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Abstract. In this paper we consider the problem of matching clients
with servers, each of which can process a subset of clients. It is known
as the semi-matching or load balancing problem in a bipartite graph
G = (V,U,E), where U corresponds to the clients, V to the servers, and
E is the set of available connections between them. The goal is to find
a set of edges M ⊆ E such that every vertex in U is incident to exactly
one edge in M. The load of a server v ∈ V is defined as

(
dM (v)+1

2

)
where

dM (v) is the degree of v in M , and the problem is to find an optimal semi-
matching, i.e. a semi-matching that minimizes the sum of the loads of the
servers. An optimal solution can be found sequentially in polynomial time
but the distributed complexity is not well understood. Our algorithm

yields (1+ 1
α
)-approximation (where α = max

{
1, 1

2

(
|U|
|V | + 1

)}
) and has

time complexity O
(
Δ5

)
, where Δ is the maximum degree of a vertex

in V. In particular, for Δ = O(1) it gives constant approximation with
constant time complexity. We also give a fast algorithm for the case when
Δ is large and the degrees in V and U satisfy some additional properties.
Both algorithms are deterministic.

1 Introduction

In this paper we restrict our attention to a bipartite graph G = (V, U,E) with
bipartition V ∪U and edge set E ⊆ V ×U. We denote |U | = n and |V | = m and
refer to the vertices of U as clients and to the vertices of V as servers. In what
follows we assume that vertices have unique identifiers from {1, . . . , n+m} and
know the maximum degree Δ = ΔV (G) of a vertex in V.

Recall that a matching in a bipartite graph G = (V, U,E) is a set M ⊆ E of
disjoint edges. A matching M is called maximal if there is no matching M ′ such
that M is a proper subset of M ′, and a matching M is called maximum if there
is no matching M ′ with |M ′| > |M |.
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We are interested in a relaxation of the maximum bipartite matching problem.
A semi-matching in a bipartite graph G = (V, U,E) is a set of edges M ⊆ E
such that every vertex u ∈ U is incident with exactly one edge in M. In this
way a semi-matching provides an assignment of each client to a server that it is
connected to. This also implies that for a semi-matching to exist each vertex in
U must have degree at least one in G. For a semi-matching M and every vertex
v ∈ V we denote by dM (v) the number of edges in M incident do v, which
corresponds to the number of clients that have to be processed by a server
associated with v. With this setting, the total completion time (including the
waiting time) of a server v for its dM (v) clients, which are served in an arbitrary

sequential order is equal to 1+2+ · · ·+dM (v) =
(
dM(v)+1

2

)
. Therefore, we define

the cost of a semi-matching M as

cost(M) =
∑

v∈V

(
dM (v) + 1

2

)
.

A semi-matching with minimum total cost is called an optimal semi-matching.
This, in turn, corresponds to the total completion time of serving all clients by
the servers.

An optimal solution to the problem can be found in polynomial time by
sequential algorithms (see Sec. 1.1 for more details). In this paper we analyze
the distributed complexity of the optimal semi-matching problem.

We consider a synchronous, message-passing model of computations (referred
to as LOCAL in [11]). In this model a graph is used to represent an underlying
network. The vertices of the graph correspond to computational units, and edges
represent communication links. The network is synchronized and in one round
a vertex can send and receive messages from all of its neighbors. In addition,
in the same round, a vertex can perform some local computations. The running
time of the algorithm is the number of rounds needed to solve a problem. We
restrict our attention to deterministic algorithms.

1.1 Related Work

The semi-matching problem known also as the load balancing problem has been
extensively studied under various names in the scheduling literature. Recently
it has received renewed attention after the paper by Harvey, Ladner, Lovász,
and Tamir [6], where the name semi-matching was introduced. In the same
paper the authors proposed two sequential polynomial time algorithms. The first
algorithm generalizes the Hungarian method for computing maximum bipartite
matchings, while the second is based on a notion of so called cost reducing paths.
The best running time of the latter algorithm is O(|E|√n+m log(n+m)) and
was obtained in [3]. Also, a new approach to this problem was recently proposed
in [7]. The weighted version of a related problem to find a semi-matching that
minimizes the maximum load among all vertices in V was considered in [3].

The problem, if solved in the distributed setting, can be used, for example,
to construct a load balanced data gathering tree in sensor networks [12]. All the
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sequential algorithms improve an initial semi-matching to get an optimal one by
using some global structures such as cost reducing paths or breadth-first search
trees and cannot be applied in the LOCAL setting. At the same time, known
distributed algorithms for the matching problem are either randomized [9] or
rely on techniques that are specific to matchings [5].

As our first approach to the problem, we observed in [2] that in the dis-
tributed model of computation the optimal solution requires Ω(|V |) rounds, and
proposed a greedy algorithm which yields O(1)-approximation of an optimal
semi-matching in time O(Δ2). In this paper the approximation ratio is reduced
to two via a modification of both, the algorithm and its analysis. Moreover, we
give an alternative algorithm GreedySM (see Sec. 3), which is much faster in
the case when Δ is large, the degrees of vertices of V do not differ much from
each other, and the degrees on U are bounded from above.

1.2 Main Result

Our main result is summarized in the following theorem. Let M∗ denote an
optimal semi-matching in a bipartite graph G = (V, U,E).

Theorem 1. In every bipartite graph G = (V, U,E) with the maximum degree
in V equal to Δ the algorithm SemiMatch (described in Sec. 2.2) finds a semi-
matching M such that

cost(M) ≤
(
1 +

1

α

)
cost(M∗), where α = max

{
1,

1

2

( |U |
|V | + 1

)}
,

and the time complexity of this algorithm is O
(
Δ5

)
.

1.3 Organization

The rest of the paper is structured as follows. The next section is devoted to the
main algorithm SemiMatch and its analysis for arbitrary bipartite graphs. In
the last section we give a fast algorithm in the case when Δ is large and some
additional conditions on the degrees of vertices of V and U are satisfied.

2 Main Algorithm

Before stating the main algorithm SemiMatch and proving Theorem 1 we need
to introduce some more notation.

2.1 Notation and Non-swappable Semi-matchings

The crucial role in our proof is played by semi-matchings which are called non-
swappable. This property is formally defined below. Observe that if for an arbi-
trary semi-matching M there exist two vertices v, w ∈ V connected by a path P
consisting of edges alternating betweenM and E\M and such that v is matched
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by M and w is not, and, moreover, dM (v) ≥ dM (w) + 2 then we can lower the
cost of M by switching the non-matched edges of P to M and vice-versa, i.e. by
taking the symmetric difference of P and M. In such a case the path P is called
cost reducing. It was proved in [6] that if no cost reducing path exists for a given
semi-matching M then M is optimal. These paths, however, can be very long
and thus impossible to detect efficiently in the distributed setting. Therefore, we
restrict our attention to cost reducing paths of length two only. A semi-matching
is non-swappable if there is no cost reducing path of length two.

Definition 1. Let G = (V, U,E) be a bipartite graph andM be a semi-matching.
We say that M is non-swappable if for all v, w ∈ V, u ∈ U such that vu ∈M and
wu ∈ E \M it holds that dM (v) ≤ dM (w) + 1. A path P = vuw not satisfying
this condition, i.e. a cost reducing path of length two, is called a bad path.

Let M∗ be an optimal semi-matching in G = (V, U,E). Semi-matchings which
are non-swappable form a good approximation of the optimal solution as it is
indicated in Theorem 2 below.

Theorem 2. For any non-swappable semi-matching M in G = (V, U,E),

cost(M) ≤ (
1 + 1

α

)
cost(M∗), where α = max

{
1,

1

2

( |U |
|V | + 1

)}
.

In order to prove Theorem 2 we need the following result.

Fact 1. For any semi-matching M in G = (V, U,E) it holds

cost(M) ≥ α|U |, where α = max

{
1,

1

2

( |U |
|V | + 1

)}
.

Proof.

cost(M) =
∑

v∈V

(
dM (v) + 1

2

)
≥

∑

v∈V
dM (v) = |U |,

as well as, by Cauchy-Schwartz inequality

cost(M) =
∑

v∈V

(
dM (v) + 1

2

)
≥ |V |

(∑
v∈V dM (v)

|V | + 1

2

)
= 1

2 |U |
(

|U|
|V | + 1

)
.

Proof (Proof of Theorem 2.). Let M be a non-swappable semi-matching and let
M∗ be an optimal semi-matching in G. For any u ∈ U set vu, v

∗
u in such a way

that uvu ∈ M and uv∗u ∈ M∗. Define an auxiliary multi-digraph D such that
for any u ∈ U there is an arc (vu, v

∗
u) ∈ D if vu �= v∗u. We assume that D is

connected, as otherwise we could analyze each component separately (note that
cost(M) is additive). Let d+D(v), d

−
D(v) denote the out-degree and the in-degree

of vertex v respectively. Consider two subsets of V , V + = {v ∈ V : d+D(v) >
d−D(v)}, V − = {v ∈ V : d−D(v) > d+D(v)}. Let d =

∑
v∈V +(d+(v) − d−(v)) =∑

v∈V −(d−(v)− d+(v)). Clearly, if V + = V − = ∅ then cost(M) = cost(M∗). In
the other case we use the following theorem(see [1], p. 84-85) about an Eulerian
cover by arc-disjoint open trails.
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Theorem 3. For every connected directed multigraph D with d > 0 there exist
(edge disjoint) open trails P1, P2, . . . , Pd which cover D, i.e. D =

⋃d
j=1 Pj and

Pi ∩ Pj = ∅(edgewise), where the beginnings of P1, P2, . . . , Pd are in V +, while
the ends are in V −.

For every e = (v, v∗) ∈ D, let ue be such that v = vue , v
∗ = v∗ue

. Construct
a sequence of semi-matchings M1, . . . ,Md obtained by swapping the edges of
current semi-matching and the optimum M∗ corresponding to the arcs of the
trails. Thus, M1 = (M \ {{uevue} : e ∈ P1}) ∪ {{ue, v∗ue

} : e ∈ P1}, . . . ,Md =
(Md−1 \ {{uevue} : e ∈ Pd}) ∪ {{ue, v∗ue

} : e ∈ Pd} = M∗. Let v, w be the
beginning and end of P1, respectively. Then it holds dM (v′) = dM1 (v

′) for every
v′ �= v, w but dM1 (v) = dM (v)− 1, dM1(w) = dM (w) + 1 and dM (w) ≥ dM (v)−
|P1| because M is non-swappable.

So, the cost changes as follows

cost(M)− cost(M1) =

(
dM (w) + 1

2

)
−
(
dM (w) + 2

2

)
+

+

(
dM (v) + 1

2

)
−
(
dM (v)

2

)
= 1

2 [−2(dM (w) + 1) + 2dM (v)]

= dM (v)− dM (w) − 1 ≤ |P1| − 1.

Note that M1 is also non-swappable as no new bad paths were formed. Anal-
ogously, cost(Mj−1) − cost(Mj) = (dMj−1 (v) − dMj−1 (w) − 1) ≤ (|Pj | − 1) for

every j = 2, . . . , d. In consequence, cost(M) − cost(M∗) ≤ ∑d
j=1(|Pj | − 1) =

|D| − d ≤ |D| ≤ |U |. Further, by Fact 1, we obtain cost(M) ≤ cost(M∗) + |D| ≤(
1 + 1

α

)
cost(M∗).

For arbitrary, non-swappable semi-matching the above theorem yields the
following.

Corollary 1. For any non-swappable semi-matching M in G, cost(M) ≤ 2 ·
cost(M∗).

2.2 An Approximation Algorithm and Its Analysis

We are now ready to present the algorithm SemiMatch (see the pseudocode
below) returning a non-swappable semi-matching which, by Theorem 2, is a
(1+ 1/α)-approximation of the optimum. It starts by finding an arbitrary semi-
matching M in G = (V, U,E) (step 1) and systematically eliminating all cost
reducing paths of length two with respect to M (i.e. bad paths as in Def. 1) in
such a way that no new such paths are formed. This is quite a challenging task
and requires a systematic approach in which we consider bad paths that end
in vertices of degree 0, 1, . . .Δ in M (the loop in step 2) and remove them by
the swapping operation (step 7). As a result, M is modified and possibly new
bad paths are created (step 9) and are again eliminated (step 11). This process,
as we show below, ends after finitely many iterations. Unfortunately, we do not
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know how to do it for bad paths of length greater than two, which could possibly
improve the approximation ratio.

To give a formal analysis we need some more notation. Let M be a semi-
matching in a bipartite graph G = (V, U,E). Then we set

Vk := Vk(M) = {v ∈ V |dM (v) = k}.

In addition, V≤k = {v ∈ V |dM (v) ≤ k} and V<k, V≥k, V>k are defined analo-
gously. Note that as M changes during the execution of the algorithm so do the
above sets. To keep track of the local values of the degrees of vertices in the
algorithm we also use the sets Lk corresponding to Vk.

Recall that an M -alternating path P = vuw with vu ∈M is bad (Def. 1) if it
is cost reducing, i.e. dM (v) − dM (w) ≥ 2. For every such P we set Start(P ) =
{v}, End(P ) = {w}. For two (not necessarily disjoint) sets A,B ⊂ V we use
Bad(A,B) to denote the set of all bad paths from some x ∈ A to some y ∈ B.Ob-
serve that in this setting the condition Bad(V, V ) = ∅ with respect to a current
semi-matching implies that this semi-matching is non-swappable (Thm. 5). To
meet this condition the algorithm eliminates bad paths by swapping, in parallel,
bad paths which do not interfere with each other. Formally, we use a simple pro-
cedure denoted by Badind(A,B) to find a maximal set of paths from Bad(A,B)
such that for any two paths P, P ′ ∈ Badind(A,B), Start(P ) ∩ Start(P ′) = ∅
and End(P )∩End(P ′) = ∅. Since M is a semi-matching, the paths constructed
by Badind(A,B) are also internally disjoint. What is more, since Δ(V ) ≤ Δ,
Badind(A,B) can be performed easily in O(Δ) rounds for any A,B ⊆ V . Fi-
nally, if M is a semi-matching and Z is a set of bad paths, then Z ⊕M is the
semi-matching obtained from M by deleting the edge vu ∈ M and adding uv′

for every path vuv′ in Z. Clearly, Z ⊕M is a semi-matching as the degree of
every u stays one.

Algorithm 1. SemiMatch

1: ∀u ∈ U pick an arbitrary edge eu incident to u and let M =
⋃

u∈U eu.
2: for k = 0 to Δ− 2 do
3: for i = 0 to 2Δ do
4: ∀v∈V l(v) = dM (v), ∀t=0,...,Δ Lt = {v ∈ V |l(v) = t} � Layers
5: X = Badind(V>k+1, Vk) � Maximal set of disjoint paths
6: S = Ends(X), Sc = V \ S
7: M = M ⊕X � Applying X to M
8: for j = 0 to 2Δ2 do
9: Y =

⋃k
t=1 Badind(Lt ∩ S,Lt−1 ∩ Sc)

10: S = S ∪Ends(Y ) \ Starts(Y ), Sc = V \ S
11: M = M ⊕ Y � Applying Y to M
12: end for
13: end for
14: end for
15: return M
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We now proceed with the analysis of SemiMatch. Our goal is to prove that
it terminates in O(Δ5) steps (via Thm. 4) and returns a semi-matching that
is non-swappable (via Thm. 5). At the end Theorems 4 and 5 together with
Theorem 2 will yield our main result, Theorem 1.

Fix n and let C(k, i) be the smallest integer C such that after C iterations of

the loop 8-12 the set Y :=
⋃k
t=1 Badind(Lt∩S,Lt−1∩Sc) is empty. The following

theorem provides an upper bound on the value of C(k, i). It can be easily proved
that C(k, i) is finite. Our next result provides a specific bound in terms of Δ.

Theorem 4. C(k, i) ≤ 2Δ2.

The next theorem guarantees that the algorithm returns a non-swappable semi-
matching after termination.

Theorem 5. After all iterations of the loop 2–14, Bad(V, V ) = ∅. In particular,
the semi-matching returned in Step 15 is non-swappable.

First we show how the degree of a vertex in a semi-matching changes in the
course of the algorithm. Note that in SemiMatch the label l(v) of a vertex v
does not change during the execution of loop 8-12 but dM (v) may change.

Fix k, i and let dM (v) denote the degree of v (in M) at the beginning of the

i-th iteration (step 3) and let d
(j)
M (v) be the degree of v at the beginning of the

j-th iteration (step 8) (j = 0, . . . , C + 1, where j = 2Δ2 + 1 gives the degree
after all iterations). For T ∈ {S, Sc}, we say that a vertex v has state T at a
given time if v ∈ T at this time.

Fact 2. The following inequalities hold for every j.

a) If dM (v) ≥ k + 2, then −1 ≤ d
(j)
M (v)− dM (v) ≤ 0.

b) If dM (v) = k + 1, then d
(j)
M (v)− dM (v) = 0.

c) If dM (v) ≤ k, then 0 ≤ d
(j)
M (v) − dM (v) ≤ 1.

Proof. If dM (v) = k + 1, then v cannot be the beginning or the end of any
path in X or Y and its degree does not change. If dM (v) ≥ k + 2, then v can
be only the beginning of at most one path in X ∪ Y. Therefore, for every j,

dM (v) ≥ d
(j)
M (v) ≥ dM (v) − 1. Now assume that dM (v) ≤ k. First, note that if

v ∈ S in step 6, then its degree increases by exactly one in step 7. Finally, in
view of step 9, only paths from vertices in S to vertices in Sc are used. If P ∈ Y
and P = vuw, then w has state Sc, v has state S in step 9 and v ∈ Sc, w ∈ S in
step 10. Consequently, the degree of any vertex in V<k+1 cannot decrease and
can increase by at most one.

Next we show three lemmas determining the elimination of bad paths in the
execution of the algorithm, which are used in the proof of Theorem 5.

Lemma 1. For every k and i, if Bad(V, V<k) = ∅ at the beginning of the i-th
iteration (step 3), then Bad(V, V<k) = ∅ after this iteration.
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Proof. Suppose, to the contrary, that there is a path vuv′ ∈ Bad(V, V<k) after
the i-th iteration. First note that v′ ∈ ⋃

i≤k Li. Indeed, by Fact 2, every vertex
in V>k has degree at least k + 1 in all of the iterations of loop 8-12. Thus, we
shall consider two cases based on l(v).

– Case 1: l(v) ≥ k + 1. Then, in step 4, dM (v) ≥ k + 1 and vu ∈ M at the
beginning of the iteration as v cannot be the endpoint of any path in X
or Y . Thus vuv′ is in Bad(V, V<k) at the beginning of the i-th iteration
contradicting the assumption.

– Case 2: l(v) ≤ k. First suppose that vu /∈M at the beginning of the iteration.
Then, at the same time there must be another path wuv with wu ∈ M for
some w that satisfies l(w) > l(v). Since l(v) > l(v′), wuv′ ∈ Bad(V, V<k) at
the beginning of the iteration. Thus, we may assume that vu ∈ M at the
beginning of the iteration (step 9). Since there are no bad paths in step 5, we
have l(v) = l(v′)+1 and after all iterations v ∈ S, v′ ∈ Sc, that is vuv′ could
be added to Y , contradicting the fact that after C iterations Y is empty.

Lemma 2. Let Bad(V, V≤k−1) = ∅ at the beginning of the k-th iteration (step 2)
for some k. Then for every i ∈ {0, . . . , 2Δ} and every v ∈ Vk after steps 4-12 of
the i-th iteration at least one of the following conditions is satisfied.

a) Bad(V, v) = ∅.
b) |Bad(V, v)| decreases by at least one in the i-th iteration.
c) max{dM (w)|w ∈ Starts(Bad(V, v))} decreases by at least one in the i-th

iteration.

Proof. Fix k. First assume that v /∈ Lk at the beginning of the i-th iteration
(step 4) for some i. Fact 2 implies that l(v) = k − 1. If at the end of the i-th
iteration there exists a path wuv ∈ Bad(V, v), then l(w) > k+1 and so wu ∈M
in step 4 as w cannot be the endpoint of any bad path in the i-th iteration.
Thus wuv ∈ Bad(V, v) at the beginning of the k-th iteration contradicting the
assumption. Thus, Bad(V, v) = ∅ in the i-th iteration.

Now suppose that v ∈ Lk at the beginning of the i-th iteration (step 4). First,
we prove that no new paths are added to Bad(V, v) in the i-th iteration. Suppose,
to the contrary, that wuv is added to Bad(V, v). Since the degree of v has not
changed in this iteration, either wu is added to M in this iteration or the degree
of w (in M) increases by one. However, w ∈ V>k and no new edges incident to w
are added toM excluding both possibilities, so the path wuv cannot be added in
this iteration. Assume Bad(V, v) �= ∅. If v ∈ Ends(X) after step 6, then at least
one path from Bad(V, v) is deleted in step 7. If v /∈ Ends(X), by maximality
of X , for every x ∈ Starts(Bad(V, v)), x ∈ Starts(X). Since l(x) > k + 1,
x /∈ Ends(Y ) for any Y and so dM (x) decreases by at least one in this iteration.

Lemma 3. Let Bad(V, V≤k−1) = ∅ at the beginning of the k-th iteration for
some k. Then Bad(V, V≤k) = ∅ after the k-th iteration.

Proof. Assume Bad(V, V≤k−1) = ∅ at the beginning of the k-th iteration. In
view of Lemma 1, Bad(V, V≤k−1) = ∅ after the k-th iteration. Let v ∈ Vk
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after the k-th iteration. By Lemma 2, in each of the iterations of the loop 3-
12 at least one of the conditions is satisfied and once Bad(V, v) = ∅, we cannot
add new bad paths to Bad(V, v). Since dG(w) ≤ Δ for every w ∈ V , 0 ≤
|Bad(V, v)| + max{dM (w)|w ∈ Starts(Bad(V, v))} ≤ 2Δ and so, by Lemma 2,
after 2Δ iterations Bad(V, v) = ∅.

Proof (Proof of Theorem 5). First note that after the k-th iteration,
Bad(V, V≤k) = ∅. Indeed, by induction on k, if k = 0, then Bad(V, V−1) = ∅
and so, by Lemma 3, Bad(V, V≤0) = ∅. For the inductive step, assume that
Bad(V, V≤k−1) = ∅ and thus, by Lemma 3, Bad(V, V≤k) = ∅. Since Δ(V ) ≤ Δ
and there are no bad paths ending in vertices of degree at least Δ− 1, after all
iterations of the algorithm we have Bad(V, V ) = Bad(V, V≤Δ−2) = ∅.

Next we establish some facts and lemmas necessary to prove Theorem 4. To prove
that C(k, i) ≤ 2Δ2 we will use the following auxiliary directed multigraph. Fix
k, i and assume that Bad(V, V<k) = ∅ at the beginning of the i-th iteration of 3-
13. Let H = Hi,k = (VH , EH) be defined as follows, VH = L≤k and for v, w ∈ VH
there is an arc from v to w (with label u) if the path vuw was is in Y in one
of the iterations 8-12. Note that if (v, w) ∈ EH , then l(v) > l(w) and vu ∈ M ,
uw /∈ M prior to applying vuw to M . We first state the following simple fact
about H .

Fact 3. The multigraph H is acyclic and the longest directed path in H has
length at most Δ−2. The maximum out-degree of H and the maximum in-degree
of H are at most Δ.

Proof. If (v, w) is an arc, then l(v) > l(w) and so there are no cycles and the
longest path in H has length at most Δ− 2 as k ≤ Δ− 2. There is at most one
arc in H from v to w which is labeled with u and since the maximum degree of
vertices in V is Δ, the max out-degree in H is at most Δ. The same applies to
the in-degree.

Recall that for T ∈ {S, Sc}, we say that a vertex v has state T at a given time
if v ∈ T at this time. For a directed path P in H , let q(P ) be the sum of all
changes of states of all vertices in P . In view of Fact 3 we have

0 ≤ q(P ) ≤ 2Δ2. (1)

Now consider the set S in step 6. In step 7 and step 11, if vuw ∈ X (or Y ), then
w acquires the S-state that was previously on v and we say that S moves from
v to w. In addition, we say that we apply the path vuw. We need the following
important lemma.

Lemma 4. Fix k, i and assume that Bad(V, V<k) = ∅ at the beginning of the
i-th iteration (steps 3-13). If there exists a bad path vuv′ such that v ∈ S and
v′ ∈ Sc for some iteration j0 (of the loop 8-12) then vuv′ is a bad path in every
iteration j < j0 of the loop 8-12.
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Proof. Fix j0 and suppose that vuv′ is a bad path such that v ∈ S and v′ ∈ Sc

in the iteration j0. Then, since vuv
′ is a bad path in one of the iterations, Fact 2

implies dM (v) ≥ dM (v′) + 2 in the iteration j0. If uv /∈M for some j < j0, then
there is w with l(w) > l(v) such that wu ∈M for all j < j0 and wuv′ is a path in
Bad(V, V<k) at the beginning of the i-th iteration contradicting the assumption
of the lemma.

Returning to the main line of reasoning towards the proof of Theorem 4 fix k
and i. Further, for a vertex v ∈ S in step 6, let P = v1 . . . vs be the path of
successive moves of the state S that was originally on v1 := v. Thus, in step 6,
v1 has S and in steps 8-12, S will move by applying bad paths viuivi+1 until
it reaches vs which is its final destination. To prove that in O(Δ2) steps S will
reach vs we extend P to P ′ = v1, . . . vs, . . . , vs+l using the following operation.
Let jp be the largest index j such that in the j-th iteration state S on vs+p is
moved to a vertex w and let vs+p+1 be this vertex w. Continue extending P ′ if
possible. Note that P ′ is a directed path in the multigraph H introduced earlier.
The following lemma holds for P ′.

Lemma 5. For every iteration of the loop 8 − 12 either at least one vertex on
P ′ changes its state or state S is on its final destination vs.

Proof. Consider an iteration of the loop 8-12 and suppose that at the beginning
of this iteration the state S that originated at v1 is on vi for some i ∈ {1, . . . , s−
1}. We prove that there exists a j > i such that vj ∈ P ′ has state Sc. (Note that
i, j have now nothing to do with the indices of the loops in the algorithm.) First
observe that if for every j ∈ {s+1, . . . , s+p}, the state of vj is S, then these are
final states of these vertices. By maximality of P ′, the vertex vs+p has its final
state. Now suppose, vs+i, . . . , vs+p have their final states (all S). If vs+i−1 ∈ S,
then the state S cannot move from vs+i−1 to vs+i and since, by definition of P ′,
the vertex vs+i was the last recipient of the S-state from vs+i−1. So vs+i−1 will
not change its state. Now, if all vs+1, . . . , vs+p are in state S, then vs is in S

c as
by definition of P ′, vs+1 was the last recipient of an S-state from vs.

Further, since i < j, vi has state S, and vj has state Sc, there is an index
i ≤ l < j such that vl ∈ S, vl+1 ∈ Sc. Thus, by Lemma 4, the path vlulvl+1 is a
bad path in this iteration. By maximality of Y in step 9, either vl or vl+1 is the
endpoint of a path from Y .

Proof (Proof of Theorem 4). For a fixed k, i and a vertex v ∈ S in step 6, let
P ′ be defined as before. By (1), q(P ′) ≤ 2Δ2 and, in view of Lemma 5, in 2Δ2

iterations the state originated at v will reach its final destination. Since every
bad path is obtained from some v ∈ S, after 2Δ2 iterations there will be no bad
paths in Y , that is Y = ∅.

3 Semi-matchings via the Minimum Sum Set Cover

In this section we present an alternative approach to the problem of computing a
semi-matching in a distributed setting. We give an algorithm for approximating



220 A. Czygrinow et al.

the optimal semi-matching with a slightly modified definition of the cost (see
the proof of Theorem 6 for details) in a graph G = (V, U,E) with degrees
on U bounded from above and with an additional assumption on degrees of
vertices in V . The method relies on a reduction to the Minimum Sum Set Cover
(MSSC) problem that we shall define next. Given a hypergraph H = (VH , EH),
a solution to the MSSC problem is a bijection φ : VH → {1, . . . , |VH |} and
the cost of φ, costMSSC(φ) =

∑
e∈EH

min{φ(v)|v ∈ e}. We let optMSSC(H) =
minφ costMSSC(φ) and call a solution φ optimal if costMSSC(φ) = optMSSC(H).
It is known (see [4]) that a greedy algorithm solving this problem yields a 4-
approximation. The algorithm in [4] works as follows. In the i-th (i = 1, . . . , |VH |)
iteration a vertex v of the maximum degree in the current hypergraph is selected,
φ(v) := i, and all edges containing v are removed from this hypergraph. By a
slight modification of the proof in [4] one can show that, if instead of selecting a
vertex with the maximum degree, the procedure picks a vertex v with dH(v) ≥
ΔH/2, then the approximation ratio is nine instead of four, that is the obtained
bijection φ satisfies

costMSSC(φ) ≤ 9 · optMSSC(H). (2)

Now we describe the reduction, which takes an instance G = (V, U,E) with
U = {u1, . . . , u|U|} of a semi-matching problem, and returns an MSSC instance
using f -matchings. Given f ∈ Z+, an f -matching in G is a set Q ⊆ E, such
that dQ(v) ≤ f for every v ∈ V and dQ(u) ≤ 1 for every u ∈ U . Formally,
given G = (V, U,E) construct a hypergraph H = H(G) = (VH , EH), where VH
is the set of all f -matchings in G and EH = {e1, . . . , e|U|}, where ei is the set
of all f -matchings Q ∈ VH with dQ(ui) = 1. Observe that, for ei ∈ EH , v ∈ VH
and an f -matching Q in G corresponding to v, the fact that v belongs to ei is
equivalent to dQ(ui) = 1, and, therefore dH(v) = |Q|. Moreover, the operation of
removing an edge ei from H is equivalent to removing the corresponding vertex
ui from U . As a result of this, the degrees of all vertices in ei decrease by one
and at the same time the sizes of all f -matchings containing ui decrease by one.
Notice also, that the set VH remains unchanged during such an operation while
its elements (f -matchings) might decrease in size.

The greedy algorithm finding an MSSC in H can be now rewritten as the
following procedureGreedySM in G: Find a maximal f -matchingQ inG, delete
from U all vertices u with dQ(u) = 1, and continue until G is empty. The result
of GreedySM is the union M of all maximal f -matchings Q computed in the
course of the procedure. Note that any maximal f -matching is a 1

2 -approximation
of a maximum f -matching in G.

Next we relate an arbitrary semi-matching in G with a solution to the MSSC
problem in H(G) using a labeling. For a semi-matching M in G let φM be a
solution to the MSSC problem in H defined as follows. Consider the sequence
s := 1, 1, . . . , 1, 2, 2 . . . , 2, 3, . . . where each i appears exactly f times. Every
vertex v ∈ V , in parallel, labels the edges of M incident to v by successive
numbers in s. Let k be the maximum label used in this process. Then, the edges
of M with label i form an f -matching Qi. Set φM (Qi) := i and for every other
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f -matching Q in G let φM (Q) = j for some j > k. In addition, if M is obtained
by GreedySM and the labels of edges in M correspond to iterations (edges
added in the i-th iteration have label i), then φM obtained as above is said to
agree with GreedySM.

For a semi-matching M in G, p ∈ �, and v ∈ V , let kM (v) := p · dM (v) if
dM (v) < f and let kM (v) := p

f d
2
M (v) if dM (v) ≥ f . LetK(M,p) :=

∑
v∈V kM (v).

Lemma 6. For a semi-matching M , costMSSC(φM ) ∈ [K(M, 12 ),K(M, 2)].

Proof. For an edge e = {u, v} ∈M , u ∈ U , let ψ(e) be the label of e assigned as
described before. Then Qψ(e) has the smallest value of φM from all f -matchings
containing u and therefore, costMSSC(φM ) =

∑
e∈M ψ(e). Let v ∈ V . If dM (v) <

f , then the sum of ψ(e) over all e’s in M incident to v is dM (v) and otherwise it

is 1
2r(r+1)f +(r+1)(dM (v)− fr) = (r+1)(dM (v)− 1

2fr), where r = �dM (v)
f �.

Finally, we have
d2M (v)
2f ≤ (r + 1)(dM (v)− 1

2fr) ≤ 2d2M(v)
f .

In the analysis of the algorithm GreedySM we use also the following fact.

Fact 4. Let M be a semi-matching such that for all v ∈ V it holds dM (v) ≥ t.
Then there exists an optimal semi-matching M∗ with dM∗(v) ≥ t for all v ∈ V .

Theorem 6. Let a, b ∈ Z+, Δ = ΔV (G) > ab. GreedySM finds a
36-approximation of the semi-matching problem in a graph G = (V, U,E) that
satisfies: d(v) ∈ [Δ/a,Δ] for every v ∈ V and d(u) ≤ b for every u ∈ U . The
algorithm runs in O(ab2) rounds.

Proof. Let f := �Δ/(ab)� and letM be obtained by GreedySM. Let φM be the
solution to the MSSC problem obtained from M that agrees with GreedySM.
Then, in view of the previous discussion and by (2), costMSSC(φM ) ≤ 9 ·
optMSSC(H). To simplify computations we redefine

costSM (M) :=
2

f

∑

v∈V
d2M (v).

By Lemma 6, 1
4costSM (M) ≤ K(M, 12 ) ≤ costMSSC(φM ) ≤ 9 ·optMSSC(H). On

the other hand, by Hall’s theorem there exists a semi-matchingM ′ with dM ′(v) ≥
f for all v ∈ V . By Fact 4 there also exists an optimal semi-matching M∗ with
the same property. From Lemma 6, costMSSC(φM∗) ≤ K(M∗, 2) = costSM (M∗)
and so optMSSC(H) ≤ costSM (M∗). Thus, costSM (M) ≤ 36 · costSM (M∗). The
number of iterations of GreedySM is O(ab) as in each iteration each vertex
from V looses f or all incident edges. Finding a maximal f -matching can be
done in O(b) rounds (using procedures similar to those computing a maximal
matching, see e.g. [13]).

Remark 1. If a = 1, b ∈ Z+, Δ > b, then the algorithm GreedySM finds a 36-
approximation of the semi-matching problem in every graph G = (V, U,E), which
is Δ-regular on V, in O(b2) rounds. In this case it outperforms the algorithm
SemiMatch, which has time complexity O(Δ5) independent of the value of b,
the upper bound on the degrees of vertices in U .
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