matching of graphs m : L → G is the following
construction of a matching of graphs h : R → H.

(i) Let m′ = Pol(m) : L→ G, so that m′ is a matching of polarized graphs.
(ii) Let h′ : R→ H be the matching of polarized graphs obtained by applying the

SqPO rewriting rule ρ′ to the matching m′ in Gr±; note that Depol(R) =
Depol(Pol(R)) = R.
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(iii) Let H = Depol(H) and h = Depol(h′) : R → H, this is the required
matching of graphs.

This means that H is made of a copy of R together with the non-matching nodes
of G (i.e., nodes of G which are not in the image of the matching) and with an

edge n
(nD ,pD,e)−→ p for each nD in |K|+ + |L| such that r1(nD) = n, each pD in

|K|− + |L| such that r1(pD) = p and each nG
e→ pG in G→ where nG = l1(nD)

and pG = l1(pD). Since l1 and r1 are the identity on |L|, whenever both n and
p are in |L| then Hn→p = Gn→p.

A PSqPO rewrite step of graphs can be represented by the following diagram:

L

m

��

G

� Pol ��

L

m′

��

K
l�� r ��

d′

��

R

h′

��

G D
l1

��
r1

�� H

� Depol
��

R

h
��

H

Remark 4. According to Definitions 11 and 10, applying a PSqPO rewrite rule
ρ′ to a matching m′ can be decomposed in four steps: (i) m is mapped to m′ =
Pol(m), (ii-a) the FPBC of m and l in Gr± provides d′, (ii-b) the PO of d′ and
r in Gr± yields h′, (iii) h′ is mapped to h = Depol(h′). Thanks to remark 3,
steps (ii-b) and (iii) can be “permuted”, in the following way: first d′ is mapped
to d = Depol(d′), then the PO of d and r in Gr yields h. Thus, a PSqPO rewrite
step of graphs can also be represented by the following diagram:

L

m

��

G

� Pol ��

L

m′

��

K
l��

d′

��

G D
l1

��

� Depol
��

K
r ��

d
��

R

h
��

D r1
�� H

The next result shows that the PSqPO rewriting of graphs does provide an
algebraic version of the polarized node cloning of graphs. A proof of a more
precise result is provided in [8].

Proposition 3. Let μ = (L, R, C+, C−) be an AlgoPC rewrite rule. Let K be the
polarized graph without edges and with, for each � ∈ {+,−}, a node (nL, nR)i,�

�

for each pair of nodes (nL, nR) ∈ |L| × |R| and each i ∈ {1, . . . , C�(nL, nR)}.
Let ρ = L

l← K
r→ R be the PSqPO rewrite rule where l((nL, nR)i,�) = nL and

r((nL, nR)i,�) = nR. Then the rules μ and ρ are equivalent, in the sense that for
each matching of graphs m : L → G, the AlgoPC rewrite step applying μ to m
and the PSqPO rewrite step applying ρ to m yield the same matching h : R → H.

Example 3. The rewrite rule μ of Example 1 can be translated to the following
PSqPO rule:

L K R

f

�����
�

��
���

�

a b

l��
f−1 f−2

a+
1 a+

2 a+
3

r ��
g

�����
�

���
�����

c d e
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where l(f1) = l(f2) = f , l(a1) = l(a2) = l(a3) = a, r(f1) = r(f2) = g, r(a1) =
r(a2) = c and r(a3) = e. As in Example 1, the matching is the inclusion of L in
G (below) and the PSqPO rewrite step builds:

G D H

Γ
��

��

��
��
��
��
��
�

����
��
��
��
��

f

����
��
�

��
��

��
�

a

��

��

b

l1��

Γ±
��

��
��

f−1 f−2

a+
1

  

������

!!����������
a+
2

""����
##

$$

a+
3

%%����������

""����

��

r1 ��

Γ
��

�� ��
g



���
���

���

����
���

���
�

��

c

��

����

�� ��

d e

����

��

The resulting graph H and matching h : R → H are the same as in Example 1.

4 An Extension to Labeled Polarized Graphs

For several modeling purposes, it is useful to add labels to nodes and edges.
In this section we discuss an extension of our proposal in order to perform
polarized sesqui-pushout graph transformation on labeled graphs. We provide
syntactic conditions which ensure the existence of the constructions involved
in the rewriting process. Hereafter, two sets LN and LE are given, they are
called the set of labels for nodes and for edges, respectively. Moreover, all the
constructions are considered up to isomorphism.

Definition 12. A labeled graph (X, lab) is a graph X together with two partial
functions lab : |X | ⇀ LN for the labeling of nodes and lab : X→ ⇀ LE for the
labeling of edges. A morphism of labeled graphs f : (X, labX) → (Y, labY ) is a
morphism of graphs f : X → Y which preserves the labels, in the sense that if
a node or an edge x in X is labeled with a then f(x) in Y is labeled with a (if
x is unlabeled there is no restriction on the labeling of f(x)). This provides the
category LGr of labeled graphs (with labels in LN and LE).

A labeled graph (X, lab) is often simply denoted X . A node x is denoted x : a if

it is labeled with a and x : ◦ if it is unlabeled. An edge x → y is denoted x
a→ y

if it is labeled with a and simply x → y if it is unlabeled. A matching of labeled
graphs is a matching of graphs which preserves the labels. Since polarizations
and labelings do not interfere, these definitions and results are easily combined
with the definitions and results in Section 3.1. This provides the category LGr±

of labeled polarized graphs, and Proposition 1 and Proposition 2 are generalized
to labeled polarized graphs as follows.

Proposition 4. Let r : K → R be a morphism of labeled polarized graphs and
d : K→ D a matching of labeled polarized graphs. Let us assume that:



166 D. Duval, R. Echahed, and F. Prost

– For each node or edge x in K, if r(x) : a and d(x) : b, then a = b.
– For each distinct nodes or edges x, y in K, if r(x) = r(y), d(x) : a and

d(y) : b, then a = b.

Then the pushout of d and r in LGr± exists, its underlying diagram of polarized
graphs is the pushout of d and r in Gr± and each node or edge x in H is labeled
if and only if it is the image of a labeled node or edge in R or in D.

Thanks to the assumptions, no conflict may arise when labeling the graph H: if
a node or edge x in H is the image of several nodes or edges in R or in D (at
most one in R and maybe several in D), then all of them have the same label,
which becomes the label of x.

Proposition 5. Let l : K → L be a morphism of labeled polarized graphs and
m : L → G a matching of labeled polarized graphs. Then the FPBC of l and
m exists, its underlying diagram of polarized graphs is the FPBC in Gr± and
each node or edge xD in the graph D is labeled as follows: if xD is not in the
image of K then xD is labeled in D like l1(xD) in G, otherwise xD = d(xK) for
a unique xK in K and the label of xD in D is determined by the labels of xK in
K, xL = l(xK) in L and xG = m(xL) in G according to the following patterns:

xL : a�
��

xK : a�
��

���

xG : a xD : a
���

xL : ◦�
��

xK : ◦�
��

���

xG : a xD : a���

xL : ◦�
��

xK : ◦�
��

���

xG : ◦ xD : ◦���

xL : a�
��

xK : ◦�
��

���

xG : a xD : ◦���

The labeled PSqPO rewrite rules cannot be defined simply as PSqPO rewrite
rules where the graphs are labeled and the morphisms preserve the labels: in-
deed, in order to avoid conflicts in labeling the pushout, the assumptions in
Proposition 4 must be satisfied after the construction of the polarized FPBC
(Proposition 5). This leads to the following definition.

Definition 13. A labeled PSqPO rewrite rule is a PSqPO rewrite rule L
l←

K
r→ R (Definition 11) where the graphs are labeled and the morphisms preserve

the labels, such that the following conditions are fulfilled (where K = Depol(K)) :
(i) for each unlabeled node or edge x in K, if l(x) is unlabeled in L then r(x) is
unlabeled in R and (ii) for each distinct unlabeled nodes or edges x, y in K, if
l(x) �= l(y) and l(x) or l(y) is unlabeled in L then r(x) �= r(y) in R.

Example 4. The behavior of the “if b then...else...” operator in imperative
languages can be modelled thanks to two polarized PSqPO rewrite rules, one
when b is true and another one when b is false. Here is a possible choice
when b is true (morphisms are represented via node name sharing, for instance
r(m) = r(p) = p, m and l(m) = m):

L K R

m : if

��&&���
���

''��
���

�

n : true p : ◦ q : ◦

l��
m− : ◦

p± : ◦

r ��
p, m : ◦
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These rules for modeling “if...then...else...” are destructive, in the sense
that nodes n and q disappear during the rewrite step. Non-destructive rules can
also be chosen, here is such a rule for true.

L K R

m :if

��((






��
��

��

n :true p :◦ q :◦

l��
m− :◦

n± :true p± :◦ q± :◦

r ��
p, m :◦

n :true q :◦

Example 5. The problem of copying objects in object-oriented languages has
been thoroughly examined. Two generic ways of copying objects are usually
considered: shallow cloning, which is the basic cloning of Java (see the reference
of method clone in class Object [15]) and deep cloning, which is implemented
by deep copy in Eiffel [20]. These two ways of cloning can be modelled by our
approach. We restrict ourselves here to the cloning of a particular data, say
linked lists of constants (a constant is implemented as a node without any out-
going edge) and consider two cloning routines: sc (shallow cloning) and dc

(deep cloning). Intuitively, we would like to implement rules that transform, for
instance, the following graph, where � denotes the end of the list:

X �� ��

��

��

��

��

��

�

Γ
1
## 2 ))����

3

!!u v w

into the following ones, depending whether X is replaced by sc or by dc:

��

��

��

��

��

��

�

Γ

1 ���
���

�

2 ))����

3

!!u v w

��

##

��

##

**���������

##

or ��

��

��

��

��

��

�

Γ

1 ���
���

�

2 ))����

3

!!u v w

��

��

��

��

**���������

��
u v w

Notice that in the case of deep cloning, the edge from Γ to v is not cloned to
point to the “new” occurrence of v (the graph on the right). Indeed, the deep
cloning primitives do not modify the environment.

Let us consider labeled graphs. Label c is used to represent the usual cons
constructor of lists. The parameters of c are identified by edge labels, the next

cell of the list is pointed by an edge labeled n and the element of the cell is
pointed by an edge labeled e.

For the shallow cloning (sc) the recursive case is implemented by the following
rule where morphisms l, r are represented by node name sharing. All edges that
point to m before the execution of this rule will point to the new c node (the
node m : c in R). The function sc is recursively called by the node s in R.
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L K R

m : sc

��
n : c

e
��

n �� p : ◦

q : ◦

l��
m± : ◦

n± : c
e��

n �� p± : ◦

q± : ◦

r ��
s : sc

''��
���

n : c
e
��

n �� p : ◦

q : ◦

m : c
e
##

n

++

The base (halt) case is implemented by the following rule where the node m, n
is the image of both m and n by r:

L K R

m : sc �� n : � l��
m± : ◦ n± : � r ��

m, n : �

For deep cloning (dc), the recursive case is implemented by the following rule:

L K R

m : dc

��
n : c

e
��

n �� p : ◦

q : ◦

l��
m± : ◦

n± : c
e��

n �� p± : ◦

q±2 : ◦

q+1 : ◦

r ��
s : dc

,,  
   

n : c
e
��

n �� p : ◦

q2 : ◦

m : c
e
��

n

++

q1 : ◦

In this case node q is cloned twice in K: the incoming edges of q are not cloned
as incoming edges of q+1 (as it is the case for the edge from Γ to v).

The base (halt) case for dc is implemented by substituting sc with dc in the
corresponding rule.

5 Related Work

Polarized sesqui-pushout graph rewriting (PSqPO) is a new way to perfom graph
transformations which offers different possibilities to clone nodes and their inci-
dent edges, in addition to classical graph transformations (addition and deletion
of nodes and edges). In this section the PSqPO approach is compared with other
approaches for graph transformations.

In [7] an algebraic approach of termgraph transformation, based on hetero-
geneous pushouts (HPO), has been proposed. With respect to cloning abilities,
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the HPO approach offers the possibility to make one or more copies of a node
together with its outgoing edges. Therefore, this way of cloning nodes is limited
to the outgoing edges only and contrasts with the flexible possibilities of cloning
edges proposed in the present paper. In fact, whenever a graph G rewrites into
H according to the HPO approach using a rule (L, R, τ, σ) [7, Definition 5], the

graph G can also be rewritten into H according to a rule L
l← K

r→ R where
morphisms l and r encode the functions τ and σ.

Cloning is also one of the features of the sesqui-pushout approach (SqPO)
to graph transformation [4]. The SqPO and PSqPO approaches mainly differ
in the way of handling cloning. In [4], the cloning of a node is performed by
copying all its incident edges. This is a particular case of PSqPO. The use of
polarized graphs helped us to specify for every clone, the way incident edges
can be copied. Therefore, a SqPO rewrite step can be simulated by a PSqPO
rewrite step by polarizing every node n in the interface graph K as n±, but the
converse does not hold in general. For instance, in both rules defining the shallow
cloning operator sc (see Example 5), all nodes are cloned with polarities ±, thus
these rules can be implemented using the SqPO approach in the category of
graphs. However, in the recursive case implementing the deep cloning operator,
dc, one node, q+1 , in K is polarized as + only; it follows that this rule cannot
be modelled with a standard SqPO transformation of graphs. Furthermore, in
[4], the sesqui-pushout approach is compared to the classical DPO and SPO
approaches. Therefore, for comparing our approach with the DPO and SPO, we
may rely on [4, Propositions 12 and 14].

Cloning is also subject of interest in [6]. The authors consider rewrite rules
of the form S :=R where S is a star, i.e., S is a (nonterminal) node surrounded
by its adjacent nodes together with the edges that connect them. Rewrite rules
which perform the cloning of a node are given in [6, Definition 6]. These rules
show how a star can be removed, kept identical to itself or copied (cloned) more
than once. Here again, unlike our approach, each node is cloned together with
all its incoming and outgoing edges.

6 Conclusion

We have investigated a new way to perform node cloning in graph transformation
with some flexibility in copying incident edges. To obtain this result, we have
used an auxiliary category of polarized graphs which allows one to declare how
incident edges are cloned. The algebraic definition of a graph rewriting step
is based on a sesqui-pushout transformation in the auxiliary category. In [8],
the reader may find more results such as the equivalence of the algorithmic
and the algebraic definitions of PSqPO as well as the vertical composition of
transformations.

In [18], Löwe proposes a general framework of graph rewriting in span-
categories. He shows how classical algebraic graph transformation approaches
can be seen as instances of his framework. Our approach, which is close to
the sesqui-pushout rewriting, could be presented also as an instance of Löwe’s
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framework up to some particular considerations due to the use of two kinds of
graphs in our spans, namely polarized and not polarized graphs. Details of the
instance, including the complete definitions of abstract spans and matching of
abstract spans are matter of further investigation.
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Abstract. We consider a variant of rational term rewriting as first in-
troduced by Corradini et al., i.e., we consider rewriting of (infinite) terms
with a finite number of different subterms. Motivated by computability
theory, we show a number of decidability results related to the rewrite
relation and prove an effective version of a confluence theorem for or-
thogonal systems.

1 Introduction

Cyclic term graph rewriting [1,3,16] can be given an operational semantics based
on non-cyclic terms by considering both finite and infinite terms (or trees) and
defining a notion of rewriting for these. Two forms of so-called infinitary rewrit-
ing exist: (1) Corradini considers finite reductions where in each step infinitely
many redexes may be rewritten simultaneously [4]. (2) Kennaway et al. allow
for reductions of any countable ordinal length, but in each step only one redex
may be rewritten [13,12].

The operational interpretation of cyclic term graph rewriting now takes the
form of a so-called adequacy result. For Corradini’s notion of infinitary rewriting,
this result occurs in [5]. With regard to the notion of infinitary rewriting defined
by Kennaway et al., the result can be found in [11].

Infinitary rewriting is strictly more general than any finite form of rewriting.
There are, e.g., continuum many infinite terms over any signature consisting of
at least two unary function symbols. Unfortunately, this means that infinitary
rewriting only exists as a mathematical abstraction, not as something we can
actually compute with.

To rectify the above situation, the usual approach is to consider infinite terms
that can be finitely represented. In [14] this is done with respect to the work of
Kennaway et al. using Turing machines and taking as a starting point methods
from computable analysis [18]. In the current work, we consider finite repre-
sentations within the setting of Corradini’s work. More precisely, we consider
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rewriting of terms that are rational, i.e., rewriting of terms which have only
finitely many different subterms. It is well-known that rational terms can be
represented finitely [7].

As unraveling a cyclic term graph into an infinite term always yields a term
that is rational [11], one may wonder whether we are not simply considering term
graph rewriting in disguised form. However, our notion of rewriting is strictly
more powerful. From the perspective of term graph rewriting, our rewrite steps
combine two operations: The first operation is to transform the considered term
graph into any other term graph, where the only restriction is that the new graph
has the same unraveling. The second operation is the actual rewrite step. The
first operation is atypical of graph rewriting, where transformations are usually
limited to ones that reduce sharing, e.g., by means of a copying operation [1], or
ones that only introduce vertical sharing [15]. Hence, it is not clear whether our
notion of rewriting is still decidable.

Related Work. The notion of rational rewriting already occurs in two places
in the literature. In [10], rewriting of so-called μ-terms (i.e., term graphs with
only vertical sharing) is dubbed “rational rewriting”. This work shares with ours
the two-phase approach to rewriting as outlined above. However, a redex may
only be rewritten when no back edges point to nodes on the path from the root
of the graph to the redex.

Similar to us, [6,5] define rational rewriting as a restriction to rational terms of
Corradini’s notion of infinitary rewriting [4]. However, decidability issues related
to the rewrite relation are not considered. Furthermore, although [5] mentions a
confluence result for orthogonal systems, no actual proof is provided and, hence,
it is unclear to us whether an effective version of confluence is intended.

Outline. We both extend and restrict the notion of rational rewriting from
[6,5]. We extend it in the sense that we allow for rewriting in systems with
arbitrary rule sets, not just orthogonal ones, as in [6,5]. We restrict the notion of
rewriting in the sense that only one rewrite rule may be employed in each rewrite
step instead of arbitrary combinations of rules, as again in [6,5]. Currently, this
restriction is necessary, as we do not know whether our decidability results hold
without it. We hypothesize, however, that this restriction may be lifted.

The remainder of the paper is divided into two parts. In the first, we show
decidability of several properties related to rational rewrite steps: Given a regular
set Δ of positions, a rewrite rule l → r, and rational terms s and t, we show
that s →Δ

l→r t is decidable, where →Δ
l→r denotes the simultaneous rewrite of the

l → r-redexes at positions Δ. More generally, given a rational term s, a rewrite
system R, and regular set Δ, we show that the set of all terms t with s →Δ

R t
can be constructed effectively. Finally, we show that it is decidable whether a
rational s is in normal from with respect to a set of rewrite rules R.

In the second part of the paper, we prove for orthogonal systems that, given
reductions s →∗ t1 and s →∗ t2, we can effectively construct a rational term
u and reductions t1 →∗ u and t2 →∗ u, i.e., an algorithm exists constructing
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u and the two reductions. We also show that this result cannot be extended to
so-called weakly orthogonal systems.

Remark that, as we are interested in computability results, we will be explicit
regarding the finite representation we use for rational terms (instead of leaving
this implicit). We will work with so-called regular systems of equations (see
Definition 3.1), which is one of many such finite representations [7]. Note that
the same representation has been used in term graph rewriting [1].

2 Preliminaries

We assume basic familiarity with term rewriting [2,17]. However, to fix notation,
we recall some basic definitions.

Let Σ be a set of function symbols and V be a countable, infinite set of
variables. Each function symbol f ∈ Σ is equipped with a natural number called
the arity of f . The set of function symbols of arity n is denoted by Σn.

Let N∗ be the set of finite strings over the positive numbers, with ε the empty
string, · the operator for concatenating strings, and < the prefix order on strings.
We can define the set of (finite and infinite) terms as follows [9]:

Definition 2.1. The set of (finite and infinite) terms T (Σ,V) is the set of
partial functions t : N∗ → Σ ∪V such that t(ε) is defined and for all p ∈ N

∗: (1)
if t(p) is defined, then t(q) is defined for all q < p; (2) if t(p) ∈ Σn, then t(p · i)
is defined for all 1 ≤ i ≤ n and undefined otherwise; (3) if t(p) ∈ V, then t(q) is
undefined for all q > p.

The domain over which t is defined is denoted by Pos(t) and the elements of
the domain are called positions. A term t is finite if Pos(t) is finite; the set of
finite terms is denoted by Tfin(Σ,V). Moreover, define PosΣ(t) = {p ∈ Pos(t) |
t(p) ∈ Σ} and PosV(t) = {p ∈ Pos(t) | t(p) ∈ V}. Finally, let V(t) denote the
set of variables in t.

For any f ∈ Σn and terms t1, . . . , tn ∈ T (Σ,V), the term t = f(t1, . . . , tn)
is defined by t(ε) = f and t(i · p) = ti(p) for all 1 ≤ i ≤ n and p ∈ N

∗. A
function σ : V → T (Σ,V) is called a substitution and is extended to a function
σ : T (Σ,V)→ T (Σ,V) as usual.

Let the subterm at position p ∈ Pos(t) in t ∈ T (Σ,V), denoted t|p, be defined
by t|p(q) = t(p · q). We can now define the following:

Definition 2.2. The set of regular trees or rational terms Treg(Σ,V) ⊆ T (Σ,V)
is the set of terms with a finite number of different subterms, i.e., for each t the
set {t|p | p ∈ Pos(t)} is finite.

Note that for any rational term t, we have that the set of positions Pos(t) is
regular (i.e., there exists a finite automaton that recognizes Pos(t) as a language).
Moreover, every finite term is regular. Finally, note that matching is decidable
for rational terms [7].
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3 Representing Rational Terms

Write Σ⊥ for the set of function symbols Σ extended with a fresh constant ⊥.
Recall that rational terms are solutions of regular systems of equations and vice
versa [7]:

Definition 3.1. A regular system of equations is a finite set of equations E =
{x1 = t1, . . . , xn = tn} with mutually distinct x1, . . . , xn ∈ V and ti ∈ Tfin(Σ,V)
for all 1 ≤ i ≤ n. In E, a variable xi is called (non-)looping if there (do not)
exist 1 ≤ i1, . . . , ik ≤ n with xi = ti1 and tij = xi(j mod k)+1

for all 1 ≤ j ≤ k.
The domain of E, denoted Dom(E), is the set of variables {x1, . . . , xn}; the

range of E, denoted Ran(E), is the set of terms {t1, . . . , tn}. The solution of E
for xi ∈ Dom(E) is the term in E�(xi) ∈ T (Σ⊥,V) the defined by:

E�(xi)(p) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ti(p) if p ∈ Pos(ti) and ti(p) �∈ Dom(E)

⊥ if ti(p) = xj ∈ Dom(E) looping

E�(xj)(q) if ti(p
′) = xj ∈ Dom(E) non-looping with p = p′ · q

undefined otherwise

The pair 〈E, xi〉, or Exi for short, is said to represent a term t (or is a regular
representation of t) if E�(xi) = t.

Below, we often write E(xi) for ti, given a regular system of equations E =
{x1 = t1, . . . , xn = tn}.

The above definition extends the usual definition of a regular system of equa-
tions by not restricting all variables in the domain to be non-looping. Remark
that a non-looping regular system (over Σ⊥) can be obtained by replacing every
equation x = t with x looping by x = ⊥.

As in [1], the extension with ⊥ allows for the treatment of collapsing rules,
i.e., rules with a variable on their right-hand side, as all other rules. No special
measures need to be taken to handle the looping that may be introduced by
collapsing rules (see also Example 4.2).

Remark that each E� can be regarded as a substitution and, hence, can be
extended to E� : Treg(Σ⊥,V) → Treg(Σ⊥,V) in the usual way. By definition, we
have E�(x) = E�(t) for every x = t ∈ E.

From here onwards, we assume that Σ always includes ⊥. We now have the
following.

Lemma 3.2. Let E = {x1 = t1, . . . , xn = tn} be a regular system and let si be
a finite term with si /∈ Dom(E) and E�(xi) = E�(si). If F is identical to E but
with xi = ti replaced by xi = si, then E� = F �.

Lemma 3.3. Let E and F be regular systems and suppose there exists a sur-
jection δ : Dom(E) → Dom(F ) such that δ(y) = δ(s) ∈ F for every y = s ∈ E,
where δ is extended to δ : Tfin(Σ,V) → Tfin(Σ,V) in the usual way. Then,
E�(y) = F �(δ(y)) for every y ∈ Dom(E).

Surjectivity is required in the above lemma: Consider E = {x = f(y)} and
F = {x = f(y), y = a}. If δ is the (non-surjective) identity function, then E�(x) =
f(y), while F �(x) = f(a).
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Subterm Positions. For each x ∈ Dom(E), let UE(x) be the smallest set
satisfying (1) x ∈ UE(x) and (2) if y ∈ UE(x) and y = t ∈ E, then V(t) ∩
Dom(E) ⊆ UE(x). We write y �E x if y ∈ UE(x). It is readily checked that �E

is transitive. The subscript E is omitted if it is obvious from the context. We write
W � x if y � x for all x ∈ W . For x ∈ Dom(E), let E�x = {y = t ∈ E | y � x}.
Obviously, E�x contains all equations necessary to define E�(x). Moreover, we
have E�(y) = (E�x)�(y) for each y � x.

For every y � x, there is a set of positions in the rational term E�(x) corre-
sponding to occurrences of E�(y). Such a set of positions, called a set of subterm
positions, is defined next. The notion will be heavily used in our proofs.

Definition 3.4 (Subterm Positions). Let E be a regular system. For each
x, y ∈ Dom(E) such that y � x, the set SPEx(y) of subterm positions is the
smallest set satisfying: (1) ε ∈ SPEx(x) and (2) p · q ∈ SPEx(y) if p ∈ SPEx(z)
and there exists an equation z = t ∈ E such that t|q = y.

For a set W ⊆ Dom(E), we put SPEx(W ) =
⋃

y∈W SPEx(y).

Example 3.5 (Subterm Positions). Let E = {x = f(y), y = g(x)}. We have
SPEx(x) = {ε} ∪ {p · 1 | p ∈ SPEx(y)} and SPEx(y) = {p · 1 | p ∈ SPEx(x)}.
Hence, SPEx(x) = {12n | n ≥ 0} and SPEx(y) = {12n+1 | n ≥ 0}.

The following is proved in a straightforward way.

Proposition 3.6. Let E be a regular system and x ∈ Dom(E).

1. If W � x, then SPEx(W ) is regular.
2. If Ran(E)∩Dom(E) = ∅ and p < q such that p ∈ SPEx(y) and q ∈ SPEx(z)

with y �= z, then q /∈ {p · p′ | p′ ∈ PosΣ(E(y))}.

Canonical Systems. A regular system E = {x1 = t1, . . . , xn = tn} is said
to be canonical if for every 1 ≤ i ≤ n, either (1) ti ∈ V \ Dom(E) or (2)
ti = f(y1, . . . , ym) for some f ∈ Σ and y1, . . . , ym ∈ Dom(E) [7]. A regular
representation Ex is said to be canonical if E is so. Canonical regular systems
have the following properties.

Proposition 3.7. Let E = {x1 = t1, . . . , xn = tn} be a canonical regular sys-
tem.

1. If E�(x) = s, then for every p ∈ Pos(s) there exists a variable y � x such
that s|p = E�(y).

2. For all 1 ≤ i ≤ n, if si is a finite term such that E�(xi) = siσ for some sub-
stitution σ, then a variable substitution ρ exists such that E�(xi) = E�(siρ).

The next proposition can be proved in a straightforward way.

Proposition 3.8 (Canonization). Given a regular system E, a canonical reg-
ular system F can be constructed effectively such that (1) Dom(E) ⊆ Dom(F ),
(2) E�(x) = F �(x) for every x ∈ Dom(E), and (3) SPEx(y) = SPFx(y) for
every x, y ∈ Dom(E) with y � x.
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A canonical regular system E = {x1 = t1, . . . , xn = tn} is said to be minimal if
E�(xi) �= E�(xj) for every 1 ≤ i < j ≤ n. A canonical regular representation Ex

is minimal if so is E. We have the following.

Proposition 3.9. Every rational term has a minimal canonical regular repre-
sentation.

The next proposition is a consequence of regularity.

Proposition 3.10. Let Δ be a regular set of positions of a rational term t. A
canonical regular representation Ex of t and a set W ⊆ Dom(E) can be con-
structed effectively such that Δ = SPEx(W ).

4 Rational Rewriting

A rewrite rule is a pair (l, r) terms over Σ, invariably written l → r such that
(1) l and r are finite, (2) l ∈ T (Σ \ {⊥},V) and l /∈ V , and (3) V(r) ⊆ V(l). A
term rewriting system (TRS) is a finite set of rewrite rules. We define rational
rewrite steps.

Definition 4.1 (Rational Rewrite Steps). Let s and t be rational terms.
Define s →l→r t if there exist regular representations Ex and Fx of s and t,
resp., such that Dom(E) = Dom(F ) and W ⊆ Dom(E) with (1) E(y) = F (y) for
all y ∈ Dom(E) \W and (2) for each y ∈ W , there exists a variable substitution
ρ such that E(y) = lρ and F (y) = rρ.

We write s →Δ
l→r t for Δ = SPEx(W ). Moreover, if R is a TRS, we write s →R t

if there exists l → r ∈ R such that s →l→r t.

Example 4.2. Let R = {f(x)→ x} be a TRS and s = f(f(· · · f(· · · ) · · · )).
1. Since E = {x = f(x)} and F = {x = x} are regular representations of s and
⊥, resp., we have s →Δ

R ⊥, where Δ = SPEx(x) = {1n | n ≥ 0}.
2. Since E = {x = f(y), y = f(x)} and F = {x = f(y), y = x} are regular

representations of s, we have s →Δ
R s with Δ = SPEx(y) = {12n+1 | n ≥ 0}.

3. Since E = {x = f(y), y = f(y)} and F = {x = f(y), y = y} are regular
representations of s and f(⊥), resp., we have s →Δ

R f(⊥) with Δ = SPEx(y) =
{1 · 1n | n ≥ 0}.

Remark 4.3. Contrary to our definition, the definition of rational rewriting as
presented in [6] does not require one to explicitly specify the employed rewrite
rule. In fact, several rewrite rules may be used in a single rewrite step, as long
as the set of positions at which the contracted redexes occur is regular. In [6],
specifying a regular set of positions and no rewrite rules suffices, as orthogonality
is assumed there throughout.

As we do not restrict ourselves to orthogonal systems, specifying just a rational
set of positions does not suffice in our case. Consider, e.g., R = {α : f(x) →
g(x), β : f(x) → h(x)}, s = f(f(· · · f(· · · ) · · · )), and Δ = {1n | n ≥ 0}. We can
now choose Ψ = {(ε, α), (1, β), (12, β), (13, α), (14, β), (15, β), (16, β), . . .}. Hence,
s rewrites to g(h2(g(h3(· · · g(hn(· · · )) · · · )))), which is clearly not rational.
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Remark 4.4. Another difference between our work and [6] surfaces when we
consider rules that are not left-linear. Consider, e.g., R = {f(x, x) → g(x)},
E = {x = f(y, y), y = g(x)}, s = E∗(x) and Δ = {12n | n ≥ 0}. Rewriting
any redex at a position in Δ is problematic, as it causes any redex at a prefix
position to cease to exist.

Employing the definition from [6], the above problematic rewrites would be
allowed — albeit falling outside the framework, as R is not orthogonal. On the
other hand, we do not have s →Δ

l→r t for any t: Suppose a regular representation
E and a set W ⊆ Dom(E) exist such that SPEx(W ) = Δ and such that for
all y ∈ W we have E(y) = f(x′, x′)ρy with ρy a variable substitution. Consider
any y ∈ W and suppose ρy(x

′) = z. By definition of Δ, there is a v ∈ W such
that SPEz (v) is non-empty. However, since the same variable occurs twice in
f(x′, x′), SPEz (v) contains both positions of the form 1 · p and of the form 2 · p,
contradicting the assumption that SPEx(W ) contains only positions with 1s.

Rational Patterns. As witnessed by Example 4.2, there are in general many
ways to rewrite a rational term. The notion of a rational pattern is helpful to
characterize each rewrite step uniquely. The definition of this notion, uses a
labeling of rational terms.

Let Σ be a signature. We define a marked signature as Σ• = Σ∪{f• | f ∈ Σ},
where for every f ∈ Σ the arity of f• is equal to the arity of f . The notion of a
marked signature originates from [11].

Definition 4.5 (Labeling). Let t ∈ T (Σ,V) and Δ ⊆ PosΣ(t). The labeled
term lab(Δ, t) over the signature Σ• is defined by

lab(Δ, t)(p) =

{
t(p)• if p ∈ Δ

t(p) if p /∈ Δ

Lemma 4.6. If t is a rational term and Δ ⊆ PosΣ(t) a regular set of positions,
then lab(Δ, t) is rational and a minimal canonical representation Ex of lab(Δ, t)
and a set W ⊆ Dom(E) can be constructed effectively such that Δ = SPEx(W ).

Denoting lab({ε}, l) by l•, we define the following.

Definition 4.7 (Rational Pattern). Let t be a rational term. A pair 〈l, Δ〉
with l the left-hand side of a rewrite rule and Δ ⊆ PosΣ(t) is a rational pattern
in t if (1) Δ is a regular set of positions in t, and (2) for any p ∈ Δ, lab(Δ, t)|p =
l•σ for some substitution σ.

Example 4.8. If E = {x = f(y, y), y = g(y)} and s = E�(x), then 〈f(x, g(x)), {ε}〉
is a rational pattern in s. Moreover, if Δ = {1 · 1n | n ≥ 0}, then 〈g(x), Δ〉 is a
rational pattern in s, while 〈g(g(x)), Δ〉 is not.

If F = {x = f(y, z), y = g(y), z = g(h(z))} and t = F �(x), then 〈g(x), Λ〉 with
Λ = {1 · 1n | n ≥ 0} ∪ {2 · 12n | n ≥ 0} is a rational pattern in t. However, if
G = {x = f(y, y), y = g(x)}, u = G�(x) and Γ = {12n | n ≥ 0}, then 〈f(x, x), Γ 〉
is not a rational pattern in u (see also Remark 4.4).
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To check the second condition in the definition of a rational pattern, the following
necessary and sufficient condition is useful, where Δ|p = {q | p · q ∈ Δ}.

Lemma 4.9. If t is a rational term, Δ ⊆ PosΣ(t), and l is the left-hand side
of a rewrite rule, then lab(Δ, t) = l•σ for a substitution σ iff (1) t = lσ′ for a
substitution σ′, (2) Δ∩PosΣ(l) = {ε}, and (3) Δ|p = Δ|q for any p, q ∈ PosV(l)
with l(p) = l(q).

The main result of this section is the correspondence between rational rewrite
steps and rational patterns. To prove, we introduce two notions: propagation
and independence.

Definition 4.10 (Propagation). Let E = {x1 = t1, . . . , xn = tn} be a regular
system and s a finite term.

1. E propagates to a regular system F for variables xi and xk, denoted E )i
k F ,

if ti = C[xk] in E and F = {xj = tj ∈ E | j �= i} ∪ {xi = C[tk]}.
2. s propagates to a finite term t under E, denoted s >E t, if s = C[xi] and

t = C[ti] for xi = ti ∈ E. The reflexive, transitive closure of >E is )E.

Observe that s )E t implies E�(s) = E�(t).

Example 4.11. Let E = {x = f(y, z), y = g(z), z = h(y)}. We have

E )1
2 {x = f(g(z), z), y = g(z), z = h(y)}

)1
3 {x = f(g(z), h(y)), y = g(z), z = h(y)} .

Moreover,

f(y, z) >E f(g(z), z) >E f(g(z), h(y)) >E f(g(h(y)), h(y)) .

Hence, f(y, z))E f(g(h(y)), h(y)).

Lemma 4.12. Let E = {x1 = t1, . . . , xn = tn} be a minimal canonical regular
system. If s is a finite term and E�(s) = E�(xi) with s �= xi, then ti )E s.

Definition 4.13 (Independence). Let Δ be a set of positions. If l is the left-
hand side of a rewrite rule, then Δ is l-independent if p · q �∈ Δ for any p ∈ Δ
and q ∈ PosΣ(l) \ {ε}.

Lemma 4.14. Let l be the left-hand side of a rewrite rule, s a rational term,
Δ ⊆ PosΣ(s), and p ∈ Δ. If there exists a substitution σ such that lab(Δ, s)|p =
l•σ, then Δ is l-independent.

Lemma 4.15. Let E = {x1 = t1, . . . , xn = tn} be a canonical regular system
and x ∈ Dom(E). Suppose l is the left-hand side of a rewrite rule and SPEx(W )
is l-independent for W � x. Moreover, suppose that for each xi ∈ W there exists
a variable substitution ρi with ti )E lρi. If F = {xi = ti ∈ E | xi /∈ W} ∪ {xi =
lρi | xi ∈ W}, then (1) E )i1

k1
· · · )im

km
F for some xi1 , . . . , xim ∈ W and

xk1 , . . . , xkm /∈ W , (2) E� = F �, and (3) SPEx(xi) = SPFx(xi) for any xi ∈ W .
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Rational patterns and rational rewrite steps are related as follows.

Lemma 4.16 (Correspondence). If s is a rational term, l → r a rewrite rule,
and Δ ⊆ Pos(s), then s →Δ

l→r t for some t iff 〈l, Δ〉 is a rational pattern in s.

Proof. (⇒) By definition, there exist regular representations Ex and Fx of s
and t, resp., such that Dom(E) = Dom(F ) and W ⊆ Dom(E) with (1) Δ =
SPEx(W ), (2) E(y) = F (y) for all y ∈ Dom(E) \W , and (3) for each y ∈ W ,
E(y) = lρ and F (y) = rρ for some variable substitution ρ.

Without loss of generality we may assume Dom(E) ∩ Ran(E) = ∅. We show
that 〈l, Δ〉 is a rational pattern in s. First, Δ is regular by Proposition 3.6(1).
Moreover, as l is the left-hand side of a rewrite rule, we have Δ ⊆ PosΣ(t). Let
p ∈ Δ, then lab(Δ, t)|p = lab(Δ|p, t|p). To show that lab(Δ|p, t|p) = l•σ for some
σ, we use Lemma 4.9.

1. As p ∈ Δ, there is y ∈ W such that p ∈ SPEx(y) and E(y) = lρ for a variable
substitution ρ. If σ′ = E� ◦ρ, then s|p = E�(y) = E�(lρ) = (E� ◦ρ)(l) = lσ′.

2. Obviously, ε ∈ Δ|p, as p ∈ Δ. Suppose there exists a q ∈ PosΣ(l) \ {ε} such
that p · q ∈ Δ. Then, there are y, z ∈ W with y �= z such that p ∈ SPEx(y)
and p · q ∈ SPEx(z). Since q �= ε, we have p < q and by Proposition 3.6(2),
p · q /∈ {p · p′ |′∈ PosΣ(lρ)}, where lρ = E(z), contradicting q ∈ PosΣ(l).
Hence, Δ|p ∩ PosΣ(l) = {ε}.

3. We have p ∈ SPEx(y) for some y ∈ W , as p ∈ Δ. Suppose p1, p2 ∈ PosV(l)
and l(p1) = l(p2) = z. As y = lρ ∈ E for some variable substitution ρ, we
have lρ(p1) = lρ(p2) = ρ(z) If ρ(z) /∈ Dom(E), then Δ|p·p1 = ∅ = Δ|p·p2 . If
ρ(z) ∈ Dom(E) then ρ(z) � y and, hence, Δ|p·p1 = SPEρ(z)

(W ) = Δ|p·p2 .

(⇐) By assumption, Δ ⊆ PosΣ(s) is regular. Hence, by Lemma 4.6, there exists
a minimal canonical representation Ex of lab(Δ, s) and a set W ⊆ Dom(E)
such that Δ = SPEx(W ). Let E = {x1 = t1, . . . , xn = tn}. By assumption, for
every p ∈ Δ, there exists a substitution σ such that lab(Δ, s)|p = l•σ. Hence,
by Lemma 4.14, Δ is l-independent. Furthermore, for each x ∈ V(l), σ(x) is a
subterm of lab(Δ, s). Since E is minimal and canonical, we have for each σ(x)
with x ∈ V(l) that there exists unique xj ∈ Dom(E) such that σ(x) = E�(xj).
Thus, for each xi ∈ W , there exists a variable substitution ρi such that E�(xi) =
lab(Δ, s)|p = l•σ = E�(l•ρi). Then, by Lemma 4.12, we obtain ti )E l•ρi. Let
Ê = {xi = ti ∈ E | xi /∈ W} ∪ {xi = l•ρi | xi ∈ W}. By Lemma 4.15,
E�(x) = Ê�(x) and Δ = SPEx(W ) = SPÊx

(W ). Let Ẽ be the regular system

obtained from Ê by removing all marks. Then, s = Ẽ�(x) and s →Δ
l→r F �(x)

with F = {xi = ti ∈ Ẽ | xi /∈ W} ∪ {xi = rρi | xi ∈ W}. *+
Our characterization of rewrite steps by rational patterns leads us to obtain
following decidability result for rewrite steps.

Lemma 4.17 (Constructiveness). Let s be a rational term, Δ a regular set
of positions, and l → r a rewrite rule.

1. It is decidable whether 〈l, Δ〉 is a rational pattern in s.
2. If 〈l, Δ〉 is a rational pattern in s, then a regular representation of a rational

term t can be constructed effectively such that s →Δ
l→r t.
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Proof. (1) Let s be a rational term and Δ a regular set of positions (possibly
with Δ �⊆ Pos(s)). We can check whether Δ ⊆ Pos(s), as both Δ and Pos(s) are
regular. If Δ ⊆ Pos(s) does not hold, then return no. By Lemma 4.6, lab(Δ, s)
is regular and its regular representation Ex such that Δ = SPEx(W ) for some
W ⊆ Dom(E) can be constructed effectively. For each y ∈ W check whether
E�(y) = l•σy for some substitution σy. This check is decidable, as the matching
problem for rational terms is decidable [7]. (2) As above, construct the set W
and the substitution σy such that E�(y) = l•σy for each y ∈ W . Next, define
F = {y = s ∈ E | y /∈ W} ∪ {y = rσy ∈ E | y ∈ W}. Then, Fx is a regular
representation of t such that s →Δ

l→r t. *+

5 Decidability and Constructive Confluence

The proofs in this section heavily depend on the notion of a product:

Definition 5.1. Let s ∈ T (Σ,V) and t ∈ T (Γ,V) be terms. The terms are
similar, denoted s ∼ t, if PosV(s) = PosV(t) and PosΣ(s) = PosΓ (t).

Let s and t be similar. The product s × t ∈ T (Σ × Γ,V) of s and t is (s ×
t)(p) = 〈s(p), t(p)〉 for all p, where tuples 〈x, y〉 are considered to be variables.
Moreover, let E and F be canonical regular systems over, resp., Σ and Γ . The
product E × F over Σ × Γ is

E × F = {〈x, y〉 = s× t | x = s ∈ E, y = t ∈ F, s ∼ t} .

Let t ∈ T (Σ × Γ,V). The projections π1 and π2 to Σ and Γ , resp., are defined
by

πi(t)(p) =

{
fi if t(p) = 〈f1, f2〉 ∈ Σ × Γ

x if t(p) = x ∈ V

where i ∈ {1, 2}. Moreover, let E be a canonical regular system over Σ×Γ . The
projections π1 and π2 to Σ and Γ , resp., are defined by

πi(E) = {πi(x) = πi(t) | x = t ∈ E} ,

where i ∈ {1, 2}.

The following properties of products are proved in a straightforward way.

Proposition 5.2. Let s and t be similar rational terms and let Ex and Fy be
canonical regular representations of, resp., s and t. If z = 〈x, y〉 and G = E×F ,
then for products:

1. G�(〈x′, y′〉) = E�(x′)× F �(y′) for 〈x′, y′〉 � z;
2. SPGz(〈x′, y′〉) = SPEx(x

′) ∩ SPFy (y
′).

Moreover, for projections:

3. (π1(G))�(〈x′, y′〉) = E�(x′) and (π2(G))�(〈x′, y′〉) = F �(y′) for 〈x′, y′〉 � z;
4. SPEx(x

′) = SPGz({x′} × Dom(F )) and SPFy (y
′) = SPGz(Dom(E)× {y′}).
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The next lemma, which will be used below, follows from Proposition 5.2(2).

Lemma 5.3. Let Ex and Fy be canonical regular representations of a term s
and let V �E x and W �F y with SPEx(V ) = SPFy (W ) = Δ.

1. If U = {〈x′, y′〉 �E×F 〈x, y〉 | x′ ∈ V, y′ ∈ W}, then SP(E×F )〈x,y〉(U) = Δ.
2. {〈x′, y′〉 �E×F 〈x, y〉 | x′ ∈ V, y′ /∈ W} = ∅ and {〈x′, y′〉 �E×F 〈x, y〉 | x′ /∈

V, y′ ∈ W} = ∅.

The next lemma shows that a rewrite step s →Δ
l→r t is uniquely defined by a

term s, a regular set Δ of positions in s, and a rewrite rule l → r.

Lemma 5.4. If s →Δ
l→r t1 and s →Δ

l→r t2, then t1 = t2.

Proof. By assumption, there are representations Ex and Fy of s and represen-
tations E′x and F ′x of t1 and t2, resp., with V � x and W � y such that
Δ = SPEx(V ) = SPFy (W ) and xi = lρi for all xi ∈ V and yj = lδj for all yj ∈ W
with ρi and δj variable substitutions. Without loss of generality, we may assume
that E and E′, resp. F and F ′, are canonical with exception of the equations
with a variable from V , resp. W , on the left-hand side. Apply Proposition 3.8 to
obtain canonical representations Êx and F̂ y. Since E�(x) = F �(y) = s, we have
that (Ê × F̂ )〈x,y〉 is well-defined and a regular representation of s× s.

Let U = {〈xi, yj〉 � 〈x, y〉 | xi ∈ V, yj ∈ W} and Ĝ = π1(Ê × F̂ ) =
π2(Ê × F̂ ). By Lemma 5.3(1), SP(Ê×F̂ )〈x,y〉(U) = Δ and, by Proposition 5.2(3),
Ĝ�(〈xi, yj〉) = Ê�(xi) = F̂ �(yj), for any 〈xi, yj〉 � 〈x, y〉. Furthermore, for every
〈xi, yj〉 ∈ U , we have E�(xi) = E�(lρi) and F �(yj) = F �(lδj). Hence, by Proposi-
tion 5.2(1), for every 〈xi, yj〉 ∈ U , we have (E×F )�(〈xi, yj〉) = E�(xi)×F �(yj) =
E�(lρi)×F �(lδj) = (E×F )�((l×l)ξi,j) where ξi,j = {〈z, z〉 := 〈ρi(z), δj(z)〉 | z ∈
V(l)}. Hence, Ĝ�(〈xi, yj〉) = π1((E×F )�(〈xi, yj〉)) = π1((E×F )�((l× l)ξi,j)) =
Ĝ�(lξi,j). And, by Lemma 3.2, Ĝ� = G� where G = {〈xi, yj〉 = w ∈ Ĝ | 〈xi, yj〉 /∈
U} ∪ {〈xi, yj〉 = lξi,j | 〈xi, yj〉 ∈ U}.

Let G′ = {〈xi, yj〉 = w ∈ G�〈x, y〉 | 〈xi, yj〉 /∈ U} ∪ {〈xi, yj〉 = rξi,j | 〈xi, yj〉 ∈
U, 〈xi, yj〉 = lξi,j ∈ G}. Define δ : Dom(G′) → Dom(E′) as δ(〈xi, yj〉) = xi and
observe that {〈xi, yj〉 � 〈x, y〉 | xi ∈ V, yj �∈ W} is empty by Lemma 5.3(2).
Thus, δ is surjective and for any 〈xi, yj〉 = w ∈ G′ we have δ(〈xi, yj〉) = δ(w) ∈
E′. By Lemma 3.3, we now have G′�(〈xi, yj〉) = E′�(xi). Similarly, we have
G′�(〈xi, yj〉) = F ′�(yj). Thus, t1 = E′�(x) = G′�(〈x, y〉) = F ′�(y) = t2. *+

Theorem 5.5. Let R be a TRS.

1. For a rational term s and regular set of positions Δ, the number of rational
terms t such that s →Δ

R t is finite and a regular representation of each term
t can be constructed effectively.

2. For rational terms s and t and a regular set of positions Δ, it is decidable
whether s →Δ

R t or not.
3. For a given regular representation of rational term s, it is decidable whether

s is in normal form with respect to R. If not, a regular representation of a
rational term t such that s →R t can be constructed effectively.
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Proof. (1) By Lemma 5.4, for a given s, Δ, and l → r there is at most one t such
that s →Δ

l→r t. Thus, the number of terms t such that s →Δ
R t is bounded by |R|.

Furthermore, we can effectively construct a term t with s →Δ
l→r t by Lemma 4.17

if there is such a term. (2) Immediately by the previous. (3) A rational term s is
R-normal if there is no subterm u of s with u = lσ for some l → r ∈ R and σ.
Since the (finite) set of subterms of any rational term is effectively constructed,
this is decidable. Take a canonical representation Ex of s. Then for any subterm
s′ of s there is variable y ∈ Dom(E) such that s′ = E�(y). We can check whether
E�(y) = lσ for some rule l → r ∈ R and substitution σ. If there is such a rule
and such a substitution, then there exists a variable substitution ρ such that
E�(y) = E�(lρ) by Proposition 3.7. Define E′ = (E \ {y = t}) ∪ {y = lρ}. By
Lemma 3.2, E′�x is a representation of s. Moreover, we can effectively construct
F ′ = (E′ \ {y = lρ}) ∪ {y = rρ} and, hence, s →R t for t = F ′�(x). *+

Let s and t be finite terms with V(s)∩ V(t) = ∅. Then, s overlaps t (at position
p) if there exists a non-variable subterm u = t|p of t such that u and s are
unifiable in Tfin(Σ,V). Let l1 → r1 and l2 → r2 be rewrite rules. Suppose l1
overlaps l2 at position p (without loss of generality V(l1) ∩ V(l2) = ∅). Let σ be
the most general unifier of l1 and l2|p. The pair 〈l2[r1]pσ, r2σ〉 is called a critical
pair, where l2[r1]pσ is the result of rewriting l2σ by means of l1 → r1 at position
p. In case of self-overlap (i.e., when l1 → r1 and l2 → r2 are identical modulo
renaming of variables), we do not consider p = ε. The critical pair 〈l2[r1]pσ, r2σ〉
is trivial if l2[r1]pσ = r2σ. A TRS R is orthogonal if it is left-linear and there is
no critical pairs and weakly orthogonal if all critical pairs are trivial instead.

Lemma 5.6 (Diamond Property). Let R be an orthogonal TRS. For a ratio-
nal term s and regular set of positions Δ and Γ such that s →Δ

R t1 and s →Γ
R t2,

a regular representation of a rational term u and regular sets of positions Δ′ and
Γ ′ such that t1 →Δ′

R u and t2 →Γ ′
R u can be constructed effectively.

Proof. By assumption, there are representations Ex and Fy of s and represen-
tations E′x and F ′x of t1 and t2, resp., with V � x and W � y such that
Δ = SPEx(V ) and Γ = SPFy (W ) and such that xi = l1ρi for a rule l1 → r1 and
all xi ∈ V and yj = l2δj for a rule l2 → r2 and all yj ∈ W with ρi and δj variable
substitutions. Apply Proposition 3.8 to obtain canonical representations Êx and
F̂ y. Since E�(x) = F �(y) = s, we have that (Ê × F̂ )〈x,y〉 is well-defined and a
regular representation of s× s. By Proposition 5.2(4), we have Δ = SPÊx

(V ) =
SP(Ê×F̂ )〈x,y〉(V

′) with V ′ = {〈xi, yj〉 ∈ V × Dom(F̂ ) | 〈xi, yj〉 � 〈x, y〉}. Simi-
larly, Γ = SPÊy (W ) = SP(Ê×F̂ )〈x,y〉(W

′), where W ′ = {〈xi, yj〉 ∈ Dom(Ê)×W |
〈xi, yj〉 � 〈x, y〉}.

Let Ĝ = π1(Ê × F̂ ) = π2(Ê × F̂ ). Then, Δ = SPĜ〈x,y〉(V
′) and Γ =

SPĜ〈x,y〉(W
′). Moreover, by Proposition 5.2(3), we have for any 〈xi, yj〉 � 〈x, y〉

that Ĝ�(〈xi, yj〉) = E�(xi) = F �(yj); in particular, Ĝ〈x,y〉 is a canonical regu-
lar representation of s. Furthermore, for every 〈xi, yj〉 ∈ V ′, we have Ê�(xi) =
Ê�(l1ρi) and, for every 〈xi, yj〉 ∈ W ′, F̂ �(yj) = F̂ �(l2δj). Hence, by Lemma 3.2,
Ĝ� = G�

1 where G1 = {〈xi, yj〉 = w ∈ Ĝ | 〈xi, yj〉 /∈ V ′} ∪ {〈xi, yj〉 = l1ρi,j |
〈xi, yj〉 ∈ V ′} and ρi,j is such that Ĝ�(〈xi, yj〉) = Ĝ�(l1ρi,j), where existence of
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ρi,j follows as Ĝ is canonical and as every rewrite rule is left-linear. Similarly,
Ĝ� = G�

2 where G2 = {〈xi, yj〉 = w ∈ Ĝ | 〈xi, yj〉 /∈ W ′} ∪ {〈xi, yj〉 = l2δi,j |
〈xi, yj〉 ∈ W ′} and δi,j is such that Ĝ�(〈xi, yj〉) = Ĝ�(l2δi,j).

Let G′1 = {〈xi, yj〉 = w ∈ Ĝ | 〈xi, yj〉 /∈ V ′} ∪ {〈xi, yj〉 = r1ρi,j | 〈xi, yj〉 ∈ V ′}
and G′2 = {〈xi, yj〉 = w ∈ Ĝ | 〈xi, yj〉 /∈ W ′} ∪ {〈xi, yj〉 = r2δi,j | 〈xi, yj〉 ∈ W ′}.
Then, s = G�

1(〈x, y〉)→Δ G′�1 (〈x, y〉) and, hence, t1 = G′�1 (〈x, y〉) by Lemma 5.4.
Similarly, we have t2 = G′�2 (〈x, y〉). We now distinguish two cases, where we
observe that l1 and l2 do not overlap, as R is orthogonal.

1. Let l1 → r1 = l2 → r2 = l → r. For any 〈xi, yj〉 ∈ V ′ ∩ W ′, we have
Ĝ�(〈xi, yj〉) = Ĝ�(lρi,j) = Ĝ�(lδi,j), and, hence, ρi,j = δi,j . Let

G′′ = {〈xi, yj〉 = w ∈ Ĝ | 〈xi, yj〉 /∈ V ′ ∪W ′}
∪ {〈xi, yj〉 = rρi,j | 〈xi, yj〉 ∈ V ′ ∩W ′}

(which is equivalent to {〈xi, yj〉 = rδi,j | 〈xi, yj〉 ∈ V ′ ∩W ′})
∪ {〈xi, yj〉 = rρi,j | 〈xi, yj〉 ∈ V ′ \W ′}
∪ {〈xi, yj〉 = rδi,j | 〈xi, yj〉 ∈ W ′ \ V ′}.

Then, t1 = G′�1 (〈x, y〉) →Δ′
l→r G′′�(〈x, y〉), where Δ′ = SPG′1(W

′ \ V ′), and

t2 = G′�2 (〈x, y〉)→Γ ′
l→r G′′�(〈x, y〉), where Γ ′ = SPG′2(V

′ \W ′). Furthermore,
Δ′, Γ ′, and G′′〈x,y〉 can be constructed effectively.

2. Let l1 → r1 �= l2 → r2. Since Ĝ�(〈xi, yj〉) = Ĝ�(l1ρi,j) for any 〈xi, yj〉 ∈ V ′

and Ĝ�(〈xi, yj〉) = Ĝ�(l2δi,j) for any 〈xi, yj〉 ∈ W ′ and since l1 and l2 are
not variables, we obtain V ′ ∩W ′ = ∅. Let

G′′ = {〈xi, yj〉 = w ∈ Ĝ | 〈xi, yj〉 /∈ V ′ ∪W ′}
∪ {〈xi, yj〉 = r1ρi,j | 〈xi, yj〉 ∈ V ′}
∪ {〈xi, yj〉 = r2δi,j | 〈xi, yj〉 ∈ W ′}.

Then, t1 = G′�1 (〈x, y〉) →Δ′
l2→r2

G′′�(〈x, y〉), where Δ′ = SPG′1(W
′), and

t2 = G′�2 (〈x, y〉) →Γ ′
l1→r1

G′′�(〈x, y〉), where Γ ′ = SPG′2(V
′). Furthermore,

Δ′, Γ ′, and G′′〈x,y〉 can be constructed effectively. *+
Example 5.7. Let E = {x = f(y), y = f(x)}, F = {x′ = f(y′), y′ = f(z′), z′ =
f(x′)}, s = E�(x) = F �(x′), Δ = {1 · 12n | n ≥ 0}, Γ = {11 · 13n | n ≥ 0},
and R = {f(x) → g(x)}. We have s →Δ t1 = {x = f(y), y = g(x)}�(x) with
Δ = SPEx({y}) and s →Γ t2 = {x′ = f(y′), y′ = f(z′), z′ = g(x′)}�(x′) with
Γ = SPFx′ ({z′}). The term u with t1 → u ← t2 is now constructed as follows:
First we take product of E and F . We get

(E × F )�〈x, x′〉 =
{〈x, x′〉 = f(〈y, y′〉), 〈y, y′〉 = f(〈x, z′〉), 〈x, z′〉 = f(〈y, x′〉),

〈y, x′〉 = f(〈x, y′〉), 〈x, y′〉 = f(〈y, z′〉), 〈y, z′〉 = f(〈x, x′〉)}.
We now have Δ = (E × F )〈x,x′〉(V ) with V = {〈y, x′〉, 〈y, y′〉, 〈y, z′〉} and Γ =
(E × F )〈x,x′〉(W ) with W = {〈x, z′〉, 〈y, z′〉}. Hence, we define

u = {〈x, x′〉 = f(〈y, y′〉), 〈y, y′〉 = g(〈x, z′〉), 〈x, z′〉 = g(〈y, x′〉),
〈y, x′〉 = g(〈x, y′〉), 〈x, y′〉 = f(〈y, z′〉), 〈y, z′〉 = g(〈x, x′〉)}�(〈x, x′〉)
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and we obtain t1 →Δ′ u with Δ′ = (E × F )〈x,x′〉(W \ V ) and t2 →Γ ′ u with
Γ ′ = (E × F )〈x,x′〉(V \W ).

Lemma 5.4 allows us to define rewrite sequences s1 →∗R sn which are given by
〈si, Δi, li → ri〉1≤i≤n−1 with si →Δi

li→ri
si+1 for each 1 ≤ i ≤ n− 1.

Theorem 5.8 (Confluence). Let R is an orthogonal TRS. Given rewrite se-
quences s →∗R t1 and s →∗R t2, a rational term u and rewrite sequences t1 →∗R u
and t2 →∗R u can be constructed effectively.

Proof. Immediate by Lemma 5.6. *+

The following example shows that weakly orthogonal TRS may be non-confluent
in rational term rewriting. Hence, the above theorem cannot be extended to
weakly orthogonal rewriting.

Example 5.9. Let R = {p(s(x)) → x, s(p(x)) → x}. There are two critical pairs
in R, 〈p(x), p(x)〉 and 〈s(x), s(x)〉, which are both trivial. Hence, R is weakly
orthogonal. Suppose t = {x = p(s(x))}�(x). We have t →R ⊥ and t →R p(⊥).
Since ⊥ and p(⊥) are distinct normal forms, they are not joinable. Hence, R is
not confluent.

Non-confluence of weakly orthogonal systems may seem remarkable from the per-
spective of finitary rewriting, especially since confluence for weakly orthogonal
systems does hold in a term graph rewriting formalism that allows for copying
of subterms [1]. However, it is less remarkable from the infinitary perspective:
A similar counterexample can be constructed within the approach to infinitary
rewriting as taken by Kennaway et al.; that counterexample can be found in [8].

6 Conclusion

We have introduced rational term rewriting based on regular systems. Un-
like [5,6], which is specialized to orthogonal rewrite systems, our definition is
amenable to arbitrary rewrite systems. We have shown that our notion of rewrite
steps is characterized by rational patterns. Moreover, we have shown decidable
properties concerning our rewrite steps and constructive confluence for orthog-
onal rewrite systems, i.e., that for two rewrite sequences s →∗ t1 and s →∗ t2
we can effectively construct a regular system representing a rational term u and
rewrite sequences t1 →∗ u and t2 →∗ u. We have also given an example showing
that rational term rewriting is in general not confluent for weakly orthogonal
rewrite systems.

It is important to know for which classes of TRSs R, s
∗↔R t can be decided.

Even for an orthogonal TRSR, our results do not immediately imply decidability
of s

∗↔R t. As future work, we plan to address this problem.

Acknowledgments. We would like to thank the reviewers for their valuable
comments.
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B. (eds.) MFCS 1994. LNCS, vol. 841, pp. 433–442. Springer, Heidelberg (1994)

11. Kennaway, J.R., Klop, J.W., Sleep, M.R., de Vries, F.-J.: On the Adequacy of
Graph Rewriting for Simulating Term Rewriting. ACM Transactions on Program-
ming Languages and Systems 16(3), 493–523 (1994)

12. Kennaway, R., de Vries, F.-J.: Infinitary Rewriting. In: Terese (eds.) [17], ch. 12,
pp. 668–711

13. Kennaway, R., Klop, J.W., Sleep, R., de Vries, F.-J.: Transfinite Reductions in
Orthogonal Term Rewriting Systems. Information and Computation 119(1), 18–38
(1995)

14. Ketema, J., Simonsen, J.G.: Computing with Infinite Terms and Infinite Reduc-
tions (unpublished manuscript)

15. Plump, D.: Collapsed Tree Rewriting: Completeness, Confluence, and Modularity.
In: Rusinowitch, M., Remy, J.-L. (eds.) CTRS 1992. LNCS, vol. 656, pp. 97–111.
Springer, Heidelberg (1993)

16. Plump, D.: Term Graph Rewriting. In: Handbook of Graph Grammars and Com-
puting by Graph Transformation. Applications, Languages and Tools, vol. 2,
pp. 3–61. World Scientific (1999)

17. Terese (ed.): Term Rewriting Systems. Cambridge Tracts in Theoretical Computer
Science, vol. 55. Cambridge University Press (2003)

18. Weihrauch, K.: Computable Analysis: An Introduction. Springer (2000)



A General Attribution Concept for Models

in M-Adhesive Transformation Systems
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Abstract. Attributes are an important concept for modeling data in
practical applications. Up to now there is no adequate way to define at-
tributes for different kinds of models used in M-adhesive transformation
systems, which are a special kind of graph transformation system based
on M-adhesive categories. Especially a proper representation and defi-
nition of attributes and their values as well as a suitable handling of the
data does not fit well with other graph transformation formalisms.

In this paper, we propose a new method to define attributes in a
natural, but still formally precise and widely applicable way. We define
a new kind of adhesive category, called W-adhesive, that can be used
for transformations of attributes, while the underlying models are still
M-adhesive ones. As a result, attributed models can be used as they are
intended to be, but with a formal background and proven well-behavior.

1 Introduction

Graph transformation is a well-known formalism for the rule-based derivation of
graphs [1,2]. For different application areas, different graph types are necessary
to express all the properties of the underlying models. An underlying category
theoretical framework provides the possibility to once and for all prove different
properties of graph transformation, like the local Church-Rosser property or local
confluence, on the categorical level and then transfer it by instantiation to the dif-
ferent graphs.M-adhesive categories [3] and their variants like adhesive [4] and
weak adhesive HLR [5] categories form such a framework for graph transforma-
tions and their analysis. They are based on a distinguished morphism class M,
which is used for the rule morphisms and has to satisfy certain properties, and a
special van Kampen (VK) property describing the compatibility of gluings and
restrictions, i.e. pushouts and pullbacks in categorical terms. Based on this van
Kampen property, many results can be proven that hold for all kinds of graphs.

Attributes play an important role for modeling, for example in object-oriented
system models or network graphs. But up to now, no general method for the
definition of attributes in arbitrary models has been found which represents at-
tributes as understood in object-oriented systems. In theoretical contributions,
often an algebraic approach combined with graphs is used which has disadvan-
tages like allowing multiple attribute values for one attribute or integrating the
complete data values into the graph structure leading to infinite graphs. While

H. Ehrig et al.(Eds.): ICGT 2012, LNCS 7562, pp. 187–202, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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in other contexts, like conflict resolution of diverging transformations in model
versioning [6], multiple attribute values may be useful, they are unexpected and
lead to strange behavior in the general modeling of object-oriented systems.

The idea of this contribution is a separation of concerns, i.e. the separation of
the graph structure and their attribution and data. The goal is to have a formal-
ism that allows users to use attributes as in object-oriented models, but with a
formal background. It should be applicable to all kinds of graphs and graph-like
structures and compatible with well-known graph transformation approaches.
We will not achieve a simple attribution concept – which does not seem to exist
in a formal and wide-ranging way – but a theoretically well-founded one, which
can be applied intuitively without the need to take care of unexpected side ef-
fects as necessary for current approaches. The formalization leads to the notion
of W-adhesive categories, where the main idea is to restrict the VK property to
those squares that actually appear in transformations.

This paper is organized as follows. In Section 2, we motivate our work by an-
alyzing how attributes should work, how they are defined in current approaches
and describe the general idea of our new attribution concept. This is defined for-
mally in Section 3. In Section 4, we define transformations of attributed objects
and show that the attribution concept does not lead to M-adhesive categories.
Instead,W-adhesive categories are defined in Section 5, where we show exemplar-
ily the Local Church-Rosser Theorem to illustrate that this category is suitable
for graph transformation. A conclusion and future work are given in Section 6.

We assume the reader to be familiar with graph transformation in the double
pushout approach and the foundations of M-adhesive transformation systems
as, for example, introduced in [5]. The proofs of the theorems and facts, as far
as they are not directly included in this paper, can be found in [7].

2 Motivation and Related Work

When working with attributes, most people expect attributes to behave like in
object-oriented models. This means in particular that

– a model element has exactly one value for each attribute and
– model elements of different types may have the same attribute.

Unfortunately, this is not true for typed attributed graphs [5]. Typed attributed
graphs are based on so-called E-graphs, which are graphs consisting of different
node and edge types. The actual attribution of a node is done by an attribute
edge of a certain type, representing this attribute’s name, pointing from this node
to the data value. Thus, also multiple attribute edges of the same type from a
node form a valid graph, which means that the node has different values for the
same attribute. Moreover, the attribute edges form a set which means that for
different types we are not allowed to use the same attribute name. This situation
is shown in Fig. 1. In the left, we see a class diagram-like graph modeling a cat

with name = "Greebo" and a dog with name = "Gaspode", which is what we
expect to see. In the middle, the corresponding type graph is shown. Since Cats
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cat:Cats
name="Greebo"

dog:Dogs

name="Gaspode"

Cats Dogs

String

cat:Cats dog:Dogs

Greebo

Maurice

Gaspode

name1 name2 name1
name1

name2

Fig. 1. Attribution in typed attributed graphs

and Dogs are different types, the attribute edge names have to be different, i.e.
something like name1 and name2. In the right, the typed attributed graph for
our model is shown, where the typing of each element is denoted after the colon.
While we would not expect a second name attribute for an object in the left
representation, it could occur on the right, indicated by the dotted elements. To
avoid this we had to define constraints forbidding the occurrence of this kind
of double edges. Especially, we have to include application conditions for each
rule to ensure that attribute edges can only be created if they do not already
exist for the considered node. Another difficulty with this approach is that the
data values are completely stored in the graph and are not only implicitly there,
which means that the graph becomes infinite in general.

Symbolic graphs [8] are graphs labeled with variables and combined with
formulas over these variables and a data algebra. Due to this concept, they allow
for a separation of the graph and data part, such that the graphs themselves are
not infinite only because of their data. In general, a symbolic graph represents a
set of attributed graphs satisfying the formulas and allows for a logical reasoning
about data. Nevertheless, the underlying graph structure is an E-graph, like for
typed attributed graphs, and has the same behavior allowing multiple values for
the same attribute, but needing different attribution names for different types.

Transformations of partially labelled graphs [9], i.e. graphs where nodes and
edges may be labelled by (disjoint) label alphabets, can be treated somehow
similar to attributes. But the overall setting in this approach is different from
the standard version of double-pushout transformations. While we want to have
injective rule morphisms and arbitrary matches, in [9] only the left rule morphism
has to be injective, but in addition the match.

Other approaches also leave the context of M-adhesive transformation sys-
tems like coding the graphs as algebras [10] or combining graphs with type theory
for attribution [11], which needs a different transformation approach, since the
attribution transformation is done via pullbacks instead of pushouts.

Basic Idea
For rule-based transformations, attribute values need to be preserved or refined.
Note that actually changing attributes themselves would be a transformation in
the meta model and is not our concern here. In addition to the creation or
deletion of complete nodes including all attributes, our rules should be able to:

1. keep an attribute value, i.e. leave it unchanged (top of Fig. 2), or
2. change an attribute value, i.e. assign a new value to it (bottom of Fig. 2).
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cat:Cats
name="Greebo"

cat:Cats
name="Greebo"

cat:Cats
name="Greebo"

cat:Cats
name="Greebo"

cat:Cats

name=�
cat:Cats

name="Maurice"

Fig. 2. Typical attribute behavior in rules

To allow this, we need “undefined” attributes, which are denoted by �. They
should only appear in the interface of the rule and the corresponding intermedi-
ate graph models. For the morphisms used in rules, only certain mappings are
allowed, such that all undefined attributes are concretized by a data value, and
all other attribute values are identically mapped.

3 Attribution of Models

In this section, we define the category AttC of attributed objects with an un-
derlying category C. To reach this goal, we have to formalize the ideas of the
previous section. The key idea is to separate the (graphical) model and the data
values used for attribution.

Attribution Values
Consider a finite set TYPES of available data types and for each type ∈ TYPES

we have a set Atype containing the data values. They may come, for example,
from the sorts of a signature and their respective carrier sets in an algebra, an
abstract data type, or a programming language. Moreover, not only concrete
values (like all integers) but also abstract values (like all terms over variables of
a certain signature [12]) can be used for attribution.

Definition 1 (Attribution values). Given the data types TYPES, attribution

values A =
�
∪type∈TYPES Atype are defined by a set Atype of data values for each

type ∈ TYPES.

Definition 2 (Attribution value morphism). Consider attribution values
A1 and A2, an attribution value morphism a : A1 → A2 is defined by a family of
functions (atype : A1,type → A2,type)type∈TYPES such that a(x) = atype(x) for all
x ∈ A1,type.

Example 1. For our running example, we only need one data type of strings,
which means that TYPES = {string}. For models, we use as attribution values
Astring the set of all strings. Moreover, we need attribution values for rules, where
we use the set Tstring(V) of terms over variables V = {∗1, ∗2, ∗3}, where certain
standard string operations are defined. For an attribution value morphism a :
T (V)→ A, we use a variable assignment α : V → A such that a is the evaluation
of terms according to α.
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Attribution of Models
Consider different types of elements, which all should be attributed the same
way, for example the types of a type graph. For each of these attribution types,
we define a set of attribute names with a certain type. For readability, we do not
allow the same attribute name with different type for one attribution type.

Definition 3 (Typed attribute). Let K be a finite set whose elements are
called attribution types and Voc a set (or vocabulary) of available attribute
names. The mapping Atts : K → P(Voc×TYPES) defines a set of typed at-
tributes for each k ∈ K, if (s, t), (s, t′) ∈ Atts(k) for some k ∈ K implies that
t = t′. The set attname(k) is the projection of Atts(k) to its first component.

For the attribution of the elements of a certain model, these have to be grouped
into the attribution types K. This is done by a so-called K-functor. Note that the
sets are not necessarily disjoint, which means that an element may have multiple
attribution types. This can be used, for example, to express inheritance.

Definition 4 (K-functor). For a category C, a pushout-preserving functor F :
C → SetsK is said to be a K-functor, where SetsK is the |K|-fold product of
Sets. With Fk : C → Sets we denote the (also pushout-preserving) functor as
projection of F to its k-th component.

Using all the above definitions, we can now attribute the models. The K-functor
combined with Atts defines which attributes are mapped to which model ele-
ment. We need an additional mapping of these attribute names to actual data
values consistent with their defined type. This mapping may be partial, because
we allow that certain attributes are not set. Note that for partial functions f
and f ′, with f(a) = f ′(a) we denote that both f(a) and f ′(a) are defined and
equal, or both are undefined. Moreover, we write f ≤ f ′, if f(d) = f ′(d) for all
d ∈ Dom(f).

Definition 5 (Attributed object). Given a category C and a K-functor F :
C → SetsK then AO = (C, A, att) is an attributed object if C ∈ C with
attribution values A and att = (attk : Fk(C) × attname(k) ◦→ A)k∈K is a family
of partial attribution functions such that for all attk(o, n) ∈ Atype we have that
(n, type) ∈ Atts(k).

Example 2. We enrich our running example with humans. We define the attri-
bution types K = {pet, hum} of pets and humans, where pets have a name, i.e.
Atts(pet) = {(name, String)}, while humans have a first and a last name, i.e.
Atts(hum) = {(fname, String), (lname, String)}. Note that we are free to define
also an attribute name for humans, which even may have a different type than
String (if other types were available for our example). In this example, we only
use node attribution, but of course edge attribution would also be possible – we
only had to add an attribution type for the edges.

For the category C we choose the category of typed graphs using the type
graph T G shown in the left of Fig. 3 defining cats, dogs, humans, and owns
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relations between humans and pets. An example typed graph G is depicted in
the right of Fig. 3 defining two cats, one dog, and one human, which owns one
of the cats. Note that actually we would need two different owns relations due
to the uniqueness of edges in the type graph, but we omit this here. While we

Cats Dogs

Humans

cat1:Cats cat2:Cats

dog:Dogshum:Humans

owns owns owns

Fig. 3. Type graph TG and typed graph G

allow the same attributes for dif-
ferent elements within our attri-
bution concept, we cannot solve
the same problem for types in
the underlying typed graphs. To
model one owns relation for all
pets we could implement an in-
heritance concept (see [5]) and
extract a class pet.

The K-functor F : GraphsTG → SetsK includes each node of type Cats or
Dogs into the pet-set, and each human into the hum-set. This means that F (G) =
({n | type(n) ∈ {Cats, Dogs}}, {n | type(n) = Humans}), while morphisms are
mapped to their corresponding components. For the example graph G in Fig. 3
this means that F (G) = ({cat1, cat2, dog}, {hum}).

An attributed object AO′ = (G, A, att′) is shown in Fig. 4, where the

cat1:Cats
name="Greebo"

cat2:Cats
name="Maurice"

dog:Dogs

name="Gaspode"
hum:Humans
fname="Nanny"
lname="Ogg"

owns

Fig. 4. An attributed graph

underlying typed graph G is already given in
Fig. 3. The attribution is defined by
att′pet(cat1, name) = "Greebo",
att′pet(cat2, name) = "Maurice",
att′pet(dog, name) = "Gaspode",
att′hum(hum, fname) = "Nanny", and
att′hum(hum, lname) = "Ogg".

Morphisms
To express relations between attributed objects and apply graph transformation,
we need to define attributed morphisms. We combine a valid morphism in the
underlying category with an attribution value morphism to obtain attribution
morphisms, where we allow to concretize undefined attribute values.

Fk(C1)× attname(k)

Fk(C2)× attname(k)

A1

A2

att1,k

Fk(g)×id a

att2,k

≥

Definition 6 (Attributed mor-
phism). Consider a set A of available
attribution value morphisms closed un-
der composition.

Given attributed objects AO1 =
(C1, A1, att1) and AO2 = (C2, A2, att2),
an attributed morphism f : AO1 → AO2 is a pair f = (g, a) with g : C1 → C2 ∈
C and a : A1 → A2 ∈ A such that a ◦ att1,k ≤ att2,k ◦ (Fk(g)× id).

We use the following convention: When given an attributed morphism fi, we
denote its components with gi and ai, i.e. fi = (gi, ai). Note that the set
A restricts the available attribution value morphisms. This is useful if these
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cat1:Cats

name=�
cat2:Cats
name=∗1

dog:Dogs

name=∗2
hum:Humans

fname="Nanny"
lname="Ogg"

cat1:Cats
name="Greebo"

cat2:Cats
name="Maurice"

dog:Dogs

name="Gaspode"
hum:Humans

fname="Nanny"
lname="Ogg"

fowns owns

Fig. 5. An attributed morphism

morphisms shall preserve certain structure. In our example, we only want to use
attribution value morphisms that stem from an evaluation based on a variable
assignment.

Example 3. In Fig. 5, an attributed morphism f = (g, a) from an attributed
graph AO = (G, TV(A), att) to AO′ = (G, A, att′) is shown. The attribu-
tion of G in AO is defined by attpet(cat2, name) = ∗1, attpet(dog, name) =
∗2, atthum(hum, fname) = "Nanny", and atthum(hum, lname) = "Ogg", and
attpet(cat1, name) is undefined. AO′ is already known from Fig. 4. g is the identi-
cal morphism on the graph G, while a is the evaluation with α(∗1) = "Maurice"

and α(∗2) = "Gaspode".
To show that f is a valid attributed morphism we have to verify its properties

for all (o, n) ∈ Dom(a ◦ attk) with k ∈ {pet, hum}, which obviously holds.

Now attributed objects and attributed morphisms form a category.

Definition 7 (Category AttC). Given a category C, a set A of attribution
element morphisms, a finite set of attribution types K, a K-functor F , and a
mapping Atts as above, then attributed objects and attributed morphisms, to-
gether with the component-wise composition and identities, form the category
AttCF,A

Atts. If the setting is clear, we may also write AttC.

Theorem 1. The category AttC is well-defined, i.e. it is actually a category.

Graphical Notation
Since the user does not want to know all the definitions and formal notations,
attributed objects and morphisms are depicted in an UML-like notion, where
the attributes are written down below the element they belong to as we already
used in Fig. 4. Undefined attributes are denoted by �.

4 Transformations of Attributed Models

To apply transformations in attributed objects, we need to define rules and in
particular rule morphisms. For our rules, undefined attributes shall only occur in
the gluing part, but not in the left or right hand side. Such undefined attributes
have to be concretized. Moreover, the data should not be changed by a rule, i.e.
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the attribution value morphisms should be isomorphic. The morphism class R
represents these available morphisms.

Definition 8 (Morphism class R). Given anM-adhesive category (C,MC),
we define the morphism class R in AttC by R = {f : AO1 → AO2 | f = (g, a) ∈
AttC, g ∈ MC, a is isomorphism, AO2 = (C2, A2, att2), att2 is total}.

Unfortunately, the category AttC together with the morphism class R does not
become an M-adhesive category, because pushouts over R-morphisms are not
constructed preserving the morphism class R.

Fact 1. The category (AttC,R) is not an M-adhesive category.

Proof. The diagram in Fig. 6 shows that M-morphisms are not stable under
pushouts in AttC. We look at the graph with one node n of type Cats, where f1
and f2 are identities with total codomain attribution and thus inR, and only the
actual attribution of n is concretized. To obtain a pushout, we need a commuting
square, i.e. its graph has to contain at least one node, where the nodes from B

n:Cats
name=�

n:Cats
name="Greebo"

n:Cats
name="Maurice"

n:Cats
name="GM"

f1

f2

f4

f3

Fig. 6. Pushout in attributed graphs

and C map to, which also has to be
of type Cats. For the attribution val-
ues, "Greebo" and "Maurice" have
to be merged by a3 and a4 – oth-
erwise, either f3 or f4 will not be a
valid attributed morphism. Actually,
the depicted attributed graph is the
pushout of f1 and f2, but f3, f4 /∈ R.
Therefore, AttC with the chosen R
is no M-adhesive category.

Since our morphism class R is rather restrictive, one may argue that a more
general morphism class may be suitable for AttC to become an M-adhesive
category. Thus we define the morphism class M as morphisms that are MC-
morphisms in the C-component and isomorphisms for the attribution values.

Definition 9 (Morphism class M). Given an M-adhesive category
(C,MC), we define the morphism class M in AttC by M = {f : AO1 →
AO2 | f = (g, a) ∈ AttC, g ∈ MC, a is isomorphism}.

But even (AttC,M) is not an M-adhesive category. Fig. 6 represents a coun-
terexample, because R ⊆M, but f3, f4 /∈M. Nevertheless, the morphism class
M will be useful for our further analysis. The above example gives us an idea
how pushouts in AttC along M-morphisms are constructed. Basically, we use
the pushout construction in C, while we have to integrate different data values
which are reached from the same elements by the given morphisms.

Fact 2 (Pushouts along M). The category AttC has pushouts along M-
morphisms.
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AO1 AO3

AO2 AO4

C1 C3

C2 C4

A1 A3

A2 A4

f1

f4

f2 f3

g1

g4

g2 g3

i

j
∼

a4

a2 a3(1) (2) (3)

Construction. Consider
the attributed morphisms
f1 : AO1 → AO3 ∈
M and f2 : AO1 →
AO2 with the single com-
ponents as shown in the
right diagrams, where due to the definition of M i and j are correspond-
ing isomorphisms. We construct the pushout (2) in C and define a rela-
tion ∼ = {(att2,k(Fk(g2)(o), n), a2(j(att3,k(Fk(g1)(o), n)))) ∈ A2 × A2 | k ∈
K, n ∈ attname(k), ∃o ∈ Fk(C1), (o, n) /∈ Dom(att1,k), (Fk(g2)(o), n) ∈
Dom(att2,k), (Fk(g1)(o), n) ∈ Dom(att3,k)}. Let ≡ be the equivalence
closure of ∼ and define A4 = A2|≡. Now let a3(x) = [a2(j(x))]
and a4(x) = [x]. Then AO = (C4, A4, att4) with att4,k(o, n) =⎧⎨⎩

[a2(j(att3,k(o3, n)))] ∃o3 ∈ Fk(C3) : Fk(g3)(o3) = o, (o3, n) ∈ Dom(att3,k)
[att2,k(o2, n)] ∃o2 ∈ Fk(C2) : Fk(g4)(o2) = o, (o2, n) ∈ Dom(att2,k)
undefined otherwise

is the pushout object with morphisms f3 = (g3, a3) and f4 = (g4, a4).
Note that ≡ is empty if each undefined attribute in AO1 is also undefined in

AO2 or AO3. In this case, A4 is the pushout object of i and a2 in Sets.
While the pushout construction is well-defined if one of the given morphisms is
inM, we do not want to glue attributes as done in Fig. 6 when applying a rule.
Intuitively, gluing in the pushout construction has to be done for the following

case:
� d

d′
. For transformations and their well-definedness, the key observation

is the fact that such a situation could never occur. It is prevented because we
have to construct a certain pushout complement first when applying a rule. Only

the situations
d′�d

a(d′)�a(d)

and
d d d

a(d) a(d) a(d)

can occur in the rule

span and the corresponding application via a match. The construction of the
pushout complement ensures that an undefined attribute in the intermediate
object of the rule leads to an undefined attribute in the intermediate object of
the rule application such that no data gluing has to occur. We describe such a
well-behaviour as a special property and show that we can define a well-behaved
pushout complement such that the double pushout of a direct transformation is
actually well-behaved.

AO1 AO3

AO2 AO4

f1

f4

f2 f3(1)

Definition 10 (Well-behaved pushouts). The class
W of morphism pairs with the same domain is de-
fined by: W = {(f1, f2) | f1 : AO1 → AO3 ∈
R, f2 : AO1 → AO2, ∀(o1, n) /∈ Dom(att1,k) :
(Fk(g2)(o1), n) /∈ Dom(att2,k), ∀o ∈ Fk(C2)\Fk(g2)(C1) :
(o, n) ∈ Dom(att2,k)}.

A pushout (1) is called well-behaved, or short a W-pushout, if (f1, f2) ∈ W.
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Note that the pushout over (f1, f2) ∈ W always exists, since AttC has
pushouts along M-morphisms (Fact 2). For W-pushouts, in the construction
of Fact 2 the relation ∼ is empty leading to A2 = A4, or A2

∼
= A4 in general.

Now we can define rules and rule applications, which are called direct transfor-
mations, based on W-pushouts. In contrast to rules for typed attributed graphs
in [5], all attributes of the elements in the left or right hand side have to be
defined, i.e. rules cannot be underspecified. While this requires some additional
specification effort to at least assign a variable to each of these attributes, it clar-
ifies the rule and is necessary for our approach. As a consequence, rules cannot
be applied to attributed objects with only partial attribution.

AOL AOK AOR

AOG AOD AOH

fL fR

fG fH

fM fK fN(1) (2)

Definition 11 (Rule and direct trans-
formation). A rule is a span p =

(AOL
fL← AOK

fR→ AOR) of R-morphisms
in AttC.

Given a rule p, an attributed object
AOG, and an attributed morphism fM :

AOL → AOG, called match, a direct transformation AG =
p,fM
===⇒ AH is given

by two W-pushouts (1) and (2) as in the diagram on the right.

Note that we could pragmatically adapt the rules of typed attributed graphs
in [5] with conditions as expressed by R-morphisms. These conditions can be
checked statically to allow only intended attribute changes. Nevertheless, the
underlying graph model still inhibits the disadvantages explained in Section 2.

Similar to the standard graph transformation, we define the gluing condition
which characterizes valid situations, where the pushout complement exists.

Definition 12 (Gluing condition). Given f1 and f3 as in Def. 10, the gluing
condition holds if the underlying pushout complement of g3 ◦ g1 in C exists and
for all o1, o′1 ∈ Fk(C1) with Fk(g3 ◦ g1)(o1) = Fk(g3 ◦ g1)(o

′
1) we have that both

att1,k(o1, n).att1,k(o
′
1, n) are either defined or undefined.

Since both
�d

dd
and

�d

�d
are valid pushout complements, pushout com-

plements in AttC are not unique, but only the second situation behaves well.
Thus, we chose this one to construct pushout complements in AttC.

Fact 3 (Pushout complement along M). The category AttC has pushout
complements along M-morphisms, if the gluing condition holds.

Construction. Given attributed morphisms f1 : AO1 → AO3 ∈ M and
f3 : AO3 → AO4 as above, construct the pushout complement (2) in C (see Con-
struction of Fact 2). Now define A2 = A4, a2 = a3 ◦ i, a4 = id, and att2,k(o, n) =⎧⎨⎩

a2(att1,k(o1, n)) ∃o1 ∈ Fk(C1) : Fk(g2)(o1) = o, (o1, n) ∈ Dom(att1,k)
undefined ∃o1 ∈ Fk(C1) : Fk(g2)(o1) = o, (o1, n) /∈ Dom(att1,k)
att4,k(Fk(g4)(o), n) otherwise

.

Then AO2 = (C2, A2, att2) together with the morphisms f2 = (g2, a2) and
f4 = (g4, a4) is the pushout complement of f1 and f3.
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dog:Dogs

name=∗1
dog:Dogs

name=�
dog:Dogs

name="Toto"

hum:Humans
fname=∗2
lname=∗3

hum:Humans
fname=∗2
lname=∗3

hum:Humans
fname=∗2
lname=∗3

dog:Dogs

name="Terry"

dog:Dogs

name=�
dog:Dogs

name="Toto"

hum:Humans
fname="Dorothy"
lname="Gale"

hum:Humans
fname="Dorothy"
lname="Gale"

hum:Humans
fname="Dorothy"
lname="Gale"

owns owns owns

owns owns owns

m (1) (2)

Fig. 7. Direct transformation of attributed graphs

A rule p is applicable to AOG if the gluing condition holds and the attribution
in AOG is total. In this case, for the construction of a direct transformation we
can first construct the pushout complement of Fact 3 and then the pushout of
Fact 2, which are both unique and well-behaved.

Theorem 2 (Construction of direct transformation). Given a situation
as in Def. 11 with fL, fR ∈ R, where the gluing condition holds and attG is
total, then the pushout complement (1) and the pushout (2) are uniquely defined
W-pushouts. Moreover, also fG, fH ∈ R.

Example 4. Now we can rename "Greebo" to "Maurice" using the second rule
in Fig. 2 or an arbitrary dog that belongs to someone to "Toto" with the rule
in the top row of Fig. 7. When applying such a rule, we construct first the
pushout complement and then the pushout, as shown in Fig. 7. Note that the
match m uses the variable assignment α(∗1) = "Terry", α(∗2) = "Dorothy",
and α(∗3) = "Gale", and its codomain graph has total attribution. We can see
that both pushouts are well-behaved because all attributes in the intermediate
object that are undefined in AOK are also undefined in AOD.

As we will need this fact in the next section, we state that also pullbacks along
M-morphisms exist in AttC.

AO1 AO3

AO2 AO4

f1

f4

f2 f3(1)

Fact 4 (Pullbacks over M). The category AttC has
pullbacks along M-morphisms. Moreover, M is closed un-
der pullbacks.

Construction. Given f4 ∈M we construct the pullback
in C with pullback object C1 and morphisms g1, g2. Then
AO1 = (C1, A3, att1) with f1 = (g1, idA3), f2 = (g2, a−14 ◦ a3), and att1(o, n) =⎧⎨⎩

att3,k(Fk(g1)(o), n) (Fk(g1)(o), n) ∈ Dom(att3,k),
(Fk(g2)(o), n) ∈ Dom(att2,k)

undefined otherwise
is the pullback of f3

and f4.
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5 W-Adhesive Categories

As we have analyzed in the last section, not all pushouts are important in the
context of transformations, but only those we have called W-pushouts. In this
section, we generalize this idea to W-adhesive categories, which are categories
where the VK property is restricted to hold for W-pushouts, which are defined
by a classW of morphism spans. This restriction allows us to formulate a trans-
formation theory for the category AttC.

Definition 13 (W-adhesive category). Given a category C, morphism
classes R ⊆M, and a class W ⊆ R×MorC of morphism spans, (C,R,M,W)
is a W-adhesive category if:

1. M is a class of monomorphisms closed under isomorphisms, composition,
and decomposition, with idA ∈M for all A ∈ C,

2. C has pushouts along and pullbacks over M-morphisms,

3. M is closed under pullbacks: Given a pullback (1) with n ∈ M then also
m ∈M,

4. C has pushouts over W-morphisms, called W-pushouts,

5. R is closed under W-pushouts: Given W-pushout (1) with m ∈ R then also
n ∈ R,

6. W is closed under R: (m′ : A′ → B′, a) ∈ W, f ′ : A′ → C′ ∈ R implies
(f ′, a) ∈ W,

7. W-pushout composition and decomposition: Given pushout (1), (1) + (2) is
a W-pushout with (f, h ◦ m) ∈ W if and only if (2) is a W-pushout with
(g, h) ∈ W,

8. W-pushouts fulfill the W-van Kampen property: Given a commutative cube
(3) with W-pushout (1) in the bottom, m, d ∈ R, b, c ∈M and the back faces
being pullbacks, it holds that the top is a pushout if and only if the front faces
are pullbacks.

A′

B′

A

B

C′

D′

C

D

A B E

C D F

m′

a

f ′

g′

b
m

f

n′

c

d

n
g

m h

f

n

g

v

w(1) (2)

(3)

An example for aW-adhesive category is the category of attributed objects and
morphisms.

Theorem 3. AttC with an underlying M-adhesive category (C.MC), R as
defined in Def. 8, M as defined in Def. 9, and W as defined in Def. 10 is a
W-adhesive category.
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Proof. Obviously,M is a class of monomorphisms because both components are
monomorphisms with the required closure properties inherited from the compo-
nents. AttC has pullbacks overM-morphisms andM is closed under pullbacks
as shown in Fact 4. Since AttC has pushouts alongM-morphisms, as shown in
Fact 2, it has pushouts over M-morphisms as well as W-pushouts. The closure
of R under W-pushouts and the closure of W under R follow from Thm. 2. The
W-pushout composition and decomposition follows from the fact that the unde-
fined attributes in A, B, and E are exactly the same. The proof of the W-van
Kampen property can be found in the appendix.

As specified in Def. 11 for the special case of AttC, in a W-adhesive category
rules are defined as spans of R-morphisms, while transformations are defined by
double W-pushouts.

To prove important results for graph transformation, various so-called HLR
properties have been used in [5]. Here, we show the corresponding variant for
W-categories for two of them, the W-pushout-pullback decomposition property
and that W-pushouts are pullbacks.

Fact 5 (W-pushout-pullback decomposition). Given the above commuta-
tive diagram, where (1) + (2) is a W-pushout, (2) is a pullback, v ∈ R, and
(f ∈ R or m, h ◦m ∈ R), then (1) is a pushout.

D

F

E

B

A

B

A

B

C

D

C

D
h

v

m

m

h

f

f

n

n

v

g

g

g

w

Proof. Consider the right cube,
where all unnamed morphisms are
identities. The bottom is the W-
pushout (1) + (2) with (f ∈ R
or m, h ◦ m ∈ R), v ∈ R, and
h, idB, idC , idD ∈ M (Def. 13 Items
3 and 1). All back and front faces are
pullbacks. Now the W-van Kampen
property (Item 8) implies that the
top, i.e. the square (1), is a pushout.

Fact 6 (W-pushouts are pullbacks). Given the above W-pushout (1) with
m ∈ R, then (1) is also a pullback.

A

A

A

B

C

C

C

D

m

n
m

f

f

n

f

g

Proof. Consider the right cube, where all un-
named morphisms are identities. The bottom
is the W-pushout (1) with m, n ∈ R (Def. 13
Item 5), and m, idC ∈ M (Item 1). All back
faces are pullbacks and the top is a pushout.
Now theW-van Kampen property (Item 8) im-
plies that the front faces, and in particular the
square (1), are pullbacks.
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In the following, we sketch for the example of (one direction of) the Local Church-
Rosser Theorem that this result is also available in W-adhesive categories. It is
concerned with parallel and sequential independence of direct transformations.
First, we define the notion of parallel and sequential independence. Then we
state the Local Church-Rosser Theorem and prove it. The proof follows the one
in [5] with certain adaptions for W-adhesive categories.

Definition 14 (Parallel and sequential independence). Two direct trans-
formations G =

p1,m1
===⇒ H1 and G =

p2,m2
===⇒ H2 are parallel independent if there are

morphisms i : L1 → D2 and j : L2 → D1 such that f2 ◦ i = m1 and f1 ◦ j = m2.

L1K1R1 L2 K2 R2

GD1H1 D2 H2

l1r1

f1g1

m1
k1n1

l2 r2

f2 g2

m2
k2 n2

ij

R1K1L1 L2 K2 R2

H1D1G D2 G′

r1l1

g1f1

n1
k1m1

l2 r2

f2 g2

m2
k2 n2

ij

Two direct transformations G =
p1,m1
===⇒ H1 =

p2,m2
===⇒ G′ are sequentially indepen-

dent if there are morphisms i : R1 → D2 and j : L2 → D1 such that f2 ◦ i = n1

and g1 ◦ j = m2.

H1 H2

G

G′

p1,m1 p2,m2

p2,m
′
2 p1,m

′
1

Theorem 4 (Local Church-Rosser Theo-
rem). Given two parallel independent direct
transformations G =

p1,m1
===⇒ H1 and G =

p2,m2
===⇒

H2 there is an object G′ together with di-

rect transformations H1 =
p2,m

′
2===⇒ G′ and

H2 =
p1,m

′
1===⇒ G′ such that G =

p1,m1
===⇒ H1 =

p2,m
′
2===⇒ G′ and G =

p2,m2
===⇒ H2 =

p1,m
′
1===⇒ G′

are sequentially independent.

L1 K1 R1

G D1 H1

r1l1

g1f1

n1m1 (1) (2)

L2 K2 R2

G D2 H2

r2l2

g2f2

n2m2 (3) (4)

Proof. Consider the
parallel independent
direct transformations
G =

p1,m1
===⇒ H1 and

G =
p2,m2
===⇒ H2 depicted

right. We combine the W-pushouts (1) and (3) with the morphisms i1 and i2
obtained by parallel independence. Since f1, f2 ∈ M (Def. 13 Item 5) we can
construct the pullback (5) (Item 2) and obtain morphisms j1 and j2 as shown in
the following diagram on the left-hand side. Since (1) = (6)+ (5) with f2, l1 ∈ R
Fact 5 implies that (6), and analogously (7), is a pushout. Now we construct
the pushouts (8) and (9) (Item 2) along r1, r2 ∈ M. Finally, the pushout (10)
is constructed by decomposition of pushout (8) and the pushout over r1 ∈ M
and h1 ◦ j1 (Item 2). From pushout (8) we obtain a morphism s1 : D′2 → H1

such that (2) = (8) + (11), and by Item 7 (11) is a W-pushout. Analogously, we
obtain the W-pushout (12).
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K2 L2

K1 D D1

L1 D2 G

l2

k1

j2 i2

f2

k2 f1

i1

j1

l1

(7)

(6) (5)

K2 R2

K1 D D′1

R1 D′2 G′

r2

h1

j2 t2

h2

t1

j1

r1

(9)

(8) (10)

K1 R1

D D′2

D1 H1

r1

k1

j1 t1

g1

h1 s1

(8)

(11)

K2 R2

D D′1

D2 H2

r2

k2

j2 t2

g2

h2 s2

(9)

(12)

L2 K2 R2

D2 D D′1

H1 D′2 G′

(7) (9)

(11) (10)

L1 K1 R1

D1 D D′2

H2 D′1 G′

(6) (8)

(12) (10)

By Item 7, (7) + (11)
and (6) + (12) are W-
pushouts, and using Item
6 we obtain the sequen-
tially independent direct
transformations H1 =

p2
=⇒

G′ and H2 =
p1
=⇒ G′.

6 Conclusion and Future Work

In this paper, we proposed a new concept for attribution of objects in an ar-
bitrary category based on a functor selecting attributable elements of objects
and assigning attributes and values to them. We have then defined rules and
transformations on attributed objects based on M-adhesive categories, where
transformations rely on the new concept of W-pushouts. This concept leads to
the notion of W-categories, which are a suitable framework to show results for
transformations of attributed objects, as we have demonstrated for the example
of the Local Church–Rosser Theorem. Since the underlying objects come from
an M-adhesive category, we only have to prove the results for the attribution
part and can rely on the underlying results for the pure, un-attributed transfor-
mations. In fact, we can use any suitable category for attribution. In this paper,
we chose M-adhesive categories, because a large number of results is available
there, but there is actually no need for this restriction.
W-adhesive categories have been introduced for attribution in this paper, but

they may also fit for transformations in other non-M-adhesive categories, where
the definition of the proper pushout complement depends on both morphisms,
like in RDF graphs (see [13]) or open Petri nets (see [14]). In this sense, they
are more expressive thenM-N -adhesive categories [15], which consider a special
class N for vertical morphisms in transformations.

Future work includes to prove other important results and theorems for graph
transformation, where additional requirements for W-adhesive categories may
have to be identified. For example, for the Parallelism Theorem some compati-
bility property of W with binary coproducts will be necessary. Moreover, rules
should be extended with constraints and application conditions for data as done
in [16] for triple rules. Another interesting extension would be to integrate an
inheritance concept for the attribution types.

For language evolution, the deletion or addition of attributes, i.e. changing
the meta-model, is an interesting field of work. Without the restrictions of the
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R-morphisms in the rules, especially the total attribution, we would not be able
to define unique pushout complements for a transformation. It would be inter-
esting to explore if other graph transformation approaches may require fewer re-
strictions to the rule morphisms. For computations and reasoning on attributes,
symbolic graphs [8] can be adapted for the underlyingM-adhesive category, and
their usefulness should be further elaborated.

References

1. Ehrig, H.: Introduction to the Algebraic Theory of Graph Grammars (A Survey).
In: Ng, E.W., Ehrig, H., Rozenberg, G. (eds.) Graph Grammars 1978. LNCS,
vol. 73, pp. 1–69. Springer, Heidelberg (1979)

2. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation. Foundations, vol. 1. World Scientific (1997)

3. Ehrig, H., Golas, U., Hermann, F.: Categorical Frameworks for Graph Transfor-
mation and HLR Systems based on the DPO Approach. BEATCS 102, 111–121
(2010)

4. Lack, S., Sobociński, P.: Adhesive Categories. In: Walukiewicz, I. (ed.) FOSSACS
2004. LNCS, vol. 2987, pp. 273–288. Springer, Heidelberg (2004)

5. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. EATCS Monographs. Springer (2006)

6. Hermann, F., Ehrig, H., Ermel, C., Orejas, F.: Concurrent Model Synchronization
with Conflict Resolution Based on Triple Graph Grammars. In: de Lara, J., Zisman,
A. (eds.) FASE 2012. LNCS, vol. 7212, pp. 178–193. Springer, Heidelberg (2012)

7. Golas, U.: A General Attribution Concept for Models in M-adhesive Transforma-
tion Systems: Long Version. Technical Report 12-22, Zuse Institute Berlin (2012)

8. Orejas, F., Lambers, L.: Symbolic Attributed Graphs for Attributed Graph Trans-
formation. ECEASST 30 (2010)

9. Habel, A., Plump, D.: Relabelling in Graph Transformation. In: Corradini, A.,
Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) ICGT 2002. LNCS, vol. 2505, pp.
135–147. Springer, Heidelberg (2002)
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DPO Transformation with Open Maps
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Abstract. In graph transformation, a match just represents an occur-
rences of a rule’s left-hand side in the host graph. This is expressed by a
morphism preserving the graph structure. However, there are situations
where occurrences are bound by additional constraints. These can either
be implicit, such as the gluing conditions of the DPO, or explicit such
as negative application conditions.

In this paper we study another type of implicit condition based on
the reflection of structure. Morphisms reflecting some of the structures
of their targets are abstractly characterised as open maps in the sense
of Joyal, Nielsen, and Winskel. We show that under certain restrictions
on the rules, DPOs preserve open maps. We establish an encoding of
open maps into negative application conditions and study concurrency
properties of the new approach.

Keywords: double pushout, open maps, negative application condi-
tions, adhesive categories.

1 Introduction

Most graph transformation approaches control applicability of rules by means
of subgraph embeddings or homomorphisms between rules’ left-hand sides and
the graphs they are meant to apply to. This has often been found insufficiently
expressive in applications. Apart from adding explicit control structures or neg-
ative application conditions, more restrictive notions of matches can be used.

For example, in the context of document image analysis, Blostein [1] considers
induced subgraph matching, where the left-hand side L has to be isomorphic to
a complete subgraph of the host graph G. That means, if for any two nodes v, w
in L an edge exists between their images in G, this edge must also be present in
L. In other words, apart from preserving nodes and edges, the match is required
to reflect edges between existing nodes. This approach provides more explicit
control at the cost of having to specify a larger set of patterns [1].

The kappa approach uses graph rewriting for modelling biochemical reac-
tions [3]. So-called site graphs, representing sets of molecules, consist of agents
equipped with sites through which they can be linked with sites of other agents.
Matches preserve agents, sites and links as expected, but they also reflect links
outgoing from sites. That means, if in L an agent has a site who’s image in G is
linked to another site, such a link must be present in L also.

H. Ehrig et al.(Eds.): ICGT 2012, LNCS 7562, pp. 203–217, 2012.
� Springer-Verlag Berlin Heidelberg 2012
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While in these and similar examples negative applications conditions could
be used, this may complicate the formalism, making it harder to understand
and analyse. Also, as we will demonstrate, it complicates the concurrency prop-
erties of the approach. Instead, in this paper we develop a notion of graph
transformation which allows to capture directly general reflection constraints.
Such constraints on matches are specified relative to the type graph, similar to
structural constraints on instance graphs. This makes it easier to design domain-
specific languages based on graph transformation with specifically chosen classes
of matches.

The approach is based on open maps [8], a categorical axiomatisation of mor-
phisms in a category C reflecting structures specified by a subcategory P. Intu-
itively, this so-called path category represents a set of constraints capturing the
specific reflection properties required. The name originates from the use of P to
characterise reflection of certain paths in transition systems. Assuming C to be
an adhesive category, we define a restricted form of the DPO approach where
matches are open maps. We show that the constraints for open maps can be en-
coded as negative application conditions and study the concurrency properties
of the new approach.

In particular, it turns out that using the standard definitions of independence,
local Church-Rosser and switch equivalence for negative application
conditions [7,10], independence of consecutive steps is not stable under switch
equivalence. That means, causality is only well-defined over consecutive steps in
the same sequence, but may be different for corresponding steps in an equiva-
lent sequence. We show that, as in the classical DPO approach, independence of
DPO transformations over open maps is preserved under switch equivalence.

The paper is organised as follows. After introducing basic notions below, Sec-
tion 3 defines open maps and studies their relation with pullbacks. Section 4
presents DPO transformations of open maps and Section 5 considers its encod-
ing by DPO with negative application conditions. The relation of independence
and switch equivalence for both conditional DPO and DPO over open maps is
analysed in Section 6 before Section 7 concludes the paper.

2 Basic Definitions

We use the double-pushout approach to (typed) graph transformation, occasion-
ally with negative application conditions, but will state all definitions and results
at the level of adhesive categories [9]. A category is adhesive if it has pullbacks
as well as pushouts for all pairs of morphisms where one is a monomorphism,
and where all such pushouts enjoy the van Kampen property. That means, when
such a pushout is the bottom face of a commutative cube such as in the left of
Fig. 1, whose rear faces are pullbacks, the top face is a pushout if and only if
the front faces are pullbacks. In any adhesive category we have uniqueness of
pushout complements, monomorphisms are preserved by pushouts and pushouts
along a monomorphism are also pullbacks. Categories of typed graphs for a fixed
type graph T G are adhesive [4].



DPO Transformation with Open Maps 205
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Fig. 1. van Kampen condition (left) and DPO diagram (right)

Rules are defined as spans of monomorphisms. Transformations follow the

double-pushout approach [5]. A rule p = (L
l←− K

r−→ R) consists of two
monomorphisms l and r in C. Given a morphism m : L → G called the match, a

direct transformation G
p,m
=⇒ H from G to a H exists if a double-pushout (DPO)

diagram can be constructed, where (1) and (2) in the right of Fig. 1 are pushouts
in C.

The applicability of rules can be restricted by specifying negative conditions
stating the non-existence of certain structures in the context of the match. A
negative constraint on a graph L is a morphism n : L → L̂ in C. A morphism
m : L → G satisfies n (written m |= n) iff there is no morphism q : L̂ → G such
that q ◦ n = m in C. A negative application condition (NAC) on L is a set of
constraints N . A morphism m : L → G satisfies N (written m |= N) if and only
if m satisfies every constraint in N , i.e., ∀n ∈ N : m |= n.

A graph transformation system (GTS) G consists of a set of rules. A derivation

in G is a sequence of direct transformations s = (G0
p1,m1
=⇒ G1

p2,m2
=⇒ · · · pn,mn

=⇒ Gn)

such that all pi are in G. We write s : G0
∗

=⇒ Gn for a generic derivation
and, given s′ : Gk

∗
=⇒ Gm with Gn = Gk, we denote their composition by

s; s′ : G0
∗

=⇒ Gm.

3 Open Maps and Pullbacks

Open maps are a categorical characterisation for morphisms reflecting aspects of
structure in a category of more general, structure preserving maps. The concept
has been introduced in computer science when Joyal, Nielsen and Winskel [8]
used it to characterise bisimulation functions in a category of labelled transition
systems, where the standard morphisms preserve transitions but do not reflect
them.

The idea is to use a subcategoryP of an environment categoryC of “ordinary”
morphisms to capture extensions of paths. An arrow c : P → Q in P can be seen
as an implication saying that, for each occurrence of P in the source of an open
morphism m : X → Y , if a corresponding occurrence of Q can be found in Y ,
then this must give rise to a compatible occurrence of Q in X . If P represents
a prefix of a path (e.g., in a transition system) and Q a possible extension,
this amounts to demanding a reflection property of paths, specified by step-wise
extension.



206 R. Heckel

Let us illustrate this with the example discussed in the introduction, of matches
as induced subgraphs. The constraint expressing that edges in G between nodes
with a pre-image in L should be reflected is expressed by the constraint c be-
low. The match m violates this constraint because the edge 1 → 2 in G is not
reflected. This corresponds to the fact that there is no diagonal embedding of Q
into L compatible with the embeddings of P into L and Q into G.

Next, after presenting the basic definitions, we are considering the relation of
this notion with pushouts and pullbacks, preparing the ground for using open
maps in DPO transformations.

Definition 1 (open maps [8]). Let C be a category and P ⊆ C be a subcate-
gory, called path category. A morphism m is P-open if all commutative squares
based on c : P → Q ∈ P as below have a fill-in, i.e., a morphism f such that
the resulting triangles P QX and QXY commute. If P is understood from the
context, we refer to m as open.

P ��

c

��

X

m

��
Q ��

f###

��####

Y

For the rest of the paper, assume an adhesive category C and let P be a sub-
category such that, for all objects X, Y in P, all isomorphisms i : X → Y in C
are also in P.

Let us consider an example to illustrate the notions introduced so far.

Example 1 (paths and open maps). Figure 2 shows the type graph for a simple
model of object structures, where Objects have Fields from which they refer to
Handles representing the identities of other objects. The idea is that Fields and
Handles act as ports for incoming and outgoing references.

The reflection properties are specified by the two arrows in Fig. 2: Constraint
c1 in the top states that, if a Handle is present its incoming references must
be reflected. Constraint c2 in the bottom states that, if a Field is present its
outgoing references must be reflected. The path category is given by the closure
of the constraints under composition, identities, and isomorphisms in C.

Satisfaction of the condition of openness is illustrated by the morphisms shown
in Fig 3. Here, m1 satisfies c1 but not c2, because the latter has an embedding of
the premise in the source and the conclusion into the target of m1, but there is no
embedding of the conclusion into the source of m1 because the outgoing reference
is not reflected. With the same justification, m2 satisfies both constraints, so is
an open map, while m3 satisfies c2 due to lack of occurrence of the premise, but
does not satisfy c1.
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Fig. 2. Type graph for simple object structures (left) and constraints for reflection of
references to Handles (top right) and from Fields (bottom right)

Fig. 3. Morphisms as candidate open maps

We continue analysing the relationship of open maps with pullbacks.

Lemma 1 (pullbacks preserve open maps). Assume a pullback in C such
as (1) below, where l is mono. Then, if m is open, so is d.

L

m

��
(1)

Kl��

d

��

P��

c

��
G D�� Q��

g$$$

��$$$$

Proof. For every commuting diagram P QKD as above on the right, we have to
produce a fill-in. Since the outer diagram commutes and m is open, there exists

a morphism f : Q → L commuting the resulting triangles. Now Q
f−→ L

m−→
G = Q → D → G, so by pullback property of (1) this induces g to commute
with morphisms to D and L. Commutativity with the top-right triangle of the
right-hand side pullback follows because l is mono.

Open maps are closed under composition and decomposition with monos.

Lemma 2 (composition and decomposition). If morphisms A
f−→ B

g−→
C are open, also g ◦ f is open. If g ◦ f is open and g is mono, also f is open.
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Proof. The first statement is obvious by composition of the diagram involved.
For decomposition, assume c ∈ P as below such that the square commutes. Then,
by openness of g ◦ f the fill-in exists such that the upper triangle commutes and

Q → A
f−→ B

g−→ C = Q → B
g−→ C. By monomorphism property of g this

implies Q → A
f−→ B = Q → B.

A

f

��

P

c

��

��

C Bg�� Q��

��%%%%%%%%

4 Transformations with Open Maps

Open maps are a class of morphisms enjoying the reflection properties specified
by the path category. Used as matches they represent a global control condition,
restricting the class of permissible transformations. While this is well-defined as
it is, the inherent symmetry of the DPO approach suggests to investigate the
conditions under which the resulting co-match of a transformation with an open
match is open as well. In this section, after providing the basic definition, we
investigate conditions on rules that guarantee this symmetry.

Definition 2 (transformation with open maps). A DPO transformation

G
p,m
=⇒P H with P-open maps is a DPO step such that match m is P-open.

Example 2 (manipulation of objects). The rules in Fig 4 illustrate the power of
open maps in controlling transformations. The first rule assigns a reference to
a Field if no outgoing reference exists yet. The left-hand side is identical to the
source of m1 in Fig. 3, and as discussed there the constraints are not satisfied
by the target of that match.

The remaining three rules implement a simple garbage collection mechanism.
First, we disconnect outgoing references if there are no incoming ones. Then,
empty Fields of unreferenced Objects are removed and finally, unreferenced Ob-
jects (without Fields, due to the dangling condition) are removed together with
their Handles.

It is clear from phrases such as “empty Field” or “unreferenced Object” that
we are conceptually in the territory of negative application conditions. This
intuition is formalised in the following section.

Definition 3 (P-preserving, P-stable). A rule p : L
l←− K

r−→ R is P-

preserving if for all transformations G
p,m
=⇒ H, the comatch m∗ is open whenever

m is. It is P-stable if the same is true for the inverse rule p−1 : R
r←− K

l−→ L.

Using Lemma 1, it is not difficult to see that the left-hand side pushout of a
DPO, which is also a pullback, translates open maps m into open maps d. The
proposition below is therefore mostly concerned with the right-hand side.
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Fig. 4. Rules for manipulating object structures

Proposition 1 (P-preserving). Rule p : L
l←− K

r−→ R is P-preserving
if, in the diagram on the left below, for all c : P → Q in P and P → R with
pushout (1) and epimorphism q, such that pushout complement (2) exists and e
is P-open,

K �� r ��

e

��

(2)

R

��

P��

c
��

��

T

q����

Q��

(1)

��

M �� �� S

K �� r ��

e

��

(2)

R

��

P��

c
��

��

T

q����

Q��

(1)

��

��&&
&&
&&
&&
&&
&

��

��&&
&&
&&
&&
&&
&

��

M �� ��
��

��

S��
i ��

D �� �� H

(3)

there exist (a) morphism Q → R such that the upper right triangle of (1) com-

mutes and Q → R → T
q−→ S = Q → T

q−→ S, or (b) morphisms P → K and
Q → M commuting all resulting diagrams.

Proof. Assume that m is open. Due to the monic l, the left-hand side pushout
is a pullback. Thus, by Lemma 1, d is open.

For the right-hand side, assume pushout (2+3) in the diagram on the right
above. To show that R → H is open, let c ∈ P and assume P → R and Q → H
commuting the square P RQH . Forming pushout (1), R → H decomposes over
T such that triangle QT H commutes. Let i ◦ q be the epi-mono factorisation of
the so-induced morphism. It follows from the pushout-pullback decomposition
property [9] that we can decompose (2+3) into pushouts (2) and (3). In partic-
ular, r and i and all arrows parallel to them are monomorphisms. Since K → D
is open, and M → D is mono, by Lemma 2 also e is open.

By assumption, there exist either Q → R, or P → K and Q → M , commuting
the resulting diagrams. In the first case, this immediately delivers the fill-in for
P RQH . In the second case, since e is open we have a fill-in Q → K which
extends along r to a fill-in Q → R.
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While the notion of transformation does not formally require such restriction,
we will usually assume rules to beP-stable or at leastP-preserving. Conceptually,
the process of verifying that a rule preserves open maps is similar to that of ensur-
ing that it respects integrity constraints [6]: We create a counterexample without
unnecessary context and Prop. 1 shows that every counterexample can be reduced
to such a minimal one. Let us analyse the property for the rules in Fig. 4.

Example 3 (P-stable rules). Rule Initialise ref is P-stable because there is no
embedding of c1’s premise P1 into either left- or right-hand side, while the em-
bedding of c2’s premise P2 into the right-hand side yields the analysis depicted
in Fig. 5 on the left. Constructing the pushout T of the embedding and c2,
there is pushout complement M , but also morphisms P2 → K and Q2 → M
as required. Similarly, for quotient S1 there is pushout complement M1 with
embedding Q2 → M1. For the pushout complement M2 of S2 there is no such
embedding, but Q2 → R commuting with R → S2 and T → S2, thus invoking
alternative (a). Rule Delete reference is analogous to the cases of T and the first
quotient S1 above.

Rule Remove empty illustrates a different case. There is an embedding of P2

into its left-hand side that is not preserved. That means, the inverse rule may not
be P-preserving. As shown in Fig. 5 on the right, constructing pushout object
T , the morphism L → T does not have a pushout complement with respect to
K → L, and neither has L → S resulting from the only nontrivial quotient of T .
That means, the premise of the implication is false, and thus Remove empty ’s
inverse is P-preserving, too. A similar argument holds for the embedding of
P1 into the left-hand side of Garbage collect, which does not admit a pushout
complement either.

It is also worth considering examples of rules and path categories which do not
enjoy this property.

Example 4 (not P-preserving). In order for a derived match m∗ : R → H in a

transformation G
p,m
=⇒ H not to be P-open, we require a constraint c : P → Q ∈

P with morphisms P → R and Q → H , but without a fill-in Q → R. For m∗

to be derived from a P-open match m, corresponding occurrences of premise P
or conclusion Q must not exist into K and D, i.e., they are only created by the
transformation. The two cases are explored in Fig. 6.

On the left, using constraint c2 from Fig. 2, there is no embedding of the
premise P2 into K, which is only enabled by the creation of Object node 1 : O.
It is interesting to observe that a rule like this is meaningless if, as intended,
fields depend on objects. That means, assuming an integrity constraints requiring
that each Field node is pointed to by exactly one Object node, the rule would
be violating this constraint.

On the right of Fig. 6 the same rule is shown with a different reflection con-
straint c3, obtained from c2 by dropping the Object node from its premise. In
this case, the embedding of the conclusion is only created by the action of the
rule. Also this example relies on graphs that do not satisfy the intended integrity
constraint.
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Fig. 5. Rules Initialise ref (left) and Remove empty (right) are stable

Fig. 6. New embedding created for premise (left) and conclusion (right) of constraint

The relationship between integrity and reflection constraints deserves further
investigation. Both could be part of the definition of a domain-specific graph
transformation language, integrity constraints over a type graph representing a
metamodel defining the permissible graph structures and reflection constraints
restricting the notion of matches.

5 Open Maps via Application Conditions

Open maps for a path category P can be encoded by negative application condi-
tions, so that the conditions are satisfied if and only if the match is an open map.
If the path category is finite (up to isomorphism), this is useful for implementing
transformations with open maps based on existing tools.
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Definition 4 (NACs for open maps). For a rule p : L
l←− K

r−→ R we
define negative application condition N(L,P) as the set of all morphisms n :
L → LQ in the pushout square below, where c ∈ P and P → L is any morphism
such that there is no f : Q → L commuting the upper triangle.

L

n

��

Pi��

c

��
LQ Q

f����

�	����

i∗��

While most categories of graphical structures have all pushouts, adhesive cate-
gories only require pushouts where at least one of the given morphisms is mono.
The following Proposition holds under the assumption that at least the pushout
of c and i in the Def. 4 can be built.

Proposition 2 (NACs for open maps). Assume C has pushouts with one
given morphism in P. Then, a match m : L → G satisfies N(L,P) as defined
above if and only if m is P-open.

Proof. If m is not open, there exists a commuting diagram like the one on the
right below, without a fill-in f . By Def. 4 this implies a constraint n ∈ N(L,P)
obtained by the pushout of c and i, which exists because c is in P. This induces
o such that the triangle commutes, i.e., m does not satisfy the constraint.

Vice versa, assume that there is a constraint n ∈ N(L,P) that is violated by
m, i.e., there exists o commuting the triangle. By construction of n there are
c ∈ P and i : P → L such that no f commutes the triangle. Composition with
o extends the pushout square of Def. 4 to a commutative square over m and c,
but still without a fill-in.

L

m

��
n�
��
�

�����
�

Pi��

c

��
LQ o �� G Q

f%%%

��%%%%

��

i∗
��

Example 5 (NACs ensuring openness). The result of the construction for the
rules in Fig. 4 is illustrated in Fig. 7. The crossed-out parts in the rules’ left-
hand sides represent negative elements. The graph with positive and negative
elements is the L̂ of a constraint L → L̂ with L given by the positive elements
only. Rule Garbage collect in Fig. 4 does not require any NAC because in its
case, openness is subsumed by the dangling condition.

Reducing transformations with open maps to transformations with NACs, exist-
ing definitions and theorems for the second can be transferred to the first. This
is demonstrated briefly in the following section for the notions of independence
and the local Church Rosser theorem.
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Fig. 7. NACs guaranteeing P-openness

6 Independence and Switch Equivalence

While open maps can be enforced into NACs, they provide a more uniform way of
specifying reflection constraints, independently of individual rules. In addition to
providing a more abstract style of specification, this uniformity has consequences
for the concurrency properties of transformations, which we will explore in this
section. We start with recalling some relevant definitions.

In the DPO approach, a derivation s = G0
p1,m1
=⇒ G1

p2,m2
=⇒ G2 as in Fig. 8 is

sequentially independent iff there exist morphisms i : R1 → D2 and j : L2 → D1

such that r∗1◦j = m2 and l∗2◦i = m∗1. Using the local Church-Rosser theorem ([4],

theorem 3.20) it is possible to construct a derivation s′ = G0
p2,m

′
2=⇒ G′1

p1,m
′
1=⇒ G2.

We use s ∼sw s′ to denote this relation. Switch-equivalence ≡sw⊆ G∗ × G∗ over
derivations of G is defined as the transitive and “context” closure of ∼sw, i.e.,
the least equivalence relation containing ∼sw and such that if s ≡sw s′ then
s1; s; s2 ≡sw s1; s

′; s2.
The definitions of independence and switch equivalence carry over to transfor-

mations with NACs by requiring that the match for p2 in G0 given by m′2 = l∗1 ◦j
satisfies the NAC of p2 and the induced match of p1 into graph G′1 obtained by

G0
p2,m

′
2=⇒ G′1 satisfies the NAC of p1. The condition for independence of DPOs

over open maps is analogous to that for steps with NACs.

L1

m1

��

K1

l1�� r1 ��

k1
��

R1

m∗1
��

����
i

��

L2

m2
���


����
j

��

K2

l2�� r2 ��

k2
��

R2

m∗2��
G0 D1

l∗1
��

r∗1
�� G1 D2

l∗2
��

r∗2
�� G2

Fig. 8. Sequential independence
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Definition 5 (independence of P-open transformations). P-open trans-

formations G0
p1,m1
=⇒ P G1

p2,m2
=⇒ P G2 are sequentially independent if the under-

lying transformations G0
p1,m1
=⇒ G1

p2,m2
=⇒ G2 are independent and morphisms

m′∗1 = r∗2 ◦ i : R1 → G2 and m′2 = l∗1 ◦ j : L2 → G0 are P-open.

Via the encoding of Prop. 2, this definition is equivalent to the one for steps
with NACs. This is obvious for the requirement that m′2 needs to satisfy the
application condition of p2, but the requirement for p1s NAC is expressed in
terms of m′1 : L1 → G′1 rather than m′∗1 . However, we know that DPOs preserve
and reflect openness, so m′∗1 is open iff m′1.

The local Church-Rosser theorem for P-open transformations, like for those
with NACs, follows directly from the definition of independence and the classi-
cal local Church-Rosser theorem. Therefore, the definition of switch-equivalence
carries over as well. However, despite a considerable amount of work invested in
developing the concurrency theory of transformations with NACs, the latter is
not entirely satisfactory, as illustrated in the example.

Example 6 (context-dependency of independence with NACs). Figure 9 shows
a sequence of transformations with NACs t1; t2; t3 such that t1; t2 are inde-
pendent and, with t′2; t

′
1 the steps after switching, t′1; t3 are independent, too.

If t′2; t
′
3; t
′′
1 ≡sw t1; t2; t3 is the result of switching t′1; t3, we might expect that

independence of t2; t3 implies that of t′2; t
′
3, i.e., that switching preserves inde-

pendence. However, this is not the case, because the match for p3 into the first
graph in the sequence does not satisfy p3’s NAC, as indicated by the dashed
edges and node. This represents a single constraint ruling out the joint presence
of the loop and the outgoing edge. Hence, independence can change depending
on the derivation providing the context, even if derivations are equivalent.

Next we show that, under certain assumptions on the path category, this problem
does not occur for transformations of open maps. The assumption is that, for
arrows c : P → Q in P, Q does not extend P in two (or more) independent ways,
where independence is used in the usual sense that structure can be added in
any order. Consequently, if there are two different ways to decompose c, one has
to be an extension of the other.

Fig. 9. Independence of steps 2; 3 is not preserved by switching with 1
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Definition 6 (incremental path category). A path category P is incremen-

tal if for all arrows c : P → Q in P with decompositions P
c1−→ O

c2−→ Q =

P
c′1−→ O′

c′2−→ Q in C such that c2 and c′2 are monomorphism, there exists a
morphism o : O → O′ or o : O′ → O commuting the resulting triangles.

This is illustrated by the example below, where c : P → Q is not incremental,
because Q extends P in two independent ways, by the loop on 1 in O1 and the
outgoing edge and node 2 in O2. There is no compatible arrow relating these
two additions. If instead we consider the addition of the loop and the outgoing
edge as two separate constraints, they are incremental as shown on the right for
c2 : P → O2, which can only be decomposed in one way.

With this assumption, we show that independence is preserved by switching.

Proposition 3 (invariance of independence under switch equivalence).

Let P be incremental and assume P-open transformation sequences s=G0
p1,m1
=⇒ P

G1
p2,m2
=⇒ P G2

p3,m3
=⇒ P G3 and s′ = G0

p2,m
′
2=⇒ P G′1

p3,m
′
3=⇒ P G′2

p1,m
′′
1=⇒ P G3 using P-

stable rules p1, p2, p3 such that s ≡sw s′.

G0

p2,m
′
2 � 

p1,m1

 !

G′1
p3,m

′
3 � 

p1,m
′
1

 !

G′2

p1,m
′′
1

 !
G1

p2,m2 � G2
p3,m3 � G3

Then, G1
p2,m2
=⇒ P G2

p3,m3
=⇒ P G3 is sequentially independent if and only if G0

p2,m
′
2=⇒ P

G′1
p3,m

′
3=⇒ P G′2 is.

Proof. According to Def. 5, G1
p2,m2
=⇒ P G2

p3,m3
=⇒ P G3 implies that the match of

p3 extends to an open map to G1. Using that m3 and m′3 are open, we show
that the match into G0 that exists by classical local Church-Rosser is open, too,

which provides one half of the independence of G0
p2,m

′
2=⇒ P G′1

p3,m
′
3=⇒ P G′2.

By inverting the two horizontal sequences in the diagram of Prop. 3, we obtain
the proof for the other half, i.e., the comatch of p2 into G′2 is open. Inverting
the vertical steps yields the reverse implication, that independence of the upper
sequence implies independence of the lower.

The diagram in the left of Fig. 10 shows a deconstruction of the transforma-

tions G0
p1,m1
=⇒ G1

p2,m2
=⇒ G2 and G0

p2,m
′
2=⇒ G′1

p1,m
′
1=⇒ G2 according to the proof

of the local Church-Rosser theorem ([4], theorem 3.20). Hence D′2G2D∗2D2 is a
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Fig. 10. Proof of Prop. 3

pullback while all other squares are pushouts, and all morphisms in the inner
square G′1G0G2G1 are monos.

The match m3 is also shown. Lets assume that G1
p2,m2
=⇒ P G2

p3,m3
=⇒ P G3

are independent. Then, there exists L3 → D2 commuting with m3 such that

L3 → D2 → G1 is open. Also, G′1
p1,m

′
1=⇒ P G2

p3,m3
=⇒ P G3 are independent be-

cause equivalence of s and s′ requires to switch them, so there exists L3 → D′2
commuting with m3 such that L3 → D′2 → G′1 is open.

There exists a morphism L3 → D∗2 commuting the resulting triangles induced
by the pullback D′2G2D∗2D2. Morphisms L3 → D∗2 → D1 and L3 → D∗2 → D′1
are open by Lemma 2 because they are prefixes of open maps L3 → D2 → G1

and L3 → D′2 → G′1, respectively, with D1 → G1 and D′1 → G′1 monos.
To show that m′3 = L3 → D∗2 → D1 → G0 = L3 → D∗2 → D′1 → G0 is open

assume c : P → Q ∈ P with morphisms P → L3 and Q → G0 commuting the
square with m′3. We can construct the diagram on the right by forming pullbacks
D1G0OQ, D′1G0O′Q , D∗2D1P ∗O, and D∗2D′1P ∗O′. We obtain P → P ∗ because
by pullback composition and decomposition the right-hand square P ∗OO′Q is a
pullback, too. Further, by the van Kampen property of the left square, the right
square is a pushout. Since P is incremental and P → O → Q = P → O′ → Q
with O → Q and O′ → Q monic, without loss of generality we have a morphism
O → O′ commuting the triangles. It can be shown that in this case O′ ↔ Q is
an isomorphism, so P → O′ is in P. Since L3 → D∗2 → D′1 is open, there exists
a fill-in O′ → L3 which extends to a fill-in Q → L3 using the isomorphism.

7 Conclusion

We presented a general representation of reflection properties for matches in the
DPO approach and studied its relationship with NACs. We found that, for DPO
transformations with open maps, independence is invariant under switch equiva-
lence if we restrict reflection constraints to be incremental. The counterexample
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for the same property of DPO with NACs suggested that an analogous restric-
tion to “incremental NACs” might solve the problem, and this has indeed been
confirmed now in [2].

Our original motivation is the representation of kappa [3] in the DPO ap-
proach, to study techniques for refinement and model reduction. The ability to
model kappa-style rewriting using DPO with open maps is a first step in this
direction.
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Abstract. The categorical framework of M-adhesive transformation
systems does not cover graph transformation with relabelling. Rules that
relabel nodes are natural for computing with graphs, however, and are
commonly used in graph transformation languages. In this paper, we gen-
eralise M-adhesive transformation systems to M,N -adhesive transfor-
mation systems, where N is a class of morphisms containing the vertical
morphisms in double-pushouts. We show that the category of partially
labelled graphs is M,N -adhesive, where M and N are the classes of in-
jective and injective, undefinedness-preserving graph morphisms, respec-
tively. We obtain the Local Church-Rosser Theorem and the Parallelism
Theorem for graph transformation with relabelling and application con-
ditions as instances of results which we prove at the abstract level of
M,N -adhesive systems.

1 Introduction

The double-pushout approach to graph transformation, which was invented in the
early 1970’s, is the best studied framework for graph transformation [20,5,10,4].
As applications of graph transformation come with a large variety of graphs and
graph-like structures, the double-pushout approach has been generalised to the
abstract settings of high-level replacement systems [9], adhesive categories [17]
andM-adhesive categories [8,6,7].

The categories of labelled graphs, typed graphs, and typed attributed graphs,
for example, are known to be M-adhesive categories if one chooses M to be
the class of injective graph morphisms [8]. Each such category induces a class
of M-adhesive transformation systems for which several classical results of the
double-pushout approach hold. Specifically, the Local Church-Rosser Theorem,
the Parallelism Theorem, the Concurrency Theorem, the Amalgamation The-
orem, the Embedding Theorem and the Local Confluence Theorem have been
established for rules with nested application conditions [6,7].

However,M-adhesive transformation systems do not cover graph transforma-
tion systems with rules that relabel nodes. Such rules are natural for computing
with graphs and are used as a foundation for the graph transformation language
GP [18,19]. The double-pushout approach can be extended with relabelling by

H. Ehrig et al.(Eds.): ICGT 2012, LNCS 7562, pp. 218–233, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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introducing rules with partially labelled interface graphs [14], providing a theo-
retical foundation for graph transformation languages that is much simpler than
attributed graph transformation in the sense of [4]. In the latter approach, at-
tributed graphs contain the algebra underlying the operations in the attributes
as well as special edges which connect nodes and edges with their attributes.
Hence they are (usually) complex infinite objects which are difficult to compre-
hend and which do not directly correspond to the graph data structures used to
implement graph transformation languages.

In this paper, we study transformation systems over the category PLG of par-
tially labelled graphs and the class M of injective graph morphims (which are
used in rules). It turns out that PLG violates two of the properties required for
M-adhesive categories: pushouts along M-morphisms do not always exist and,
when they exist, need not be pullbacks. We therefore generaliseM-adhesive cat-
egories toM,N -adhesive categories, where N is a class of morphisms containing
the vertical morphisms in double-pushouts.M-adhesive categories are then the
special case where N is the class of all morphisms.

For M,N -adhesive transformation systems with (nested) application condi-
tions, we prove two classical results of the double-pushout approach: the Local
Church-Rosser Theorem and the Parallelism Theorem. We then show that PLG
is M,N -adhesive, where N is the class of injective morphisms that preserve
unlabelled nodes and edges. As a result, we obtain both theorems for the setting
of graph transformation with relabelling and application conditions.

The paper is structured as follows. In Section 2, we generalise M-adhesive
categories to M,N -adhesive categories, prove that they satisfy the so-called
HLR properties, and identify two additional factorization properties. In Section
3, we present the Local Church-Rosser Theorem and the Parallelism Theorem for
M,N -adhesive transformation systems with application conditions. In Section
4, we show that the category PLG is M,N -adhesive for suitable classes M
and N of morphisms. As a consequence, we obtain the Local Church-Rosser
Theorem and the Parallelism Theorem for graph transformation with relabelling.
In Section 5, we conclude and give some topics for future work.

The proofs omitted in this paper are given in [15], as well as the Concurrency
Theorem forM,N -adhesive transformation systems with application conditions.

2 M,N -Adhesive Categories

In [8] an overview is given on some categorical frameworks for double-pushout
transformations. It is shown that adhesive categories [17], weak adhesive HLR
categories [4], and partial map adhesive categories [16] are special cases of so-
calledM-adhesive categories. A large number of results have been proved forM-
adhesive transformation systems, such as the Local Church-Rosser Theorem, the
Parallelism Theorem, the Concurrency Theorem, the Amalgamation Theorem,
the Embedding Theorem, and the Local Confluence Theorem [6,7].

In this section, we generalize M-adhesive categories as defined in [8,6] to
M,N -adhesive categories.
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Definition 1 (M,N -adhesive category). A category C is M,N -adhesive,
where M is a class of monomorphisms and N a class of morphisms, if the
following properties are satisfied:

1. M and N contain all isomorphisms and are closed under composition and
decomposition (see [6]). Moreover,N is closed underM-decomposition, that
is, g ◦ f ∈ N , g ∈ M implies f ∈ N .

2. C has pushouts alongM,N -morphisms and pullbacks alongM-morphisms.
Also, M and N are stable under M,N -pushouts and M-pullbacks (see
below).

3. Pushouts along M,N -morphisms are M,N -van Kampen squares (see be-
low).

Remark 1. A pushout along M,N -morphisms, orM,N -pushout, is a pushout
where one of the given morphisms is in M and the other morphism is in N .
A pullback along an M-morphism, or M-pullback, is a pullback where at least
one of the given morphisms is in M. A class X of morphisms is stable under
M,N -pushouts if, given the M,N -pushout (1) in the diagram below, m ∈ X
implies n ∈ X . Class X is stable under M-pullbacks if, given the M-pullback
(1) in the diagram below, n ∈ X implies m ∈ X .

A pushout alongM,N -morphisms is anM,N -van Kampen square if for the
commutative cube in the diagram below with the pushout as bottom square,
b, c, d, m ∈ M, f ∈ N , and the back faces being pullbacks, we have that the top
square is a pushout if and only if the front faces are pullbacks.

A

B

C

D

m

g

f

n(1)

A′

A C

C′

B′

B D

D′

b

c

d
m

f

Fact 1. Let C be any category and let N be the class of all morphisms in C.
Then C is M,N -adhesive if and only if C is M-adhesive in the sense of [6].

Proof. This follows from the definition of anM-adhesive category because if N
contains all morphisms, then M,N -pushouts and M,N -van Kampen squares
are precisely the M-pushouts and M-van Kampen squares of [6], respectively.

�

In Section 4, we show that the category PLG of partially labelled graphs is
M,N -adhesive but not M-adhesive. In this case, M is the class of injective
graph morphisms and N is the class of injective, undefinedness preserving graph
morphisms.
M,N -adhesive categories satisfy generalised versions of the so-called HLR-

properties [9] of M-adhesive categories.



M,N -Adhesive Transformation Systems 221

Theorem 1 (HLR-properties). Every M,N -adhesive category satisfies the
following HLR-properties :

1. Pushouts alongM,N -morphisms are pullbacks.
2. M,N -pushout-pullback decomposition: If (1)+(2) in the diagram below is

a pushout, (2) is a pullback, l ∈ M, and k, w ∈ N , then (1) and (2) are
pushouts as well as pullbacks.

3. Cube M,N -pushout-pullback decomposition: If in the commutative cube
(3) of the diagram below, all morphisms in the top square and in the bottom
square are inM, all vertical morphisms are inN , the top square is a pullback,
and the front faces are pushouts, then the bottom square is a pullback if and
only if the back faces are pushouts.

4. Uniqueness of pushout complements: Given morphisms A ↪→ B in M and
B → D in N , there is, up to isomorphism, at most one object C with
morphisms A → C and C ↪→ D such that (4) in the diagram below is a
pushout.

A

B

E

C

D

F

l

s

v

k

r

u

w

(1)

(2)

A′ B′

C′ D′

A B

C D (3)

AB

CD

(4)

In order to prove the desired results forM,N -adhesive transformation systems,
three more properties will be needed.

Definition 2 (HLR+-properties). Let C be an M,N -adhesive category, E a
class of morphisms, and E ′ a class of pairs of morphism with the same codomain.
Then the following properties are the HLR+-properties with respect to M, N ,
E and E ′.

1. C has binary coproducts.
2. C has an E-N factorization if for each coproduct morphism f : A1+A2 → C

induced by morphisms fi : Ai → C in N (i = 1, 2), there is a decomposition,
unique up to isomorphism, f = n ◦ e with e ∈ E and n ∈ N .

3. C has an E ′-M pair factorization if, for each pair of morphisms f1 : A1 → C
and f2 : A2 → C, there exist a unique (up to isomorphism) object K and
unique (up to isomorphism) morphisms e1 : A1 → K, e2 : A2 → K, and
m : K ↪→ C with (e1, e2) ∈ E ′ and m ∈ M such that m ◦ e1 = f1 and
m ◦ e2 = f2.
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K

A

C

e

n

f
= K

A1 A2

C

e1 e2

m

f1 f2
= =

General Assumption. We assume that C is an M,N -adhesive category and
that E and E ′ are classes of morphisms and morphisms pairs, respectively, such
that C satisfies the HLR+-properties.

The E-N factorization is used in the proof of the Parallelism Theorem. The E ′-M
pair factorization is used in the proof of a shift lemma for application conditions
and in the construction of E-related transformations in [15].

Example 1. The category PLG considered in Section 4 satisfies the HLR+-
properties, where M is the class of injective morphisms, N is the class of
injective, undefinedness preserving morphisms, E is the class of surjective, unde-
finedness preserving morphisms, and E ′ is the class of pairs of jointly surjective,
undefinedness preserving morphisms.

3 M,N -Adhesive Transformation Systems

In this section, we introduceM,N -adhesive transformation systems and present
the Local Church-Rosser Theorem and the Parallelism Theorem in this setting.

We start by defining rules, direct transformations, and transformation systems.

Definition 3 (Rules, transformations, and systems). Given an M,N -
adhesive category, a rule � = 〈p, acL〉 consists of a plain rule p = 〈L ←↩ K ↪→ R〉
with morphisms l : K ↪→ L and r : K ↪→ R in M, and an application condition
acL over L (see below). A direct transformation from an object G to an object
H via the rule � consists of two pushouts (1) and (2) as below where the vertical
morphisms1 are in N and g |= acL. We write G ⇒�,g H if there exists such a
direct transformation. For a set of rules R, we write G ⇒R H , if G ⇒� H with
� ∈ R.

L K R

DG H

l r

g d h(1) (2)

acL

=|

An M,N -adhesive transformation system consists of an M,N -adhesive cate-
gory and a set R of rules.

1 By stability of N under M,N -pushouts, it is equivalent to require d ∈ N .
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Remark 2. Every M-adhesive transformation system in the sense of [6] is an
M,N -adhesive transformation system if we choose N as the class of all mor-
phisms in C. Our notion of transformation system is more flexible because it
allows to restrict the class of morphisms that are used to match rules. For exam-
ple, one can show that everyM-adhesive category isM,M-adhesive and hence
gives rise to an M,M-adhesive transformation system. A concrete example for
this is the category of totally labelled graphs together with the class of injective
graph morphisms (see also [12] for this setting).

Application conditions are nested constructs which can be represented as trees
of morphisms equipped with quantifiers and Boolean connectives.

Definition 4 (Application condition). Application conditions are induc-
tively defined as follows. For every object P , true is an application condition
over P . For every morphism a : P → C and every application condition ac over
C, ∃(a, ac) is an application condition over P . For application conditions ac, aci
over P with i ∈ I (for a given index set I), ¬ac and ∧i∈Iaci are application
conditions over P .

Satisfiability of application conditions is also defined inductively. Every mor-
phism satisfies true. A morphism p : P → G satisfies ∃(a, ac) over P if there
exists a morphism q : C ↪→ G in M such that q ◦ a = p and q satisfies ac.

P

G

C,a

p q
=

ac

|=
)∃(

A morphism p : P → G satisfies ¬ac over P if p does not satisfy ac, and p satisfies
∧i∈Iaci over P if p satisfies each aci (i ∈ I). We write p |= ac to express that p
satisfies ac.

Next we state two important technical results. The first lemma allows to shift
application conditions over arbitrary morphisms.

Lemma 1 (Shift of application conditions over morphisms [6]). There
is a construction Shift such that, for each application condition ac over P and
for each morphism b : P → P ′, Shift transforms ac via b into an application
condition Shift(b, ac) over P ′ such that, for each morphism n : P ′ → H , n ◦ b |=
ac ⇐⇒ n |= Shift(b, ac).

P

H

P ′
b

n ◦ b n

Shift(b, ac)ac

=

The other technical result that we need is that application conditions can be
shifted over rules.
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Lemma 2 (Shift of application conditions over rules [13]). There is a
construction L such that, for each rule � and each application condition ac over R,
L transforms ac via � into an application condition L(�, ac) over L such that, for
each direct transformation G ⇒�,m,m∗ H , we have m |= L(�, ac) ⇐⇒ m∗ |= ac.

L K R

DG H

m m∗(1) (2)

L(�, ac) ac

=| |=

Remark 3. There is a construction R with R(�, ac) = L(�−1, ac) that transforms
left application conditions ac via the rule � into right application conditions.

Assumption. For i = 1, 2, let �i = 〈pi, acLi〉 be a rule with plain rule pi =
〈Li ←↩ Ki ↪→ Ri〉. Also, let � = 〈p, acL〉 and �′ = 〈p′, acL′〉 be rules with plain
rules p = 〈L ←↩ K ↪→ R〉 and p′ = 〈L′ ←↩ K ′ ↪→ R′〉, respectively.

First, we formulate the notions of parallel and sequential independence and
present the Local Church-Rosser Theorem.

Definition 5 (Parallel and sequential independence). Two direct transfor-
mations H1 ⇐�1,g1 G ⇒�2,g2 H2 are parallelly independent if in the diagram be-
low there are morphisms dij : Li → Dj such that gi = bj ◦dij , g′i = (cj ◦dij) ∈ N ,
and g′i |= acLi (i, j ∈ {1, 2} and i �= j).

GD1H1

R1 K1 L1

D2 H2

R2K2L2

c1 b1 b2 c2

g1
g∗1 g2

g∗2
d21 d12

= =

acL1 acL2

Two direct transformations G ⇒�1,g1 H1 ⇒�2,g2 M are sequentially independent
if in the diagram below there are morphisms d12 : R1 → D2 and d21 : L2 → D1

such that g∗1 = b2 ◦ d12, g2 = b1 ◦ d21, g′2 = (c1 ◦ d21) ∈ N , g′1 = (c2 ◦ d12) ∈ N ,
g′2 |= acL2 , and g′1 |= R(�1, acL1).

H1D1G

L1 K1 R1

D2 M

R2K2L2

c1 b1 b2 c2

g1
g∗1 g2

g∗2
d21 d12

= =

acL1 acL2

The following Local Church-Rosser Theorem generalises the corresponding result
in [6] from M-adhesive transformation systems to M,N -adhesive transforma-
tion systems.
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Theorem 2 (Local Church-Rosser Theorem). Given parallelly indepen-
dent direct transformations H1 ⇐�1,g1 G ⇒�2,g2 H2, there are an object M and
direct transformations H1 ⇒�2,g′2 M ⇐�1,g′1 H2 such that G ⇒�1,g1 H1 ⇒�2,g′2
M and G ⇒�2,g2 H2 ⇒�1,g′1 M are sequentially independent.

Given sequentially independent direct transformations G ⇒�1,g1 H1 ⇒�2,g2

M , there are an object H2 and direct transformations G ⇒�2,g′2 H2 ⇒�1,g′1 M
such that H1 ⇐�1,g1 G ⇒�2,g′2 H2 are parallelly independent:

G

H1

H2

M

�1

�2

�2

�1

Next we consider parallel rules, quotients rules, and parallel transformations.
The parallel rule �1 + �2 of the rules �1 and �2 is defined by using the binary
coproducts of the components of the rules (which exist by the General Assump-
tion).

Definition 6 (Parallel rule, quotient rule, parallel transformation). The
parallel rule of �1 and �2 is the rule �1+�2 = 〈p, acL〉 where p = 〈L1+L2 ←↩
K1+K2 ↪→ R1+R2〉 is the parallel rule of p1 and p2 and acL=∧2

i=1Shift(ki, acLi)∧
L(p, Shift(k∗i ,R(�i, acLi))).

L1+L2 K1+K2 R1+R2

L1 K1 R1

L2 K2 R2k1
k∗
1

k2 k∗
2

acL1

acL2

acL

L K R

K ′L′ R′

l k(1) (2)

acL

acL′

The rule �′ is a quotient rule of a parallel rule � if there are two pushouts (1) and
(2) as in the figure above where k : K → K ′ is an epimorphism in the class of
coproduct morphisms induced by N and acL′ = Shift(l, acL). The set of quotient
rules of � is denoted by Q(�).

A direct transformation via a quotient of a parallel rule is called parallel direct
transformation or parallel transformation, for short.

Fact 2 ([6]). K1+K2 ↪→ L1+L2 and K1+K2 ↪→ R1+R2 are in M.

The connection between sequentially independent direct transformations and
parallel direct transformations is given in the Parallelism Theorem.

Theorem (Parallelism Theorem).
1. Synthesis. Given two sequentially independent direct transformationsG ⇒�1,g1

H1 ⇒�2,g′2 M , there is a parallel transformation G ⇒Q(�1+�2),g M .
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2. Analysis. Given a parallel transformation G ⇒Q(�1+�2),m M , there are
sequentially independent direct transformations G ⇒�1,g1 H1 ⇒�2,g′2 M and
G ⇒�2,g2 Hi ⇒�1,g′1 M .

3. Bijective correspondence. The synthesis and analysis constructions are in-
verse to each other up to isomorphism:

G

H1

H2

M

�1

�2

�2

�1

Q(�1+�2)

We conclude this section by mentioning that the Concurrency Theorem for
M,N -adhesive transformation systems is established in [15].

4 Category PLG Is M,N -Adhesive

In this section, we consider the category PLG of partially labelled graphs [14].
We first show that PLG is not M-adhesive for the class M of injective graph
morphisms. We then prove that PLG is M,N -adhesive, though, and satisfies
the HLR+-properties if we choose N as a suitable class of morphisms. As a
consequence, we obtain the Local Church-Rosser Theorem and the Parallelism
Theorem as new results for the setting of graph transformation with relabelling
and application conditions.

We start by recalling the basic notions of partially labelled graphs and their
morphisms.

Definition 7 (Graphs and morphisms). A (partially labelled) graph is a
system G = (VG,EG, sG, tG, lG,V, lG,E) consisting of finite sets VG and EG of
nodes and edges, source and target functions sG, tG : EG → VG, and partial
labelling functions lG,V : VG → CV and lG,E : EG → CE,

2 where CV and CE are
fixed sets of node and edge labels. A graph G is totally labelled if lG,V and lG,E

are total functions.
A morphism g : G → H between graphs G and H consists of two functions

gV : VG → VH and gE : EG → EH that preserve sources, targets and labels,
that is, sH ◦ gE = gV ◦ sG, tH ◦ gE = gV ◦ tG, and lH(g(x)) = lG(x) for all x in
Dom(lG)

3. Such a morphism preserves undefinedness if it maps unlabelled items
in G to unlabelled items in H . Morphism g is injective (surjective) if gV and
gE are injective (surjective), and an isomorphism if it is injective, surjective and

2 Given sets A and B, a partial function f : A → B is a function from some subset A′

of A to B. The set A′ is the domain of f and is denoted by Dom(f). We say that
f(x) is undefined, and write f(x) = ⊥, if x is in A−Dom(f).

3 We often do not distinguish between nodes and edges in statements that hold anal-
ogously for both sets.
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preserves undefinedness. In the latter case G and H are isomorphic, which is
denoted by G ∼= H . Furthermore, g is an inclusion if g(x) = x for all x in G
(note that inclusions need not preserve undefinedness). The composition h ◦ g
of g with a morphism h : H → M consists of the composed functions hV ◦ gV
and hE ◦ gE. We write PLG for the category having partially labelled graphs as
objects and graph morphisms as arrows.

In pictures of graphs, nodes are drawn as circles with their labels (if existent)
inside, and edges are drawn as arrows with their labels (if existent) placed next
to them. Graph morphisms are graphically represented by attaching the same
number to nodes and their images.

Example 2. Consider the partially labelled graphs G and H below. Nodes 4 and
5 in G, nodes 4 and 6 in H , and all edges are unlabelled. The graph morphism
g : G ↪→ H is injective but not undefinedness preserving, because it maps the
unlabelled node 5 in G to a labelled node in H .

A 1

B2 B 3

4 5

G

g
↪→

A 1

B2 B 3

4 A
5

6

H

While the category of labelled graphs with arbitrary morphisms has pushouts
[3], the category of partially labelled graphs with injective morphisms does not
have all pushouts [14]. As a consequence, the category PLG with the classM of
injective morphisms is not M-adhesive.

Fact 3 (PLG is not M-adhesive). Let M be the class of injective graph
morphisms. Then PLG does not have pushouts along arbitrary M-morphisms.
Moreover, pushouts along M-morphisms need not be pullbacks.

Example 3. The morphisms a and b in square (1) below are injective but their
pushout does not exist: it is impossible to make both morphisms f and g label
preserving. Square (2) is a pushout along M, but not a pullback.

B

A ?

b

fa

g

(1)

A

A A

b

fa

g

(2)
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Assumption. For the rest of this section, we consider the category PLG and
let M be the class of injective graph morphisms and N the class of injective,
undefinedness preserving graph morphisms.

Theorem 3. The category PLG is M,N -adhesive.

To prove Theorem 3, we establish the properties required by Definition 1 in the
following five lemmata.

Lemma 3 (Closure properties). M and N contain all isomorphisms and
are closed under composition and decomposition. Moreover, N is closed under
M-decomposition.

Proof. Straightforward. �

Lemma 4 (Pushouts along M,N -morphisms). Given graph morphisms
r : K ↪→ R in M and d : K ↪→ D in N , there exist a graph H and graph
morphisms c : D ↪→ H and h : R → H such that square (2) below is a pushout.

K R

D H

r

c

d h(2)

Construction. The sets of nodes and edges are defined by H = (D−d(K))+R.
The source function sH is defined by sH(e) = if e ∈ ER then sR(e) else sD(e);
the target function tD is defined analogously. The labelling functions lH are
defined by

lH(x) =

⎧⎪⎪⎨⎪⎪⎩
lR(x) if x ∈ R and lR(x) �= ⊥,
lD(d(x′)) if x ∈ R, lR(x) = ⊥, r(x′) = x and lD(d(x′)) �= ⊥,
⊥ if x ∈ R, lR(x) = ⊥, r(x′) = x and lD(d(x′)) = ⊥,
lD(x) if x ∈ (D − d(K)).

Morphism h : R → H is the inclusion of R in H and c : D ↪→ H is defined by
c(x) = if x ∈ D − d(K) then x else r(k) for the unique k ∈ K with d(k) = x.

Proof. See [14]. �

The category PLG has not only pullbacks alongM-morphisms but possesses all
pullbacks.

Lemma 5 (Pullbacks). Let c : D → H and h : R → H be graph morphisms.
Then there exist a graph K and graph morphisms d : K → D and r : K → R
such that square (2) above is a pullback.
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Construction. The sets of nodes and edges are defined by

K = {〈x, y〉 ∈ D ×R | c(x) = h(y)}.

The source function sK is defined by sK(〈x, y〉) = 〈sD(x), sR(y)〉, the target
function tK is defined analogously. The labelling functions lK are defined by

lK(〈x, y〉) = if (lD(x) = lR(y) �= ⊥) then lR(x) else ⊥.

The morphisms d : K → D and r : K → R are the projections from D×R to D
and R, that is, they are given by d(〈x, y〉) = x and r(〈x, y〉) = y.

Proof. See [14]. �

Lemma 6 (M and N are stable). The classes M and N are stable under
M,N -pushouts and M-pullbacks.

Proof. This follows from the construction of M,N -pushouts and pullbacks in
Lemma 4 and Lemma 5, and the fact that pushouts and pullbacks are unique
up to isomorphism. �

Lemma 7 (M,N -van Kampen squares). Pushouts alongM,N -morphisms
areM,N -van Kampen squares.

Proof. We exploit the fact that the category ULG of unlabelled graphs is M-
adhesive. (This follows from Fact 4.1.6 for labelled graphs in [4], by restricting
the label alphabet to a single label.)

Consider the pushout (1) below where m ∈ M and f ∈ N . We have to show
that, given a commutative cube (2) with (1) as bottom face, b, c, d ∈ M, and
pullbacks as back faces, the following holds:

the top face is a pushout ⇔ the front faces are pullbacks.

A

B

C

D

m n

g

f

(1)

A′

A C

C′

B′

B D

D′

(2)
m

n

a

b

c

d

m′

g′

f ′

n′

g

f

Part 1 (“⇒ ”). Assume that the top face of cube (2) is a pushout. Since pullback
objects are unique up to isomorphism, it is sufficient to prove that B′ and C′

are isomorphic to the corresponding pullback objects. Let B′′ be the pullback
object of g and d with morphisms b′′ : B′′ → B and g′′ : B′′ → D′. By the
universal property of pullbacks, there is a unique morphism u : B′ → B′′ such
that b′′◦u = b and g′′◦u = g. By forgetting all labels, cube (2) becomes a cube in
ULG. Since ULG isM-adhesive, every pushout in ULG is a van Kampen square.
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Consequently, the morphism u is injective and surjective. It remains to show that
u is ⊥-preserving. Let x ∈ B′−Dom(lB′). Suppose that u(x) ∈ Dom(lB′′). Then
b(x) ∈ Dom(lB) and g′(x) ∈ Dom(lD′).

Since the top is a pushout in PLG and x ∈ B′ − Dom(lB′), there exists
y ∈ Dom(lC′) with g′(x) = n′(y). Since the bottom is a pushout in PLG and
m ∈ M, by Theorem 1, it is also a pullback, b(x) ∈ Dom(lB), c(y) ∈ Dom(lC),
and the left front face commutes, g(b(x)) = d(g′(x)) = d(n′(y)) and there exists
z ∈ Dom(lA) such that m(z) = b(x) and f(z) = c(y). Since the back right face
is a pullback, y ∈ Dom(lC′) and z ∈ Dom(lA) with c(y) = m(z), there is some
x′ ∈ Dom(lA′) with m′(x′) = x. Then x ∈ Dom(lB′), a contradiction. Thus u is
⊥-preserving and B′ and B′′ are isomorphic. Similarly, it is shown that C′ and
the pullback object C′′ of d and n are isomorphic. Thus, the back faces of cube
(2) are pullbacks.

Part 2 (“⇐ ”). Assume that the front faces of cube (2) are pullbacks in PLG.
Since pushout objects are unique up to isomorphism, it is sufficient to prove that
D′ is isomorphic to the corresponding pushout object. Let D′′ be the pushout
object of m′ and f ′ in PLG with morphisms g′′ : B′ → D′′ and n′′ : C′ → D′′. By
the universal property of pushouts, there is a unique morphism u : D′′ → D′ such
that g′ = u ◦ g′′ and n′ = u ◦ n′′. Consider now the underlying pushout in ULG.
Since ULG is M-adhesive, every pushout in ULG is a van Kampen square.
Consequently, the morphism u is injective and surjective. It remains to show
that u is ⊥-preserving. Let x ∈ D′′−Dom(lD′′ ). Suppose that u(x) ∈ Dom(lD′).
Then d(u(x)) ∈ Dom(lD). Since the bottom is a pushout, there are two cases.
In the first case, there exists an item y ∈ Dom(lB) such that g(y) = d(u(x)).
Since the left front face is a pullback, y ∈ Dom(lB) and u(x) ∈ Dom(lD′) with
g(y) = d(u(x)), there is some z ∈ Dom(lB′) with b(z) = y and g′(z) = u(x).
By commutativity of the left front face, d(g′(z)) = g(b(z)) = g(y) = d(u(x)).
By d ∈M, g′(z) = u(x) ∈ Dom(lD′′), a contradiction. In the second case, there
exists an item y ∈ Dom(lC) such that n(y) = d(u(x)). Since the right front face
is a pullback, we obtain a contradiction. Thus, the morphism u is ⊥-preserving
and the top face is a pushout. Since the back faces are pullbacks andM and N
are stable under M-pullbacks, m ∈M and f ∈ N imply m′ ∈ M and f ′ ∈ N ,
i.e. the top face is an M,N -pushout. �

Proof of Theorem 3. See Lemma 3 to Lemma 7. �

Lemma 8 (HLR+-properties). PLG has binary coproducts, an E-N factor-
ization, and an E ′-M pair factorization, where E is the class of surjective, unde-
finedness preserving morphisms and E ′ is the class of pairs of jointly surjective,
undefinedness preserving morphisms.

Proof. Routine. �

By Theorem 3 and Lemma 8, we obtain the following corollary.

Corollary 1. The Local Church-Rosser Theorem and the Parallelism Theorem
hold for M,N -adhesive tranformation systems over PLG.
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Remark 4. M,N -adhesive transformation systems over PLG provide a foun-
dation for the semantics of the graph programming language GP [18,19]. The
graphs on which GP programs operate are totally labelled, and instances of
GP’s conditional rule schemata are rules with application conditions whose left-
and right-hand graphs L and R are also totally labelled. The interface graph K
consists of unlabelled nodes and hence enables relabelling of nodes. Moreover,
the requirement that the vertical morphisms in double-pushouts must preserve
unlabelled nodes guarantees that pushout complements are unique (see [14]).

In comparison with the approach of [14], M,N -adhesive tranformation sys-
tems over PLG are more restrictive in that unlabelled nodes in rules must not
match labelled nodes in host graphs. However, to allow certain nodes in rules to
match nodes with arbitrary labels, one can use rule schemata with label vari-
ables instead of unlabelled nodes. As in GP, rule schemata are instantiated to
rules with totally labelled left- and right-hand graphs, while unlabelled nodes are
solely used for relabelling. Indeed, label variables in left-hand graphs are more
versatile than unlabelled nodes because they can be typed in order to match
only subsets of labels.

5 Conclusion

Double-pushout graph transformation with relabelling is not covered by M-ad-
hesive transformation systems. Relabelling is natural for computing with graphs,
though, and provides a foundation for graph transformation languages such as
GP. We have generalisedM-adhesive transformation systems toM,N -adhesive
transformation systems which do cover graph transformation with relabelling.
We have proved the Local Church-Rosser Theorem and the Parallelism Theo-
rem forM,N -adhesive transformation systems with application conditions, and
hence these results hold for graph transformation with relabelling. The Concur-
rency Theorem is proved in the long version of this paper [15].

We hope to establish the Amalgamation Theorem, the Embedding Theorem
and the Local Confluence Theorem in our new framework, too. These results have
recently been proved for M-adhesive transformation systems with application
conditions [6,7].

In future work, we expect to be able to show that the category of term graphs
is M,N -adhesive. This category is known to be not M-adhesive, too, but has
been shown to be quasi-adhesive [2]. Indeed the categories of term graphs and
partially labelled graphs are similar in that PLG can also be shown to be quasi-
adhesive. In PLG, the regular monomorphisms are precisely the undefinedness
preserving injective morphisms.

An extension ofM,N -adhesive transformation systems with rules that have a
non-monomorphic right-hand morphism, allowing to merge items, may be possi-
ble. In the context of graph transformation with relabelling, the approach of [14]
already includes such rules. Independently, in [1] a class of categories is identified
for which the local Church-Rosser property holds for certain classes of rules with
non-monomorphic right-hand morphisms.
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Finally, the W-adhesive transformation systems introduced in [11] provide a
general framework for attributed objects. They allow undefined attributes in
the interface of a rule to change attributes, which is similar to relabelling. But
the precise relationship toM,N -adhesive transformation systems remains to be
worked out.

Acknowledgements. We are grateful to Berthold Hoffmann for drawing our
attention to the problem that graph transformation with relabelling is not cov-
ered byM-adhesive transformation systems, and for comments on a draft version
of this paper. Thanks are also due to the anonymous referees for their helpful
comments.
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Abstract. We present a notion of composition applying both to graphs and to
rules, based on graph and rule interfaces along which they are glued. The current
paper generalises a previous result in two different ways. Firstly, rules do not have
to form pullbacks with their interfaces; this enables graph passing between com-
ponents, meaning that components may “learn” and “forget” subgraphs through
communication with other components. Secondly, composition is no longer bi-
nary; instead, it can be repeated for an arbitrary number of components.

1 Introduction

We believe that, for graph transformation to become a practicable specification tech-
nique, its native strengths should be complemented with a notion of compositionality
which allows the user to specify and analyse a system modularly. Failing that, graphs
always have to be specified monolithically, which for large graphs quickly becomes
prohibitive and causes the advantage of visualisation to be lost. Moreover, if graph
transformations are used to specify the dynamic behaviour of systems, having a large
monolithic graph as a state introduces the dreaded problem of state space explosion.

The issue of compositionality (or dually, modularity) has indeed been identified and
addressed in a number of different approaches over the years — see Sect. 4 for an
overview. Several of these, such as borrowed contexts [6], transformation units [16]
and synchronised hyperedge replacement [7] have been inspired to some degree or an-
other by notions of composition from process algebra. In this paper we continue an
investigation started in [19] based on the following initial requirements:

– Composition should make it possible to construct large graphs (describing the
global system in context) from smaller graphs (describing individual components).

– Composition should act as an operator over graph production systems: given a num-
ber of production systems describing individual components, the result should be
a production system describing the global system. We want to introduce as little
additional structure as possible.

– The behaviour of the composed system, in terms of rule applications, should like-
wise arise out of the composition of local system behaviour. This means that local
rule applications need to be synchronised and exchange information.

In [19], we proposed to use graphs and rules with interfaces for the local systems;
composition glues graphs and rules together over their interfaces using a categorical
construction called pushout. A limitation of that setup is that components cannot ex-
change node or edge identities; i.e., it is impossible for one component to “publish”

H. Ehrig et al.(Eds.): ICGT 2012, LNCS 7562, pp. 234–248, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Generalised Compositionality in Graph Transformation 235

N

N

N

N P

nn

n

n h

N

N

N

N N

n n

nn

n

F
n

n

n

n

(a) start graph

N F

P

N
nnh

LHS

N F N

P

nn h

RHS

(b) transfer rule

Fig. 1. Running example: Firewall between local networks

part of its internal structure and share it with others. (Instead, shared structure can only
arise through simultaneous creation.)

In the current paper we lift this restriction by using a different notion of rule: rather
than relying on the usual spans of morphisms we resort to cospans. Though ordinary
cospan rules and span rules have been shown to be equally expressive, cospan rules
turn out to be advantageous in the presence of interfaces and composition. Another
important difference with the usual concept of rule interface (called kernel in [10]) is
that the relation between rule and interface is less strict (we do not insist on pullbacks).

Motivating example. To illustrate our setup, we use a running example based on two
local networks which are connected via a firewall. Such a network is depicted in
Fig. 1a. Each cloud represents a local network and each local network has its own
network nodes, represented by N s. Network nodes are connected via next edges (de-
noted by N N

n

) to their neighbours. Nodes can also have packets which are denoted
by ( N P

h

). The firewall node ( F ) is the only interface between the local networks,
through which they can communicate by sending and receiving packets. The firewall
node passes safe packets through and deletes the infected packets.

Each local network may have dedicated rules to reflect its packet generation and
transmission protocols. In order to avoid the state space explosion that ensues in the
global network, it is desirable to specify and analyse each local network separately and
obtain the global analysis by composition.

In this example, all the local structure (nodes and edges) of each network can be
hidden from the other, except the firewall node which serves as the interface between
the two networks. Similarly, the dynamic behaviour of the networks, given by graph
rules, can also be considered local except the rule dealing with the transmission of
packets from one network to another.

In the following we do not consider the local network behaviour; instead we focus
on the transmission of a packet through the firewall. This behaviour is captured as a
graph rule in Fig. 1b. To obtain the local effect on each network, we have to split this
into two rules. An ad hoc decomposition can consist of a rule which deletes the packet
node in one local network and the counterpart of this rule that creates the packet node
in the other network. However, this has one major drawback: packets in the network
usually have content, which is lost by the ad hoc rule decomposition. The approach of
this paper enables us to pass the node itself between the decomposed systems.

Roadmap. In the next section, we give the basic definitions, especially the composition
of graphs. Sect. 3 contains the main results. In Sect. 4 we review related approaches
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and summarise the contribution. Due to space limitations proofs are omitted and can be
found in [8].

The basic ideas of this paper were presented for a concrete category of graphs in [9].
With respect to that paper, we have ironed out a number of technical issues and lifted
the theory to the algebraic level.

2 Basic Definitions

In the grand tradition of algebraic graph transformation, we develop our theory in the
setting of adhesive categories. It has been shown in [17] that adhesive categories form
a nice, general framework in which properties of graph transformation systems can be
proved abstractly; they generalise in some part the High-Level Replacement systems
studied in, e.g., [4].

Definition 1 (adhesive category). A category C is adhesive if it satisfies the following
properties:

1. C has pushouts along monomorphisms (monos);
2. C has pullbacks;
3. Pushouts along monos are Van Kampen squares.

For those that are not familiar with this theory, the following intuitions may be helpful:

– A mono f : A ↪→ B identifies a subobject of B that is isomorphic to A;
– The pushout of B ←f− A −g→ C may be thought of as the union of B and C, where

the shared subset is given by A and its “embedding” in B and C;
– The pullback of B −h→ D ←k− C may be thought of as the intersection of B and C,

where their “embedding” in D determines which elements they have in common.

As an example concrete category, one may think of edge-labelled directed graphs
〈N, E, L, s, t, l〉 with s, t : E → N the source and target function from the edges E
to nodes N , and l : E → L a labelling function to a set of labels L. This is the context
in which our running example is formulated.

In contrast with the usual setup, we take a transformation rule p not to be a span but a
cospan of morphisms. In a cospan rule, creation occurs before deletion instead of the
other way around. Cospan rules have been studied in [5], where the following is shown:

– A cospan rule is equivalent to the span rule arising from the pullback of the cospan;
– A span rule is equivalent to the cospan rule arising from the pushout of the span.

As a corollary, it follows that for every cospan rule there exists an equivalent cospan
rule in which the morphisms are jointly epimorphic. Curiously, as we will see, cospan
rules that are not jointly epi do play an essential role in our notion of rule composition.

Definition 2 (rule). Let C be an adhesive category.

– A rule p consists of a cospan of monos L −l→ U ←r− R where L is the left hand side,
R the right hand side and U the upper object.
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– The application of p on G is defined by the following diagram, where m : L ↪→ G
is a mono (in this paper we consider monomorphic matches [12]).

L U R

G K H

m

l r

k m′

g h

PO PO

We write G =
p,m
==⇒ H to denote the existence of a rule application of p to G under match

m, with result H .

2.1 Marked Objects

We now define the general notion of a marked object, as a monomorphism from an inner
object to an outer object. The inner object serves as an interface used to glue marked
objects together: gluing two marked objects with the same interface comes down to
taking the pushout of the corresponding span. This extends to arrows naturally.

Definition 3 (marked object and arrow). Let C be a category.
– A marked object X is a monomorphism eX : X ↪→ X . X is called the inner object

and X the outer object. Two marked objects X, Y are compatible if X = Y . If this
is the case, we will use X+Y to refer to the marked object defined by cY ◦eX : X ↪→
Z in the diagram

X=Y Y

X Z

eX

cY

PO

We will refer to the composed object as global and each of the original objects as
local.

– Given two marked objects X, Y , a marked arrow f : X→Y is a pair of morphisms
f : X → Y and f : X → Y such that the resulting (left hand) diagram commutes:

X

X

Y

Y

f
eX

f

eY

X=Y V=W

X V

Y W

X+Y V+W

PO PO

h

f

g

f = g

Two marked arrows f : X → V, g : Y →W are compatible if f = g. If this is the
case, we will use f + g to refer to the marked arrow consisting of f and the medi-
ating morphism h, connected by eX+Y and eV+W (right hand diagram above).

– A marked arrow f is called strict if f and f are monos and the left hand diagram
above is a pullback in C.
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Fig. 2. Running example: composition of marked objects

Example. In our running example, the graphs associated to the local networks can be
specified as compatible marked objects with the firewall node as their inner object.
These marked graphs and their composition is illustrated in Fig. 2.

Given a category C, we use CM to denote the cateory of markedC-objects and -arrows.
The following properties are important.

Proposition 4 (properties of marked arrows). Let C be an adhesive category.

1. Monos in CM correspond to pairs of monos in C, stacked on top of one another.
(Hence, for instance, strict arrows are monos in CM .)

2. Pushouts over strict arrows in CM correspond to pairs of pushouts in C, stacked
on top of one another.

2.2 Marked Rules

In the remainder of this paper, we will mainly deal with transformation in CM . As
expected (given the above), marked rules will be cospans of marked monos. We do not
require that the monos are strict (i.e., pullbacks). This makes the definition quite a bit
more general than similar notions in [19,10], a fact which is at the core of this paper’s
contribution.

The intention is that a marked rule should act upon a marked object by applying the
outer rule to the outer object and the inner rule to the inner object. To make this work,
we have to limit matches to strict monos.

Definition 5 (marked rule and match). Let C be an adhesive category.

– A marked rule p = (a, L ↪→ U ←↩ R) consists of a name a and a cospan of
marked monos in CM . We write p = (L ↪→ U ←↩ R) for its inner rule and

p = (L ↪→ U ←↩ R) for its outer rule.
– A marked match is a strict arrow in CM .

Example. An example marked rule, transfer-1, is shown in Fig. 3 where all L1, U1 and
R1 are marked objects with L1, U1, R1 and L1, U1, R1 as their outer and inner graphs
respectively. There are several things to be noted:
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Fig. 3. Example: a marked rule transfer-1

– The inner rule L1 ↪→ U1 ←↩ R1 is not jointly epimorphic: the P-node in U1 is in
the image of neither morphism. In fact, in this inner rule, the node is created and
then immediately deleted, which does not appear to be very useful. However, it is
precisely this feature that allows the node to be communicated to any other local
rule with which transfer-1 is composed.

– The CM -mono L1 ↪→ U1 is not strict; i.e., the corresponding square is not a pull-
back. Thus, deletion and creation in the inner rule do not strictly follow the outer
rule. This reflects the fact that previously private parts of the graph may be (tem-
porarily) “published” to the interface.

Under the assumption that C is adhesive, the category of marked objects is known to
be quasi-adhesive [15], which is a weaker notion that still retains all the nice properties
of graph transformation, provided the rules are made up of strict arrows only. However,
since our marked rules are not made up of strict monos, we cannot benefit from this
result. In the remainder of the paper we ignore the link to quasi-adhesive categories.

The following states the first important result of this paper: the application of a
marked rule to a marked object is fully characterised by the applications of the in-
ner and outer rules. Informally speaking, the embedding morphisms of the intermediate
and target (marked) objects take care of themselves.

Theorem 6 (marked transformation). Let C be an adhesive category. If p is a marked

rule, G a marked object and m : L→G a marked match, then G =
p,m
==⇒ H1 and G =

p,m
==⇒

H2 (in C) if and only if G =
p,m
==⇒ H (in CM ) with H = H1 and H = H2.

This is related to the fact (Prop. 4.2) that pushout squares in CM are precisely stacks of
pushout squares in C for the inner and outer objects. The relevant properties are stated
in the following two propositions.

Proposition 7 (pushout of marked objects). In the following diagram, if U ←↩ L ↪→
G is a span of marked monos, the top and bottom faces are pushouts and m : L ↪→ G is
a marked match, then (a) there is a unique monomorphism eK : K ↪→ K that makes the
diagram commute (and which therefore makes K a marked object); and (b) the back
right rectangle, U ↪→ K , is a pullback.
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Proposition 8 (pushout complement of marked objects). In the following diagram,
if R ↪→ U is a marked mono and U ↪→ K a marked match, and the top and bottom
faces are pushouts, then there is a unique monomorphism eH : H ↪→ H that makes the
diagram commute (and which therefore makes H a marked object).

U

K

R

H

U

K

R

H

Proof (Th. 6).

If. The marked transformation G =
p,m
==⇒ H consists of a double pushout in CM , which

according to Prop. 4.2 are stacked double pushouts for the inner and outer objects.
Only if. Given transformations G =

p,m
==⇒ H1 and G =

p,m
==⇒ H2 with derived cospans

G ↪→ K1 ←↩ H1 and G ↪→ K2 ←↩ H2, respectively, we know by Prop. 7 that K1

and K2 form a marked object K and the intermediate morphism U →K is strict;
and hence by Prop. 8 that H1 and H2 also form a marked object H . Moreover,
the resulting stacked double pushouts form a double pushout in CM according to
Prop. 4.2.

Example. The application of the transfer-1 (see Fig. 3) on marked graph G1 shown in
Fig. 2 is illustrated in Fig. 4. The front faces represent the marked rule and the back
face shows the marked graphs. Note that the outer rule is applied to the outer graph and
the inner rule is applied to the inner graph. The network nodes that are not involved in
the rule applications are omitted for simplification.

Joint epimorphism revisited. As an aside, the proposition below states that a marked
cospan can be jointly epi in CM even if the inner cospan is not jointly epi in C: the
property only depends on the outer cospan. Moreover, joint epimorphism of rules is
preserved under composition. Thus, we suspect that the results of [5] might after all
still hold in this setting.
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Fig. 4. Running example: application of a marked rule

Proposition 9 (joint epimorphism in CM ). Let C be an arbitrary category.

1. A marked cospan X→Z←Y is jointly epimorhpic in CM if and only if X→Z←Y
is jointly epimorphic in C.

2. If p1, p2 are two compatible jointly epimorphic rules in CM , then p1 + p2 is also
jointly epimorphic.

3 Rule Composition

We now come to the actual topic of the paper, namely the composition of rules and
rule applications. First we define how rules are composed. This is entirely in line with
the composition of objects and arrows in Def. 3, except that we need an additional
compatibility condition.

Definition 10 (rule composition). Consider a category CM of marked objects.

– A marked rule p = (a, L ↪→ U ←↩ R) consists of a name a and a cospan of marked
monos. We write p = (L ↪→ U ←↩ R) for the inner rule and p = (L ↪→ U ←↩ R)
for the outer rule.

– Two marked rules p, q are compatible if ap = aq , p = q, and Lp resp. Rp are the
limits of the following diagrams:

Lp Up

Up=U qLp=Lq

Lq Uq

RpUp

Up=Uq Rp=Rq

RqUq
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Fig. 5. Running example: composition of marked rules

If p and q are compatible, their composition is defined by p + q = (a, Lp+Lq →
Up+Uq ← Rp+Rq), where the arrows are the composition of the left and right
morphisms of p and q.

It should be noted that the limit property of the inner left hand side is automatically
fulfilled if one of the local left hand side morphisms is strict; and similarly for the right
hand side. Thus, in a sense, this is the price we pay for relaxing our rules to allow
non-strict morphisms.

Under this notion of compatibility, rule composition is well-defined, i.e., always
yields a rule. In particular, we have to establish that the composed rule morphisms
are monic.

Proposition 11 (marked rule). The composition of two compatible marked rules is a
marked rule.

Example. The marked rule, transfer-2, depicted in Fig. 5a is compatible with transfer-1
(see Fig. 3): they share the same inner rule. For transfer-2 it is R2 ↪→ U2 that is not
a pullback: after the P-node has been received, it is removed again from the interface
and becomes local to this component. The composition of transfer-1 and transfer-2 is
illustrated in Fig. 5b. Note that the outer rule of Fig. 5b is the same as our original
transfer rule given in Fig. 1b.

Finally, we extend composition to rule applications. When compatible rules are applied
to compatible graphs under compatible matches, we also call the entire transformations
compatible.

Definition 12 (transformation compatibility). Let C be an adhesive category. We call
two marked transformations G1 −p1,m1−−−→ H1 and G2 −p2,m2−−−→ H2 (in CM ) compatible
if (1) p1 and p2 are compatible rules, (2) G1 and G2 are compatible objects and (3)
m1 = m2.

3.1 Soundness

The soundness of composition essentially states that, given two compatible transforma-
tions, the following recipes give rise to the same result:
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Fig. 6. Running example: composition of the transfer rule

– Compose the local rules into a single global rule and the local objects to a global
object, then apply the rule (under the composed match);

– Apply the local rules to the local objects, then compose the target objects.

This can be succinctly summarised as “local behaviour generates global behaviour”.

Theorem 13 (soundness). Let C be an adhesive category. If Gi −pi,mi−−−→ Hi (in CM ) for
i = 1, 2 are compatible marked transformations, then G1+G2 −p1+p2,m1+m2−−−−−−−−−→ H1+H2

(in CM ).

The proof is essentially due to the fact that all compositions are by pushout, and
pushouts commute. Moreover, due to Th. 6 we can separately concentrate on the in-
ner and outer part of the global transformation; and since the inner part is identical for
the local and global rules, there is nothing to be shown.

Example. In Fig. 4 we have seen that K1 and H1 obtained by applying the transfer-1
rule (Fig. 3) to G1 (Fig. 2). Similarly, by applying transfer-2 (Fig. 5a) to G2 (Fig. 2) we
can obtain K2 and H2. It is not difficult to verify that K and H in Fig. 6 obtained by
application of the composed rule (Fig. 5b) to G (Fig. 2) are in fact equivalent to K1+K2

and H1+H2 respectively. Moreover, the application of transfer-1 and transfer-2 allows
node P to be transferred from G1 to H2, while its content is preserved.

3.2 Completeness

Completeness is the dual of soundness, and can be summarised as “all global behaviour
arises from local behaviour”. The proof entails showing that every global graph trans-
formation can be decomposed into local transformations, for an arbitrary decomposition
of the host graph into local graphs.
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In fact, there are generally many possible decompositions of the rules, and the proof
of the completeness theorem is mainly a matter of picking an appropriate candidate.
For instance, if a global rule creates a graph element, then at least one of the local
rules should do so. Therefore, to show the completeness property, we define an spe-
cific decomposition of a global marked rule, which guarantees the applicability of the
decomposed rules.

Definition 14 (strict rule decomposition). Let p, p1, and p2 be marked rules. We call
p1 and p2 a strict decomposition of p if p = p1 + p2 and the following diagrams are
pullbacks.

U1 U U2

R1 R R2

PB PB

The intention of insisting on the extra pullback condition, U ←↩ R, in the definition
of strict decomposition is to state the conditions under which the decomposed rules
do not delete elements which are preserved by the global rule. In other words, if an
element is preserved by the application of a global rule then it is also preserved by
the application of both strictly decomposed ones. Note that this decomposition does not
capture all possible rule decompositions. For instance, the decomposition of the transfer
rule in our example is not strict: node P is deleted in transfer-1 while it is preserved by
the global rule. For completeness, however, it turns out to be sufficient to use strict
decompositions only.

This is convenient because strict decomposition guarantees the applicability of the
decomposed rules whenever the original global marked rule is applicable. To show this
property, first we prove the following lemma.

Lemma 15. Let C be an adhesive category, p a marked rule where U ←↩ R is strict,
G a marked object and m a marked matching (in CM ). If there exists a transformation
G −p,m−−→ H (in C), then there is a marked transformation G −p,m−−→ H (in CM ).

Now we show the conditions where a marked transformation can be decomposed to two
compatible marked transformations.

Lemma 16. Let C be an adhesive category, G −p,m−−→ H (in CM ) a marked transforma-
tion, G1 and G2 a decomposition of G, and p1 and p2 a strict rule decomposition of p,
such that L1 and L2 are the pullbacks of the following diagrams.

L1

G1

L

G

PB

L

G

L2

G2

PB

Then there are two compatible marked transformations Gi −pi,mi−−−→ Hi for i = 1, 2 such
that H = H1 + H2.

In fact Lemma 16 states that a marked transformation G −p,m−−→ H can be decomposed
to two compatible transformations for any strict decomposition of p as long as they
have valid matches. Now we have come to another main contribution of the paper.
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The completeness theorem states that given a global transformation, and a decomposi-
tion of its start object, we can always decompose the transformation to two compatible
marked transformations according to the given start object decomposition. To prove the
completeness theorem, we only need to show the existence of two such marked trans-
formations.

Theorem 17 (completeness). Let C be an adhesive category, G = G1 + G2 be a de-
composition of a marked object G. A transformation G −p,m−−→ H (in C) can be decom-
posed to two compatible marked transformations G1 −p1,m1−−−→ H1 and G2 −p2,m2−−−→ H2 (in
CM ) such that p1 + p2 = p and H = H1 + H2.

4 Conclusion

We have defined a notion of composition for graphs and graph transformation rules,
in the setting of adhesive categories, which allows passing subgraphs between compo-
nents. This was done by equipping every graph and graph transformation rule with an
interface, which declare the parts that are exposed to the environment. Graphs and rules
can be composed when they have compatible interfaces. The contributions involved are:

– Rule composition both preserves transformations from the local to the global level
(soundness, see Th. 13) and reflects them from the global to the local level (com-
pleteness, see Th. 17). There are no futher restrictions on the rules: the results are
completely general.

– Our rule interfaces, in contrast to what we have seen elsewhere, do not have to form
pullbacks with the main rule. This means that deletion and creation in the interface
does not strictly follow that in the main rule. This is essential to the framework,
since it enables rules to publish part of their inner structure to the outside workd
(via the interface).

– With respect to [19] we have changed from span rules to cospan rules, which makes
the framework quite a bit more expressive; in particular, the notion of graph passing
answers one of the items identified as future work in that paper.

– With respect to [9], where the concept of graph passing was presented in a concrete
category of graphs, we have lifted the framework to the prevailing algebraic setting.

4.1 Related Work

The concepts of graph and rule composition, with the appropriate notions of soundness
and completeness, were introduced in [19] and later generalised in [13]. With respect to
those papers, the variation studied here offers a more powerful notion of composition,
in which nodes and edges can be deleted in one component and simultaneously created
in the other.

In addition, there are a number of other approaches to introduce aspects of composi-
tionality into graph transformation.

Synchronised Hyperedge Replacement. This is a paradigm in which graph transforma-
tion rules (more specifically, hyperedge replacement rules) can be synchronised based
one the adjacency of their occurrences within a graph; see [14,7]. The synchronised
rules are not themselves understood as graph transformation rules, and consequently
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the work does not address the type of compositionality issues that we have studied
here. Still, it is interesting to see whether SHR synchronisation can be understood as a
special type of composition in our sense.

History-Dependent Automata. This is a behavioural model in which states are enriched
with a set of names (see [18] for an overview). Transitions expose names to the en-
vironment, and can also record the deletion, creation and permutation of names. HD-
automata can be composed while synchronising their transitions: this provides a model
for name passing. Transition systems induced by graph transformation rules can be un-
derstood as a variant of HD-automata where the states are enriched with graphs rather
than just sets, and the information on the transitions is extended accordingly.

Rule amalgamation and distributed graph transformation. Studied in [3] and later, more
extensively, in [20], the principle of rule amalgamation provides a general mechanism
for rule (de)composition. This is a sub-problem of the one we have addressed here, as
we study composition of the graphs as well as the rules. Our notion of rule compo-
sition is actually a generalisation of rule amalgamation, as local rules do not have to
synchronise on deletions and creations.

Borrowed contexts. Like our paper, the work on borrowed contexts [6,1] uses a setting
where only part of a graph is available, and studies the application of rules to such sub-
graphs in a way that is compatible with the original, reductive semantics. In contrast to
our approach, however, they do not decompose rules: instead, when a rule is applied to a
graph in which some of the required structure (“context”) for the match is missing, this
is imported (“borrowed”) as part of the transformation. As a result, in this paradigm the
subgraphs grow while being transformed, incorporating ever more context information.
This is quite different from the basic intuitions behind our approach.

Summarising, where only rules are (de)composed in rule amalgamation, and only
graphs in borrowed contexts, in our approach both rules and graphs are subject to
(de)composition.

Compositional model transformation. [2] studies a notion of compositionality in model
transformation. Though on the face of it this sounds similar, in fact they study a dif-
ferent question altogether, namely whether a transformation affects the semantics of a
model (given as a separate mapping to a semantic domain) in a predictable (compo-
sitional) manner. This is in sharp contrast with our work, which rather addresses the
compositionality of the graph transformation framework itself.

Graph Transformation Units. The graph transformation units exemplified in [16], also
provide a notion of composition. However, this work takes the form of an explicit struc-
turing mechanism of local graph transformation systems, called Units. The question of
equivalence of a monolithic graph transformation system and a composition of local
units is not addressed in this approach.

4.2 Future Work

Though with this paper we have addressed a major outstanding question of [19], there
is still a lot of work to be done before the compositional framework can be used in
practice.
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For instance, negative application conditions (NACs) as introduced in [11] have
shown to be very useful in practice. It will be interesting to extend our notion of com-
positionality to rules with NACs, in particular with respect to the soundness and com-
pleteness properties.

Another important problem is finding an automatic mechanism for splitting the start
graph, and decomposing the rule system such that both the number of states and the
number of required rules for the local systems stays minimal. This was also discussed in
some detail in [9], where we proposed to use partial graphs for this purpose; hoewever,
so far these lack a good definition on the algebraic level.

Finally, composition as introduced here is only part of the story. Again inspired by
process algebra, in particular the hiding operator, it makes sense to think of ways in
which to restrict the interface of a marked rule or graph, thus making part of the pre-
viously published interface structure private. Also, if we want to compose rules whose
interfaces to not quite match, one may think of a partial composition operator, using
ideas of borrowed contexts [6,1] (see above).

Acknowledgement. This paper could not have been written without the invaluable
help of Barbara König and members of her group, in particular Matthias Hülsbusch,
who provided essential hints in the proof of Th. 6.
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15. Johnstone, P.T., Lack, S., Sobociński, P.: Quasitoposes, Quasiadhesive Categories and Artin
Glueing. In: Mossakowski, T., Montanari, U., Haveraaen, M. (eds.) CALCO 2007. LNCS,
vol. 4624, pp. 312–326. Springer, Heidelberg (2007)

16. Kreowski, H.-J., Kuske, S., Rozenberg, G.: Graph Transformation Units – An Overview. In:
Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency, Graphs and Models. LNCS,
vol. 5065, pp. 57–75. Springer, Heidelberg (2008)
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Abstract. The correctness of model transformations is a crucial element for
model-driven engineering of high quality software. In particular, behavior preser-
vation is the most important correctness property avoiding the introduction of
semantic errors during the model-driven engineering process. Behavior preser-
vation verification techniques either show that specific properties are preserved,
or more generally and complex, they show some kind of bisimulation between
source and target model of the transformation. Both kinds of behavior preserva-
tion verification goals have been presented with automatic tool support for the
instance level, i.e. for a given source and target model specified by the model
transformation. However, up until now there is no automatic verification approach
available at the transformation level, i.e. for all source and target models specified
by the model transformation. In this paper, we present a first approach towards
automatic behavior preservation verification for model transformations specified
by triple graph grammars and semantic definitions given by graph transforma-
tion rules. In particular, we show that the behavior preservation problem can be
reduced to invariant checking for graph transformation. We discuss today’s limi-
tations of invariant checking for graph transformation and motivate further lines
of future work in this direction.

1 Introduction

The correctness of model transformations is a crucial element for model-driven engi-
neering of high quality software. Many quality related activities are obtained using the
source models of the transformations rather than the results of a single transformation or
chains of transformations. Therefore, only if the model transformation works correctly
and introduces no additional faults, the full benefits of working with the higher-level
source models can be realized.

In this context in particular behavior preservation is the most important correctness
property avoiding the introduction of semantic errors during the model-driven engi-
neering process. Behavior preservation verification techniques either show that specific
properties are preserved, or more generally and complex, they show some kind of bisim-
ulation [1] between source and target model of the transformation.
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For both kinds of behavior preservation, verification goals have been presented with
automatic tool support for the instance level [2,3,4], i.e. for a given source and target
model specified by the model transformation. Nevertheless, up until now there is no
automatic verification approach available at the transformation level, i.e. for all source
and target models specified by the model transformation. However, as usually the trans-
formation development and the application development that employs the developed
transformation are separate activities that are addressed by different people or even dif-
ferent organizations, detecting that the transformation is not correct during application
development time is thus usually too late.

Consequently, ensuring behavior preservation for the transformation in general al-
ready during the development of the transformation is highly desirable, but to our best
knowledge so far no work exists presenting a generic proof scheme for this prob-
lem, allowing to tackle it in an automated manner. We presented a first approach [5]
attacking this problem in a semi-automated manner in form of a verification tech-
nique based on interactive theorem proving. Hülsbusch et. al [6] presented and com-
pared different proof strategies for manual proofs on the transformation level without
solving the problem of automation. Some first approaches tackling the problem for
the special case of model refactorings are present [7,8], not covering complete model
transformations.

In this paper, we present a first approach towards automatic verification of behavior
preservation for model transformations specified by triple graph grammars [9] (TGG)
and semantic definitions given by graph transformation systems (GTS). In particular,
we show that the behavior preservation problem can be reduced to invariant checking
for GTS, which in restricted cases can be automatically verified using our existing ver-
ification technique [10]. We reduced the problem of consistency preservation of refac-
torings [11] accordingly. Due to a mapping of TGGs on specially typed graph transfor-
mations [12,13] both the transformation and the semantics are captured in a homoge-
neous manner, which greatly facilitates mapping the problem on invariants for GTS. We
demonstrate with a simple example which degree of automation can be achieved today
and further discuss today’s limitations of invariant checking for graph transformation
and motivate further lines of future work in this direction.

The paper is structured as follows: In Section 2 we review the foundations required
to tackle the behavioral preservation problem in the form of graph constraints, GTSs
and TGGs. In Section 3 the problem of behavior preservation in general and for the par-
ticular setting is introduced. How the problem in this setting can be reduced to invariant
checking GTSs is outlined in Section 4. Afterwards, the automation for a restricted
class of the problem, current limitations, and directions for future work are reviewed in
Section 5. The paper closes with a final conclusion.

2 Foundations

We reintroduce graph conditions, graph transformation and invariants, and TGGs rather
informally and refer to [13,14,15] for formal definitions.

Graph Conditions. Nested graph conditions [14,15] generalize the corresponding no-
tions in [16], where a negative (positive) application condition, NAC (PAC) for short,
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over a graph P, denoted ¬∃a (∃a) is defined in terms of a graph morphism. We use →
to denote a graph morphism in general and ↪→ to denote an injective graph morphism
in particular. Informally, a morphism p : P → G satisfies ¬∃a (∃a) if there does not
exist a morphism q : C→G extending p (if there exists q extending p). Then, a (nested)
graph condition AC is either the special condition true or a pair of the form ¬∃(a,acC)
or ∃(a,acC), where the first case corresponds to a NAC and the second to a PAC, and
in both cases acC is an additional AC on C. Intuitively, a morphism p : P → G satis-
fies ∃(a,acC) if p satisfies a and the corresponding extension q satisfies acC. ACs (and
also NACs and PACs) may be combined with the usual logical connectors. A morphism
p : P→ G satisfies ¬c if p does not satisfy c and satisfies ∧i∈Ici if it satisfies each ci

(i ∈ I).

P

G

C,a

p q
=

acC

|=
)∃(

Graph conditions over the empty graph I are also called graph constraints. A graph
G satisfies a graph constraint acI , written G |= acI , if the initial morphism iG : I → G
satisfies acI . This means that if a constraint simply should state that a match for a graph
C must exist, we have the graph constraint ∃(iC, true).

Notation: Note that ∃a abbreviates ∃(a, true), ∀(a,acC) abbreviates ¬∃(a,¬acC) and
∃(iC,acC) with the initial morphism iC : I →C abbreviates ∃(C,acC).

Graph Transformation and Invariants. In this paper, we assume the double-pushout
approach (DPO) to graph transformation with injective matching [17]. A plain rule
p = 〈L ←↩ I ↪→ R〉 consists of a left-hand side (LHS) L and a right-hand side (RHS).
Additionally, we allow rules to be equipped with LHS application conditions [14,15],
allowing to apply a given rule to a graph G only if the corresponding match morphism
satisfies the AC of the rule. Thus, a rule ρ = 〈p,acL〉 consists of a plain rule p = 〈L←↩
I ↪→ R〉 and an application condition acL over L.

L I R

DG H

m m∗(1) (2)

acL =|

A direct transformation via rule ρ = 〈p,acL〉 consists of two pushouts (1) and (2), called
DPO, with injective match m and comatch m∗ such that m |= acL. If there exists a direct
transformation from G to G′ via rule ρ and match m, we write G⇒m,ρ G′. If we are only
interested in the rule ρ , we write G⇒ρ G′. If a rule ρ in a set of rules R exists such
that there exists a direct transformation via rule ρ from G to G′, we write G⇒R G′. A
graph transformation, denoted as G0

∗⇒R Gn, is a sequence G0 ⇒R G1 ⇒R · · · ⇒R Gn

of n≥ 1 direct transformations.
Graph conditions, rules and transformations as described before can be equipped

with typing over a given type graph TG as usual [17] by adding typing morphisms from
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each graph to TG and by requiring type-compatibility with respect to TG for each graph
morphism. We denote with L (TG) the set of all graphs G typed over TG.

Definition 1 (graph transformation system). A graph transformation system (GTS)
gts = (R,TG) consists of a set of rules R typed over a type graph TG. A graph trans-
formation system may be equipped with an initial graph G0 or a set of initial graphs I
being graphs typed over TG. For a GTS gts = (R,TG) and a set of initial graphs I the
set of reachable graphs REACH(gts, I) is defined as {G | G0

∗⇒R G,G0 ∈ I}.

Fig. 1. gtss and gtst - Operational semantics

Example 1 (graph transformation system). In the upper part of Fig. 1, three GT rules
are depicted that are typed over SRT , the left part of the graph depicted on the right
of Fig. 2, building a GTS gtss = ({initE,send,rcv},SRT ). We use a notation marking
elements that are created or deleted by the rule with ”++” or ”- -”, respectively. The rule
initE holds a NAC identical to its RHS, expressing that it should not be applied to the
same match twice.

The applicability of a rule can be expressed as a graph constraint. We exploited this fea-
ture already in [11,18] for the consistency preservation verification of rule-based refac-
torings and for consistency verification of integrated behavior models, respectively. The

rule applicability constraint for a rule ρ = 〈p,acL〉 with p = 〈L l←↩ I
r

↪→ R〉, expresses
that an injective match m exists such that the application condition acL and the so-called
deletable condition Deletable(p)1, guaranteeing the existence of a PO-complement for
m◦ l, are fulfilled. Then it is obvious that the rule ρ = 〈p,acL〉 is applicable with injec-
tive matching to a graph G if and only if G fulfills the rule applicability constraint.

Definition 2 (rule applicability constraint). Given a rule ρ = 〈p,acL〉 with plain rule
p = 〈L ←↩ I ↪→ R〉, then App(ρ) = ∃(iL,acL ∧Deletable(p)) is the rule applicability
constraint of ρ .

1 In Lemma 5.9 of [19], it is described how to construct Deletable(l) (we write Deletable(p)
instead of Deletable(l)). Basically, it prohibits the existence of additional adjacent edges, mak-
ing use of additional NACs, for nodes that are to be deleted.
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Example 2 (rule applicability as constraint). The applicability of the rule send, de-
picted in Fig. 1, can be expressed as graph constraint ∃(iL, true), or abbreviated ∃L,
with L the LHS of send. This is because acL is true and Deletable(p) is true, since the
rule does not delete any nodes. The same holds for the applicability of rule fireTS. In
Fig. 5, the graph constraint App(send)⇒ App( f ireT S), equivalent to ¬App(send)∨
App( f ireT S), is depicted.

The satisfaction of graph constraints can be invariant with respect to a GTS. In our
verification approach, we reduce the problem of behavior preservation to invariant
checking. In Section 5, we explain how and with which restrictions automatic invariant
checking can be performed statically.

Definition 3 (inductive invariant [20]). A graph constraint acI is an inductive invari-
ant of the GTS gts = (R,TG), if for all graphs G in L (T G), and for all rules ρ ∈R, it
holds that G |= acI ∧ G⇒ρ G′ implies G′ |= acI .

Triple Graph Grammars Triple graph grammars (TGGs) define model transformations
in a relational (declarative) way. We use [12,13] a TGG formalization more suitable
for the current practice for TGGs than the one introduced originally in [9]. Thereby,
the main idea is to use a distinguished, fixed graph TRIPLE which all triple graphs,
including the type triple graph STTCT T TT T , are typed over.

TRIPLE s c tecs ect
ls lt

We say that TRIPLES, TRIPLEC, and TRIPLET , as shown below,

TRIPLES s
ls

TRIPLEC s c tecs ect
TRIPLET t

lt

are the source, correspondence, and target component of TRIPLE, respectively. Analo-
gously to the aforementioned case, the projection of a graph G typed over TRIPLE to
TRIPLES, TRIPLEC, or TRIPLET selects the corresponding component of this graph.

We denote a triple graph as a combination of three indexed capitals, as for example
G = SGCGTG, where SG denotes the source and TG denotes the target component of
G, while CG denotes the correspondence component, being the smallest subgraph of G
such that all c-nodes as well as all ecs- and ect -edges are included in CG. Note that CG

has to be a proper graph, i.e. all target nodes of ecs and ect -edges have to be included.
The category of triple graphs and triple graph morphisms is called TripleGraphs.

Analogously to typed graphs, typed triple graphs are triple graphs typed over a dis-
tinguished triple graph STTCT T TT T , called type triple graph. The category of typed
triple graphs and morphisms is called TripleGraphsTT. In the remainder of this paper,
we assume every triple graph SGCGTG and triple graph morphism f to be typed over
STTCT T TT T , even if not explicitly mentioned. In particular, this means that SG is typed
over ST T , CG is typed over CT T , and T is typed over TT T . We say that SG (TG or CG) is
a source graph (target graph or correspondence graph, respectively) belonging to the
language L (STT ) (L (TT T ) or L (CT T ), respectively).

Notation: Note that each source graph (target graph) corresponds uniquely to a triple
graph with empty correspondence and target (source and correspondence) components,
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respectively. Therefore, if it is clear from the context that we are dealing with triple
graphs, we denote triple graphs SG∅∅ (∅∅TG) with empty correspondence and target
components (source components) also as SG (TG), respectively.

A triple graph rule p : SLCLTL
r→ SRCRTR consists of a triple graph morphism r,

which is an inclusion. A direct triple graph transformation SGCGTG ⇒p,m SHCHTH

from SGCGTG to SHCHTH via p and m consists of the pushout (PO) in TripleGraphsTT.

SLCLTL SRCRTR

SGCGTG SHCHTH

(PO)

r

m n

h

A triple graph transformation, denoted as SG0CG0 TG0

∗⇒ SGnCGn TGn , is a sequence
SG0CG0 TG0 ⇒ SG1CG1 TG1 ⇒ ··· ⇒ SGnCGn TGn of direct triple graph transformations.
As in the context of classical triple graphs, we consider triple graph grammars (TGGs)
with non-deleting rules. Moreover, we allow grammars to be equipped with a so-called
TGG constraint Ctgg typed over ST TCT T TT T , restricting the language of triple graphs
generated by the TGG to a subset of triple graphs satisfying Ctgg.

Definition 4 (Triple graph grammar, L (tgg,Ctgg)). A triple graph grammar (TGG)
tgg = ((R,ST TCT T TT T ),SACATA) consists of a set of triple graph rules R typed over
STTCT T TT T and a triple start graph SACATA, called axiom, also typed over ST TCT T TT T .
Given a TGG constraint Ctgg for tgg, being a graph constraint typed over STTCT T TT T

such that SACATA |=Ctgg, then the triple graph language L (tgg,Ctgg) consists of SACATA

and all triple graphs SGCGTG |= Ctgg such that SACATA
∗⇒ SGCGTG via rules in R.

Example 3 (tgg). In Fig. 2, an example TGG tgg is depicted with an axiom SACATA

and two rules typed over the type graph ST TCT T TT T . The type graph ST TCT T TT T is the
subgraph of the type graph SRTCT T TRT shown in the upper right part of Fig. 2, obtained
by deleting the active loops in the source and target component. The rules describe a
model transformation between a sequence chart with one lifeline being able to send
and receive messages and an automaton with two different types of transitions, one
for the sending and one for the receiving of messages. The events before and after a
send/receive message on the lifeline correspond to states before and after send/receive
transitions in the automaton. On the lifeline, there is one first event which corresponds
to an initial state of the automaton. We also have a TGG constraint Ctgg, for which
a fragment is shown in the lower right part of the figure. It expresses that each event
should be connected with at most one previous message (subsequent message) of type
Send/Rcv. An analogous condition holds for states and transitions in the automaton.

3 Behavior Preservation for Model Transformation

Assuming that a model transformation is defined by some relation over the source and
target language, we can formulate the general problem of behavior preservation on the
transformation level as follows:
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Fig. 2. tgg with axiom and two rules, type graph SRTCT T TRT , fragment of Ctgg

Problem Statement 1 (Behavior preservation). Given a model transformation MT⊆
L (ST T )×L (TT T ) and operational semantic definitions semS and semT for source
and target language L (STT ) and L (TT T ), respectively, we say that MT is behavior
preserving if for each pair of source and target graphs (S,T ) ∈MT, it holds that semS

of S is somehow equivalent to semT of T .

For our specific setting we explain now how we define the elements and the equivalence
mentioned in Problem Statement 1. At first, analogous to [5,6], the model transforma-
tion MT⊆L (ST T )×L (TT T ) is derived in our case from a given TGG tgg typed over
STTCT T TT T . Additionally, we allow tgg to be equipped with a TGG constraint Ctgg such
that MT can be derived from the language L (tgg,Ctgg).

Definition 5 (MT(tgg,Ctgg)). Given a TGG tgg with TGG constraint Ctgg,
MT(tgg,Ctgg)⊆L (ST T )×L (TT T ) consists of pairs of source and target graphs (S,T )
such that there exists some triple graph SCT ∈L (tgg,Ctgg) having S and T as source
and target component, respectively.

Example 4 (MT(tgg,Ctgg)). In Fig. 3, a source graph S and target graph T is depicted in
concrete syntax belonging to MT(tgg,Ctgg) with tgg and Ctgg as described in Example 3
and depicted in Fig. 2. A triple graph SCT fulfilling Ctgg can be generated by tgg, being
the subgraph of S2CT2 depicted in Fig. 3 obtained by deleting the two active loops.

Secondly, analogous to the work of Hülschbusch et al. [6], we define the operational
semantics semS and semT of source models and target models as graph transformation
systems gtss and gtst , respectively. In order to be able to encode runtime information
into the source and target language L (STT ) and L (TT T ) the according type graphs can
be enriched with so-called run-time types allowing to define the operational semantics
of both languages as the possible changes in instances of this enhanced type graph
(similar to the dynamic metamodeling approach [3]). We denote these enhanced type
graphs for the source (target) language as SRT (TRT ), respectively. Accordingly, the
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type graph STTCT T TT T enriched with run-time types for source and target languages is
denoted as SRTCT T TRT . In this context, we say that a type (or corresponding instance
element) is static if it belongs to ST TCT T TT T . We assume that operational semantic
rules have the property that they do not change elements with static type, since they
merely model the change of run-time information.

Note that if some graph SGCGTG, morphism m, rule ρ , or condition ac is typed over
a subgraph SSGCSGTSG of SRTCT T TRT , then it is straightforward to extend the codomain
of the corresponding typing morphisms to SRTCT T TRT such that SGCGTG, m, ac, or ρ are
actually typed over SRTCT T TRT . We therefore do not explicitly mention this anymore in
the rest of this paper.

Definition 6 (gtss and gtst ). Given a source and target enhanced type graph SRT and
TRT , respectively, we have a source GTS gtss = (Rs = {ρ i

s | i ∈ I},SRT ) for the source
language L (ST T ) and a target GTS gtst = (Rt = {ρ j

t | j ∈ J},TRT ) for the target lan-
guage L (TT T ), consisting of rules that preserve all elements with static type.

Example 5 (gtss and gtst ). The GTS gtss = ({initE,send,rcv},SRT) depicted in the
upper part of Fig. 1 typed over SRT (see Fig. 2) provides a semantics for the source
models. The semantics for the target models (depicted in the lower part of Fig. 1) is
provided by the GTS gtst = ({initS, f ireTS, f ireT R},TRT ) typed over TRT (see Fig. 2).

Finally, we also have to define what it means for two operational semantics to be some-
how equivalent. For behavioral models that describe a reactive behavior, the external
visible interactions rather than the usually encapsulated states are relevant. This can be
captured by considering the labeled transitions systems induced by the source and tar-
get GTS, where the labeling describes the externally visible interactions, defined by the
corresponding rule names leading to operational semantics rule applications.

Definition 7 (induced LTS(gts,G0)). A labeled transition systems (LTS) lts = 〈i,→
,Q,L〉 consists of the initial state i, the labeled transition relation →⊆ Q×L×Q over
the label alphabet L and the set of states Q. Given a relabeling mapping l : L → L′

with L′ a new label alphabet, then l(lts) is the labeled transition system where each
label α in lts has been replaced by l(α). The labeled transition system LTS(gts,G0)
induced by gts = (R,T G) and the initial graph G0 equals 〈G0,→gts,Qgts,R〉 with
→gts= {(G,ρ ,G′) | G,G′ ∈ Qgts,ρ ∈R ∧G⇒ρ G′}, and Qgts = REACH(gts,{G0}).
Given two relabeling mappings ls : Rs → A and lt : Rt → A for LTS(gtss,S) and
LTS(gtst ,T ), respectively, we can then obtain two transition systems ls(LTS(gtss,S))
and lt(LTS(gtst ,T )) over a common alphabet A.2

Example 6 (ls(LTS(gtss,S)) and lt(LTS(gtst ,T ))). For the semantic definitions gtss
and gtst from Example 5 and the induced LTS LTS(gtss,S) and LTS(gtst ,T ) we define
bijective relabeling mappings ls : Rs → A and lt : Rt → A with A = {init,s,r} as ls =
〈initE → init,send → s,rcv→ r〉 and lt = 〈initS→ init, f ireT S→ s, f ireT R→ r〉. The
application of the relabelings to the LTSs of the example source and target model is
depicted in Fig. 3, where the original labels α are depicted on the left side of a transition,
while the mapped labels ls(α) are depicted on the right side of a transition.

2 It is important that the relabeling is not trivial, e.g. mapping every label to the same element in
A, as otherwise the fact that the LTSs are bisimilar is not very significant.
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Fig. 3. S and T in concrete syntax, SCT⊆ S2C2T2, LTS(gtss,S) and LTS(gtst ,T ) with relabeling

Now we can compare source and target behavior looking only at the labeling of tran-
sitions by requiring that a source S and target graph T have bisimilar LTSs ls(LTS(gtss,S))
and lt(LTS(gtst ,T )). Bisimilarity [1] of two LTSs over the same alphabet is defined as
follows:

Definition 8 (bisimulation relation, bisimilarity [1]). A bisimulation relation between
two labeled transition systems lts1 = 〈i1,→,Q1,A〉, lts2 = 〈i2,→,Q2,A〉 over the same
alphabet A is a relation B⊆ Q1×Q2 such that whenever (q1,q2) ∈ B

1. If q1 α−→q′1, then q2 α−→q′2 and (q′1,q′2) ∈ B.
2. If q2 α−→q′2, then q1 α−→q′1 and (q′1,q′2) ∈ B.

We say that lts1 and lts2 are bisimilar if there exists a bisimulation relation between
them such that (i1, i2) ∈ B.

We still need to specify for our specific setting how the bisimulation relation B ⊆
REACH(gtss,S)×REACH(gtst ,T ) for the LTSs ls(LTS(gtss,S)) and lt(LTS(gtst ,T ))
is given. We derive it from a given graph constraint CBis typed over SRTCT T TRT , called
the bisimulation constraint and introduced more in detail in Section 4. Since we know
that for each (S,T ) in MT(tgg,Ctgg), there exists some SCT in L (tgg,Ctgg), we say
that (S,T ) belongs to the bisimulation relation if SCT fulfills the bisimulation con-
straint CBis. Concluding, the bisimulation relation B in our specific setting, denoted
Bis(CBis,SCT ), is derived from the bisimulation constraint CBis and SCT .

Definition 9 (induced bisimulation relation Bis(CBis,SCT )). Given a pair of source
and target graphs (S,T ) in MT(tgg) such that the triple graph SCT typed over ST TCT T TT T

belongs to L (tgg,Ctgg) with two LTSs ls(LTS(gtss,S)) and lt(LTS(gtst ,T )), and given
a graph constraint CBis typed over SRTCT T TRT , called the bisimulation constraint, then
the induced bisimulation relation Bis(CBis,SCT )⊆ REACH(gtss,S)×REACH(gtst ,T )
consists of all (S′,T ′) such that S′CT ′ fulfills CBis.

The above definition for the induced bisimulation relation is well-defined because of
the following lemma:

Lemma 1 (semantic rules preserve static types and correspondences). Given two
LTSs ls(LTS(gtss,S)) and lt(LTS(gtst ,T )) for a pair of source and target graphs (S,T )
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in MT(tgg,Ctgg) such that the triple graph SCT typed over STTCT T TT T belongs to
L (tgg,Ctgg), then S′CT ′ with S′ ∈ REACH(gtss,S) and T ′ ∈ REACH(gtst ,T ) is a well-
defined triple graph.

Proof. In Def. 6, we required for gtss and gtst that the rules preserve elements with
static types. Therefore, it holds that S and T is included in each S′ ∈ REACH(gtss,S)
and T ′ ∈REACH(gtst ,T ), respectively. Moreover, since the correspondence component
C consists of all edges connecting S and T via correspondence nodes including incident
nodes belonging to S and T , also S′CT ′ is a well-defined triple graph. �

Summarizing, we can refine the more general Problem Statement 1 to the following
statement for our specific setting:

Problem Statement 2 (Behavior preservation in our setting). Given a model trans-
formation MT(tgg,Ctgg) : L (STT )×L (TT T ) for a tgg = ((R,ST TCT T TT T ),SACATA)
with TGG constraint Ctgg, operational semantic definitions gtss = (Rs,SRT ) and gtst =
(Rt ,TRT ) for source and target language L (ST T ) and L (TT T ), resp., relabeling map-
pings ls : Rs→A and lt : Rt →A and a bisimulation constraint CBis, then MT(tgg,Ctgg)
is behavior preserving if for each triple graph SCT typed over ST TCT T TT T belong-
ing to L (tgg,Ctgg) such that (S,T ) ∈MT(tgg,Ctgg), it holds that ls(LTS(gtss,S)) and
lt(LTS(gtst ,T )) are bisimilar via the bisimulation relation Bis(CBis,SCT ).

Example 7 (problem statement). The complete example for the problem statememt 2
consists of the TGG of Example 3 shown in Fig. 2, the operational semantics definitions
gtss = (Rs,SRT ) and gtst = (Rt ,TRT ) of Example 5 depicted in Fig. 1 for the source and
target model of the TGG tgg, and the relabeling mappings ls : Rs → A and lt : Rt → A
from Example 6. In addition, we still require the bisimulation constraint CBis that will
be constructed in the following section.

4 Behavior Preservation Verification

Given a model transformation MT(tgg,Ctgg) with tgg = ((R,STTCT T TT T ),SACATA),
operational semantic definitions gtss and gtst , relabeling mappings ls and lt and a bisim-
ulation constraint CBis, then we prove in Theorem 3 that the problem of behavior preser-
vation of MT(tgg,Ctgg) in the sense of Problem Statement 2 can be reduced to invariant
checking of CBis for specific GTSs inherent to the problem. The bisimulation constraint
CBis is defined as the conjunction of a so-called runtime constraint CRT, a pairwise
constraint CPair, and the TGG constraint Ctgg. First, the runtime constraint CRT is a
constraint typed over SRTCT T TRT that has to be provided, expressing how the runtime
structure of source and target language are related to each other via the correspondences
between them defined by the tgg.

Example 8 (runtime constraint CRT). The runtime constraint for our Example 7, as
depicted in Fig. 4, expresses that if an active loop on some event in the sequence chart
domain occurs, then this event should be connected to a corresponding state with active
loop in the automaton domain and the other way round. This runtime constraint is typed
over the type graph SRTCT T TRT shown in Fig. 2.
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Fig. 4. CRT for tgg, gtss, gtst , ls, and lt of Example 7

Secondly, the pairwise constraint CPair, expresses that the applicability of a rule ρs of
the source semantics gtss implies the applicability of a rule ρt of the target semantics gtst
and the other way round, whenever ρs and ρt are mapped by the relabeling mappings ls
and lt to the same label in the common alphabet A. Trivially speaking, rules ”with the
same label” should be applied pairwise, since this is exactly what we need for proving
bisimulation.

Definition 10 (pairwise constraint CPair, set of parallel rules P(ls, lt)). Given gtss =
(Rs,SRT ) and gtst = (Rt ,TRT ) as well as the relabeling mappings ls : Rs → A and
lt : Rt → A, the pairwise constraint

CPair = ∧(ρs,ρt )∈Pair(ls,lt )((App(ρs)⇒ App(ρt))∧ (App(ρt)⇒ App(ρs)))

typed over SRTCT T TRT with the set of pairs Pair(ls, lt) = {(ρs,ρt)|ls(ρs) = lt(ρt)∧ρs ∈
Rs,ρt ∈Rt}. We define P(ls, lt) = {ρs+ρt |(ρs,ρt) ∈ Pair(ls, lt )} as the set of parallel
rules [21,15] induced by Pair(ls, lt ).

Example 9 (CPair). For the pair (send, f ireT S) ∈ Pair(ls, lt) of semantics rules of Ex-
ample 7 the constraint App(send)⇒ App( f ireT S) depicted in Fig. 5 results.

Fig. 5. App(send)⇒ App( f ireTS) in CPair

The following theorem expresses that behavior preservation is given if runtime states in
source and target models are always corresponding, and source and target operational
rules with equivalent labels are always applicable together.

Theorem 3 (behavior preservation verification). Given a model transformation
MT(tgg,Ctgg) : L (ST T )×L (TT T ) for a tgg = ((R,ST TCT T TT T ),SACATA) with TGG
constraint Ctgg, operational semantic definitions gtss = (Rs,SRT ) and gtst = (Rt ,TRT )
for source and target language L (ST T ) and L (TT T ), respectively, relabeling mappings
ls : Rs → A and lt : Rt → A, a bisimulation constraint CBis = CRT ∧CPair ∧Ctgg typed
over SRTCT T TRT with CRT a given runtime constraint and CPair the pairwise constraint
derived according to Def. 10, then MT(tgg,Ctgg) is behavior preserving in the sense of
Problem Statement 2 if the following conditions are fulfilled:
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1. SACATA |= CRT∧CPair.
2. CRT∧CPair is an inductive invariant (see Def. 3) of (R,SRTCT T TRT ).
3. CRT ∧CPair is an inductive invariant (see Def. 3) of (P(ls, lt),SRTCT T TRT ) with

P(ls, lt) as given in Def. 10.

Proof. We have to show that for any (S,T ) ∈M(tgg,Ctgg) it holds that ls(LTS(gtss,S))
and lt(LTS(gtst ,T )) are bisimilar via the induced bisimulation relation Bis(CRT∧CPair∧
Ctgg,SCT ). We therefore prove (1) that Bis(CRT ∧CPair∧Ctgg,SCT ) is indeed a bisim-
ulation relation according to conditions 1 and 2 of Def. 8 and (2) that the pair of ini-
tial states (S,T ) of ls(LTS(gtss,S)) and lt(LTS(gtst ,T )) is always in Bis(CRT ∧CPair ∧
Ctgg,SCT ).

(1) Bis(CRT∧CPair∧Ctgg,SCT ) is a bisimulation relation: We first have to show for
condition 1 of Def. 8 that for all (S1,T1) ∈ Bis(CRT ∧CPair ∧Ctgg,SCT ) (equivalent to
S1C1T1 |= CRT∧CPair∧Ctgg according to Def. 9), if S1 α−→S2, then T1 α−→T2 and (S2,T2) ∈
Bis(CRT∧CPair∧Ctgg,SCT ) for ls(LTS(gtss,S)) and lt(LTS(gtst ,T )), respectively. This
holds if S1⇒ρs S2 implies T1⇒ρt T2 with ls(ρs) = lt(ρt) and (S2,T2)∈Bis(CRT∧CPair∧
Ctgg,SCT ) for ρs in gtss and ρt in gtst . We first prove that T1 ⇒ρt T2 if S1 ⇒ρs S2 with
ls(ρs) = lt(ρt). If we have S1 ⇒ρs S2, then we also have S1CT1 ⇒ρs S2CT1. Because
S1CT1 |= CPair, applicability of ρs to S1CT1 implies applicability of ρt to S1CT1 such
that S1CT1 ⇒ρt S1CT2 with ls(ρs) = lt(ρt). This means, in particular, that T1 ⇒ρt T2. We
still need to prove that (S2,T2) ∈ Bis(CRT ∧CPair ∧Ctgg,SCT ). This is because, as ρs

and ρt consist of disjoint types, they can only be applied in a parallel independent way
to S1CT1. Due to the Parallelism Theorem [21], then it follows that S1CT1⇒ρs+ρt S2CT2

with ρs + ρt ∈ P(ls, lt ). Because of condition 3 of the Theorem and the fact that
S1CT1 |= CRT ∧CPair, then it follows that S2CT2 |= CRT ∧CPair. As gtss and gtst pre-
serve static types, Ctgg typed over ST TCT T TT T is by construction an inductive invariant
for P(ls, lt) implying S2CT2 |= Ctgg. Thus, we have S2CT2 |= CRT ∧CPair ∧Ctgg and
according to Def. 9, this means that (S2,T2) ∈ Bis(CRT ∧CPair ∧Ctgg,SCT ). Condition
2 of Def. 8 follows analogously to condition 1 as the roles of S and T are symmetric.

(2) (S,T ) ∈ Bis(CRT ∧CPair ∧Ctgg,SCT ): Each triple graph SCT in L (tgg,Ctgg)
fulfills Ctgg by construction. We further prove by induction over the number of TGG rule
applications that each triple graph SCT in L (tgg,Ctgg) fulfills also CRT∧CPair such that
according to Def. 9 (S,T )∈Bis(CRT∧CPair∧Ctgg,SCT ). The base clause for the axiom
SACATA |= CRT ∧CPair follows directly from condition 1 of the Theorem. Condition 2
of the Theorem then provides the induction step that for any TGG rule application
SnCnTn⇒R Sn+1Cn+1Tn+1 such that Sn+1Cn+1Tn+1, it holds that Sn+1Cn+1Tn+1 |=CRT∧
CPair assuming the induction hypothesis that SnCnTn |= CRT∧CPair. �

In [12] we showed for TGGs (showing this for TGGs with constraints is ongoing work)
that they are conform with our TGG implementation. Thus we can guarantee that for-
ward and backward transformation implementations are indeed behavior preserving.

Besides bisimulation also preorders may be employed to establish behavioral consis-
tency. For simulation [1], we simply have to weaken the pairwise constraint to obtain a
similar result as Thm. 3 into: C ′

Pair =∧(ρs,ρt )∈Pair(App(ρt)⇒App(ρs)). In order to sup-
port e.g. weak simulation or source rule applications being equivalent to several target
rule applications, the labeling function can be adjusted accordingly.
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5 Automation of Behavior Preservation Verification

We can perform inductive invariant checking automatically [10] for the constraints CRT

and CPair, if they can be written as a conjunction of constraints of the basic form ¬∃P
or more complex form ∀(P,∃n) with n : P → N, or equivalently ¬∃(P,¬∃n), and if
rules are restricted to the form ρ = (〈L ←↩ I ↪→ R〉,∧i∈I¬∃ni) with ni : L→ Ni a neg-
ative application condition. While this restriction is usually fulfilled by the runtime
constraint CRT, the rules Rs and Rt for the source and target semantics, resp., and
the TGG rules R, the pairwise constraint CPair will usually not fulfill it. Only if the
rules Rs and Rt have no NACs and a trivially true Deletable condition, the resulting
CPair can be formulated as a conjunction of constraints of the form ∀(P,∃n). This is be-
cause (App(ρs)⇒ App(ρt))∧ (App(ρt)⇒ App(ρs)) can be written as (¬(App(ρs)∧
¬App(ρt)))∧ (¬(App(ρt)∧¬App(ρs))) and App(ρs)∧¬App(ρt) is equivalent in the
restricted case to ∃(SL,¬∃(SL ↪→ SL +TL)) with SL and TL the LHS of ρs and ρt , resp.

The presented Example 7 fulfills the required restrictions with the exception of the
initE and initS rules which have a NAC each. However, we can slightly relax the con-
ditions of Def. 6 such that not only runtime, but also static edges can be deleted. This
does not break Lemma 1, since static nodes and correspondences are preserved any-
way. We can then emulate the NACs by instead testing that the first resp. init loop are
present and delete them afterwards. In addition, we then have to check that Ctgg is an
inductive invariant for (P(ls, lt),SRTCT T TRT ) resp. exclude that erasing the init edge
can invalidate the constraint Ctgg. Condition 1 of Theorem 3 can be checked by any
GTS tool that is able to check constraints of the form CRT ∧CPair for a given graph.
For the slightly adjusted but semantically equivalent semantic rules, we can use our in-
variant checker to show that behavior preservation with an interactively strengthened3

bisimulation constraint in the sense of Problem Statement 2 holds.
Increasing the expressiveness of the constraints for which invariant checking can be

performed, would allow improved automatic verification of behavior preservation, mo-
tivating the further investigation of invariant checking. In [22], it is described how the
invariant checking (or constraint preservation) problem can be reduced to the implica-
tion problem. As proven in [14], in the case of graphs, nested conditions are expressively
equivalent to first order graph formulas. Consequently, the implication problem for ACs
is undecidable, in general. However, in [19,23], techniques are presented to tackle this
problem in practice. Also [24] is concerned with invariant checking by studying Myhill-
Nerode quasi orders. Finally, it is possible to translate the invariant checking problem
to the input for a suitable constraint solver, see for example [25,26].

The check enforced by CPair is sufficient but not necessary. In particular, when alter-
native rule applications are possible, e.g., when the models relate to a non-deterministic
induced LTS, the check may deliver false negatives, since source and target steps with
equivalent labels may lead to a non-bisimilar combined state, where at the same time

3 This becomes necessary because the invariant checker is otherwise lacking knowledge to rule
out false negatives, i.e. situations that would actually never occur in the problem context, when
verifying condition 2 and 3 in Theorem 3. The strengthening of the bisimulation constraint
consists of additional invariants satisfied by the axiom and guaranteed by the TGG and parallel
rules such that they can be assumed as extra knowledge during verification. It is part of ongoing
work to support as much as possible the automation of this step.
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equivalently labeled steps may lead to a bisimilar combined state. A more fine grain
labeling of the LTS based on the rule and the match that allows to better distinguish
the different rule applications can help here. More advanced GTS concepts such as
attributes would be required, but this is beyond the scope of this paper.

6 Conclusion

We presented a first verification scheme promising that behavior preservation verifica-
tion for model transformations at the transformation level can be automated. For model
transformations specified by TGGs and semantic definitions for input and output mod-
els given by GTS rules, we can reduce the behavior preservation problem to an invariant
checking problem for GTSs derived from the TGG and semantics rules, and constraints
encoding the bisimilarity and the applicability of equivalent steps in the source and tar-
get models. Furthermore, we described which degree of automation can be achieved
today using the existing verification technique [10].

Acknowledgement. We thank Basil Becker and Johannes Dyck for their continuous
development work on the invariant checker [10].
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Abstract. We introduce graph automata as a more automata-theoretic
view on (bounded) automaton functors and we present how automaton-
based techniques can be used for invariant checking in graph transforma-
tion systems. Since earlier related work on graph automata suffered from
the explosion of the size of the automata and the need of approximations
due to the non-determinism of the automata, we here employ symbolic
bdd-based techniques and recent antichain algorithms for language in-
clusion to overcome these issues. We have implemented techniques for
generating, manipulating and analyzing graph automata and perform an
experimental evaluation.

1 Introduction

Regular languages and (word) automata are the cornerstone of several verifica-
tion techniques (for example [9]). Similarly, tree automata [11] have been used
in regular model-checking [8]. Challenges in the analysis of dynamic graph-like
structures, such as pointer structures on the heap, object graphs or evolving
networks, naturally lead to the question whether graph languages and graph
automata can serve the same purpose. There is indeed an established theory of
recognizable graph languages by Courcelle [12], although substantial work needs
to be done before this theory can be put to good use in complex verification
scenarios.

In order to close this gap, we here give a very concrete variant of graph
automata accepting a subclass of the recognizable graph languages à la Courcelle.
Furthermore we reformulate our own earlier work on invariant checking [7] in
this setting. However, our main motivation is to fight state explosion, which is
a major problem when working with graph automata. Graph automata cannot
input all graphs but only graphs up to a certain width (in our case: path width),
which is a restriction on the interface size of the alphabet of “building blocks” of
graphs. However the size of the automaton typically grows exponentially when
this bound is raised. This is a major problem that forced earlier work such as [16],
based on the algorithms in [14], [20] and [13] to restrict to very small interface
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sizes. Recent work abstains from a representation of the automaton, but pursues
a game-based approach, obtaining much better runtime results [18].

However, all these approaches have a different focus than ours, in that they
concentrate on solving the membership problem: given a description of the lan-
guage (often specified by a formula in monadic second-order graph logic) and a
graph, check whether the graph is in the language. Courcelle’s theorem shows
that for a fixed formula this can be done in linear time for graphs of bounded
treewidth (or path width). However the large constants involved lead to severe
efficiency problems when the automata are represented directly.

Here we are less interested in solving the membership problem: with the appli-
cations that we have in mind we are interested in designing an automaton tool
suite that treats automata as representatives of languages that can be suitably
manipulated and analyzed. However, we have to face the same problem as the
other approaches: the sheer size of the automata involved. Hence we are using
symbolic bdd-based techniques to represent the set of states and the transi-
tion function, which enable us to generate non-deterministic automata for large
interface sizes. To avoid determinization, our earlier work [7] used an approxi-
mation, but this approach will not be used in this paper. In order to perform
useful analyses, needed for instance for invariant checking as mentioned above,
we have to solve the language inclusion problem, which is pspace-complete. Our
new approach uses recent methods based on antichains as introduced in [21,1].
We have implemented our techniques and we perform an extensive experimental
evaluation, which shows a clear improvement over earlier work.

The structure of the paper is as follows. In Sect. 2 we will introduce pre-
liminary definitions such as cospans, hypergraphs and binary decision diagrams.
In Sect. 3 we will take a look at graph automata and the connection between
them and automaton functors of bounded size. Then in Sect. 4 we will show how
techniques for solving the language inclusion problem can be used to perform in-
variant checking and in Sect. 5 we will present implementation details about the
Raven tool suite which implements language inclusion algorithms for invariant
checking. Furthermore we will present results about our case studies. Finally, we
will conclude in Sect. 6.

2 Preliminaries

By Nk we denote the set {1, . . . , k}. The set of finite sequences over a set A is
denoted by A∗. If f : A → B is a function from A to B, we will implicitly extend
it to subsets and sequences; for A′ ⊆ A and a = a1 . . . an ∈ A∗ : f(A′) = {f(a) |
a ∈ A′} and f(a) = f(a1) . . . f(an). By |a| we denote the length of a ∈ A∗. By
℘(A) we denote the powerset of A.

Categories and Cospans. We presuppose a basic knowledge of category theory.
For an arrow f from A to B we write f : A → B and define dom(f) = A and
cod(f) = B. For arrows f : A → B and g : B → C, the composition of f and g
is denoted (f ; g) : A → C. The category Rel has sets as objects and relations
as arrows.
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Let C be a category in which all pushouts exist. A cospan in C is a pair
c = (cL, cR) of C-arrows J −cL� G 	cR− K. Two cospans c, d are isomorphic
if their middle objects are isomorphic (such that the isomorphism commutes
with the component morphisms of the cospan). In this case we write c - d.
Isomorphism classes of cospans are the arrows of so-called cospan categories.
That is, for a category C with pushouts, the category Cospan(C) has the same
objects as C. The isomorphism class of a cospan c : J −cL� G 	cR−K in C is an
arrow from J to K in Cospan(C) and will be denoted by c : J

�
K. Composition

of two cospans (cL, cR) , (dL, dR) is computed by taking the pushout of the arrows
cR and dL. A cospan is called output linear if the right leg of the cospan is a
monomorphism.

Graphs and Output Linear Cospans. Let Λ be a set of labels and let ar : Λ → N

be the function that maps each alphabet symbol to its arity.
A hypergraph over a set of labels Λ (in the following also simply called graph)

is a structure G = (V, E, att , lab), where V is a finite set of nodes, E is a finite
set of edges, att : E → V ∗ maps each edge to a finite sequence of nodes attached
to it, such that |att(e)| = ar(lab(e)), and lab : E → Λ assigns a label to each
edge. A discrete graph is a graph without edges; the discrete graph with node
set Nk is denoted by Dk. We denote the empty graph by ∅ instead of D0.

A graph morphism is a structure preserving map between two graphs. The
category of graphs and graph morphisms is denoted by Graph. Recall, that the
monomorphisms (monos) and epimorphisms (epis) of the category Graph are
the injective and surjective graph morphisms, respectively.

A cospan J −cL� G 	cR−K (over a set of labels Λ) in Graph can be viewed
as a graph (G over Λ) with two interfaces (J and K), called the inner interface
and outer interface respectively. Informally said, only elements of G which are
in the image of one of the interfaces can be “touched”. By [G] we denote the
trivial cospan ∅ → G ← ∅, the graph G with two empty interfaces.

The category of output linear cospans OLCGn has discrete graphs (of size at
most n) as objects and output linear cospans of graphs with discrete interfaces
(of size at most n) as arrows. Note that the middle objects of the cospans of the
category OLCGn can still be arbitrary graphs. The idea for using this category
is that we want to be able to fuse nodes via cospan composition, but we want
to avoid that nodes of the middle graph are shared in the outer interface.

Binary Decision Diagrams. A binary decision diagram (bdd) is a rooted, di-
rected, acyclic graph which serves as a representation of a boolean function. Ev-
ery bdd has two distinguished terminal nodes, called one and zero, representing
the logical constants true and false. The inner nodes are labeled by the variables
of the boolean formula represented by the bdd, such that on each path from
the root to the terminal nodes, every variable of the boolean formula occurs at
most once. Each inner node has exactly two distinguished outgoing edges, called
high and low, which represent the case that the variable of the inner node has
been set to true or false respectively. A boolean formula f(x1, . . . , xn) can be
evaluated by following the path from the root node to a terminal node.
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b0

b1 b1

b2

b3 b3

1 0

Fig. 1. bdd for the set
{0000, 0011, 1100, 1111}

We will use a special class of bdds, called
reduced and ordered bdds (robdds), in which
the order of the variables occuring in the bdd
is fixed and redundancy is avoided, i.e. if both
child nodes of a parent node are identical, the
parent node is dropped from the bdd and iso-
morphic parts of the bdd are merged. The great
advantage of robdds is that each boolean for-
mula can be uniquely represented by an robdd
(if the order of the variables is fixed). For a de-
tailed introduction of these bdds see [2].

As an example, we consider the following set
of 4-bit vectors: {0000, 0011, 1100, 1111}. We as-
sume that the bits of the bit vectors are num-
bered from b0 to b3 with b0 the least significant
bit. The robdd representing this set of bit vectors is shown in Fig. 1. Variables
are depicted as rounded nodes, terminals as rectangular nodes. The high and
low edges are depicted as solid and dashed lines respectively.

3 Bounded Graph Automata

Recognizable graph languages are a generalization of regular (word) languages to
graph languages which were first investigated by Courcelle [3,12]. In this section
we define bounded graph automata, which accept a subclass of the recogniz-
able graph languages due to the bound. Similar to word languages we define
graph languages based on an alphabet. Each letter of the alphabet represents
an output linear cospan such that the concatenation of these letters (or cospans
respectively) yields a graph (seen as a cospan with empty interfaces).

Let n ∈ N and a doubly-ranked alphabet Σ = (Σi,j)i,j≤n be given. The set of

(doubly-ranked) sequences SΣ = (Si,j)i,j≤n over a doubly-ranked alphabet Σ is
defined inductively:

– for every i ≤ n the empty sequence εi is in Si,i

– for every i, j ≤ n every letter σ ∈ Σi,j is in Si,j

– for every i, j, k ≤ n and for every σ ∈ Si,j , σ
′ ∈ Sj,k the concatenation σ ; σ′

of σ and σ′ is in Si,k

The width of a sequence is the maximum rank of its letters. We will also write
S instead of SΣ if the underlying alphabet is clear from the context.

Let Λ be a set of labels. By Γ (Λ) we denote the doubly-ranked alphabet
containing the following letters:

Letter: connect iA fusei perm i res i transi vertex i

Type: (i, i) (i, i− 1) (i, i) (i, i− 1) (i, i) (i, i + 1)
Constraint: A ∈ Λ, i ≥ 2 i ≥ 3 i ≥ 1 i ≥ 2 −

ar(A) ≤ i
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The meaning of these letters is given by the evaluation function defined below.
Note that res is a restriction of the interface, perm permutes the interface and
trans transposes the first two interface nodes. Due to the fact that for two
elements permutation and transposition are identical operations the constraint
of the letter permn is n ≥ 3.

Now we define an evaluation function which maps each letter of the alphabet
Γ (Λ) to an output linear cospan.

Definition 1 (Evaluation function). Let Λ be a set of labels.

(i) The evaluation function η : Γ (Λ)→ OLCGi maps each letter to an output
linear cospan as shown below:

fusei connect iA vertex i

Di Di Di−1

...

...
...

θmap ϕ

Di H Di

...

...

...

...

A
...

...

e Di Di+1 Di+1

...
...

...

dL

perm i transi res i

Di Di Di

...
...

...

σ

Di Di Di

...
...

...

σ
Di Di Di−1

...
...

...

ρ

(ii) The extended evaluation function η̂ : SΓ (Λ) → OLCGi is defined as

η̂(σ) =

⎧⎪⎨⎪⎩
Dj → Dj ← Dj, if σ = εj ∈ Sj,j

η(σ), if σ = σ ∈ Γ (Λ)

η̂(σ1) ; η̂(σ2), if σ = σ1 ; σ2

We call the cospans which correspond to the six letters above atomic cospans.
Let c be an output-linear cospan. The width of c is the minimal width of all

σ such that η̂(σ) = c.
The following lemma shows that every graph (seen as an output linear cospan

with two empty interfaces) can be constructed by the alphabet Γ (Λ). Hence, we
will restrict ourselves to this alphabet in the following:

Lemma 1 ([7]). Let c be an output linear cospan over Λ. Then it holds that:

1. c can be constructed by a sequence c1, . . . , cm of atomic cospans, i.e. c can
be obtained as the decomposition c = c1 ; . . . ; cm.

2. There exists a sequence σ ∈ SΓ (Λ) such that η̂(σ) = c.
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In the following we are considering graphs with an arbitrary inner interface and
an empty outer interface. We need the arbitrary inner interface in order to state
Theorem 2 below. We could, without major problems, also parametrize over the
outer interface, but this is not necessary for the theory.

Definition 2 (Bounded graph automaton). Let n ∈ N and k ≤ n be given.
An n-bounded graph automaton A = (Q, Σ, δ, I, F ) from k, where Σ = Γ (Λ),
consists of

– Q = (Qi)i≤n the family of finite state sets,
– Σ = (Σi,j)i,j≤n the doubly-ranked input alphabet,

– δ = (δi,j)i,j≤n is a family of transition functions, where δi,j : Qi × Σi,j →
℘(Qj)

– I ⊆ Qk the set of initial states and
– F ⊆ Q0 the set of final states

such that the following condition holds for all q ∈ Q and σ1,σ2 ∈ Si,j:

if η̂(σ1) - η̂(σ2) then δ̂i,j({q},σ1) = δ̂i,j({q},σ2), (�)

where δ̂i,j : ℘(Qi)× Si,j → ℘(Qj) is defined as follows:

δ̂i,j(R,σ) :=

⎧⎪⎨⎪⎩
R if σ = εi ∈ Σi,i and i = j

δ(R, σ) if σ = σ ∈ Σi,j

δ̂k,j(δi,k(R,σ1),σ2) if σ = (σ1 ; σ2),σ1 ∈ Si,k,σ2 ∈ Sk,j

.

A sequence σ ∈ Sk,0 over Σ is accepted by A if and only if δ̂k,0(I,σ) ∩ F �= ∅.

The idea behind a graph automaton is to get a decomposition of an input graph
and to process it “piece by piece”. The condition (�) guarantees that the graph
automaton accepts an input graph independently of the decomposition of the
graph. Showing that this condition holds for some prospective graph automaton
is not trivial in general. A solution would be to automatically translate formulas
of monadic second-order logic to correct graph automata.

Definition 3 (Accepted language). Let an n-bounded graph automaton A
from k be given. The language accepted by A, denoted by L(A), contains exactly
the sequences accepted by A. The cospan language accepted by A is

G (A) =
{

c
∣∣ η̂(σ) = c for some σ ∈ L(A)

}
.

The cospan language of a bounded graph automaton contains cospans. When
we want to accept graphs, we can interpret the cospan [G] as the graph G.

Since a graph automaton is bounded, it is a kind of non-deterministic finite
automaton (nfa). Therefore, we can apply standard algorithms from formal lan-
guage theory, such as the subset construction and constructing the cross product
of two automata. It can be shown that these constructions preserve the condi-
tion (�) of graph automata. Thus, the languages accepted by n-bounded graph
automata are closed under boolean operations, and many important decision
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problems (such as the membership, emptiness and language inclusion problems)
are decidable. Note that the language inclusion algorithm for nfa is pspace-
complete, and thus no efficient algorithms for the problem exist yet.

Example 1. First we consider the language LU of all graphs which contain a
fixed subgraph U . The bounded graph automaton AU accepting this language
works as follows: Every state in each of the state sets Qi contains two pieces
of information. The first piece of information says which parts of the subgraph
have already been recognized. The second piece of information is a function
which maps every outer node to a node which has already been recognized or
to some “bottom element” to indicate that the interface node is not mapped
to a node of the wanted subgraph U . The transition function “updates” this
information according to the letter which is currently processed. Since the input
graph might contain several parts which are isomorphic to the wanted subgraph
U , the bounded graph automaton is highly non-deterministic. More details about
the construction of this graph automaton can be found in [5].

Example 2. Now we consider the language C(k) of all k-colorable graphs (for
some k ∈ N). A k-coloring of a graph G is a function f : VG → Nk such that for all
edges e ∈ EG and for all nodes v1, v2 ∈ attG(e) it holds that f(v1) �= f(v2) if v1 �=
v2. The question whether a graph is k-colorable is essential in many applications,
for example in scheduling. The idea of the graph automaton A(k) accepting all
k-colorable graphs (as defined in [10]) is as follows: Every state is a valid k-
coloring of Di, that is Qi = {f : VDi → Nk | f is a valid k-coloring of Di}. The
transition function δi,j maps a coloring f ∈ Qi and a letter σ ∈ Σ to a coloring
f ′ ∈ Qj if and only if the coloring of the inner nodes of η(σ) according to f and
the coloring of the outer nodes of η(σ) according to f ′ leads to a valid coloring
of η(σ). More details on graph automata for coloring can be found in Sect. 5.1.

In the rest of the section we compare bounded graph automata to automaton
functors, which were introduced in [10], in particular to automaton functors for
the category OLCGi (bounded automaton functors). We show that they accept
the same class of language. The main difference between the two is that bounded
automaton functors are defined on all cospans of bounded size (of which there
are infinitely many), while graph automata are only defined for the letters of the
input alphabet, which correspond to only the atomic cospans (of which there are
finitely many).

Definition 4 (Bounded Automaton Functor). Let n ∈ N. An n-bounded
automaton functor from k is a structure A = (A0, I, F ), where

– A0 : OLCGn → Rel is a functor which maps every discrete graph Di to
a finite set A0(Di) (the state set of Di) and every output linear cospan
c : Di

�
Dj to a relation A0(c) ⊆ A0(Di)×A0(Dj) (the transition relation

of c),
– I ⊆ A0(Dk) is the set of initial states and
– F ⊆ A0(∅) is the set of final states.
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A

B

B

Fig. 2. Wanted subgraph D

0 1

=⇒
0 1

A A

Fig. 3. Transformation rule ρA

For a discrete graph G or a output linear cospan c we will, in the following,
usually write A(G) and A(c) instead of A0(G) and A0(c), respectively. A cospan
c : Dk

� ∅ is accepted by A, if (q, q′) ∈ A(c) for some q ∈ I and q′ ∈ F .

Definition 5 (Accepted language). Let A be an n-bounded automaton func-
tor. The language accepted by A, denoted by G (A), contains exactly the cospans
accepted by A.
Theorem 1. Let L be a language of cospans from Dk to ∅. Then L is the cospan
language of an n-bounded graph automaton from k if and only if it is the language
of an n-bounded automaton functor from k.

4 Invariant Checking and Language Inclusion

One of the applications of our approach is to automatically check invariants of
graph transformation systems (gtss). The following definition of graph transfor-
mation is equivalent to the well-known double-pushout approach [19], where we
have injective rule spans and not necessarily injective matches.

Definition 6 (Graph transformation).

(i) Let � : ∅� Di and r : ∅� Di be two output linear cospans (called left-hand
and right-hand side). The pair ρ = (�, r) is called a (graph) transformation
rule. A graph transformation system is a finite set of transformation rules.

(ii) Let ρ = (�, r) be a transformation rule. The rule ρ is applicable to a graph
G if and only if [G] = � ; c for some output linear cospan Di

� ∅. In this
case we write G ⇒ρ,c H, where H is the graph obtained from [H ] = r ; c.

A language L is an invariant according to a graph transformation rule ρ if it
holds for all graphs G and H with G ⇒ρ H that [G] ∈ L implies [H ] ∈ L.

Example 3. As an example we take the graph D (which is depicted in Fig. 2) as
wanted subgraph. The language LD of all graphs containing D as a subgraph is
an invariant for the rule ρA (shown in Fig. 3) which “switches” an A-labeled edge.
Obviously, every graph which contains D as subgraph before the application of
ρA does contain D also after the rule application.

Example 4. The next example we consider is the language C(2) of all 2-colorable
graphs (see Ex. 2 for details about C(2)). This language is an invariant for the
transformation rule αn depicted in Fig. 4 which adds two new nodes between
two adjacent nodes on a path. That the language C(2) is an invariant for this
rule is clear since every path with an even number of nodes is 2-colorable.
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0 1

=⇒
0 1

Fig. 4. Transformation rule αn

For an output linear cospan c : Dk
�

Dm and a n-bounded graph automaton
A = (Q, Σ, δ, I, F ) from k we obtain a new n-bounded graph automaton A [c] =

(Q, Σ, δ, I ′, F ) from m with I ′ = δ̂k,m(I,σ), where σ is some word from SΣ such
that η̂(σ) = c. (If the width of c is larger than n, such a σ does not exist, and
we take I ′ = ∅, such that L(A [c]) = ∅.) The new automaton has as new initial
states all states reachable from the original initial states by processing c. Note
that I ′ is independent of the specific decomposition of c into a sequence σ.

The following theorem easily follows from the observation that σ� ; σc ∈ L(A)
if and only if σc ∈ L(A [�])), where σ� and σc are sequences such that η̂(σ�) = �
and η̂(σc) = c.

Theorem 2 (Invariant checking). Let A be an n-bounded graph automaton
(from 0) accepting the cospan language L, and let ρ = (�, r) be a transforma-
tion rule. The cospan language L is an invariant of ρ if and only if L(A [�]) ⊆
L(A [r]).

5 Implementation and Results

We implemented a language inclusion algorithm and invariant checking in the
Java-based tool Raven. In this section we examine some implementation details
of the tool and present results of case studies.

5.1 Representation of Automata with BDDs

Graph automata are represented by means of bdds. First, states of the automa-
ton are represented by a bit string, and secondly the transition relations for
the various atomic cospans (or letters respectively) are stored as a bdd which
encodes a relation on these bit strings.

As an example, we look at the encoding for the automaton which accepts
all k-colorable graphs (see Ex. 2). The state encoding has to take care of the
following information: the interface size (of the outer interface of the graph seen
so far) and the color of each node currently occurring in the outer interface.

A good ordering of the bits holding the information is essential to construct
compact bdds. We have experimented with different orderings, and found the
following to be the best. Let n be the maximum interface size and k the number
of colors. Furthermore, let m = .log2 n/ be the number of bits required to store
the interface size, and � = .log2(k + 1)/ the number of bits to store one color
(we need an extra value to represent uncolored or unused nodes). A state is
encoded by the bit sequence b c1 . . . cn = b1 . . . bm(c1,1 . . . c1,�) . . . (cn,1 . . . cn,�),
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where b = b1 . . . bm encodes the current interface size as a binary number and
ci = (ci,1 . . . ci,�) (for 1 ≤ i ≤ n) represents the color of the i-th interface node.

For each of the letters of Γ (Λ) we define a propositional formula describing
the transition relations – for all permitted interfaces – of the graph automaton.
These formulas can then be easily transformed into bdds which describe the
transition functions. (As usual with bdd representations of relations, the bits of
the domain and codomain states are interleaved.)

We present the formula fconnectiA as an example. To distinguish between the
bits for the current state and the bits for the successor state we indicate the
successor state encoding by b′c′1 . . . c′n. The formula consists of four parts (where
p = i− ar (A) + 1 is the index of the first node attached to the new edge):

f1 := (ar (A) ≤ i) ∧ (b = i) ∧ (b = b′) f3 :=

n∧
j=1

(cj = c′j)

f2 :=
n∧

j=i+1

(cj = 0) f4 :=
i∧

j=p

i∧
j′=p

(j �= j′)→ (cj �= cj′)

The subformula f1 expresses that the arity of the added edge is less than or
equal to the current interface and that the interface size of both the current
state and the successor state is i. The subformula f2 expresses that the nodes of
the encoding which do not belong to the current interface, that is the last n−i+1
nodes in the encoding, have not been colored. Next, f3 expresses that all nodes
have the same color in the source and the target state. Finally, f4 expresses that
the nodes which are connected by the new edge have different colors. Now, we
take fconnectA := f1 ∧ f2 ∧ f3 ∧ f4, that is, a transition q −connectiA� q′ is allowed
if and only if the above four conditions hold.

Example 5. We consider the 3-colorability automaton with a maximum interface
size of 5. The size of the state encoding is 3+(2 ·5) = 13 bits. Consider the state
q depicted in Fig. 5 (on the left): we have five nodes in the current interface,
colored with color 1, 2, 3, 2 and 3, respectively. The bit string which encodes
this state is given in Fig. 5 on the right.

01

1

10

2

11

3

10

4

11

5 b1 b2 b3 c1 c2 c3 c4 c5
1 0 1 01 10 11 10 11

Fig. 5. State q and its representation as bit string

Suppose that the graph automaton is currently in state q, and that the next
letter is connect5A, where A is a label with arity 2. Since the last two nodes of the
interface are colored differently, none of the nodes connected by the A-edge have
the same color. Hence the transition q −connect5A� q is in the transition relation.
Suppose on the other hand that the graph automaton is in state q and the next
operation is connect5B, where the arity of B is 3. Since the third and fifth node
of q’s interface have the same color, no state can be reached from q.
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Apart from a graph automaton which accepts k-colorable graphs and one which
accepts graphs with a specific subgraph (see Ex. 1), we also implemented graph
automata for vertex cover and dominating set. A vertex cover of graph G is a
set C of nodes of G such that each edge is incident to at least one node of C. A
dominating set of a graph G is a set D of nodes of G such that each node of G
is either in D or adjacent to a node in D. The states of automata checking if the
input graph has a vertex cover of size k or if the input graph has a dominating
set of size k respectively need to encode the following pieces of information:

– Vertex cover: the interface size of the outer interface of the graph seen so
far, which nodes of the current interface are part of the vertex cover and the
size of the vertex cover (where nodes in the vertex cover are counted when
they are removed from the interface).

– Dominating set: the interface size of the outer interface of the graph seen so
far, which nodes of the current interface are part of the dominating set, which
nodes of the current interface are dominated by some node of the dominating
set and the size of the dominating set (where nodes in the dominating set
are counted when they are removed from the interface).

Note that we use bdds in a different way than other tools. In our case, the
alphabet is small and the state set is huge, and we use bdds to encode a transition
relation for each symbol. In other tools, such as Mona [17], the state set is
relatively small and the alphabet is huge. Thus Mona uses bdds not to encode
the transition relation for each symbol, but to encode the possible transitions of
each single state, that is for each state there is a bdd encoding all transitions
for each alphabet symbol starting at that specific state.

5.2 Checking Language Inclusion

In [7] we presented a technique for checking invariants based on the Myhill-
Nerode quasi-order. The main disadvantage of this approach is that the algo-
rithm for computing the Myhill-Nerode quasi-order applies only to determinis-
tic (graph) automata, whereas in general our graph automata are highly non-
deterministic. Determinization is not an option because it would lead to an
exponential blow-up of already huge automata. Therefore we had to settle for
an approximation.

To overcome this problem, here we use the antichain-based algorithm from
[21] to check for language inclusion, which can be used to check invariants via
Theorem 2. In the worst case this approach can still need exponential time, but
in practise one can often achieve very good runtimes.

An antichain is a set of elements which are uncomparable with respect to some
ordering. What the elements look like and what ordering is used depends on the
application; here we present an antichain-based algorithm to decide language
inclusion. In this subsection, we forget typing information of the states and
consider bounded automata as regular finite automata.

Let A = (QA, Σ, δA, IA, FA) and B = (QB, Σ, δB, IB, FB) be n-bounded graph
automata. Let FB = QB\FB, that is, the set of B’s non-accepting states. We want
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to decide whether L(A) ⊆ L(B). In particular, we are trying to falsify that claim

by finding a state q ∈ IA and a set of states S ⊆ IB such that δ̂A({q},σ)∩FA �= ∅
and δ̂B(S,σ) ⊆ FB, for some word σ.

Let U = QA×℘(QB). For (q1, S1) , (q2, S2) ∈ U , we define (q1, S1) ≤ (q2, S2) if
q1 = q2 and S1 ⊆ S2. Now, an antichain (for language inclusion) is a set K ⊆ U
such that for all p1, p2 ∈ K with p1 �= p2, it holds that neither p1 ≤ p2 nor
p2 ≤ p1. A pair p ∈ K is called maximal, if there is no p′ ∈ K such that p ≤ p′;
by .K/ we denote the set of maximal elements of K. Minimal elements and the
set 0K1 of minimal elements are defined symmetrically.

The algorithm searches through the automaton backwards. We define:

PreA,B(K) =
{
(q, S)

∣∣ ∃σ ∈ Σ : ∃(q′, S′) ∈ K : q′ ∈ δA(q, σ) ∧ δ̂B(S, σ) ⊆ S′
}

.

The function does the following: For each (q′, S′) ∈ K, we take the pairs (q, S)
such that, for some symbol σ, q is an σ-predecessor of q′ and S is the set of
states, from which a state in S′ is surely reached when reading σ.

Formally, the basic version of the algorithm, which returns true if and only if
L(A) �⊆ L(B), works as follows:

input: A = (QA, Σ, δA, IA, FA) and B = (QB, Σ, δB, IB, FB)
K ← FA × {FB}
repeat

K ′ ← K
K ← .K ∪ PreA,B(K)/

until K = K ′

return there exist q ∈ IA and S ⊇ IB such that (q, S) ∈ K

The line K ← .K ∪ Pre(K)/ adds new elements to the current antichain and
removes all but the maximal ones. At all times it holds that for all (q, S) ∈ K

there is a word σ such that δ̂A({q},σ) ∩ FA �= ∅ and δ̂B(S),σ) ⊆ FB.
The basic algorithm can be optimized in various ways. First, only new ele-

ments need to be processed in each step instead of all the elements in K. Second,
since the function is monotone, the algorithm can return true as soon as the
final condition is satisfied (meaning that L(A) �⊆ L(B)). For a correctness proof
of the algorithm, we refer to [21].

Note that in the implementation that we used in the tool, both the automata
and the pairs in the antichains are represented symbolically as bdds. We also
tested a forward search variant of the algorithm, but do not include it here due
to poor runtimes.

5.3 Results

In this section we present results for several case studies. All tests were performed
on a 64-bit Linux machine with a Xeon Dualcore 5150 processor and 8GB of
available main memory.

In the following, we briefly describe the several examples for which we have
computed results for different interface sizes using our tool suite. For each of
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Fig. 6. Forbidden subgraphs “Double Ac-
cess” and “Two Users”
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Fig. 7. Operation “Switch Write Access”
as transformation rule

these examples we used the backwards language inclusion algorithm to compute
our results.

3-Colorability and 4-Colorability. We checked C(3) ⊆ C(4) and C(4) �⊆ C(3) (in
the case of non-inclusion a counter example is generated).

Triangle subgraph and 2-Colorability with path extension. These are the invari-
ants from Ex. 3 and Ex. 4, respectively.

Multi-user file system. We validate the file system example from [7]. In this ex-
ample, a system state is modelled as a graph: users and files are nodes, access
permissions (either “read” or “write”) are labelled, directed edges. The system
behaviour (add new user, change access permissions, . . . ) is modelled as trans-
formation rules. The problem is to check whether the file system can reach at
least one of two forbidden states. These forbidden states are modelled as the sub-
graphs depicted in Fig. 6: “Double Access” models the situation where a user
obtains double write access to a system resource and “Two Users” models the
situation where two users both have write access to the same system resource.

To validate this system we perform a “backwards invariant check”: we swap
the left- and right-hand sides of the rules and check whether the language of
all graphs which contain certain “forbidden subgraphs” is an invariant of this
reversed system. The idea is that a forbidden state is reachable (in the original
system) only if the system already started in a forbidden state.

Because in [5] a simulation relation was used to approximate the Myhill-
Nerode quasi-order, validating the operation “Switch Write Access” (see Fig. 7),
which switches the write access of two users, was unsuccessful, although the
language is an invariant w.r.t. this operation. Now we succesfully verified it.

Dominating Set and Vertex Cover. We computed results for the inclusion of
the language NonIso ∩ D(k) of all graphs without isolated nodes which have a
dominating set of size at most k in the language V(k) of all graphs which have a
vertex cover of size at most k and the non-inclusion of the opposite direction.

In Table 1 the runtime results for the case studies are presented. We can han-
dle some non-trivial examples up to relatively large interface size (note that
in practical applications the width, and thus the interface size of graphs, is in
general relatively small). For example, the “triangle subgraph automaton” has
37 440 states in case of maximum interface 3 and 19 173 952 states in case of in-
terface size 6. From the first two and last two case studies, it is also apparent that
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Table 1. Case study runtimes (in seconds); to: timed out, om: out of memory, n.a.:
not applicable

Maximum Interface Size
Case study 3 4 5 6 7 8 9 10

C(3) ⊆ C(4) < 1 3 14 410 28 713 to – –
C(4) �⊆ C(3) n.a. 9 270 63 065 to – – –

Triangle subgraph 4 15 123 1 978 om – – –

C(2) and path extension 2 2 3 5 13 53 385 4 193

Multi-user file system n.a. 19 217 om – – – –

NonIso ∩D(2) ⊆ V(2) n.a. 432 26 337 to – – – –
V(2) �⊆ NonIso ∩D(2) n.a. 2 12 14 154 4 701 to –

the runtimes are better when the first automaton is small (the automaton for
C(3) and V(2), respectively). This is unsurprising, because the states of the first
automaton are explicitly represented (more formally, as a bdd representing a sin-
gleton set), whereas the (sets of) states of the second automaton are collectively
represented by a bdd.

6 Conclusion

We gave a concrete variant of graph automata accepting recognizable languages.
The languages such graph automata can accept contain cospans which have a
bounded width, which means that we can only accept graphs with a bounded
path width [6]. We applied the approach to automatically checking whether the
language of one automaton is included in the language of the other and whether
a language is an invariant of a graph transformation system. Case studies show
that we can handle non-trivial examples in a relatively short time. However,
it seems that the size of the generated automata and the running times grow
exponentially with the interface size of the automaton.

Note that our approach differs from the approach in Mona [17], another tool
based on recognizable languages. Mona is suitable when the alphabet is large
(since bdds are used to encode the alphabet), whereas in our case the state space
is huge.

Another related work [4] considers graph patterns consisting of negative and
positive components and shows that they are invariants via an exhaustive search.

For further research, we would like to try more algorithms; in particular we
want to implement the simulation-based algorithm of [1] in our tool to see if
better results can be obtained. Also, an algorithm that can translate formulas of
monadic second-order logic into automata would be helpful. Finally, it is ongoing
research to see whether graph automata can help in proving termination of graph
transformation systems, much like in the case of string rewrite systems [15].
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Abstract. Testing service-oriented or component-based systems poses new chal-
lenges due to the non-availability of code and the distributed nature of the appli-
cations being tested. Structural coverage criteria, traditionally used to assess test
suites, require access to code. As an alternative we consider model-based criteria
based on interface specifications using visual contracts.

Formally represented as graph transformation rules, visual contracts are anal-
ysed for potential dependencies and conflicts and dependency graphs are derived
for defining the criteria. In order to assess the coverage of a given set of tests, AGG
is used for simulating the model while tests are executed. In the course of the sim-
ulation, which also serves as a test oracle, conflicts and dependencies are observed
and recorded. This allows us to see if the statically detected potential dependen-
cies and conflicts are exercised at runtime. For evaluation purposes, we compare
coverage with respect to model-based criteria and traditional structural ones.

1 Introduction

To assess the quality of a test suite we traditionally rely on coverage criteria measuring
the proportion of features of a certain type (statement, branch, data or call dependency,
etc.) exercised by the tests [2]. Services or components hide their implementations, so
client-side testing is limited to information available from interface descriptions. Visual
contracts were proposed for interface specification of services in [13].

Their use for model-based testing [18,12] is supported by a formal interpretation as
graph transformation rules, which are executable and hence suitable for the generation
of test cases [12] and test oracles [17]. The diagram below shows the overall setup
for the latter, where a test driver implements calls to the system under test (SUT) and
the oracle provided by AGG. Results returned from model and SUT are compared to
determine success.

Independently of how test cases are generated or executed, we have to assess their ef-
fectiveness. Our approach to coverage combines static and dynamic analysis of models.

H. Ehrig et al.(Eds.): ICGT 2012, LNCS 7562, pp. 279–293, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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First, static analysis provides a dependency graph where coverage criteria can be de-
fined [14]. Second, while executing the tests, the model is simulated and coverage is
recorded and measured against the criteria. The original contribution of this paper is in
the formalisation of the criteria over dependency graphs and the dynamic detection of
conflicts and dependencies. That requires keeping track of occurrences and overlaps of
pre- and post-conditions, their enabling and disabling, in successive model states, and
interpreting these in terms of the static dependency graph.

Next, Sect. 2 introduces visual contracts and the case study. Sect. 3 describes our
coverage criteria based on dependency graphs obtained from (static) critical pair and
dependency analysis. Dynamic analysis of dependencies and conflicts is presented in
Sect. 4, while Sect. 5 evaluates, in particular, the relation to code-based coverage. Re-
lated work and conclusion are presented in Sect. 6 and 7, respectively.

(a) type graph

(b) visual contract addProject (c) visual contract getAllProjects

(d) visual contract updateProject (e) visual contract deleteProjById

Fig. 1. Interface specification consisting of data model (type graph (a)) and visual contracts (rules
(b), (c), (d) and (e))
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2 Visual Contracts

A visual contract [13] is a pair of object diagrams specifying the pre- and post-
conditions of an operation, formally a graph transformation rule with an operation sig-
nature as in Figure 1. The signature distinguishes input/output and output parameters.
The latter, designated by “out", are not intended to be instantiated as part of invocations,
in analogy to OO return types.

We use a case study of a Bug Tracker service derived from a desktop applica-
tion1 in C#. The application provides operations for adding, updating and deleting
projects, users, faults, and issues, distinguishing roles such as administrators, users, and
testers.

Example 1 (signatures of service operations). The service has more than 30 operations
overall. Signatures for a subset are shown below.

public Int32 addProject(String title, String description)
public String updateProject(Int32 pId, String new_t, String new_d)
public String deleteProjById(Int32 pId)
public List<ProjectInfo> getAllProjects()

In Figure 1(b), signature addProject(t: String, d: String, out Id: int) is associated with
the corresponding contract. Parameters t and d are used to provide title and description
of a new project. Output parameter Id represents the project id returned by the system.
The signature getAllProjects(out p: Set(int)) associated with the visual contract in Fig-
ure 1(c) has a multi object as output. The visual contracts are typed over the type graph
in Fig. 1(a) representing the interface data model. Fig. 2 provides a sample instance
graph representing the initial state.

Formally, such a model is represented by a typed attributed graph transformation
system with rule signatures, consisting of an attributed type graph, rule names with
parameter declarations, and for each such signature a set of rules, each representing a
different outcome of the operation [14].

Definition 1 (TAGTS with rule signatures). A typed attributed graph transformation
system with rule signatures is a tuple G = (ATG, P, X, π, σ) where

– ATG is an attributed type graph,
– P is a countable set of rule names,
– X is an S -indexed family (Xs)s∈S of sets of variables,

– π assigns each rule name p a finite set of rules π(p) of the form L
l←− K

r−→ R
over ATG and with local attribute variables in X,

– σ : P→ ({ε, out}×X)∗ assigns to each rule name p a list of formal input and output
parameters σ(p) = x̄ = (q1x1 : s1, . . . , qnxn : sn) were qi ∈ {ε, out} and xi ∈ Xsi for
1 ≤ i ≤ n. We write p’s rule signature p(x̄) and refer to the set of all rule signatures
as signature of G.

1 Available at http://btsys.sourceforge.net/

http://btsys.sourceforge.net/
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The signatures’ main purpose is to provide us with labels of transformations that rep-
resent invocations. Semantically, visual contracts are seen as potentially incomplete
specifications [15]. In general, both pre- and post-conditions can be under-specified.
For their use as oracles we allow under-specified pre-conditions, but insist on complete
specification of the operations’ effects. Otherwise the states of the model and the SUT
would get out of sync [17]. That means, the operational semantics can be described by
double-pushout transformations of attributed typed graphs [9]. We allow multiple con-
tracts per operation to represent alternative actions inside the same operation, chosen
by different input values and the system’s internal state. However, these visual contracts
are currently created manually.

3 Coverage Criteria Based on Visual Contracts

A dependency graph over visual contracts, which is the basis for defining coverage, cap-
tures the potential dependencies and conflicts of the underlying graph transformation
rules. We use an asymmetric version of dependencies and conflicts, captured abstractly
by directed relations ≺ and↗ over rules.

Definition 2 (asymmetric dependencies and conflicts). Given two rules p1, p2 we say

that p2 may disable p1 , written p1 ↗ p2, if there are steps G
p1,m1
=⇒ H1 and G

p2,m2
=⇒ H2

without k : L1 → D2 such that m1 = l∗2 ◦ k.
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We say that p1 may enable p2, written p1 ≺ p2, if there are steps G0
p1 ,m1
=⇒ G1

p2,m2
=⇒ G2

without j : L2 → D1 such that m2 = r∗1 ◦ j.
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Example 2 (dependencies and conflicts). The rules in Fig. 1 and the start graph in Fig. 2
allow the following sequences of rule applications.

addProject(“proj”, “desc”, 19); updateProject(19, “CMS”, “GeneralPurpose”).

updateProject(18, “MIS”, “version 1”); delProjById(18).
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Fig. 2. Start graph

The first sequence exhibits an asymmetric dependency addProject(“proj",“desc", 19)
≺ updateProject(19,“CMS", “General Purpose") between the first and the second step.
Similarly, there exists an asymmetric conflict updateProject(18,“MIS", “version 1")↗
delProjById(18) in the second sequence. Hence either updateProject(18,“MIS", “ver-
sion 1") must precede delProjById(18), or only the latter can occur in a sequence.

Definition 3 (dependency graph). A dependency graph DG = 〈G, P, op, lab〉 is a
structure where

– G = 〈V, E, src, tar〉 is a graph.
– P is a set of operation names
– op : V → P labels vertices by operation names
– lab : E → {c, r, d} × {≺,↗} × {c, r, d} is a labeling function distinguishing source

and target types create, read, delete and dependency types ≺,↗.

The labeling of edges by ≺ or↗ refers to the “may enable” and “may disable” relations
on rules, but the graphs also allow a distinction between different kinds of dependencies
or conflicts. These are summarized in Table 1, which also shows that not all combina-
tions are possible.

Table 1. Label combinations indicating conflicts and dependencies

Labels Conflict Dependency
cr × √
cd × √
rd

√ ×
dd

√ ×
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The construction of a dependency graph from a typed attributed graph transforma-
tion system is implemented as an extension of AGG’s critical pair and minimal depen-
dency analysis [1]. The dependency graph for the case study introduced in Sect. 2 is
presented in two diagrams, showing the ≺ and ↗ relations in Fig. 3(a) and Fig. 3(b),
respectively.

(a) Dependency graph for ≺ relation (b) Dependency graph for↗ relation

Fig. 3. Partial view of the dependency graph for ≺ (a) and↗ (b) relations

As basic coverage criteria we consider the combinations of labels shown in Table 1.
The labels cr in the first row mean that the first step creates an item, e.g., a graph
element or an attribute, which is read by the second step. Labels cd represent the fact
that the first step creates an item deleted by the second step. Labels rd and dd in the
third and forth rows denote an item read or deleted by the first step and deleted by
the second step. The first two rows mark dependencies, while the last two represent
conflicts. For a given dependency graph, a criterion therefore defines a set of edges
of that graph that are to be covered by dependencies or conflicts encountered when
executing transformation sequences. This is described in more detail in the following
section.

Example 3 (edge labels). Consider Figure 3(a) and rules addProject and getAllProjects.
The edge between them is labeled cr, because addProject creates a project node read by
getAllProjects. We use c to represent both the creation of a node as well as the update of
an attribute and d to represent the deletion of a node or the update of an attribute. This
is justified by the fact that attribute updates are realized by the deletion and creation of
edges between nodes and values.

Consider Figure 3(b) and rules deleteProjByID and updateProject. The loop labeled
dd on the deleteProjByID rule marks the fact that a project cannot be deleted twice. A
similar loop dd on the updateProject rule is a symmetric conflict where attributes are
updated.

A test case consists of a start graph and a sequence of invocations. An invocation is
a rule name instantiated with respect to input parameters. Output parameters are not
initialized until the execution reaches the point where their values are computed.
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4 Dynamic Analysis of Dependencies and Conflicts

As outlined in the introduction, we use AGG [1] as an oracle simulating the model
while the tests are executing. Monitoring the transformation sequences created, we can
detect conflicts and dependencies at runtime and therefore measure the coverage of the
dependency graph with respect to a given set of criteria. We consider dependencies and
conflicts separately.

Definition 4 (coverage of dependencies). A dependency edge p ≺ q is covered by a

transformation sequence G0
p1,m1
=⇒ G1

p2,m2
=⇒ · · · pn,mn

=⇒ Gn if there are i < j ≤ n such that
p = pi, q = p j and the residual comatch m j−1

i of pi into G j−1 overlaps with the match
m j of p j in accordance with the source and target types of the relation. That means,
there exist a node or edge x or an attribute a in m j−1

i (Li) ∩ m j(L j) ⊆ G j−1 such that

cr: x is created by pi and read by p j

cd: x is created by pi and deleted by p j

The residual comatch m j−1
i of pi into graph G j−1 is obtained by composing comatch m∗i

with the tracking morphism p∗j−1 ◦ . . . ◦ p∗i+1 between Gi and G j−1 as illustrated in the
diagram of Fig. 4.
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Fig. 4. Dependencies in a transformation sequence

This definition is implemented by Algorithm 1, whose input is a sequence of invoca-
tions s as generated by the test as well as the start graph of the grammar. For each step
in s we apply the corresponding rule schema or basic rule. AGG stores (co-)matches
as mappings into a pool of graph elements. If an element is deleted it is removed with
its details, leaving a hash value assigned upon creation of the element. We use these
hash values to represent matches and comatches and to calculate their difference and
intersection after each step to find out what was created, preserved, and deleted. We
detect dependencies of type cr and cd by maintaining a list of partial comatches into
all subsequent steps of the sequence, computing the overlaps between matches and
partial comatches. We process s one step at a time. We first investigate if the invocation



286 T.A. Khan, O. Runge, and R. Heckel

is related to a rule or a rule scheme, as the process to find and apply the match are
significantly different. Once we have collected the information about matches and co-
matches, we check for each rule if any of the subsequent rules have a dependency with
the considered rule. We do this using two nested loop such that we first process the
nodes and edges and then the effect on attribute values.

The output of the algorithm is stored in the dynamic dependency matrix and com-
pared to the static dependency matrix created by AGG when the model was first loaded.
Note that the host graph can change without requiring to recalculate the stored static
information, saving considerable execution time. The comparison of the two matrices
provides the coverage data.

Algorithm 1. Algorithm for marking dependencies

Input: s where size(s)>= 2
set host graph to start graph of GraphGrammar
for (i=0; i<size(s); i++) do

if Rule ri instanceo f RuleScheme then
apply Rule Scheme

else
apply Rule ri

end if
store hash values of involved graph elements in arrays matches and comatches

end for
for (i=0; i<size(s); i++) do

createdElements[i] = difference(matches[i], comatches[i])
deletedElements[i] = difference(comatches[i], matches[i])
preservedElements[i] = intersection(matches[i], comatches[i])

end for
for (i=size(s)-1; i>0; i- -) do

for (j=0; j<size(s); j++) do
if (intersection(createdElements[j], matches[i] <> φ)) then

mark dependency between Rule r[i] and r[j]
repeat the intersection calculation for attributes lists

end if
if (intersection(preservedElements[j], matches[i] <> φ)) then

mark dependency between Rule r[i] and r[j]
repeat the intersection calculation for attributes lists

end if
end for

end for

We make use of rule schemes to implement rules containing multi-objects, such
as getAllProjects as shown in Fig. 1(c). The concept of amalgamated transforma-
tions [6,11] is implemented in AGG [22]. An amalgamated transformation returns
the set of nodes corresponding to the multi-object on the right-hand side of the rule.
Rule schemes implement all-quantified operations on recurring graph patterns. The
kernel rule is a common subrule of a set of multi-rules. It is matched only once, while
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multi-rules are matched as often as suitable matches are found. In AGG an amalgamated
rule is constructed from all matches found for multi-rules that share the match of the
kernel rule.

Example 4 (Coverage of dependencies). Consider the dependency graph in Fig. 3(a)
and the following test sequences.

addProject(“p1”, “d”, 19); updateProject(19, “CMS”, “desc”); deleteProjById(19).

addProject(“p1”, “d”, 19); updateProject(6, “CMS”, “desc”); deleteProjById(18).

The first sequence exercises a direct cr dependency between steps addProject(. . . ) and
updateProject(. . . ) since the first produces a project and the second updates the project
created in the previous step. Steps addProject(. . . ) and deleteProjById(. . . ) have an in-
direct cd dependency since the project node created by the first operation is deleted
by the third. Observe that these dependencies rely on the matches of the steps as de-
termined by the parameters of the operations. The second sequence does not exercise
the dependency between addProject and updateProject because the update is done to
a previously existing project different from what was created by addProject(“p1",“d",
19). Similarly, steps addProject(“proj",“desc", 19) and deleteProjById(18) are unre-
lated since the latter deletes a different project than the one produced by the first.

The dynamic detection of conflicts is based on finding, for each graph in the sequence,
all matches for all rules and comparing them via the tracking morphisms. If, for a given

step G
p,m
=⇒ H, rule q has a match into graph G which is not present in H, this match is

disabled by p. In this case, we have observed a conflict q↗ p.

Definition 5 (coverage of conflicts). A conflict edge q ↗ p is covered by a transfor-

mation sequence G0
p1 ,m1
=⇒ G1

p2 ,m2
=⇒ · · · pn ,mn

=⇒ Gn if there exists a step Gi−1
pi ,mi
=⇒ Gi such

that p = pi and for any match m of q into Gi−1 there is no match m′ of q in Gi such that
p∗i ◦m = m′.

The source and target labels of the edge are determined according to one of the
following cases, for a node or edge x or an attribute a in mi(Li) ∩m(L) ⊆ G j−1.

rd: x is read by q and deleted by pi
dd: x is deleted by both q and pi

The implementation is presented in Algorithm 2 with the same input as before and
executing the same sequence of steps on invocation. At each step we find and store
all matches for all rules in the grammar, computing the difference between the sets
of matches into graph i and graph i + 1 to find out those that were disabled by that
step. Each disabled match represents an asymmetric conflict, which is recorded in the
dynamic conflict matrix. Like for dependencies, this is compared to the result of the
static analysis to calculate the coverage.

Example 5 (Coverage of conflicts). Consider the following two test sequences.

addProject(“p1”, “d1”, 19); updateProject(19, “CMS”, “desc”); deleteProjById(19).

addProject(“p1”, “d1”, 19); deleteProjById(19).
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Algorithm 2. Algorithm for marking conflicts

Input: s where size(s)>= 2
set host graph to start graph of GraphGrammar
for (i=0; i<size(s); i++) do

if Rule ri instanceo f RuleScheme then
apply Rule scheme

else
apply Rule ri

end if
store the hash value of graph elements in an array
for all (Rule r in GraphGrammar) do

find all possible matches and store in an array
end for

end for
for (i=0; i<size(s)-1; i++) do

select all the matches found for ith row
select all the matches found for (i + 1)th row
for j=0; j<size(row);j++ do

analyze matches details to mark conflict between rule[i] and rule[j]
end for

end for

The rd conflict between updateProject(. . . ) and deleteProjById(. . . ) in the first se-
quence means that these operations are not executable in the reverse order. Step
deleteProjById(. . . ) has a dd conflict with itself, meaning that it can only occur once
in a sequence. The second sequence results from choosing deleteProjById(. . . ) before,
and instead of, updateProject(. . . ) in the rd conflict.

5 Evaluation

In this section, we evaluate the relation of our model-based approach with traditional
code-based coverage criteria. Let us repeat that, since the code is not available for ser-
vices or components, the tester would not have access to code-based coverage data.
Therefore, using model-based criteria instead, we are interested in finding out how good
a substitute they may be. We also evaluate the scalability of our approach in terms of
the size of the specifications, the length of a test case, and number of test cases that can
be executed in a given period of time. Finally, we discuss some threats to the validity of
the evaluation as well as limitations of our approach.

We evaluate coverage with respect to model-based coverage criteria in relation to
code-based coverage. Using our own AGG-based tool to measure coverage with respect
to the selected criteria on the model, we determine code-based coverage with respect to
the most common criteria using the NCover tool.2 In particular, we consider symbol and
branch coverage. The first is essentially a more fine-grained version of statement cov-
erage, including elements in expressions. The second requires that, for each condition

2 See http://www.ncover.com/

http://www.ncover.com/
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Table 2. Evaluation results

SUT
S/N Criteria # of test average length Symbol Branch

cases of test case Coverage Coverage
1. cd 10 3 49.19% 45.07%
2. cr 8 5 52.10% 56.34%
3. cr + cd 10 7 83.50% 87.32%
4. cr + cd 14 9 91.91% 92.96%
+rd + dd

of a branch (such as in an if, while, do while, etc.) both positive and negative outcome
should be tested.

Results are reported in Table 2, where each row represents a selection of basic or
combined model-based coverage criteria. We report the number of test cases necessary
to achieve this coverage, the average length of these test cases, and the corresponding
code-based coverage achieved with respect to the two criteria. Model-based coverage
is based on the dependency graphs in Fig. 3(a) and 3(b). Given a test suite derived
manually, the numbers of test cases reported are based on minimal subsets of test cases
that are able to achieve the required coverage.

For example, considering coverage criterion cd we require eight test cases of aver-
age length 3 achieving 49.19% symbol and 45.07% branch coverage. For criterion cr
the values are slightly higher, while combing the two coverage jumps above 80%. Ob-
viously, some of the nodes are required by both criteria, such as addProject which is
involved in both cr and cd edges.

The forth row represents the results for complete coverage of dependencies and con-
flicts in the dependency graph, but fails to provide complete coverage with respect to
code-based criteria. Further analysis reveals that the remaining 8 − 9% correspond to
code that is not executable as part of the normal behaviour. This includes exception
handling code triggered by technical errors outside the specification, e.g., a failure to
connect to the data base, or glue code added by the IDE. An example is shown in Fig-
ure 5 where the code fragment in the rectangle is triggered by a technical failure. Since
the approach is concerned with testing against functional specifications, technical ex-
ception handling is out of scope and the failure to cover it based on functional testing is
not surprising.

We have evaluated the scalability of our approach by considering the size of the
specifications in terms of the number of rules and the size of the start graph as well as
the length of the test sequence. Our case study has 31 rules with the start graph having
12 projects, 9 users, and 1 bug, plus priority and issue objects. We compute the static
information, i.e., critical-pairs and minimal dependencies, only once using AGG’s API
and store them locally for repeated use. The time taken for this calculation is 783.53
seconds, while loading the stored data for subsequent use takes 1.72 seconds. This is
acceptable given that the effort is only incurred once, but we have to be aware that
the runtime is quadratic in the number of rules and exponential in the size of the rules
themselves. That means, large numbers of complex operations will continue to pose
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Fig. 5. Unreachable code example

challenges. On the other hand, service interfaces should be high-level, and split up if
they become too large.

We also conducted experiments with different lengths of test sequences. We pro-
duced a routine to automatically provide inputs for test sequence repeating only two
rules, i.e., for adding and deleting a project repeatedly. That means, the size of the
graph remains stable. The time taken for executing test sequences of lengths 25, 50 and
100 was 4.579, 12.844 and 65.189 seconds, respectively, while the system crashed with
an out of memory exception for a sequence of 106 steps. The problem here is the main-
tenance of partial matches for all earlier rules into later graphs of the sequence, which
incurs a cost quadratic in the length of the sequence in terms of the memory used. It
should be noted that in practice, most test sequences will be short (e.g., [5] states that
the majority of faults are revealed by test sequences of size 2), but the size of the longest
possible sequence is still a limiting factor.

Executing 14 test sequences of average length 9, as required but the 4th combination
of criteria in Table 2, takes about 15 seconds. The effort is in fact linear in the number
of test cases, so there is no significant barrier to executing large test suites.

The validity of the evaluation is limited by several factors. First, the implementation
of the case study, if non-trivial, is relatively small, although the interface (and model)
are of reasonable size. The sequences for evaluating scalability in terms of the length
of test cases are clearly artificial, but based on our knowledge of the implementation
we can say that the actions of the rules in the sequence are marginal for the effort,
which is caused by maintaining and comparing matches into a large number of graphs.
The start graph of 25 nodes used for the evaluation is probably realistic for tests with
specifically created data, but tests using real data will require much larger graphs. These
may represent not only a challenge to scalability, but also call for automation of the
generation of start graphs from initial test data.

6 Related Work

We follow other approaches to coverage in creating an abstract representation of de-
pendencies in the system based on specifications [2,4]. In our case, this takes the form
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of a graph representing data dependencies over visual contracts, rather than that of a
finite state machine or control-flow diagram. Dependency graphs for software testing
are considered in [21] capturing direct and indirect data dependencies [24]. Approaches
to model-based testing using data dependencies are also known for object-oriented sys-
tems [8,7]. Our graphs are limited to direct data dependencies.

There are several approaches to testing web services based on dataflow graphs ex-
tracted from semantic information [3,23,16]. The approach discussed in [3] is aimed at
testing service composition using BPEL specifications. BPEL is also considered in [16],
where dependency analysis is carried out over variables acquired from WSDL interface
description to extract paths through the graph of the BPEL specification. Criteria for
data flow testing, originally established in [10], are applied by [19] to the functional
testing of services using BPEL and WSDL. The authors of [20] have made use of call-
based dependence graphs for coverage in object-oriented systems. They incorporate
both control and data dependence. In our approach, the combination of data and control
flow analysis could be interesting when considering service specifications complement-
ing visual contracts with orchestrations. However, our handling of data dependencies is
more advanced than what can be extracted from operation signatures in WSDL.

Visual contracts have been used in [18] not only for testing individual operations but
also for operation sequences. The work proposes a mapping between visual contracts
and JML assertions that can be considered as providing an oracle. Visual contracts are
also used in [12] for formalizing pre- and post-conditions of use cases to be used as
test models for the generation of logical test cases. This work provides the basis for
establishing a relation between UML specifications and visual contracts and proposes a
test suites generation mechanism for required and provided interfaces. The generation
of test cases is not our concern in this paper, so work on generating test cases from
visual contracts can be considered complementary.

7 Conclusion

We have proposed an approach to model-based coverage based on a two-step process
combing static and dynamic analysis. Statically, we use AGG’s critical pair and minimal
dependency analysis to create a dependency graph over rules representing visual con-
tracts. These graphs, which distinguish different types of dependencies and conflicts,
are the basis for coverage criteria. The evaluation of a set of tests based on the criteria
is performed dynamically while executing the model as an oracle.

The approach requires further evaluation in particular in terms of scalability to longer
sequences. It is clear that improvements are possible by reducing the number of matches
kept and compared, using information from the static analysis which provides a conser-
vative approximation of the real dependencies and conflicts. We also plan to consider
negative application conditions to strengthen the visual contracts specification. This will
create additional types of dependency, such as create-forbid, where one rule creates part
of the structure preventing the application of another, resulting in new coverage criteria.
We also plan to investigate how we can construct test case directly from the dependency
graph.

Another line of investigation is to evaluate the approach with developers in order
to assess the benefit of a model-based approach, where oracle and test coverage are
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provided, against a more informal documentation of the service interface where no
such help is given. Seeding faults in the service implementation, this would allow us to
assess the added value of the model-based approach. The major cost factor is of course
the creation and maintenance of the models. If and when these costs are outweighed
by the benefits can only be evaluated in a more realistic industrial setting. However,
scenarios where specifications are created once and used repeatedly, e.g., as part of
standards, are likely to provide good tradeoffs.
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Abstract. This paper gives a truly concurrent semantics with sharing of
resources for the K semantic framework, an executable (term-)rewriting-
based formalism for defining programming languages and calculi. Akin
to graph rewriting rules, the K (rewrite) rules explicitly state what can
be concurrently shared with other rules. The desired true concurrency is
obtained by translating the K rules into a novel instance of term-graph
rewriting with explicit sharing, and then using classical concurrency re-
sults from the double-pushout (DPO) approach to graph rewriting. The
resulting parallel term-rewriting relation is proved sound, complete, and
serializable with respect to the jungle rewriting flavor of term-graph
rewriting, and, therefore, also to term rewriting.

1 Introduction

There are several reasons for defining a truly concurrent semantics for a given
model of computation. One reason is that specification languages based on truly
concurrent models are more informative; e.g., testing sequences defining partial
orderings may carry the same information as an exponentially larger number
of interleaving traces. Another reason is that in truly concurrent models the
existing fine parallelism of the application is fully specified. It is left to the im-
plementer to take advantage of it by allocating concurrent events to different
processors, or to partition events into coarser classes performed by a few con-
current processes. Finally, truly concurrent semantics carries extra information,
being usually straightforward to recover interleaving semantics from it [17].

The K semantic framework [20] is a programming language definitional frame-
work based on rewriting which attempts to bring together the strengths of ex-
isting frameworks (e.g., the chemical abstract machine (CHAM) [3], evaluation
contexts [22], or continuations [8]) while avoiding their weaknesses. The K frame-
work relies on computations, configurations, and K rules in giving semantics to
programming language constructs. So far, K has been successfully used for defin-
ing several real-life programming languages like C [7] and Scheme [14].

Currently, computations and configurations are described as algebraic terms
over a first-order signature, and the semantics of K definitions is given through
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〈〈set(2, 9) ···〉thrd 〈set(3, 0) ···〉thrd
〈··· 2 �→ 5 ··· 3 �→ 1 ···〉mem

〉
≡2

〈 〈5 ···〉thrd 〈1 ···〉thrd
〈··· 2 �→ 9 ··· 3 �→ 0 ···〉mem

〉
(a)

〈〈set(3 , 0) ···〉thrd 〈set(3 , 2) ···〉thrd
〈··· 3 �→ 1 ···〉mem

〉
≡2

〈〈1 ···〉thrd 〈set(3 , 2) ···〉thrd
〈··· 3 �→ 0 ···〉mem

〉
≡2

〈〈1 ···〉thrd 〈0 ···〉thrd
〈··· 3 �→ 2 ···〉mem

〉
≡2

〈〈set(3 , 0) ···〉thrd 〈1 ···〉thrd
〈··· 3 �→ 2 ···〉mem

〉
≡2

〈〈2 ···〉thrd 〈1 ···〉thrd
〈··· 3 �→ 0 ···〉mem

〉 (b)

Fig. 1. Synchronous access of memory in a multithreaded environment:
(a) concurrent writes, and (b) interleaving dataraces

their translation in rewriting logic [15] theories. Structuring execution configura-
tions as terms is quite convenient, as first order signatures are quite intuitive, and
there is plenty of tool support for reasoning about first-order terms. Moreover,
rewriting logic is generally appealing for defining truly concurrent systems, since
rewrite rules can independently match and apply anywhere, unconstrained by the
context [15]. However, although rewriting logic has proved successful in defining
sequential programming languages as well as actor-like languages [16], it enforces
that “the same object cannot be shared by two simultaneous rewrites” [16], i.e.,
rule instances are not allowed to overlap. Although there are good reasons for
this choice, such as sufficing to capture concurrent synchronization like that of
Petri Nets, this limitation enforces an interleaving semantics in situations where
one may not want it, especially when describing systems which allow sharing of
resources.

Consider a running configuration of a program where two threads are both
ready to set the value of different memory locations, as in the left-hand side
(lhs) of Fig. 1(a). Assume the (single-threaded) semantics of the memory update
construct set is to update the value in the memory and return the old value, like
〈set(X ,V ′) ···〉thrd〈··· X �→ V ···〉mem −→ 〈V ···〉thrd〈··· X �→ V ′ ···〉mem. Then two in-
stances of this rule (i.e., two threads attempting to concurrently update distinct
memory locations) should be allowed to advance concurrently in one transition
step as in Fig. 1(a). In fact, two instances of such memory access rules should be
forced to interleave only if trying to concurrently access the same location, one
of the accesses being a set, as exemplified in Fig. 1(b).

However, using the rewriting logic semantics associated to the rule above, the
concurrent rewriting transition from Fig. 1(a) would need to be interleaved, too.
The reason is that the two instances of the rule overlap on the mem cell and
on the algebraic constructs representing the cell composition operators. Never-
theless, it is worthwhile noting that the operators on which the rule instances
overlap are only mentioned as context needed for the transition to apply, play-
ing the same “gluing” role that interface graphs play in the DPO approach to
graph transformations [4].
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The special rewrite rules employed by the K framework, from here on named
K rules, make this sharing of context explicit: rewrite rules are extended to
allow specifying which parts of the matching pattern are effectively changed by
a rule, allowing the rest to be shared with other rules. For example, the K rule
corresponding to the set rewrite rule presented above is:

〈set(X ,V ′)
V

···〉thrd 〈··· X �→ V
V ′
···〉mem

The intuition for the above rule is that, while the entire pattern of the top needs
to be matched for the rule to apply, only the underlined set instruction and the
value in the memory are actually changed by the rule, being replaced with the
corresponding values below the line. This furthermore implies that the thrd and
mem containers, along with the ellipses (specifying potential additional content),
are only needed to specify the context in which the local transformations would
apply, and thus can be shared with other concurrent instances of K rules.

The process of rewriting terms using K rules and following the intuition above
will be called K (term-)rewriting.

Contributions. This paper gives semantics to K rewriting through the help of
graph rewriting, adapting existing representations of terms and rules as graph
and graph rewrite rules to maximize their potential for concurrent application.
The main result, Theorem 4, shows that K rewriting is sound and complete
w.r.t. standard term rewriting, and that the concurrent application of K rules
is serializable. Soundness means that applying one K rule can be simulated by
applying its corresponding direct representation as a rewrite rule. Complete-
ness means the converse, i.e., that one application of a term rewriting rule can
be simulated by applying the corresponding K rule directly. Finally, the seri-
alization result ensures that applying multiple K rules in parallel can be sim-
ulated by applying them one by one, obtaining an interleaving semantics for
K rewriting through standard rewriting, which is one of the desirable goals for
all truly concurrent models of computation [17]. Interestingly, a novel and un-
expected acyclicity condition (presented in Section 5) was required to ensure
serializability.

The remainder of the article is organized as follows. Section 2 provides back-
ground and related work. Section 3 formally defines K rules and relates them
to term-rewrite rules. Section 4 formalizes the encoding of terms as graphs used
by K graph rewriting. Section 5 presents the encoding of K rules as graph-
rewriting rules, defines K graph rewriting as a term-graph rewriting formalism,
and shows it admits parallel derivations which are serializable. Finally, Section 6
reflects K graph rewriting upon term rewriting proving soundness, completeness,
and serialization of parallel derivations w.r.t. term-rewriting, and Section 7 con-
cludes. Proofs for all claimed results are available in the companion technical
report [21].
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2 Background and Related Work

We briefly recall here some basic notions from the theory of term rewriting [1],
graph grammars and graph transformations—the double-pushout (DPO)
approach—[4], as well as jungle (term-graph) rewriting [9], and relate them to
the approach presented in this paper.

Rewriting logic [15] provided the first inference system for concurrent term
rewriting allowing sideways and nested parallelism for rule applications.

A signature Σ is a pair (S, F ) where S is a set of sorts and F is a set of
operations f : w → s, where f is an operation symbol, w ∈ S∗ is its arity, and
s ∈ S is its result sort. If w is the empty word ε then f is called a constant.
TΣ is the universe of (ground) terms over Σ and TΣ(X ) is that of Σ-terms
with variables from the S-sorted set X . Given term t ∈ TΣ(X ), let vars(t) be
the variables from X appearing in t. Given an ordered set of variables, W =
{�1, . . . ,�n}, named context variables, or holes, a W -context over Σ(X ) (assume
that X ∩W = ∅) is a term C ∈ TΣ(X ∪W ) in which each variable in W occurs
once. The instantiation of a W -context C with an n-tuple t = (t1, . . . , tn), written
C[t] or C[t1, . . . , tn], is the term C[t1/�1, . . . , tn/�n]. One can regard t as a
substitution t : W → TΣ(X ), defined by t(�i) = ti, in which case C[t] = t(C).

A (term) rewrite rule ρ over signature Σ with variables from X is a tuple
ρ : (∀X )l −→ r, where l and r are terms in TΣ(X ). If variables are clear from
the context, the quantification can be omitted. A set of such rewrite rules is
called a term rewrite system (TRS).

Running Example. Our running example consists of a four-rule rewrite system,
where h is a ternary operation, g is binary, f is unary, 0, 1, a, b are constants,
and x, y are variables:

(1) h(x, y, 1) −→ h(g(x, x), y, 0)
(2) h(x, 0, y) −→ h(x, 1, y)

(3) a −→ b
(4) f(x) −→ x

together with the term h(f(a), 0, 1) to be rewritten.

We say that a rule ρ : (∀X )l −→ r matches a Σ-term t at the position given by
�-context C, if there exist a substitution σ : TΣ(X )→ TΣ such that t = C[σ(l)].
If that is the case, we can apply ρ on t to obtain Σ-term t′ = C[σ(r)]; we

say that t rewrites to t′, written t
ρ,C
==⇒ t′. For example, h(f(a), 0, 1)

(4),h(�,0,1)
=======⇒

h(a, 0, 1)
(3),h(�,0,1)
=======⇒ h(b, 0, 1)

(2),�
===⇒ h(b, 1, 1)

(1),�
===⇒ h(g(b, b), 1, 0).

Rewriting logic allows for a high degree of parallelism. For example, one can
apply either rules (1), (3), and (4), or rules (2), (3), and (4) concurrently on
the term h(f(a), 0, 1), to obtain either h(g(b, b), 0, 0) or h(b, 1, 1), respectively.
However, executing both rules (1) and (2) in parallel (which would amount to
achieving concurrency with sharing of resources) is impossible within rewriting
logic because rule instances are not allowed to overlap [16].

K rewriting can be viewed as orthogonal to rewriting logic, as one could
envision using K rules to augment its concurrency.
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Graph Rewriting. exhibited parallelism with sharing of resources since its
formalization as an algebraic theory [6,5]. However, despite several theoreti-
cal approaches to defining concurrent programming languages [18,12,2], graph
rewriting found more use in giving semantics to modeling languages.

K uses the idea of interfaces from graph-rewriting to “borrow” the potential
for concurrency with sharing of resources from graph rewriting to term rewriting.
The definitions and results presented here are used in Sections 4 and 5 to give
semantics to K graph rewriting.

Assuming fixed sets LV and LE for node and for edge labels, respectively, a
graph G over labels (LV ,LE) is a tuple G = 〈V, E, source, target, lv, le〉, where
V is the set of vertices (or nodes), E is a set of edges, source, target : E → V are
the source and the target functions, and lv : V → LV and le : E → LE are the
node and the edge labeling functions, respectively.

A graph morphism f : G → G′ is a pair f = 〈fV : VG → VG′ , fE : EG → EG′〉
of functions preserving sources, targets, and labels. Let Graph(LV,LE) denote
the category of graphs over labels (LV ,LE). Given graph G, let ≺G⊆ V × V
be its path relation: v1 ≺G v2 iff there is a path from v1 to v2 in G. G is cyclic
iff there is some v ∈ VG s.t. v ≺G v. Given v ∈ VG, let G�v be the subgraph
of G (forwardly) reachable from v.

A graph rewrite rule p : (L
l←− K

r−→ R), is a pair of graph morphisms l : K → L
and r : K → R, where l is injective. The graphs L, K, and R are called the left-
hand-side (lhs), the interface, and the right-hand-side (rhs) of p, respectively.

L K R

G C H

l r

l∗ r∗
m m∗m

Given a graph G, a graph rule p : (L
l←− K

r−→
R), and a match m : L → G, a direct derivation
from G to H using p (based on m) exists iff the di-
agram to the right can be constructed, where both
squares are pushouts in the category of graphs. In
this case, C is called the context graph, and we

write G
p,m
==⇒ H or G

p
=⇒ H . Whenever l or r is

an inclusion, the corresponding l∗ or r∗ can be
chosen to also be an inclusion. If it exists, H is
unique up to graph isomorphism.

A direct derivation G
p,m
==⇒ H exists iff the following gluing conditions hold [4]:

(Dangling condition) no edge in EG\mE(EL) is incident to any node in mV (VL\
lV (VK)); and (Identification condition) there are no x, y ∈ VL ∪ EL with x �= y,
m(x) = m(y) and x, y �∈ l(VK ∪ EK). The gluing conditions say that whenever
a transformation deletes a node, it should also delete all its edges (dangling
condition), and that a match is only allowed to identify elements coming from
K (identification condition).

Given a family of graph-rewrite rules pi : (Li
li←− Ki

ri−→ Ri), i = 1, n, not nec-

essarily distinct, their composed graph-rewrite rule p1+ · · ·+pn is a rule p : (L
l←−

K
r−→ R) where L, K, and R are the direct sums of the corresponding components

from (pi)i=1,n and, similarly, l and r are the canonical morphisms induced by
(li)i=1,n and (ri)i=1,n, respectively. Given a graph G, matches (mi : Li → G)i=1,n
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induce a combined match m : L → G defined as the (unique) arrow amalgamat-
ing all individual matches. Matches (mi : Li → G)i=1,n have the parallel inde-
pendence property iff for all 1 ≤ i < j < n, mi(Li)∩mj(Lj) ⊆ mi(Ki)∩mj(Kj).
The following result, which we will use in our subsequent development, is proved
in [10, Theorem 7.3], recasting previous results from [5,13]:

Theorem 1 (Existence and serializability of parallel derivations). If
(mi : Li → G)i=1,n have the parallel independence property and each mi satisfies
the gluing conditions for rule pi, then the combined match m satisfies the gluing
conditions for the composed rule p1 + · · · + pn, and thus there exists a graph

H such that G
p1+···+pn,m
========⇒ H. Moreover, this derivation is serializable, i.e.,

G
p1+···+pn−1,m

′
==========⇒ Hn−1

pn
=⇒ H, where m′ is the composition of (mi)i=1,n−1.

Term Graph Rewriting [19] was conceived as an embedding of term rewriting
into graph rewriting, having the benefit of using terms and regular rewrite rules
as a front end, while using graphs and graph transformations as implementation
means. Nevertheless, although subterm sharing allowed by graph rewriting in-
creases the efficiency of the rewriting process, the existing embeddings do not
take advantage of the additional potential for concurrency available through
graph rewriting. The semantics for K graph rewriting (Sections 4 and 5) is
given by extending the term graph rewriting formalism known as Jungle evalu-
ation [9,11,19] (described below) to allow sharing of resources.

s

h

s int int

f 0 1

s

a

Jungle evaluation uses (directed) hypergraphs to encode
terms and rules. Hypergraphs generalize graphs by allowing
edges to have multiple (or zero) sources and targets; more pre-
cisely, the source and target mappings now yield words over
nodes instead of just a node (words, rather than sets, to main-
tain an order among nodes). A jungle represents a term as
an acyclic hypergraph whose nodes are labeled by sort names,
and whose edges are labeled by names of operations in the
signature; the figure on the right depicts the jungle represen-
tation of term h(f(a), 0, 1). Constants are edges without any
target. Variables are represented as nodes that are not sources
of any edge. Non-linear terms are represented by identifying
the nodes corresponding to the same variable.

Let VARG denote the variables of G; we have that VARG = {v ∈ VG |
outdegreeG(v) = 0}. The term represented by some node v in a jungle G,
termG(v), is obtained by descending along hyperedges and collecting the hy-
peredge labels:

termG(v) =

{
v if v ∈ VARG

le(e)(term∗G(target(e)) otherwise,
where {e} = source−1(v).

A root of a jungle is a node v such that indegree (v) = 0. Let ROOTG denote the
set of roots of G. Given a term t (with variables), a variable-collapsed tree repre-
senting t is a jungle G with a single root rootG which is obtained from the tree
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representing t by identifying all nodes corresponding to the same variable, that
is, termG(rootG) = t, and for all v ∈ V , indegree (v) > 1 implies that v ∈ VARG.

A term rewrite rule left → right is encoded as a jungle evaluation rule
L ←↩ K

r−→ R in the following way: L is a variable-collapsed tree correspond-
ing to left ; K is obtained from L by removing the hyperedge corresponding to
the top operation of left ; if right is a variable (i.e., the rule is collapsing, then
R is obtained from K by identifying rootL with right ; otherwise, R is the dis-
joint union of K and a variable collapsing tree R′ corresponding to right , where
rootR′ is identified with rootL and each variable of R′ is identified with its coun-

terpart from VARL; L
l←↩ K and K

r−→ R are inclusions with the exception
that r maps rootL to right if right is a variable. Rules (3) and (4) in Fig. 2
exemplify this encoding.

Among the many interesting results relating term rewriting with jungle eval-
uation, we will build our results on the one presented below [11,19]:

Theorem 2 (Soundness and completeness w.r.t. term rewriting). Let p
be an evaluation rule for a rewrite rule ρ, and let G be a jungle.

Soundness. If G
p
=⇒ H, then for each v ∈ VG termG(v)

ρ∗
=⇒ termH(r∗(v))

Completeness. If ρ is left-linear and termG(v)
ρ
=⇒ t′ for some v ∈ VG, then

there exists jungle H such that G
p
=⇒ H.

In the sequel, we will use the bipartite graph representation of jungles. In this
representation, sort nodes and operation edges of the hypergraph both become
graph nodes, belonging to the sorts or the operations partitions of the graph
nodes, respectively. Graph edges are added to link them similarly to how they
were linked in the hypergraph. To maintain the order given by the target word,
corresponding edges are labeled with their position in that word. For exam-
ple, the bipartite graph representation of the jungle representing h(f(a), 0, 1)
is graph G in Fig. 2.

3 K Rules

K rules describe how a term can be transformed into another term by altering
some of its parts. They share the idea of match-and-replace of standard term
rewriting, but each K rule also specifies which part of the pattern is read-only.
For example, the K system below presents a possible encoding as K rules of the
rewrite rules from our running example in Section 2:

(1) h( x
g(x, x)

, y, 1
0
) (2) h(x, 0

1
, y) (3) a → b (4) f(x)→ x

These read-only patterns (obtained by replacing the underlined subterms with
holes) are akin to the interfaces in graph rewriting [4], being used to glue to-
gether read-write patterns (underlined subterms and their replacements), that
is, subparts to be rewritten. Moreover, through their variables, the read-only
patters also provide information which can be used and shared by the read-
write patterns. Formally,
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Definition 1. A K rule ρ : (∀X ) k[ L ⇒ R ] over a signature Σ = (S, F ) is a
tuple (X , k, L,R), where:

– X is an S-sorted set, called the variables of the rule ρ;
– k is aW-context over Σ(X ), called the rule pattern, whereW are the holes

of k; k can be thought of as the “read-only” part of ρ;
– L,R : W → TΣ(X ) associate to each hole in W its original and replace-

ment term; L, R can be thought of as the “read/write” part of ρ.

We may write (∀X ) k[ l1
r1

, . . . , ln
rn

] instead of (∀X ) k[ L ⇒ R ] whenever W =

{�1, · · · ,�n} and L(�i) = li and R(�i) = ri; this way, the holes are implicit
and need not be mentioned.

A set of K rules is called a K system.

The variables in W are only used to identify the positions in k where rewrit-
ing takes place; in practice we typically use the compact notation above, that
is, underline the to-be-rewritten subterms in place and write their replacement
underneath. When the set of variables X is clear, it can be omitted.

Given a K rule ρ : (∀X ) k[ L ⇒ R ], its associated 0-sharing K rule is
ρ0 : (∀X ) �[ L(k)

R(k)
], which is a K rule specifying the same transformation but

without sharing anything. It is relatively easy to see that one can associate to
any K rule ρ as above a regular rewrite rule K2R(ρ) = (∀X )L(k) −→ R(k).
This is to account for the fact that, when applied in a non-concurrent fashion,
K rules must obey the standard rewriting semantics.

Conversely, given a rewrite rule ρ : (∀X )l −→ r, let R2K (ρ) denote the 0-
sharing K rule for which K2R(R2K (ρ)) = ρ, that is (∀X ) �[ l

r
]. For this reason,

we take the liberty to denote a 0-sharing K rule ρ : (∀X ) �[ l
r
] by l −→ r.

In the remainder of this paper we will formalizeK (term) rewriting, i.e., rewrit-
ing using K rules, through an embedding into graph rewriting theory, called K
graph rewriting. The reasons for our choice are: (1) the intuition that the pattern
k of a K rule is meant to be “shared” with competing concurrent rule instances is
conceptually captured by the notion of interface graphs of graph rewrite rules in
the double-pushout (DPO) algebraic approach to graph rewriting [4]; (2) (term)
graph rewriting [9,19] was shown to be sound and complete for term rewriting,
which we want to preserve for K; and (3) the results in the DPO theory of
graph rewriting show that if graph rule instances only overlap on the interface
graphs, then they can be concurrently applied and the obtained rewrite step is
serializable [10], which is also the desirable semantics for K.

4 K Term-Graphs

K graph rewriting uses the same mechanisms and intuitions of jungle rewriting,
but adapts the jungle term-graphs and graph-rewrite rules to increase the potential
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for concurrency, both with sharing and without sharing of context. Therefore,
K term-graphs are close to the bipartite graph representation of jungles (they
actually coincide for ground terms). The difference is that the K term-graph rep-
resentation allows certain variables (the anonymous and the pattern-hole vari-
ables) to be omitted from the graph. By reducing the number of nodes that need
to be shared (i.e., by not forcing these variable nodes to be shared in the inter-
face graph), this “partiality” allows terms at those positions to be concurrently
rewritten by other rules.
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≡≡≡≡≡≡≡≡≡≡≡≡≡� h(g(b, b), 1, 0)

Fig. 2. Graph representations for the K rules (1)–(4) from the running example and
their concurrent application



A Truly Concurrent Semantics for the K Framework 303

The top-half of Fig. 2 shows the K term-graphs involved in the graph represen-
tations of the K rules (1)–(4) of our running example. For example, the represen-
tation of variable x can be observed as the (singleton) graph R for rule (4), the
constants a and b as graphs L and R from rule (3), and the term f(x) as graph
L in rule (4); all these K term-graphs are also graph jungles [9]. The bottom-half
of Fig. 2 shows the K term-graphs involved in the graph transformation which
uses all four rules combined to rewrite the graph representation of h(f(a), 0, 1)
(graph G) to one that can be used to retrieve h(g(b, b), 1, 0) (graph H).

The novel aspect of our representation is that, unlike the graph jungles, the K
term-graphs are partial: they do not require each operation node to have outward
edges for all sorts in its arity. This partiality plays a key role in “abstracting
away” the anonymous variables and the holes of the pattern. For example, the
number of outward edges specified for the nodes labeled with h have all possible
values between 3 (its normal arity) in graphs G and H , to 0, e.g., in graph K
for rule (1). This flexibility is crucial for enhancing concurrency; only through
it rules (1) and (2) can apply in parallel, as it allows the outward edge of h
labeled with 1 to be rewritten by rule (1), while h is still shared with rule (2).
This is achieved by relaxing the properties of the graph representation of jungles
to allow partially specified operations.

Definition 2. Given a signature Σ = (S, F ), a K Σ-term-graph is a graph G
over labels (S ∪ F, {ε} ∪ Nat) satisfying:

0. G is bipartite, partitions given by nodes with labels in S—sort nodes—, and
F—operation nodes—;

1. every operation node labeled by f : s1 · · · sn → s is
(i) the target of exactly one edge, labeled with 0 and having its source

labeled with s, and
(ii) the source of at most n edges having distinct labels in {1, · · · , n}, such

that lv(target(e)) = sle(e) for each such edge e;
2. every sort node has at most one outward edge; and
3. G is acyclic.

Let KGraphΣ denote the full subcategory of Graph(S∪F, {ε}∪Nat ) having K
Σ-term-graphs as objects.

As any graph jungle is a K term-graph, most of the definitions given for graph
jungles in Section 2 can be easily extended for term-graphs. For simplicity K
term-graphs will be referred to as just term-graphs.

Given a set of anonymous variables A ⊆ X , an A-anonymizing variable-
collapsed tree representation of a term t �∈ A with variables from X is obtained
from a variable-collapsed tree representing t by removing the variable nodes
corresponding to variables in A and their adjacent edges.

Let G be a term-graph over Σ = (S, F ). VARG is the set variables of G,
that is, sort-nodes of G such that outdegree (v) = 0. Note that this definition
only captures the non-anonymous variables. To capture all variables, we need to
additionally identify partially specified operation nodes.
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The set OPENG of open (or incomplete) operation nodes of G, consists of
the operation nodes whose outward edges are incompletely specified. Formally,
OPENG = {v ∈ lv−1(S) | |s−1(v)| < arity(lv(v))}. The set of term variables of
G, TVARSG consists of the variables of G and the positions of the unspecified
outward edges for open operation nodes (which stand for anonymous variables).
Formally, TVARSG = VARG ∪ {xv,i | v ∈ OPENG, 1 ≤ i ≤ arity(lv(v)) ∧
i �∈ le(source−1(v))}.

The term represented by some sort node v in a term-graph G, termG(v), is
obtained by descending along operation nodes and collecting their labels:

termG(vs) =

⎧⎨⎩
vs, if vs ∈ VARG

σ(t1, . . . , tn), if {ve} = target(source−1(vs)), le(ve) = σ : s1 . . . sn → s,
and ti = subtermG(ve, i), 1 ≤ i ≤ n

where subtermG is defined on pairs of operation nodes with integers by

subtermG(ve, i) =

{
xve,i, if xve,i ∈ TVARSG

termG(target(e)), if source(e) = ve and le(e) = i

5 K Graph Rewriting

As we want K graph rewriting to be a conservative extension of graph jungle
evaluation, every 0-sharing K rule (∀X ) �[ left

right
] is encoded as the graph jungle

evaluation rule corresponding to the rewrite rule left → right—see, for example
the encodings of rules (3) and (4) in Fig. 2. However, if the rule pattern k is non-
empty, then the rule is encoded so that the variable-collapsed tree representing
k would not be modified by the rule. To be more precise, instead of obtaining K
by removing the outgoing edge from the root of L, we will instead only remove
the edges connecting the hole variables to their parent operations. Moreover, to
further increase concurrency, the variables which appear in the read only pattern
k but not in the left substitution are anonymized. However, departing from the
definition of jungle rules, we relax the requirement that the order between the
nodes of K and variables of R should be the same as in L, to allow rules such
as reading or writing the value of a variable from a store.

Consider the representation of the K rule (1) in Fig. 2, namely h( x
g(x, x)

, y, 1
0
).

The left-hand-side is represented as a {y}-anonymized variable collapsed tree rep-
resenting h(x, y, 1); variable y is anonymized as only appearing in the pattern k.
The interface K is obtained from L by severing (through the removal of edges
labeled by 1 and 3) the part of L representing the read-only pattern h(�1, y,�2)
(which is the {y,�1,�2}-anonymized variable collapsed tree representing
h(�1, y,�2)) from the parts of L representing the left substitution (namely, x and
1). Thus, the l morphism from K to L is clearly an inclusion. R is obtained by tak-
ing the disjoint union between K and the variable-collapsed trees corresponding
to terms g(x, x) and 0 given by the right substitution, identifying the variables,
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and “gluing” them to the part representing the read-only pattern through edges
from operation node h labeled 1 and 3, respectively. Like l, the r morphism can
also be chosen to be an inclusion.

The graph rules in Fig. 2 are obtained using the definition below. To avoid
clutter, we do not depict node or edge names (except for variables). Also, the
actual morphisms are not drawn (they are either inclusions or obvious collaps-
ing morphisms).

Definition 3. Let ρ :(∀X ) k[ L ⇒ R ] be a K rule.
If ρ is 0-sharing, then the K graph rewrite rule representing ρ coincide with

the jungle evaluation rule corresponding to the rewrite rule associated to ρ.
Otherwise, a K graph rewrite rule representing ρ is a graph rewrite rule

(Lρ
lρ←− Kρ

rρ−→ Rρ) such that:

Lρ is an A-anonymized variable collapsed tree representation of L(k), where
A = vars(k) \ vars(L) are the anonymous variables of ρ;

Kρ Let K0 be the subgraph of Lρ which is a A-anonymized variable collapsed tree
representing k; then Kρ = (VKρ , EKρ) is given by VKρ = VLρ and EKρ =
ELρ \ {e ∈ ELρ | source(e) ∈ VK0 and target(e) �∈ VK0}. lρ is the inclusion
morphism.

Rρ Let R0 be an A-anonymized variable collapsed tree representation of R(k)
containing K0 as a subgraph. Then Rρ is obtained as the pushout between
the inclusions of K0 ∪ VARR0 into Kρ and R0, respectively.

The nodes from K0 will be called pattern nodes.

Note that the edges removed from Lρ to obtain Kρ are those whose target
corresponds to the hole variables of k.

Similarly to the graph jungle rules, the (basic) K graph rules defined above
ensure that the gluing conditions are satisfied for any matching morphism. For

the remainder of this section, let us fix G to be a term-graph, ρi : (Li
li←− Ki

ri−→
Ri), i = 1, n to be K graph-rewrite rules, and mi : Li → G to be parallel

independent matches. Let ρ : (L
l←− K

r−→ R) be the composed rule of (ρi)i=1,n,
and let m : L → G be the composition of the individual matches. It follows that
m satisfies the gluing conditions for ρ, and thus (ρ, m) can be applied as a graph
transformation. Let us now provide a concrete construction for the derivation of
(ρ, m) in Graph which is used in proving the subsequent results.

The pushout complement object of m and l can be defined in Graph as
C = G\m(L\K) where the difference is taken component-wise. That C is a graph
is ensured by the gluing conditions. The standard construction of the pushout
object H is to factor the disjoint union of C and R through the equivalence
induced by the pushout morphism m : K → C and r. We do this directly,
by taking preference for elements in C, and thus choosing representatives from
m(K) and by choosing as representatives variables for the equivalence classes
induced by the parts of r belonging to collapsing rules.
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Suppose G is a K graph representation of term t, i.e., that ROOTG = {rootG},
G = G �rootG , and termG(rootG) = t. When applying a (composed, or not)
K graph rewrite rule to graph G, rootG must be preserved in the context C,
because K contains all nodes of L. Therefore, let us define the top of the obtained
graph H as being rootH = r∗(rootG). Note that rootH might not be equal to
rootG, because rootG could be identified with a variable node by a collapsing
rule; moreover, rootH might not be the only element of ROOTH , because of
the potential “junk” left by the application of the rule. Nevertheless, the term
termH(rootH) would be the one to which termG(rootG) was rewritten.

To show thatKGraphΣ admits similar constructions for (composed)K graph-
rewrite rules as Graph, that is, that the graphs described above are in fact
term-graphs, we need to strengthen the constraints on the matching morphisms.

Indeed, without further constraints, applying K graph rules on term-graphs
can produce cyclic graphs. Consider K rules f(g(a

x
), x) and f(y, h(b

y
)) together

with the term to rewrite f(g(a), h(b)). Upon formalizing terms as term-graphs
and K rules as K graph rewrite rules, the result of applying the composed K
graph rewrite rule on the graph representing f(g(a), h(b)) is the graph H in
Fig. 3, which has a cycle and thus it is not a term-graph.

L K R L K R

s

f

s
1

g

x:s
2

s
1

a

s

f

x:s
2

s
1

g

s

a

s

f

x:s
2

s
1

g

s

a

1

s

f

s
2

h

y:s
1

s
1

b

s

f

y:s
1

s
2

h

s

b

s

f

y:s
1

s
2

h

s

b

1

l r l r

(1): f(g(a

x

), x) (2): f(y, h(b

y

))

G C H

s

f

s

1

g

s

2

h

s
1

a

s
1

b

s

f

m(y):s

1

g

m(x):s

2

h

s

b

s

a

s

f

s

1

g

s

2

h

s

b

s

a

1
1

l∗ r∗
f(g(a), h(b))

(1)+(2)
====⇒ infinite term f(g(h(g(h(. . .)))), h(g(h(g(. . .))))

Fig. 3. Parallel K graph rewriting can introduce cycles
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The reason for the cycle being introduced is that the matches overlap, allowing
variable nodes to precede operation nodes in the path order of G, while r reorders
the mapping of the variables to create a cycle. In jungle rewriting this issue is
prevented by imposing a statically checkable condition on the rules, namely that
the path relation between the nodes preserved from L should not be changed

by R. Formally, we say that a rule ρ : (L
l←− K

r−→ R) is cycle-free if whenever
v ≺R x with v ∈ VK and x ∈ VARL ∩ VK , it must be that v ≺L x. This
condition is sufficient to prevent the introduction of cycles; however, we find it
rather strong in our programming language context—in particular, this condition
would disallow rules like the one for reading the value of a variable from the
store. We propose below a more relaxed sufficient condition (on the matching
morphism m) for avoiding the introduction of cycles.

Given a (composed) term-graph rewrite rule ρ : (L
l←− K

r−→ R), r induces on K
a (partial) replacement order ≺r= r−1(≺R), i.e., v1 ≺r v2 in K iff r(v1) ≺R r(v2)
(there is a path from r(v1) to r(v2) in R). Moreover, given match m of p into G,
m induces on K a (partial) matching order ≺m= l−1(m−1(≺G)), i.e., v1 ≺r v2 in
K iff m(v1) ≺G m(v1) (l is an inclusion). Although both these (partial) orders
are strict, their combination is not guaranteed to remain strict. We say that
the match m is cycle-free w.r.t. p if the transitive closure of ≺m ∪ ≺r is also
a strict (partial) order.

Proposition 1. If any matching morphism for a K graph rewriting rule ρ is
cycle-free, then ρ is a jungle graph rewriting rule. If ρ is a K graph rule, G is a

term-graph, G
(ρ,m)
===⇒ H, and m is cycle-free w.r.t. ρ, then H is acyclic.

The following result guarantees that if the original graph is a tree, then cycle-
freeness of the matching morphism characterizes acyclicity of the resulting graph.

Proposition 2. Let G be a tree term-graph. If ρ is a simple K graph rule and
m is a match for ρ into G, then m is cycle-free. If ρ is a composed K graph rule

and G
(ρ,m)
===⇒ H, then H is acyclic iff m is cycle-free w.r.t. ρ.

Next result uses Theorem 1 to prove a similar result for the restricted cate-
gory of K term graphs. Namely, it shows that, under cycle-freeness conditions,
KGraphΣ is closed under (parallel) derivations using K graph rewrite rules.

Theorem 3. Let G, (ρi)i=1,n, (mi)i=1,n, ρ, m, C, and H be defined as above.
If m is cycle-free w.r.t. p, then:

(Parallel) Derivation: G
ρ,m

======⇒
KGraphΣ

H;

Serialization: There exist (Gi)i=0,n such that G0 = G, Gn = H, and

Gi−1
ρi

======⇒
KGraphΣ

Gi for each 1 ≤ i ≤ n.

6 K Term Rewriting

This section formally defines K rewriting on terms and shows that K rewriting
is a conservative extension of the standard term rewriting relation.
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Theorem 3 allows us to define K rewriting as follows:

Definition 4. Let t be a Σ-term and ρ1, · · · , ρn be K rules (not necessarily dis-

tinct). Then t
ρ1+···+ρn

≡≡≡≡≡≡≡≡2 t′ iff there is a term-graph H s.t. G
K2G(ρ1)+···+K2G(ρn)
===============⇒

KGraphΣ

H and termH(rootH) = t′, where G is the tree term-graph representing t. We

say that t ≡2 t′ iff there is a (composed) K rule ρ s.t. t
ρ
≡2 t′.

We can give a straightforward definition for what it means for a K rule to match
a term: one K rule ρ : (∀X ) k[ L ⇒ R ] matches a term t at the position given
by the �-context C, yielding substitution σ, iff its corresponding rewrite rule
K2R(ρ) : (∀X)L(k) → R(k) matches t at the position given by C, yielding σ,
that is, iff t = C[σ(L(k))]. This conforms to the intuition that, when applied
sequentially, K rules behave exactly as their corresponding rewrite rules.
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Fig. 4. Subterm sharing might lead to unsound K graph rewriting

However, it turns out that, although preserving the term-graph structure (un-
der cycle-freeness assumptions), K rewriting on graphs might not be sound w.r.t.
term rewriting in the presence of subterm sharing. Consider the example in
Fig. 4. We want to apply rule f(h(a

b
), x), corresponding to the regular rewrite

rule f(h(a), x) → f(h(b), x), to the term f(h(a), h(a)). If we would represent
f(h(a), h(a)) as a tree, then the K graph rewriting step would be sound, leading
to a graph depicting f(h(b), h(a)); however, if we decide to collapse the tree rep-
resenting h(a) then we obtain f(h(b), h(b)), as depicted in Fig. 4 which cannot
be obtained through regular rewriting. The reason for this unsound rewriting
is that part of the read-only pattern of the rule is shared. To overcome this,
we will restrict the read-only pattern of the rule to only match against a tree
in the graph to be rewritten. We say that a match m : L → G of a K graph

rewrite rule ρ : (L
l←− K

r−→ R) is safe if m(K �rootL) is a tree in G, that is, if
indegreeG(mV (v)) = 1 for any v ∈ VK�rootL \ {rootL}. Note that, if G is a tree
then all matching morphisms on G are safe.
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Proposition 3. Let ρ be a proper K rewrite rule, let ρ0 be its associated 0-
sharing K rewrite rule, and let m be a cycle-free safe matching morphism for

K2G(ρ) in G. Let H be such that G
K2G(ρ),m
======⇒
KGraphΣ

H, and let H ′ be such that

G
K2G(ρ0),m
=======⇒
KGraphΣ

H ′. Then for any v ∈ ROOTG, termH(v) = termH(v).

Since, as previously mentioned, the K graph representation of a term t without
anonymous variables is precisely the bipartite graph representation of the jungle
representing the same term, and since the K term-graph representation of a 0-
sharing K rewrite rule is the graph representation of the jungle rule representing
the rewrite rule associated to it, we can use the soundness and completeness of
jungle rewriting (Theorem 2) to prove the sequential soundness and completeness
of K graph rewriting w.r.t. standard term rewriting, and, by combining that with
Theorem 3, to prove the serializability result for K rewriting.

Theorem 4. Let ρ, ρ1, . . . , ρn be K rules. Then:

Completeness. If t
K2R(ρ)
====⇒ t′ then t

ρ
≡2 t′.

Soundness. If t
ρ
≡2 t′ then t

K2R(ρ)∗
=====⇒ t′.

Serializability. If t
ρ1+···+ρn

≡≡≡≡≡≡≡≡2 t′, then there exists a sequence of terms t0, · · · , tn,

such that t0 = t, tn = t′, and ti−1
ρ∗i
≡2 ti.

Therefore, K rewriting is sound and complete for term rewriting, while providing
a higher degree of concurrency in one step than existing approaches.

7 Conclusion

This paper presents a truly concurrent semantics with sharing of resources for
the K framework, a term-rewriting-based semantic framework specialized for
defining programming languages and calculi. The distinguishing aspect of the K
rewrite rules is that they explicitly state what portions of the term can be concur-
rently shared with other rules. This sharing information allows one to increase
the potential for concurrent rewriting, but it may also lead to inconsistencies
if not used properly. We showed that, under reasonable conditions, K rewriting
is actually sound, complete, and serializable w.r.t. term rewriting. Moreover, al-
though being motivated by the K framework, K rewriting is not confined to it;
it rather is an extension of rewriting which allows additional concurrency for
any rewriting-based formalism.

Future work. Although we have found a sufficient condition for sound and se-
rializable concurrent executions, this condition is rather semantical, and might
be non-trivial to check. However, all of the rule combinations in our current
definitions of programming languages seem to generate cycle-free executions.
An interesting research problem would be to find generic enough syntactic con-
ditions which would guarantee that cycle-freeness is satisfied for all possible
combinations of matches.
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Abstract. In the recent years, extensions of graph transformation sys-
tems with quantitative properties, such as real-time and stochastic be-
havior received considerable attention. In this paper, we describe the new
quantitative modeling approach of probabilistic graph transformation sys-
tems (PGTSs) which incorporate probabilistic behavior into graph trans-
formation systems. Among other applications, PGTSs permit to model
randomized protocols in distributed and mobile systems, and systems
with on-demand probabilistic failures, such as message losses in unreli-
able communication media. We define the semantics of PGTSs in terms
of Markov decision processes and employ probabilistic model checking for
the quantitative analysis of finite-state PGTS models. We present tool
support using Henshin and Prism for the modeling and analysis and
discuss a probabilistic broadcast case study for wireless sensor networks.

1 Introduction

Graph transformation systems (GTSs) provide a natural and expressive formal-
ism for modeling dynamic distributed and mobile systems. In the recent past,
extensions of graph transformation systems with quantitative properties such
as real-time [1,2] and stochastic behavior [3] have been developed to increase
their expressiveness further. However, many protocols used in distributed sys-
tems also employ randomization in the form of discrete probabilistic behavior to
ensure liveness properties or to optimize quality of service properties without in-
troducing a centralized authority. Probabilistic behavior is also a key ingredient
for describing on-demand random failures, such as message losses in unreliable
communication media. However, such discrete probabilistic decisions are not sup-
ported by any of the existing quantitative graph transformation based modeling
approaches. Furthermore, since the employed models are always abstractions of
the real systems, they inevitably contain nondeterminism for which no proba-
bilistic assumption can be made. Consequently, a modeling approach is required
that also permits to combine probabilistic and nondeterministic behavior.

As a case study for probabilistic and nondeterministic behavior in distributed
systems, we consider a probabilistic broadcast protocol for wireless sensor net-
works (WSNs) described and formally analyzed in [4]. WSNs are decentralized
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and spatially distributed networks that do not rely on an existing infrastruc-
ture, such as routers or access points. To acquire or distribute information in
such networks, often a simple form of a flooding protocol is employed, where
flooding means that a node that receives a message forwards it to all its neigh-
bors by a broadcast. However, the nodes in a WSN typically have to work with
very limited resources such that unnecessary communications should be kept at
a minimum in order to save energy. So-called gossiping protocols use randomiza-
tion in order to reduce this overhead. In a gossiping protocol, every node decides
with a certain probability whether to forward a received message or not, which
reduces the communication costs. While the local decision whether to forward a
received message or not requires probabilistic behavior, the asynchronous nature
of the message delivery in such a network requires nondeterministic behavior.

In this paper, we introduce probabilistic graph transformation systems
(PGTSs) which permit to describe both probabilistic and nondeterministic phe-
nomena, and develop methods for their quantitative analysis. Transformation
rules in PGTSs can have multiple right-hand sides, each of them annotated with
a probability. The choice for an applicable rule and a particular match is nonde-
terministic, whereas the effect of a rule is probabilistic. We define the semantics
of PGTSs in terms of Markov decision processes (MDPs) and employ probabilis-
tic model checking for the quantitative analysis of finite-state PGTS models. We
present tool support for the modeling and analysis of PGTSs using the Hen-
shin [5] graph transformation tool and the probabilistic model checker Prism [6].
We discuss some of the advantages of PGTSs over component-based modeling
approaches using the WSN case study presented in [4]. Briefly, PGTSs provide
a better modeling scalability as the complexity of the model does not grow with
the complexity of the topology. Also, models in the graph transformation-based
approach can be more easily adjusted to reflect topology or protocol changes.

Organization Section 2 and 3 recall the formal foundations, specifically typed
graph transformation systems, Markov decision processes and the probabilistic
logic PCTL. We use the case study to illustrate their particular capabilities. In
Section 4 we introduce probabilistic graph transformation systems as a modeling
language and define their semantics. In Section 5, we present a probabilistic
model of our case study and compare it to existing models. In Section 6 we
present our tool support and discuss the obtained analysis results for the case
study. Section 7 contains related work and Section 8 conclusions and future work.

2 Typed Graph Transformation

We follow the double pushout (DPO) approach for typed graph transforma-
tion [7,8], which builds on category theory. Note that our probabilistic extensions
could be also applied to the single pushout (SPO) approach.

Definition 1 (Typed graphs and graph morphisms).

– A graph G = 〈V, E, s, t〉 consists of a set of nodes V , a set of edges E and
source and target functions s, t : E → V .
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– A graph morphism f : G1 → G2 is a pair of functions f = 〈fV , fE〉 with
fV : V1 → V2, fE : E1 → E2, such that fV ◦ s1 = s2 ◦ fE, fV ◦ t1 = t2 ◦ fE.

– Let T be a graph, called a type graph. A typed graph 〈G, τ〉 consists of a
graph G and a graph morphism τ : G → T .

– For two typed graphs 〈Gi, τi〉 with i ∈ {1, 2} over the same type graph, a
typed graph morphism is a graph morphism f : G1 → G2 with τ2 = f ◦ τ1.

Definition 2 (Rule). A rule p = 〈L �←− K
r−→ R〉 is a span of injective typed

graph morphisms. The graph L is called the left-hand side (LHS), and R the
right-hand side (RHS) of p.

Definition 3 (Transformation). Given a rule p = 〈L �←− K
r−→ R〉, a typed

graph M , and a typed graph morphism m : L → G, called a match. A transfor-

mation M
p,m
=⇒ N is defined by the double pushout diagram in Fig. 1.

L

m

��
(PO)

K
��� r ��

��
(PO)

R

��
M C�� �� N

Fig. 1. DPO diagram

Operationally, the graph M is transformed by (1) re-
moving the occurrence of L\�(K) in M , yielding the
graph C, and (2) adding a copy of R\r(K) to C. A rule
is applicable w.r.t. a given match, if the so-called glu-
ing condition is satisfied. Informally, all dangling edges
must be explicitly removed by the rule and all non-
injectively matched nodes and edges must be consis-
tently removed or preserved by the rule.

Negative Application Conditions. To increase the expressiveness of rules, several
extensions of the basic format in Definition 2 are available. For instance, negative
application conditions (NACs) provide a means to restrict the applicability of
rules. Formally, a NAC is a pair 〈N, c〉 with N a typed graph and c : L → N a
typed graph morphism from the rule’s LHS into N . The applicability of the rule
is restricted to those matches which cannot be extended to any of its NACs.

Nested Rules and Amalgamation. Nested rules provide a concept to extend a
match of a basic rule to an unbounded number of substructures and to perform
modifications to all these structures in an atomic step. Formally, a nested rule is
modeled by a possibly nested embedding of one rule into another. The applica-
tion of a nested rule can be carried out by constructing an amalgamated rule and
applying it as a normal transformation as in Definition 3. For a comprehensive
discussion of the formal foundations of parallel rule applications we refer to [9].
Regarding tooling, we use nested rules as supported by the approaches in [10,5].
For the examples in this paper, we require only nested rules of depth 1.

As our case study, we model the variant of the gossiping protocol with nonde-
terministic execution order and message collisions as presented in [4] using graph
transformation. The type graph for this example is depicted in Fig. 2. Wireless
sensors are modeled as nodes and network topologies using edges between such
nodes. We usually assume bidirectional connections which we formally model
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Fig. 2. Type graph
Fig. 3. Initial graph
for a simple topology

Fig. 4. Atomic pro-
position received (x)

using two edges in opposite directions. Additionally, every node can hold refer-
ences to an unbounded number of messages. To identify nodes and to model their
status, we use an attribute id of the finite type ID = {1, . . . , n} and a Boolean
attribute active. Note that we did not formally introduce attributes. However,
attributes over finite data domains can be easily encoded in graphs.

The behavior of the gossiping protocol is modeled using three rules. Fig. 5
depicts the rule send1 which models the situation where a node decides to broad-
cast its message to all its neighbor nodes. We depict only the LHS and the RHS
and indicate the partial mapping between them using indices. A node becomes
inactive if it correctly received a message. The broadcasting is possible only as
long as the sender is active and has exactly one message (ensured using a NAC).
If a node has more than one message, a collision occurred. Informally, if multiple
neighbors send messages to the same node, it can happen that the communica-
tion is disturbed and that the node receives only noise. We use a nested rule to
model the synchronous broadcast to all neighbors, i.e., every connected node re-
ceives a copy of the original message. Fig. 6 depicts the rule send2 which models
that the node decides not to broadcast the message to its neighbors. The node
can become inactive only if it correctly received the message (ensured using a
NAC). Fig. 7 depicts the rule reset which allows a node to reset itself by deleting
all its messages in the case of a collision. A simple network topology consisting
of only three nodes describing a possible initial graph is depicted in Fig. 3.

This model of the gossiping protocol contains only nondeterministic behavior.
During the execution, multiple nodes in the network may be able to send a
message at the same time. In our model, the choice for a particular sending order
is nondeterministic, which allows us to capture unknown details of the network,
such as the internal behavior of the nodes and the network characteristics, e.g.,
varying signal strengths. Note also that the nondeterministic modeling enables
us to reason about the range of possible behaviors, particularly about worst-
case and best-case execution orders. However, in the used approach also the fact
whether a node forwards a message or not has to be modeled as nondeterministic,
even though this decision should be probabilistic according to the gossiping
protocol. In particular, it is not possible to quantitatively specify the likelihood
of the message forwarding. Similarly, it is also not possible to specify probabilities
for message losses due to communication in unreliable media.
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Fig. 5. Rule send1 Fig. 6. Rule send2

Fig. 7. Rule reset

Fig. 8 depicts the state space for the example with the initial configuration in
Fig. 3 as a labeled transition system (LTS) in which states correspond to graphs
and transitions to rule applications. For a formal definition of the derived state
spaces see [11,3]. Note that both the asynchronous execution order and the local
decision whether a message is forwarded is nondeterministic in this model.

To later reason about the derived state spaces, we use a specification format
for graph-based atomic propositions and define a derived state labeling function.

In the following, we use the notation G
p

=⇒ to denote that there exists a graph

G′ and a match m such that G
p,m
=⇒ G′.

Definition 4 (Atomic propositions and labeling functions). An atomic
proposition is a non-modifying rule (with identical LHS and RHS). Let AP be
a set of atomic propositions and Q a set of typed graphs. The labeling function
LAP
Q : Q → 2AP is defined as: LAP

Q (G) = { a ∈ AP | G
a

=⇒ } for all G ∈ Q.
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Fig. 8. Labeled transition system Fig. 9. Markov decision process

Thus, a graph G satisfies an atomic proposition in form of a non-modifying rule if
it is applicable to G. For our example, we define the parameterized atomic propo-
sition received(x ) depicted in Fig. 4, where only the LHS of the non-modifying
rule is shown. The parameter x ranges over the set of node IDs. Intuitively,
a state satisfies received(x ) if the node x successfully received a message and
became inactive. As an example, we marked the (only) state where received (x)
holds for all x ∈ {1, 2, 3} by a filled circle in the state space depicted in Fig. 8.

3 Markov Decision Processes and Probabilistic Logic

Markov decision processes (MDPs) are a discrete-time model for systems ex-
hibiting both probabilistic and nondeterministic behavior.

Definition 5 (Discrete probability distribution). For a denumerable set Q,
we denote with Dist(Q) the set of discrete probability distributions over Q, i.e.,
the set of all functions μ : Q → [0, 1] with

∑
q∈Q μ(q) = 1.

Definition 6 (Markov decision process). A Markov decision process (MDP)
M = (Q, qinit , Steps) consists of a denumerable set of states Q, an initial state
qinit ∈ Q and a probabilistic transition function Steps : Q → 2Dist(Q).

Note that Steps assigns a set of probability distributions to states in order to
incorporate nondeterministic choice. Fig. 9 depicts the required MDP for the
WSN example. In contrast to the LTS in Fig. 8, the local decision whether a
particular node forwards a message or not, i.e., whether send1 or send2 is applied
for a given match, is probabilistic in this model. The intuition is that the two
basic rules send1 and send2 are combined into one probabilistic rule send which
yields different results according to a given probability distribution. Specifically,
the message is forwarded with a probability of p, and not forwarded with a
probability of (1 − p). However, the decision which of the enabled probability
distributions is chosen remains nondeterministic. Thus, in contrast to the LTS,
the MDP allows us to describe both the nondeterministic execution order of the
message sending and the probabilistic decision whether to forward a message.
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Formally, the operational semantics of an MDP can be understood as follows.

A probabilistic transition, written as q
μ−→ q′, is made from a state q ∈ Q by:

1. nondeterministically selecting a distribution μ ∈ Steps(q), and
2. making a probabilistic choice of target state q′ according to μ.

A path of an MDP is a non-empty finite or infinite sequence of probabilistic
transitions:

ω = q0
μ0−→ q1

μ1−→ q2
μ2−→ . . .

where for all i ∈ N it holds that qi ∈ Q, μi ∈ Steps(qi), and μi(qi+1) > 0.
We denote with ω(i) the ith state of ω, and with last(ω) the last state of ω
if it is finite. An adversary is a particular resolution of the nondeterminism in
an MDP. Formally, an adversary A for M is a function mapping every finite
path ω of M to a distribution μ ∈ Steps(last(ω)). The set of all adversaries
of M is denoted by AdvM. For any q ∈ Q and adversary A ∈ AdvM, we let
PathsAfin(q) and PathsA(q) be the sets of all finite and infinite paths starting in
q that correspond to A, respectively. Under a given adversary, the behavior of
an MDP is purely probabilistic. Formally, an adversary for an MDP induces a
probability measure ProbAq over the set of paths PathsA(q) (cf. [13] for details).

For the specification of properties of probabilistic systems, the Probabilis-
tic Computation Tree Logic (PCTL) [14] can be used. PCTL is a branching-
temporal logic based on CTL in which the existential and universal path quan-
tifiers are replaced by a probabilistic operator which can be used to specify that
the probability for a path formula meets a given lower or upper bound. For-
mally, the syntax of PCTL is defined as follows. A state formula over a set AP
of atomic propositions is formed using the following grammar:

Φ ::= true | a | ¬ Φ | Φ1 ∧ Φ2 | P∼λ(φ)

where a ∈ AP , φ is a path formula, ∼ ∈ {<,≤,≥, >} and λ ∈ [0, 1]. A path
formula is formed using the following grammar:

φ ::= © Φ | Φ1 U Φ2 | Φ1 U≤n Φ2

where Φ, Φ1, Φ2 are state formulas and n ∈ N. The temporal operators© and U
are the next- and until-operators from CTL. Φ1 U≤n Φ2 is a step-bounded variant
of the until-operator, which states that Φ2 holds within at most n steps, while Φ1

holds in all states visited before a Φ2-state was reached. The eventually-operator
♦ can be derived by setting ♦ Φ = true U Φ and analogously for a step-bounded
variant of it. For example, using the graph-based atomic proposition in Fig. 4,
the property ‘with a probability of 0.95 or higher, node 2 correctly receives a
message within 5 execution steps’ can be formalized as P≥0.95(♦≤5received(2)).

The semantics for PCTL is defined using a satisfaction relation. Given a la-
beling function L : Q → 2AP associating atomic propositions to states, the
satisfaction relation for state formulas is defined as:

q |= true
q |= a ⇔ a ∈ L(q)
q |= ¬ Φ ⇔ q �|= Φ

q |= Φ1 ∧ Φ2 ⇔ q |= Φ1 and q |= Φ2

q |= P≥λ(φ) ⇔ pmin
q (φ) ≥ λ

q |= P≤λ(φ) ⇔ pmax
q (φ) ≤ λ
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where pmin
q (φ) and pmax

q (φ) are the minimum and the maximum probabilities for
the set of paths starting in q and fullfiling φ, formally:

pmin
q (φ) = inf

A∈AdvM
pAq (φ) and pmax

q (φ) = sup
A∈AdvM

pAq (φ)

where for a given adversary A and a start state q, the probability for φ is:

pAq (φ) = ProbAq {ω ∈ Paths(q) | ω |= φ}

The satisfaction relation for path formulas is defined as follows:

ω |=© Φ ⇔ ω(1) |= Φ
ω |= Φ1 U Φ2 ⇔ ∃j ≥ 0 : (ω(j) |= Φ2 ∧ (∀0 ≤ k < j : ω(k) |= Φ1))
ω |= Φ1 U≤n Φ2 ⇔ ∃0 ≤ j ≤ n : (ω(j) |= Φ2 ∧ (∀0 ≤ k < j : ω(k) |= Φ1))

4 Probabilistic Graph Transformation Systems

We now introduce probabilistic graph transformations systems (PGTSs), in
which the format for rules is extended to incorporate probabilistic behavior.

Definition 7 (Probabilistic rule). A probabilistic rule π = 〈J, P, μ〉 consists
of a typed graph J , a finite, non-empty set of rules P , such that J = L for all

p = 〈L �←− K
r−→ R〉 ∈ P , and a probability distribution μ ∈ Dist(P ).

A probabilistic rule π = 〈J, P, μ〉 formally consists of a finite set of basic (non-
probabilistic) rules P with the same left-hand side J and a probability distribu-
tion μ over these basic rules. A probabilistic rule is interpreted as a single rule
with multiple right-hand sides, which are picked randomly according to μ. Basic
(non-probabilistic) rules are modeled as probabilistic rules with a single RHS
and a probability distribution that assigns 1 to this RHS.

Definition 8 (Probabilistic transformation). Let M be a typed graph, π =
〈J, P, μ〉 a probabilistic rule, m : J → M a match, and p ∈ P a basic rule.

A probabilistic transformation M
π,m,p
=⇒ N is defined by a basic transformation

M
p,m
=⇒ N if and only if:

1. for all p′∈P there exists a typed graph N ′ such that M
p′,m
=⇒ N ′ and

2. μ(p) > 0.

Thus, a probabilistic transformation is possible if and only if (1) all its basic
rules are enabled, and (2) the probability for the chosen basic rule is strictly
greater than zero. Note that therefore a probabilistic rule is applicable w.r.t.
a match only if the gluing condition is satisfied for all its basic rules. This is
necessary because the choice for a particular basic rule is random and thus it
must be ensured that all of them are enabled. Note, however, in the case of SPO
graph transformation semantics, no checking of the gluing condition is required.



Probabilistic Graph Transformation Systems 319

Definition 9 (Probabilistic graph transformation system). A probabilis-
tic graph transformation system (PGTS) is a tuple G = 〈T, Ginit , Π〉 consisting
of a type graph T , an initial graph Ginit typed over T , and a set of probabilistic
rules Π typed over T .

In a given PGTS, a probabilistic transformation M
π,m,p
=⇒ N is made by:

1. nondeterministically selecting an applicable rule π = 〈J, P, μ〉 ∈ Π ,
2. nondeterministically selecting a match m : J → M ,
3. making a probabilistic choice for a basic rule p ∈ P according to μ,
4. transforming M into N using the basic rule p and the match m.

Thus, a probabilistic transformation M
π,m,p
=⇒ N is a particular resolution of

both the nondeterministic and the probabilistic choices in a PGTS. We denote
with G0 =⇒∗G Gn the fact that there exists a finite sequence of consecutive
probabilistic transformations using the probabilistic rules of G:

G0
π0,m0,p0 � G1

π1,m1,p1 � . . .
π(n−1),m(n−1),p(n−1) � Gn

The operational semantics of a PGTS induces a Markov decision process.

Proposition 1 (Induced MDP). Let G = 〈T, Ginit , Π〉 be a PGTS. Then G
induces a Markov decision process MG = 〈Q, qinit , Steps〉 with:

– Q = {[G] | Ginit =⇒∗G G}, i.e., the set of isomorphism classes of typed graphs
reachable from Ginit ,

– qinit = [Ginit ],

– Steps([G]) = { ν | G
π,m
=⇒ ν } where G

π,m
=⇒ ν with π = 〈J, P, μ〉 ∈ Π denotes

the fact that there exists p ∈ P and G′ ∈ Q such that G
π,m,p
=⇒ G′, and where

ν ∈ Dist(Q) is induced by μ as follows:1

ν([G′]) =
∑

p∈P :G
π,m,p
=⇒ G′

μ(p) (1)

The induced probabilistic transitions are defined in (1) by associating the prob-
abilities of each basic rule p to the result of applying p to the current graph with
the chosen match. Note that the states are defined up to graph isomorphism and
that the sum in (1) is required for cases with identical or symmetric RHSs.

The concepts of graph-based atomic propositions, negative application con-
ditions and nested rules as described in Section 2 can be directly transferred to
PGTSs. NACs are defined in the usual way and restrict the applicability of a
probabilistic rule as a whole. Nesting of probabilistic rules is achieved by a nest-
ing of its basic rules, where the nested LHSs of all basic rules must be identical.
For simplicity, we restrict ourselves to nested rules of depth 1 here. Note that
the probabilities are associated only to the embedded rule (which is matched
only once) in a nested rule. Due to lack of space, we omit the formal definition
here and illustrate the concepts using an example.

1 We use the convention
∑

∅
= 0 for sums over empty sets.
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Fig. 10. Probabilistic rule send

5 Modeling and Comparison

In this section, we show how to use probabilistic graph transformation systems
for a faithful modeling of the gossiping protocol described in Section 1 and 2
and discuss the differences to component-based models. For the PGTS model
we reuse the type graph in Fig. 2, the initial graph in Fig. 3 and the rule reset
in Fig. 7, where we trivially associate a probability of 1 to its only RHS. To
specify the likelihood of the message forwarding, we combine the two basic rules
send1 and send2 in Fig. 5 and 6 into one probabilistic rule send with two RHSs,
depicted in Fig. 10. The first RHS models the case where the message is for-
warded with a probability of p, whereas the second RHS models the case where
the message is not forwarded with a probability of (1 − p). Note that in both
cases the node becomes inactive and that the probabilistic rule is enabled only
if no collision occured. Moreover, the synchronous message passing to all neigh-
bors is modeled again using a nested rule. To reason about this model, we reuse
the atomic proposition received(x) in Fig. 4. As initial graphs, we consider four
example topologies shown in Fig. 11, where in each network the broadcasting
starts at node 1. Network 11a) is formally modeled by the typed graph in Fig. 3.

In the following, we discuss some of the advantages of using PGTSs as a
modeling approach over traditional component-based modeling approaches as
employed, e.g., in [4], where automata or process algebra models are used to
define the behavior of the components and the system as a whole.

Modeling scalability. The first important observation is that the size of the topol-
ogy has only a minor impact on the size of the PGTS model. Switching from the
simple topology depicted in Fig. 11a) to the 3× 3 network in Fig. 11b) only re-
quired to exchange the initial topology while the rules and the type graph remain
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(a) (b) (c) (d)

Fig. 11. Schematic example network topologies (broadcasting starts at node 1)

the same. In contrast, when using component-based models such as employed
in [4], a larger network topology requires that additional components, each with
its own specific local behavior and communication with its neighbors must be
added to the specification. Scalability of the verification approach, however, is a
separate issue and is planned to be addressed in our future work.

Changeability. When modeling different network topologies with PGTSs, this
simply boils down to using different input graphs as initial states such as the
four different example topologies in Fig. 11. In contrast, a modification in the
network topology is a real challenge when using component-based models, since
the intuitive graph structure of the network is not tangible in the specification
and must be carefully encoded in the local behavior of the nodes. Moreover, in
the case of a change in the protocol, only a few rules in the PGTS need to be
adjusted, whereas in an component-based model the local specifications of all
nodes must be altered to reflect the change in the protocol.

Expressiveness. In [4], multiple versions of the gossiping protocol are considered,
which can be all modeled using PGTSs. The model in this paper corresponds to
the case with nondeterministic execution order. The synchronous versions can be
modeled as a PGTS by increasing the nesting depth of the rule send such that all
active nodes with exactly one message execute the probabilistic sending at the
same time. The last variant presented in [4] includes a simple, i.e., memoryless
probabilistic delay for the sending of messages. This can be modeled also in a
PGTS by adding a Boolean attribute which is used as an additional precondition
for the send rule and which is switched on by a probabilistic rule.

Moreover, we argue that modeling dynamic structural changes in the net-
work topology is (except for encodings of very simple cases) impossible using
component-based models. In contrast, in the graph transformation-based ap-
proach, dynamic structural changes as needed for modeling reconfigurable and
mobile systems can be expressed directly.

Simplicity. We believe that specifying the distributed protocol using a PGTS
is less intricate and less error-prone because there is a clear separation between
the description of the protocol modeled using the rules on the one hand, and
the particular network structure on the other. This hypothesis is to some ex-
tent supported by our modeling experiment. In particular, we compared our
results discussed in Section 6 for network (b) to the data presented in [4]. While
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Fig. 12. Minimum / maximum probabilities for message reception for each node in
network (b) and send probabilities of p = 0.6, 0.7 and 0.8

our experiments yielded the same maximum probabilities, we noticed that our
modeling apparently predicted smaller minimum probabilities for the message
receptions. Apparently, their specification contains a modeling error as the prob-
abilistic decision whether to forward a message or not is already done at the
message reception, which rules out the possibility of a collision in the case the
node decides not to forward the message. However, due to the complicated en-
coding of the protocol this difference between their specification and the MDP
induced by our model could be identified only by a detailed analysis.

6 Tool Support and Analysis

We have implemented tool support for PGTSs in version 0.9.2 of the Henshin [5]
graph transformation tool using Prism 4 [6] as probabilistic model checking
back-end. We model probabilistic rules in Henshin using multiple basic graph
transformation rules with the same LHS (and possible additional application
conditions). Probabilities are associated to the different basic rules using anno-
tations. We then use Henshin’s state space generation capabilities to derive an
LTS, which is subsequently converted into an MDP by (1) removing all illegal
transitions where not all basic rules of a probabilistic rule are applicable for the
same match, and (2) replacing the nondeterministic choice between annotated
basic rules by probabilistic transitions. Our extension of Henshin generates an
MDP in the input format of Prism to carry out the PCTL model checking and
for computing the minimum and the maximum probabilities.

Using our tool, we have modeled the gossiping protocol and ran a number of
experiments. As a first setting, we fixed the send probability to p = 0.8 and chose
the network topology (b). For these parameters, we verified using Prism that
the property P>0.3(♦ received(8)) holds, i.e., the probability that node 8 receives
the message is greater than 0.3. In addition to the checking of PCTL formulas,
we used Prism to compute the minimum and the maximum probabilities for
each node successfully receiving the message. Fig. 12 depicts the minimum and
the maximum probabilities for each node in network (b) correctly receiving the
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(1) (2)

Fig. 13. Min./max. probabilities for message reception of node 9 in network (b)

message and for send probabilities of p = 0.6, 0.7 and 0.8. The minimum proba-
bilities reflect worst-case, the maximum probabilities best-case execution orders
for each node. We note that the minimum (and the maximum) probabilities for
the different nodes vary more or less depending on the chosen send probability
and the location of the node in the grid. To illustrate the impact of the send
probability, we have plotted the minimum and the maximum reception proba-
bilities for node 9 with changing p in Fig. 13.1). Note that for values of p greater
than approx. 0.7, the minimum reception probability decreases again.

We further investigated how the probability for a specific node receiving the
message changes over time, where time is measured as discrete execution steps.
Such properties can be specified using the step-bounded until-operator in PCTL.
Specifically, fixing the send probability to p = 0.7, we verified that the property
P≥0.2(♦≤10 received(9)) holds, i.e., the probability that node 9 in network (b)
successfully received the message after 10 execution steps is at least 0.2. Additi-
nally, Fig. 13.2) depicts the minimum and the maximum probabilities for node 9
having received the message after 1..10 execution steps.

Due to the graph-based approach, models with different network topologies
can be easily derived. The minimum and maximum probabilities for the networks
(b)-(d) are depicted in Fig. 14. The probabilities drop more for the nodes in net-
work (c) with high indizes than in network (b) which is caused by the higher
distance and the fewer number of connections. For network (d), the differences
between the minimum and maximum probabilities are higher than in the other
networks. This is caused by the higher connectivity of the network which in-
creases the chance for collisions. It is also evident that node 6 is a bottleneck in
the network causing the probabilities to drop abruptly for nodes 7-11.

7 Related Work

As discussed in Section 5, PGTSs compared to component-based models (as,
e.g., in the Prism specification language), provide a greater expressiveness in
terms of modeling concepts, since there is a clear separation between the mod-
eled protocols on the one hand and the used network topologies on the other.
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Fig. 14. Minimum / maximum probabilities for message reception for networks (b)-(d)
with a fixed send probability of p = 0.7

Therefore, PGTSs permit to study different network topologies and to adjust
protocols with minimal effort. In contrast, the component-based approaches re-
quire to encode the topology into the local behavior of the nodes, which can
result in complex and erroneous specifications.

Executable term rewrite theories as used in Maude [15] provide similarly
to GTSs natural modeling concepts for concurrent systems with structure dy-
namics. Probabilistic rewrite theories in PMaude [16] provide a combination of
structure dynamics, probabilistic behavior for discrete branching, and stochastic
behavior. Properties for such models can be specified using probabilistic tem-
poral logics and checked using discrete event simulation. However, in order to
simulate and analyze models in PMaude, all nondeterminism has to be resolved,
i.e., nondeterministic choices for rules and matches as in PGTSs are not allowed.

Several extensions of GTSs with quantitative properties such as real-time [1,2]
and stochastic behavior [3] exist. However, the combination of discrete proba-
bilistic decisions and nondeterminism in PGTSs can be emulated neither by
real-time nor by stochastic models. To clarify this, we discuss in detail the dif-
ference to stochastic graph transformation systems (SGTSs) [3]. While SGTSs
are based on a continuous time model, PGTSs are based on a discrete one. Fur-
thermore, SGTSs do not support nondeterminism. Instead, in any given state
there is a competition between all enabled rules and their matches, which is also
referred to as a race condition. The choice for a particular rule and match is
decided probabilistically based on the rules’ stochastic rates. In contrast, the
choice for a particular rule and match in a PGTS is made nondeterministically
whereas the effect of a rule is probabilistic. Due to the different time model and
the nondeterminism, PGTSs cannot be encoded into SGTSs, nor vice versa.

8 Conclusions and Future Work

In this paper, we introduced probabilistic graph transformation systems (PGTSs),
provided a sound foundation based on Markov decision processes, and presented
related tool support. We further demonstrated that the modeling using PGTSs
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compared to existing component-based approaches as, e.g., in Prism scale better
and can be more easily adjusted to reflect changes in the topology or protocol.
For future work, we plan to develop a compact visual syntax for PGTSs, to
incorporate interval-valued probabilistic and real-time behavior, and to improve
the scalability of the verification procedure using compositional schemes.
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Abstract. Meta-modeling has become the key technology to define do–
main-specific modeling languages in model-driven engineering. Since do–
main-specific modeling languages often change quite frequently, concepts
are needed for the coordinated evolution of their meta-models as well as of
their models, and possibly other related artifacts. In this paper, we present
a new approach to the co-transformation of graphs and type graphs and
show how it can be applied to model co-evolution. This means that mod-
els are specified as graphs while model relations, especially type-instance
relations, are defined by graph morphisms specifying type conformance of
models to their meta-models. Hence, meta-model evolution and accompa-
nying model migrations are formally defined by co-transformations of in-
stance and type graphs. In our approach, we clarify the type conformance
of co-transformations, the completeness of instance graph transformations
wrt. their type graph modifications, and the reflection of type graph trans-
formations by instance graph transformations. Finally, we discuss strate-
gies for automatically deducing instance graph transformation rules from
given type graph transformations.

Keywords: meta-model evolution, model migration, graph transforma-
tion.

1 Introduction

Model-driven engineering (MDE) is a software engineering discipline that uses
models as the primary artifacts throughout software development processes and
adopt model transformation both for their optimization as well as for model
and code generation. Models in MDE describe application-specific system de-
sign which is automatically translated into code. A commonly used technique
to define modeling languages is meta-modeling. In contrast to traditional soft-
ware development where programming languages rarely change, domain-specific
modeling languages, and therefore meta-models, often change frequently: model-
ing language elements may be, e.g., renamed, extended by additional attributes,
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Fig. 1. Meta-model evolution and model migration

or refined by a hierarchy of sub-elements. The evolution of a meta-model re-
quires the consistent migration of its models (See Fig. 1) which is a considerable
research challenge in MDE [18].

Since graphs and graph transformations are conceptually close to models and
model transformations, we consider instance and type graph co-transformations
as a suitable approach to the formalization of model co-evolution. In contrast
to the traditional double pushout (DPO) approach in [4] where deletion of
graph parts is performed before the creation of new graph elements, we use
the dual approach where creation is done before deletion. The dual approach
has been introduced as co-span DPO-approach in [5] which also shows equiva-
lence of both approaches. We choose this variant of graph transformations be-
cause they allow better synchronization of deletion and creation actions than
the usual DPO approach, since the intermediate graphs contain both elements
to be deleted and those to be added. Since we do not want to restrict ourselves
to a specific kind of graph and graph morphism in this paper, the theoretical
concepts and results are formulated at the level of (weak) adhesive categories
(see e.g. [9,3]).

On this basis, we characterize co-transformations that lead to type conforming
result graphs. Considering a given type graph transformation, a related instance
graph transformation has to be complete, i.e., has to incorporate the whole
instance graph, and has to reflect at least deletion actions of the type graph level.
Furthermore, we present a strategy to deduce instance graph transformation
rules from given type graph transformations.

The new graph transformation concepts and results presented are clearly
motivated by our wish to develop an adequate formalization of model and meta-
model co-evolution. Among existing approaches [17,20,2,8,14,16] only [16] con-
tains fundamental results about the well-formedness of model and meta-model
co-evolutions. However, the co-evolution approach presented in [16] is more re-
stricted than ours.

The rest of the paper is organized as follows: in Section 2, we introduce a sim-
ple model co-evolution scenario. The definition of co-span transformation is re-
called in Section 3 which prepares for the formalization of model and meta-model
co-evolution presented in Section 4. We conclude this paper with a consideration
of related work in Section 5 and final remarks in Section 6.
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2 A Co-evolution Scenario

To motivate our approach, we consider a well-known Petri Net meta-model evolu-
tion scenario as presented in [2,20,14]. Figure 2 shows this scenario together with
an example model migration. While the upper row presents two evolution steps
of the meta-model, the lower row shows the migration of a small Petri net mod-
eling a communication between “Alice” and “Bob”. Note that the meta-model
defines abstract syntax structures, while the example Petri nets are given in con-
crete syntax. Figure 2 shows two co-evolution steps: in the first step weights are
added to outgoing and incoming arrows, in the second step the place-transitions
nets are extended to coloured nets.

First step: since meta classes are needed to hold meta attributes, meta ref-
erences “outArr” and “inArr” are replaced by classes “OutArr” and “InArr”
as well as two additional references. In addition, attribute “weight” is added to
“OutArr” first and then extracted to superclass “Arr”. Second step: the token
attribute of class “Place” is extracted into a new associated class “Token” as
number “attribute”. In addition class “Token” gets a new additional attribute
“type”.

The corresponding migration can be performed fully automatically. We choose
to set values for new “weight” as well as “type” attributes to a default value.
Afterwards a modeler may change this value. In Fig. 2, for example, the modeler
changed the weight value at the outgoing transition of “to Alice” to “2” to
express that Alice gets more input than Bob.

Fig. 2. A small co-evolution scenario based on Petri nets

3 Co-span Transformation

Graph transformation is the rule-based manipulation of graphs. There exists
a variety of graph transformation approaches, differing mainly in the kind of
transformation rules allowed and the way in which they are applied. A standard
approach is the algebraic graph transformation [3] where graph parts are deleted
first and then new elements are added. In the following, we consider the co-span
approach [5], i.e., a variant where actions are applied in the reverse order.
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Graphs are often used as an abstract representation of models. When for-
malizing object-oriented modeling, graph structures are used for modeling and
meta-modeling leading to instance and type graphs. A fixed type graph T G serves
as an abstract representation of a meta-model. As in object-oriented modeling,
types can be structured by a generalization relation. Multiplicities and other
annotations are not formalized by type graphs, but have to be expressed by
additional graph constraints [6,15]. When considering meta-model conformance,
we will neglect constraints for now, but we will take them into account in the
future. Instance graphs define model structures and have structure-preserving
mappings to their type graphs. The attribution of graph nodes and edges can
be achieved by using data algebras. In that case, a type graph contains exactly
one element per data type formalized by the final algebra. (For details on typed
attributed graphs see [4,3].)

Considering the algebraic graph transformation approach, rules are roughly
expressed by two graphs L and R, where L is the left-hand side of the rule and R
is the right-hand side, which are usually overlapping in graph parts. Rule graphs
may contain variables for attributes. The left-hand side L represents the pre-
conditions of the rule, while the right-hand side R describes its post-conditions.
The intersection L∩R (the graph part that is not changed) and the union L∪R
should both form graphs, i.e., they must be compatible with source, target and
type settings, in order to apply the rule. Graph L\(L∩R) defines the part that is
to be deleted, and graph R\ (L∩R) defines the part to be created. Furthermore,
the application of a graph rule may be restricted by so-called negative application
conditions (NACs) which prohibit the existence of certain graph patterns in the
current instance graph. Graph elements common to L and R or common to L
and a NAC, are indicated by the same name or number. (Graph inclusions are
generalized to injective graph morphisms in the following definitions.)

A direct graph transformation G
r,m � H between two instance graphs G

and H is defined by first finding a match m of the left-hand side L of rule r
in an instance graph G such that m is structure-preserving, type-compatible,
and satisfies the NACs (i.e., the forbidden graph patterns are not found in G).
Attribute variables used in a graph object o ∈ L are bound to concrete attribute
values of graph object m(o) in G. The resulting graph H is usually constructed
by first removing all graph items from G that are in L but not also in R and
second adding all those new graph items that are in R but not in L. This kind
of graph transformation is formalized by the standard double pushout (DPO)
approach as presented in [3].

However, this is not the only possible order to perform graph changes. It
is possible to reverse this order which seems to better fit the needs of model
co-evolution. By first adding new meta-model elements while keeping the ones
to be deleted, the intermediate meta-model can be used for both, continu-
ous typing of migrating models as well as synchronizing required migration
changes. See example 4 for more details. Meta-model elements that are to be
deleted, are removed in the second step. This form of transformation is called
co-span DPO approach and presented in [5]. We recall the main definitions here,
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abstracting from the concrete graph category, and assuming graph structures
and morphisms that form a (weak) adhesive category C with a selected classM
of monomorphisms.

Adhesive (weak-adhesive) categories C fulfill the following properties: classM
is closed under isomorphisms, composition, and decomposition. C has pushouts
and pullbacks alongM-morphisms, i.e., if one of the given morphisms is in M,
pushouts and pullbacks over these morphisms exist. Given a pushout (P OA)
with l ∈ M as below, then morphism g ∈ M and pushout (P OA) is also a
pullback. Pushouts in C alongM-morphisms are (weak) Van-Kampen-squares if
the following holds: Consider a commutative cube like the left cube in Fig. 4: If
the top is a pushout alongM-morphism and the back as well as the left squares
as pullbacks, the following statement holds: The bottom square is a pushout
along M-morphism iff the front and the right squares are pullbacks. For weak
Van-Kampen-squares, morphisms m and l or tG, tU , and tI have to be in M.

Definition 1 (Co-span transformation). Let C be a category with pushouts

along class M of morphisms. An co-span rule p = L
l−→ I

r←− R con-
sists of structures L, I and R and M-morphisms l and r which are jointly epi-

morphic. Given a morphism m : L → G, called
match, rule p can be applied to G if a co-span double-
pushout exists as shown in the diagram below.

t : G
p,m
=⇒ H is called a co-span transformation.

L

m

��

l
��

(POA)

I

i

��
(POB)

R

m′

��

r
��

G g
�� U H

h
��

If rule p and its match m are given, then pushout (P OB) has to be constructed

as pushout complement R
m′→ H

h→ U . This is possible if the co-span gluing
condition is satisfied. In the category of graphs, we define each node of L whose
image under m is source or target of a context edge in G as boundary node.
The gluing condition is satisfied if boundary nodes are preserved by the rule.
Formally, the co-span gluing condition is defined as follows:

Definition 2 (Co-span gluing condition). Given morphism m : L → G, let
b : B → L be the boundary of m, i.e., the “smallest” morphism such that there is a
pushout complement of b and m. Then, m sat-
isfies the co-span gluing condition wrt. rule p =

L
l−→ I

r←− R if there is a morphism b′ : B → R
with r ◦ b′ = l ◦ b.

B
b

��
(=)

b′

��
L

l
�� I Rr

��

If the gluing condition is satisfied for m wrt. p, then t : G
p,m
=⇒ H exists and

is unique. (For more details see [5].) A co-span transformation t is typed over a
structure T G if there are typing morphims from G and all structures belonging
to the rule to T G such that they commute. In this case, also H can be typed
over T G in a compatible way.

Remark 1. It is shown in [3] that attributed, typed graphs with total graph
morphisms are adhesive with a dedicated classM of injective morphisms. Cate-
gory AGraphTG of typed, attributed graphs with classM consisting of injective
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graph morphisms with isomorphisms on their data algebras, are shown to be
adhesive in [4]. Considering typed graphs with node type inheritance, Theorem
1 in [7] shows that the corresponding category is weak adhesive if classMS−refl
contains injective morphisms being also subtype-reflecting meaning that for a
mapped type, all its sub-types are also mapped. This result is extended to the
category AIGraphs of attributed graphs with node type inheritance with class
AMS−refl of S-reflecting attributed clan morphisms in Theorem 6 in [7]. (This
category is used in all the following examples.)

Example 1 (Co-span graph transformation). Figure 3 shows an example for a
co-span graph transformation taking up again the Petri net evolution scenario
of Fig. 2. An “inArr”- edge of our example Petri net model is replaced by an
“InArr”-node with weight “1” and adjacent edges. This migration step is shown
in detail using the abstract syntax of Petri net models. The numbers in nodes and
at edges indicate how morphisms are defined. Please note the special numbering
of attributed nodes. Not only nodes but also their attributes and attribute values
are numbered, since attributes are formally defined by edges and attribute values
by data nodes (see [3] for more details). In the theory there are always all possible
data values, however in all figures there are only those values shown that are
also attribute values. The co-span gluing condition is fulfilled in this example,
since edges only are deleted.

Fig. 3. Example: A co-span graph transformation

4 Formalization of Model and Meta-model Co-evolution

In this section, we formalize meta-model evolution and corresponding model
migrations based on co-span transformation.
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4.1 Co-evolutions by Co-transformations

Formalizing a meta-model evolution and a corresponding model migration by
two coupled co-span transformations, their correspondence has to be clarified.
They are type conforming if a model migration can be typed over its meta-model
evolution, i.e. if all corresponding models are in consistent type-instance rela-
tions. Formally, this means that we take the category of typed attributed graphs
and that there are typing graph morphisms between each pair of corresponding
graphs commuting with each other.

However, this does not mean that instance graphs are always transformed
such that modifications on the instance level exactly correspond to type graph
modifications. To ensure a meaningful instance graph transformation, the match
of an instance graph rule has to cover all graph parts typed over type graph
elements taking part in the evolution. They can be formally determined by the
pullback over the instance graph typing morphism and the match on type level.
In this case, the migration rule match is called match complete. Furthermore, an
instance rule has to reflect at least those deletions specified by its type rule. For
example, an instance rule not doing anything, does not always reflect a type rule
adequately, since potential deletions may not be performed and the resulting
instance graph would not be well-typed over the resulting type graph, since
elements with old types remain in the graph. However, creations in type graphs
do not have to be (fully) reflected in corresponding instance graphs. Moreover,
the action reflection of type rules in instance rules can be characterized by two
pullbacks over both rules and their typing morphisms. We call co-transformations
fulfilling this requirement action-reflecting.

Definition 3 (Co-transformation). Two co-span transformations tt : T G
tp,tm
=⇒

T H and t : G
p,m
=⇒ H with rules tp = T L

tl−→ T I
tr←− T R and p = L

l−→ I
r←− R

form a co-transformation (tt, t), if there are morphisms tG : G → T G , tU : U →
T U , and tH : H → T H as well as tL : L → T L, tI : I → T I, and tR : R → T R
such that all squares in Fig. 4 commute.

In such a co-transformation (tt,t), transformation tt : T G
tp,tm
=⇒ T H is called

an evolution while transformation t : G
p,m
=⇒ H is called a migration wrt. tt.

Definition 4 (Evolution-reflecting migration). A co-transformation (tt, t)

as presented in Fig. 4 is called match-complete if G
m←− L

tL−→ T L is a pullback

and action-reflecting if T L
tL←− L

l−→ I and I
r←− R

tR−→ T R are pullbacks. We
say that migration t is match-complete and action-reflecting wrt. evolution tt, or
short, t is evolution-reflecting wrt. tt.

Example 2 (Co-transformation). In this example, we consider again the meta-
model evolution scenario for Petri nets introduced in Section 2 and formalize it:
In Fig. 5, an excerpt of the meta-model evolution step E1 of Fig. 2 is presented
as a co-span graph transformation. Before this graph transformation is applied,
the “outArr” reference has already been replaced by a “OutArr” class and also
weight attribute has been added and extracted to a superclass “Arr”.
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Fig. 4. Co-transformation

In the co-span rule presented in Fig. 5, reference “inArr” is replaced by a new
subclass “InArr” of class “Arr”. The whole transformation is typed over a simple
graph representing the meta-meta-model structure. It consists of a graph node, a
graph edgewhich is a loop on the graphnode, a data node, and an attribute edge be-
tween the graphand the attribute node. The typing over this graph is not shown ex-
plicitly by morphisms but implicitly by a special graphical notation. Graph nodes
are depicted by rounded rectangles, graph edges by arrows, and attribute edges
and nodes by placeholders left and right to the “:=” inside graph node rectangles.
In graphs T G, T U, and T H , node and edge names are depicted, since they are
used as type names in corresponding migrations. Actually, these type names are
not necessary, since typing is determined by graph morphisms only. However, to
increase the readability we represent the typing of model graphs and migration
rule graphs redundantly by type names and numbers.

Fig. 5. Example: A meta-model evolution
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Fig. 6. Example: A match-complete, action-reflecting migration

Figure 6 shows the migration of the Petri net model triggered by the previ-
ously shown meta-model evolution rule in detail. Although similar to the one in
Fig. 3, this migration is match-complete, since both “inArr” edges are matched.
The migration in Fig. 3 is not match-complete, since only one “inArr” edge is
matched, but still action-reflecting. In addition, the rule in Fig. 3 is not a valid
migration since not all elements of deleted types are also deleted by the migra-
tion rule. Please note that the numbering in Fig. 6 is consistent with that in
Fig. 5 so that both figures together form an example for the complete double-
cube shown in Fig. 4. In the evolution transformation, types identified by the
same “set of numbers” are related. Likewise in the migration transformation, el-
ements identified by the same “numbers” are related. Furthermore each element
of the migration is mapped to that type including the corresponding number.

Theorem 1 (Existence and uniqueness of co-transformation). Given two

co-span transformations tt : T G
tp,tm
=⇒ T H and t : G

p,m
=⇒ H together with typing

morphisms tG : G → T G, tL : L → T L, tI : I → T I, and tR : R → T R such
that migration t is match-complete and action-reflecting wrt. evolution tt, then,
structures U and H can be uniquely typed by morphisms tU : U → T U and
tH : H → T H resp. such that (tt, t) forms a co-transformation. (Compare Fig. 4.)

For the proof of this theorem see [19].

4.2 Automatic Deduction of Migration Rules from Evolution Steps

After having clarified how evolutions and migrations relate, we consider now a
strategy to automatically deduce migration rules from evolution steps. Of course,
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we are mostly interested in deducing match-complete and action-reflecting mi-
gration rules.

The simplest case of migration rule deduction is to construct an isomorphic
copy of an evolution rule. However, its application is usually not match-complete.
Even worse, it might happen that the deduced rule cannot be applied to a given
graph at all, since the gluing condition is not satisfied. Therefore, we present
a more general deduction of migration rules taking the definition of match-
complete and action-reflecting co-transformations into account. Since we will
need to construct pullback complements, we recall this notion first.

Definition 5 (Pullback complement).

Let a : A → B and b : B → D be two morphisms, morphisms
c : A → C and d : C → D are called a pullback complement
of a and b if a and c are the pullback of b and d.

B
b

�� D

A c
��

a

	


C

d

	


Remark 2. In the category of sets and functions, a pullback can be constructed
by A = {(x, y)|d(x) = b(y)} ⊆ C ×D with morphisms a : A → B : (x, y) → y
and c : A → C : (x, y) → x. In category AIGraphs, pullbacks can be con-
structed component-wise for nodes, edges, and attributes. If at least b or d is
S−reflecting, inheritance relations in A can be uniquely defined based on those
in B and C (see also [7].) Note that there is always a pullback complement of a
and b if b is inM and thus is S-reflecting in AIGraphs. (The proof is presented
in [19].) A pullback complement can be constructed by C being simply equal to
A and mapped to D in the same way as A is mapped to D.

Theorem 2 (Instance rule deduction). Given a co-span transformation tt :

T G
tp,tm
=⇒ T H and a typing morphism tG : G → T G with pullback T L

tL←− L
m−→ G

of co-span T L
tm−→ T G

tG←− G in a (weak) adhesive category: For each pull-

back complement L
l−→ I

tIm−→ T I of L
tL−→ T L

tl−→ T I, we obtain a match-
complete, action-reflecting co-transformation and hence a co-span transforma-

tion from G −→ T G to H −→ T H based on tt : T G
tp,tm
=⇒ T H. The construction

is given by the following steps:

1. Construct G
m←− L

tL−→ T L as pullback of G
tG−→ T G

tm←− T L

2. Construct a pullback complement L
l−→ I

tI−→ T I of L
tL−→ T L

tl−→ T I

3. Construct I
r←− R

tR−→ T R as pullback of I
tI−→ T I

tr←− T R

For the proof of this theorem see [19].

Example 3 (Deduction of model migrations). Considering the example meta-
model evolution in Figure 5 an edge is deleted and a node with two edges are
inserted. The deduction strategy in Theorem 2 determines a skeleton migration
rule with a corresponding match, but does not yield a unique result:
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1. Given graph G as in Figure 3, graph L is constructed as pullback object
which determines all graph elements that are affected by the evolution. This
result is unique (up to isomorphism) wrt. the evolution rule and its match
to the graph to be migrated.

2. The next step is a pullback complement construction which is not unique in
general. Actually various outcomes are possible. We discuss some interesting
ones in the following:

(a) Nothing is added to graph L, i.e. I = L, however tI : I → T I may not be
surjective in this case. Non-surjectivity mean that the actions on type
level are not completely reflected in the migration on the instance level
which might be true if nothing is added.

(b) One copy of each new type graph element is added to I. Consider e.g.,
the graph I in Figure 6: two copies of “InArr” are added here. If only
one shall be added, one of these has to be selected non-deterministically.
Thus, this construction seems to yield an incomplete result, although tI
would become surjective i.e., reflecting fully the creation of new types.

(c) I contains as many copies of T I as L contains of T L: This solution is
very intuitive. It would yield graph I in Figure 6 as result. Of course, it
is also action-reflecting.

(d) Copies of new type graph elements are added as often as matches of
anchor nodes are found in G: considering again graph I in Figure 6, this
construction would yield two more “InArr” nodes with adjacent edges
combining Transition (1) with Place (13) and Transition (15) with Place
(3). While this solution is action-reflecting it is not very intuitive.

3. The final deduction step is a pullback construction yielding the right-hand
side R of the migration rule. This construction performs the specified type
graph deletions on all occurrences found in the first deduction step. The
result is unique (up to isomorphism) wrt. the evolution rule and the inter-
mediate pullback complement chosen.

Fig. 7. Span migration and evolution rules

Example 4 (Co-span vs. span approach). As mentioned earlier we use “co-span”
DPO transformations instead of “span” DPO transformations since they are
more suitable for migrations. The co-span approach has a positive effect when
migration rules are deduced from evolution rules. Figure 7 shows an evolution
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rule and a well-typed migration rule formulated as spans. Consider the evolu-
tion rule as given, the left-hand-side of the migration rule has been derived by
a pullback as discussed above. The dotted and dashed parts need to be added
by rule deduction. The evolution rule presented in Fig. 7 does the first part for
meta-model evolution step E2: it creates a new associated class “Token” and
moves attribute “token” as attribute “number” to this class. Note that since
a real move does not exist in graph transformations this basically means that
the attribute arrow “token” is replaced by another attribute arrow “number”
which has as source node the new associated class “Token”. A reasonable mi-
gration rule as presented in the figure does the same for all instances of these
types. P B1 can be directly constructed. In the next step, pullback P B2 needs

to be constructed as pullback complement of I
tI−→ T I

tr−→ T R. Here, we get a
problem since the values “0” and “1” in graph I are not connected to any node
anymore and therefore not displayed in the figure. To find the right values for
attribute “number” in rule graph R we have to consider morphism l in addition.
Compare Fig. 8 now, where the same evolution rule is formulated in the co-span

Fig. 8. Co-span migration and evolution rules

approach. This time P B1 has to be constructed as a suitable pullback comple-
ment. We do not run into any problem here since the values “0” and “1” are
never unconnected.

Proposition 1 (Deduction of boundary). Let tt : T G
tp,tm
=⇒ T H be an evolu-

tion with rule tp = T L
tl−→ T I

tr←− T R and t : G
p,m
=⇒ H with p = L

l−→ I
r←− R

a migration wrt. tt deduced by the construction in Theorem 2. If tm satisfies
the co-span gluing condition wrt. rule tp, then m satisfies the co-span gluing
condition wrt. p.

For the proof of this proposition see [19].
The migration rule deduction presented in Theorem 2 yields migration rules

which are specific to given instance graphs. Hence, for each instance graph this
construction has to be repeated. Considering a set of graphs, this deduction
strategy yields a migration rule schema. It is up to future work to analyze these
schemes according to certain regularities. For example, it might be possible that
a basic migration rule isomorphic to its evolution rule can be identified such that
the union of any number of copies yields a migration rule of the given schema.
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5 Related Work

Co-evolution of structures has been considered in several areas of computer sci-
ence such as database schemata, grammars, and meta-models [11,10,13,17]. Es-
pecially schema evolution has been a subject of research in the last decades.
Recently, research activities have started to consider meta-model evolution and
to investigate the transfer of schema evolution concepts to meta-model evolution
(see e.g. [8]). In the following, we focus on meta-model evolution approaches.

In the literature, meta-model differences are most basically given by change
sets. These sets can be used to deduce evolution rules [20,14] or pre-defined
operations [8]. Roughly spoken, a rule is deduced from a change set by throwing
away unnecessary context and by abstracting from concrete values by variables
(see [1]). If pre-defined operations are given as done in COPE [8] , they can be
formally defined by single rules or rule sets.

COPE [8] uses a meta-model independent representation to perform model
migrations. In [16], the authors use pre-defined constructors that migrate mod-
els fully automatically. Type conformance of migrated models is mostly checked
during run time in the approaches we investigated, except [16] where the au-
thors show that their automatically migrated model is always type conforming.
While in COPE and [2,16], automatically generated migrators are available, the
automatic deduction of migration strategies from evolution strategies is not con-
sidered in [17,20,2,14]. However, Flock [14] (and to a minor extent [17]) support
at least the automatic copying of unchanged and slightly changed elements and
the automatic unsetting of deleted features wrt. a given evolution rule leading
to fairly compact migration scripts.

To keep as much of the typing information as possible during evolutions,
we consider an add-first-delete-then transformation approach which provides us
with intermediate graphs that keep the original information and include new
parts. Such intermediate graphs are able to retain typing information that is not
changed during a meta-model evolution. If a corresponding migration reflects all
actions of a given evolution and is match-complete wrt. to the given graph, we
show that the resulting graph is uniquely typed over the resulting type graph.
Thus, we do not have to check type conformance at run time as is done by
nearly all approaches we considered, but can guarantee this property at design
time, before migrations actually take place. A similar result can be found in [16],
however our approach differs from that formalization: in [16], model migration
is always fully determined, there are no possibilities to adapt migrators e.g.
wrt. the reflection of new meta-model parts. We consider a general procedure to
deduce migration rules from type graph evolutions and corresponding instance
graphs leaving space for variants. Evolution examples in [16] are refactorings
only, leaving the evaluation of other kinds of evolutions open. Furthermore, their
representation of object structures is special in the sense that object slicing
along class generalization relations is used to specify evolutions. Refactorings are
specified as change-based requiring the specification of quite difficult folding and
unfolding constructions. Our evolution specifications is more straight forward.
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6 Conclusion

In this paper, we present a formal approach to model and meta-model co-
evolution based on graph transformations. Meta-model evolutions and corre-
sponding model migrations are defined by co-transformations in (weak) adhesive
categories. An example is given using the category of typed, attributed graphs
with inheritance. Evolutions and migrations are specified by transformation rules
that can be freely designed, i.e., there are no pre-defined operations to be used.
We use a kind of transformations performing the addition of new structures first
and delaying the deletion of structures not needed anymore. Our main result
is concerned with the type conformance of instance graph migrations wrt. their
type graph evolutions. While nearly all other co-evolution approaches delay the
check of type conformance to run time, i.e., when model migrations are actu-
ally performed, we developed sufficient properties and a derivation strategy to
identify type conforming migrations at design time.

In addition, we consider a formal framework for automatic deductions of in-
stance graph migrations from given type graph evolutions. While deletion actions
on type graphs have to be directly reflected on the instance level to preserve type
conformance, the addition of new structures usually allows for variants of migra-
tions. The addition of type graph elements leaves the modeler with the question
if new type graph elements shall be used in the instance graph and if yes, how.
This is reflected by the pullback complement construction which is not unique
in general. We discussed several forms of graph adaptations.

While the focus of this paper is on formalization of model and meta-model
co-evolutions, the work flow of co-evolution processes as well as supporting tools
are neglected here. Usually a meta-model evolution has taken place and numer-
ous models have to be migrated accordingly. Thus, co-evolution usually does
not take place synchronously as our formalization might suggest. However, in-
terleaved evolution steps are also possible. In [12], an implementation based on
the Eclipse Modeling Technology is presented where the addition of meta-model
parts is performed first, models are migrated thereafter, and finally, unneeded
meta-model parts are deleted. This work flow suits to our formalization in the
sense that its meta-model evolutions can be directly formulated as co-span trans-
formations. However, model migrations in [12] are less strictly typed since the
intermediate meta-model is taken for typing whole migrations. It is straight for-
ward to relax the typing of migrations being part of co- transformations as in
this paper. Hence, they can be directly implemented by the approach in [12].

Acknowledgments. Many thanks to Hartmut Ehrig for his valuable comments
on a previous version of this paper and to Wendy McCaull for giving valuable
language feedback.
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Abstract. Graph transformation (GraTra) systems have been used for building
tools in a wide spectrum of application domains. A GraTra system constitutes
an operational specification which may be either interpreted directly or compiled
into executable code. The specification incorporates domain knowledge concern-
ing types of objects, operations to be performed, and patterns to be instantiated.
In many applications, domain knowledge is not fixed; rather, it evolves while
the tool based on the specification is being used. We examine and compare dif-
ferent approaches to support evolving domain knowledge which were developed
in several projects in different domains. Our work may be viewed as a step to-
wards engineering of GraTra Systems for evolving domain knowledge — a topic
of practical relevance which has not gained sufficient attention so far. Although
the examples regarded in this paper have been formulated in PROGRES [26], the
arguments and results hold for other GraTra systems, as well.

1 Introduction

GraTra systems have been used for many different purposes, especially for tool
construction [6]: With the help of GraTras, the data and operations of a tool may be
specified at a high level of abstraction. A GraTra system constitutes an operational
specification which may be either interpreted or compiled into executable code.

Tools based on GraTras have been built for a large variety of application domains. In
order to build a domain-specific tool, the domain knowledge has to be formalized. The
resulting GraTra system incorporates domain knowledge concerning types of objects,
operations to be performed, and patterns to be instantiated. In many applications, do-
main knowledge evolves while the tool based on the specification is being used. In this
paper, we study different approaches to support evolution of the domain knowledge.
Our study is based on several projects in which GraTra systems were used internally
without exposing them to the end users of the tools: (a) AHEAD [11], an environment
for managing dynamic development processes, to be used by a process manager, (b)
IREEN [3], which offers tools for maintaining syntactic and semantic consistency rela-
tions between different engineering design documents, used by an engineer to maintain
consistency relations but also to install new rules for such relations, (c) ConDes [16],
which provides tools for the conceptual design of buildings, to be used by an experi-
enced architect, who can also introduce new domain knowledge, and (d) CHASID [9],
a semantics-oriented authoring environment, to be used by a technical writer.

H. Ehrig et al.(Eds.): ICGT 2012, LNCS 7562, pp. 341–355, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The examined projects differ with respect to their requirements to evolution support,
the parts of the domain knowledge which are evolved, and the ways in which evolution
support is realized. In this paper, we present and compare these different approaches.
In this way, we intend to prepare the grounds for the systematic engineering of GraTra
systems for evolving domain knowledge.

2 Preliminaries

2.1 PROGRES

PROGRES [26] is a specification language for programmed GraTra systems which was
used in all projects of our study. For defining the structural model (the graph schema),
the language provides several advanced features such as multiple inheritance, a strati-
fied type system (nodes are instances of node types which are in turn instances of node
classes), both type- and instance-level attributes, and definition of derived attributes
and relationships. For the behavioral model, PROGRES offers GraTra rules with both
single- and set-valued nodes, use of derived data, negative application conditions, etc.
Furthermore, GraTra rules may be organized into programmed methods with transac-
tional behavior. The PROGRES environment provides a syntax-aided editor, tools for
analysis and browsing, as well as both an interpreter for specification development and
a compiler for producing efficient code.

2.2 Graph Transformations Used for Building Systems

As we have been following the GraTra approach for a long time, different ways of using
them for building systems can be determined: (a) A GraTra specification is manually
transformed into system code. This approach was followed at the very beginning [8]
and later on, if we had to implement on an industrial platform, where our GraTra ma-
chinery was not available. (b) Later, after PROGRES tools and the code generator were
available, the translation of specifications to code was done automatically [26]. Quite a
big number of tools were produced following this line, e.g., for software construction
or maintenance [19]. After every change of the specification, the tool generation pro-
cess had to be started again. (c) Distinguishing a generic and a specific layer within a
specification [10] makes tool construction and modification easier if the generic layer
remains unchanged. To support domain experts, we developed tools for domain-specific
languages which are used to define domain knowledge and translate it into the specific
layer of a PROGRES specification. (d) In many situations one even wants to have flex-
ibility at the tool’s runtime. So, an (experienced) user of a tool gets the flexibility to
modify the underlying structural and behavioral knowledge the tool is using.

Since evolution of domain knowledge is not supported in (a) and (b), these cases are
not discussed further. Modification tools are offered in case (c) to determine changes.
From these changes modified specific specifications are generated. Afterwards, the tool
construction cycle is started again. The case (d) is discussed here in different variations.
In all those cases interpreter mechanisms are used at run time to make use of the modi-
fications having been introduced at run time. So, (c) is a flexible compilation approach,
where the tool builder is involved, (d) is an even more flexible interpretation approach.
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Fig. 1. GraTra systems, run time graphs, and tools

Above the term tool was used in quite different meanings: We spoke about (i) GraTra
tools in order to build up and modify a GraTra specification and (ii) generator tools to
translate this specification into code. Furthermore, (iii) tools were mentioned to model
and modify the domain knowledge, and (iv) on one hand to generate specific specifica-
tions (case c) and on the other hand to determine some information to be interpreted at
runtime (case d). Further, (v) tools will be mentioned to infer knowledge or to help to
overcome the data version problem.

2.3 Classification of Evolution Support

Figure 1 illustrates the relationships among GraTra systems, run time graphs, and tools
(for now, please ignore the dashed parts, which will be needed in 4.1). A GraTra system,
which consists of a graph schema and a set of GraTra rules, is constructed with the
help of a development tool (PROGRES). An application tool (AHEAD, . . .) executes
the GraTra system and operates on the run time graph, which conforms to the graph
schema and is created by applying consistency-preserving GraTra rules. The horizontal
dashed line in the figure separates the specification level from the run time level.

Approaches to evolution of domain knowledge may be classified with respect to the
following criteria (Table 1 in Section 5): (a) Objects of evolution: Structural domain
knowledge is represented by types and object patterns, while behavioral knowledge is
modeled by operations. (b) Levels of evolution: In the case of evolution at the specifi-
cation level, the GraTra system contains the whole domain knowledge and, therefore,
has to be changed to take evolving domain knowledge into account. In contrast, evolu-
tion at the run time level means that domain knowledge is represented in the run time
graph and is changed via the application tool. (c) Time of evolution: Evolution is per-
formed at compile time if domain knowledge is represented in the specification and
the specification is compiled into executable code. Evolution is performed at run time
of the application tool in the following cases: (i) Domain knowledge is represented in
the specification, and the specification is interpreted rather than compiled. (ii) Domain
knowledge is represented in the run time graph.
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Abstract Syntax

Analyze System :
Analysis

Design System :
Design

Develop System :
Software Development

Concrete Syntax

1 : SoftwareDevelopment

name = "Develop System"
state = "active"

4 : Analysis

name = "Analyze System"
state = "done"

6 : Design

name = "Design System"
state = "active"

2 : CompositionDevelopmentAnalysis

sourceType = SoftwareDevelopment
targetType = Analysis

3 : CompositionDevelopmentDesign

sourceType = SoftwareDevelopment
targetType = Design

5 : ControlFlowAnalysisDesign
sourceType = Analysis
targetType = Design
behavior = "sequential"

7 : FeedbackFlowDesignAnalysis

sourceType = Design
targetType = Analysis

source target

source source

target target

sourcetarget

Fig. 2. Dynamic task nets (concrete and abstract syntax)

2.4 Running Example

While this paper is based on the study of multiple projects in different application do-
mains, we discuss a single running example which is based on dynamic task nets [10].
A dynamic task net represents a development process to be executed. It is called “dy-
namic” because the task net may be changed while the process is being executed. Tasks
are organized into a containment tree. Each task has a name, a type, and an execution
state. Tasks are connected horizontally by control flows which resemble precedence re-
lationships in Gantt diagrams. Feedback flows are oriented oppositely to control flows
and indicate that a predecessor task receives feedback from a successor.

A simple example is given in Figure 2. The complex task Develop System of type
Software Development is decomposed into two subtasks (and further subtasks not shown
here): Analyze System of type Analysis and Design System of type Design. The con-
trol flow (solid arrow) indicates that analysis must be performed before design. The
icons indicate the states of tasks. Analyze System is completed, while Design System is
still active. The feedback flow (dashed arrow) indicates that the designer has detected a
problem in the analysis document.

3 Evolution at Compile Time

3.1 Layered Specification

The AHEAD project was concerned with the management of development processes.
A process is represented by a dynamic task net (Figure 2). In the case of AHEAD, the
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Fig. 3. Round trip evolution of the specific graph schema (AHEAD)

application tool shown in Figure 1 is provided to the process manager, who plans, ana-
lyzes, monitors, and modifies the task net. AHEAD addresses the domain “management
of development processes” in general. However, in order to apply AHEAD to a specific
process, it needs to be adapted. For example, the task net of Figure 2 contains tasks
of specific types for software development processes. Furthermore, specific constraints
have to be taken into account, e.g., concerning the order in which tasks are executed.

To support different kinds of processes, the specification was structured into two lay-
ers: a generic layer, which provides core functionality, and a specific layer placed below
the specific layer [10] (Figure 3). The specific layer defines the types of tasks and rela-
tionships as well as customized operations being used in a specific context. Layering is
realized in PROGRES with the help of genericity: The generic layer is parameterized
with types which are instantiated in the specific layer. Parameterization is performed
with the help of the stratified type system: Nodes are instances of node types which are
instantiated in turn from node classes. Due to the stratified type system, types may be
stored as attribute values, and they may also be passed as parameters (Figure 4): (a)
Generic graph schema: Node classes are defined for tasks and relationships (the super-
classes NAMED NODE and PROCESS NODE will be defined later). Each relationship
is represented as a node with adjacent source and target edges. The class RELATION-
SHIP is parameterized with the types sourceType and targetType, which are represented
as meta attributes (i.e., class-level attributes). The subclass CONTROL FLOW adds a
meta attribute behavior, whose default value is sequential. (b) Generic GraTra rule: The
rule for creating a control flow is parameterized with its type. The condition part checks
whether source and target task are instances of the types required by controlFlowType.
(c) Specific graph schema: Specific node types for tasks and relationships are defined
as instances of the respective node classes. Furthermore, the end types of relationship
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b) Generic graph transformation rule

::=

`1 = sourceTask

`2 = targetTask

1´ = `1 2´ = `2

3´ : controlFlowType

source target

transformation InstantiateAnalysisDesignPattern 
( parentTask : SoftwareDevelopment ; 

nameAnalysisTask, nameDesignTask : string ;
out analysisTask : Analysis ; out designTask : Design)

=
use newAnalysisTask : Analysis; newDesignTask : Design;

newControlFlow : ControlFlowAnalysisDesign; 
newFeedbackFlow : FeedbackFlowDesignAnalysis

do
CreateSubtask ( …, out newAnalysisTask )&
CreateSubtask ( …, out newDesignTask ) & 
CreateControlFlow ( …, out newControlFlow ) & 
CreateFeedbackFlow ( …, out newFeedbackFlow ) &
analysisTask := newAnalysisTask & 
designTask := newDesignTask 

end
end;

d) Specific (programmed) graph transformation

transformation CreateControlFlow 
( sourceTask, targetTask : TASK ; 

controlFlowType : type_in CONTROL_FLOW ; 
out newControlFlow : controlFlowType)

=

condition `1.type = controlFlowType.sourceType; 
`2.type = controlFlowType.targetType;

return newControlFlow := 3´;
end;

node_type SoftwareDevelopment : TASK end;
node_type Analysis : TASK end;
node_type Design : TASK end;
...
node_type CompositionDevelopmentAnalysis : COMPOSITION

redef_meta
sourceType := SoftwareDevelopment ; 
targetType := Analysis ; 

end;
node_type ControlFlowAnalysisDesign : CONTROL_FLOW

redef_meta
sourceType := Analysis ; 
targetType := Design ;

end;
...

c) Specific graph schema

a) Generic graph schema

node_class TASK is_a NAMED_NODE, PROCESS_NODE
state : string := "inDefinition"; 

end;
node_class RELATIONSHIP is_a PROCESS_NODE

meta sourceType : type_in TASK; 
targetType : type_in TASK; 

end;
edge_type source : RELATIONSHIP [0:n] -> TASK [1:1];
edge_type target : RELATIONSHIP [0:n] -> TASK [1:1];
node_class COMPOSITION is_a RELATIONSHIP end;
node_class CONTROL_FLOW is_a RELATIONSHIP

meta behavior : string := "sequential"; 
end;
node_class FEEDBACK_FLOW is_a RELATIONSHIP end;

Fig. 4. Layered specification in PROGRES (AHEAD)

types are fixed by assigning values to the respective meta attributes. (d) Specific Gra-
Tra rules: Complex operations may be defined by calling generic rules with specific
parameters. For example, an analysis-design pattern may be instantiated by creating an
analysis and a design task and connecting them by control and feedback flows.

The specific layer incorporates domain knowledge which has to be defined in co-
operation with a domain expert. Since a domain expert usually is not familiar with
the internally used specification language, a modeling tool was built which is based
on UML [14]. A model is defined with the help of class diagrams (structural model)
and communication diagrams (behavioral model). A transformation tool translates the
model into the specific layer of the specification.

3.2 Round Trip Evolution of the Specific Graph Schema

So far, we have tacitly assumed that the specific layer is fixed. To remove this restric-
tion, schema versioning was implemented on top of PROGRES [12]. The specific graph
schema may consist of multiple schema versions. A new schema version is added to the
specific graph schema without affecting existing schema versions. Furthermore, a task
net which has been created under an old schema version may be migrated to the new
schema version. Migration may be performed selectively; furthermore, inconsistencies
may be tolerated temporarily or even permanently. Finally, an inference tool was im-
plemented which constructs a proposal for a schema version by analyzing a set of in-
stantiated task nets. Altogether, the tool set supports round trip evolution of the specific
graph schema (dashed parts of Figure 3).
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a) Extension of the generic graph schema

node_class PROCESS_NODE
meta predecessorType : type_in PROCESS_NODE [0:1] := nil;

end;

node_type ControlFlowAnalysisDesign_1 : CONTROL_FLOW
redef_meta

sourceType := Analysis ;
targetType := Design ;

end;
node_type ControlFlowAnalysisDesign_2 : CONTROL_FLOW

redef_meta
behavior := "simultaneous" ;
predecessorType := ControlFlowAnalysisDesign_1;
sourceType := Analysis ;
targetType := Design ;

end;

b) Specific graph schema with type versions

c) Generic graph transformation rule for migrating a control flow

transformation MigrateControlFlow 
( controlFlow : CONTROL_FLOW ; 

newType : type_in CONTROL_FLOW ; 
out newControlFlow : newType)

=

condition newType.predecessorType = `1.type;
return newControlFlow := 1';

end;

::=

2´ = `2 3´ = `3

source target

`2 : TASK `3 : TASK

`1 = controlFlow

source target

1´ : newType

Fig. 5. PROGRES specification of schema versioning and migration (AHEAD)

Schema versioning and migration are realized in PROGRES as follows (Figure 5):
(a) Extension of the generic graph schema: Versioning of types is represented by the
meta attribute predecessorType of class PROCESS NODE (which serves as the root
class of the inheritance hierarchy). (b) Specific graph schema with type versions: For
each type version, a node type is declared. The example shows two versions of control
flows from analysis to design. The first version inherits the default behavior from class
CONTROL FLOW (sequential). The second version is designated as a successor of the
first version. Its behavior is redefined as simultaneous, i.e., the target task may start be-
fore the source task is finished. (c) Generic GraTra rule for migrating a control flow:
The rule receives the control flow to be migrated and its new type as parameters. The
condition part checks whether the new type is a successor of the old type. Since PRO-
GRES does not allow type changes, the old flow is deleted, and a new flow is inserted.

4 Evolution at Run Time

4.1 Round Trip Evolution of GraTra Rules

AHEAD does not specifically support the evolution of GraTra rules; the inference tool
addresses only the specific graph schema. Furthermore, all changes to the specification
require recompilation of the application tool. In the following, we deal with continuous
evolution of GraTra rules at run time.

IREEN [3] deals with consistency control in chemical engineering. There are differ-
ent documents describing different views / levels of abstraction of the overall solution
(design of a chemical plant). Many increments of the internal structure of a document
have a counterpart in other documents. IREEN is an interactive tool which uses triple
graph rules [25] to assist designers in maintaining inter-document consistency. Even if
the structure of all documents is fixed, the set of rules for consistency handling has to
be extensible, such that a designer can add further rules (and modify existing ones).

Here, round trip evolution applies to GraTra rules (Figure 1 including the dashed
parts). While the graph schemata for the documents to be integrated are well known and
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Fig. 6. Type-level domain knowledge in the run time graph (ConDes)

fixed, the domain knowledge concerning the integration of documents evolves gradu-
ally while the integration tool is in use. In Figure 1, the application tool is used to
establish consistency among engineering design documents. The underlying rules are
either written manually, or they are created with the help of the inference tool (which
abstracts instance-level subgraphs connecting increments of different documents into
GraTra rules). In contrast to AHEAD, the rules may be changed at run time of the
application tool. This flexibility was achieved by a light-weight re-implementation of
GraTra rules, in which rules are interpreted rather than compiled.

4.2 Type-Level Domain Knowledge in the Run Time Graph

In all approaches presented so far, domain knowledge is presented exclusively in the
specification. In all approaches below, domain knowledge is represented in the run time
graph. Thus, domain knowledge may be changed during the use of the application tool.

ConDes [16] is a tool for conceptual designs of buildings. Semantic units, like bath-
and bedrooms and their aggregation to sleeping areas, are important and not their
technical realization. These units are assembled into specific types of buildings, e.g.,
one-family houses, hospitals etc. An experienced user should be able to input / modify
that domain knowledge at any time. Different tools are provided on types and instances,
respectively (Figure 6). The knowledge engineer defines domain knowledge for specific
types of buildings (knowledge acquisition). These types may be employed by architects
to design actual buildings (knowledge application).

Therefore, domain-specific types are represented in the run time graph, which is
structured into a type graph and an instance graph. In contrast to AHEAD (Figure 3),
the specification is no longer structured into a generic and a specific layer. Rather,
the overall specification is generic and now contains generic types and operations for
defining domain-specific types. Two orthogonal kinds of instantiation have to be distin-
guished: (i) Vertical instantiation follows the language rules of PROGRES and concerns
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a) Graph schema (types)

node_class NAMED_NODE
intrinsic name : string;

end;
node_class TYPE is_a NAMED_NODE end;
node_class TASK_TYPE is_a TYPE end;
node_type TaskType : TASK_TYPE end;
node_class RELATIONSHIP_TYPE is_a TYPE end;
node_type CompositionType : RELATIONSHIP_TYPE end;
node_type ControlFlowType : RELATIONSHIP_TYPE

intrinsic behavior : string := "sequential";
end;
node_type FeedbackFlowType : RELATIONSHIP_TYPE end;
edge_type sourceType : 

RELATIONSHIP_TYPE [0:n] -> TASK_TYPE [1:1];
edge_type targetType : 

RELATIONSHIP_TYPE [0:n] -> TASK_TYPE [1:1];

node_class INSTANCE end;
edge_type instanceOf : INSTANCE [0:n] -> TYPE [1:1];
node_class TASK is_a NAMED_NODE, INSTANCE

intrinsic state : string := "inDefinition";
end;
node_class RELATIONSHIP is_a INSTANCE end;
edge_type source : RELATIONSHIP [0:n] -> TASK [1:1];
edge_type target : RELATIONSHIP [0:n] -> TASK [1:1];
node_type Composition : RELATIONSHIP end;
node_type ControlFlow : RELATIONSHIP end;
node_type FeedbackFlow : RELATIONSHIP end;

b) Graph schema (instances)

c) Graph transformation rule (instances)

::=

4´ = `4 5´ = `5

2´ = `2 3´ = `3

instanceOf instanceOf

1´ = `1

sourceType targetType

6´ : ControlFlow

source target

instanceOf

`4 = sourceTask `5 = targetTask

`2 : TASK_TYPE `3 : TASK_TYPE

instanceOf instanceOf

`1 = controlFlowType

sourceType targetType

transformation CreateControlFlow 
( sourceTask, targetTask : TASK ; 

controlFlowType : ControlFlowType ; 
out newControlFlow : controlFlow)

=

return newControlFlow := 6´;
end;

Fig. 7. Type-level domain knowledge in run time graph: PROGRES specification (ConDes)

the relationships between nodes and their types (vertical arrows in Figure 6). (ii) Hori-
zontal instantiation regulates the relationships between instance nodes and type nodes
of the run time graph; the rules for instantiation are defined by the modeler.

The ConDes approach is realized in PROGRES as follows (Figure 7): (a) Graph
schema (types): Types of tasks and relationships are represented as nodes being part
of the type graph at run time. This requires the declaration of respective node classes /
types, e.g., TASK TYPE or RELATIONSHIP TYPE. (b) Graph schema (instances): Like-
wise, a schema for the instance graph is required (including e.g. the classes TASK and
RELATIONSHIP). Instance graph nodes are connected to type graph nodes (edge type
instanceOf). (c) GraTra rule (instances): In contrast to the rule of Figure 4b, the current
rule includes type nodes for source and target tasks to check type compatibility of the
control flow. Furthermore, the control flow node is instantiated from a generic type; its
specific type is represented by the instanceOf edge to the control flow type.

4.3 Instance-Level Domain Knowledge in the Run Time Graph

In ConDes, type-level domain knowledge is represented in the run time graph. In con-
trast, the authoring environment CHASID [9] maintains instance-level domain knowl-
edge in the run time graph. Both approaches are complementary to each other since in
CHASID domain-specific types are fixed in the graph schema.

In specific domains such as writing of scientific articles, certain patterns occur over
and over again. For example, an article may be structured into an introduction, a de-
scription of the research method, a report on the results, and a final discussion. Also,
the explanation used in the article might follow typical styles, top-down from a prin-
ciple to examples, or bottom-up, starting with examples and then elaborating on the
abstraction. Domain knowledge of this kind is located at the level of abstract instances.
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b) Graph schema for pattern instances

node_type PatternInstance : NAMED_NODE end;
edge_type instanceOfPattern : PatternInstance [0:n] -> Pattern [1:1];
node_class PATTERN_ELEMENT_INSTANCE is_a NODE end;
edge_type instanceOfElement : PATTERN_ELEMENT_INSTANCE [0:n] -> PATTERN_ELEMENT [1:1];
edge_type references : PATTERN_ELEMENT_INSTANCE [0:n] -> PROCESS_NODE [1:1];
edge_type containsInstance : PatternInstance [1:1] -> PATTERN_ELEMENT_INSTANCE [1:n];
node_type TaskElementInstance : PATTERN_ELEMENT_INSTANCE end;
node_type RelationshipElementInstance : PATTERN_ELEMENT_INSTANCE end;
edge_type sourceInstance : RelationshipElementInstance [0:n] -> TaskElementInstance [1:1];
edge_type targetInstance : RelationshipElementInstance [0:n] -> TaskElementInstance [1:1];

transformation BindRelationshipElement 
( pattern : Pattern ; patternInstance : PatternInstance ;

relationshipElement : RelationshipElement ; 
out relationshipElementInstance : RelationshipElementInstance)

=

condition `10.type = `2.elementType;
return relationshipElementInstance := 5';

end;

c) Graph transformation rule for binding a pattern element

::=

`2 = relationshipElement

`3 : TaskElement `4 : TaskElement

`6 : TaskElementInstance `7 : TaskElementInstance

`5 : RelationshipElementInstance

`9 : TASK `11 : TASK`10 : RELATIONSHIP

sourceElement targetElement

instanceOfElement

instanceOfElementinstanceOfElement

references references
source target

`8 = patternInstance

containsInstance

`1 = pattern
instanceOfPattern

containsElement

containsElementcontainsElement

2' = `2

3' = `3 4' = `4

6' = `6 7' = `7

5' : RelationshipElementInstance

9' = `9 11' = `1110' = `10

sourceElement targetElement

instanceOfElement

instanceOfElementinstanceOfElement

references references
source target

8' = `8

containsInstance

1' = `1
instanceOfPattern

containsElement

containsElementcontainsElement

references

sourceInstance targetInstance

a) Graph schema for pattern definitions

node_type Pattern : NAMED_NODE end;
node_class PATTERN_ELEMENT is_a NAMED_NODE

elementType : type_in PROCESS_NODE;
end;
edge_type containsElement : Pattern [1:1] -> PATTERN_ELEMENT [1:n];
node_type TaskElement : PATTERN_ELEMENT end;
node_type RelationshipElement : PATTERN_ELEMENT end;
edge_type sourceElement : RelationshipElement [0:n] -> TaskElement [1:1];
edge_type targetElement : RelationshipElement [0:n] -> TaskElement [1:1];

Fig. 8. Definition and instantiation of patterns: PROGRES specification (CHASID)
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Tool support for patterns comprises an editor for defining patterns, a tool for in-
stantiating patterns, and an analysis tool for checking the consistency between pattern
instances and pattern definitions. A pattern is defined by abstraction from a graph of
instances. Thus, CHASID provides for round trip evolution of patterns.

The run time graph consists of a concrete instance graph, which is composed of “or-
dinary” nodes and edges, a pattern definition graph, which defines patterns abstracted
from such nodes and edges, and a pattern instance graph, which contains instances
(applications) of patterns. The pattern instance graph is placed in between the instance
graph and the pattern definition graph to record the instantiation of patterns.

The specification of patterns is illustrated in Figure 8: (a) Graph schema for pattern
definitions: A pattern consists of a number of pattern elements. For each element, ele-
mentType determines the type of the instance to be matched or created in the instance
graph. In the case of dynamic task nets, patterns are composed of tasks and relation-
ships. (b) Graph schema for pattern instances: A pattern instance is connected to a
pattern definition on one end and to a graph of concrete instances on the other end. A
pattern instance constitutes a copy of a pattern definition. Elements of pattern instances
are represented by nodes of class PATTERN ELEMENT INSTANCE. Edges of type in-
stanceOfElement and references connect these nodes to pattern elements and concrete
instances, respectively. (c) GraTra rule for binding a pattern element: When a pattern
is instantiated, all context elements are bound to already existing instances. For non-
context elements, concrete instances are created and connected to instances of context
elements. The role of an element (context or non-context) is determined only on pattern
instantiation. The rule shown in Figure 8 handles the binding of a relationship element.
It assumes that adjacent task elements have already been bound, creates an instance of
the relationship element, and binds it to an actual, already existing relationship.

5 Comparison

Table 1 classifies the approaches presented in this paper according to Subsection 2.3.

5.1 Objects of Evolution

Evolution of Types. In AHEAD, domain knowledge at the type level is represented in
the graph schema. Thus, the specification developer may exploit the rich set of language
features provided by PROGRES. This reduces the effort to model type-level domain
knowledge considerably. On the other hand, PROGRES does not support evolution of
the graph schema (apart from extensions). In AHEAD, an application-specific evolu-
tion approach was implemented on top of PROGRES (supporting schema versioning,
selective migration, and toleration of inconsistencies).

The solution adopted in ConDes has complementary advantages and drawbacks.
Flexibility is increased since the domain knowledge is part of the run time graph and
may be modified at any time. Furthermore, the specification developer may design a
domain-specific language for defining types freely. On the other hand, the specifica-
tion effort is increased significantly: The specification developer has to provide rules
for building up the type graph. Furthermore, he has to specify operations on instance
graphs which control consistency with the type graph.
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Table 1. Classification of evolution approaches

Criteria Objects Levels Time

Systems Types Operations Patterns Specification Run Time Compile Time Run Time

AHEAD (3.1, 3.2) x x x x

IREEN (4.1) x x x

ConDes (4.2) x x x

CHASID (4.3) x x x

Evolution of Operations. AHEAD supports the evolution of operations by distinguish-
ing between a generic layer and a specific layer: Domain-specific operations may be
defined on top of generic operations (Figure 4d). Evolution is performed at the specifi-
cation level; any change of the overall specification requires subsequent recompilation.

In IREEN, evolution of operations is performed at the specification level, as well.
However, rules may be changed at any time since they are interpreted rather than com-
piled. Furthermore, rules may be derived from the run time graph with the help on an
inference tool. The inference tool performs a higher order transformation [28], i.e., the
tool executes a transformation in order to produce another transformation.

Evolution of Patterns. Patterns are supported only in CHASID, where they have been
realized on top of PROGRES. An object pattern is a graph of abstract instances. Patterns
constitute structural domain knowledge which is represented in the run time graph. Sev-
eral types of operations are provided on patterns, including pattern definition, pattern
instantiation, and analysis of consistency between patterns and their instantiations after
either of them have been modified.

Instantiation of a pattern resembles the application of a GraTra rule. However, there
are several crucial differences between patterns and GraTra rules in PROGRES: (a)
A GraTra rule is part of the specification, while a pattern is represented in the run
time graph. (b) In a GraTra rule, there is a fixed separation between context nodes and
non-context nodes. In a pattern, each node may play both roles; which nodes serve
as context nodes, is determined only dynamically when a pattern is instantiated. (c) In
PROGRES, a GraTra rule is applied without recording its application. In contrast, when
a pattern is instantiated in CHASID, its application is recorded to support traceability
and consistency control.

5.2 Levels of Evolution

In AHEAD and IREEN, evolution is performed at the specification level. In contrast,
ConDes and CHASID handle evolution at the run time level. Evolution at both levels
may be combined, but this has not been done in any of these projects.

Evolution at both levels differ with respect to flexibility, impact, and technical real-
ization. As mentioned above, evolution at the run time level provides for maximum
flexibility. As a general design guideline, evolution should be performed at the run
time level if domain knowledge is not stable. Nevertheless, both IREEN and AHEAD
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demonstrate the feasibility of specification level evolution for dynamic domain knowl-
edge. With respect to its impact, evolution at the specification level is more fundamental
because it may affect all existing run time graphs. Concerning the technical realization,
evolution at the specification level has to satisfy hard constraints imposed by the speci-
fication language and its support environment. In particular, the consistency of run time
graphs with respect to the specification must not be violated. In contrast, evolution at
the run time level is concerned with soft constraints which are defined and (potentially)
enforced by the specification developer.

5.3 Time of Evolution

Since in ConDes and CHASID domain knowledge is part of the run time graph, evo-
lution is performed at run time. While domain knowledge is represented in the specifi-
cation in IREEN, evolution is performed at run time, as well because IREEN interprets
GraTra rules. Only AHEAD is constrained to evolution at compile time.

While the level of evolution significantly impacts the specification, the time of evo-
lution does not impact the specification at all. If a PROGRES specification were inter-
preted rather than compiled, AHEAD would gain run time evolution for free.

6 Related Work

In the context of GraTra systems, the term evolution is frequently used with a very broad
meaning: A graph is evolved by performing a graph transformation. For example, Mens
[18] uses graph transformations for refactoring of object-oriented software systems;
Engels et al. [7] specify consistency-preserving transformations of UML/RT models
with graph transformations. In both cases, however, it is the modeled system which
evolves — but not the underlying domain knowledge (see below).

Evolution of types has been considered for long in the context of database manage-
ment systems (schema evolution [2]). Here, the main focus lies on the data migration
problem, i.e., to migrate the data such that they conform to the new schema. More re-
cently, the problem of migrating instances in response to type changes has been tackled
also in the context of model-driven software engineering (model migration [22]). For
example, [23] introduces the language Epsilon Flock for model migration, and [13] pro-
poses a catalog of operators for the coupled evolution of metamodels and models in the
COPE framework. Furthermore, several approaches have been developed in the GraTra
field. [27] formally defines GraTra rules for co-evolution of type and instance graphs.
The Model Integrated Computing (MIC) tool suite [15] includes a Model Change Lan-
guage (MCL) in which GraTra rules for migration may be specified. Finally, the data
migration problem is also studied in the domain of dynamic reconfiguration (which is
performed in [29] with graph transformations).

Evolution of metamodels affects not only models, but also model transformations.
In [24], ontology mappings are used to update model transformations after metamodel
changes. These transformations constitute an example of higher-order transformations
being surveyed in [28]. Finally, Bergman et al. [4] introduce change-based model trans-
formations (GraTra rules trigged by the application of other GraTra rules) as a general
formalism for propagating changes.
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Patterns are supported e.g. in several UML tools by (usually hard-wired) commands.
Levendovszky et al. [17] introduce a language and a tool for defining patterns based on
arbitrary graph-based metamodels. Zhao et al. [30] define patterns with variable parts
by sets of GraTra rules and use graph parsing for pattern recognition. Bottoni et al. [5]
formalize patterns as graphs and describe their instantiation by triple graphs.

7 Conclusion

We have examined evolution support for evolving domain knowledge in a set of projects
which were strongly application-driven. The presented evolution approaches were im-
plemented on top of a single specification language (PROGRES), but they may be trans-
ferred to other technological spaces such as EMF-based model transformations [1] (due
to space restrictions, this could not be shown in this paper). Future work should address
the systematic engineering of GraTra systems for evolving domain knowledge — at the
level of both languages and tools.
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Abstract. Triple Graph Grammars (TGGs) are a rule-based technique
of specifying a consistency relation over a source, correspondence, and
target domain, which can be used for bidirectional model transformation.

A current research challenge is increasing the expressiveness of TGGs
by ensuring that global constraints in the involved domains are not vi-
olated by the transformation. Negative Application Conditions (NACs)
can be used to enforce this property, referred to as schema compliance.

In previous work, we have presented a polynomial control algorithm
for integrity preserving TGGs, using NACs only to ensure schema com-
pliance, meaning that, for efficiency reasons, the usage of NACs must be
restricted appropriately. In this paper, we apply the well-known transla-
tion of global constraints to application conditions for a given TGG and
set of global constraints. We show that the derived set of NACs is indeed
sufficient and necessary to ensure schema compliance, i.e., that the TGG
together with the derived NACs is integrity preserving by construction.

Keywords: bidirectional transformation, triple graph grammars, schema
compliance, integrity preservation, negative application conditions.

1 Introduction and Motivation

Model-Driven Engineering (MDE) is an established, viable means of coping with
the increasing complexity of modern software systems, promising an increase in
productivity, interoperability and a reduced gap between solution and problem
domains. Model transformation plays a central role in any MDE approach and,
as industrial applications demand efficiency and other suitable properties, the
need for formal verification arises. This is especially the case for bidirectional
transformation, a current research focus in various communities.
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Triple Graph Grammars (TGGs) [13] are a declarative, rule-based technique
of specifying a consistency relation between models in a source, correspondence
and target domain, from which forward and backward unidirectional operational
rules can be automatically derived. Coupled with a control algorithm to guide
the overall transformation process, the derived operational rules can be used to
realize bidirectional model transformation with useful formal properties such as
correctness, completeness and polynomial runtime [2,11,13].

A current challenge is to increase the expressiveness of TGGs by ensuring
schema compliance, i.e., that the derived transformation produces triples that
are not only consistent with respect to the TGG, but also fulfil a set of global
constraints in the involved domains. Although Negative Application Conditions
(NACs) can clearly be used to restrain a TGG and control the derived trans-
formation appropriately [6,11], due to efficiency reasons, TGG implementations
typically have to restrict the usage of NACs appropriately. In [11], a polyno-
mial algorithm is presented for integrity preserving TGGs, which use NACs
only to ensure schema compliance. All formal properties are proven for integrity
preserving TGGs, but a constructive definition of the exact supported class of
NACs and a formal static verification of integrity preservation is left to future
work.

Inspired by the construction of application conditions from constraints pre-
sented in [5], we close this gap and characterize the class of allowed NACs for
integrity preserving TGGs as exactly those NACs that can be derived automat-
ically from negative constraints according to the construction in [5].

Our contribution in this paper is to (i) extend results from [3] to show that
existing graph transformation theory from [5] can be applied to TGGs, (ii) use
these results to give a precise and constructive definition of the exact class of
supported NACs used by integrity preserving TGGs, and (iii) prove that this
class is indeed necessary and sufficient to guarantee schema compliance.

The paper is structured as follows: Sect. 2 discusses our running example, used
to introduce TGGs, constraints, NACs and our formalization for these concepts.
Our main contribution is presented in Sect. 3, while Sect.4 discusses related
approaches. Sect. 5 concludes with a summary and future work.

2 Running Example and Formalization

Our running example is a tool adapter scenario inspired by [12], and is depicted
schematically in Fig. 1. A Commercial Off-The-Shelf (COTS) tool is used by a
certain group of domain experts to specify dependencies in a system via com-
ponent/block diagrams (1). After using the tool for a period of time, a series
of domain-specific rules and conventions are bound to evolve and the need to
manipulate the diagrams to enforce these rules in an automatized but high-level
manner arises. COTS tools are, however, typically closed source and often only
offer an import and export format (2) as a means of data exchange [12]. This
tool-specific textual exchange format (3), can be parsed via string grammars to
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export

import

source target

parser

unparser

Commercial Off-The-Shelf (COTS) 
Tool used by domain experts

Simple, generic and 
"tool-near" model 
(usually a tree)

High-level model, ideal 
for analysis and further 

transformations

derived from
conforms toconforms to

Unidirectional 
Transformations

TGG Specification 
(Metamodels and Rules)

1

export

import

2

t
3

pa se

unparse
4

5

nsforma
6

Fig. 1. Overview of the bidirectional transformation for our running example

a simple, generic tree and unparsed via a set of templates (4). From a TGG
specification (5), describing how a model can be extracted from the (parse) tree,
a pair of unidirectional transformations can be automatically derived (6), which
can be used to forward transform the tree to a model, and after enforcing rules
and possibly applying refactorings on the model, to backward transform the
model to a tree that can be unparsed to text.

In such a scenario, bidirectionality is a natural requirement and TGGs, as a
bidirectional model transformation language, can increase productivity by sup-
porting a single specification of the bidirectional transformation and by guar-
anteeing that derived forward and backward transformations always produce
consistent triples with respect to the consistency relation defined by the TGG.

In the following, we use this example to introduce TGGs, constraints, NACs
and our formalization for these concepts. Due to space limitations, we assume
a basic knowledge of category theory and fundamental concepts from algebraic
graph transformation as presented in detail in [3].

2.1 TGGs as an Adhesive HLR Category

Rule-based transformation systems can be treated in a very general manner so
that fundamental results can be applied to a large class of algebraic structures.
As presented in [3], the minimal requirement on such a structure to build up a
theory of rule-based transformation systems is the existence of generalized forms
of a union of structures called a pushout, and an intersection of structures called
a pullback. In addition, these constructions need to show a certain notion of
compatibility. We refer the interested reader to [3] for further details.

Any category that fulfils these minimal requirements is called an adhesive
High-Level-Replacement (HLR) category allowing the general theory on adhe-
sive HLR categories to be instantiated by a particular category. The following
definitions are adapted from [3,5].
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Definition 1 (Adhesive High-Level-Replacement Category).
A category C with a morphism class M is called an adhesive HLR category if:

1. M is a class of monomorphisms closed under isomorphisms, composition,
and decomposition.

2. C has pushouts and pullbacks along M-morphisms, and M-morphisms are
closed under pushouts and pullbacks.

3. Pushouts in C along M-morphisms are Van Kampen squares [3,5].

Definition 2 (Rule and Direct Derivation).
L R

G G′

m m′

K

D

(1) (2)

Given a rule r = (L ← K → R) consisting of two
morphisms in M with a common domain K, a direct
derivation consists of two pushouts (1) and (2) in the
category C (cf. diagram to the right), denoted as

G
r@m� G′ (or simply G

r� G′), where m : L → G is
referred to as the match and m′ : R → G′ as the comatch of r. Given m, (1) has
to be constructed as a pushout-complement, a generalized subtraction of graphs,
which exists if m fulfills a gluing condition in C (cf. [3] for details).

The following definitions instantiate this theory for the case of TGGs:

Definition 3 (Graph and Graph Morphism).
A graph G = (V, E, s, t) consists of finite sets V of nodes and E of edges, and
two functions s, t : E → V that assign each edge source and target nodes.
A graph morphism h : G → G′, with G′ = (V ′, E′, s′, t′),
is a pair of functions h := (hV , hE) where hV : V → V ′, hE : E → E′ and
∀e ∈ E : hV (s(e)) = s′(hE(e)) ∧ hV (t(e)) = t′(hE(e)).

Graphs and graph morphisms form a category called Graphs (cf. [3] for details).

Definition 4 (Typed Graph and Typed Graph Morphism).
A type graph is a graph T G = (VTG, ETG, sTG, tTG).
A typed graph is a pair (G, type) of a graph G together with a graph morphism
type: G → T G. Given (G, type) and (G′, type′), g : G → G′ is a typed graph
morphism iff type = type′ ◦ g.
L(T G) := {G | ∃ type : type(G) = T G} denotes the set of all graphs of type T G.

In the following, we denote triple graphs with single letters (e.g., G), which
consist of graphs denoted with an index X ∈ {S, C, T } (e.g, GS , GC , GT ).

Definition 5 (Typed Triple Graph and Typed Triple Morphism).

A triple graph G := GS
γS← GC

γT→ GT consists of typed graphs GX ∈ L(T GX),
X ∈ {S, C, T }, and two morphisms γS : GC → GS and γT : GC → GT .

A typed triple morphism h := (hS , hC , hT ) : G → G′, G′ = G′S
γ′S← G′C

γ′T→ G′T is
a triple of typed morphisms hX : GX → G′X , X ∈ {S, C, T }, s.t. hS◦γS = γ′S◦hC

and hT ◦ γT = γ′T ◦ hC .

A type triple graph is a triple graph T G = T GS
ΓS← T GC

ΓT→ T GT . A typed triple
graph is a pair (G, type) of a triple graph G and triple morphism type : G → T G.
Analogously to Def. 4, L(T G) denotes the set of all triple graphs of type T G.
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Remark 1 (Attributed Typed Graphs with Inheritance). Practical ap-
plications require attributed typed graphs with node type inheritance and the
usage of abstract types to allow for concise rules. Due to space limitations, we
omit the corresponding formalization and refer to [8,3] for details.

name : String
File

label : String
Node

name : String
System

Block

id : Integer
ProvidedPort

RequiredPort

Connector

F2S

N2R

N2P

N2B

N2C

Source Domain Correspondence Domain Target Domain

Generic Tree 
Metamodel

Correspondence 
Metamodel

Block Diagram 
Metamodel

Fig. 2. Metamodels for trees, links and corresponding block diagrams

Example: Figure 2 depicts the type triple graph for our running example. On
the left, the type graph for the source domain defines concepts such as a File,
which can contain Nodes with labels. On the right, the type graph for the target
domain defines a System, which consists of Blocks with ProvidedPorts and
RequiredPorts. Blocks can depend on other Blocks via Connectors that assign
a RequiredPort to a ProvidedPort. The type graph for the correspondence
domain defines which source elements correspond to which target elements via
correspondence types (visually distinguish as hexagons) such as F2S (Files with
Systems). A typed triple graph for our example is depicted in Fig. 3.

:F2Sname = "example.bd"
f:File

label = "block"
n1:Node

name : "example"
s:System

b1:Block

r2:RequiredPort

c1:Connector

label = "block"
n2:Node

label = "require"
rn1:Node

label = "42"
cn1:Node label = "provide"

pn1:Node

label = "42"
id1:Node

label = "require"
rn2:Node

label = "42"
cn2:Node

b2:Block

id = 42
p1:ProvidedPort

r1:RequiredPort

c2:Connector

:N2B

:N2R

:N2B

:N2C

:N2P

:N2C

:N2R

Fig. 3. Model triple of tree, links and corresponding block diagram
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Fact 1 (TriGraphs is an adhesive HLR category).
The category TriGraphs of typed triple graphs and triple morphisms, together
with the class M of injective triple morphisms is an adhesive HLR category.
For the proof we refer the interested reader to Fact. 4.18 in [3].

Definition 6 (Triple Graph Grammar).
Let TG be a type triple graph. A TGG rule r = (L ← K → R) is a monotonic
creating rule, where L = K ⊆ R are typed triple graphs over TG.
TGG rules, denoted simply as r = (L, R), are applied at injective matches only.
A triple graph grammar T GG := (T G,R) is a pair consisting of a type triple
graph TG and a finite set R of TGG rules. The generated language is denoted as
L(T GG) := {G ∈ L(T G) | ∃ r1, r2, . . . , rn ∈ R : G∅

r1� G1
r2� ...

rn� Gn = G},
where G∅ denotes the empty triple graph.

Example: The TGG consisting of five rules for our example is depicted in Fig. 4.
Each rule r = (L, R) is depicted in a concise manner by merging L and R in
a single diagram: Black elements without any markup are context elements of
the rule (L), while green elements with a “++” markup are created by the rule
(R \ L). Rule (I) creates a file F and a corresponding system S, ensuring that
the name of the system corresponds to the name of the file minus its extension.
Rule (II) requires a file and a corresponding system as context, and creates a node
with a “block” label and a corresponding block. Rule (III) creates required ports,
while Rule (IV) creates provided ports, ensuring that the id of the provided port
is equal to the label of the id node of the corresponding provider node. Children
nodes of require nodes are created with corresponding connectors in Rule (V).

FS:F2S
name := n + ".bd"

F:File
name := n
S:System

++
++

++
++ ++

Rule (I)

BB:N2B
label := "block"
BN:Node B:Block

++
++

++++
++

Rule (II)

FS:F2SF:File S:System

++ ++

RR:N2R
label := "require"

RN:Node R:RequiredPort

++
++

++++
++

Rule (III)

BB:N2BBN:Node B:Block

++ ++

S:System++
++

CC:N2C
label := i
CN:Node

C:Connector

++
++

++
++

Rule (V)

RR:N2R
label == "require"

RN:Node R:RequiredPort

++
++

S:System++
++

id == i
P:ProvidedPort

PP:N2Plabel := "provide"
PN:Node

id := i
P:ProvidedPort

++
++

++
++

++

Rule (IV)

BB:N2BBN:Node B:Block

++ ++

S:System++
++

label := i
ID:Node

++ ++

++

Fig. 4. TGG rules for simultaneous evolution of trees and corresponding block diagrams
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2.2 Bidirectional Model Transformation with TGGs

TGGs can be used for bidirectional model transformation by automatically de-
riving forward and backward unidirectional rules. These operational rules form
the atomic steps of a complete transformation sequence determined by a control
algorithm. A TGG implementation, therefore, faces the challenge of (i) deter-
mining an appropriate operationalization of the TGG rules, and (ii) providing an
efficient (polynomial) control algorithm to determine and control the sequence
in which nodes of the input graph are transformed with operational rules in
an efficient manner. In addition to the restriction to non-deleting TGG rules in
Def. 6, the control algorithm presented in [11] poses further restrictions on the
class of supported TGGs. As we aim to close the gap between formal results
and an actual TGG algorithm and implementation, we shall present the general
theory from [5] already simplified and reformulated with these restrictions. We
believe that this does not only improve readability but also allows for a closer
correlation with our running example. We refer the interested reader to [5] for a
more general formulation of Def. 7, 8 and Theorem 1.

A metamodel does not only specify the allowed structure of models (abstract
syntax) but also restricts the class of valid models via some form of constraints
such as multiplicities or OCL (static semantics). In our formalization, we com-
plement type graphs with negative constraints1 defined in the following:

Definition 7 (Negative Constraints and Schema Compliance).
Let M denote the class of monomorphisms in TriGraphs. A schema is a
pair (T G,NC) of a type triple graph T G and a set NC ⊆ L(T G) of nega-
tive constraints. A typed triple graph G ∈ L(T G) satisfies a negative constraint
NC ∈ NC, denoted as G |= NC, if �nc ∈ M : NC → G. A negative source

constraint is of the form NCS
∅← ∅ ∅→ ∅ (negative target constraints are defined

analogously). Let L(T G,NC) := {G ∈ L(T G) | ∀NC ∈ NC, G |= NC} denote the
set of all schema compliant triple graphs. T GG = (T G,R) is schema compliant,
iff L(T GG) ⊆ L(T G,NC), i.e., the language generated by T GG consists only of
schema compliant triple graphs.

Example: Fig. 5 depicts two negative target constraints2 for our example:

∅ ∅← ∅ ∅→ NC1 forbids a block from satisfying its own dependencies, while

∅ ∅← ∅ ∅→ NC2 prohibits connecting a required port to more than one provider.

Now consider Rule (V) (Fig. 4) and ∅ ∅← ∅ ∅→ NC1 (Fig. 5). Note that the TGG
consisting of the five rules is not schema compliant as, by creating connectors
between ports of the same block via Rule (V), it can create triples graphs that

violate ∅ ∅← ∅ ∅→ NC1. The question is how to restrain TGG rules in order to
ensure schema compliance. Assuming that NACs are sufficient for this task (we
prove this in Sect. 3), the following definition formalizes NACs for TGG rules.

1 The negative constraints we use are powerful enough to enforce upper bounds on mul-
tiplicities, lower bounds can be enforced by positive constraints as handled in [5,15].

2 Only the non-trivial target components of the negative constraints are shown.
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B:Block

P:ProvidedPort

R:RequiredPort

C:Connector

NC1

R:RequiredPort

C1:Connector C2:Connector

P1:ProvidedPort P2:ProvidedPort

NC2

Fig. 5. Negative constraints for block diagrams

CC:N2C
label := i
CN:Node

C:Connector

++
++

++
++

RR:N2R
label == "require"

RN:Node R:RequiredPort

++
++

S:System++
++

id == i
P:ProvidedPort

B:Block

++

Fig. 6. Rule (VI) which uses a NAC to ensure that NC1 is not violated

Definition 8 (Negative Application Conditions (NACs)).
Let T G be a type triple graph. A negative application condition over a typed
triple graph L ∈ L(T G) is a typed triple graph N ∈ L(T G) such that L ⊆ N .
A triple morphism m : L → G satisfies N , i.e., m |= N , if �n : N → G, n|N = m.
A neg. application condition N(r) for a TGG rule r = (L, R) is a NAC over L.

A direct derivation G
r@m� G′ satisfies N(r), if m |= N(r).

A source NAC is of the form NS
σL← LC

τL→ LT (target NACs are defined analo-
gously). Every TGG rule r is equipped with N , a set of NACs, i.e., r = (L, R,N ).

Example: Taking ∅ ∅← ∅ ∅→ NC1 (Fig. 5) as the negative target constraint
that must not be violated by the TGG for our running example, Rule (V) can
be extended by a target NAC N that appropriately restricts matches to ensure
schema compliance. This new Rule (VI) = (L, R, N) is shown in Fig. 6 with
nodes3 in N \ L depicted as crossed out elements (i.e., block B).

For bidirectional model transformation, each TGG rule must be decomposed
into a source rule that only changes the source graph of a graph triple and a
forward rule that retains the source graph and changes the correspondence and
target graphs. For NACs that can be separated into source and target compo-
nents, formal results [6,11] guarantee that this is always uniquely possible, and
that the sequence of derived source and forward rules can be reordered appropri-
ately so that the source rules first build up the source graph completely and the
sequence of forward rules perform a forward transformation. Handling arbitrary
(negative) application conditions efficiently is an open challenge4, but if the us-
age of source and target NACs as defined above is restricted to ensuring schema

3 Note that all links incident to B are also elements in N .
4 To ensure efficiency, we employ a context-driven recursive algorithm and a dangling
edge check to avoid backtracking. This strategy, however, does not work for arbitrary
NACs that can influence rule application with respect to the source domain.
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compliance, then they can be safely ignored in the source domain (assuming
consistent input graph triples) and only used in the target domain to ensure
that no constraints are violated by applying the forward rule [11]. The follow-
ing definition, adapted from [6,11], formalizes the decomposition process for a
forward transformation. As TGGs are symmetric, all definitions and arguments
can be formulated analogously for a backward transformation.

Definition 9 (Operationalization for Rules with Source/Target NACs).

Let T GG = (T GT,R) and r = (LS
σL← LC

τL→ LT , RS
σR← RC

τR→ RT ,N ) ∈ R.
If N = NS∪NT , where NS is a set of source NACs, and NT a set of target NACs,
then source rule rS = (SL, SR,NS) and forward rule rF = (F L, F R,NT ) can
be derived according to the following diagram (triangles represent sets of NACs).

SR =

SL = LS

RS R =

L = LS

RS

LC

RC

LT

RT

L

R

L

R

FR=

FL = RS

RS

LC

RC

LT

RT

id

L

R

L

R

NS NS NT NT

Example: The derived forward and backward rules for Rule (VI) (Fig. 6) are
depicted in Fig. 7. As the required NAC is a target NAC, it does not restrain
the backward rule rB in any way, but restrains the forward rule rF to ensure

that the negative target constraint ∅ ∅← ∅ ∅→ NC1 is not violated.

rF :

rB :

CC:N2CCN:Node C:Connector
++

++
++

RR:N2R
label == "require"

RN:Node R:RequiredPort

++

S:System++
++

id == CN.label
P:ProvidedPort

B:Block

++

CC:N2C
label := P.id
CN:Node

C:Connector

++
++

RR:N2R
label == "require"

RN:Node R:RequiredPort

++
++

S:System

P:ProvidedPort++

Fig. 7. Derived operational rules from Rule (V) of our running example

For integrity preserving TGGs that fulfil certain restrictions, including using
NACs only to ensure schema compliance, [11] has shown that a polynomial,
context-driven TGG control algorithm can guarantee all important formal prop-
erties (correctness, completeness and efficiency). Due to space limitations, we
refer to [11] for further details concerning the context-driven TGG control al-
gorithm, definitions and proofs of formal properties, and exactly why these re-
strictions are necessary. The following definition, taken from [11], formalizes the
concept of integrity preservation.
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Definition 10 (Integrity Preserving TGGs).
Given a schema (T G,NC) and a TGG rule r = (L, R,N ), where r− := (L, R, ∅)
is the same rule as r but without NACs. The TGG rule r is integrity preserving
iff ∀ G, G′ ∈ L(T G):

1. NC and N consist of only negative source/target constraints and source/target
negative application conditions.

2. r preserves schema compliance for triple graphs:

For every G
r@m� G′ : G ∈ L(T G,NC)⇒ G′ ∈ L(T G,NC),

3. r− preserves violations of schema compliance for triple graphs:

For every G
r−@m� G′ : G �∈ L(T G,NC)⇒ G′ �∈ L(T G,NC)

4. NACs are only used to ensure schema compliance in the following manner:

For every G
r−@m� G′ : ∃N = NS ← LC → LT ∈ N with m �|= N ⇒

∃NC = NCS
∅← ∅ ∅→ ∅ ∈ NC : G′ �|= NC (analogously for target NACs)

A TGG is integrity preserving if it consists only of integrity preserving rules.

3 From Global Constraints to Integrity Preserving TGGs

Given a TGG and a set of global constraints, specifying the right NACs, i.e.,
NACs that are just strong enough to ensure schema compliance but not stronger,
is quite a challenge even for experienced users.

In this section, we show that the required NACs can be automatically derived
from the set of negative constraints and that the set of NACs derived according to
this construction is indeed sufficient and necessary to ensure schema compliance,
i.e., that the TGG together with the derived set of NACs is integrity preserving.

In order to apply results from [5], we have to show two additional properties
for TriGraphs: the existence of a generalized disjoint union (binary coproduct),
and a generalized factorization in surjective and injective parts for every triple
morphism (epi-mono factorization).

Definition 11 (Binary Coproducts).
A category C = (ObC , MorC , ◦, id) has binary coproducts iff ∀A, B ∈ ObC the
binary coproduct of A and B, (A + B, iA : A → A + B, iB : B → A + B), can
be constructed such that ∀X ∈ ObC , f : A → X, g : B → X,

∃ [f, g] ∈ MorC : A + B → X with [f, g] ◦ iA = f and [f, g] ◦ iB = g.

Lemma 1. Category TriGraphs has binary coproducts.

Proof. This is a direct consequence of the facts that category Graphs has bi-
nary coproducts and coproducts in TriGraphs are constructed componentwise
(cf. Facts 4.15 and 4.16 in [5]).
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Given (AS
αS← AC

αT→ AT ), (BS
βS← BC

βT→ BT ), the binary coproduct can be
constructed as follows:

A + B := (AS + BS)
[iAS
◦αS ,iBS

◦βS]←− (AC + BC)
[iAT

◦αT ,iBT
◦βT ]

−→ (AT + BT ),

iA := (iAS , iAC , iAT ), iB := (iBS , iBC , iBT )

i.e., by constructing the binary coproduct componentwise in the category of
graphs Graphs which exists as shown in [3].

Definition 12 (Epi-Mono Factorization). A category is said to have an epi-
mono factorization if ∀ f : A → B, ∃ e : A → C, m : C → B such that e is an
epimorphism, m is a monomorphism and m ◦ e = f .

Lemma 2 (Category TriGraphs has an epi-mono factorization).

Proof. Given (fS , fC , fT ) : (AS ← AC → AT ) → (BS ← BC → BT ) the dia-

gram below shows that C = CS
σS← CC

σT→ CT can be determined appropriately,
such that e := (eS , eC , eT ) : A → C and m := (mS , mC , mT ) : C → B, composed
componentwise using composition in TriGraphs and the property of the epi-
mono factorization in Graphs [3], fulfil m◦e = (mS ◦eS , mC ◦eC , mT ◦eT ) = f .
σS := m−1S ◦ βS ◦ mC , is well-defined as mS is injective and thus reversible.
Furthermore, we have fS ◦ αS = mS ◦ eS ◦ αS = βS ◦ fC , thus the images of
mS ◦ eS ◦ αS and βS ◦ fC are equal. It remains to show that the left two new
squares commute (proof for σT analogously):

σS := m−1
S ◦ βS ◦ mC

σT := m−1
T ◦ βT ◦ mC

AS ← AC → AT
αS αT

BS ← BC → BT
βTβS

fTfCfS

eS eC eT

mS mC mT

CS ← CC → CT←←σS →→σT

mS ◦ σS = mS ◦m−1S ◦ βS ◦mC

= βS ◦mC

mS ◦ eS ◦ αS = fS ◦ αS

= βS ◦ fC = βS ◦mC ◦ eC
= mS ◦ σS ◦ eC
As mS is mono, it follows:
eS ◦ αS = σS ◦ eC

After proving these additional properties for TriGraphs, we can now apply
results from [5] to construct NACs from negative constraints:

Theorem 1 (Constructing NACs from Negative Constraints).
Given a T GG = (T G,R−) with rules without NACs, and a set of global con-
straints NC ⊆ L(T G). For every rule r− = (L, R, ∅) ∈ R−, there is a construc-
tion A for NACs such that:

∀G
r@m� G′ with r = (L, R, A(NC)) ∈ R: G ∈ L(T G,NC)⇒ G′ ∈ L(T G,NC)

Proof. We refer to [5] for a detailed proof that NACs derived according to this
construction are necessary and sufficient to ensure schema compliance.

In the following, we present a version of the general construction from [5],
simplified for negative constraints (Def. 7) and NACs (Def. 8) as required for
our running example.
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Let r− = (L, R, ∅), and NC ∈ NC:

1. Construct the disjoint union R + NC as a binary coproduct with
iR : R → R + NC and iNC : NC → R + NC.

2. Given a graph G′ �|= NC, i.e., ∃nc′ : NC → G′ ∈ M, for any co-match
m′ : R → G′ there is a unique morphism f : R + NC → G′, such that
f ◦ iR = m′ and f ◦ iNC = nc′.

L R

NCN ′N

PO

G G′

R+NC

POm m′ fnc′

n n′

p p′

e

iR

iNC

3. Separate f in two parts, such that the first
part glues graph elements and the second
part embeds this gluing into a larger context,
i.e., let f = e ◦ p′ be an epi-mono factorization,
where e : R + NC → N ′.

4. Then the post-condition n′ : R → N ′ is
defined by n′ = e ◦ iR and there is morphism
p′ : N ′ → G′ such that p′ ◦ n′ = m′. Thus, m′ �|= N ′.

5. Try to construct the pre-condition N as part of the pushout complement
over rule r = (L, R) and post-condition N ′. If it exists, the assumption that
m′ �|= N ′ yields p′ with p′ ◦ n′ = m′. Due to pushout decomposition, we get
p : N → G and n : L → N with p ◦ n = m. Thus, m �|= N .

This is repeated for all constraints NC ∈ NC to construct the rule r = (L, R,N )
and for all rules r− ∈ R− to obtain the set R of rules with required NACs.

Proposition 1.
Given a T GG = (T G,R−) with rules without NACs, and a set of negative

constraints NC ⊆ L(T G). For every G
r−@m� G′ with rule r− = (L, R, ∅) ∈ R− :

G′ ∈ L(T G,NC)⇒ G ∈ L(T G,NC)

POm m′

⊆
L R

G G′NC
nc

nc′

g

Proof. Given G �∈ L(T G,NC) ∧G
r−@m� G′ there is

an NC ∈ NC with G �|= NC. Due to G
r−@m� G′ with

g : G → G′, there is a morphism nc′ = g ◦ nc as
depicted in the diagram to the right.
Hence, G′ �∈ L(T G,NC).

Proposition 2. Given a TGG with rules without NACs, and a set of negative
source constraints, the construction of NACs as specified in Theorem 1 yields
source NACs only (analogously for target constraints and target NACs).

Proof. Since all steps in the NAC construction are defined componentwise, this
case leads back to the NAC construction on simple graphs in the source and
the target case. For correspondence graphs we have the following situation: As
NCC = ∅, (iR)C = (idR)C and fC = m′C , N ′C depends only on m′C . As m′C is
a monomorphism, N ′C = RC . Furthermore, we get NC = LC due to pushout
properties. Correspondingly, it is straight forward to show that NS = LS if
NCS = ∅ in case of negative source constraints and that NT = LT if NCT = ∅
in case of negative target constraints.



368 A. Anjorin, A. Schürr, and G. Taentzer

Corollary 1.
TGGs with NACs constructed according to Theom. 1 only employ NACs to en-
force schema compliance, i.e., for T GG = (T G,R), and G, G′ as in Prop. 1:

∀r = (L, R,N ) ∈ R and G
r−@m� G′ : ∃N ∈ N with m �|= N ⇒ G′ �∈ L(T G,NC).

Proof. Given N ∈ N : G
r−@m� G′ ∧m �|= N , Theom. 1 can be reformulated as:

∀G ∈ L(T G,NC), G
r−@m� G′ : m �|= N ⇔ G′ �∈ L(T G,NC).

Corollary 2.
TGGs with NACs as constructed according to Theom. 1 are integrity preserving

Proof. This follows directly from Def. 10, Theom. 1, Props. 1 and 2, and Coroll. 1.

Example: In the following, we shall use the construction process to derive an

appropriate NAC for Rule (V) of our example (Fig. 4), regarding ∅ ∅← ∅ ∅→ NC1
(Fig. 5) as the constraint that should not be violated.

LT RT

⊆

NC1

R
S
P

R
S
PC

R

PC

BTo allow for a compact notation, a schematic
representation of the target component (LT , RT )
of Rule (V) and the target component NC1 of
the negative constraint is depicted in the dia-
gram to the right, displaying LT and RT sepa-
rately and e.g., B:Block simply as B without its corresponding type. The task is
to derive r = (L, R,N ) from r− = (L, R, ∅) according to our construction. There
are in sum eight different intersections D1

T −D8
T of RT and NC1, i.e., eight dif-

ferent ways of gluing elements in R + NC to construct the post-condition N ′.
The resulting post-conditions and pre-conditions for all cases are depicted in
Fig. 8. Assuming consistent input, D1

T only leads to the NAC N1
T being added

as LS ← LC → N1
T to N . It corresponds exactly to the NAC used by Rule (VI)

(Fig. 6) to ensure schema compliance. In general, a set of NACs is derived for
each rule, which can be further optimized using a weaker-than relationship be-
tween NACs [5]. In all other cases, the pushout complement does not exist or
the resulting precondition already violates the constraint and is thus discarded.

DT

N ′TNN

NTNN
PC

does not 
exist

PC
does not 

exist

PC
does not 

exist

∅
2. 3. 4. 5. 6. 7. 8.1.R

PC C

R

C

R R

P PC P

R
S

PC

B

R
S

P

B

R
S

PCP'

B R'
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S
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B
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C' R
S
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P
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C' R
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C'
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B
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BR'

R
S
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R
S

PC

R'
B

P'
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Fig. 8. Results of construction for all possible intersections of RT and NC1
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4 Related Work

In the following, we consider three different groups of approaches that introduce
and use (negative) application conditions in the context of TGGs:

NACs to Guarantee Schema Compliance: An “on-the-fly” technique of
determining a sequence of forward rules via a context-driven algorithm with
polynomial runtime is presented in [14]. This algorithm supports NACs, but a
proof of completeness is left to future work. In [11], an extended algorithm is
presented for integrity preserving TGGs, appropriately restricting the usage of
NACs, so that completeness, correctness and polynomial runtime can be proven.

Filter NACs to Guarantee Polynomial Runtime: The Decomposition and
Composition Theorem in [2] is extended in [6] for NACs with a similar treatment
as in [14], showing correctness and completeness for a backtracking algorithm.
The “on-the-fly” technique of determining a sequence of forward rules employed
in [14] is formalized in [4] and, although concepts of parallel independence are in-
troduced and the possibility of employing a critical pair analysis are mentioned,
the presented approach is still exponential in general. This basis provided by [4]
is extended in [9,10], and a critical pair analysis is used to enforce functional be-
haviour. Efficiency (polynomial runtime) is guaranteed by the construction of fil-
ter NACs that cut off possible backtracking paths of the algorithm and eliminate
critical pairs. Local completeness is, however, weaker than functional behaviour
and the authors of [11], based on experience with industrial case studies [12],
regard explicit support for non-functional TGGs as an important requirement.

General Application conditions: In [7], a larger class of general application
conditions (positive, negative, complex and nested) are introduced for TGGs.
An extension of the algorithm introduced in [10] is, however, left to future work.
An integration of OCL with TGGs and corresponding tool support is presented
in [1]. It is, however, unclear exactly how and to what extent the arbitrary OCL
constraints must be restricted to ensure correctness and completeness of the
derived translators.

5 Summary and Conclusion

We have shown that formal techniques from [5] can be appropriately applied to
a given TGG and negative constraints to derive a set of NACs, which is both
necessary and sufficient to ensure schema compliance, i.e., the TGG together
with the derived set of NACs is integrity preserving as required by [11].

As the category of triple graphs has binary coproducts and an epi-mono fac-
torization, the general definitions of constraints and application conditions, and
the construction from [5] can be directly used for TGGs, i.e., without the re-
strictions to negative constraints and NACs as used in this paper. However,
it remains an open challenge to extend our control algorithm to handle such
general constraints and application conditions efficiently, and we leave this to
future work.
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Abstract. As industrial practice demands larger and larger system mod-
els, the efficient execution of graph transformation remains an impor-
tant challenge. Additionally, for real-world applications, compatibility
and integration with already well-established technologies is highly de-
sirable. Therefore, relational databases have been investigated before as
off-the-shelf environments for graph transformation, since they are al-
ready widely used for storing, processing and querying large graphs.

The graph pattern matching phase of graph transformation typically
dominates in cost due to its combinatorial complexity. Therefore sig-
nificant attempts have been made to improve this process; incremental
pattern matching is an approach that has been shown to exert favorable
performance characteristics in many practical use cases. To this day, how-
ever, no solutions are available for applying incremental techniques side
by side with already deployed systems built over relational databases.

In the current paper, we propose an approach that translates graph
patterns and transformation rules into event-driven (trigger-based) SQL
programs that seamlessly integrate with existing relational databases to
perform incremental pattern matching. Additionally, we provide experi-
mental evaluation of the performance of our approach.

1 Introduction

1.1 Motivation

Nowadays model-driven systems development is being increasingly supported
by a wide range of conceptually different model transformation tools. Several
such model transformation approaches rely on the rule-based formalism of graph
transformation (GT) [1] for specifying model transformations. Informally, a
graph transformation rule performs local manipulation on graph models by find-
ing a match of its left-hand side (LHS) graph pattern in the model, and replacing
it with the right-hand side (RHS) graph.

As industrial practice demands ever larger system models, the scalability of
storage, query and manipulation of complex graph-based model structures, and
� This work was partially supported by SecureChange (ICT-FET-231101), CertiMoT
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thus the efficient execution of graph transformation, gains importance. Graph
pattern matching is the phase of graph transformation where matches of the
LHS are identified in the graph; due to its dominant combinatorial complexity,
significant attempts have been made to improve this process [2,3]. Incremental
pattern matching is an approach that has been shown [4,5] to exert favorable
performance characteristics in many practical use cases.

For industrial applications, compatibility and integration with already well-
established technologies is preferred to custom solutions. Relational Databases
(RDBs) have successfully served as the storage medium for business critical data
for large companies. As explored in [6], RDBs offer a promising implementation
environment for large graph models and graph transformation.

Regarding GT execution performance, however, RDBs have had mixed suc-
cess [7]. Incremental pattern matching in RDBs has been proposed in [4]. This
approach guarantees the consistency of the incremental store only if the system
evolves along the specific GT rules. However, this solution is not compatible
with already deployed (legacy) software, which may manipulate the underlying
database in an arbitrary way. In fact, in many industrial scenarios, the underly-
ing relational database (where the graph model is stored) is accessed in multiple
ways (client programs, server side scripts), which are unaware of the incremental
caches, hence they do not update them properly. For consistent behavior, these
programs would have to be re-engineered with unrealistic effort.

In the paper, we propose to extend incremental pattern matching over RDBs
in order to obtain an efficient system in an industrial environment that can
exist side-by-side with already deployed software. With our current approach,
incrementality will be guaranteed regardless of any external changes to the un-
derlying database. Our proposal is complemented with a performance evaluation
on a prototype implementation.

1.2 Goals

To summarize, the proposed solution will keep the beneficial properties of [4],
including Declarativity (automatic execution based on GT specification, without
requiring manually written code) and Incrementality (incremental evaluation
techniques for the graph pattern matching phase, to improve performance on
certain types of tasks). Additionally, we will also address the new requirement of
Compatibility, permitting side-by-side operation with any existing legacy scripts
and programs already reading or writing the database contents.

An implementation of this solution will be evaluated by measuring its per-
formance on some known GT benchmarks. Results will be contrasted with the
performance of the non-incremental execution and a non-RDB implementation.

1.3 Structure of the Paper

The rest of the paper is structured as follows. Sec. 2 introduces the concepts of
graph transformation rules, incremental pattern matching and relational
databases. Sec. 3 gives an overview on our approach, while Sec. 4 highlights
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the key phases that enable incrementality. Performance evaluation on different
well-known case studies are conducted in Sec. 5 and finally Sec. 6 concludes the
paper.

2 Background and Related Work

2.1 Graph Transformation

Graph patterns represent conditions (or constraints) controlling how pattern
variables can be mapped to a part of the instance graph model. The pattern
variables here are the nodes and edges of the graph pattern. The most important
constraints express the graph structure of the pattern and types of variables. A
match of the pattern is a mapping of variables to model elements so that all
constraints are satisfied (analogously to a morphism into the model graph).

Extensions to the formalism include attribute checks, injectivity, composition
and disjunction. A negative application condition (NAC) constraint expresses
non-existence of certain elements in the form of a negated subpattern.

Graph transformation (GT) [1] is a rule-based manipulation language for
graph models. Graph transformation rules can be specified by using a left-hand
side – LHS (or precondition) graph pattern determining the applicability of the
rule, and a right-hand side – RHS (postcondition) pattern which declaratively
specifies the result model after rule application. Elements that are present only
in (the image of) the LHS are deleted, elements that are present only in the RHS
are created, and other model elements remain unchanged.

Example 1. An example GT rule taken from the Sierpinski Triangles case
study [8] of the AGTIVE 2007 Tool Contest [9] is depicted in Fig. 1(b). In this
example, all edges are of the same type, while several node types are used (with
subtyping relationships) according to the metamodel in Fig. 1(a). For easier
readability, the names of pattern variables (nodes and edges) are excluded from
the figure.

The GT rule describes how triangles are generated for the Sierpinski fractal.
The LHS of the rule captures a simple triangle that has three different types of
nodes A,B,C. As the result of the application of the rule on a match of the LHS,
the original three nodes (appearing both in the LHS and RHS) are preserved,
the original three edges will be deleted (absent from the RHS), and three new
nodes will be created along with nine new edges (exclusive to the RHS).

Tool support. Many GT tools emerged during the years for various purposes.
The rest of the paper uses the GT language of the Viatra2 model transfor-
mation framework [10,11] to demonstrate the technicalities of our approach;
Viatra2 will also be used as the platform for the prototype evaluation.

2.2 Incremental Pattern Matching

Most graph transformation systems use local search-based (LS) pattern match-
ing, meaning that each time the pattern matching is initiated, the model graph



374 G. Bergmann, D. Horváth, and Á. Horváth

(a) Metamodel (b) Generator GT Rule

Fig. 1. Sierpinsky Case Study

will be searched for matches of the pattern. As an alternate approach, incre-
mental pattern matching (INC) [4,12,13,14,15] relies on a cache in which the
matches of a pattern are stored explicitly. The match set is readily available
from the cache at any time without searching, and the cache is incrementally
updated whenever changes are made to the model. The result can be retrieved
in constant time – excluding the linear cost induced by the size of the match
set itself –, making pattern matching extremely fast. The trade-off is space con-
sumption of the match set caches, model manipulation performance overhead
related to cache maintenance, and possibly the initialization cost of the cache.

Several experiments [4,5,15] have observed better performance of INC than
conventional LS in various scenarios. A performance advantage is to be expected
when complex patterns with moderately sized match sets are matched frequently,
without too much model manipulation in-between. This is typical of the “as long
as possible” style of execution, that involves repeated cycles of matching the LHS
pattern and applying the rule on one match. [16] has found that under certain
conditions the best results are achieved by hybridizing INC and LS.

There are several INC approaches. The TREAT [17] algorithm (or LEAPS [18])
will only construct caches for the match set of graph patterns; whereas RETE
nets [19] (or [12]) use extensive caching and create internal caches for sub-
patterns as well. Several GT systems [13,15] have already adopted a pattern
matcher based on RETE. This paper, however, will focus on implementing GT
on an RDB; therefore we have chosen TREAT as it allows us to delegate more
work to the (presumably well-optimized) built-in query engine of the RDB.

2.3 Relational Databases

Relational databases manage large quantities of information structured accord-
ing to the well-known relational data model (schema, table/relation, row/tuple,
column, key). Conventional RDBs store all data on disk (using memory as cache),
while others are entirely in-memory for better performance.

The most common interface language for RDBs by far is SQL, capable of
schema definition, data manipulation and querying alike. A reusable data ma-
nipulation program segment is called a stored procedure, while a reusable query
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expression defines a view. A trigger on a table is a special stored procedure that is
invoked upon each row manipulation affecting the table (receiving the description
of the change as input), thereby facilitating event-driven programming.

2.4 Related Work over Databases

The idea of representing graphs in RDBs and executing graph transformation
over the database has been explored before in [6]. A related paper [4] is one of the
first to suggest the idea of incremental evaluation in GT, and describes a proof-
on-concept experiment implemented in a RDB. This is clearly a predecessor to
our work; but since its main focus was the feasability of incremental pattern
matching in general, the particulatities of the RDB-based implementation and
the automated mapping were not elaborated in detail. Furthermore, the consis-
tency of the incremental cache is only guaranteed if the system evolves along
the specified GT rules, while external programs manipulating the underlying
database may cause inconsistency of the match results. This is a consequence of
making the incremental maintenance of the results an explicit part of the manip-
ulation phase of GT rule execution, which is not invoked when pre-existing pro-
grams manipulate the model. The main conceptual extension over [4] is that our
solution meets the Compatibility goal (see Sec. 1.2) through automated main-
tenance of pattern match sets even upon model manipulations carried out by
unmodified legacy programs.

The incremental matching algorithm Rete is integrated into an RDB in [20],
but the user formulates queries in SQL as opposed to declarative graph patterns;
also, Rete maintenance is performed periodically, not by event-driven triggers.

In the context of relational databases, the cached result of a query is called
materialized view. Some commercial database engines provide this feature along
with an option of automatic and incremental maintenance. However, in main-
stream databases this non-standard feature is typically restricted to a subset
of SQL queries which is insufficient to express complex graph patterns (espe-
cially NACs); therefore our approach could not simply rely on it. For example,
Flexviews for MySQL and Indexed Views in MS SQL do not support outer joins
(or existence checking) that will be required for NAC enforcement (see Sec. 4),
while Oracle’s Materialized Views do not even support top-level inner joins, and
finally there is no built-in incremental maintenance at all in PostGreSQL.

There are also significantly more powerful approaches [21,22] for incremental
query evaluation over databases, that support the highly expressive Datalog lan-
guage. The greatest challenge in terms of correctness is the handling of recursive
Datalog queries (especially when combined with negation), thus algorithms in
this field sacrifice performance and simplicity to address this issue1 which is not
relevant in the context of graph patterns. Even though there exists a rarely used
recursive extension [23,24] to the language of graph patterns (even supported

1 With the exception of the simple Counting algorithm [21] (largely analogous to
TREAT discussed above), which is quite fast (also confirmed by our limited experi-
ments), but incompatible with recursion.
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Fig. 2. Overview of the mapping process

by our implementation platform Viatra2), our current investigation focuses on
conventional graph patterns (incl. NACs), therefore the benefits and challenges
of recursive queries are out of scope for this paper. Since unlike SQL, Datalog is
not supported by mainstream commercial databases, we opted to target SQL.

3 Overview of the Approach

Our approach aims to conduct graph transformation over models represented
in relational databases. The most important difference to prior work [6] is the
application of INC to improve the performance of the graph pattern matching
phase (see Incrementality in Sec. 1.2); while [4] is extended by (i) the detailed
description of a universal procedure (inspired by TREAT [17]) that achieves
incrementality for any GT program (see Declarativity in Sec. 1.2), (ii) the non-
interference with existing programs that manipulate the graph model (see Com-
patibility in Sec. 1.2), and (iii) some pattern language features (see Sec. 4).

Incremental pattern matching requires (a) caches preserving previously com-
puted results and (b) mechanisms to update said caches upon changes of the
input. The first is achieved by using additional database tables to store cached
relations. One possible solution to the second problem could be a global pol-
icy stating that all operations writing to the graph model must be suffixed by
cache maintenance routines that propagate the changes to the pattern match re-
sults [4]. However, in order to satisfy the goal of Compatibility (see Sec. 1.2), our
solution does not require the modification of any existing programs manipulating
the graph model. Our approach employs database triggers instead to refresh the
contents of the cache tables in an event-driven fashion, after arbitrary transac-
tions manipulating the model.

We provide an algorithm to generate SQL code from the graph transformation
program, in accordance with the Declarativity goal (see Sec. 1.2). The proposed
approach, depicted in Fig. 2, has three main phases:

1. Mapping between the graph metamodel and the relational schema
is the well-known problem of Object-Relational Mapping (ORM) [25] exe-
cuted in either direction. To retain Compatibility (see Sec. 1.2) with systems
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already deployed in RDB, a relational schema can be used as input if avail-
able. In the particular ORM strategy used in the example, each class (node
type) C in the metamodel corresponds to a table NodeC(ID, . . .), with a sep-
arate column for each data attribute, and a primary key column as unique
identifier. Model elements appear as a row in the table of their class and those
of the superclasses, logically connected by the common identifier. An edge
type R from node type SrcT to type TrgT corresponds to a separate table
EdgeR(SrcID, T rgID). Each row of EdgeR represents one edge instance,
and the two columns reference the identifiers of the source and target node
(rows in NodeSrcT and NodeTrgT , respectively). An edge R with multiplicity
of 1 could map to a column of NodeSrcT referencing the TrgT.ID key of the
single target node. Note that there are several other possible ORM methods,
and the approach outlined in this paper is applicable to all of them.

2. Cache tables and maintenance triggers for patterns are our main con-
tribution. A database table MemoP is created for each pattern P to preserve
its match set. Unlike [4], incremental maintenance of the contents of these
tables is performed by database triggers, that are automatically generated
from the declarative pattern description. The triggers are activated by up-
dates to the database tables representing the graph elements, and potentially
the other cache tables as well. The solution is described in detail in Sec. 4.

3. Mapping GT rules to stored procedures is performed according to [6],
no modifications are required. The main idea is that the application of the
GT rule is decomposed into individual node and edge operations (creation,
deletion), which are then simply transcribed into SQL manipulation com-
mands. The resulting sequence is then automatically assembled into an SQL
stored procedure that takes the LHS match as input.

4 Incremental Pattern Matching Using Cache Tables and
Triggers

Most of the following ideas are applicable to any GT tool, not just Viatra2.

4.1 Basic Pattern Matching

We assume that the metamodel of the graph has already been mapped into
a relational schema (see Sec. 3). For a simple graph pattern P consisting of
node and edge constraints, the SQL view definition V iewP is a relational join
operation that yields the matches of pattern P . This solution from [6] is not yet
incremental, as each evaluation of V iewP will re-execute the join.

With the ORM mapping in Sec. 3, for each node constraint n〈V, C〉 that re-
stricts the pattern variable V to node type C, V iewP will involve the table
NodeC as a participant in the join operation. Likewise for each edge constraint
e〈VSrc, VTrg, R〉 expressing that there is an edge of type R from pattern variable
VSrc to VTrg, the join in V iewP will include the table EdgeR. The incidence of
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Listing 1. SQL View Definition to return matches of the LHS of the Sierpinski
rule (subscripts indicated by underscores)

1 CREATE VIEW View_LHS AS
2 SELECT Node_A.ID, Node_B.ID , Node_C.ID
3 FROM Edge_e AS eAB, Edge_e AS eBC , Edge_e AS eCA, Node_A , Node_B , Node_C
4 WHERE eAB.TrgID=eBC.SrcID AND eBC.TrgID=eCA.SrcID AND eCA.TrgID=eAB.SrcID
5 AND Node_A.ID=eAB.SrcID AND Node_B.ID=eBC.SrcID AND Node_C.ID=eCA.SrcID

nodes and edges are enforced by join conditions. Injectivity constraints (if a table
appears several times in the join) are easily checked by comparing identifiers.

Example 2. The LHS of the Sierpinski GT rule introduced in Sec. 2.1 is mapped
into the SQL view definition in Lst. 1. As the edge type was unnamed in the
example, let’s assume it was mapped into the table Edgee. The pattern expresses
three edge constraints, the unnamed edge type appears in the pattern three
times; therefore the join expression involves Edgee three times, distinguished by
aliases eAB, eBC and eCA. Additionally, three node constraints assert a type
for each of the node variables, thus NodeA, NodeB and NodeC are also included
in the join (there is currently no need to create aliases).

4.2 Achieving Incrementality

For each pattern P , a table MemoP will be created that caches the matches of
P . The previously defined view V iewP can be used to initialize the table. For
each node type C referenced by P , the match set of the pattern may change
whenever nodes of type C are created or deleted (or retyped). The match set
may also change when edges of type R are created or deleted, provided R is
mentioned in P . In the core pattern formalism, the match set is invariant to
all other manipulations of the graph model. All of the changes listed here are
observable as row insertions / deletions in tables NodeC or EdgeR, therefore
database triggers can be tasked with refreshing the match set. Triggers for row
insertion and deletion are registered for each node table NodeC or edge table
EdgeR that P depends on. The trigger will compute the delta in the match set
of the pattern, and update MemoP accordingly.

Let’s consider the case where there is an edge constraint e〈VSrc, VTrg, R〉 and
the change is the creation of a new edge of type R, appearing as a new row
〈IDSrc, IDTrg〉 in table EdgeR. The delta will be the set of matches that contain
the newly created edge. Therefore the trigger will insert into MemoP the result
of query Δ+

e , which is a modified (“seeded”) version of V iewP , restricted to the
new matches that are produced by this edge insertion. Δ+

e is formed by omitting
from the join the EdgeR operand that corresponds to the edge constraint e, and
substituting its source and target identifier values respectively with the triggering
IDSrc and IDTrg. These input values reduce the cardinality of the result relation
significantly, making incremental maintenance efficient.

If the pattern contains k edge constraints for the type R, then V iewP is seeded
similarly for each of them, and the delta is the union of the results. If the pattern
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Listing 2. Seeded SQL query for computing the delta (edge insertion, eAB case)

1 SELECT Node_A.ID, Node_B.ID , Node_C.ID
2 FROM Edge_e AS eBC, Edge_e AS eCA , Node_A , Node_B, Node_C
3 WHERE ID_Trg=eBC.SrcID AND eBC.TrgID=eCA.SrcID AND eCA.TrgID=ID_Src
4 AND Node_A.ID=ID_Src AND Node_B.ID=ID_Trg AND Node_C.ID=eCA.SrcID

is not required to be injective, then it is also possible that the new edge produces
a match by simultaneously satisfying several of these k constraints; the delta will
be the union of 2k − 1 branches (at least one of the k is the new edge).

With deletion, there are two basic options in variants of TREAT. The straight-
forward solution is to implement deletion triggers that are symmetric to creation
triggers, evaluate seeded Δ−

e queries, and remove the results from MemoP . A
potentially faster (though never by more than 50%) solution would be to directly
scan MemoP and remove all matches that were produced by the deleted edge.

Node creations and deletions (more properly, the assignment or removal of a
type label to a node) are processed analogously to edge operations.

Example 3. Let’s consider the Sierpinski GT rule again. Assuming node retyping
is allowed in the system, triggers will have to be registered for the insertion (and,
symetrically, deletion) of rows into tables NodeA, NodeB, NodeC and Edgee.
Because Edgee was involved in the original join expression three times (eAB,
eBC and eCA from Lst. 1), each row insertion into Edgee has to be considered
in three different ways. First, to contribute to the formation of a new match as
the A → B edge eAB, then as eBC, and finally as eCA. The union of the deltas
obtained in these cases will be used to update the cache table MemoLHS.

Focusing now on the edge constraint eAB in case of the insertion of the row
〈IDSrc, IDTrg〉 into Edgee, the trigger will evaluate a seeded query to obtain the
delta relation Δ+

eAB , and add the contents of the delta to the cached match set
MemoLHS . The contents of the seeded query are listed in Lst. 2.

4.3 Advanced Pattern Language Features

Attribute Checks. Attributes are columns of the NodeC tables, and attribute
constraints are translated into simple attribute checks in the WHERE SQL clause.
Polymorphism (type inheritance) may require the query to first join NodeC

against NodeC ′ if C′ is the supertype of C that defines the particular attribute.

Composition. The pattern language of Viatra2 has a pattern composition
feature, not supported in [4], that makes a called graph pattern resusable within
a caller pattern. Our approach considers compositions as a pattern constraint
similar to edge constraints, and the MemoCalled table will participate in the
join operation computing the deltas of MemoCaller . As columns in MemoCalled

will be used as join keys, SQL commands are issued that build index structures
on these columns to improve performance. Triggers on MemoCalled will also be
registered to propagate the changes between the match sets of the patterns.
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NAC Support. In the presence of a NAC, the join operation computing the
match set will involve an outer join of MemoNAC which checks that there are
no corresponding matches of the NAC pattern. Insertion triggers on MemoNAC

will delete matches of the positive pattern; and deletion triggers will produce
new matches if no remaining rows of MemoNAC inhibit it.

Parameters and Disjunction. Some of the pattern variables used in a Via-
tra2 graph pattern may not be exposed as parameters, resulting in information
hiding and existential quantification of these local/hidden variables. Further-
more, a disjunctive pattern has several alternative pattern bodies, the union of
their match sets constituting the match set of the disjunctive pattern. These are
not handled in [4]. Our approach creates a separate internal cache table for each
of the pattern bodies, which will be updated as before. An externally visible
cache table will also be created for the pattern itself, that contains the union of
the individual match sets (projected onto the set of parameter variables). This
table will be maintained by triggers defined on the internal cache tables.

5 Performance Evaluation

The solution proposed in Sec. 3 was evaluated on a prototype implementation.
Performance of the prototype as well as Viatra2, both with and without incre-
mental matching, were measured against established GT benchmarks selected
to compare the relative merit of the approaches under different contexts. A syn-
thetic benchmark is conducted to assess the processing of large models with a
simple GT rule. A model simulation benchmark is demonstrating nearly ideal
conditions for incremental optimization. A model-to-model synchronization ex-
ample reflects conditions that are closer to real-world applications.

The prototype is a plug-in of the Viatra2 model transformation tool, imple-
mented in Java. Metamodels defined in Viatra2 are mapped into a database
schema expressed in the SQL dialect of MySQL, and then GT programs de-
fined in Viatra2 are transformed into SQL code that executes the GT rules
with incremental pattern matching. The SQL output is fed into the RDB engine
MySQL, where a small, manually written script will initiate the benchmark2.

5.1 Sierpinski Triangles Benchmark

Our first GT benchmark is the synthetic Sierpinski Triangles case study [8] of
the AGTIVE 2007 Tool Contest [9], which uses the GT rule described in Sec. 2.1.

The initial state consists of a triangle of three nodes (matching the LHS of the
rule), and each step (generation) of the benchmark applies the GT rule simulta-
neously at all of its current matches. The size of the graph grows exponentially
with each step, therefore this benchmark mainly focuses on the ability of tools
2 Meausrement environment: Intel Core 2 Duo P8600 laptop (2*2,4GHz) with 4GB

RAM, running Microsoft Windows 7 64-bit. Oracle Java 1.6.0_25 (32 bit) was used
with 1.5G heap space for Viatra2; in-memory MySQL 5.1.53 served as the RDB.
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Fig. 3. Sierpinski triangles benchmark up to the 8th generation

to store large graphs. The LHS pattern is easy to match, since it is just a trian-
gle, and each graph node has a small, bounded degree. As pattern matching is
performed only once in each step, and practically the whole model is replaced
between steps, we do not expect INC to have an advantage in this case.

See Fig. 3 for results (note that the chart is logarithmically scaled). The mea-
surements show that, in accordance with expectations, the overheads of INC
could not be offset by its benefits in this case. It also apparent that such volumes
of raw model manipulation is significantly more efficient in an object-oriented
model representation, than in a relational data model. On the other hand, the
DB solution has much better memory characteristics even in the incremental
case (≈ 10MB instead of the ≈ 95MB of Viatra2).

5.2 Petri Net Firing Benchmark

Petri nets [26] is a graph-based behavioral formalism with explicit representation
of current state (in the form of token markings), and concise definition of possible
state transitions. [5] uses simulation of Petri nets as a GT benchmark. Each step
of the simulation is the firing of a Petri transition; first a graph pattern identifies
the set of fireable transitions, then a single selected transition is fired, leading to
a new state, with a different set of fireable transitions. The graph pattern that
captures fireable transitions has a NAC that in turn has a nested NAC itself;
and this complex pattern has to be re-evaluated at each step. Since there are
frequent complex queries with only small model change in-between, and a long
simulation sequence can offset any initialization costs, this is a scenario where
INC has a lot of potential. The measurement was carried out on synthetical Petri
nets generated using the process described in [5]. The “size” parameter of such a
net is proportional to the number of places, transitions, outgoing and incoming
edges; e.g. the net of size 100000 has 75098 places, 75177 transitions, 122948
outgoing and 123287 incoming edges.
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Fig. 4. Petri net firing benchmark, average from 1000 transition firings

Due to the mentioned characteristics, INC can have great advantage over
conventional LS in context of such model simulation tasks. Fig. 4 confirms this
intuition by showing that INC is several orders of magnitude quicker to execute
firings both in a DB context and in Viatra2, and has a better complexity
characteristic when measured against nets of increasing size. Actually, INC takes
roughly constant time for an individual transition firing irrespective of the net
size. The execution time of Viatra2/INC increases towards the largest nets
only because the significantly inflated memory usage of the RETE-based INC
implementation (≈ 1GB of JVM heap size vs. ≈ 17 MB of RDB) leads to
thrashing effects starting at sizes around 100000. The DB/INC solution does
not suffer from this, due to the more compact memory management of the DB
solution, and due to the TREAT algorithm doing less caching than the RETE
variant implemented in Viatra2.

5.3 Object-Relational Mapping Synchronization Benchmark

The model transformation case study is a GT-based Object-Relational Mapping
(ORM) [25], similar to the ORM in phase 1 of Sec. 3. To demostrate advantages
of INC at model-to-model synchronization, our previous work [5] extended the
benchmark by two additional steps: (i) after the initial mapping, the source
models are modified by a “legacy” program unaware of the transformation; then
(ii) the system has to synchronize the changes to the target model (i.e. find the
changes in the source and alter the target accordingly).

Our measurements examined the total execution time of the incremental syn-
chronization (including the modification that triggers the synchronization). The
experiments were carried out with the particular rules, input model synthesis
method and source model modifications that were used in [5]. Each input model
is a package with N classes, N attributes for each class, and one association
for each pair of classes with two association ends. The largest input model at
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Fig. 5. ORM benchmark, execution time of model synchronization after modification

N = 250 had 560751 model elements and links altogether. The modification
of the source model deleted every third class (together with associations and
attributes), also deleted every fifth remaining association, and finally renamed
every second remaining attribute.

In many model transformation programs, the GT rules cannot be applied in
any order, because some rules have the application of others as prerequisites.
For example, the mapping of an attribute must be predated by the mapping
of its class, etc. INC is expected to efficiently re-evaluate the applicability of
rules after each rule application, gaining significant advantage for these kinds of
transformations. Such re-evaluation is not necessary for this ORM case, as the
dependencies can be satisfied by imposing an order on the GT rule definitions
(e.g. package mapping before class mapping before attribute mapping), and sim-
ply applying the rules on all of their LHS matches in this order. This solution may
not always be possible; e.g. if a class can only be mapped if all of its superclasses
have already been mapped, then repeatedly re-evaluating the applicability of
the class mapping rule is inevitable. But even in the ORM case, incremental
change synchronization itself creates the need for efficient re-evaluation of rule
applicability conditions. Aside from rule dependencies, INC may also pay off e.g.
by pre-caching the result set of complex NACs or called patterns.

The ORM measurement results (see Fig. 5) reveal that it is possible to scale
to model sizes with over half a million model elements where Viatra2 fails (32-
bit Java heap exhausted at 1.5GB); while RDB (though slower) takes merely
102 MB of memory, suggesting that it can scale up even further. This justifies
choosing RDBs as a scalable platform of model-driven engineering and GT.

Also, INC has an advantage in execution time both in Viatra2 and over the
RDB. The latter difference is more pronounced over the RDB, which we attribute
to two factors: (a) instead of a generic SQL query engine, the local search based
pattern matcher of Viatra2 was built to handle pattern composition (especially
NACs) reasonably well, and (b) the TREAT-based incremental matcher has
fewer caches (making it slower but more memory-efficient) than its RETE-based
counterpart in Viatra2.
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6 Conclusion and Future Work

In the paper, we proposed a graph transformation engine based on traditional re-
lational databases using incremental pattern matching techniques for increased
performance. Extending [4], the essence of our approach is to formulate the
matches of graph patterns as database tables and incrementally update them
using triggers that monitor the changes (including those caused by other pro-
grams) in the underlying model. The solution meets all goals stated in Sec. 1.2.

The main conclusion that can be drawn from our experiments is that re-
lational databases provide a promising, scalable platform for the execution of
graph transformation rules. Additionally, incremental techniques can be effec-
tively applied in relational databases for graph pattern matching and it provides
good runtime characteristics for certain workloads including behavioural model
simulation or model-to-model synhcronization.

As a main direction for future work, we plan to (i) further optimize our trans-
lation as in certain cases the generated SQL queries were using inefficient join
structures and (ii) implement the complete translation of the Viatra2 language
to support large model transformations with complex control structures.
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Abstract. Pattern matching plays a central role in graph transforma-
tions as a key technology for computing local contexts in which trans-
formation rules are to be applied. Incremental matching techniques offer
a performance advantage over the search-based approach, in a number
of scenarios including on-the-fly model synchronization, model simula-
tion, view maintenance, well-formedness checking and state space traver-
sal [1,2]. However, the incremental computation of transitive closure in
graph pattern matching has started to be investigated only recently [3].
In this paper, we propose multiple algorithms for the efficient computa-
tion of generalized transitive closures. As such, our solutions are capable
of computing reachability regions defined by simple graph edges as well
as complex binary relationships defined by graph patterns, that may be
used in a wide spectrum of modeling problems. We also report on experi-
mental evaluation of our prototypical implementation, carried out within
the context of a stochastic system simulation case study.

1 Introduction

In model-driven software engineering, queries and transformations are nowadays
core techniques to process models used to design complex embedded or busi-
ness systems. Unfortunately, many modeling tools used in practice today have
scalability issues when deployed in large-scale modeling scenarios, motivating re-
search and development efforts to continue improving performance for essential
use-cases such as model management, transformations, design-time analysis and
code generation.

Transitive closure is generally needed to express model properties which are
recursively defined, often used in reasoning about partial orders, and thus widely
found in modeling applications, e.g. to compute model partitions or reachability
regions in traceability model management [4] and business process model anal-
ysis [5]. In graph transformations, recursive graph patterns are most frequently
used to specify transitive closure for processing recursive model structures [6].
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At the meta-level, they may provide the underpinnings for n-level metamodel-
ing hierarchies where transitive type-subtype-instance relationships need to be
maintained [7], or for maintaining order structures such as those proposed in [8]
for spatially aware stochastic simulation.

Incremental graph pattern matching has already demonstrated scalability in
a number of such scenarios [1,9,10], especially when pattern matching opera-
tions are dominating at runtime (e.g. view maintenance, model synchronization,
well-formedness checking and state space traversal [2]). However, recursive incre-
mental pattern matching was, up to now, supported only for acyclic subgraphs.
Therefore, as it has been recently recognized in [3], the efficent integration of
transitive closure computation algorithms for graphs would provide a crucial
extension to the current capabilities of incremental pattern matchers.

Challenges. By analyzing related work, we observed that in order to efficiently
adapt transitive closure computation for the specific needs of graph pattern
matching in graph transformations, three key challenges need to be addressed.
First, the Rete algorithm (used e.g. in Viatra2 [6], EMF-IncQuery [10],
GROOVE [2], JBoss Drools [11] and other tools) does not handle cyclic closure
correctly, i.e. in the presence of graph cycles, incremental updates of recursive
patterns may yield false matching results. Second, for functionally complete pat-
tern matching it is important to support generic transitive closure, i.e. the ability
to compute the closure of not only simple graph edges (edge types), but also de-
rived edges defined by binary graph patterns that establish a complex logical
link between a source and a target vertex. Finally, the adaptation should align
with the general performance characteristics of incremental pattern matching to
impose a low computational overhead on model manipulation operations and
minimize runtime memory overhead.

Contributions of the paper. To address the above challenges, we adapted different
general purpose graph transitive closure algorithms [12,13] to the specific needs
of incremental graph pattern matching. After analyzing common characteris-
tics of several modeling scenarios, we developed a novel version of IncSCC [12],
the incremental transitive computation algorithm based on the maintenance of
strongly connected components. We demonstrate the feasibility of our approach
by extending the high-level pattern language of the Viatra2 framework to sup-
port the correct computation of transitive closure. In order to evaluate exper-
imentally the performance of the extended pattern matcher, we relied on the
GRaTS stochastic simulator [14] built on Viatra2 that was used to run a sim-
ple structured network model scenario, specifically tailoring the simulation to
compare the characteristics of these algorithms.

Structure. The rest of the paper is structured as follows. Sec. 2 introduces
(meta)modeling and graph transformation as preliminaries necessary to under-
stand the rest of the discussion, and describes a case study – the stochastic
simulation of a structured network – that illustrates the technical details of our
approach. Sec. 3 elaborates the transitive closure problem, and describes the
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(a) Metamodel (b) Instance model example

Fig. 1. Meta- and instance models of the case study

novel adaptation of the IncSCC algorithm in detail. Sec. 4 reports on our per-
formance benchmark findings. The paper is concluded by a discussion of related
work in Sec. 5 and the conclusion in Sec. 6.

2 Preliminaries

2.1 Metamodeling and Graph Patterns

We rely on the Viatra2 model transformation tool [6] as the technological
framework for our approach. However, all metamodels will be presented in a
traditional EMF syntax to stress that all the main concepts presented could
be transferred to other modeling environments as well, e.g. by using the EMF-
IncQuery framework [10] with EMF. Viatra2 uses a canonical metamodeling
approach for its model repository, with three core concepts (entities, properties
and relations) that correspond to vertices, attributes (labels) and edges of a
typed graph. All metalevels (types and instances) are uniformly represented in
a containment hierarchy that makes up the Viatra2 model space.

Case study example (meta- and instance models). Theoretically, here we rely
on a typed single pushout graph transformation approach with attributes and
negative application conditions [15]. We consider a structured network evolving
according to some rules. The wider network is formed by an overlay on super-
nodes that represent external ports of local area networks, and we may query the
existence of connections between any pair of nodes. A simple Viatra2 meta-
model is shown in Fig. 1a. We model networks as graphs that may consist of
two kinds of Nodes: they may either be LAN clients (instances of the type CL)
or LAN supernodes (SN) to which clients may connect (through connections of
type cnn). Supernodes can connect to each other through connections of type
link (see [16] for technical details). A sample instance model (as visualized in
Viatra2) is shown in Fig. 1b.

Case study example (graph patterns). A sample graph pattern is shown in
Fig. 2, using a graphical concrete syntax for illustration (on the left) and also the
textual representation from the actual Viatra2 transformation (on the right).
This pattern represents the linked relation between any two supernodes S1 and
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1 pattern linked(S1,S2) = {
2 SN(S1);
3 SN(S2);
4 SN.link(S1,S2);
5 } or {
6 SN(S1);
7 SN(S2);
8 SN.link(S2,S1);
9 }

Fig. 2. Graph pattern to capture linked supernodes

S2 (both required to be of type SN, as expressed in lines 2–3 and 6–7) that are
connected by a relation of type link in either direction (as expressed by means
of the or construct).

2.2 Incremental Pattern Matching in Graph Transformations

Graph transformation systems use pattern matching algorithms to determine
the parts of the model that correspond to the match set of a graph pattern.
Incremental pattern matching engines (INC) [17,18,19,2] rely on a cache in
which the matches of a pattern are stored explicitly. The match set is read-
ily available from the cache at any time without searching, and the cache is
incrementally updated whenever changes are made to the model. The result can
be retrieved in constant time – excluding the linear cost induced by the size of
the match set itself –, making pattern matching extremely fast. The trade-off
is space consumption of the match set caches, model manipulation performance
overhead related to cache maintenance, and possibly the initialization cost of the
cache.

In terms of transformation performance, INC has been observed by several
experiments [17,1,2] to be highly scalable in a number of scenarios, particularly
when complex patterns with moderately sized match sets are matched frequently,
without excessive changes to the model in-between. This is typical of the as-long-
as-possible style of transformation execution, which is frequently used for model
simulation purposes.

Overview of Rete-based incremental pattern matching. Rete [20] is a well-known
incremental pattern matching technique from the field of rule-based expert sys-
tems. A Rete net consists of Rete nodes (not to be confused with the vertices of
the model graph), each storing a relation corresponding to the match set of a
partial pattern, i.e. the set of model element tuples that satisfy a given subset of
pattern constraints. Rete nodes are connected by Rete edges so that the content
of a Rete node can be derived from its parent nodes. The Rete edges propa-
gate incremental updates of the match sets, i.e. whenever the contents of a Rete
node is changed, child nodes are also updated using the difference (inserted or
deleted tuples). There are three types of nodes in the Rete net: (i) input nodes
serve as the knowledge base of the underlying model, e.g. there is a separate
node for each entity or relation type, enumerating the set of instances as tuples;
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(ii) intermediate nodes perform operations to derive a set of partial matches;
finally, (iii) production nodes store the complete match set of a given pattern.

2.3 Stochastic Model Simulation by Graph Transformations

A simulation framework called GRaTS [21] for generalized stochastic graph trans-
formation [22], along the lines of [23], has been introduced in [14] and further
extended [21], built on top of the Rete-based pattern matching infrastructure
of Viatra2, to support the design-time analysis of discrete event systems and
to validate stochastic properties of the system-under-design. A model in GraTS
consists of a graph transformation system in which each transformation action
rule (see Fig. 3), is augmented with a probability distribution governing the de-
lay of its application (in our simple case study, we use exponential distributions
that are characterised by a weight parameter – a higher weight will result in
the rule being executed more frequently). Additionally, each valid action rule
match represents a possible event. A stochastic experiment consists of a model
together with a set of transformation rules, each used as a probe rule, allowing
to aggregate user-defined statistics on simulation runs.

Simulation in GraTS procedes by discrete steps, each determined by the exe-
cution of an action rule, leading from one state to another, where each state is
characterised by the set of enabled events — i.e. all the valid rule matches, main-
tained as a priority queue. Statistics are also collected step-wise, by computing
valid matches of probe rules and aggregating data. The simulation engine relies
heavily on the incremental pattern matcher to keep track efficiently of valid rule
matches and especially, in the case of events, of their enabling time [14,8,21].

Discrete event stochastic simulation can be characterised as a semi-Markov
process [24,25], as – aside from exponential distributions found in most stochas-
tic tools – generalised probability distributions are supported. Even though this
capability is not used in the simple model of this paper, it allows for modelling
of complex network scenarios [22] involving hybrid features, such as jitter and
bandwidth in realistic modelling of VoIP [22,16], in which transitive closures can
typically arise quite often [14].

Case study example (action rule). In our case study, a sample action rule
is shown in Fig. 3. Here, the AddLink operation is defined, whereby redundant
overlay links can be added to a pair of LAN supernodes S1, S2 that are not
directly connected, as expressed by the negative application condition (line 5)
referring to the linked pattern of Fig. 2. By an execution of this rule for a given
S1, S2 pair, a new link will be added to the model (line 7).

3 Transitive Closure in a Rete-Based Matcher

A brief overview about transitive closure in graph transformations is given in
Sec. 3.1. The applied solution - a special Rete node capable of efficient incremen-
tal transitive closure calculations - is discussed in Sec. 3.2. Then Sec. 3.3 presents
the general purpose incremental graph transitive closure algorithms that we we
adapted and evaluated.
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1 gtrule AddLink () = {
2 precondition pattern lhr(S1,S2) = {
3 SN(S1);
4 SN(S2);
5 neg find linked(S1 ,S2);
6 } action {
7 new(SN.link(S1,S2));
8 }
9 }

Fig. 3. Graph transformation rule to add redundant overlay links between disconnected
supernodes

3.1 Transitive Closure

Generic and Irreflexive Transitive Closure. For a binary relation E over a
domain D, the irreflexive transitive closure E+ consists of 〈u, v〉 pairs of elements
for which there is a non-empty finite linked sequence 〈u = w0, w1〉, 〈w1, w2〉, . . . ,
〈wk−1, wk = v〉 of pairs in E.

In case of generic transitive closure, the base relation E is a “derived edge”,
not restricted to simple graph edges, but defined by any two-parameter graph
pattern (e.g. with path expressions, attribute checks). We focus on the most
general approach: generic, irreflexive transitive closure.

Transitive Closure Operations. Any program computing the transitive clo-
sure E+ of a binary relation E is required to expose a subroutine Construct(E)
that builds a data structure for storing the result and possibly auxiliary in-
formation as well. Afterwards, the following reachability queries can be issued:
Query(Src,Trg) returns whether Trg is reachable from Src; Query(Src,?) returns
all targets reachable from Src, while Query(?,Trg) returns all sources from where
Trg can be reached; finally Query(?,?) enumerates the whole E+.

In case of incremental computation, the following additional subroutines have
to be exposed: Insert(Src,Trg) updates the data structures after the insertion
of the 〈Srg, T rg〉 edge to reflect the change, while Delete(Src,Trg) analogously
maintains the data structures upon an edge deletion. To support further incre-
mental processing, both of these methods return the delta of E+, i.e. the set of
source-target pairs that became (un)reachable due to the change.

Strongly Connected Components (SCC), Condensed Graph. A graph is
strongly connected iff all pairs of its vertices are mutually transitively reachable.
An SCC of a graph is a maximal subset of vertices within a graph that is strongly
connected. As the SCC of a vertex v is the intersection of the set of ancestors and
descendants of the vertex, each graph has a unique decomposition S into disjoint
SCCs. For a graph G(V, E), the SCCs form the condensed graph Gc(S, Ec), where
two SCCs are connected iff any of their vertices are connected: Ec = {〈si, sj〉 |
si, sj ∈ S ∧ ∃u ∈ si, v ∈ sj : 〈u, v〉 ∈ E}. It follows from the definitions that a
condensed graph is always acyclic.
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1 pattern pconnected(C1,C2) = {
2 SN(S1);
3 CL.cnn(C1,S1);
4 CL.cnn(C2,S1);
5 } or {
6 CL.cnn(C1,S1);
7 CL.cnn(C2,S2);
8 // transitive closure
9 find linked +(S1,S2);

10 }

Fig. 4. Transitive closure within graph pattern to capture overlay-connected clients

Case study example (transitive closure in graph patterns). The example in Fig. 4
demonstrates transitive closure features in graph pattern matching. A transi-
tive closure over the overlay network of supernodes is specified by the pattern
pconnected that defines the relationship between any two client nodes C1, C2
which are (i) either sharing a common supernode to which they are both directly
connected along cnn edges (lines 2–4), or (ii) their “pconnection” is indirect in
the sense that their supernodes S1, S2 are reachable from each other through
a transitive linked+ relationship (lines 6–9). The latter is the generic transitive
closure of the derived edge defined by binary pattern linked (see Fig. 2).

3.2 Integration of Graph Transitive Closure into Rete

A transitive closure result will be represented by a Rete node, like any other
pattern. We integrate dynamic transitive closure algorithms into Rete nodes
by exploiting the operations specified in Sec. 3.1. Generic transitive closure (see
Sec. 3.1) is achieved by attaching such a Rete node to a parent node that matches
a graph edge or an arbitrary binary graph pattern (derived edge).

Fig. 5 (a) shows the transitive closure node in the Rete network. It is an inter-
mediate node which receives updates from a binary graph pattern (here denoted
as binary relation E) and forms a two-way interface between Rete and a tran-
sitive closure maintenance algorithm. Whenever the Rete node for E+ receives
an insertion / deletion update from its parent node E, the Insert()/Delete()
subroutine is invoked. The subroutine computes the necessary updates to E+,
and returns these delta pairs, which will then be propagated along the outgoing
edge(s) of the Rete node. Queries are invoked when initializing the child nodes,
and later as a quick lookup to speed up join operations over the node contents.

Alternatively, transitive closure can be expressed as a recursive graph pattern.
This solution was rejected, as Rete, having first-order semantics without fixpoint
operators, might incorrectly yield a (still transitive) superset of the transitive
closure: in graph models containing cycles, obsolete reachabilities could cyclically
justify each other after their original justification was deleted.

Case study example (transitive closure Rete node). Here we demonstrate the
behaviour of a Rete node that computes the transitive closure E+ of the binary
graph pattern E, e.g. linked+ for the overlay network linked between super
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Fig. 5. Transitive closure Rete node during insertion of 〈C, A〉 and deletion of 〈B, C〉

nodes. Initially, as seen in Fig. 5 (a), the parent node E stores linked, i.e. the
binary relation {〈A, B〉, 〈B, C〉}. Its child node E+ contains the set of reachable
pairs: {〈A, B〉, 〈A, C〉, 〈B, C〉}.

Fig. 5 (b) shows the insertion of edge 〈C, A〉 into E. Rete propagates this
update from the E to E+, where the operation Insert(C,A) is invoked to adjust
the transitive closure relation to {〈A, B〉, 〈A, C〉, 〈B, A〉, 〈B, C〉, 〈C, A〉, 〈C,
B〉}, i.e. the whole graph becomes strongly connected. The computed difference
(delta) is the insertion of {〈B, A〉, 〈C, A〉, 〈C, B〉} into E+, which is propagated
in the Rete network to child nodes of E+.

Finally, Fig. 5 (c) shows an edge deletion. E+ is notified of the deletion of 〈B,
C〉 from E, and invokes Delete(B,C). Thus E+ becomes {〈A, B〉, 〈C, A〉, 〈C, B〉},
and the propagated delta is the deletion of {〈A, C〉, 〈B, A〉, 〈B, C〉}.

3.3 Incremental Graph Transitive Closure Maintenance Algorithms

An incremental transitive closure algorithm is required to operate the Rete
node proposed in Sec. 3.2. From the rich literature (see Sec. 5), we selected and
adapted two such algorithms. Here we provide an overview of their core ideas.

DRed - Delete and REDerive. This simple algorithm explicitly stores E+.
Construct() initializes the closure relation using a standard non-incremental al-
gorithm, and Query() is directly answered based on E+. The update operations
are derived from the DRed [26] algorithm for recursive Datalog queries.
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Insert(Src,Trg) computes the newly reachable pairs as E∗◦{〈Src, T rg〉}◦E∗,
and adds them to E+ (unless already reachable), where A◦B := {〈u, v〉 | ∃w : 〈u,
w〉 ∈ A ∧ 〈w, v〉 ∈ B}.

Delete(Src,Trg) computes an overestimation of the delta as E+
D = (E∗◦{〈Src,

T rg〉} ◦ E∗) \ E, and marks these pairs for deletion. Then it attempts to derive
again these marked reachability pairs using unaffected ones as E+

D

⋂
(E ◦ (E+ \

E+
D)); successfully rederived pairs are removed from E+

D, allowing further ones to
be rederived until a fixpoint is reached. The final contents of E+

D are the deleted
reachability pairs removed from E+.

IncSCC - Incremental Maintenance of Strongly Connected Compo-
nents. We have also implemented the transitive closure algorithm IncSCC,
where the name IncSCC stands for Incremental SCC maintenance.

The main idea of the algorithm, from [12], is to reduce update time and
memory usage by eliminating unnecessary reachability information, namely, that
each vertex is reachable from every other vertex within the same SCC. Thus,
the two concerns of the algorithm are maintaining (i) a decomposition S of the
graph into SCCs, and (ii) transitive reachability within the condensed graph.
The latter is a simpler problem with several efficient solutions, as the condensed
graph is acyclic; our implementation relies on the “basic algorithm” from the
original paper [12], that will be called the Counting Algorithm, as it simply
keeps track of the number of derivations of each transitive reachability pair.

In the following, we give a brief overview of (our implementation of) IncSCC.
For details and analysis, refer to [12].

Implementing Construct(E). The SCC partitioning of the initial graph are com-
puted using Tarjan’s algorithm [27] based on depth-first search. Afterwards, the
condensed graph is constructed, and the Counting Algorithm is initialized to
provide reachability information between SCCs.

Implementing Query() operations. As the most significant improvement over [12],
the transitive closure relation E+ is not stored explicitly in our IncSCC solution
to reduce the memory footprint. However, reachability in graph G(V, E) can be
reconstructed from the partitioning S of SCCs and the reachability relation E+

c

of condensed graph Gc(S, Ec), since for s1, s2 ∈ S, u ∈ s1, v ∈ s2 : 〈s1, s2〉 ∈ E∗
c

iff 〈u, v〉 ∈ E∗. Therefore when receiving a reachability query, the parameter
vertices are mapped to SCCs, where reachability information in the condensed
graph is provided by the Counting Algorithm. Vertices enumerated in the answer
are obtained by tracing back the SCCs to vertices.

Implementing Insert(Source,Target). First, a lookup in S maps the vertices to
SCCs. Afterwards, there are three possible cases to distinguish. If (i) 〈Source,
Target〉 are in different SCCs, the new edge of the condensed graph is handled by
the Counting Algorithm, which can confirm that no cycle is created in the con-
densed graph. If, however, (ii) the inserted edge caused a cycle in the condensed
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graph, then the cycle is collapsed into a single SCC. Finally, if (iii) 〈Source,
Target〉 are in the same SCC, there is no required action. Computation details
of the delta relation is omitted here for space considerations.

Implementing Delete(Source,Target). The algorithm first performs a lookup
in S to map the vertices to SCCs; afterwards, we once again distinguish three
possible cases. (1) If 〈Source, Target〉 are in the same SCC but Target remains
reachable from Source after the edge deletion (as confirmed by a depth-first-
search), no further actions are required. (2) If 〈Source, Target〉 are in the same
SCC but Target is no longer reachable from Source after the edge deletion, then
the SCC is broken up (using Tarjan’s algorithm) into smaller SCCs, because it
is no longer strongly connected. Finally, (3) if 〈Source, Target〉 are in different
SCCs, then the edge is deleted from the condensed graph, which is in turn is
handled by the Counting Algorithm.

4 Benchmarking

4.1 Measurement Scenario

To find out the performance differences between various pattern matching al-
gorithms for transitive closure, we ran a series of measurements1 on simplified
stochastic model simulation process, used to analyse the probability of the net-
work being (fully) connected (so that each client can communicate with every
other one, through their direct supernode connections and the transitive overlay
links between supernodes). The connectivity measure was registered through a
probe of the match set of the pconnected pattern (Fig. 4), reporting the size of
the match set after each simulation step.

A simulation run consisted of 2000 steps (rule applications), and along with
the total execution time of the run, we also registered the wall times for various
sub-phases – such as the time it took to propagate updates through the transitive
closure Rete node – using code instrumentation. The experiments were carried
out with three different strategies of evaluating graph patterns and transitive
closure: (a) local search pattern matching as implemented in Viatra2, (b) Rete-
based incremental matching with the DRed algorithm for transitive closure, (c)
Rete with IncSCC for transitive closure. We have investigated the performance
of these solutions in two series of experiments.

The first series considered various model structures induced by different prob-
ability weight parameterizations of the addLink rule (i.e. increasingly frequent
applications of the rule). It was run on an initial model of 2000 vertices in 20
isolated components, each containing 10 supernodes and 9 clients per supernode.
The second series settled on a fixed value 2 of addLink weight (thus keeping the
frequency of the rule application roughly constant), and considered increasingly
1 Performed on Intel Core i5 2,5 GHz, 8 GB RAM, Java Hotspot Server vm build

1.7.0_02-b13 on 64-bit Windows, with 4 Rete threads. The entire corpus is available
at http://viatra.inf.mit.bme.hu/publications/inctc

http://viatra.inf.mit.bme.hu/publications/inctc
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Table 1. Graph properties and simulation performance, depending on addLink weight

larger models sizes (from 1000 to 10000 vertices), initially divided into 10 to 100
components similarly to the first series.

4.2 Results and Analysis

Table 1 shows the results of the first experiment series. For each value of addLink
weight, we have displayed (i) the values of the probes (as well as the number of
strongly connected components) averaged over an entire simulation run; (ii) for
each of the three solutions the total execution time and, in case of the incremental
algorithms, (iii) the time spent initializing and updating the transitive closure
node (expressed as a percentage of total time).

The first series of experiments reveals that as the application frequency of
addLink increases, the frequent rule executions make the graph more and more
connected. DRed performance significantly degrades for more connected graphs
(e.g. as larger and larger number of pairs have to be rederived after deletion), to
the point that transitive closure maintenance dominates the total execution time
of the simulation. IncSCC however takes advantage of SCCs and runs efficiently
in all cases, having a negligible impact on the overall runtime of the simulation
and Rete maintenance. Local search in Viatra2 is orders of magnitudes slower
than either of the incremental approaches.

Fig. 6 shows the results of the second experiment series. For each model size
on the horizontal axis, we have displayed the average number of SCCs in the
model, and on the logarithmic vertical axis the total simulation execution times
in case of the three solutions. The second measurement series demonstrates that
IncSCC has a better complexity characteristic on large models than DRed, while
both scale significantly better than LS.

5 Related Work

Dynamic computation of transitive closure. While there are several classical algo-
rithms (depth-first search, etc.) for computing transitive reachability in graphs,
efficient incremental maintenance of transitive closure is a more challenging task.
As transitive closure can be defined as a recursive Datalog query, incremental
Datalog view maintenance algorithms such as DRed [26] can be applied as a
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Fig. 6. Performance on increasing model sizes (addLink weight is 2)

generic solution. There is also a wide variety [28] of algorithms that are specif-
ically tailored for the fully dynamic2 transitive reachability problem. Some of
these algorithms provide additional information (shortest path, transitive re-
duction), others may be randomized algorithms (typically with one-sided error);
the majority focuses on worst-case charactersitics in case of dense graphs. The
spectrum of solutions offers various trade-offs between the cost of operations
specified in Sec. 3.1.

Even if the original graph has a moderate amount of edges (sparse graph), the
size of the transitive closure relation can easily be a quadratic function of the
number of vertices, raising the relative cost of maintenance. A key observation,
however, is that in many typical cases vertices will form large SCCs. This is
exploited in a family of algorithms [12,13] including IncSCC that maintain (a)
the set of SCC using a dynamic algorithm, and also (b) the transitive reachability
relationship between SCCs. Choosing such an algorithm is justified by simplicity
of implementation, the sparse property of typical graph models and the practical
observation that large SCCs tend to form.

Incremental pattern matching and transitive closure in graph and model trans-
formation. Apart from Viatra2, GROOVE [2] also features a Rete-based in-
cremental pattern matcher, and is therefore the most closely related work. In
fact, the Rete implementation in GROOVE has recently been extended [3] by
the capability of incrementally maintaining transitive closure relations. They
also introduced a new type of Rete node that accepts a binary relationship as
input and emits its transitive closure as output. The transitive closure node in
GROOVE implements a simple algorithm that maintains the set of all paths
2 Note that the graph algorithms community uses the term “fully dynamic” instead of

“incremental”, as the latter has a secondary, more restrictive meaning in context of
the transitive closure maintenance problem.
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(walks) of any length that can be composed from the original binary relation,
even if many of them are redundant due to having the same sources and targets.
This results in factorial time and space complexity, as opposed to the various
polynomial solutions found in literature and also in our solution. Their solution
is only capable of computing the transitive closures of so called regular (path)
expressions ; we believe our notion of “derived edge” is more general, as it in-
cludes arbitrary graph structures (e.g. circular patterns as context, attribute
restrictions, etc.). Finally, the experimental assessment in [3] is conducted under
substantially different conditions, such as the graph being linear; in contrast, our
solution proves to be scalable for non-linear graphs as well.

In the future, we would like to carry out experimental comparison of the
transitive closure features of GROOVE and Viatra2. This will need significant
additional effort, as the running example of our current paper relies on a complex
peer-to-peer model and a stochastic simulator engine that would be difficult to
replicate on GROOVE, while the case study example in [3] relies on model
checking capabilities that are not supported in Viatra2.

Some other graph transformation tools [29,30] feature path expressions, in-
cluding transitive closure, without maintaining the result incrementally. In a
graph with a low branching factor, they can still be feasible in practice. There
are other model transformation tools that offer incremental evaluation. The in-
cremental tranformation solution in ATL [31] relies on impact analysis of OCL
expressions, meaning that the entire OCL expression will be re-evaluated when-
ever a relevant element in the model changes; however standard OCL cannot
express transitive closure in arbitrary graphs. There is an incremental evaluation
technique for Tefkat [19] that maintains an SLD resolution tree of the pattern
expression; but without special handling of transitive closure, the SLD tree ex-
pands all possible paths from source to target, leading to factorial complexity
similarly to GROOVE.

6 Conclusion

We have presented the extension of the incremental pattern matcher of Viatra2
with a dedicated capability for maintaining generic transitive closure built on a
fully dynamic transitive closure maintenance strategy. The results were evaluated
in terms of performance on a P2P stochastic system simulation case study.

Our measurements have shown the performance impact of incrementally eval-
uating generalized transitive closure to be affordable. This implies that the inclu-
sion of transitive closure based probes and rule guard conditions is feasible and
scalable in stochastic model simulation, even in case of dynamically changing
graph structures. As for the performance of transitive closure algorithms, our
investigation demonstrated the overall superiority of IncSCC in a wide range of
model structures.

As future work, we plan to (i) conduct more detailed benchmarking in other
scenarios, (ii) integrate transitive closure maintenance into the EMF-based EMF-
IncQuery [10], and (iii) investigate additional transitive closure algorithms.
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Abstract. Triple Graph Grammars (TGGs) are a rule-based technique
with a formal background for specifying bidirectional and incremen-
tal model transformation. In practical scenarios, unidirectional rules for
incremental forward and backward transformation are automatically de-
rived from the TGG rules in the specification, and the overall transfor-
mation process is governed by a control algorithm. Current incremental
implementations either have a runtime complexity that depends on the
size of related models and not on the number of changes and their af-
fected elements, or do not pursue formalization to give reliable predic-
tions regarding the expected results. In this paper, a novel incremental
model synchronization algorithm for TGGs is introduced, which employs
a static analysis of TGG specifications to efficiently determine the range
of influence of model changes, while retaining all formal properties.

Keywords: triple graph grammars, model synchronization, control al-
gorithm of incremental transformations, node precedence analysis.

1 Introduction

Model-Driven Engineering (MDE) established itself as a promising means of
coping with the increasing complexity of modern software systems and, in this
context, model transformation plays a central role. As industrial applications
require reliability and efficiency, the need for formal frameworks that guaran-
tee useful properties of model transformation arises. Especially for bidirectional
model transformation, it is challenging to define precise semantics for the ma-
nipulation and synchronization of models with efficient tool support. The Triple
Graph Grammar (TGG) approach has not only solid formal foundations [3,11]
but also various tool implementations [1,6,10]. TGGs provide a declarative, rule-
based means of specifying the consistency of two models in their respective do-
mains, and tracking inter-domain relationships between elements explicitly by
using a correspondence model. Although TGGs describe how triples consisting
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of source, correspondence, and target models are derived in parallel, most prac-
tical scenarios involve existing models and require unidirectional transformation.
Consequently, TGG tools support model transformation based on unidirectional
forward and backward operational rules, automatically derived from a single
TGG specification, as basic transformation steps, and use an algorithm to con-
trol which rule is to be applied on which part of the input graph. Such a batch
transformation is the standard scenario for model transformation, where existing
models are transformed (completely) from scratch.

In contrast, incremental model transformation supports changing already re-
lated models and propagating deltas appropriately. The challenge is to perform
the update in an efficient manner and to avoid information loss by retaining
unaffected elements of the models. Determining such an update sequence is a
difficult task because transformations of deleted elements and their dependen-
cies, as well as transformations of potential dependencies of newly added ele-
ments must be revoked [9]. The challenge is to identify such dependent elements
in the model and to undo their previous transformation taking all changes into
account.

Current incremental TGG approaches guarantee either the formal proper-
ties of correctness meaning that only consistent graph triples are produced,
and completeness meaning that all possible consistent triples, which can be
derived from a source or a target graph, can actually be produced, but are
inefficient (scale with the size of the overall models) [9], or are efficient (scale
with the number of changes and affected elements), but do not consider formal
aspects [5,7].

In this paper, we introduce a novel incremental TGG control algorithm for
model synchronization and prove its correctness, completeness, and efficiency.
Based on our precedence-driven TGG batch algorithm presented in [12], a static
precedence analysis is used to retrieve information, which allows for deciding
which elements may be affected by deletions and additions of elements.

Section 2 introduces fundamentals and our running example. Section 3 pre-
sents our node precedence analysis, used by the incremental TGG algorithm
presented in Sect. 4. Section 5 discusses related approaches, while Sect. 6 con-
cludes with a summary and future work.

2 Fundamentals and Running Example

In this section, all concepts required to formalize and present our contribution
are introduced and explained using our running example.

2.1 Type Graphs, Typed Graphs and Triples

We introduce the concept of a graph, and formalize models as typed graphs.

Definition 1 (Graph and Graph Morphism). A graph G = (V,E, s, t) con-
sists of finite sets V of nodes, and E of edges, and two functions s, t : E → V
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that assign each edge source and target nodes. A graph morphism h : G → G′,
with G′ = (V ′, E′, s′, t′), is a pair of functions h := (hV , hE) where hV : V → V ′,
hE : E → E′ and ∀e ∈ E : hV (s(e)) = s′(hE(e)) ∧ hV (t(e)) = t′(hE(e)).

Definition 2 (Typed Graph and Typed Graph Morphisms).

type type´ 

g 

TG

G G´ 
A type graph is a graph TG = (VTG, ETG, sTG, tTG).
A typed graph (G, type) consists of a graph G together with
a graph morphism type: G→ TG.
Given typed graphs (G, type) and (G′, type′), g : G→ G′ is
a typed graph morphism iff the depicted diagram commutes.

These concepts can be lifted in a straightforward manner to triples of connected

graphs denoted as G = GS
hS←− GC

hT−→ GT as shown by [4,11]. In the following,
we work with typed graph triples and corresponding morphisms.

Example: Our running example specifies the integration of class diagrams and
corresponding database schemata. The TGG schema depicted in Fig. 1(a) is the
type graph triple for our running example. In the source domain, class diagrams
consist of Packages, Classes, and inheritance between Classes. In the target
domain, a database schema consists of Databases and Tables. The correspon-
dence domain specifies links between elements in the different domains, in this
case P2D relating packages with databases, and C2T relating classes with tables.
In Fig. 1(b), a schema conform (typed graph) triple is depicted: a package p

C2T 

Package 

packs 

Table 

inherits 

P2D Database 

owns 

source domain correspondence domain target domain 

Class 

p2d 

c2t 

d2p 

t2c 

(a) TGG schema

b:Class 

cl2:C2T 

cl3:C2T 

a:Class 

p:Package 

p1:packs t:Table 

c:Class 

p2:packs i:inherits 

p3:packs 
cl4:C2T 

cl1:P2D d:Database 
o1:owns 

source domain correspondence domain target domain 

u:Table 
o2:owns

pd:p2d 

ct1:c2t 

ct2:c2t 

ct3:c2t 

dp:d2p 

tc1:t2c 

tc2:t2c 

tc3:t2c 

(b) A TGG schema conform triple

Fig. 1. TGG schema for the running example and a conform triple

consists of three classes a, b, and c, while the corresponding database schema d

contains two tables t and u.

2.2 Triple Graph Grammars and Rules

The simultaneous evolution of typed graph triples can be described by a triple
graph grammar consisting of transformation rules. In general, transformation
rules can be formalized via a double-pushout to allow for creating and deleting
elements in a graph [4]. As TGG rules are restricted to the creation of elements,
we simplify the definition in the following:
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Definition 3 (Graph Triple Rewriting for Monotonic Creating Rules).

R G´

K H PO 

m 

m´ 

 

 

L G 
m 

id id 

A monotonic creating rule r := (L = K,R), is a pair of
typed graph triples s.t. L ⊆ R. A rule r rewrites (via adding
elements) a graph triple G into a graph triple G′ via a match

m : L → G, denoted as G
r@m� G′, iff m′ : R → G′ can

be defined by building the pushout G′ as denoted in the
diagram to the right.

Elements in L denote the precondition of a rule and are referred to as context
elements, while elements in R \ L are referred to as created elements.

Definition 4 (Triple Graph Grammar).
A triple graph grammar TGG := (TG,R) is a pair consisting of a type graph
triple TG and a finite set of monotonic creating rules R. The generated language

is L(TGG) := {G | ∃ r1, r2, . . . , rn ∈ R : G∅
r1@m1� G1

r2@m2� ...
rn@mn� Gn = G},

where G∅ denotes the empty graph triple.

Example: In Fig. 2, Rules (a)–(c) declare how an integrated class diagram and a
database schema are created simultaneously. Rule (a) creates the root elements
(a Package and a corresponding Database), while Rule (b) appends a Class

and a Table, and Rule (c) extends the models with an inheriting Class, which
is related to the same Table. We use a concise notation (merging L and R)
depicting context elements in black without any markup, and created elements
in green with a “++”markup.

p:Package 

++ 

cl:P2D 

++ 

d:Database 

++ 

pd:p2d 
++ 

dp:d2p 
++ 

Rule (a)

++ p:packs ++ o:owns 

p:Package cl1:P2D d:Database 
pd:p2d dp:d2p 

c:Class 

++ 

cl2:C2T 

++ 

T:Table 

++ 

ct:c2t 
++ 

tc:t2c 
++ 

Rule (b)

p1:packs 

++ i:inherits 

c:Class cl1:C2T ct1:c2t tc1:t2c 

d:Class 

++ 

cl2:C2T 

++ 

ct2:c2t 
++ 

tc2:t2c 
++ 

p2:packs 
++ 

p:Package 

t:Table 

Rule (c)

Fig. 2. TGG Rules (a)–(c) for the integration

2.3 Derived Operational Rules

The real potential of TGGs as a bidirectional transformation language lies in the
automatic derivation of operational rules. Such operational rules can be used to
transform a given source domain model to a corresponding target domain model,
and vice versa. Although we focus in the following sections only on forward
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transformations, all concepts and arguments are symmetric and can be applied
analogously for the case of backward transformations.

As shown in [3], a sequence of TGG rules, which describes a simultaneous
evolution, can be uniquely decomposed into (and conversely composed from) a
sequence of source rules that only evolve the source model and forward rules
that retain the source model and evolve the correspondence and target mod-
els. In addition, inverse forward rules revoke the effects of forward rules. These
operational rules serve as the building blocks used by our control algorithm.
As inverse forward rules only delete elements, we define monotonic deleting
rules:

Definition 5 (Graph Triple Rewriting for Monotonic Deleting Rules).

 

R

H K 

G PO 

m 

m´ 

id 

 

L 

G´m´ 

id 

A monotonic deleting rule r := (L,K = R), is a pair of
typed graph triples s.t. L ⊇ R. A rule r rewrites (via delet-
ing elements) a graph triple G into a graph triple G′ via a

match m : L → G, denoted as G
r@m� G′, iff m′ : R → G′

can be defined by building the pushout complement H = G′

as denoted in the diagram to the right.

The elements in L \R of a monotonic deleting rule are referred to as deleted ele-
ments. Using this definition, operational rule derivation is formalized as follows:

Definition 6 (Derived Operational Rules). Given a TGG = (TG,R) and a
rule r = (L,R) ∈ R, a source rule rS = (SL, SR), a forward rule rF = (FL,FR)
and an inverse forward rule rF−1 = (FR,FL) are derived as follows:

SR = 

SL =  LS 

RS 

 

 

 

 

   

 

 

 

 
R = 

L =  LS 

RS 

LC 

RC 

LT 

RT 

   

L 

R 

L 

R 

  

FR = 

FL =  RS 

RS 

LC 

RC 

LT 

RT 

id   

L 

R 

L 

R 

 

FL = 

FR =  RS 

RS 

RC 

LC 

RT 

LT 

id   

R 

L 

R 

L 

 

source rule rS TGG rule r 
(monotonic creating) 

forward rule rF 

inverse forward rule rF-1 

LS   

id   

  SL =  LS LC LT 

id id id 

L L L =  

RS LC LT 

id id id 

L L FL =  

FL = RS LC LT 

id id id 

L L Remark: Regarding Defs. 3 and 5, the upper rows denote L,  
the center rows K, and the lower rows R. 
Thus, components L, K, and R have been extended to triples. 

id 

id 

id id 

The forward rule rF can be applied according to Def. 3, i.e., this involves building
a pushout to create the required elements, while the inverse forward rule rF−1

involves building a pushout complement to delete the required elements according
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to Def. 5. Given a forward rule rF , the existence of rule rF−1 , which reverses an
application of rF up to isomorphism, can be shown according to Fact 3.3 in [4].

Although forward and inverse forward rules retain all source elements, the control
algorithm keeps track of which source elements are transformed by a rule appli-
cation. This can be done by introducing marking attributes [9], or maintaining a
bookkeeping data structure in the control algorithm [6]. In concrete syntax, we
equip every transformed element with a checked box, and every untransformed
elements with an unchecked box (cf. Fig. 4) as introduced in [11].

Example: From Rule (b) (Fig. 2), the operational rules rS , rF , and r−1F depicted
in Fig. 3 are derived. The source rule extends the source graph by adding a Class
to an existing Package, while the forward rule rF transforms (denoted as �→ ��)
an existing Class by creating a new C2T link and Table in the corresponding
Database. The inverse forward rule untransforms (denoted as �� → �) a Class

in a Package by deleting the corresponding link and Table, i.e., revoking the
modifications of the forward rule. In addition to the already introduced merged
representation of L and R of a rule, we further indicate deleted elements by
a “−−” markup and red color. Forward and inverse forward rules match the
same context element and retain the checked box (denoted as ��→ ��).

o:owns 

source rule rS 

forward rule rF 

TGG rule 

++ p:packs ++ 

p:Package cl1:P2D d:Database 
pd:p2d dp:d2p 

c:Class 

++ 

cl2:C2T 

++ 

T:Table 

++ 

ct:c2t 
++ 

tc:t2c 
++ 

inverse forward rule rF-1 

++ p:packs 

p:Package 

c:Class 

++ 

p:packs ++ o:owns 

p:Package d:Database 
pd:p2d dp:d2p 

++ 

T:Table 

++ 

ct:c2t 
++ 

tc:t2c 
++ 

  

  

  
c:Class 

tc:t2c 

p:packs -- o:owns 

p:Package d:Database 
pd:p2d dp:d2p 

-- 
T:Table 

-- 

ct:c2t 
-- -- 

  

  

  
c:Class 

cl1:P2D 

cl2:C2T 

cl1:P2D 

cl2:C2T 

Fig. 3. Source and forward rules derived from Rule (b)

3 Precedence Analysis for TGGs

In the following, we introduce a path-based precedence analysis, which is used
to partially sort the nodes in a source graph and thus control the transformation
process. We formalize the concepts only for the source domain and a corre-
sponding forward transformation, but, as before, all concepts can be directly
transferred to the target domain and backward transformation, respectively.

Definition 7 (Paths and Type Paths). Let G be a typed graph with type
graph TG. A path p between two nodes n1, nk ∈ VG is an alternating sequence
of nodes and edges in VG and EG, respectively, denoted as p := n1 · eα1

1 · n2 ·
. . . · nk−1 · eαk−1

k−1 · nk, where αi ∈ {+,−} specifies if an edge ei is traversed from
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source s(ei) = ni to target t(ei) = ni+1 (+), or in a reverse direction (–). A type
path is a path between node types and edge types in VTG and ETG, respectively.
Given a path p, its type (path) is defined as typep(p) := typeV (n1) ·typeE(e1)α1 ·
typeV (n2) · typeE(e2)α2 · . . . · typeV (nk−1) · typeE(ek−1)αk−1 · typeV (nk).

For our analysis we are only interested in paths that are induced by certain
patterns present in the TGG rules :

Definition 8 (Relevant Node Creation Patterns). For a TGG = (TG,R)
and all rules r ∈ R, where r = (L,R) = (LS ← LC → LT , RS ← RC → RT ),
the set PathsS denotes all paths in RS (note that LS ⊆ RS).
The predicates contextS : PathsS → {true, false} and
createS : PathsS → {true, false} in the source domain are defined as follows:
contextS(pr) := ∃ r ∈ R s.t. pr is a path between two nodes nr, n

′
r ∈ RS :

n’r 
++ 

nr pr 

(nr ∈ LS) ∧ (n′r ∈ RS \ LS), i.e., a rule r in R contains
a path pr which is isomorphic to the node creation pattern
depicted in the diagram to the right.

createS(pr) := ∃ r ∈ R s.t. pr is a path between two nodes nr, n
′
r ∈ RS :

n’r 
++ 

nr pr 
++ (nr ∈ RS \LS)∧ (n′R ∈ RS \LS), i.e., a rule in R contains

a path pr which is isomorphic to the node creation pattern
depicted in the diagram to the right.

We can now define the set of interesting type paths, relevant for our analysis.

Definition 9 (Type Path Sets). The set TPathsS denotes all type paths of
paths in PathsS (cf. Def. 8), i.e. TPathsS := {tp | ∃ p ∈ PathsS s.t. typep(p) =
tp}. Thus, we define the restricted create type path set for the source domain as

TPcreate
S := {tp ∈ TPathsS | ∃ p ∈ PathsS ∧ typep(p) = tp ∧ createS(p)},

and the restricted context type path set for the source domain as
TPcontext

S := {tp ∈ TPathsS | ∃ p ∈ PathsS ∧ typep(p) = tp ∧ contextS(p)}.

In the following, we formalize the concept of precedence between nodes, reflecting
that one node could be used as context for transforming another node.

Definition 10 (Precedence Function PFS). Let P := {�,
.
=, ·�·} be the set

of precedence relation symbols. Given a TGG = (TG,R) and the restricted type
path sets for the source domain TPcreate

S ,TPcontext
S . The precedence function for

the source domain PFS : {TPcreate
S ∪ TPcontext

S } → P is computed as follows:

PFS(tp) :=
� iff tp ∈ {TPcontext

S \ TPcreate
S }

.
= iff tp ∈ {TPcreate

S \ TPcontext
S }

·�· otherwise
Example: For our running example, PFS consists of the following entries:
Rule (a): ∅. Rule (b): PFS(Package · packs+ · Class) = �.
Rule (c): PFS(Package·packs+ ·Class) = �, PFS(Class ·inherits− ·Class) =
�, PFS(Class · packs− · Package · packs+ · Class) = �.

Note that regarding our running example, path Class · packs− · Package is
not in PFS as this path is neither in TPcreate

S nor in TPcontext
S .
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Restriction: As our precedence analysis depends on paths in rules of a given
TGG, the presented approach only works for TGG rules that are (weakly) con-
nected in each domain. Hence, considering the source domain, the following must
hold: ∀ r ∈ R : ∀ n, n′ ∈ RS : ∃ p ∈ PathsS between n, n′.

Based on the precedence function PFS , we now analyze typed graphs with two
relations �S and

.
=
∗
S . These are used to topologically sort a given source input

graph and determine the sets of affected elements due to changes.

Definition 11 (Source Path Set). For a given typed source graph GS, the
source path set for the source domain is defined as follows:
PS := {p | p is a path between n, n′ ∈ VGS ∧ typep(p) ∈ {TPcreate

S ∪TPcontext
S }}.

Definition 12 (Precedence Relation �S). Given PFS, the precedence func-
tion for a given TGG, and a typed source graph GS. The precedence relation
�S ⊆ VGS × VGS for the source domain is defined as follows: n �S n′ if there
exists a path p ∈ PS between nodes n and n′, such that PFS(typep(p)) = �.

Example: For our example triple (Fig. 1(b)), the following pairs constitute �S :
(p �S a), (p �S b), (p �S c), (a �S c).

Definition 13 (Relation
.
=S). Given PFS, the precedence function for a given

TGG, and a typed source graph GS . The symmetric relation
.
=S⊆ VGS × VGS

for the source domain is defined as follows: n
.
=S n′ if there exists a path p ∈ PS

between nodes n and n′ such that PFS(typep(p)) =
.
=.

Definition 14 (Equivalence Relation
.
=

∗
S). The equivalence relation

.
=
∗
S is

the transitive and reflexive closure of the symmetric relation
.
=S.

Example: For our example triple (Fig. 1(b)), relation
.
=
∗
S partitions the nodes of

the source graph into the following equivalence classes: {p}, {a}, {b}, and {c}. For
a more complex example with non-trivial equivalence classes we refer to [12].

We now define the concept of a precedence graph based on our relations
.
=
∗
S ,

�S to sort a given graph according to its precedences, which is used by the
incremental algorithm to determine if an element is available for transformation.

Definition 15 (Precedence Graph PGS). The precedence graph for a given
source graph GS is a graph PGS constructed as follows:
(i) The equivalence relation

.
=
∗
S is used to partition VGS into equivalence classes

EQ1, . . .EQn which serve as the nodes of PGS, i.e., VPGS := {EQ1, . . . ,EQn}.
(ii)The edges in PGS are defined as follows:

EPGS := {e | s(e) = EQi, t(e) = EQj : ∃ ni ∈ EQi, nj ∈ EQj with ni �S nj}.

Example: The corresponding PGS constructed from our example triple is de-
picted in Fig. 5(a) in Sect. 4.

Remark: PGS defines a partial order over equivalence classes. This is a direct
consequence of Def. 15.

Finally, we define the class of typed graph triples that do not introduce con-
tradicting precedence relations between connected source and target domain
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elements. This is important as the synchronization control algorithm presented
in Sect. 4 relies only on the source domain when applying appropriate changes
to the correspondence and target domain.

Definition 16 (Forward Precedence Preserving Graph Triples). Given

a graph triple G = GS
hS←− GC

hT−→ GT and two corresponding precedence graphs
PGS and PGT . For EQS ∈ VPGS and EQT ∈ VPGT , the predicate cross-domain-
connected on pairs of equivalence classes in precedence graphs of different do-
mains is defined as follows: cross-domain-connected(EQS , EQT ) := ∃ nC ∈ VGC

s.t. hS(nC) ∈ EQS ∧ hT (nC) ∈ EQT .
Given EQS, EQ′S ∈ VPGS , EQS �= EQ′S and EQT , EQ′T ∈ VPGT , EQT �= EQ′T
s.t. cross-domain-connected(EQS , EQT )∧ cross-domain-connected(EQ′S , EQ′T ).
The graph triple G is forward precedence preserving iff
∃ path pT (EQT , EQ′T ) = EQT ·e

αT1

T1
·. . .·eαTn

Tn
·EQ′T s.t. αTi = + ∀ i ∈ {1, . . . , n}

⇒
∃ path pS(EQS , EQ′S) = EQS ·e

αS1

S1
· . . .·eαSn

Sn
·EQ′S s.t. αSi = + ∀ i ∈ {1, . . . , n}

Example: The running example (Fig. 1(b)) satisfies this property.

4 Incremental Precedence TGG Algorithm

To realize bidirectional incremental model synchronization with TGGs, a control
algorithm is required that accepts a triple G = GS ← GC → GT ∈ L(TGG), an
update graph triple [9] for the source domain ΔS = GS ← D → G′S , the pre-
compiled precedence function for the source domain PFS , and precedence graph
PGS used in a previous batch or incremental transformation, and returns a con-
sistent graph triple G′ = G′S ← G′C → G′T with all changes propagated to the
correspondence and target domain. Therefore, this algorithm (i) untransforms
deleted elements and their dependencies in a valid order, (ii) untransforms ele-
ments (potentially) dependent on additions in a valid order, and (iii) transforms
all untransformed and newly created elements by using the precedence-driven
batch algorithm of [12]. Regarding the valid order, the algorithm has to find a
way to delete elements in the opposite domain without compromising the trans-
formation of existing elements. As a (fomal) restriction, edges can only be added
(deleted) together with adjacent nodes, hence we focus on nodes only. In practice,
Ecore for example assigns all edges to nodes, which overcomes this restriction.

Example: Using our example, we describe the incremental forward propagation
of the following changes in the source domain (Fig. 4(a)): class a is deleted (in-
dicated by «del») and a new class d is added (indicated by «add»). Parameters
passed to the algorithm (line 1) are the original graph triple G (Fig. 1(b)), its
source domain precedence graph PGS (Fig. 5(a)), update ΔS with deleted nodes
Δ− := VGS \VD and added nodes Δ+ := VG′S \VD, and the pre-compiled source
domain precedence function PFS (cf. example for Def. 10).

The algorithm returns a consistent graph triple with all changes propagated
(Fig. 4(d)) on line 13.
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Algorithm 1. Incremental Precedence TGG Algorithm

1: procedure propagateChanges(G,ΔS,PFS,PGS)
2: for (node n− ∈ Δ−) do
3: untransform(n−,PGS)
4: end for
5: (G−

S , PG−S ) ← remove all n− in Δ− from GS and PGS
6: (G+

S , PG+S ) ← insert all n+ in Δ+ to G−
S and PG−S

7: if PG+S is cyclic then
8: terminate with error  Additions invalidated G′

S

9: end if
10: for (node n+ ∈ Δ+) do
11: untransform(n+,PG+S )
12: end for  At this point G has changed to G∗ = G′

S ← G∗
C → G∗

T

13: return (G′
S ← G′

C → G′
T ) ← transform(G∗,PFS)  Call batch algo [12]

14: end procedure
15: procedure untransform(n,PGS)
16: deps ← all nodes in all equiv. classes in PGS with incoming edges from EQ(n)
17: for node dep in deps do
18: if dep is transformed then
19: untransform(dep,PGS)
20: end if
21: end for
22: neighbors ← all nodes in EQ(n)
23: for node neighbor in neighbors do
24: if n is transformed then
25: applyInverseRule(n)  Throw exception if Def. 16 is violated
26: end if
27: end for
28: end procedure

A for-loop (line 2) untransforms every deleted node in Δ− (in our case class a)
by calling method untransform. Line 16 places c in deps as this is depen-
dent on EQ(a) (EQ(x) returns the appropriate equivalence class of node x)
and calls untransform recursively on line 19. The equivalence class of c has
no dependent elements in PGS and on line 25, calling applyInverseRule un-
transforms c by applying the inverse forward rule of Rule (c) (Fig. 2). Note
that with an appropriate bookkeeping data structure (not explained here) this
method is aware of all previous rule applications and applies the correct inverse
forward rule to the same match used previously by the forward transformation.
The rule application can only fail if building the pushout complement was not
possible due to dependencies in GT which would violate the forward precedence
preserving property for graph triples (Def. 16). In this case, an appropriate ex-
ception is thrown. After returning from the recursive call, a is untransformed
by using the inverse forward rule of Rule (b). The resulting graph triple is de-
picted in Fig. 4(b). Next, all changes in ΔS are used to update GS and PGS on
lines 5 and 6. Adding elements may result in a cyclic precedence graph indicating
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cl3:C2T 

a:Class 

p:Package 
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(a) Original triple G with a merged repre-
sentation of all changes in ΔS
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(b) Triple after untransforming deletions
and their dependencies
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(c) Triple G∗ after handling changes and
untransforming their dependencies
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(d) Final updated triple G′ with all
changes propagated

Fig. 4. Consistent change propagation from source to target domain

cyclic context dependencies and the algorithm would terminate with an error on
line 8. For our running example, the updated precedence graph PGS is acyclic
(Fig. 5(b)), so the algorithm continues untransforming all elements that poten-
tially depend on newly added elements as context. The only dependent element
of d, which is b, is untransformed by calling untransform on line 11 which
results in the triple G∗ (Fig. 4(c)). Finally, on line 13 the intermediate triple G∗

is passed to the TGG batch transformation algorithm of [12], which transforms
all untransformed elements (with empty checkboxes) and returns the integrated
and updated graph triple G′S ← G′C → G′T depicted in Fig. 4(d).

a:Class 

p:Package 

b:Class c:Class 

(a)

d:Class 

p:Package 

b:Class c:Class 

(b)

Fig. 5. PGS for the original (left) and PG+S for the updated source graph (right)

Formal Properties of the Incremental Precedence TGG Algorithm

In this section, we prove that our algorithm retains all formal properties proposed
in [13] and proved for the precedence-driven TGG batch algorithm of [12].
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Definition 17 (Correctness, Completeness and Efficiency).

Correctness: Given an input graph triple GS ← GC → GT ∈ L(TGG) and an
update ΔS = GS ← D → G′S, the transformation algorithm either terminates
with an error or produces a consistent graph triple G′S ← G′C → G′T ∈ L(TGG).

Completeness: ∀ GS ← GC → GT ∈ L(TGG), G′S ← G′C → G′T ∈ L(TGG)
and a corresponding update ΔS = GS ← D → G′S, the transformation algorithm
produces a consistent triple G′S ← G∗C → G∗T ∈ L(TGG).

Efficiency: According to [13], a TGG batch transformation algorithm is efficient
(polynomial runtime) if its runtime complexity class is O(nk

S), where nS is the
number of nodes in the source graph to be transformed and k is the largest number
of elements to be matched by any rule r of the given TGG. In the incremental
case, the algorithm is efficient if the synchronization runtime effort scales with
the number of changes (|Δ−| + |Δ+|) and (potentially) dependent elements nδ

and not with the size of the updated graph triple, i.e., the incremental algorithm
runs in the order of O(nk

δ ).

All properties are defined analogously for backward transformations.

Theorem. Algorithm 1 is correct, complete, and efficient for any source-local
complete TGG (due to space restrictions we refer to Def. 13 in [11]) and forward
precedence preserving graph triples (Def. 16).

Proof.
Correctness: Lines 2 – 12 of the algorithm only invert previous rule applica-
tions. The order of rule applications is directed by the precedence graph (Def. 15),
which represents potential dependencies between nodes, i.e., a node x has as de-
pendencies all other nodes y, which may be transformed by applying a rule that
matches x as context. These dependencies are potential dependencies as actual
rule applications may select other nodes in place of x. Nevertheless, y poten-
tially depends on x. The algorithm traverses to the very last dependency of
every deleted/added node and applies the inverse of the rule used in a previous
transformation. Demanding precedence preserving graph triples (Def. 16) guar-
antees that PGS is sufficient to correctly revoke forward rules in a valid order.
If an element on the target side is deleted by applying an inverse forward rule,
although this element is still in use as context for another element, we know that
the forward precedence preserving property is violated. This also guarantees that
deleting elements via building a pushout complement (Def. 5) is always possible
and cannot be blocked due to “dangling” edges. In combination with bookkeep-
ing of previously used matches, it is guaranteed (Def. 6) that the resulting triple
is in the state it was before transforming the untransformed node.

It directly follows that if the triple G was consistent, the remaining integrated
part of G remains consistent. Since untransform inverts rule applications of
a previous transformation, we know that the graph triple after line 12 is a valid
intermediate graph triple produced by the batch transformation algorithm. As
shown in [12], the precedence-driven TGG batch algorithm is correct (produces
only correct graph triples or terminates with an error if no correct graph triple
can be produced), so it directly follows that Algorithm 1 is also correct. *+
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Completeness: The correctness proof shows that the incremental update pro-
duces a triple via a sequence of rule applications that the batch algorithm
could have chosen for a forward transformation of G′S . Completeness arguments
from [12] for the batch algorithm can, hence, be transferred to this algorithm.*+
Efficiency: Efficiency is influenced mainly by the cost of (i) untransforming de-
pendent elements of a deleted or added node (lines 2–4 and 10–12), (ii) updating
the precedence graph and graph triple itself (lines 5 and 6), and (iii) transform-
ing all untransformed elements via our precedence-driven TGG batch algorithm
(line 13). The number of deleted/added nodes (|Δ−|+ |Δ+|) and their dependen-
cies is denoted by nδ. Regarding untransform, a recursive depth-first search
on the precedence graph PGS is invoked starting at a certain node. Depth-first
search has a worst-case complexity of O(|VPGS | + |EPGS |) if the changed node
was an (indirect) dependency of all other equivalence classes in PGS . If the al-
gorithm encounters an already untransformed element on line 18, we know for
sure that all subsequent elements are already untransformed and, therefore, can
safely terminate recursion. Independent of the position of the changed element,
untransform traverses every dependent element exactly once. Finally, apply-
ing the inverse operational rule (line 25) is (at most) of the same complexity
as the appropriate previous rule application since the rule and match are al-
ready known. Considering both untransformation runs together, we know that
nδ elements are untransformed, and that every element is treated exactly once.
Updating GS on line 5 (6) involves deleting (inserting) |Δ−| (|Δ+|) elements
m ∈ Δ−(Δ+) and updating, each time, a number of adjacent nodes (degree(m)).
Updating PGS has similar costs since elements have to be deleted (added) and
updating the edge set of PGS means to traverse all adjacent nodes of a deletion or
addition in GS and retrieve appropriate entries from PFS . Thus, the complexity
of line 5 and 6 can be estimated with O(|ΔS |), asΔS contains all nodes and edges
that have been changed and, therefore, need to be revised. Finally, transforming
the rest of the prepared graph (line 13) has O(nk

δ ) complexity [12]. Because only
added elements, their dependencies, and the dependencies of removed elements
have been untransformed, nδ refers to these elements only, and not to all elements
in GS . The algorithm, therefore, scales with the number of changes and their
dependencies and not with the size of the graph triple: nδ ≤ n. *+

5 Related Work

This section complements the discussion from Sect. 1 on related incremental
synchronization approaches grouped according to their strengths.

Formality: Providing formal aspects for incremental updates that guarantee
well-behavedness according to a set of laws or properties is challenging. Alge-
braic approaches such as lenses [2] and the framework introduced by Stevens [14]
provide a solid basis for formalizing concrete implementations that support in-
cremental model synchronization. Inspired by [2], a TGG model synchronization
framework was presented in [9] that is correct and complete. The proposed al-
gorithm, however, requires a complete remarking of the entire graph triple and



414 M. Lauder et al.

depends, therefore, on the size of the related graphs and not on the size of the
update and affected elements. This is infeasible for an efficient implementation
and the need for an improved strategy is stated as future work in [9].

Efficiency: In contrast to this formal framework, an incremental TGG transfor-
mation algorithm has been presented in [5], which exploits the correspondence
model to determine an efficient update strategy. Although the batch mode of this
algorithm has been formally presented in [6], the incremental version has not been
fully formalized and it is unclear how the update propagation order is determined
correctly for changes to elements that are not linked via the correspondencemodel
to other elements. The authors describe an event-handling mechanism and so it
can be assumed that model changes are instantly propagated. This allows for re-
duced complexity regarding dependencies between changes, but forbids the option
of collecting a set of changes before propagating. This is, however, a requirement
for scenarios in which changes are applied to models offline (i.e., without access to
the relatedmodel) and the actual model synchronizationmust be performed later.
The TGG interpreter described in [7] employs basically the same approach as [5],
but additionally attempts to reuse elements instead of deleting and creating them.
This is important as it prevents a loss of information that cannot be recovered by
(re-)creating an element (user added contents). Unfortunately, this approach has
also not been formalized and it is unclear whether the algorithm guarantees cor-
rectness and completeness. Nonetheless, this concept of reuse is crucial for indus-
trial relevance and should be further investigated.

Concurrency: The challenge of dealing with concurrent changes to both do-
mains has been discussed and investigated in [8,15]. A cascade of propagate,
calculate diff, and merge steps is proposed that finally results in a consistent
model. Extending our TGG algorithm based upon these ideas but retaining ef-
ficiency is also an important task of future research.

6 Conclusion and Future Work

A novel incremental algorithm for TGG has been presented that employs a prece-
dence analysis to determine the effects of model changes. This involves not only
determining which elements rely on deletions and, hence, must be untransformed,
but also includes finding all elements that may rely on additions and also have
to be untransformed. This must be achieved without compromising formal prop-
erties (i.e., correctness and completeness) while scaling efficiently with the size
of the changes and their dependencies and not with the size of the overall graph.

Current restrictions include the lack of support for concurrent change propaga-
tion, which we plan to handle according to [15], and the formal requirement that
edges can only be deleted or added together with adjacent nodes. Last but not
least, we shall implement the presented incremental algorithm as an extension of
our current implementation in our metamodelling tool eMoflon1[1] and perform
empirical performance assessments and comparisons with other implementations.

1 http:\\www.moflon.org

http:\\www.moflon.org
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1 Introduction and State-of-the-Art

The XL (eXtended L-System) programming language is an extension of the Java
programming language by parallel rule-based graph rewriting features [10]. XL is
primarily used in functional structural plant modelling where L(Lindenmayer)-
systems [13,16] are used. Other main L-system implementations used in plant
modelling are cpfg [15,8], lpfg [9], L-Py [1] and GROGRA [12]. The relational
growth grammar (RGG) formalism [10] implemented by XL provides a connec-
tion mechanism emulating L-System string re-writing on graphs. An extension
of such a rewriting formalism to multiscale structures is interesting in various
domains from systems biology [14] to simulations of crop plants competing for
resources [2].

2 Problems

Godin and Caraglio introduced the multiscale tree graph (MTG) to represent
multi-scale plant topological structures in 1998[7]. Existing L-System implemen-
tations did not provide means to specify rules on such multi-scalar structures
until the advent of L-Py. L-Py is introduced with an L-system feature that oper-
ates on multiscale L-system strings [1] converted from MTGs. While this allows
L-system re-writing on MTGs, graph models are suitable for a wider variety of
modelling requirements [3,6,11] as compared to strings.

The use of typed attributed graphs with inheritance [4,10] allows RGG to
define multi-scalar graph models resembling MTGs. However, the current L-
system-style connection mechanism does not take into account edges relating
nodes from different scales. The other, single pushout [5] based embedding mech-
anism in XL results in lengthy and non-intuitive rule statements. It is the aim of
the current project to design a more elegant and generic solution, to implement
it as part of XL and to combine it flexibly with visualization tools.

3 Proposed Solutions

3.1 Multi-scale RGG Graph Model

An extension of the existing RGG graph model is introduced. A structure of
scales defined as a partially ordered set is appended to the previous formalism

H. Ehrig et al.(Eds.): ICGT 2012, LNCS 7562, pp. 417–419, 2012.
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of Type Graph [4,10] in RGG. The extended type graph contains a unique edge
label for inter-scale relationships between nodes. A multi-scale typed graph is
then formalized over the multi-scale type graph.

The new graph model does not enforce the representation of an entity across
all scales, i.e. is not restricted to an axial tree [7] structure.

3.2 Multi-scale L-System Style Grammar in XL

An L-System style connection mechanism is introduced coupled with a compact
XL syntax for specifying rules using it. The syntax references the multi-scale
type graph and implicitly represents inter-scale relationships with few newly
introduced symbols (see Fig. 1).

N3 N3 A3 A3

N2 A2

> > >

>

/ / / /

N3 N3 N3 N3 A3

N2 N2 A2

> > > >

/ / / /

> >

/

Rule : A2 A3 A3 ==> N2 N3 N3 A2 A3

Fig. 1.Multi-scale rule and embedding using XL. ’A’ and ’N’ are node types while digits
are in ascending order representing coarse to fine scales respectively. Graph before and
after the rule-based transformation is shown on the left and right respectively. In a
biological application, the node types could, e.g., stand for a branch axis of a tree,
an annual shoot, an internode and an apical bud producing (at the finest scale) new
internodes. Circled nodes are not affected by the rule. Rectangular nodes are removed
and inserted by the rule.

4 Project Status

The project has started 9 months ago. In a first step, GroIMP, the software plat-
form for XL programming has been enabled to decode and visualize static MTG
multi-scale graphs. The implementation of the new graph grammar formalism,
including possibilities for visualization and analysis, is in progress.
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1 Introduction

GP (for Graph Programs) is an experimental nondeterministic programming
language which allows for the manipulation of graphs at a high level of abstrac-
tion [11]. The program states of GP are directed labelled graphs. These are
manipulated directly via the application of (conditional) rule schemata, which
generalise double-pushout rules with expressions over labels and relabelling. In
contrast with graph grammars, the application of these rule schemata is directed
by a number of simple control constructs including sequential composition, con-
ditionals, and as-long-as-possible iteration. GP shields programmers at all times
from low-level implementation issues (e.g. graph representation), and with its
nondeterministic semantics, allows one to solve graph-like problems in a declar-
ative and natural way.

An important question to ask of any program is whether it is correct with
respect to its specification. For more traditional programming languages, verifi-
cation techniques to help answer this have been studied for many years [1]. But
a number of issues prevent these techniques being used for graph programs “out
of the box” (e.g. the state we must reason about is a graph, not a mapping from
variables to values). Fortunately, research into verifying graph transformations
is gaining momentum, with numerous verification approaches emerging in recent
years [15,2,9,3,8] (though typically focusing on sets of rules or graph grammars).
Recent work by Habel, Pennemann, and Rensink [5,6] contributed a weakest pre-
condition based verification framework for a language similar to GP, although
this language lacks important features like expressions as graph labels in rules.

2 Research Aims and Progress

Our research programme is concerned with the challenge of verifying graph pro-
grams using a Hoare-style approach, especially from a theoretical viewpoint so
as to provide the groundwork for later development of e.g. tool support, and
formalisations in theorem provers. The particular contributions we aim to make
in our thesis are discussed below.

Nested conditions with expressions. In [5,6], nested conditions are studied as an
appropriate graphical formalism for expressing and reasoning about structural
properties of graphs. However, in the context of GP, where graphs are labelled
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over an infinite label alphabet and graph labels in rules contain expressions,
nested conditions are insufficient. For example, to express that a graph contains
an integer-labelled node, one would need the infinite condition ∃( 0 )∨∃( 1 )∨
∃( -1 ) ∨ ∃( 2 ) ∨ ∃( -2 ) ∨ · · · .

In [13,12], we added expressions and assignment constraints to yield nested
conditions with expressions (short E-conditions). E-conditions can be thought
of as finite representations of (usually) infinite nested conditions, and are shown
to be appropriate for reasoning about first-order properties of structure and la-
bels in the graphs of GP. For example, an E-condition equivalent to the infinite
nested condition earlier is ∃( x | type(x) = int), expressing that the variable x
must be instantiated with integer values. A similar approach was used earlier by
Orejas [10] for attributed graph constraints, but without e.g. the nesting allowed
in E-conditions. Despite the graphical nature of E-conditions, they are precise
(the formal definition is based on graph morphisms), and thus suitable for use
as an assertion language for GP.

Many-sorted predicate logic. In [14] we defined a many-sorted first-order predi-
cate logic for graphs, as an alternative assertion language to E-conditions. This
formalism avoids the need for graph morphisms and nesting, and is more familiar
to classical logic users. It is similar to Courcelle’s two-sorted graph logic [4] in
having sorts (types) for nodes and edges, but additionally has sorts for labels
(the semantic domain of which is infinite): these are organised into a hierarchy
of sorts corresponding to GP’s label subtypes. This hierarchy is used, for exam-
ple, to allow predicates such as equality to compare labels of any subtype, while
restricting operations such as addition to expressions that are of type integer.
We have shown that this logic is equivalent in power to E-conditions, and have
constructed translations from E-conditions to many-sorted formulae and vice
versa.

Hoare Logic. In [13,12] we proposed a Hoare-style calculus for partial correct-
ness proofs of graph programs, using E-conditions as the assertion language. We
demonstrated its use by proving properties of graph programs computing colour-
ings. In proving � {c} P {d} where P is a program and c, d are E-conditions,
from our soundness result, if P is executed on a graph satisfying c, then if a
graph results, it will satisfy d. Currently we are extending the proof rules to al-
low one to reason about both termination and freedom of failure. We require the
termination of loops to be shown outside of the calculus, by defining termination
functions # mapping graphs to naturals, and showing that executing loop bodies
(rule schemata sets) yields graphs for which # returns strictly smaller numbers.

Case studies and further work. We will demonstrate our techniques on larger
graph programs in potential application areas, e.g. in modelling pointer manip-
ulations as graph programs and verifying properties of them. Also, the chal-
lenges involved in formalising our Hoare logic in an interactive theorem prover
like Isabelle will be explored. Finally, we will discuss how our calculus could be
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extended to integrate a stronger assertion language such as the HR conditions
of [7], which can express non-local properties.

Acknowledgements. The author is grateful to Detlef Plump and the anony-
mous referees for their helpful comments, which helped to improve this paper.
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1 Problem Statement

System specification formalisms should come with suitable property specification
languages and effective verification tools. We sketch a framework for the verifi-
cation of quantified temporal properties of systems with dynamically evolving
structure. We consider visual specification formalisms like graph transformation
systems (GTS) where program states are modelled as graphs, and the program
behaviour is specified by graph transformation rules. The state space of a GTS
can be represented as a graph transition system (GTrS), i.e. a transition sys-
tem with states and transitions labelled, respectively, with a graph, and with a
partial morphism representing the evolution of state components. Unfortunately,
GTrSs are prohibitively large or infinite even for simple systems, making verifi-
cation intractable and hence calling for appropriate abstraction techniques.

2 State-of-the-Art in GTS Logics

After the pioneering works on monadic second-order logic (MSO) [7], various
graph logics have been proposed and their connection with topological properties
of graphs investigated [8]. The need to reason about the evolution of graph
topologies has then led to combining temporal and graph logics in propositional
temporal logics using graph formulae as state observations (e.g. [4]). However,
due to the impossibility to interleave the graphical and temporal dimensions
it was not possible to reason on the evolution of single graph components. To
overcome this limitation, predicate temporal logics were proposed (e.g. [2, 16]),
where edge and node quantifiers can be interleaved with temporal operators.

More recent approaches [2] propose quantified μ-calculi combining the fix-
point and modal operators with MSO. These logics fit at the right level of ab-
straction for GTSs, allowing to reason on the topological structure of a state,
and on the evolution of its components. We refer to § 8 of [11] for a more com-
plete discussion. Unfortunately, the semantical models for such logics are less
clearly cut. Current solutions are not perfectly suited to model systems with dy-
namic structure, where components might get merged [2, 16], or (re)allocated [2].
These problems are often solved by restricting the class of admissible models or
by reformulating the state transition relation, hampering the meaning of the
logic.

� Partly supported by the EU FP7-ICT IP ASCENS and by the MIUR PRIN SisteR.
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3 State-of-the-Art in GTS Verification

Various approaches have been proposed for the verification of GTSs, often adopt-
ing traditional techniques (e.g. model checking) to the area of graph transforma-
tion. We mention two research lines that have integrated the proposed techniques
in verification tools, namely GROOVE [5, 12, 15, 17] and AUGUR [1–4, 13]1.

The model checking problem for GTSs is in general not decidable for reason-
ably expressive logics, since GTSs are Turing complete languages. Pragmatically,
GTSs are often infinite-state and it is well known that only some infinite-state
model checking problems are decidable. Several approximation techniques in-
spired to abstract interpretation have thus been proposed, the main idea being
to consider a finite-state system approximating an infinite-state one. In order to
be meaningful, those approximations may be related with the original systems
via behavioural relations. The above mentioned research lines developed approx-
imation techniques: namely neighbourhood abstractions [5], and unfoldings [1–4].

4 Current Contributions

In [10, 11] we introduced a novel semantics for quantified μ-calculi. We defined
counterpart models, generalizing GTrSs, where states are algebras and the evolu-
tion relation is given by a family of partial morphisms. One of the main character-
istics of our approach is that formulae are interpreted over sets of pairs (w, σw), for
w a state and σw an assignment from formula variables to components of w. This
allows for a straightforward interpretation of fixed points and for their smooth
integration with quantifiers, which often asked for a restriction of the class of ad-
missible models. Our proposal avoids the limitations of existing approaches, in
particular in what regards merging and name reuse. Moreover it dispenses with
the reformulation of the transition relation, obtaining a streamlined and intuitive
semantics, yet general enough to cover the alternatives we are aware of.

In [14] we presented a first step towards a tool support for our approach,
preparing the ground for an efficient tool framework. We first presented a
Maude [6] implementation of graph rewriting as conditional rewrite rules on
object multisets. Then we introduced a prototypal model checker for finite coun-
terpart models. Our tool allows to analyze the evolution of individual compo-
nents, and, as far as we know, it is one of the few model checkers for quantified
μ-calculi.

Finally, [9] proposes a general formalization of similarity-based counterpart
model approximations, and a technique for approximated verification exploiting
them. We extended and generalized in several directions the type system of [4],
proposed within the unfolding technique to classify formulae as preserved or
reflected by a given approximation: (i) our type system is technique-agnostic,
meaning that it does not require a particular approximation technique; (ii) we
consider counterpart models, a generalization of GTrSs; (iii) our type system is
parametric with respect to a given simulation relation (while the original one

1 See groove.cs.utwente.nl and www.ti.inf.uni-due.de/research/tools/augur2.
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considers only those with certain properties); (iv) we use the type system to
reason on all formulae (rather than just on closed ones); and (v) we propose
a technique that exploits approximations to estimate properties more precisely,
handling also part of the untyped formulae.
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