
Distributed Online and Stochastic Queuing

on a Multiple Access Channel�

Marcin Bienkowski1, Tomasz Jurdzinski1,4,
Miroslaw Korzeniowski2,3, and Dariusz R. Kowalski4

1 Institute of Computer Science, University of Wroc�law, Poland
2 Inst. of Mathematics and Computer Science, Wroc�law Univ. of Technology, Poland

3 LaBRI, Univeristy of Bordeaux 1, France
4 Department of Computer Science, University of Liverpool, UK

Abstract. We consider the problems of online and stochastic packet
queuing in a distributed system of n nodes with queues, where the com-
munication between the nodes is done via a multiple access channel. In
each round, an arbitrary number of packets can be injected into the sys-
tem, each to an arbitrary node’s queue. Two measures of performance
are considered: the total number of packets in the system, called the total
load, and the maximum queue size, called the maximum load. In the on-
line setting, we develop a deterministic algorithm that is asymptotically
optimal with respect to both complexity measures, in a competitive way.
More precisely, the total load of our algorithm is bigger then the total
load of any other algorithm, including centralized offline solutions, by
only O(n2), while the maximum queue size of our algorithm is at most n
times bigger than the maximum queue size of any other algorithm, with
an extra additive O(n). The optimality for both measures is justified by
proving the corresponding lower bounds. Next, we show that our algo-
rithm is stochastically optimal for any expected injection rate smaller or
equal to 1. To the best of our knowledge, this is the first solution to the
stochastic queuing problem on a multiple access channel that achieves
such optimality for the (highest possible) rate equal to 1.

1 Introduction

Multiple Access Channel is one of the fundamental models for distributed com-
munication. It has been widely studied and used in the context of theoretical
analysis of Ethernet and wireless protocols, contention resolution in systems with
buses, and in other emerging technologies. Roughly speaking, a multiple access
channel models environments in which distributed nodes/resources compete for
access to the shared communication and distribution channel, and in case of
contention, no contender wins the access.

� Supported by MNiSW grant number N N206 368839, 2010-2013. The work of the sec-
ond and the fourth author was supported by the Engineering and Physical Sciences
Research Council [grant number EP/G023018/1]. The third author is supported by
grant 2010/342643 of the Institute of Mathematics and Computers Science of the
Wroclaw University of Technology.

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 121–135, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

122 M. Bienkowski et al.

Distributed queuing on a multiple access channel is one of the most funda-
mental problems, widely studied by both theoreticians (cf. [7]) and practitioners
(cf. [4]). In this problem, packets arrive continuously at nodes, and the goal is to
maintain bounded queues and latency, whenever possible. The main two lines of
research include design and analysis of protocols in two scenarios: for restricted
adversarial injection patterns and for stochastic injections. The best up-to-date
results guarantee bounded queues only for arbitrarily bounded packet burst, in
case of the former setting, and only for stochastic injection rates smaller than 1
in the latter one. This work aims to resolve the remaining cases of heavy traffic
in affirmative. We believe that the newly developed and analyzed distributed
scheduling techniques could substantially improve flow stability in heavy traffic
systems, such as data and video streaming under 802.11aa.

The Model. We consider the scenario where n nodes with pairwise disjoint ids
in {1, 2, . . . , n} broadcast packets and communicate through a multiple access
channel (MAC). Each node has a buffer, also called a queue, of potentially infinite
capacity. We assume slotted time, where times are numbered from 0. At time 0,
the adversary may inject arbitrary number of packets, each placed at an arbitrary
node. Then, for t = 1, 2, 3, . . ., the following happens:

– In round t, defined as an interval between times t− 1 and t, any node may
transmit a message containing at most one packet. A transmission is success-
ful if exactly one node transmits in the round; in such case, the transmitted
packet is removed from the queue of the transmitting node.

– Then, at time t, the adversary injects arbitrary number of packets, each
placed into an arbitrary node queue.

We assume Ethernet-like capabilities of MAC, i.e., each node can simultaneously
listen and transmit, and thus knows whether the transmission was successful
or not. However, our positive results work also in the model, where a station
sending a message cannot listen at the same time. We assume that nodes can
communicate only through MAC, but they are allowed to append control bits
to the sent packets. We do not impose any restriction on the number of such
bits, however we argue later that in a single message our algorithm appends
only O(log n) additional bits of information to a transmitted packet. Note that
control bits are inevitable in order to achieve competitiveness, as proved in [8]
even for restricted adversaries and n ≥ 3.

We consider two models of analysis of online queuing on a multiple access
channel: competitive and stochastic. The former approach is new, in the sense
that only bounded burst injection patterns have been considered so far, without
comparison to the optimal solution. We describe the competitive approach in
the remainder of this section. The detailed description of the stochastic queuing
setting is deferred to Section 3.

Competitive Ratio. For any algorithm Alg and a packet injection pattern I,
let QALG(I, t, i) denote the length of the queue (the number of pending packets)
at node i at time t. Let LALG(I, t) =

∑n
i=1QALG(I, t, i); we call LALG(I, t) the

Distributed Online and Stochastic Queuing on a Multiple Access Channel 123

total load at time t under injection pattern I. Finally, let MALG(I, t) be the
maximum load under injection pattern I, i.e., MALG(I, t) = maxiQALG(I, t, i).

We call an online distributed algorithm (R,A)-competitive for minimizing the
total load if for any adversarial pattern of packet injections I and any time step
t it holds that LALG(I, t) ≤ R ·LOPT(I, t)+A where Opt is the optimal offline
centralized solution for injection pattern I until round t.

We call a randomized online distributed algorithm (R,A)-competitive for min-
imizing the total load if for any adversarial pattern of packet injections I and
any time step t it holds that E[LALG(I, t)] ≤ R · LOPT(I, t) + A, where the
expectation is taken over all random choices of the algorithm up to the step t.

For both deterministic and randomized algorithms we define competitiveness
for minimizing maximum load in analogous way. We emphasize that the relation
between Alg and Opt has to hold for any step t and any injection pattern I.
Note that, unlike in the traditional approach of competitive analysis [5], we
explicitly give the additive factor in the competitive ratio.

1.1 Previous and Related Work

To the best of our knowledge, this is the first work studying online distributed
queuing problem for unrestricted packet injection patterns. We analyze, in a
competitive way, two important complexity measures: total load and max-load.
In what follows, we describe a related work including online queuing in the
centralized model and queuing under restricted adversarial injection patterns.
Next we provide a summary of results for stochastic optimality of protocols, so
far obtained only for injection rates smaller than 1.

Online Queuing in the Centralized Model. The optimization problems
considered in this paper were also analyzed in the setting where central coordi-
nation is assumed and all nodes have global knowledge about all injected pack-
ets. Clearly, minimizing the total load is no longer a challenge in such setting,
as any work-conserving algorithm (i.e., transmitting packets from non-empty
queue whenever possible) is optimal with respect to the total load minimiza-
tion. However, minimizing the length of the maximal queue is non-trivial and
known in the literature under the name of balanced scheduling. In particular,
Fleischer and Koga [10], and independently Bar-Noy et al. [3], proved that any
algorithm serving always a longest nonempty queue achieves asymptotically op-
timal competitive ratio of Θ(log n), including also randomized solutions. Fleis-
cher and Koga [10] proved additionally that the popular round-robin algorithm
is Ω(m)-competitive, where m is the number of injected packets. Note that the
latter result qualifies as non-competitive in case of unbounded number of injected
packets. The comparison of results for the centralized model and the distributed
one, obtained in this work, is given in Table 1. In particular, the discrepancy be-
tween the results in these two models shows that the lack of central coordination
tremendously affects the performance of the whole system.

Online Queuing in the Distributed Setting under Restricted Adver-
saries. Inspired by adversarial queuing problems in store-and-forward packet

124 M. Bienkowski et al.

Table 1. The bounds on the competitiveness in the centralized and distributed settings,
for the two complexity measures: total load and max-load

centralized distributed

minimizing total load Opt (straightforward) Opt + Θ(n2) (this paper)

minimizing maximum load Θ(log n) ·Opt [3,10] n ·Opt + O(n) (this paper)

networks [2,6], several papers analyzed distributed queuing on a multiple ac-
cess channel under restricted adversarial injection patterns. Previous works by
Chlebus et al. [8] and Anantharamu et al. [1] considered adversaries that were
(ρ, b)-restricted, also called (ρ, b)-leaky-bucket, for ρ ≤ 1 and fixed b ≥ 1. The
restriction is that in each time interval I, the adversary may only inject ρ · |I|+b
packets into the system. Moreover, the solutions were analyzed in a worst-case
manner with respect to parameters n, ρ, b. Restricted adversaries were also used
for modelling jamming on a multiple access channel [14].

We emphasize that the unrestricted adversary considered in this work may
not only generate all injection patterns allowed for the restricted case, but also
patterns with some periods of “burstiness” growing arbitrarily large that were
not allowed by the restricted adversary. Moreover, the previous results for the
restricted adversary provided only global bounds on queue sizes in case they
were bounded, while competitive analysis provided in this work compares the
solution to the optimal algorithm at any single round. Although algorithms de-
signed and analyzed under the restricted adversarial injection patterns may not
imply similar results in more general competitive model considered in this work,
some lower bounds can be adopted. In particular, Chlebus et al. [8] proved that,
even in the (1, 1)-restricted setting, no algorithm achieves bounded latency. This
implies that no algorithm is competitive with respect to the latency measure,
and motivates our focus on the total and maximum load measures instead.

Stochastic Queuing. There is a rich history of research on stochastic queuing
on a multiple access channels, i.e., when packets are injected subject to statistical
constraints. See the surveys by Gallager [12] and Chlebus [7] for an overview of
early and middle-stage research. In particular, H̊astad et al. [13] proved stochas-
tic optimality of polynomial backoff protocols for any fixed injection rate smaller
than 1 and disproved it in case of exponential backoff. To the best of our knowl-
edge, all the previous results concerning stochastic optimality were proved for
expected fixed injection rates strictly smaller than 1. Ours is the first determinis-
tic distributed online algorithm achieving stochastic optimality also for (highest
possible) injection rate 1.

1.2 Our Results

We develop a deterministic distributed online algorithm Scat, whose compet-
itiveness is asymptotically optimal with respect to both the total number of
packets in the system and the maximum queue size.

Theorem 1. The algorithm Scat is (1, n2 + 4n)-competitive for the total load
measure and (n, 5n)-competitive for the maximum load measure.

Distributed Online and Stochastic Queuing on a Multiple Access Channel 125

That is, the total load of our algorithm is, in each round, larger by an additive
factor of O(n2) than the total load of the best offline algorithm (taken for the
same adversarial injection pattern). Moreover, the maximal queue size of our
algorithm is, in each round, at most n times larger than the maximal queue
size of the best offline algorithm, plus an additive factor O(n). The optimality
of both bounds is justified by the following results, the former holding even for
randomized algorithms.

Theorem 2. For any randomized algorithm Alg which is (R,A)-competitive
for maximum queue minimization, it holds that R ≥ n.

Theorem 3. For any deterministic algorithm Alg which is (R,A)-competitive
for total load minimization, it holds that R ≥ 1 and A ≥ (n/2− 1)2 − 1.

See Table 1 for a summary of results concerning competitiveness of distributed
online queuing on a multiple-access channel versus centralized online queuing.
Although one can argue that such big bounds on the optimal values of com-
petitiveness parameters diminish importance of our model, observe that these
bounds do not depend on time of an execution of a protocol (which might be
arbitrarily large).

Furthermore, we show efficiency of our algorithm with respect to the stochas-
tic queuing problem in a distributed setting for expected injection rate 1. More
precisely, we show that our algorithm reaches the state with empty queues in-
finitely many times with probability 1, regardless of the initial distribution of
packets, provided packets are injected to the system randomly according to the
Bernoulli distribution with the expected number of 1 packet per round. (Note
that rate 1 is the highest possible to obtain so defined stochastic optimality.)
All previous solutions to this variant of the problem guaranteed such property
only for the expected number of packets per round strictly smaller than 1. For
this case, we show even a stronger property: that the expected number of steps
needed to reach the state with empty queues is finite.

Due to space limit, omitted proofs will appear in the full version of the paper.

Distributed Online Solution: Challenges and Ideas. Our main online al-
gorithm Scat is designed to overcome two fundamental challenges imposed by
the shared channel: delay in updating information (there is at most one node
transmitting successfully at a time, therefore a common knowledge about ma-
jority of nodes come from Ω(n) rounds in the past), and waste (i.e., collision or
silence) caused during information gathering or otherwise by scheduling packets
without fairly accurate information.

To demonstrate these problems, consider the behavior of already studied pro-
tocols. Probably the simplest one is the round-robin protocol, in which nodes
transmit (and gather information) periodically according to some pre-defined
list. It generates an unbounded waste when the adversary injects all packets to a
single node, one packet per round. One could modify this protocol to empty the
whole queue where visiting a node, which would prevent such waste as considered
before. However, an unbounded waste is obtained in a slightly more sophisticated

126 M. Bienkowski et al.

scenario when the adversary injects one packet per round to a fixed node i until
this node starts to be processed; then packets are injected to the node preceding
i (again, one packet per round), and so on.

Another idea would be to use a buffer to amortize the waste generated by
checking the queues of potentially empty node: such an idea was introduced
by Chlebus et al. [8], who proposed algorithm Move-Big-To-Front (MBTF for
short). In this algorithm, the round robin procedure is applied until a node with
queue larger than n is found; in such case, the queue is moved into the beginning
of the round robin list and emptied in consecutive rounds down to the level of
exactly n pending packets. Then the round robin sub-routine is applied again,
and the whole process is repeated in a loop. Observe however that the adversary
can first fill each node to the level of at least n/2 packets, by injecting one packet
per round on average, and then—by injecting packets always to the last node on
the list—create queues of size Ω(n2), while the optimum solution has at most
one packet in the whole system at each round.

The above examples are token-based protocols. Bianchi [4] argued that ran-
domized backoff protocols are not stable under highly saturated injection pat-
terns. In general, as we also demonstrate in the proof of one of our lower bounds,
using ad hoc transmission pattern may cause even more waste comparing to the
best offline solution, as collisions may occur due to simultaneous transmissions.

Our solution introduces a specific potential function that efficiently trades
a delay in obtaining information about queue sizes for the waste caused by
silent rounds. More precisely, the algorithm runs in two modes: scanning and
trimming. The former is to update the information, the latter is to transmit
packets so to compete with the optimal solution. The potential function defines
the order of scanned and trimmed nodes, and conditions when to switch between
the two modes (i.e., efficiently between the progress in information update and
in keeping the queues balanced).

The result in the stochastic injection setting is obtained by proving (positive)
recurrence of the underlying Markov chains in two steps. First, we define and
analyze some idealistic Markov chains, corresponding to the behavior of offline
solutions. In particular, we prove that properties of these Markov chains imply
stability of the optimal offline protocol in the stochastic injection setting. Next,
by applying the competitiveness result from the worst-case online analysis, we
argue that the stochastic process corresponding to the execution of our online
algorithm satisfies stochastic optimality.

2 Competitive Algorithm SCAT

In this section, we show a protocol Scan-And-Trim (Scat) and prove that it
is (n,O(n))-competitive. We start with a high-level description, accompanied by
intuitions. Then, we provide the pseudo-code and a sketch of the analysis.

The number of nodes n and the id of a node are the only input parameters for
the algorithm executed by the node. The protocol is collision-avoiding: it sched-
ules transmissions in such a way that collisions never occur. To this end, it builds
on a token-passing paradigm, in which a unique node with the “token-holder”

Distributed Online and Stochastic Queuing on a Multiple Access Channel 127

status transmits a message. Recall that in the considered setting, a message con-
tains at most one packet and a number of additional bits of information. In our
protocol, the transmitting node attaches only the current size (i.e., the number
of packets) of its queue.

We assume that if in a round the token holder has no packet to transmit,
it still transmits a message, but it contains no packet, only the number zero
representing its empty queue. Such a round we call void. Note that this is for
notational simplicity, as we may assume that not transmitting anything has the
same semantics.

Our algorithm abstracts from the local queuing policy (such as Fifo, Lifo,
Sis, etc.) as it does not influence the considered measures of performance. In
practice, Fifo queue could be seen as the most “fair” queuing policy.

Global State. There is a certain number of variables stored by the algorithm
at each node. In particular, each node keeps information which node holds the
token, the current mode of operation, and the list of all the nodes augmented
with additional data. While the exact description of these variables is given later,
we emphasize that the values of these variables are the same for all nodes. This
is achieved by (i) initializing all these variables to the same values, (ii) ensuring
that their evolution is deterministic and depends solely on their current value
and the information transmitted in a given round. Recall that the protocol is
collision free, and therefore the information heard by all nodes is the same.

Hence, we call these variables global, keeping in mind that, in fact, they are
stored locally, but coherence between these variables’ values is ensured. We also
emphasize that except for its own packet queue, no node holds any other non-
global information.

The most important global variable is a list L of nodes. It contains ids of all
the nodes stored in a certain order; the positions of L are numbered from 1 to n.
Whenever we write “node j”, we mean the node with the j-th position on list L.
Additionally, L stores three pieces of information for each node q:

– Key, equal to the queue size of q attached to the last message transmitted by
q on the channel; the queue size is computed without the tranmitted packet.
If q has not yet transmitted, the key is set to zero;

– Threshold value for q, equal to a non-negative integer, whose value will
be determined later (and modified only at some particular rounds of the
protocol).

– Queue non-emptiness indicator equal to 1 when the queue of q was non-
empty when it transmitted its last message (i.e., the round was non-void
and an actual packet was sent) and 0 otherwise.

The key, the threshold, and the indicator of the i-th element on the list are de-
noted ki, ϕ(i), and pi, respectively. Apart from L, there are two global variables,
described in detail in the definition of the algorithm:

– token, a number i from [1, n] denoting that the current token holder is the
i-th node from L;

– mode, which can be either scanning or trimming;

128 M. Bienkowski et al.

The main problem the algorithm has to cope with is the information delay: the
keys stored in L are usually outdated: the nodes do not have the information
about the recent changes to the queues made by packet injections. Instead,
L contains information about the queue sizes of a specific node from the time this
node last transmitted. A great advantage of the global variables—representing
only a partial knowledge of the system—is that they allow for more coordinated
approach, which is easier to analyze. It appears that such approach is sufficient
to achieve good performance.

Potentials. For any n non-negative integers x1, x2, . . . , xn sorted in non-in-
creasing order, we define a potential function π : {1, . . . , n} → N∪{0}. Function π
is defined iteratively, from i = 1 up to i = n, as

π(i) = min
{
xi, Si −

∑i−1
j=1 π(j)

}
,

where Si =
∑i

j=1 2(n+1−j) = (2n+1−i) ·i. In particular, π(1) = min{x1, 2n}.
We also define the total potential as π =

∑n
i=1 π(i).

Fact 1. For the potential function π of any values, it holds that
1. 0 ≤ π(i) ≤ 2n for any i ∈ [1, n],
2. π(i) ≥ π(i + 1) for any i ∈ [1, n− 1],

3.
∑i

j=1 π(i) ≤ Si for any i ∈ [1, n].

Lemma 1. Let π be a potential function and 0 < i1 < . . . < i� = p, where
0 < p, � ≤ n. Then,

∑�
k=1 π(ik) ≤ S� + �− p− z, where z = |{j ≤ p |π(j) = 0}|.

Thresholds. The algorithm uses the potential function to compute thresholds.
Namely, at some points of the time (defined later; these points are the same
for all nodes), L is sorted in the non-increasing order of keys. Ties are broken
according to ids, which assures that the ordering computed locally is the same
for all the nodes. At this point k1, k2, . . . , kn denote the values of keys and they
are a non-increasing sequence. The potential π is computed on the values of
keys ki and is stored in the thresholds ϕ(i), i.e., we simply set ϕ(i) := π(i) for
all i ∈ [1, n]. Threshold values ϕ(1), . . . , ϕ(n) change only at those times. At any
time, the packets at node i above the threshold ϕ(i) are called overhead packets,
i.e., node i with � packets has max{�−ϕ(i), 0} overhead packets and min{ϕ(i), �}
non-overhead packets.

Algorithm Definition. At time 0, the algorithm initializes its global variables.
Namely, L is populated with ids of the nodes, sorted according to the values of
id. Thresholds and keys for all nodes are set to zero, token is set to 1, and
mode is set to scanning. Some packets may be already injected at time 0 by the
adversary. Then, for t = 1, 2, 3, . . ., the following happens (cf. Sect. 1 with the
description of the model).

– In round t, the processor whose position on L is equal to token transmits.
It transmits a message containing a packet from its queue (if it has any)
along with the size of its queue (computed after removing the transmitted
packet from the queue). All nodes, including the transmitting one receive
this message.

Distributed Online and Stochastic Queuing on a Multiple Access Channel 129

Algorithm 1. Update of global variables at time t

case mode = scanning

if
∑token

j=1 (kj + pj − ϕj) ≤ token and token < n then
token← token + 1

else
sort L in a non-increasing order of keys
ϕ← the potential function of keys
if there exists i such that ki > ϕi then

token← min{i | ki > ϕi}
mode← trimming

else
token← 1

case mode = trimming
if

∑n
j=1(kj − ϕj) > 0 then

if ktoken ≤ ϕtoken then
token← min{� > token | k� > ϕ�}

else
token← 1
mode← scanning

– Round t is divided into three actions, executed w.l.o.g. in the following order:

1. All nodes update key ktoken on the list L as well as the value of the
variable ptoken on the basis of the message they heard in round t. Precisely,
if the message from the transmitting processor contains a packet, pi is set
to 1, otherwise the round is void (i.e., the transmitting processor’s queue is
empty and its message contains only the information that its queue size is
zero), both ktoken and ptoken are set to 0. That is, pi indicates whether the
node i had a nonempty queue when it held the token for the last time.
2. The adversary injects an arbitrary number of packets to the system; they
are appended to particular queues.
3. Each node executes Algorithm 1. Depending on the mode, all nodes exe-
cute the instructions from the corresponding case.

By this description, it is straightforward, that all nodes are capable of tracking
the values of global variables.

2.1 SCAT Analysis

Below, we show that the algorithm Scat is optimal with respect to both com-
plexity measures (maximum load and total load).

Consider an execution of algorithm Scat. Its rounds can be grouped into
scanning and trimming cycles in the following way. A trimming cycle is just
a contiguous sequence of rounds in which Scat is in trimming mode. On the
other hand, the contiguous sequence of rounds in which Scat is in scanning
mode consists of one or more consecutive scanning cycles. Precisely, in the first

130 M. Bienkowski et al.

round of the scanning cycle, the first node from L has the token, and the scanning
cycle ends when the outer else branch is executed, i.e., when either

∑token
j=1 (kj +

pj −ϕj) > token or token = n. If the former condition occurs, then we call such
scanning cycle balanced.

As described previously, all packets kept by the algorithm are classified either
as overhead or non-overhead packets. Intuitively, the total value of potential
(i.e., the number of non-overhead packets in the system) describes the number
of packets which are already “under control” of our algorithm (the values of the
potential are at most 2n, hence if the algorithm has only non-overhead packets it
would be trivially (0, 2n)-competitive for the maximum load measure). Thus, in
the remaining part of this section, we focus on bounding the number of overhead
packets. Two possible issues may occur. First, the number of overhead packets
may increase rapidly, because the adversary is allowed to inject arbitrary number
of packets in each round. However, in such case even Opt has these packets in its
queues. Second, when Scat recomputes thresholds at the end of some scanning
cycle, if a new total threshold is lower than the current one, some of the packets
may change their status from non-overhead to overhead. Showing that this occurs
very rarely poses the main difficulty in our analysis.1

Semi-potentials. By the algorithm definition, at some times the list L becomes
sorted according to the key values, and thresholds are set to the current values
of the potential function. To establish relation between the old and new values of
thresholds, we want to be able to compare these potential functions. As a direct
comparison might be infeasible, we introduce a helper concept: a semi-potential
function.

A function ψ is a semi-potential function with respect to non-negative integers
x1, x2, . . . , xn if for any 1 ≤ i ≤ n, the following two properties hold: (i) 0 ≤
ψ(i) ≤ xi, and (ii) the sum of any i values among ψ(1), . . . , ψ(n) is at most Si.
The total semi-potential is defined as ψ =

∑n
i=1 ψ(i).

Unlike in the definition of the potential function, we do not require that the
values of xi are sorted. Moreover, for a fixed sorted set of values, the potential
function is defined uniquely, while there might be various semi-potential func-
tions. Clearly, for sorted keys their potential function is also a semi-potential
function. Moreover, it is also the “largest” possible semi-potential, as stated next.

Lemma 2. Fix any non-negative integers x1, . . . , xn sorted in non-increasing
order and let π be their potential. For any semi-potential ψ of these integers,
ψ ≤ π.

1 It can be shown that when one simplifies the used potential function by choosing
Si =

∑i
j=1(n+ 1− j) instead of Si =

∑i
j=1 2(n+ 1− j), the adversary can create an

injection pattern causing the additional Ω(n) factor in the max-load competitiveness
(both in multiplicative and additive components). It demonstrates the subtlety of
the chosen potential function, which is essential to control scanning and trimming
processes.

Distributed Online and Stochastic Queuing on a Multiple Access Channel 131

Changes in the Potential. The following crucial lemma is the heart of our
analysis; it shows that it is possible to control the thresholds (potentials) for
balanced scanning cycles.

Lemma 3. Consider a balanced scanning cycle C in the execution of algorithm
Scat. Let π be the potential at the beginning of C. Then the total potential at
the end of C is at least π + y, where y is the number of void rounds during C.

Proof. Let k′1, . . . , k
′
n be the values of keys at the beginning of the cycle C.

Let k1, . . . , kn be the values of keys at the end of the cycle, before they are
sorted by Scat. Let p1, . . . , pn be the queue non-emptiness indicators at the
end of the cycle. Clearly, ki + pi ≥ k′i for any i. As π is the potential at the
beginning of the cycle, π(i) ≤ k′i and therefore, π is the semi-potential for values
k1+p1, . . . , kn+pn. Thus, π ≤ ∑n

i=1(ki+pi). We show that there exists a semi-
potential function ψ with respect to k1, . . . , kn, such that ψ = π + y. This
will immediately conclude the proof as the total potential for the sorted values
k1, . . . , kn is at least ψ by Lemma 2.

Since we consider a balanced scanning cycle and the threshold values are equal
to the values of π, the following two properties hold

(P1)
∑�′

j=1(ki + pi − π(i)) ≤ �′ for each �′ < �, and

(P2)
∑�

j=1(ki + pi − π(i)) > �,
where � is the position (on the list L) of the last node which transmits during
the considered scanning cycle. We define the function:

ψ(i) =

⎧
⎪⎨

⎪⎩

ki for i < �,
∑�

i=1 π(i)−
∑�−1

i=1 ki + y for i = �,

π(i) for i > �.

Observe that the relationship ψ = π+y follows directly from the definition of ψ,
thus it remains to show that ψ is indeed a semi-potential function for k1, . . . , kn.

The first property of the semi-potential function states that 0 ≤ ψ(i) ≤ ki for
all i. This condition holds trivially for i < �. For i ≥ � observe that the value of
key of the i-th element on the list was also ki at the beginning of the cycle, and
thus π(i) ≤ ki. Thus, it remains to verify that 0 ≤ ψ(l) ≤ kl. As

∑�
i=1 pi is the

number of non-void rounds of C,
∑�

i=1 pi + y = �. Applying this relation to the
definition of ψ(�), we obtain that

ψ(�) = �+
∑�

i=1 π(i)−
∑�−1

i=1 ki −
∑�

i=1 pi .

Thus, using Property (P2), we obtain that ψ(�) = ki+�+
∑�

i=1 (π(i)− ki − pi) >
k�. Furthermore, applying Property (P1) with �′ = �− 1,

ψ(l) = �+ π(�)− p� −
∑l−1

j=1 (kj + pj − π(j))

≥ �+ π(�)− p� − (�− 1) ≥ π(�) ≥ 0 .
(1)

The second property of the semi-potential function states that the sum of any m
values among ψ(1), . . . , ψ(n) is at most Sm. To show it, we fix a set

132 M. Bienkowski et al.

I = {i1, . . . , im}, where 1 ≤ i1 < i2 < . . . < im = r ≤ n and show that∑
j∈I ψ(j) ≤ Sm.

Let yr be the number of void rounds up to the position r, i.e., yr = r−∑r
j=1 pj .

We observe that ∑r
j=1 ψ(j) ≤

∑r
j=1 π(j) + yr . (2)

Indeed, if r ≥ �, yr = y and the inequality follows directly from the definition
of ψ, and for r < �, we use Property (P2) obtaining

∑r
j=1 ψ(j) =

∑r
j=1 kj ≤

r +
∑r

j=1 π(j)−
∑r

j=1 pj =
∑r

j=1 π(j) + yr.
Observe that if a round j is void, then π(j) ≤ kj + pj = 0. Hence, yr ≤ |{j ≤

r |π(j) = 0}|, and thus by Lemma 1,

∑

j∈I

π(j) ≤ Sm +m− r − |{j ≤ r |π(j) = 0}| ≤ Sm +m− r − yr . (3)

Let A< = {j ≤ r |ψ(j) < π(j)} and A> = {j ≤ r |ψ(j) > π(j)}. Observe
that ψ(j) ≥ π(j) − 1 for each j ∈ [1, n] which follows from the relationship
kj + pj ≥ π(j), the definition of ψ and (1). Therefore, ψ(j) = π(j) − 1 for any
j ∈ A<. Thus, using (2),

∑

j∈A>

(ψ(j)− π(j)) =

r∑

j=1

(ψ(j)− π(j))
∑

j∈A<

(π(j)− ψ(j)) ≤ yr + |A<| . (4)

Finally, combining (3) with (4), we get:

∑
j∈I ψ(j) =

∑
j∈I π(j) +

∑
j∈I(ψ(j) − π(j))

=
∑

j∈I π(j) +
∑

j∈I∩A>
(ψ(j)− π(j))−∑

j∈I∩A<
(π(j) − ψ(j))

≤ (Sm +m− r − yr) + (yr + |A<|)− |I ∩ A<|
≤ Sm + |I|+ |A<| − |I ∩ A<| − r ≤ Sm . �	

Using the crucial lemma above and applying a few observations, we may compare
the current number of overhead packets to the number of packets in queues of
Opt at any round. Given a particular adversarial pattern of packet injections up
to some fixed time t, we denote the (current) number of packets exceeding the
total value of threshold of the algorithm Scat by ovrt, and the number which
Opt has in queues at t by optt. Note that we compute these values after the
adversary injects packets at time t and after the algorithm computes new values
of thresholds (if it does so). Note that at time 0, all thresholds are equal to zero
and since the queues of Opt and Scat are equal, i.e. ovr0 = opt0.

Lemma 4. Fix any scanning or trimming cycle C starting at time t and ending
at time t+ r. Then ovrt+r − optt+r is at most
1. ovrt − optt + n if C is a non-balanced scanning cycle;
2. ovrt − optt if C is a balanced scanning cycle or a trimming cycle.

Using the lemma above, by a simple induction we obtain the following result,
stating that we may control the number of overhead packets.

Distributed Online and Stochastic Queuing on a Multiple Access Channel 133

Lemma 5. For any cycle C starting at time t, it holds that ovrt ≤ optt + 2n.

Finally, we prove upper bounds on competitiveness of Scat.

Proof (of Theorem 1). Fix any time t+r belonging to a cycle C starting at time t.
By Lemma 5, ovrt ≤ optt + 2n. Assume that at times t+ 1, t+ 2, . . . , t+ r, the
adversary injected in total j (overhead) packets. Hence, optt+r ≥ optt+ j− r. If
C is a trimming cycle, then Scat transmits an overhead packet in each step, i.e.,
ovrt+r = ovrt + j − r ≤ optt+r + 2n. If C is a scanning cycle, then its length is
at most n, and thus even if Scat does not transmit any overhead packets, then
ovrt+r ≤ ovrt + j and optt+r ≥ optt + j − n. In this case, ovrt+r ≤ optt+r + 3n.

In either case, ovrt+r ≤ optt+r + 3n. The number of non-overhead packets is
at most Sn = n(n+1). Therefore, the total number of packets at time t+ r is at
most optt+r + n2 + 4n, which shows the first part of the theorem. Furthermore,
the number of non-overhead packets at any node is at most 2n and hence the
maximum load at any time is at most optt+r + 3n+ 2n = n · (optt+r/n) + 5n.
As the maximum load of Opt at step t+ r is at least optt+r/n, the second part
of the theorem follows. �	

3 Stochastic Model

In this section we assume that packets are injected according to a random distri-
bution, defined by the sequence of numbers p1, . . . , pn ∈ (0, 1). In each step, for
each queue independently, one packet is injected into the queue j with probabil-
ity pj and no packet is injected with probability 1 − pj. Our goal is to analyze
the total load of deterministic distributed algorithms in such scenario.

Centralized Solution. First, we focus on the centralized algorithmOpt which
has the full knowledge on the queue sizes and chooses an arbitrary (and exactly
one) packet to be transmitted in each step, provided at least one queue is not
empty. As Opt is centralized, the actual distribution of packets is unimportant,
and we simply analyze its total load. We want to investigate the conditions suffi-
cient and necessary for reducing the total load to zero, i.e., emptying all queues.

The evolution of theOpt’s total load can be described by a time-homogeneous
Markov chain (also denoted Opt) whose states S0, S1, S2, . . . are non-negative
integers corresponding to the total load at consecutive times. In particular, S0

is the initial number of packets in all buffers. Let Yt be the random variable
denoting the number of packets injected in step t. Recall that by the definition
of our process, all Yt are identically and independently distributed, their support
is the set {0, . . . , n} and their mean is equal to

∑n
j=1 pj . The transitions between

consecutive states is then defined by

St =

{
St−1 + Yt − 1 if St−1 > 0

St−1 +max{Yt − 1, 0} if St−1 = 0

In the following, we restrict our attention to time-homogeneous Markov chains
only. For any such Markov chain C and any two states S and S′ we denote the

134 M. Bienkowski et al.

probability that C ever reaches state S′ when it starts from S by PC(S → S′)
and the expected number of steps to hit S′ for the first time by EC(S → S′). We
are interested in the event ofOpt reaching the empty queues state, and therefore
we concentrate on bounding the terms PC(S0 → 0) and EOpt(S0 → 0). Note
that the finiteness of EOpt(S0 → 0) trivially implies that POpt(S0 → 0) = 1.
The goal of this section is to present tight conditions on

∑n
j=1 pj which assure

that POpt(S0 → 0) = 1 or EOpt(S0 → 0) is finite.
Clearly the Markov chain Opt is irreducible as for any two states S and S′

and large enough τ , there is a positive probability that Opt changes state from
S to S′ within τ . Furthermore, as in each step there is a positive probability
that the number of packets remains the same (i.e., the state does not change),
Opt is aperiodic.

Lemma 6. Fix any starting state S0. If
∑n

j=1 pj < 1, then EOpt(S0 → 0) is
finite.

Lemma 7. Fix any starting state S0. If
∑n

j=1 pj = 1, then POpt(S0 → 0) = 1

By combining Lemmas 6 and 7, we immediately get the following corollary.

Corollary 1. Fix any starting state S0. It holds that POpt(S0 → 0) = 1, pro-
vided

∑n
j=1 pj ≤ 1. Furthermore, if

∑n
j=1 pj < 1, then EOpt(S0 → 0) is finite.

Distributed Solution. Now, we move our attention to on-line deterministic
algorithms. Since an online algorithm is not able to achieve better performance
than Opt, the properties of Opt motivate the following definition.

Definition 1. An algorithm Alg is stochastically optimal when both conditions
hold:
(i) PAlg(S → 0) = 1 for any S ≥ 0 if

∑n
i=1 pi ≤ 1,

(ii) EAlg(S → 0) is finite for any S ≥ 0 if
∑n

i=1 pi < 1.

Lemma 8. Fix any monotonic functions f, g : N → N. Assume that a deter-
ministic distributed on-line algorithm Alg is (1, f(n))-competitive with respect
to total load. Assume that given m packets in its queues, Alg transmits them
all in the next g(m) steps, provided no packet is injected in this period. Then,
Alg is stochastically optimal.

Corollary 2. Scat is stochastically optimal.

Proof. It is sufficient to fix the functions f and g satisfying the conditions of
Lemma 8. By Theorem 1, f(n) = O(n2). Now assume that Scat has m packets
in its queues and no subsequent packet is injected. Note that in a trimming cycle,
a packet is sent in each round. Furthermore, at least one packet is transmitted in
a scanning cycle (which consists of at most n rounds). Therefore, all m packets
are transmitted in at most g(m) = O(n ·m) rounds. �	

Distributed Online and Stochastic Queuing on a Multiple Access Channel 135

4 Conclusions and Open Problems

We studied competitiveness of deterministic distributed algorithms with respect
to two important performance measures: total and maximum load. Our solution
is asymptotically optimal with respect to both measures. All our competitive
results regarding distributed environment can be contrasted with centralized
online queuing, and the obtained picture suggests that there is no simple way
of transforming centralized online algorithms into distributed solutions. We also
show a transformation from the world of competitive analysis of distributed
online queuing into distributed stochastic queuing. An interesting open problem
is to analyze other measures of performance, e.g., related to timing or energy
efficiency, in similar online distributed frameworks.

A Remark on Message Size. In the algorithm Scat, a node holding a token
attaches the current number of packets in its queue to the transmitted packet.
In order to reduce the number of auxiliary bits to O(log n), the minimum of 2n
and the current size of the queue may be sent by the node holding a token.

References

1. Anantharamu, L., Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Deterministic
broadcast on multiple access channels. In: INFOCOM, pp. 146–150. IEEE (2010)

2. Andrews, M., Awerbuch, B., Fernández, A., Leighton, F.T., Liu, Z., Kleinberg,
J.M.: Universal-stability results and performance bounds for greedy contention-
resolution protocols. J. ACM 48(1), 39–69 (2001)

3. Bar-Noy, A., Freund, A., Landa, S., Naor, J.S.: Competitive on-line switching poli-
cies. In: ACM-SIAM SODA, pp. 525–534 (2002)

4. Bianchi, G.: Performance analysis of the IEEE 802.11 distributed coordination
function. IEEE Journal on Selected Areas in Communications 18, 535–547 (2000)

5. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press (1998)

6. Borodin, A., Kleinberg, J.M., Raghavan, P., Sudan, M., Williamson, D.P.: Adver-
sarial queuing theory. J. ACM 48(1), 13–38 (2001)

7. Chlebus, B.: Randomized communication in radio networks. In: Pardalos, P.M.,
Rajasekaran, S., Reif, J.H., Rolim, J.D.P. (eds.) Handbook on Randomized Com-
puting, vol. I, pp. 401–456. Kluwer Academic (2001)

8. Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Maximum throughput of multiple ac-
cess channels in adversarial environments. Distributed Comp. 22(2), 93–116 (2009)

9. Chung, K.L., Fuchs, W.: On the distribution of values of sums of random variables.
Memoirs of the AMS 6, 1–12 (1951)

10. Fleischer, R., Koga, H.: Balanced scheduling toward loss-free packet queuing and
delay fairness. Algorithmica 38, 363–376 (2004)

11. Foster, F.G.: On the stochastic matrices associated with certain queueing processes.
Ann. Math Statist. 24, 355–360 (1953)

12. Gallager, R.G.: A perspective on multiaccess channels. IEEE Transactions on In-
formation Theory 31(2), 124–142 (1985)

13. H̊astad, J., Leighton, F.T., Rogoff, B.: Analysis of backoff protocols for multiple
access channels. SIAM J. Comput. 25(4), 740–774 (1996)

14. Richa, A.W., Scheideler, C., Schmid, S., Zhang, J.: Competitive and fair medium
access despite reactive jamming. In: ICDCS, pp. 507–516 (2011)

	Distributed Online and Stochastic Queuingon a Multiple Access Channel
	Introduction
	Previous and Related Work
	Our Results

	Competitive Algorithm SCAT
	SCAT Analysis

	Stochastic Model
	Conclusions and Open Problems
	References

