
Brief Announcement:
A Contention-Friendly, Non-blocking Skip List�

Tyler Crain1, Vincent Gramoli2, and Michel Raynal1,3

1 IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France
2 The University of Sydney, NSW 2006, Australia

3 Institut Universitaire de France

A skip list is a probabilistic data structure to store and retrieve in-memory data in an
efficient way. In short, it is a linked structure that diminishes the linear big-oh com-
plexity of a linked list with elements having additional shortcuts pointing towards other
elements located further in the list [7]. These shortcuts allow operations to complete
in O(logn) steps in expectation. The drawback of employing shortcuts is however to
require additional maintenance each time some data is stored or discarded.

Non-blocking skip lists are increasingly popular alternatives to B-trees in main-
memory databases, like memsql1, as they are latch-free and can be traversed in sorted
order. By being non-blocking, a skip list ensures that the system as a whole always
makes progress. However, in a highly concurrent context the additional maintenance
causes contention overheads on existing skip lists [3, 4, 8] by increasing the probabil-
ity of multiple threads (or processes) interfering on the same shared element. Such
contention could translate into performance losses in multicore applications, like in-
memory key-value store.

We recently observed a similar issue in concurrent trees that led us to derive a binary
search tree algorithm especially suited for transactional memory [2]. Our contention-
friendly non-blocking skip list demonstrates that these algorithmic concepts can be
adapted to improve the performance of a different data structure relying exclusively
on compare-and-swap, which makes it inherently non-blocking. In addition, our skip
list guarantees the atomicity of insertions, deletions and lookups of key-value pairs as
shown in the companion technical report [1]:

Theorem 1. Each of the contains, insert, delete operations implemented by the
contention-friendly non-blocking skip list satisfy linearizability.

The contention-friendly non-blocking skip list aims at accommodating contention of
modern multicore machines. To this end, it exploits a genuine decoupling of each up-
dating access into an eager abstract modification and a lazy and selective structural
adaptation.

Eager Abstract Modification. The eager abstract modification consists in modifying
the abstraction while minimizing the impact on the skip list itself and returning as soon

� A full version is available in [1]. The research leading to these results has received fund-
ing from the European Union Seventh Framework Programme (FP7/2007-2013) under grant
agreement number 238639, ITN project TransForm.

1 http://developers.memsql.com/docs/1b/indexes.html

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 423–424, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



424 T. Crain, V. Gramoli, and M. Raynal

as possible for the sake of responsiveness. Existing skip lists typically maintain a precise
distribution of nodes per level, hence each time the abstraction is updated, the invariant
is checked and the structure is accordingly adapted as part of a single operation. While
an update to the abstraction may only need to modify a single location to become vis-
ible, its associated structural adaptation is a global modification that could potentially
conflict with any concurrent update. In order to avoid these additional conflicts, when
a node is inserted in the contention-friendly skip list only the bottom level is modified
and the additional structural modification is postponed until later. When an element is
removed the operation is separated into a logical deletion marking phase followed by
physical removal and garbage collection phases.

Lazy Selective Adaptation. The lazy selective adaptation, which can be deferred until
later, aims at adapting the skip list structure to the abstract changes by re-arranging
elements or garbage collecting deleted ones. To guarantee the logarithmic complexity of
accesses when there is no contention in the system, the structure is adapted by updating
the upper levels of the skip list when contention stops.

The structural adaptation is lazy because it is decoupled from the abstract modifica-
tions and executed by one or multiple independent thread(s). Hence many concurrent
abstract modifications may have accessed the skip list while no adaptations have com-
pleted yet. We say that the decoupling is postponed from the system point of view.

This postponement has several advantages whose prominent one is to enable merging
of multiple adaptations in one simplified step: only one traversal is sufficient to adapt
the structure after a bursts of abstract modifications. Another interesting aspect is that
it gives a chance to insertions to execute faster: if the element to be inserted is marked
as logically deleted, then the insertion simply needs to logically insert by unmarking it.
This avoids the insertion to allocate a new node and to write its value in memory.

Performance. Our preliminary evaluations on a 24-core machine show that a Java im-
plementation of the contention-friendly non-blocking skip list can improve the perfor-
mance of one of the mostly used non-blocking skip lists, the JDK adaptation by Lea of
the Harris and Michael’s lists [5, 6], by a multiplying factor of 2.5.

References

1. Crain, T., Gramoli, V., Raynal, M.: A contention-friendly, non-blocking skip list. Technical
Report RR-7969, IRISA (May 2012)

2. Crain, T., Gramoli, V., Raynal, M.: A speculation-friendly binary search tree. In: PPoPP
(2012)

3. Fomitchev, M., Ruppert, E.: Lock-free linked lists and skip lists. In: PODC (2004)
4. Fraser, K.: Practical lock freedom. PhD thesis. Cambridge University (September 2003)
5. Harris, T.L.: A Pragmatic Implementation of Non-blocking Linked-Lists. In: Welch, J.L.

(ed.) DISC 2001. LNCS, vol. 2180, p. 300. Springer, Heidelberg (2001)
6. Michael, M.M.: High performance dynamic lock-free hash tables and list-based sets.

In: SPAA, pp. 73–82 (2002)
7. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Commun. ACM 33 (June

1990)
8. Sundell, H., Tsigas, P.: Scalable and lock-free concurrent dictionaries. In: SAC (2004)


	Brief Announcement:
A Contention-Friendly, Non-blocking Skip List
	References




